
SICStus Prolog JIT White Paper
Mats Carlsson et al.

RISE Research Institutes of Sweden AB
PO Box 1263

SE-164 29 Kista, Sweden

Release 4.7.1
January 2022

RISE Research Institutes of Sweden AB
sicstus-request@ri.se https://sicstus.sics.se/

mailto:sicstus-request@ri.se
https://sicstus.sics.se/

Copyright c© 1995-2022 RISE Research Institutes of Sweden AB

i

Table of Contents

1 Introduction . 1

2 Intermediate Representation 3
2.1 IR Instruction Set . 3
2.2 Targets . 5
2.3 Offsets . 5
2.4 Constants . 5
2.5 Instructions . 5

2.5.1 move(Src,Dest) . 6
2.5.2 cmps(Dest,Src) . 8
2.5.3 cmpu(Dest,Src) . 9
2.5.4 test(Dest,Src) . 10
2.5.5 jump(Target) . 11
2.5.6 call(Target) . 12
2.5.7 ccall(Cond,Target) . 13
2.5.8 branch(Cond,Target) . 13
2.5.9 cmove(Cond,Src,Dest) . 14
2.5.10 add(Src1,Src2,Dest) . 15
2.5.11 addo(Src1,Src2,Dest) . 16
2.5.12 sub(Src1,Src2,Dest) . 17
2.5.13 subo(Src1,Src2,Dest) . 18
2.5.14 mulo(Src1,Src2,Dest) . 19
2.5.15 sh(Src1,Src2,Dest) . 19
2.5.16 and(Src1,Src2,Dest) . 20
2.5.17 or(Src1,Src2,Dest) . 21
2.5.18 xor(Src1,Src2,Dest) . 21
2.5.19 int2cp(Src,Dest) . 22
2.5.20 cp2int(Src,Dest) . 23
2.5.21 init(Dest1,Dest2) . 23
2.5.22 pop . 24
2.5.23 context(Target) . 24
2.5.24 half(Constant) . 25
2.5.25 word(Constant) . 25
2.5.26 label(L) . 25
2.5.27 align(Int) . 25

2.5.27.1 The meaning of align instruction arguments 26
2.5.28 try chain(list of (Label-Alternative),Arity) 29
2.5.29 switch(list of (Key-Target),Default) . 30
2.5.30 trampolines(Base) . 30
2.5.31 toc(Base) . 30

ii SICStus JIT White Paper

3 Predicate Linkage . 31
3.1 Code Outline, Lead-In and Prefix Sequences for x86 32
3.2 Code Outline, Lead-In and Prefix Sequences for x86 64 32
3.3 Code Outline, Lead-In and Prefix Sequences for PPC64 33
3.4 WAM-JIT Interface . 34

4 Register Allocation . 35
4.1 Placement of WAM and IR Registers . 35
4.2 Use of Machine Registers and Stack Frame Slots for x86 37

4.3 Use of Machine Registers and Stack Frame Slots
for x86 64 (non-Windows) . 38

4.4 Use of Machine Registers and Stack Frame
Slots for x86 64 (Windows) . 39

4.5 Use of Machine Registers and Stack Frame Slots for PPC64 40

5 Runtime System . 41

6 Misc . 47
6.1 Options Affecting Jitting . 47

6.1.1 System Properties Affecting the JIT Compilation 47
6.1.2 Configuration Options Affecting the JIT Compilation 48

7 References . 49

1

1 Introduction

The SICStus Prolog Just-In-Time Compiler (SPJIT) is currently operational on the x86

and x86_64 architectures under Windows, Mac OS X and Linux, and is being ported to
the PPC64 (Power8) architecture under Linux. SPJIT works entirely in-memory; generated
native code is never written to any files. The unit of compilation is a Prolog predicate.
The compilation is performed in two steps: (a) from WAM (Warren Abstract Machine) to
IR (intermediate representation), (b) from IR to native code. SPJIT thus consists of three
modules:

1. A WAM to IR translator, written in Prolog. Goals of this module include to be target
independent and to run in time linear in the size of the input.

2. An IR to native code translator, written in C. This module obviously needs to be
adapted to the specific target. One source code version covers x86 and x86_64, whereas
another one is being developed for PPC64.

3. A runtime system to support the native code, written in assembly language. It also
contains entry points when emulated code wants to call, continue to, or fail back to
native code. Conversely, it contains return points when native code wants to call,
continue to, or fail back to non-native code, or for all kinds of exception handling.
This module also calls other parts of the runtime system as needed. This module too
obviously needs to be adapted to the specific target. One source code version covers
x86 and x86_64, whereas another one is being developed for PPC64.

3

2 Intermediate Representation

The intermediate representation can be thought of as a universal assembly language, or
at least a language general enough to execute the Prolog virtual machine if assisted by a
runtime system. In this chapter, we list its instructions as well as their expansion into
native instructions.

[PERM: It would be nice with some description of the abstract CPU. In particular the
condition codes and how they are maintained.]

2.1 IR Instruction Set

Insn ::= move(Src,Dest)

| cmove(Cond,Src,Dest)

| cmps(Dest,Src)

| cmpu(Dest,Src)

| test(Dest,Src)

| jump(Target)

| call(Target)

| ccall(Cond,Target)

| branch(Cond,Target)

| add(Src,Src,Dest)

| addo(Src,Src,Dest)

| sub(Src,Src,Dest)

| subo(Src,Src,Dest)

| mulo(Src,Src,Dest)

| sh(Src,Src,Dest)

| and(Src,Src,Dest)

| or(Src,Src,Dest)

| xor(Src,Src,Dest)

| int2cp(Src,Dest)

| cp2int(Src,Dest)

| init(Dest,Dest)

| pop

| context(Target)

| half(Constant)

| word(Constant)

| label(_)

| align(0 | 1 | 2 | 3 | 4)

| try_chain(list of (label(_)-Int),Int)

| switch(list of (Immediate-Target),Target)

Cond ::= gu | geu | lu | leu | g | ge | l | le | e | ne | no | o

Target ::= kernel(Atom)

| label(_)

| native_entry(Atom:Atom/Int)

4 SICStus JIT White Paper

| native_entry(Int)

| cp(Offset)

| Int

Src ::= Immediate | Reg | Mem

Dest ::= Reg | Mem

Immediate ::= functor(Atom/Int)

| constant(Atomic)

| nil

| label(Cont)

| Offset

Reg ::= val | h | s | ac0 | ac1 | ab | a | e | cp | b

| gpr(Int) // general purpose register
| fpr(Int) // floating-point register
| arg0

| arg1

| arg2

| w_insn

| w_heap_warn_soft

| w_next_node

| w_numstack_end

| w_stack_start

| w_stack_warn

| w_fli_stack_start

Mem ::= x(Int) | x(Int,_) | y(Int) | y(Int,_)

| a(Offset)

| e(Offset)

| cp(Offset)

| h(Offset)

| s(Offset)

| val(Offset)

Offset ::= half(Constant)

| word(Constant)

| Constant

Constant ::= native_op

| kontinue

| itoy(Int)

| Int
| native_entry(Atom:Atom/Int)

| native_entry(Int)

Chapter 2: Intermediate Representation 5

2.2 Targets

kernel(Atom)

FIXME: Document

label(_) FIXME: Document

native_entry(Atom:Atom/Int)

FIXME: Document

native_entry(Int)

FIXME: Document

cp(Int) FIXME: Document

2.3 Offsets

half(Constant)

Denotes Constant multiplied by the number of bytes per half machine word.

word(Constant)

Denotes Constant multiplied by the number of bytes per machine word.

Constant Denotes Constant.

2.4 Constants

native_op

Denotes the value of the C expression Wmode(NATIVE_OP).

Int Denotes Int.

itoy(Constant)

Denotes Constant added by two and multiplied by the number of bytes per
machine word.

2.5 Instructions

In this report, the term condition codes denotes conditions used by conditional branches,
including the overflow condition.

On the x86/x86 64 architectures, operations such as add set overflow set iff the signed add
yields an arithmetic overflow, and clear it otherwise. To achieve the same on PPC64, one
must use the technique:

<<clear XER>>

addo. Dest,Src1,Src2

which first clears the XER register (see below), and addo., in case of an overflow, sets
the SO flag of the XER. In either case, the overflow condition is set to the resulting SO
flag, reflecting the outcome of the operation. The SO flag can then be used for conditional
branching and the like.

6 SICStus JIT White Paper

Clearing (the SO-bit of) the XER register can be achieved in many ways. We will clear the
entire XER register, using the sequence:

li 0,0

mtxer 0

which first clears R0 and then moves that into the XER register.1

Static branch prediction has not been exploited in this report, but should.

The following table shows the correspondence between IR condition codes and conditional
branch instructions.

IR x86/x86 64 PPC64
gu ja bgt

geu jae bge

lu jb blt

leu jbe ble

g jg bgt

ge jge bge

l jl blt

le jle ble

e je beq

ne jne bne

o jo bso

no jno bns

We now list each IR instructions with its purpose and back-end specific translation.

2.5.1 move(Src,Dest)

Purpose To copy the value of source Src into destination Dest.

Condition Codes
Undefined.

x86

x86_64 If the operands are identical, then

/* nothing */

Else if Src is the constant 0 and Dest is a register,

xor Dest,Dest

Else, for x86_64, if Src is a local label and Dest is a register, then

lea OFFSET(%rip),Dest

Else if Src is a floating-point register and Dest is in memory, then

// if x86
fstpl Dest

1 The mcrxr 0 instruction would be shorter, but it is not available on server class Power CPUs.

Chapter 2: Intermediate Representation 7

// else if x86 64
movsd Src,Dest

Else if Src is in memory and Dest is a floating-point register, then

// if x86
fldl Src

// else if x86 64
movsd Src,Dest

Else if one operand is a register and the other one is a register or in memory,
then

mov Src,Dest

Else if both operands are in memory, then

mov Src,%rax

mov %rax,Dest

Else if Src is a 32-bit signed integer, then

mov $Src,Dest

Else if Dest is a register, then

movabs $Src,Dest

Else let r be %rdx if Dest uses %rax and %rax otherwise, and

movabs $Src,r

mov r,Dest

PPC64 [PERM: Note: std and ld treat base register R0 as zero, so this must be
forbidden here.]

If Src is a floating-point register and Dest is in memory, then

stfd Src,Dest

Else if Src is in memory and Dest is a floating-point register, then

lfd Dest,Src

Else if Src is in a register and Dest is in memory, then

std Src,Dest

Else if Src is in memory and Dest is in a register, then

ld Dest,Src

Else if Dest is in memory, then reduce to [PERM: FIXME: arg0..arg2 must
be preserved, use something else.]

move(Src,arg1)

std arg1,Dest

Else if Src is a register, then

mr Dest,Src

Else if Src is a signed 16-bit integer SI, then

li Dest,SI

Else if Src equals (HI<<16)+LO, where HI is a signed 16-bit integer and LO is
an unsigned 16-bit integer, then

lis Dest,HI

8 SICStus JIT White Paper

ori Dest,Dest,LO // omit if LO = 0

Else if Src is a local label at offset OFF from [PERM: This could (and naturally
will) be done for any (32bit-aligned) immediate that happens to have the value
toc+OFF, with OFF a signed, multiple-of-4, 16-bit integer.] the TOC, then
reduce to

[PERM: This may clobber arg0. Can Dest be arg0?].

add(toc,OFF,Dest)

Else, Src must be preallocated at offset OFF in the TOC, and [PERM: Discuss
TOC allocation and toc-register handling, somewhere.]

• if OFF is a signed 16-bit integer, then

ld Dest,OFF(toc)

• if OFF equals (HI<<16)+LO, where HI is a signed 16-bit integer and LO is
an unsigned 16-bit integer and LO >= 0x8000, then [PERM: Can do better
if HI+1 = 0?]

[PERM: NOTE: pretty sure this is wrong i HI is 0x7FFF, i.e. HI+1 overflows 16-bit signed.]
addis arg5,toc,HI+1 // Dest can be r0
ld Dest,LO(arg5)

• if OFF equals (HI<<16)+LO, where HI is a signed 16-bit integer and LO
is an unsigned 16-bit integer and LO < 0x8000, then

addis arg5,toc,HI // Dest can be r0
ld Dest,LO(arg5)

2.5.2 cmps(Dest,Src)

Purpose To compare Dest and Src as signed values. Dest must be a general purpose
register or in memory.

Condition Codes
Overflow is undefined, the others are set.

x86

x86_64 If both operands are in memory, then reduce to

move(Src,val)

cmps(Dest,val)

Else if Src is an immediate and Dest is of the form cp(0), then

cmpw $Src,(%rcx)

Else if one operand is a register and the other one is a register or in memory,
then

cmp Src,Dest

Else if Src is a 32-bit signed integer, then

cmp $Src,Dest

Else, for x86_64

movabs $Src,%r11

cmp %r11,Dest

Chapter 2: Intermediate Representation 9

PPC64 If Dest is of the form cp(0), then reduce to [PERM: FIXME: arg0..arg2 must
be preserved, use something else.]

lwz arg0,Dest

cmps(arg0,Src)

Else if Dest is in memory, then reduce to [PERM: FIXME: arg0..arg2 must
be preserved, use something else.]

ld arg0,Dest

cmps(arg0,Src)

Else if Src is in memory, then reduce to [PERM: FIXME: arg0..arg2 must be
preserved, use something else.]

ld arg1,Src

cmps(Dest,arg1)

Else if Src is a register, then

cmpd Dest,Src

Else if Src is a signed 16-bit integer SI, then

cmpdi Dest,SI

Else, reduce to [PERM: FIXME: arg0..arg2 must be preserved, use something
else.]

move(Src,arg1)

cmpd Dest,arg1

2.5.3 cmpu(Dest,Src)

Purpose To compare Dest and Src as unsigned values. Dest must be a general purpose
register or in memory.

Condition Codes
Overflow is undefined, the others are set.

x86

x86_64 If both operands are in memory, then reduce to

move(Src,val)

cmpu(Dest,val)

Else if Src is an immediate and Dest is of the form cp(0), then

cmpw $Src,(%rcx)

Else if one operand is a register and the other one is a register or in memory,
then

cmp Src,Dest

Else if Src is a 32-bit signed integer, then

cmp $Src,Dest

Else, for x86_64

movabs $Src,%r11

cmp %r11,Dest

10 SICStus JIT White Paper

PPC64 If Dest is of the form cp(0), then reduce to [PERM: FIXME: arg0..arg2 must
be preserved, use something else.]

lwz arg0,Dest

cmpu(arg0,Src)

Else if Dest is in memory, then reduce to [PERM: FIXME: arg0..arg2 must
be preserved, use something else.]

ld arg0,Dest

cmpu(arg0,Src)

Else if Src is in memory, then reduce to [PERM: FIXME: arg0..arg2 must be
preserved, use something else.]

ld arg1,Src

cmpu(Dest,arg1)

Else if Src is a register, then

cmpld Dest,Src

Else if Src is an unsigned 16-bit integer UI, then

cmpldi Dest,UI

Else, reduce to [PERM: FIXME: arg0..arg2 must be preserved, use something
else.]

move(Src,arg1)

cmpld Dest,arg1

2.5.4 test(Dest,Src)

Purpose Compute (Dest /\ Src). Src must be an immediate or ac1.

Condition Codes
Set e if the result is zero, and ne otherwise. Other condition codes are undefined.

x86

x86_64 If Dest is a register and Src is an 8-bit unsigned integer, then

testb $Src,Dest

Else if Dest translates to a memory operand r(OFFSET) and Src can be obtained
by shifting an 8-bit unsigned integer c left by 8*n bits, then

testb $c,(OFFSET+n)(r)

Else [PERM: This is incorrect if Src is ac1 (i.e. in memory)]

test $Src,Dest

PPC64 If Dest is in memory, then reduce to [PERM: FIXME: arg0..arg2 must be
preserved, use something else.]

ld arg0,Dest

test(arg0,Src)

Else if Src is a register (i.e. ac1), then [PERM: FIXME: arg0..arg2 must be
preserved, use something else.]

and. arg0,Dest,Src

Chapter 2: Intermediate Representation 11

Else if Src is a 16-bit unsigned integer, then [PERM: FIXME: arg0..arg2 must
be preserved, use something else.]

andi. arg0,Dest,Src

Else if Src is a 16-bit unsigned integer UI shifted 16 bits, then [PERM: FIXME:
arg0..arg2 must be preserved, use something else.]

andis. arg0,Dest,UI

Else if Src is a stretch of N 1-bits followed by M least significant 0-bits, then
[PERM: FIXME: arg0..arg2 must be preserved, use something else.]

rldicr. arg0,Dest,64-N-M,N-1

Else, reduce to [PERM: FIXME: arg0..arg2 must be preserved, use something
else.]

move(Src,arg1)

and. arg0,Dest,arg1

2.5.5 jump(Target)

Purpose To transfer program control to Target.

Condition Codes
Undefined.

x86

x86_64 If Target is of the form cp(OFF), then

lea OFF(cp), %rax

jmp *%rax

Else for x86_64, if Target is not reachable with a 32-bit offset

jmp Trampoline

[...]

Trampoline: jmp *0(%rsi)

.quad Target

Else

jmp Target

PPC64 If Target is of the form cp(OFF), then OFF is nonzero, and the transfer must
use the CTR register:

addi 0, cp, OFF

mtctr 0

bctr

Else if Target is a local label, then

b Target

Else, reduce to: [PERM: Do we need to use the CTR register here (e.g. can
the callee be relying on CTR being set?)]

b Trampoline

[...]

Trampoline:

12 SICStus JIT White Paper

move(Target,0)

mtctr 0

bctr

2.5.6 call(Target)

[PERM: FIXME: Must document plcall()]

Purpose To transfer program control to Target, with the return address pushed on the
stack or saved in a register.

Condition Codes
Undefined.

x86

x86_64 For x86_64, if Target is not reachable with a 32-bit offset

call Trampoline

[...]

Trampoline: jmp *0(%rsi)

.quad Target

Else

call Target

PPC64

There is a bug here:

IR instruction: call(label(G))

Power code: bl 0x3fffb035c8e8

Problem 1: Callee expects CTR initialized.

Problem 2: Callee can escape to native nonjit, which will access
TOC[arg5].

Conclusion: call(label()) must emit the same sequence as
call(native entry())!

If Target is a local label, then

bl Target

[PERM: NOTE: using bl is sub-optimal if we will not return (via the link
register) to the following instruction. See p. 36 “Use Branch instructions for
which LK=1 only as subroutine calls”]

Else, reduce to the following, where the transfer must use the CTR register.

bl Trampoline

[...]

Trampoline:

move(Target,0)

mtctr 0

bctr

[PERM: NOTE: this move must be encoded in a way that CALLEE TOC OFFSET in
ppc64le kernel.s4 understands! Document the requirements! We could simplify initial

Chapter 2: Intermediate Representation 13

implementation by always putting the toc offset in a fixed register the_reg (e.g. arg5)
(so CALLEE TOC OFFSET can just patch TOC+the reg. We can optimize this later.
Question: Presumably Target will be an immediate in these cases?]

[PERM: NOTE: the jitter must not blindly re-use same-valued TOC entries, since some
entries may be changed, post-jit, by CALLEE TOC OFFSET users.]

2.5.7 ccall(Cond,Target)

Purpose If Cond is true, then transfer program control to Target, with the return address
pushed on the stack or saved in a register. Cond is most likely false.

Condition Codes
Undefined.

x86

x86_64 Let NCond be the negation of Cond, and

jcc NCond,1f

call(Target)

1:

PPC64 [PERM: BUG: Does this have the same problem as call to local label? (must
go via CTR+TOC)]

If Target is a local label, then

bcl Cond,Target

[PERM: Is it true here, as for the call instruction, that “the transfer must use
the CTR register.” (and the CALLEE TOC OFFSET issues)?]

Else if Trampoline is within 32764 bytes, reduce to:

bcl Cond,Trampoline

[...]

Trampoline:

move(Target,0)

mtctr 0

bctr

Else, let NCond be the negation of Cond, and reduce to:

bc NCond, 1f

bl Trampoline

1: [...]

Trampoline:

move(Target,0)

mtctr 0

bctr

2.5.8 branch(Cond,Target)

Purpose To conditionally transfer program control to Target.

Condition Codes
Must preserve all condition codes except overflow, which is left undefined.

14 SICStus JIT White Paper

x86

x86_64 For x86_64, if Target is not reachable with a 32-bit offset

jcc Cond,Trampoline

[...]

Trampoline: jmp *0(%rsi)

.quad Target

Else

jcc Cond,Target

PPC64 Let NCond be the negation of Cond. If Target is a local label, then

// if Target is within 32764 bytes
bc Cond,Target

// else Target is not within 32764 bytes
bc NCond, 1f

b Target

1:

Else the explicit branch instruction must [PERM: is a trampoline really strictly
necessary, or just desirable?] go via a trampoline:

// if Trampoline is within 32764 bytes
bc Cond,Trampoline

// else Trampoline is not within 32764 bytes
bc NCond, 1f

b Trampoline

1: [...]

Trampoline:

move(Target,0)

mtctr 0

bctr

2.5.9 cmove(Cond,Src,Dest)

Purpose To conditionally copy the value of source Src into destination Dest.

Condition Codes
Undefined.

x86

x86_64 If both operands are in registers, then

cmove Cond,Src,Dest

Else, let NCond be the negation of Cond, and

jcc NCond,1f

move(Src,Dest)

1:

PPC64 If both operands are in registers, then note that neither Src nor Dest can be
R0 (which would be treated as constant zero), and:

// if Cond is l or lu
isel Dest,Src,Dest,0

Chapter 2: Intermediate Representation 15

// else if Cond is g or gu
isel Dest,Src,Dest,1

// else if Cond is e
isel Dest,Src,Dest,2

// else if Cond is o
isel Dest,Src,Dest,3

// else if Cond is le or leu
isel Dest,Dest,Src,1

// else if Cond is ge or geu
isel Dest,Dest,Src,0

// else if Cond is ne
isel Dest,Dest,Src,2

// else if Cond is no
isel Dest,Dest,Src,3

Else, let NCond be the negation of Cond, and

bc NCond,1f

move(Src,Dest)

1:

2.5.10 add(Src1,Src2,Dest)

Purpose To store the value of the expression (Src1+Src2) in Dest.

Condition Codes
Undefined.

x86

x86_64 If Src1 and Dest are the same memory operand and Src2 is the constant 0,
then

/* nothing */

Else if Src2 is the constant 0, then the instruction reduces to

move(Src1,Dest)

Else if Src1 and Dest are the same memory operand and Src2 is a 32-bit signed
integer, then

add $Src2,Dest

Else if Src1 is a register, Src2 is the 32-bit signed integer OFFSET, and Dest is
a register, then

lea OFFSET(Src1),Dest

Else for x86_64, if Src1 and Dest are the same memory operand and Src2 is
not a 32-bit signed integer, then

movabs $Src2,%r11

add %r11,Dest

Else if Dest is in memory, the instruction reduces to

add(Src1,Src2,val)

move(val,Dest)

16 SICStus JIT White Paper

Else, the instruction reduces to

move(Src1,Dest)

add(Dest,Src2,Dest)

PPC64 [PERM: An unstated assumption seems to be that Src1 is a register or in
memory.]

If Dest is in memory, then reduce to [PERM: FIXME: arg0..arg2 must be
preserved, use something else.]

add(Src1,Src2,arg0)

std arg0,Dest

Else if Src1 is in memory, then reduce to [PERM: FIXME: arg0..arg2 must
be preserved, use something else.]

ld arg1,Src1

add(arg1,Src2,Dest)

Else if Src2 is in memory, then reduce to [PERM: FIXME: arg0..arg2 must
be preserved, use something else.]

ld arg2,Src2

add(Src1,arg2,Dest)

Else if Src2 is a signed 16-bit integer SI, then note that Src1 cannot be R0,
which would mean the constant zero, and

addi Dest,Src1,SI

Else if Src2 equals (HI<<16)+LO, where HI is a signed 16-bit integer and LO is
an unsigned 16-bit integer, then note that neither register operand can be R0,
which would mean the constant zero, and

addis Dest,Src1,HI

ori Dest,Dest,LO // omit if LO = 0 [PERM: NO! this is wrong for addition]

Else, reduce to [PERM: FIXME: arg0..arg2 must be preserved, use something
else.]

move(Src2,arg2)

add Dest,Src1,arg2

2.5.11 addo(Src1,Src2,Dest)

Purpose To store the value of the expression (Src1+Src2) in Dest.

Condition Codes
Overflow set iff the signed add yields an arithmetic overflow, and cleared oth-
erwise. Other condition codes undefined.

x86

x86_64 Src2 is an immediate.

If Src1 and Dest are the same memory operand and Src2 is a 32-bit signed
integer, then

add $Src2,Dest

Else for x86_64, if Src1 and Dest are the same memory operand and Src2 is
not a 32-bit signed integer, then

movabs $Src2,%r11

Chapter 2: Intermediate Representation 17

add %r11,Dest

Else if Dest is in memory, the instruction reduces to

addo(Src1,Src2,val)

mov val,Dest

Else, the instruction reduces to

move(Src1,Dest)

addo(Dest,Src2,Dest)

PPC64 Src1 is a register and Src2 is an immediate2.

[PERM: BUG: the arguments can be, e.g. addo(ac0, ac1, ac0), i.e. Src2 may
not be an immediate.]

Reduce to [PERM: FIXME: arg0..arg2 must be preserved, use something
else.]

li 0,0

mtxer 0

move(Src2,arg2) [PERM: Wrong. Move does not preserve condition codes (so could clobber XER SO-bit).]
addo. Dest,Src1,arg2

2.5.12 sub(Src1,Src2,Dest)

Purpose To store the value of the expression (Src1-Src2) in Dest.

Condition Codes
Undefined.

x86

x86_64 If Src1 and Dest are the same memory operand and Src2 is a 32-bit signed
integer, then

sub $Src2,Dest

Else if Src1 is a register, Src2 is the 32-bit signed integer OFFSET, and Dest is
a register, then

lea -OFFSET(Src1),Dest

Else for x86_64, if Src1 and Dest are the same memory operand and Src2 is
not a 32-bit signed integer, then

movabs $Src2,%r11

sub %r11,Dest

Else if Dest is in memory, the instruction reduces to

sub(Src1,Src2,val)

move(val,Dest)

Else, the instruction reduces to

move(Src1,Dest)

sub(Dest,Src2,Dest)

2 Unlike the case for x86/x86 64

18 SICStus JIT White Paper

PPC64 If Dest is in memory, then reduce to [PERM: FIXME: arg0..arg2 must be
preserved, use something else.]

sub(Src1,Src2,arg0)

std arg0,Dest

Else if Src1 is in memory, then reduce to [PERM: FIXME: arg0..arg2 must
be preserved, use something else.]

ld arg1,Src1

sub(arg1,Src2,Dest)

Else if Src2 is in memory, then reduce to [PERM: FIXME: arg0..arg2 must
be preserved, use something else.]

ld arg2,Src2

sub(Src1,arg2,Dest)

Else if -Src2 is a signed 32-bit integer, then reduce to

add(Src1, -Src2, Dest)

Else, reduce to [PERM: FIXME: arg0..arg2 must be preserved, use something
else.]

move(Src2,arg2)

subf Dest,arg2,Src1

2.5.13 subo(Src1,Src2,Dest)

Purpose To store the value of the expression (Src1-Src2) in Dest. Src2 need not be an
immediate.

Condition Codes
Overflow set if the signed subtract yields an arithmetic overflow, and cleared
otherwise. Other condition codes undefined.

x86

x86_64

If Src2 and Dest are the same and Src1 is the constant 0, then

neg Dest

Else if Src1 and Dest are the same memory operand and Src2 is a 32-bit signed
integer, then

sub $Src2,Dest

Else for x86_64, if Src1 and Dest are the same memory operand and Src2 is
not a 32-bit signed integer, then

movabs $Src2,%r11

sub %r11,Dest

Else if Dest is in memory, the instruction reduces to

subo(Src1,Src2,val)

mov val, Dest

Else, the instruction reduces to

move(Src1,Dest)

subo(Dest,Src2,Dest)

Chapter 2: Intermediate Representation 19

PPC64 No operand can be in memory. [PERM:Does not the same hold for the operands
also for x86/x86 64? If not, why? Because registers are scarce on x86/x86 64,
operands can be in memory there. –Mats]

[PERM: BUG: the arguments can be, e.g. subo(val,y(1),val), i.e. operands
can be in memory.]

If Src1 is 0, then

li 0,0

mtxer 0

nego. Dest,Src2

Else if Src1 and Src2 are in registers, then

li 0,0 [PERM: What if Src2 or Src1 is R0? xref addo.]
mtxer 0

subfo. Dest,Src2,Src1

Else, reduce to, to be completed [PERM: What if Src2 is the most negative
value, will overflow condition be set correctly?]

addo(Src1,-Src2,Dest)

2.5.14 mulo(Src1,Src2,Dest)

Purpose To store the value of the expression (Src1*Src2) in Dest. Dest must be a register
and Src2 must be an immediate.

[PERM: BUG: the arguments can be, e.g. mulo(ac0,ac1,val), i.e. Src2 may
not be an immediate.]

Condition Codes
Overflow set if the signed multiply yields an arithmetic overflow, and cleared
otherwise. Other condition codes are undefined.

x86

x86_64 For x86_64, if Src2 is not a 32-bit signed integer, then

mov Src1,Dest

movabs $Src2,%r11

mul %r11,Dest

Else

mov Src1,Dest

mul $Src2,Dest

PPC64 [PERM: FIXME: arg0..arg2 must be preserved, use something else.]

li 0,0

mtxer 0

move(Src2,arg2) [PERM: Wrong. Move does not preserve condition codes (so could clobber XER SO-bit).]
mulldo. Dest,Src1,arg2

2.5.15 sh(Src1,Src2,Dest)

Purpose To store the value of the expression (Src1<<Src2) in Dest. Dest must be a
register and Src2 must be an immediate in the range [-4,4].

20 SICStus JIT White Paper

Condition Codes
Undefined.

x86

x86_64 If Src1 is different from Dest, then reduce to

mov Src1,Dest

sh(Dest,Src2,Dest)

Else if Src2 > 0 then

shl $Src2,Dest

Else

shr $-Src2,Dest

PPC64 If Src1 is in memory, then reduce to [PERM: FIXME: arg0..arg2 must be
preserved, use something else.]

ld arg1,Src1

sh(arg1,Src2,Dest)

Else if Src2 > 0 then

sldi Dest,Src1,Src2

Else

srdi Dest,Src1,-Src2

2.5.16 and(Src1,Src2,Dest)

Purpose To store the value of the expression (Src1/\Src2) in Dest. Src1 and Dest must
be the same operand and Src2 must be an immediate.

[PERM: BUG: the arguments can be, e.g. and(x(3),x(2),val), i.e. Src1 and
Dest may differ.] [PERM: BUG: the arguments can be, e.g. and(ac0,ac1,ac0),
i.e. Src2 may not be an immediate.]

Condition Codes
Undefined.

x86

x86_64 For x86_64, if Src2 is not a 32-bit signed integer, then

movabs $Src2,%r11

and %r11,Dest

Else

and $Src2,Dest

PPC64 If Src2 is a 16-bit unsigned integer UI, then

andi. Dest,Src1,UI

Else if Src2 equals (HI<<16), where HI is an unsigned 16-bit integer, then

andis. Dest,Src1,HI

Else if Src2 is a stretch of N 1-bits, extending through the least significant bit,
then

rldicl Dest,Src1,0,64-N

Chapter 2: Intermediate Representation 21

Else if Src2 is a stretch of N 1-bits, extending through the most significant bit,
then

rldicr Dest,Src1,0,N-1

Else, reduce to [PERM: FIXME: arg0..arg2 must be preserved, use something
else.]

move(Src2,arg2)

and Dest,Src1,arg2

2.5.17 or(Src1,Src2,Dest)

Purpose To store the value of the expression (Src1\/Src2) in Dest. Src1 and Dest must
be the same operand and Src2 must be an immediate.

[PERM: BUG: the arguments can be, e.g. or(val,11,x(3,0)), i.e. Src1 and
Dest may differ.] [PERM: BUG: the arguments can be, e.g. or(val,y(6),val)
and or(ac0,ac1,ac0), i.e. Src2 may not be an immediate.]

Condition Codes
Undefined.

x86

x86_64 For x86_64, if Src2 is not a 32-bit signed integer, then

movabs $Src2,%r11

or %r11,Dest

Else

or $Src2,Dest

PPC64 If Src2 is a 16-bit unsigned integer UI, then

ori Dest,Src1,UI

Else if Src2 equals (HI<<16)+LO, where HI is an unsigned 16-bit integer and
LO is an unsigned 16-bit integer, then

oris Dest,Src1,HI

ori Dest,Dest,LO // omit if LO = 0

Else, reduce to [PERM: FIXME: arg0..arg2 must be preserved, use something
else.]

move(Src2,arg2)

or Dest,Src1,arg2

2.5.18 xor(Src1,Src2,Dest)

Purpose To store the value of the expression (Src1 \ Src2) in Dest. Src1 and Dest must
be the same operand and Src2 must be an immediate.

[PERM:
BUG: the arguments can be, e.g. xor(val,-5,arg1) or xor(ac0,ac1,ac0),
i.e. Src1 and Dest may differ.]

Condition Codes
Undefined.

22 SICStus JIT White Paper

x86

x86_64 For x86_64, if Src2 is not a 32-bit signed integer, then

movabs $Src2,%r11

xor %r11,Dest

Else

xor $Src2,Dest

PPC64 If Src2 is a 16-bit unsigned integer UI, then

xori Dest,Src1,UI

Else if Src2 equals (HI<<16)+LO, where HI is an unsigned 16-bit integer and
LO is an unsigned 16-bit integer, then

xoris Dest,Src1,HI

xori Dest,Dest,LO // omit if LO = 0

Else, reduce to [PERM: FIXME: arg0..arg2 must be preserved, use something
else.]

move(Src2,arg2)

xor Dest,Src1,arg2

2.5.19 int2cp(Src,Dest)

Purpose To convert a tagged integer to a choicepoint pointer. Dest must be val.

Condition Codes
Undefined.

x86

mov Src,%eax

sar $1,%eax

dec %eax

add w_choice_start,%eax

note that val is %eax on x86.

x86_64

mov Src,%rax

sub $3,%rax

add w_choice_start,%rax

note that val is %rax on x86.

PPC64 If Src is in memory, then reduce to [PERM: FIXME: arg0..arg2 must be
preserved, use something else.]

ld arg1,Src

int2cp(arg1,Dest)

Else,

ld val,w_choice_start

addi val,val,-3

add val,Src,val

Chapter 2: Intermediate Representation 23

2.5.20 cp2int(Src,Dest)

Purpose To convert a choicepoint pointer to a tagged integer. Dest cannot be val.

Condition Codes
Undefined.

x86

mov Src,%eax

sub w_choice_start,%eax

lea 3(,%eax,2),%eax

mov %eax,Dest [PERM: Can do better if Dest is a register]

x86_64

mov Src,%rax

sub w_choice_start,%rax

add $3,%rax

mov %rax,Dest [PERM: Can do better if Dest is a register]

PPC64 If Src is in memory, then reduce to [PERM: FIXME: arg0..arg2 must be
preserved, use something else.]

ld arg1,Src

cp2int(arg1,Dest)

Else if Dest is in memory, then reduce to [PERM: FIXME: arg0..arg2 must
be preserved, use something else.]

cp2int(Src,arg0)

std arg0,Dest

Else,

ld Dest,w_choice_start

subf Dest,Dest,Src

addi Dest,Dest,3

2.5.21 init(Dest1,Dest2)

Purpose To create a brand new variable in the first destination, making the second
destination a variable bound to the first. Dest1 must be in memory.

Condition Codes
Undefined.

x86

x86_64 If Dest1 is on the form r(0), then

mov r,Dest1

mov r,Dest2

Else if Dest2 is the register r, then

lea Dest1,r

mov r,Dest1

Else

lea Dest1,%rax

24 SICStus JIT White Paper

mov %rax,Dest1

mov %rax,Dest2

PPC64

Both Dest1 and Dest2 must not be based on R0 (which would mean zero in
the instructions la and std).

If Dest1 is on the form r(0), then

std r,Dest1

std r,Dest2

Else if Dest2 is the register r, then

la r,Dest1

std r,Dest1 [PERM: // saner as ’’std r,r’’ I think]

Else [PERM: FIXME: arg0..arg2 must be preserved, use something else.]

la arg0,Dest1

std arg0,Dest1 [PERM: // saner as ’’std arg0,arg0’’ I think (since arg0 contains the address)]
std arg0,Dest2

2.5.22 pop

Purpose To discard the top of the stack.

Condition Codes
Undefined.

x86

x86_64

pop %rax

PPC64

/* nothing */

2.5.23 context(Target)

Target is a local label.

Purpose To refresh the TOC pointer.

Condition Codes
Undefined.

x86

x86_64

/* nothing */

PPC64 The CTR is assumed to contain the address of the local label (this is ensured by
the caller, typically by jumping to the label using bctr or the like).

Let OFF be the offset to the TOC from Target. Reduce to

mfctr toc

add(toc,OFF,toc)

Chapter 2: Intermediate Representation 25

2.5.24 half(Constant)

Purpose To lay out an aligned constant occupying half a machine word.

Condition Codes
Undefined.

x86

[possible padding]

.value Constant

x86_64[PERM: No padding for x86 64? jit.c does padding for all Intel]
PPC64

.long Constant

2.5.25 word(Constant)

Purpose To lay out an aligned constant occupying one machine word.

Condition Codes
Undefined.

x86

[possible padding]

.long Constant

x86_64

PPC64

[possible padding]

.quad Constant

2.5.26 label(L)

Purpose A label indicating a code point that can be referred to by other instructions. L
is on the form ’$VAR’(Int).

Condition Codes
Undefined.

2.5.27 align(Int)

Purpose To enforce code alignment. Let pc16 denote “program counter modulo 16”.

Condition Codes
Undefined.

x86 Depending on Int:

0 Bump pc until pc16 in {0,8,12}. [PERM: Verified x86.]

1 Bump pc until pc16 in {2,10,14}. [PERM: Verified x86.]

2 If pc16 in [9,15], bump pc until pc16=0. [PERM: Verified x86.]

3 Bump pc until pc16=12. [PERM: Verified x86.]

26 SICStus JIT White Paper

4 Bump pc until pc16 in {0,4,8,12}. [PERM: Verified x86.]

x86_64 Depending on Int:

0 Bump pc until pc16 in {0,8}. [PERM: Verified x64.]

1 Bump pc until pc16 in {4,12}. [PERM: Verified x64.]

2 If pc16 in [9,15], bump pc until pc16=0. [PERM: Verified x64.]

3 Bump pc until pc16=8. [PERM: Verified x64.]

4 Bump pc until pc16 in {0,8}. [PERM: Verified x64.]

PPC64 Depending on Int:

1 Bump pc until pc16 in {4,12}. [PERM: Verified PPC.]

2 No extra alignment needed (since 4-byte alignment is always as-
sumed). [PERM: Verified PPC.]

0
3
4 Bump pc until pc16 in {0,8}. [PERM: Verified PPC.]

2.5.27.1 The meaning of align instruction arguments

[PERM: This information is reverse engineered and it should be verified that that I have
understood things correctly].

All the alignment instructions correspond to non-executable code, i.e. any code before the
alignment instruction does not fall through into the alignment instruction. This mens that
the padding, if any, need not be executable, and for debuggability it is good if it is explicitly
non-executable (e.g. ub2 on Intel).

In the following, let ws stand for the size of a word (4 or 8 bytes). Let hs stand for the size
of a half word (2 or 4 bytes).

The meaning of the alignment instruction arguments are as follows:

align(0)

Used after a plcall instruction, to ensure suitable padding for the following
data. The data is word or half-word, so alignment should be suitable for either,
i.e. for a a word. The plcall instruction is like a jump, but passes the address
of the pc following the jump instruction (i.e. the address corresponding to the
start of the align(0)).

On some architectures, e.g. x86/x64, plcall uses the “trick” of using an or-
dinary machine code call instruction that sets up the return address, i.e. the
address of the align(0) that follows, for free. The callee can then use the re-
turn address (on x86/x64 this corresponds to popping the return address from
the stack) to obtain the address of the data that follows the plcall instruction
(e.g., on x86 this corresponds to aligning the popped return address in a way
consistent with align(0)).

Chapter 2: Intermediate Representation 27

So, minimum alignment would require ((pc mod hs) == 0) and ((pc mod ws)
== 0), and in the “ordinary” case (see below) would additionally require that
((pc + hs+hs+ws) mod 16) is code aligned.

On 64-bit this means pc16 in {0,8} (this is the same regardless of whether code
should be 64-bit aligned or 32-bit aligned). [PERM: Verified x64, PPC.]

On 32-bit this means pc16 in {0,4,8,12} (which is always stronger than code
alignment on x86), but this is not what is used on x86, see below.

Note: On the 32-bit x86, data alignment would correspond to (pc mod 16) in
{0,4,8,12}, but for some reason this is not exactly what is used. Instead (pc
mod 16) must be in {0,8,12}, i.e. it must not be 4. Presumably it is to avoid
putting the code label at the last 4 bytes of a 16 byte block. See align(1)

below for a discussion. [PERM: Verified x86.]

Used in two situations:

• The “ordinary” case

...

plcall(...),

align(0),

half(itoy(N)),

label(Cont),

half(native_op),

word(Next),

label(Entry), // code label

...

• The special case (where there is no code label affected by the alignment,
so presumably it could use some other alignment convention):

...

plcall(kernel(native_fli_open)),

align(0),

word(native_entry(Pred)),

half(OuterSize),

half(itoy(Ar)),

half(kontinue)],

...

align(1)

This alignment is used at the start of a disjunct “pseudo-predicate”, before an
native_op continuation.

It is always followed by a half-word data, a word, and then a code label, in the
following way:

comment(disjunct),

align(1),

label(L1),

half(native_op),

word(L),

label(Entry), // code label

28 SICStus JIT White Paper

context(Entry),

label(L2),

...

The alignment should ensure that, when used as in the above example, the
half-word is half-word-aligned and that the word is word-aligned and that the
code-label has “good” alignment for code. I.e. that ((pc mod hs) == 0) and
(((pc+hs) mod ws) == 0) and that (pc+hs+ws) is good for code.

On 64-bit this means pc16 in {4,12} (this is the same regardless of code should
be 64-bit aligned or 32-bit aligned). [PERM: Verified x64, PPC.]

On 32-bit this means pc16 in {2,6,10,14} (assuming code should be 32-bit
aligned; {2,10} if code should be 64-bit aligned), but this is not what is used
on x86, see below. [PERM: Verified x86.]

Note: On the 32-bit x86, alignment would correspond to (pc mod 16) in
{2,6,10,14}, but for some reason this is not exactly what is used. Instead
(pc mod 16) must be in {2,10,14}, i.e. it must not be 6. The reason is un-
known, perhaps it is to avoid the case when the code label points at the last (4
byte) word of a 16-byte memory block. Note that this is exactly the same code
alignment avoided by the special x86 rule for align(0). [PERM: Verified x86.]

Note native_op continuation is also used as continuation after plcall instruc-
tions, but in those cases a different align instruction is used.

align(2)

The intent is to align the following code label in a “good way”, considering code
alignment etc, while still avoiding excessive code bloat.

On 64-bit PPC, with 32-bit instruction size, this corresponds to pc16 in
{0,4,8,12}, but see below. An experiment with only {0,8} (SP JIT ALIGN2)
apparently slowed thing down. [PERM: Verified PPC.]

On 32-bit x86 and 64-bit x64, with no hard alignment restrictions, no alignment
would be needed, but this is not what is used. Instead a pc16 less than or equal
to 8 is left unchanged, whereas a larger modulus causes the pc to be bumped to
the next 16-byte boundary. Presumably this is to ensure that the code contains
at least half a 16 byte memory block. [PERM: Verified x86, x64.]

The only hard requirement is that a label following this alignment is valid as a
jump destination. On some architectures, like PPC64, it is assumed all other
instructions preserves this invarint, so, on such architectures, this instruction
can safely be treated as a no-op.

align(3)

Used for ensuring “good” alignment for a code label that comes after a word
after the alignment, e.g. like:

...

align(3),

word(native_entry(Pred)),

label(Entry), // code label

...

This is used before the predicate entry label and similar cases.

Chapter 2: Intermediate Representation 29

On 64-bit PPC, with 32-bit instruction size, this corresponds to pc16 in
{0,4,8,12}, but this is not what is used. Instead only {0,8} is used, presumably
for better cache behavior. [PERM: Verified PPC.]

On 64-bit x64, with no hard alignment restrictions, no alignment would be
needed, but this is not what is used. Instead pc is bumped until pc16 is 8,
corresponding to 16-byte aligned code label, presumably to ensure the code
label is at the start of a 16 byte memory block. [PERM: Verified x64.]

On 32-bit x86, with no hard alignment restrictions, no alignment would be
needed, but this is not what is used. Instead pc is bumped until pc16 is 12,
corresponding to 16-byte aligned code label, presumably to ensure the code
label is at the start of a 16 byte memory block. [PERM: Verified x86.]

The only hard requirement is that a label following this alignment (after a
word) is valid as a jump destination. [PERM: Verify this, e.g. are there special
requirements in the lead-in?]

align(4)

This is used for aligning data in a “good way”, like try chains and switches,
after an unconditional jump.

On 64-bit, with 8-byte data, this corresponds to pc16 in {0,8}, [PERM: Verified
x64, PPC.]

On 32-bit, with 4-byte data, this corresponds to pc16 in {0,4,8,12}, [PERM:
Verified x86].

The only hard requirement is that a label following this alignment is suitably
aligned as data, i.e is word-aligned.

jump(...),

align(4),

label(Try), // data label

try_chain(Tail,AlignedArity).

...

2.5.28 try chain(list of (Label-Alternative),Arity)

Purpose To lay out a data structure for backtracking purposes.

Condition Codes
Undefined.

x86

x86_64

PPC64 Every element of the list of pairs corresponds to a block of three machine words
followed by two half machine words, laid out as follows, where b+o denotes an
address at o machine words after the start of the block:

b+0 : Pointer to the next block, or NULL if it is the last block.
b+1 : Label, i.e. code address.

b+2 : Alternative, i.e. struct try_node pointer.

b+3 : offsetof(struct node,term[Arity])

b+3.5: Wmode(TRY)

30 SICStus JIT White Paper

2.5.29 switch(list of (Key-Target),Default)

Purpose To perform a switch on the principal functor of register x0. Target is the jump
target when x0 matches Key. Default is the default jump target.

Condition Codes
Undefined.

x86

x86_64

PPC64 This is laid out as a regular struct sw_on_key, machine-word aligned.

2.5.30 trampolines(Base)

Base is a local label that must be three preceding instruction.

The trampolines, if any, are emitted here.

2.5.31 toc(Base)

Base is a local label that must be three preceding instruction.

The TOC entries, if any, are emitted here.

31

3 Predicate Linkage

For the purposes of SPJIT, it is useful to think of three modes in which a predicate p can
be:

jitex p has been JIT compiled and does not have a breakpoint, block declaration or
the like. Calls from other jitex predicates to p stay in native code.

cex p is implemented by a C function and does not have a breakpoint, block decla-
ration or the like. Calls from jitex predicates to p go to the C function[PERM:
“go to the C function” means what? Directly (not via native_c? If so, how
are breakpoints/redefinitions to C functions triggered when called from jitted
code]. Such predicates are never subject to JIT compilation.

wamex All other cases. Calls from jitex predicates to p are routed via the WAM
emulator. The transfer of control is implemented by returning from the JIT
runtime system with the value 2.

When SICStus starts, no jitex predicates exist, but start to appear as emulated predicates
get JIT compiled.

Note that setting a breakpoint on a jitex predicate changes its state to wamex. Removing
the breakpoint changes the state back to jitex. Redefining a jitex predicate also changes its
state to wamex.

For a predicate p whose struct definition * pointer is def, def->jit is either NULL
or points at the JIT code generated for p, whereas def->proc.native contains a lead-in
sequence of machine instructions. The JIT compiler translates a call from p to q into a call
to q’s lead-in sequence, no matter what type of predicate q is or whether it is even defined.

[PERM: Do mod_def.proxies definitions need some special treatment?]

If p is jitex, then the lead-in sequence calls the kernel subroutine native_shunt_link,
which patches the caller to directly call the JIT code the next time around. If p is cex,
then the lead-in sequence calls the kernel subroutine native_c, which routes the call to the
C function. If p is wamex, then the lead-in sequence calls the kernel subroutine native_

nonjit, which arranges for the call to be handled by the WAM emulator.

If the state of p changes from jitex to wamex, then a prefix of def->jit is modified to an
instruction sequence that calls the kernel subroutine native_restore_link, which patches
the caller to call the lead-in sequence the next time around.

If the state of p changes from cex to wamex because a breakpoint was set, then def->jit

is not relevant (because such predicates are not jitted).

If the state of p changes from wamex back to jitex because a breakpoint was removed, then
the prefix of def->jit is repaired to contain the original JIT instructions for p.

If p was first JIT compiled and then redefined, then def->jit cannot be freed entirely,
because there may be dangling references to it created by native_shunt_link. Thus, its

32 SICStus JIT White Paper

prefix, which calls native_restore_link, must be preserved. This small memory leak is
not expected to be noticeable in a production setting.

The exact layout of these code sequences is back-end dependent and is explained in the
following sections.

3.1 Code Outline, Lead-In and Prefix Sequences for x86

For all modes, the prefix sequence is preceded by a single word containing a pointer to the
current predicate. The prefix sequence is followed by a single section of code.

Mode Lead-In Prefix
jitex jmp native_shunt_link cmp h,w_heap_warn_soft

jae native_nonjit

pop %eax

wamex jmp native_nonjit jmp native_restore_link

cex jmp native_c —

3.2 Code Outline, Lead-In and Prefix Sequences for x86 64

For all modes, the prefix sequence is preceded by a single word containing a pointer to the
current predicate. The prefix sequence is followed by two sections of code.

Main Body
The main body of the generated JIT code.

Trampolines
Several small help routines for branching to kernel subroutines and other pred-
icates.

Mode Lead-In Prefix
jitex jmp native_shunt_link cmp h,w_heap_warn_soft

jae native_nonjit

pop %rax

...or... ...or...
jmp *0(%rsi) cmp h,w_heap_warn_soft

.quad native_shunt_link jae Trampoline

pop

...
Trampoline: jmp *0(%rsi)

.quad native_nonjit

wamex jmp native_nonjit jmp native_restore_link

...or... ...or...
jmp *0(%rsi) jmp *0(%rsi)

Chapter 3: Predicate Linkage 33

.quad native_nonjit .quad native_restore_link

cex jmp native_c —
...or... ...or...
jmp *0(%rsi) —
.quad native_c —

3.3 Code Outline, Lead-In and Prefix Sequences for PPC64

For all modes, the prefix sequence is preceded by a single word containing a pointer to the
current predicate. The prefix sequence is followed by three sections of code and data.

Main Body
The main body of the generated JIT code.

Trampolines
Several small help routines for branching to kernel subroutines and other pred-
icates.

TOC An array of constants for loading instead of synthesizing, for cases where loading
is faster. A pointer to the TOC is maintained in toc and is refreshed by the
context(_) IR instruction. Every TOC must begin with:

toc+0 : native_shunt_link

toc+8 : native_restore_link

toc+16 : native_nonjit

toc+24 : native_c

In the lead-in sequence, the toc register is guaranteed to point at some valid
JIT-TOC, and thus contain the above four entries.

Mode Lead-In Prefix
jitex ld 0,0(toc) ld 0,w_heap_warn_soft

mtctr 0 cmpld 7,h,0[PERM: Is this cmpl

cr7,1,h,0? Why CR7 and not the default
CR0?]

bctr blt 7,1f[PERM: Is this blt cr7,1f? Why
CR7 and not the default CR0?]

ld 0,16(toc)

mtctr 0

bctr

1:

wamex ld 0,16(toc) ld 0,8(toc)

mtctr 0 mtctr 0

bctr bctr

cex ld 0,24(toc) —
mtctr 0 —

34 SICStus JIT White Paper

bctr —

3.4 WAM-JIT Interface

In terms of the C call stack, the WAM emulator calls the JIT runtime system, but the latter
never calls the WAM emulator. Recursive nesting can only happen in the foreign language
interface, if the foreign function calls Prolog, and similarly in a predicate implemented as a
C function, if the C function calls Prolog.

The WAM emulator has a general mechanism to dispatch on the predicate type. When it
sees a jitex predicate, it routes the call with call site w->insn and callee w->predicate to
the ABI function:

int call_native(struct worker *w);

The WAM instruction set has been extended by the special instruction NATIVE_OP, and it is
legal for w->next_insn to point to it, i.e., it is a legal continuation. As for all continuations,
the half word preceding it is the environment size field. The word following it points to the
WAM code equivalent of the continuation, immediately followed by the native code of the
continuation. When the WAM emulator sees it, it routes the call with w->insn pointing to
it to the ABI function:

int proceed_native(struct worker *w);

Both ABI function return the values:

0 jitex code backtracks into wamex code.

1 jitex code proceeds to wamex code at address w->insn, in read mode if x(0)
is nonvar and in write mode otherwise.

2 jitex code calls wamex code with call site w->insn and callee w->predicate.

3 jitex code proceeds to the WAM instruction PROGRESS.

35

4 Register Allocation

4.1 Placement of WAM and IR Registers

The “WAM registers” arg0..arg2 are for passing parameters from the JIT code to the
runtime system. These “WAM registers” must be preserved by the machine code that
implements the IR instructions (i.e. the generated machine code must not used any of
arg0..arg2 as scratchpad registers).

The “WAM registers” arg3..arg5 are scratchpad registers of the runtime system and may
also be freely used by the machine code that implements the IR instructions.

For x86 64, the exact offsets of ac0 and ac1 are ABI dependent (Windows vs. non-
Windows).

For PPC64, the CTR register is used by context(_) instructions, in predicate-to-predicate
calls, and for jumping to continuations. The link register is used in call and ccall instruc-
tions. Otherwise, CTR can be used freely, and so can the link register. Additionally R0 and
arg3..arg5 can be used freely by the machine code that implements the IR instructions.

WAM x86 x86 64 PPC64
sp %esp %rsp r1

toc — — r2

val %eax %rax r3

arg0 0(%esp) %rax r3

arg1 4(%esp) %r10 r4

arg2 8(%esp) %r11 r5

arg3 — — r6

arg4 — — r7

arg5 — — r8

s %edx %rdx r9

ac0 28(%esp) OFF(%rsp) r9

ac1 32(%esp) OFF(%rsp) r10

ab W_LOCAL_UNCOND(w) NODE_LOCAL_TOP(b) r11

hb W_GLOBAL_UNCOND(w) NODE_GLOBAL_TOP(b) r12

b W_NODE(w) r8 r14

a %ebp %rbp r15

h %esi %rsi r16

tr W_TRAIL_TOP(w) r9 r17

e %edi %rdi r18

cp %ecx %rcx r19

w %ebx %rbx r20

w_insn W_INSN(w) W_INSN(w) r21

w_heap_warn_soft W_HEAP_WARN_SOFT(w) W_HEAP_WARN_SOFT(w) W_HEAP_WARN_SOFT(w)

w_next_node W_NEXT_NODE(w) W_NEXT_NODE(w) W_NEXT_NODE(w)

w_numstack_end W_NUMSTACK_END(w) W_NUMSTACK_END(w) W_NUMSTACK_END(w)

36 SICStus JIT White Paper

w_stack_start W_STACK_START(w) W_STACK_START(w) W_STACK_START(w)

w_stack_warn W_STACK_WARN(w) W_STACK_WARN(w) W_STACK_WARN(w)

w_fli_stack_

start

W_FLI_STACK_

START(w)

W_FLI_STACK_

START(w)

W_FLI_STACK_

START(w)

x(0) W_TERM0(w) %r12 r22

x(1) W_TERM1(w) %r13 r23

x(2) W_TERM2(w) %r14 r24

x(3) W_TERM3(w) %r15 r25

x(4) W_TERM4(w) W_TERM4(w) r26

x(5) W_TERM5(w) W_TERM5(w) r27

x(6) W_TERM6(w) W_TERM6(w) r28

x(7) W_TERM7(w) W_TERM7(w) r29

x(8) W_TERM8(w) W_TERM8(w) r30

x(9) W_TERM9(w) W_TERM9(w) r31

Chapter 4: Register Allocation 37

4.2 Use of Machine Registers and Stack Frame Slots for x86

%eax gpr(0) val

%ecx gpr(1) cp

%edx gpr(2) s

%ebx gpr(3) w

%esp gpr(4) SP

%ebp gpr(5) a

%esi gpr(6) h

%edi gpr(7) e

0(%esp) arg0

4(%esp) arg1

8(%esp) arg2

12(%esp) %ebx callee save
16(%esp) %edi callee save
20(%esp) %esi callee save
24(%esp) %ebp callee save
28(%esp) ac0

32(%esp) ac1

36(%esp) pad
40(%esp) pad
44(%esp) pad
48(%esp) ret address
52(%esp) w

38 SICStus JIT White Paper

4.3 Use of Machine Registers and Stack Frame Slots for
x86 64 (non-Windows)

%rax gpr(0) val, arg0

%rcx gpr(1) cp

%rdx gpr(2) s

%rbx gpr(3) w

%rsp gpr(4) SP

%rbp gpr(5) a

%rsi gpr(6) h

%rdi gpr(7) e

%r8 gpr(8) b

%r9 gpr(9) tr

%r10 gpr(10) arg1

%r11 gpr(11) arg2

%r12 gpr(12) x(0)

%r13 gpr(13) x(1)

%r14 gpr(14) x(2)

%r15 gpr(15) x(3)

0(%rsp) %rbx callee save
8(%rsp) %rbp callee save
16(%rsp) %r12 callee save
24(%rsp) %r13 callee save
32(%rsp) %r14 callee save
40(%rsp) %r15 callee save
48(%rsp) ac0

56(%rsp) ac1

64(%rsp) arg0 spill slot
72(%rsp) pad

80(%rsp) ret address

Chapter 4: Register Allocation 39

4.4 Use of Machine Registers and Stack Frame Slots for
x86 64 (Windows)

%rax gpr(0) val, arg0

%rcx gpr(1) cp

%rdx gpr(2) s

%rbx gpr(3) w

%rsp gpr(4) SP

%rbp gpr(5) a

%rsi gpr(6) h

%rdi gpr(7) e

%r8 gpr(8) b

%r9 gpr(9) tr

%r10 gpr(10) arg1

%r11 gpr(11) arg2

%r12 gpr(12) x(0)

%r13 gpr(13) x(1)

%r14 gpr(14) x(2)

%r15 gpr(15) x(3)

0(%rsp) %rbx callee save
8(%rsp) %rbp callee save
16(%rsp) %rsi callee save
24(%rsp) %rdi callee save
32(%rsp) %r12 callee save
40(%rsp) %r13 callee save
48(%rsp) %r14 callee save
56(%rsp) %r15 callee save
64(%rsp) ac0

72(%rsp) ac1

80(%rsp) arg0 spill slot
88(%rsp) pad

96(%rsp) ret address

40 SICStus JIT White Paper

4.5 Use of Machine Registers and Stack Frame Slots for
PPC64

[PERM: Would it be better to have the four special TOC-entries on the stack (like ’$ref’/2
functor) so not all predicates would need to allocate/maintain a TOC.]

r0 gpr(0) scratch

r1 gpr(1) sp stack ptr
r2 gpr(2) toc JIT-TOC ptr callee save
r3 gpr(3) arg0/val

r4 gpr(4) arg1

r5 gpr(5) arg2

r6 gpr(6) arg3

r7 gpr(7) arg4

r8 gpr(8) arg5

r9 gpr(9) ac0/s

r10 gpr(10) ac1

r11 gpr(11) ab

r12 gpr(12) hb

r13 gpr(13) thread ptr
r14 gpr(14) b callee save
r15 gpr(15) a callee save
r16 gpr(16) h callee save
r17 gpr(17) tr callee save
r18 gpr(18) e callee save
r19 gpr(19) cp callee save
r20 gpr(20) w callee save
r21 gpr(21) insn callee save
r22 gpr(22) x(0) callee save
r23 gpr(23) x(1) callee save
r24 gpr(24) x(2) callee save
r25 gpr(25) x(3) callee save
r26 gpr(26) x(4) callee save
r27 gpr(27) x(5) callee save
r28 gpr(28) x(6) callee save
r29 gpr(29) x(7) callee save
r30 gpr(30) x(8) callee save
r31 gpr(31) x(9) callee save
32(sp) ’$mutable’/2

40(sp) ’$ref’/2

48(sp) ld 0, 16(toc) for case analysis in native_nonjit

41

5 Runtime System

The runtime system contains 140 subroutines, each of which is briefly described in the
following table. The arguments and return values are “typed” by the registers in which
they are passed. Many arithmetic subroutines act on the accumulators ac0 and ac1, each
of which can be unboxed, i.e. contain a raw integer, or boxed, i.e. contain a tagged pointer to a
big integer or float, either on the global stack or on a scratchpad area. If both accumulators
are live, then either both are boxed or both are unboxed.

The type cc denotes a return value passed as a condition code, with the following conven-
tions:

o Signals an arithmetic overflow or other error. Other condition codes are unde-
fined.

e vs. ne Continue in write mode vs. read mode. Other condition codes are undefined.

e vs. ne Continue with unboxed accumulators vs. boxed accumulators. Other condition
codes are undefined.

e vs. ne Reflects the outcome of native_test_numbers(); see below. Other condition
codes are undefined.

e vs. ne Failure vs. success of a type test. Other condition codes are undefined.

e, ne, l, le, g, ge
Reflects the outcome of a comparison. Other condition codes are undefined.

Following are the subroutines:

void native_nonjit()

Handle general events as well as calls to non-jitex predicates.

void native_restore_link()

Patch the caller, which corresponds to an IR instructions of the form
call(native_entry(M:F/A)), to call the lead-in sequence, and remake the
call. For x86/x86 64, this affects a call machine instruction, in the main body
or in a trampoline. For PPC64, this never affects any machine instructions.
Only TOC slots are affected.

void native_shunt_link()

Patch the caller, which corresponds to an IR instructions of the form
call(native_entry(M:F/A)), to call the prefix sequence, and jump there. For
x86/x86 64, this affects a call machine instruction, in the main body or in
a trampoline. For PPC64, this never affects any machine instructions. Only
TOC slots are affected.

void native_get_constant(val Xj, arg1 C)

Unify Xj with the constant C.

cc native_get_list(val Xj)

Unify Xj with a list, setting s if read mode. Condition

42 SICStus JIT White Paper

void native_get_nil(val Xj)

Unify Xj with the constant [].

cc native_get_structure(val Xj, arg1 F)

Unify Xj with a structure with principal functor F, setting s if read mode.

void native_get_subconstant(val Xj, arg1 C)

Unify Xj with the constant C, where Xj occurs in compound term.

cc native_get_sublist(val Xj)

Unify Xj with a list, setting s if read mode, where Xj occurs in compound term.

void native_get_subnil(val Xj)

Unify Xj with the constant [], where Xj occurs in compound term.

cc native_get_substructure(val Xj, arg1 F)

Unify Xj with a structure with principal functor F, setting s if read mode, where
Xj occurs in compound term.

void native_get_value(val X, arg1 Y)

Unify X and Y.

void native_bind(val X)

Trail the binding of X that just took place if necessary.

void native_trail_unsafe(val X)

Trail local variable X if needed, in the context of *_unsafe_variable.

void native_make_global(val X)

Globalize variable X if needed.

cc native_compareop(arg0 X, arg1 Y)

Term compare X and Y with the condition code reflecting the output.

void native_cut(val B)

Execute a cut (!) back to the choicepoint B.

void native_fail()

Backtrack.

void native_if()

Support for ANOP_IF.

void native_metacall(val Callee)

Support for a metacall to Callee.

void native_proceed()

Handle PROCEED, continuing into native code for NATIVE_OP continuations.

void native_progress()

A general event has occurred; fall back on the WAM emulator to handle it and
to proceed with a PROGRESS operation.

void native_subproceed()

Tell the WAM emulator to proceed at address w->insn.

Chapter 5: Runtime System 43

void native_switch(val key, arg1 sw)

Dispatch on key, the principal functor of x(0). arg1 points at possible padding
followed by an aligned switch_on_key struct.

void native_try(val Label)

Push a choicepoint with a chain of alternatives at Label, and branch to the
first alternative.

void native_spill(val V, arg1 Xi)

Support SPILL.

val native_unspill(val V)

Support UNSPILL.

void native_first_float()

Support for converting unboxed ac0 to a boxed float, allocated on the numstack.

void native_first_long()

Support for boxing unboxed ac0.

cc native_first_value(val X)

Load ac0 with the value of X. cc reflects read/write mode.

void native_fli_close()

Close the foreign call: restore C and SP term ref stacks, reset FLI exception
flag, free any mems for +codes arguments, and proceed.

val native_fli_get_atom(val X)

Check a +atom foreign argument. Escape to the emulator in case of error.

void native_fli_get_codes(val X, val arg1)

Check a +codes foreign argument. Escape to the emulator in case of error.
Otherwise, convert it to a string, allocate a mem, and add it to the mem ring
in arg1. Returns the augmented mem ring.

fpr(8) native_fli_get_float(val X)

Check a +float foreign argument. Escape to the emulator in case of error.
Otherwise, convert it and return as a float.

val native_fli_get_integer(val X)

Check a +integer foreign argument. Escape to the emulator in case of error.
Otherwise, convert it and return as an integer.

val native_fli_get_string(val X)

Check a +string foreign argument. Escape to the emulator in case of error.
Otherwise, convert it and return as a string.

void native_fli_open(inline Pred, inline Size, inline Arity)

Open a foreign call, with w_insn pointing to the corresponding WAM instruc-
tion. Push a C stack frame of size Size. Save SP term ref stack index and
FLI exception flag. Push a WAM stack frame with the dereferenced argument
registers of size Arity. Point cp to an inline KONTINUE instruction just after
Arity.

44 SICStus JIT White Paper

val native_fli_refresh(val X)

Check FLI exception flag, and if set, close the foreign call and fail. call heap_
overflow() if necessary. Must preserve val and fpr(0).

void native_fli_unify_atom(val X, arg1 Y)

Unify a foreign -atom or [-atom] argument with X.

void native_fli_unify_codes(val X, arg1 Y)

Unify a foreign -codes or [-codes] argument with X. If the received value is
misencoded, close the call and raise an error.

void native_fli_unify_float(val X, arg1 Y)

Unify a foreign -float or [-float] argument with X. If the received value is
not a proper float, close the call and raise an error.

void native_fli_unify_integer(val X, arg1 Y)

Unify a foreign -integer or [-integer] argument with X.

void native_fli_unify_string(val X, arg1 Y)

Unify a foreign -string or [-string] argument with X. If the received value
is misencoded, close the call and raise an error.

void native_fli_unify_term(val X, arg1 Y)

Unify a foreign -term or [-term] argument with X.

void native_later_float()

Convert unboxed ac1 to a boxed float, allocated on the numstack.

void native_later_long()

Box unboxed ac1.

void native_later_value_boxed(val X)

Load ac1 with the value of X where ac0 is boxed.

cc native_later_value_unboxed(val X)

Load ac1 with the value of X where ac0 is unboxed. cc reflects read/write
mode.

void native_store_value_boxed(val X)

Support for unifying boxed ac0 with the value of X.

void native_store_value_unboxed(val X)

Support for unifying unboxed ac0 with the value of X.

val native_store_variable_boxed()

Support for storing the value of boxed ac0 in val.

val native_store_variable_unboxed()

Support for storing the value of unboxed ac0 in val.

cc native_compare_numbers()

Compare the numbers in the accumulators with the condition code reflecting the
output. Overflow reflects an error. [PERM: Who clears Overflow on non-error?
Not native_compare_numbers(), it seems.]

Chapter 5: Runtime System 45

void native_test_numbers()

Perform a logical and of the boxed accumulators. The condition code reflects
whether the result is zero.

cc native_fdivide_unboxed()

cc native_gcd_unboxed()

cc native_idivide_unboxed()

cc native_ipower2_unboxed()

cc native_lsh_unboxed()

cc native_modulus_unboxed()

cc native_msb_unboxed()

cc native_remainder_unboxed()

cc native_rsh_unboxed()

Support for binary operations on unboxed accumulators.

void native_float1()

cc native_integer1()

cc native_left_shift()

cc native_minus()

cc native_right_shift()

cc native_sign()

Support for unary and binary operations on boxed accumulators.

cc native_atom(val X)

cc native_atomic(val X)

cc native_float(val X)

cc native_integer(val X)

cc native_number(val X)

cc native_nonvar(val X)

cc native_var(val X)

cc native_simple(val X)

cc native_compound(val X)

cc native_callable(val X)

cc native_ground(val X)

cc native_mutable(val X)

cc native_db_reference(val X)

Support for type-test instructions. Condition code e signals failure.

void native_append(arg0 X, arg1 Y, arg2 Z)

void native_arg(arg0 X, arg1 Y, arg2 Z)

void native_compare(arg0 X, arg1 Y, arg2 Z)

void native_create_mutable(arg0 X, arg1 Y)

void native_get_mutable(arg0 X, arg1 Y)

void native_update_mutable(arg0 X, arg1 Y)

void native_functor(arg0 X, arg1 Y, arg2 Z)

void native_length(arg0 X, arg1 Y)

void native_univ(arg0 X, arg1 Y)

Support for the corresponding built-in predicates, which all compile inline.

46 SICStus JIT White Paper

cc native_abs()

cc native_acos()

cc native_acosh()

cc native_acot()

cc native_acot2()

cc native_acoth()

cc native_add()

cc native_and()

cc native_asin()

cc native_asinh()

cc native_atan()

cc native_atan2()

cc native_atanh()

cc native_ceiling()

cc native_complement()

cc native_cos()

cc native_cosh()

cc native_cot()

cc native_coth()

cc native_divide()

cc native_exp()

cc native_exp2()

cc native_fdivide()

cc native_float_fractional_part()

cc native_float_integer_part()

cc native_floor()

cc native_gcd()

cc native_idivide()

cc native_ipower2()

cc native_log()

cc native_log2()

cc native_maximum()

cc native_minimum()

cc native_modulus()

cc native_msb()

cc native_multiply()

cc native_or()

cc native_power2()

cc native_remainder()

cc native_round()

cc native_sin()

cc native_sinh()

cc native_sqrt()

cc native_subtract()

cc native_tan()

cc native_tanh()

cc native_truncate()

cc native_xor()

Arithmetic support acting on boxed accumulators.

Chapter 6: Misc 47

6 Misc

6.1 Options Affecting Jitting

Description of some setting that affect JIT compilation and related things.

6.1.1 System Properties Affecting the JIT Compilation

SP USE SHADOW KERNEL (default yes)
sicstus -DSP_USE_SHADOW_KERNEL=no turns off the use of “shadow” kernel,
i.e. the copies of the real kernel. Turning it off is useful if you want to set
breakpoints in gdb etc. POWER only.

SP_USE_XER (default no)
The default value for , and . POWER only.

SP_USE_XER_ADDO

Whether the XER register should be used for overflow detection of addo IR-
instruction on POWER.

SP_USE_XER_SUBO

Whether the XER register should be used for overflow detection of subo IR-
instruction on POWER.

SP_USE_XER_MULO

Whether the XER register should be used for overflow detection of mulo IR-
instruction on POWER.

SP_JIT_HUGE_BLOCK (default yes)
Whether a huge block, with a shadow kernel in the middle, should be pre-
allocated for jitted code. This is so that kernel calls from jitted code can use
direct branches.

The shadow kernel in the huge block will not be used if SP_USE_SHADOW_KERNEL
is off.

SP_JIT_STATS (default no)
Whether to ensure that prolog:’$jit_print_stats’/0 prints accurate statis-
tics about emitted IR instructions.

Turning it on will prevent re-use of jitted code between iterations. This is why
it is not enabled by default for debug builds.

SP_JIT_ALIGN2 (default yes)
Whether align 2 should align to a multiple of 32 (instead of being a no-op).
POWER only.

SP_JIT_ALIGN3 (default no)
Whether align 3 should align to 24 (modulo 32) (instead of aligning to 0 (mod-
ulo 8)). POWER only.

Do not turn it on, it will crash the system.

SP_QUIET_JIT_FAIL (default yes)
sicstus -DSP_QUIET_JIT_FAIL=no will cause an assertion to trigger if jitting
needs too many iterations (e.g. it would not terminate).

48 SICStus JIT White Paper

SP_SPTI_PATH=OPTION

Whether to load code that gets informed about jitting events.

sicstus -DSP_SPTI_PATH=perf is allowed if --enable-perf was specified
when configuring. It will cause perf data to be emitted. This is enabled
by default if sicstus detects that it is started under perf.

The automatic enabling can be turned off sicstus -DSP_SPTI_PATH=none.

sicstus -DSP_SPTI_PATH=opdis is also possible, depending on what was spec-
ified when configuring.

6.1.2 Configuration Options Affecting the JIT Compilation

--enable-jit-lq-stq (default disabled)
Whether to use quad-word load and store instructions (lq and stq) in the
kernel and in jitted code. POWER only.

--enable-jit-preload-fail (default disabled)
Whether to preload JIT failure continuation.

--enable-jit-fli (default enabled on supported platforms)
Whether to use JIT compilation.

--enable-jit-fli (default enabled on supported platforms)
Whether to use JIT compilation of FLI predicates. Ignored if JIT compilation
is not enabled.

This feature has not yet been implemented on POWER.

--enable-jit-plcall-pass-cp-in-link (default disabled)
Whether to pass the Caller information in the link register. If it is disabled
then the information is passed in a register, or not at all. POWER only.

--with-opdis=PATH

The path to a OPDIS installation, e.g. /usr/local/opdis. This is needed in
order to get machine code disassembly while dumping IR-code. Ignored unless
--enable-opdis is also passed.

--enable-opdis (default disabled)
Whether OPDIS should be used for disassembling machine code in debug out-
put.

OPDIS is supported on Linus, OS X and POWER. OPDIS itself needs to be
modified to build on POWER.

On OS X the path to binutils must be specified with --with-binutils=PATH

on order to use OPDIS.

Note: OPDIS must never be included in a released build. Licensing issues.

--enable-perf (default disabled)
Whether perf should be supported, i.e. so that jitted code can be disassembled
and annotated by perf.

Supported on 64-bit Intel Linux and on (64-bit) POWER Linux.

49

7 References

[PowerISA]
Power ISA Version 2.07 B. Downloaded from https: / / www . power . org /

. Available in /src/sicstus/docs/POWER/PowerISA_V2.07B.pdf. Describes
the POWER instruction set and its encoding.

[PowerABIELFv2]
Power Architecture 64-Bit ELF V2 ABI Specification. Downloaded from
www . ibm . com (A newer version is available at Open Power Foundation
http: / / openpowerfoundation . org / technical / technical-resources /

technical-specifications/ as https://members.openpowerfoundation.

org / document / dl / 576. Available in
/src/sicstus/docs/POWER/ABI64BitOpenPOWER_21July2014_pub.pdf. De-
scribes calling conventions etc. for Linux on (little-endian) POWER.

https://www.power.org/
https://www.power.org/
www.ibm.com
http://openpowerfoundation.org/technical/technical-resources/technical-specifications/
http://openpowerfoundation.org/technical/technical-resources/technical-specifications/
https://members.openpowerfoundation.org/document/dl/576
https://members.openpowerfoundation.org/document/dl/576

	Introduction
	Intermediate Representation
	IR Instruction Set
	Targets
	Offsets
	Constants
	Instructions
	move(Src,Dest)
	cmps(Dest,Src)
	cmpu(Dest,Src)
	test(Dest,Src)
	jump(Target)
	call(Target)
	ccall(Cond,Target)
	branch(Cond,Target)
	cmove(Cond,Src,Dest)
	add(Src1,Src2,Dest)
	addo(Src1,Src2,Dest)
	sub(Src1,Src2,Dest)
	subo(Src1,Src2,Dest)
	mulo(Src1,Src2,Dest)
	sh(Src1,Src2,Dest)
	and(Src1,Src2,Dest)
	or(Src1,Src2,Dest)
	xor(Src1,Src2,Dest)
	int2cp(Src,Dest)
	cp2int(Src,Dest)
	init(Dest1,Dest2)
	pop
	context(Target)
	half(Constant)
	word(Constant)
	label(L)
	align(Int)
	The meaning of align instruction arguments

	try_chain(list of (Label-Alternative),Arity)
	switch(list of (Key-Target),Default)
	trampolines(Base)
	toc(Base)

	Predicate Linkage
	Code Outline, Lead-In and Prefix Sequences for x86
	Code Outline, Lead-In and Prefix Sequences for x86_64
	Code Outline, Lead-In and Prefix Sequences for PPC64
	WAM-JIT Interface

	Register Allocation
	Placement of WAM and IR Registers
	Use of Machine Registers and Stack Frame Slots for x86
	Use of Machine Registers and Stack Frame Slots for x86_64 (non-Windows)
	Use of Machine Registers and Stack Frame Slots for x86_64 (Windows)
	Use of Machine Registers and Stack Frame Slots for PPC64

	Runtime System
	Misc
	Options Affecting Jitting
	System Properties Affecting the JIT Compilation
	Configuration Options Affecting the JIT Compilation

	References

