
SICStus Prolog Release Notes
Mats Carlsson et al.

RISE SICS AB
PO Box 1263

SE-164 29 Kista, Sweden

Release 4.5.0
January 2019

RISE SICS AB
sicstus-request@sics.se https://sicstus.sics.se/

mailto:sicstus-request@sics.se
https://sicstus.sics.se/

Copyright c© 1995-2019 SICS

RISE SICS AB
PO Box 1263
SE-164 29 Kista, Sweden

Permission is granted to make and distribute verbatim copies of these notes provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of these notes under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of these notes into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by SICS.

i

Table of Contents

1 Overview . 1

2 Platforms . 2

3 Release Notes and Installation Guide for UNIX . . 3
3.1 Installation . 3

3.1.1 Prerequisites . 3
3.1.1.1 C Compiler and Linker . 3

3.1.2 The Installation Script . 3
3.1.3 The Uninstallation Script . 4

3.2 Platform Specific Notes . 4

4 Release Notes and Installation
Guide for Windows . 6
4.1 Requirements . 6
4.2 Installation . 6
4.3 Windows Notes . 7
4.4 Command Line Editing . 7
4.5 The Console Window . 8

4.5.1 Console Preferences . 8
4.6 Windows Limitations . 9

5 Special Releases . 10
5.1 Beta Releases . 10

6 Managing Extended Runtime
License Information . 11

7 Tcl/Tk Notes . 13
7.1 The Tcl/Tk Terminal Window . 13

8 Jasper Notes . 14
8.1 Supported Java Versions . 14
8.2 Getting Started . 14

8.2.1 Windows . 14
8.2.2 UNIX . 15
8.2.3 Running Java from SICStus . 15
8.2.4 Running SICStus from Java . 15

8.3 Jasper Package Options . 17

ii

8.4 Multi Threading . 17
8.5 Changes in Jasper from SICStus 3 . 17
8.6 Known Bugs and Limitations . 17
8.7 Java Examples Directory . 17

9 PrologBeans .NET Notes . 18
9.1 Migrating from the older, J#, PrologBeans . 18

10 Berkeley DB Notes . 19
10.1 Berkeley DB on MS Windows . 19
10.2 Berkeley DB on Mac OS X . 19

11 ODBC Notes . 21
11.1 ODBC on MS Windows . 21
11.2 ODBC on Mac OS X . 21
11.3 ODBC on Linux . 21

12 The SICStus Prolog IDE (SPIDER) 22

13 The Emacs Interface . 23
13.1 Installation . 23

13.1.1 Installing On-Line Documentation . 23

14 Revision History . 24
14.1 What Is New In Release 4 . 24

14.1.1 Virtual Machine . 24
14.1.2 Prolog Language . 24

14.1.2.1 Single Language Mode . 24
14.1.2.2 DCG Notation . 24
14.1.2.3 Asserting Terms with Attributed Variables 24
14.1.2.4 Arithmetic . 25
14.1.2.5 Syntax . 25
14.1.2.6 Prolog Flags . 25
14.1.2.7 Stream Properties . 25
14.1.2.8 Statistics Keywords . 25
14.1.2.9 Built-In Predicates . 25
14.1.2.10 Hook Predicates . 29

14.1.3 Library Modules . 29
14.1.4 Input-Output System . 33
14.1.5 Foreign Language APIs . 33

14.1.5.1 Foreign Language Interface . 33
14.1.5.2 C API Functions . 34
14.1.5.3 Java API . 35

14.2 Guide to Porting Code from Release 3 . 35
14.3 Limitations in the Current Release . 37

iii

14.4 Changes Introduced in Version 4.0.1 . 37
14.4.1 New Features . 37
14.4.2 Bugs Fixed . 38
14.4.3 Other Changes . 38
14.4.4 Known Issues . 38

14.5 Changes Introduced in Version 4.0.2 . 38
14.5.1 New Features . 39
14.5.2 Bugs Fixed . 39
14.5.3 Other Changes . 39
14.5.4 Known Issues . 40

14.6 Changes Introduced in Version 4.0.3 . 40
14.6.1 New Features . 40
14.6.2 Bugs Fixed . 40
14.6.3 Other Changes . 41
14.6.4 Known Issues . 42

14.7 Changes Introduced in Version 4.0.4 . 42
14.7.1 New Features . 42
14.7.2 Bugs Fixed . 42
14.7.3 Other Changes . 43
14.7.4 Known Issues . 43

14.8 Changes Introduced in Version 4.0.5 . 43
14.8.1 New Features . 43
14.8.2 Bugs Fixed . 43
14.8.3 Other Changes . 44
14.8.4 Known Issues . 46

14.9 Changes Introduced in Version 4.0.6 . 46
14.10 Changes Introduced in Version 4.0.7 . 46

14.10.1 New Features . 46
14.10.2 Bugs Fixed . 46
14.10.3 Other Changes . 47
14.10.4 Known Issues . 47

14.11 Changes Introduced in Version 4.0.8 . 47
14.11.1 New Features . 47
14.11.2 Bugs Fixed . 47
14.11.3 Other Changes . 47
14.11.4 Known Issues . 48

14.12 Changes Introduced in Version 4.1.0 . 48
14.12.1 New Features . 48
14.12.2 Bugs Fixed . 49
14.12.3 Other Changes . 51
14.12.4 Known Issues . 52

14.13 Changes Introduced in Version 4.1.1 . 53
14.13.1 Bugs Fixed . 53
14.13.2 Known Issues . 53

14.14 Changes Introduced in Version 4.1.2 . 53
14.14.1 Bugs Fixed . 53
14.14.2 Other Changes . 54
14.14.3 Known Issues . 54

iv

14.15 Changes Introduced in Version 4.1.3 . 54
14.15.1 New Features . 54
14.15.2 Bugs Fixed . 55
14.15.3 Other Changes . 55
14.15.4 Known Issues . 55

14.16 Changes Introduced in Version 4.2.0 . 56
14.16.1 New Features . 56
14.16.2 Bugs Fixed . 57
14.16.3 Other Changes . 58
14.16.4 Known Issues . 59

14.17 Changes Introduced in Version 4.2.1 . 59
14.17.1 New Features . 59
14.17.2 Bugs Fixed . 60
14.17.3 Other Changes . 61
14.17.4 Known Issues . 61

14.18 Changes Introduced in Version 4.2.2 . 61
14.18.1 New Features . 61
14.18.2 Bugs Fixed . 62
14.18.3 Other Changes . 62
14.18.4 Known Issues . 62

14.19 Changes Introduced in Version 4.2.3 . 63
14.19.1 New Features . 63
14.19.2 Bugs Fixed . 63
14.19.3 Other Changes . 63
14.19.4 Known Issues . 64

14.20 Changes Introduced in Version 4.3.0 . 64
14.20.1 New Features . 64
14.20.2 Bugs Fixed . 65
14.20.3 Changes Related to Standard Conformance 67
14.20.4 Other Changes . 68
14.20.5 Known Issues . 69

14.21 Changes Introduced in Version 4.3.1 . 70
14.21.1 New Features . 70
14.21.2 Bugs Fixed . 70
14.21.3 Known Issues . 71

14.22 Changes Introduced in Version 4.3.2 . 71
14.22.1 New Features . 71
14.22.2 Bugs Fixed . 71
14.22.3 Other Changes . 72
14.22.4 Known Issues . 72

14.23 Changes Introduced in Version 4.3.3 . 72
14.23.1 New Features . 72
14.23.2 Other Changes . 72
14.23.3 Bugs Fixed . 73
14.23.4 Known Issues . 74

14.24 Withdrawn Version 4.3.4 . 74
14.25 Changes Introduced in Version 4.3.5 . 74

14.25.1 New Features . 74

v

14.25.2 Other Changes . 74
14.25.3 Bugs Fixed . 74
14.25.4 Known Issues . 75

14.26 Changes Introduced in Version 4.4.0 . 75
14.26.1 New Features . 75
14.26.2 Other Changes . 75
14.26.3 Bugs Fixed . 76
14.26.4 Known Issues . 77

14.27 Changes Introduced in Version 4.4.1 . 77
14.27.1 Bugs Fixed . 77
14.27.2 Known Issues . 77

14.28 Changes Introduced in Version 4.5.0 . 78
14.28.1 New Features . 78
14.28.2 Other Changes . 78
14.28.3 Bugs Fixed . 79
14.28.4 Known Issues . 79

15 Generic Limitations . 80

16 Contact Information . 81

1

1 Overview

These notes summarize the changes in release 4 wrt. previous SICStus Prolog releases as
well as changes introduced by minor releases and their patch releases. Platform specific
information pertaining to certain parts of the system are also documented herein.

2

2 Platforms

Binary distributions of Release 4.5 are available for many platforms; see https://sicstus.
sics.se/ for an up-to-date list.

SICStus has, at one time or another, been ported to many platforms, ranging from mobile
phones to mainframes. If your platform is not currently listed on the download page, then
please let us know (sicstus-request@sics.se).

https://sicstus.sics.se/
https://sicstus.sics.se/
mailto:sicstus-request@sics.se

3

3 Release Notes and Installation Guide for UNIX

This chapter assumes that the environment variable PATH includes <prefix>/bin, where
<prefix> points to the SICStus installation directory. The installation directory is specified
during installation; see Section 3.1 [UNIX installation], page 3. For example:

csh,tcsh> setenv PATH "/usr/local/sicstus4.5.0/bin:$PATH"
sh,bash,ksh> export PATH="/usr/local/sicstus4.5.0/bin:$PATH"

3.1 Installation

Installation of SICStus under UNIX is performed by an installation (Shell) script
InstallSICStus, which interacts with the user to obtain options such as where to install
SICStus.

3.1.1 Prerequisites

3.1.1.1 C Compiler and Linker

A full SICStus installation requires a C compiler and a linker to perform final link steps on
the installation machine.

For Solaris you can download the Oracle Developer Studio C compiler from https://www.

oracle.com/ . For Mac OS X you can download Xcode, which contains a C compiler,
from the App Store. Linux distributions typically has a C compiler installed or installable
through the system software update utility.

If a C compiler is not available, then it is possible to use a prebuilt installation on some
platforms.

If it is not enabled by default, then prebuilt installation is only recommended as a last
resort; it is available by invoking InstallSICStus with the --prebuilt argument.

A disadvantage with the prebuilt installation is that SICStus libraries that interface to third-
party products (Tcl/Tk, Berkeley DB, Java) may not work, or may require environment
variables such as LD_LIBRARY_PATH to be set. Another disadvantage is that spld and splfr

may not work unless you manually adjust the spld configure file. Of course, neither spld
nor splfr will work anyway if you do not have a C compiler.

3.1.2 The Installation Script

Most users will install SICStus from a binary distribution. These are available for all
supported platforms. Information on how to download and unpack the binary distribution
is sent by email when ordering SICStus.

Binary distributions are installed by executing an interactive installation script called
InstallSICStus. Type:

% ./InstallSICStus

and follow the instructions on the screen.

https://www.oracle.com/
https://www.oracle.com/

Chapter 3: Release Notes and Installation Guide for UNIX 4

During installation, you will be required to enter your site-name and license code. These
are included in the download instructions.

The installation program does not only copy files to their destination, it also performs final
link steps for some of the executables and for the library modules requiring third-party
software support, e.g. library(bdb) and library(tcltk). This is done in order to adapt
to local variations in installation paths and versions.

Invoke InstallSICStus with the --help argument to get a list of options.

3.1.3 The Uninstallation Script

To uninstall SICStus the script UnInstallSICStus can be run. It is created during instal-
lation in the same directory as InstallSICStus.

3.2 Platform Specific Notes

This section contains some installation notes that are platform specific under UNIX.

Solaris Intel 64-bit, SPARC 64-bit
The following libraries are not supported: library(bdb), library(tcltk).

Mac OS X

An executable built with spld will only work if there is a properly configured
subdirectory sp-4.5.0 in the same directory as the executable; see Section
“Runtime Systems on UNIX Target Machines” in the SICStus Prolog Manual.

Alternatively, the option --wrapper can be passed to spld. In this case a
wrapper script is created that will set up various environment variables and
invoke the real executable.

When using third-party products like BDB, you may need to set up DYLD_

LIBRARY_PATH so that the Mac OS X dynamic linker can find them. When
using the SICStus development executable (sicstus), this should happen au-
tomatically, if the third-party products have been installed in the standard
locations; see Section 10.2 [Berkeley DB on Mac OS X], page 19.

Sometimes, the default limit on the process’s data-segment is unreasonably
small, which may lead to unexpected memory allocation failures. To check this
limit, do:

bash$ ulimit -d

6144

This indicates that the maximum size of the data-segment is only 6 Mb. To
remove the limit, do:

bash$ ulimit -d unlimited

bash$ ulimit -d

unlimited

Please note: ulimit is a shell built-in in bash. It may have a
different name in other shells.

SICStus will set the data segment size of itself according to the value of the
system property (or environment variable) SP_ULIMIT_DATA_SEGMENT_SIZE. If

Chapter 3: Release Notes and Installation Guide for UNIX 5

you set this variable in the initialization file for your shell, then you do not have
to use the ulimit command when SICStus is started from the shell. See Section
“System Properties and Environment Variables” in the SICStus Prolog Man-
ual for more information about SP_ULIMIT_DATA_SEGMENT_SIZE. This system
property is set automatically when SICStus is invoked from the SICStus Prolog
IDE (SPIDER), from Emacs (via M-x run-prolog), or from the launcher script
SICStus Prolog 4.5.0.term installed in Applications.

File names are encoded in UTF-8 under Mac OS X. This is handled correctly
by SICStus.

If SICStus encounters a file name that is not encoded in UTF-8, then it will
silently ignore the file or directory. This can happen on file systems where files
have been created by some other OS than Mac OS X, e.g. on network file servers
accessed by other UNIX flavors or Windows.

The default character encoding for the SICStus standard streams is based on the
current locale. On some older versions of OS X, the default locale is POSIX/C,
i.e. US ASCII.

This will come in conflict with the default character encoding for the Termi-
nal application which is UTF-8. A clickable launcher for SICStus is optionally
installed in the Applications folder. This launcher will set the character en-
coding of the standard streams to UTF-8 for both the Terminal and SICStus.
The character encoding is set automatically when SICStus is invoked from the
SICStus Prolog IDE (SPIDER), or from Emacs (via M-x run-prolog)

6

4 Release Notes and Installation Guide for
Windows

This chapter assumes that the environment variable PATH includes %SP_PATH%\bin, where
SP_PATH points to the SIC-
Stus installation directory (typically C:\Program Files\SICStus Prolog 4.5.0\). Here,
%SP_PATH% is just a place-holder; you usually do not need to set the environment variable
SP_PATH, but see Section “CPL Notes” in the SICStus Prolog Manual. For example:

C:\> set PATH=C:\Program Files\SICStus Prolog 4.5.0\bin;%PATH%

To use splfr and spld, you must also set up the appropriate Microsoft Visual Studio tools;
see Section “Setting up the C compiler on Windows” in the SICStus Prolog Manual for
details.

To use the respective library modules, you must also include the paths to Tcl/Tk (see
Chapter 7 [Tcl/Tk Notes], page 13) and Berkeley DB (see Chapter 10 [Berkeley DB Notes],
page 19) onto the PATH environment variable if the installer for Berkeley DB and Tcl/Tk
have not done so already.

4.1 Requirements

• Operating environment: Microsoft Windows 7/8/10 (both 32-bit and 64-bit).

• For interfacing with C or C++, or for using spld or splfr: C compiler and related tools
from Microsoft Visual Studio. The version of Visual Studio should match the version
used when building SICStus Prolog. For this reason a number of variants of SICStus
Prolog is released, each built with a separate version of Visual Studio.

Microsoft offers free editions of Visual Studio and its C compilers. It is probably
possible to make these work as well but they may require other tools or downloads.

• For distributing products incorporating SICStus Prolog runtime systems: SICStus Pro-
log depends on the C runtime library corresponding to the C compiler used when
building SICStus Prolog.

There are several alternative ways to have your installer install the Microsoft C libraries.
See the Microsoft documentation for details, or contact SICStus Support.

Building installers for Windows (or for any platform) is complex. There are several
tools available, some of them free, that can help with the task. The SICStus Prolog
installer is built using the free WiX toolset from Microsoft.

4.2 Installation

The development system comes in two flavors:

1. A console-based executable suitable to run from a DOS-prompt, from batch files, or
under SPIDER or Emacs.

2. A windowed executable providing command line editing and menus. See Section 4.4
[Command Line Editing], page 7. Except for very simple interactions it is preferable to
use the SPIDER IDE see Section “SICStus Prolog IDE” in the SICStus Prolog Manual

Chapter 4: Release Notes and Installation Guide for Windows 7

or the Emacs mode see Chapter 13 [The Emacs Interface], page 23, when interacting
with SICStus Prolog.

The distribution consists of a single, self-installing executable (InstallSICStus.exe) con-
taining development system, runtime support files, library sources, and manuals.

SICStus Prolog requires a license code to run. You should have received from SICS your
site name, the expiration date and the code. This information is normally entered during
installation:

Expiration date: ExpirationDate

Site: Site

License Code: Code

but it can also be entered by starting SICStus with Administrative rights from the Start
menu (spwin.exe) and selecting Enter License from the Settings menu. Entering the
license requires Administrative rights. Running SICStus should be possible from a limited
account.

4.3 Windows Notes

• The file name arguments to splfr and spld should not have embedded spaces. For
file names with spaces, you can use the corresponding short file name.

• In spwin, selecting the ‘Manual’ or ‘Release Notes’ item in the ‘Help’ menu may give
an error message similar to ‘... \!Help\100#!Manual.lnk could not be found’. This
happens when Adobe Acrobat Reader is not installed or if it has not been installed for
the current user. Open C:\Program Files\SICStus Prolog 4.5.0\doc\pdf\ in the
explorer and try opening relnotes.pdf. If this brings up a configuration dialog for
Adobe Acrobat, then configure Acrobat and try the ‘Help’ menu again. Alternatively,
you may have to obtain Adobe Acrobat. It is available for free from https://www.

adobe.com/.

• We recommend that SICStus be installed by a user with administrative privileges and
that the installation is made ‘For All Users’.

If SICStus is installed for a single user, then SICStus will not find the license information
when started by another user. In this case, the windowed version of SICStus (spwin)
will put up a dialog where a license can be entered.

4.4 Command Line Editing

Command line editing supporting Emacs-like commands and IBM PC arrow keys is pro-
vided in the windowed executable (spwin.exe). The following commands are available:

^h erase previous char

^d erase next char

^u kill line

^f forward char

https://www.adobe.com/
https://www.adobe.com/

Chapter 4: Release Notes and Installation Guide for Windows 8

^b backward char

^a begin of line

^e end of line

^p previous line

^n next line

^i insert space

^s forward search

^r reverse search

^v view history

^q input next char blindly

^k kill to end of line

Options may be specified in the file ~/spcmd4.ini as:

Option Value

on separate lines. Recognized options are:

lines Value is the number of lines in the history buffer. 1-100 is accepted; the default
is 25.

save Value is either 0 (do not save or restore history buffer) or 1 (save history buffer
in ~/spcmd4.hst on exit, restore history from the same file on start-up).

4.5 The Console Window

The console window used for the windowed executable is based on code written by Jan
Wielemaker <jan at swi.psy.uva.nl>.

The console comes with a menu access to common Prolog flags and file operations. Most of
these should be self explanatory. The ‘Reconsult’ item in the ‘File’ menu reconsults the
last file consulted with use of the ‘File’ menu. Eventually The SICStus Prolog IDE (see
Chapter 12 [The SICStus Prolog IDE], page 22) will replace the console.

Note that the menus work by simulating user input to the Prolog top-level or debugger. For
this reason, it is recommended that the menus only be used when SICStus is waiting for a
goal at the top-level (or in a break level) or when the debugger is waiting for a command.

4.5.1 Console Preferences

The stream-based console window is a completely separate library, using its own configura-
tion info. It will look at the environment variable CONSOLE, which should contain a string
of the form name:value{,name:value} where name is one of the following:

sl The number of lines you can scroll back. There is no limit, but the more you
specify the more memory will be used. Memory is allocated when data becomes
available. The default is 200.

Chapter 4: Release Notes and Installation Guide for Windows 9

rows The initial number of lines. The default is 24.

cols The initial number of columns. The default is 80.

x The X coordinate of the top-left corner. The default is determined by the
system.

y The Y coordinate of the top-left corner. The default is determined by the
system.

Many of these settings are also accessible from the menu ‘Settings’ of the console.

4.6 Windows Limitations

• File paths with both ‘/’ and ‘\’ as separator are accepted. SICStus returns paths using
‘/’. Note that ‘\’, since it is escape character, must be given as ‘\\’.

• All file names and paths are normalized when expanded by absolute_file_name/3.
This is to simulate the case insensitivity used by Windows file systems. However,
built-ins that create files, e.g. open/4, will create files using the same character case as
specified in the file argument.

• Emacs Issues: Running under Emacs has been tried with recent versions of GNU
Emacs. See Chapter 13 [The Emacs Interface], page 23.

− Choosing ‘Send EOF’ from the menu, i.e. comint-send-eof), closes the connection
to the SICStus process. This will cause SICStus to exit. This problem cannot be
fixed in SICStus; it is a limitation of current versions of GNU Emacs (at least up
to GNU Emacs 20.7).

Instead of sending and end of file, you can enter the atom end_of_file followed
by a period.

• Under Windows, statistics(runtime, ...) measures user time of the thread
running SICStus (the main thread) instead of process user time. This makes
statistics(runtime, ...) meaningful also in a multi-threaded program.

10

5 Special Releases

Sometimes SICStus Prolog is built for special purposes or special platforms. These releases
may have restrictions in functionality, licensing etc. The most common case is when a beta
version of SICStus Prolog is released.

5.1 Beta Releases

Note: this information only applies to beta releases. Most users never encounter a beta
release and can safely ignore this section.

A beta release should not be used for critical work. In most cases it has not been extensively
tested and may have known problems.

Do not assume that the performance of a beta release will correspond to the performance of
the final versions. Most beta releases contain runtime tests that will make the beta slower,
sometimes much slower, than the final version. Please report if any such test triggers.

Beta releases may also contain experimental performance improvements that could make
the beta faster, sometimes much faster, than the final version.

Most beta releases are time limited and will cease to function about three month from
release. This is also true of any runtime systems built with the beta.

11

6 Managing Extended Runtime License
Information

Extended runtime systems need to have a license available at runtime. This license can be
embedded in the extended runtime executable or located in a separate file. The following
describes the steps needed in order to enter the license information. The example assumes
that you are familiar with the procedure for building runtime systems. See Section “The
Application Builder” in the SICStus Prolog Manual for details.

Suppose that you have been provided with the following license information:

Dear SICStus Prolog customer,

Your extended runtime license information for platform ’PLATFORM’ is as follows:

Site name: MySite

License code: a111-b222-c333-d444-e444

Expiration date: permanent

Corresponding to a file ’extended_license.pl’ with the following contents:

%% LICENSE BEGIN

site(’MySite’).

product(’extended_runtime_sicstusMAJOR.MINOR_PLATFORM’,

’permanent’,

’a111-b222-c333-d444-e444’).

%% LICENSE END

Please note: The license information differs between SICStus versions and platforms. The
PLATORM is one of win32 (for Microsoft Windows), linux, darwin (for Apple macOS),
or solaris. The MAJOR.MINOR is the major and minor version of SICStus, currently
4.5.

Following is a list of common tasks.

• Making the license available to the development system.

Create a file extended_license.pl with the contents specified in the email, that is:

%% LICENSE BEGIN

site(’MySite’).

product(’extended_runtime_sicstusMAJOR.MINOR_PLATFORM’,

’permanent’,

’a111-b222-c333-d444-e444’).

%% LICENSE END

This file can be located anywhere, e.g. in the folder containing your source code.

• Building an Extended Runtime System using spld which embeds license information
from the above file:

% spld -E --license-file ./extended_license.pl [...]

Chapter 6: Managing Extended Runtime License Information 12

This will read the license information and embed the information in the created ex-
ecutable. No separate license file will be needed at runtime. This is the preferred
method. This method can be used also to create an all-in-one executable; see Section
“All-in-one Executables” in the SICStus Prolog Manual.

On UNIX platforms, it is possible to install the license information using the splm

tool so that you do not need create the file extended_license.pl and pass it to
spld. However, a separate license file may be needed anyway if the license cannot be
embedded; see below.

• Building an Extended Runtime System which does not embed license information.

The resulting runtime system will need a way to find the license file at runtime. This
variant is useful when the executable is not built with spld, e.g. when builing a DLL
(Windows) or DSO (UNIX):

% spld -E --no-embed-license [...]

The resulting executable will produce output similar to the following if it cannot find
the license file:

License error:

License file not found! [...]

• Ensuring that the license information is available at runtime.

If the license information has been embedded, then no special steps are needed. Oth-
erwise, you need to distribute the license file along with the runtime system. To
make the license file available it should be located in the library folder and named
license.pl. That is, copy extended_license.pl as created above into the file
library/license.pl in the folder tree available at runtime. See Section “Runtime
Systems on Target Machines” in the SICStus Prolog Manual for details. Also see
Section “Locating the License Information” in the SICStus Prolog Manual for addi-
tional ways of making the license information available.

• Understanding steps performed by spld. As usual, you can use:

% spld --verbose --keep [...]

in order to see exactly what steps are performed by spld. This is useful if you want to
embed the license but need to build the executable manually, instead of using spld.

13

7 Tcl/Tk Notes

library(tcltk) is built on top of Tcl/Tk. It is an optional component of SICStus and you
can safely ignore this section if you do not intend to use library(tcltk).

Tcl/Tk itself is not included in the SICStus distribution. It must be installed in order to use
the interface. Many operating systems have build-in support for Tcl/Tk, either preinstalled
or available via some software update utility. If a default version is not available, then
Tcl/Tk can be downloaded from the Tcl/Tk primary website:

https://www.tcl.tk/

A better alternative may be to use one of the free installers available from:

https://www.activestate.com

SICStus for Mac OS X uses the Tcl/Tk that comes with Mac OS X. Some versions of
Tcl/Tk provided by Apple have bugs that may cause SICStus Prolog to crash when using
library(tcltk). If this happens, then you can try to update to a newer version of Tcl/Tk,
e.g. by using the installers from https://www.activestate.com/.

library(tcltk) is built using a particular version of Tcl/Tk but it is possible to recompile
it, if needed, to work with other versions as well. The version differs between platform, see
https://sicstus.sics.se/ for details.

Under UNIX, the installation program automatically detects the Tcl/Tk version (if the user
does not specify it explicitly).

Please note: On Windows, you need to have the Tcl/Tk binaries accessible
from your PATH environment variable, e.g. C:\Program Files\Tcl\bin.

The GUI version of SICStus, spwin, like all Windows non-console applications, lacks the C
standard streams (stdin, stdout, stderr) and the Tcl command puts and others that use
these streams will therefore give errors. The solution is to use sicstus instead of spwin if
the standard streams are required.

7.1 The Tcl/Tk Terminal Window

The Tcl/Tk interface includes an experimental and unsupported terminal window based on
Tcl/Tk. It is opened by using the (undocumented) predicate:

tk_terminal(Interp, TextWidget, InStream, OutStream, ErrStream)

Given a TextWidget, e.g. .top.myterm, this predicate opens three Prolog
streams for which the text widget acts as a terminal.

There is also a library(tkconsol) that makes use of tk_terminal/5. It provides a pred-
icate tk_console/0 that switches the Prolog top-level to a Tk window.

https://www.tcl.tk/
https://www.activestate.com
https://www.activestate.com/
https://sicstus.sics.se/

14

8 Jasper Notes

library(jasper) is built on top of Java. It is an optional component of SICStus. You can
safely ignore this section if you do not intend to use Java with SICStus.

8.1 Supported Java Versions

Jasper should work with all current versions of Java. Except under Windows the full
development kit, not just the JRE, is needed. Unless indicated otherwise, you can download
the JDK from https://java.sun.com/.

Jasper is built using a particular version of Java, as appropriate for each platform, but it
is possible to recompile it to work with older versions as well. The version differs between
platform, see https://sicstus.sics.se/ for details.

For some platforms, Jasper is only supported under the following conditions:

Mac OS X Using Jasper from Java may require that DYLD_LIBRARY_PATH be set up so that
Java can find the SICStus runtime library. That is, you may need to set DYLD_
LIBRARY_PATH to the location of the SICStus runtime libsprt4-5-0.dylib.

On OS X, embedding Java 7 or later in SICStus, e.g. by using library(jasper),
may fail, possibly with a dialog about the need for a Java SE 6 runtime. This
seems to be caused by missing information in the section ‘JVMCapabilities’ of
the file Info.plist in the Java installation. As of December 2017 there was no
official information from Oracle about this but several suggested workaround
can be found on the net.

8.2 Getting Started

This section describes some tips and hints on how to get the interface started. This is
actually where most problems occur.

8.2.1 Windows

Under Windows, you should ensure that SICStus Prolog’s and Java’s DLL directories are
on your %PATH%. This will enable Windows library search method to locate all relevant
DLLs. For SICStus, this is the same as where sicstus.exe is located, something like
C:\Program Files\SICStus Prolog 4.5.0\bin. For Java it must include the folder where
jvm.dll is located.

For example:

C:\> set PATH="C:\Program Files\Java\jdk-9.0.4\bin\server;%PATH%"

C:\> set PATH="C:\Program Files\SICStus Prolog 4.5.0\bin;%PATH%"

To make this change permanent you would use the ‘Advanced’ tab in the ‘System’ Control
Panel. Consult your OS documentation for details.

https://java.sun.com/
https://sicstus.sics.se/

Chapter 8: Jasper Notes 15

8.2.2 UNIX

When library(jasper) is used to embed Java in a SICStus development system or runtime
system, the runtime linker needs to be told where to find the Java libraries (e.g. libjvm.so).
During installation, InstallSICStus will build either the sicstus executable or the jasper
foreign resource so that it contains the necessary information; the details are platform
dependent.

If you use spld to relink SICStus or to build a runtime system, then you can use the
command line option --resource=-jasper (note the minus sign). This tells spld to include
the search path (rpath) in the executable needed to ensure that library(jasper) can find
the Java libraries.

If you want to run sicstus with another Java than what was specified during installation,
then you can use spld without the --resources option to get a SICStus executable without
any embedded Java paths. In this case, you need to set the environment variable LD_

LIBRARY_PATH (or similar) appropriately.

8.2.3 Running Java from SICStus

If SICStus is used as parent application, then things are usually really simple. Just execute
the query:

| ?- use_module(library(jasper)).

After that, it is possible to perform meta-calls as described in Section “Jasper Library
Predicates” in the SICStus Prolog Manual.

When Jasper is used in runtime systems, additional constraints apply as described in Section
“Runtime Systems on Target Machines” in the SICStus Prolog Manual. The Java to SIC-
Stus interface relies on dynamically loading the SICStus runtime system. For this reason,
it is not possible to use library(jasper) from an executable that links statically with the
SICStus runtime.

8.2.4 Running SICStus from Java

If Java is used as parent application, then things are a little more complicated. There are
a couple of things that need to be taken care of. The first is to specify the correct class
path so that Java can find the Jasper classes (SICStus, SPTerm, and so on). This is done
by specifying the pathname of the file jasper.jar:

% java -classpath $SP_PATH/bin/jasper.jar ...

SP_PATH does not need to be set; it is only used here as a placeholder (see Section “CPL
Notes” in the SICStus Prolog Manual). See the documentation of the Java implementation
for more info on how to set classpaths.

The second is to specify where Java should find the Jasper native library (libspnative.so
or spnative.dll), which the SICStus class loads into the JVM by invoking the method
System.loadLibrary("spnative"). Under UNIX, Jasper can usually figure this out by

Chapter 8: Jasper Notes 16

itself, but in the event that Jasper is used in a non-standard installation, this will most
likely fail. A typical example of such a failure looks like:

% java -classpath [...]/jasper.jar se.sics.jasper.SICStus

Trying to load SICStus.

Exception in thread "main" java.lang.UnsatisfiedLinkError: no spnative

in java.library.path

at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1133)

at java.lang.Runtime.loadLibrary0(Runtime.java:470)

at java.lang.System.loadLibrary(System.java:745)

at se.sics.jasper.SICStus.loadNativeCode(SICStus.java:37)

at se.sics.jasper.SICStus.initSICStus(SICStus.java:80)

at se.sics.jasper.SICStus.<init>(SICStus.java:111)

at se.sics.jasper.SICStus.main(SICStus.java:25)

Under UNIX, this can be fixed by explicitly setting the Java property java.library.path

to the location of libspnative.so, like this:

% java -Djava.library.path=/usr/local/sicstus4.5.0/lib [...]

Under Windows, Java must be able to find spnative.dll through the PATH environment
variable (see Section 8.2.1 [Windows], page 14). Setting -Djava.library.path under Win-
dows can lead to problems if multiple versions of SICStus have been installed.

If this works properly, then SICStus should have been loaded into the JVM address space.

If everything is set up correctly, then you should be able to call main (which contains a
short piece of test-code) in the SICStus root class, something like this:

% java -Djava.library.path="/usr/local/sicstus4.5.0/lib" \

-classpath "/usr/local/sicstus4.5.0/lib/sicstus-

4.5.0/bin/jasper.jar" \

se.sics.jasper.SICStus

Trying to load SICStus.

If you see this message, then you have successfully

initialized the SICStus Prolog engine.

Under Windows, it would look something like this, depending on the shell used:

% java -classpath "C:/Program Files/SICStus Prolog

4.5.0/bin/jasper.jar" se.sics.jasper.SICStus

Trying to load SICStus.

If you see this message, then you have successfully

initialized the SICStus Prolog engine.

If more than one se.sics.jasper.SICStus instance will be created, then the SICStus run-
times named e.g. sprt4-5-0_instance_01_.dll need to be available as well. See Section
“Runtime Systems on Target Machines” in the SICStus Prolog Manual.

Chapter 8: Jasper Notes 17

8.3 Jasper Package Options

The following Java system properties can be set to control some features of the Jasper
package:

se.sics.jasper.SICStus.debugLevel

This flag is unsupported.

You probably should not use it in production code. It may be removed or
change meaning in future releases.

An integer, zero by default. If larger than zero, then some debug info is output
to System.out. Larger values produce more info. The value of this flag can be
set and read with SICStus.setDebugLevel() and SICStus.debugLevel():

% java -Dse.sics.jasper.SICStus.debugLevel=1 ...

or, from Prolog:

jasper_initialize(

[’-Dse.sics.jasper.SICStus.debugLevel=1’],

JVM)

8.4 Multi Threading

Some exceptions thrown in multi threaded mode may be removed in the future. The user
should never catch specific exceptions, but instead catch instances of PrologException.

See Section 8.6 [Known Bugs and Limitations], page 17, for details on the limitations of
multi threaded Jasper.

8.5 Changes in Jasper from SICStus 3

• The (deprecated) predicates jasper_call_static/6 and jasper_call_instance/6

have been removed.

• SICStus 4 uses ISO syntax. This may affect Java code that handles Prolog terms.

8.6 Known Bugs and Limitations

• Jasper cannot be used from within applets, since Jasper relies on calling methods
declared as native. This is due to a security-restriction enforced on applets by Java;
they are not allowed to call native code.

• Some uses of SPTerm will leak memory on the Prolog side. This is not really a bug
but may come as a surprise to the unwary. See Section “SPTerm and Memory” in the
SICStus Prolog Manual.

• Loading multiple SICStus runtimes has not been very well tested with multi threaded
Jasper.

8.7 Java Examples Directory

There is an examples directory available in $SP_PATH/library/jasper/examples. See the
file README for more info.

18

9 PrologBeans .NET Notes

library(prologbeans) is an optional component of SICStus and you can safely ignore this
section if you do not intend to use library(prologbeans).

PrologBeans .NET is a library for connecting .NET code, e.g. C#, to a SICStus process
running library(prologbeans).

In SICStus Prolog 4.3.2, the .NET code was ported to C#, and can be used on both
Windows platforms (using Microsoft .NET 4.0 or later) and, using Mono, on non-Windows
platforms. See below for migration information.

The C# version is quite similar to the corresponding Java code (PrologBeans) and we refer
to the library documentation (see Section “PrologBeans Interface” in the SICStus Prolog
Manual), the JavaDoc documentation for the corresponding Java classes, and the C# source
code in library/prologbeans.NET/*.cs for details.

9.1 Migrating from the older, J#, PrologBeans

Prior to SICStus Prolog 4.3.2, the PrologBeans .NET library depended on J# in order to
compile and run the Java version as .NET code. This meant that you needed to link with
the Microsoft J# support library, which has been discontinued by Microsoft.

The new C# version is expected to be, mostly, binary compatible with code that use the
old J# version. This means that you should be able to use your .NET code with the latest
prologbeans.dll even without recompiling your code. You should remove the use of the
Microsoft J# library, but that should not be strictly necessary.

Please note: The J# version of PrologBeans was deprecated in SICStus Prolog 4.3.2, and
was removed in SICStus Prolog 4.3.3. Contact SICStus Support if you need the old J#
version.

19

10 Berkeley DB Notes

library(bdb) is built on top of Berkeley DB. It is an optional component of SICStus
and nothing, except library(bdb), will be affected if Berkeley DB is not installed on the
machine. You can safely ignore this section if you do not intend to use library(bdb).

Berkeley DB can be downloaded from:

https://www.oracle.com/database/berkeley-db/

library(bdb) is built using a particular version of Berkeley DB but it is possible to re-
compile it to work with other versions as well. The version differs between platform, see
https://sicstus.sics.se/ for details.

10.1 Berkeley DB on MS Windows

When installing Berkeley DB on Windows you should use the binary installer available from
Oracle. There are installers available for both 64-bit and 32-bit versions of Berkeley DB,
you need the 64-bit installer for 64-bit version of SICStus, and vice versa.

When using Berkeley DB under Windows, you should set the PATH environment variable
to contain the path to libdb53.dll. Consult the Berkeley DB documentation for further
info.

10.2 Berkeley DB on Mac OS X

The prebuilt installation of SICStus for Mac OS X assumes that Berkeley DB is installed in
the default location /usr/local/BerkeleyDB.VERSION/ (where “VERSION” can be, e.g.
“6.2”.

There is no binary installer available for installing Berkeley DB on Mac OS X. Instead you
need to build it yourself. To do this you need to download and install the Apple C compiler
(Xcode) and then download, build and install the Berkeley DB library, using something like
the following in the Terminal program:

1. Some tools do not understand the way macOS specifies the language. Therefore, set a
sensible default language during the build.

export LC_ALL=en_US.UTF-8

2. Unpack the downloaded source code archive. At the time of writing, 6.2.32 is the latest
version of Berkeley DB 6.2.

tar xzf db-6.2.32.tar.gz

3. Move into the source code folder tree

cd db-6.2.32/build_unix/

4. Configure Berkeley DB for (64-bit only)

../dist/configure

5. Build

make

https://www.oracle.com/database/berkeley-db/
https://sicstus.sics.se/

Chapter 10: Berkeley DB Notes 20

6. Install in the standard location

sudo make install

The installation step requires that you are running as an administrator and the sudo

command will require that you provide the password.

7. Verify that Berkeley DB was installed

/usr/local/BerkeleyDB.6.2/bin/db_archive -V

This should print some version information, e.g. ‘Berkeley DB 6.2.32: (April 5,

2017)’.

21

11 ODBC Notes

library(odbc) is an optional component of SICStus and you can safely ignore this section
if you do not intend to use library(odbc).

ODBC (Open Database Connectivity) is a standard API for using a DBMS (DataBase
Management System). By using ODBC you can access data from a multitude of DBMSs
without having to know the details of each DBMS.

library(odbc) appeared in release 4.1.0 and we expect it to evolve and improve as we
receive feedback from users. While we generally strive for backward compatibility we may
have to make incompatible changes to library(odbc) in order to accommodate necessary
improvements.

library(odbc) is currently supported on MS Windows, Mac OS X and Linux.

11.1 ODBC on MS Windows

ODBC is a standard component of MS Windows. You only need to install the DBMS
specific ODBC drivers. Please refer to the ODBC documentation for MS Windows, and the
ODBC documentation of your DBMS vendor.

11.2 ODBC on Mac OS X

Parts of ODBC are a standard component of Mac OS X. In current versions of Mac OS X
you also need to install additional iODBC components, from http://www.iodbc.org/, see
https://sicstus.sics.se/ for details.

You also need to install the DBMS specific ODBC drivers. Please refer to the ODBC
documentation for Mac OS X, and the ODBC documentation of your DBMS vendor.

11.3 ODBC on Linux

On Linux, library(odbc) is built with unixODBC. unixODBC is an installable package
on many Linux distributions, and can also be downloaded from http://www.unixodbc.

org. The version differs between platform, see https://sicstus.sics.se/ for details.

You will also need to install the DBMS specific ODBC drivers.

http://www.iodbc.org/
https://sicstus.sics.se/
http://www.unixodbc.org
http://www.unixodbc.org
https://sicstus.sics.se/

22

12 The SICStus Prolog IDE (SPIDER)

SICStus Prolog IDE, also known as SPIDER, is an Eclipse-based development environment
for SICStus with many powerful features. SPIDER is meant to eventually replace the Emacs
interface and the Windows spwin.exe program as the main development environment for
SICStus Prolog. SPIDER was initially made available with release 4.1.0. See Section
“SICStus Prolog IDE” in the SICStus Prolog Manual for more information and links.

23

13 The Emacs Interface

The Emacs Interface was originally developed for GNU Emacs 19.34 and is presently being
maintained using GNU Emacs. For best performance and compatibility and to enable all
features we recommend that the latest versions of GNU Emacs be used. For information
on obtaining GNU Emacs; see https://www.gnu.org/software/emacs/.

Please note: The SPIDER IDE (see Chapter 12 [The SICStus Prolog IDE], page 22) is
much more powerful than the Emacs Interface.

13.1 Installation

The Emacs interface is distributed with SICStus and installed by default. The default
installation location for the Emacs files is <prefix>/lib/sicstus-4.5.0/emacs/ on UNIX
platforms and C:\Program Files\SICStus Prolog 4.5.0\emacs\ under Windows.

For maximum performance the Emacs Lisp files (extension ‘.el’) should be compiled. This,
completely optional step, can be done from within Emacs with the command M-x byte-

compile-file. See Section “Installation” in the SICStus Prolog Manual:

The easiest way to configure the Emacs interface is to load the file sicstus_emacs_init.el
from your .emacs file. It will find the SICStus executable and do all initialization needed
to use the SICStus Emacs interface.

13.1.1 Installing On-Line Documentation

It is possible to look up the documentation for any built-in or library predicate from within
Emacs (using C-c ? or the menu). For this to work, Emacs must be told about the location
of the ‘info’-files that make up the documentation.

If you load the file sicstus_emacs_init.el from your .emacs file, then Emacs should be
able to find the SICStus documentation automatically; see Section “Installation” in the
SICStus Prolog Manual:

https://www.gnu.org/software/emacs/

24

14 Revision History

This chapter summarizes the changes in release 4 wrt. previous SICStus Prolog releases as
well as changes introduced by patch releases.

14.1 What Is New In Release 4

14.1.1 Virtual Machine

• The internal representation of Prolog terms and code has been redesigned, resulting in
code that runs up to twice as fast as in release 3.

• Certain memory limitations that existed in release 3 have been dropped. All available
virtual memory can be used without any limitations imposed by SICStus Prolog.

• The limitations on “temporary” and “permanent” variables for compiled clauses have
been dropped. There is no size limit on compiled clauses.

• The number of available atoms is four times larger than in release 3 (1M atoms are
available on 32-bit platforms).

• The range of small integers is eight times larger than in release 3. Although the size of
integers is unbounded, small integers are handled more efficiently than other numbers.

• Multifile predicates are compiled by default; in release 3, they could not be compiled.

• Native code compilation has been dropped. Update: JIT, a different variant of native
code compilation, was added in release 4.3.0.

• Execution profiling is available for compiled as well as interpreted code. The profiling
data accessible by profile_data/1 and library(gauge) is more precise. Some of the
choices of release 3 have been dropped.

• Execution profiling has been generalized to support coverage analysis for compiled as
well as interpreted code.

14.1.2 Prolog Language

14.1.2.1 Single Language Mode

Release 3 had the notion of multiple language modes: iso and sicstus. Release 4 does
not have this notion. The syntax and semantics of the Prolog language correspond to the
previous iso language mode.

14.1.2.2 DCG Notation

The exact rules for translating DCG rules to plain Prolog clauses have not been laid down in
a standard, but there is a broad consensus in the Prolog community about what they should
mean. One of the guiding principles is that the translation should be steadfast, in particular
that the translated code should always treat its last argument as an output argument and
not use it “too early”. In some cases, a non-steadfast translation was produced in release
3. This has been corrected in release 4.

14.1.2.3 Asserting Terms with Attributed Variables

In release 3, terms containing attributed variables and blocked goals could be asserted,
copied, gathered as solutions to findall/3 and friends, and raised as exceptions. The copy

Chapter 14: Revision History 25

would contain new attributed variables with the attributes copied. This operation could be
very expensive, could yield unexpected results and was not always safe e.g. in the context
of CLPFD constraints. In release 4, the semantics of this operation has changed: in the
copy, an attributed variable is simply replaced by a plain, brand new variable. Of course, if
the same attributed variable occurs more than once, the same plain variable will occur in
the corresponding places in the copy. If the attributes are relevant, then the program can
obtain them by using the new built-in predicate copy_term/3 described below.

14.1.2.4 Arithmetic

The infix operator ‘#’ (bitwise exclusive or) has been renamed to ‘\’.

14.1.2.5 Syntax

Atoms can now contain the NUL character, i.e. character code zero. It is classified as white-
space and must therefore be entered using escapes. As an example ’a\0\a’ is a three
character atom containing two as separated by a NUL.

Internally, atom names and other encoded strings, use the non-shortest form ‘0xC0 0x80’
to encode NUL. This is similar to how NUL is handled by Tcl/Tk and Java.

14.1.2.6 Prolog Flags

The language and wcx Prolog flag have been dropped. The profiledcode value of the
compiling Prolog flag has been dropped. Several new Prolog flags have been added. See
Section “Prolog Flags” in the SICStus Prolog Manual.

14.1.2.7 Stream Properties

The wcx property has been dropped. Several new stream properties have been added. See
Section “stream_property/2” in the SICStus Prolog Manual.

14.1.2.8 Statistics Keywords

Several new statistics keywords have been added. See Section “statistics/[0,1]” in the
SICStus Prolog Manual.

14.1.2.9 Built-In Predicates

The set of built-in predicates has changed slightly. The following predicates have been
removed:

’C’/3 This was used in the Prolog translation of DCG rules. It could trivially be
replaced by unifications and served no other reasonable purpose.

get0/[1,2]

put/[1,2]

These used to have an overloaded semantics meaning one thing on binary
streams and another thing on text streams. They have been subsumed by
their ISO counterparts.

Chapter 14: Revision History 26

get/[1,2]

tab/[1,2]

skip/[1,2]

Although these do not have ISO counterparts, they have been removed for
being in the spirit of get0/[1,2] and put/[1,2]. We have provided skip_

char/[1,2], skip_code/[1,2], and skip_byte/[1,2] as an ISO style replace-
ment for skip/[1,2].

ttyget0/1

ttyget/1

ttynl/0

ttyput/1

ttyskip/1

ttytab/1

ttyflush/0

These used to exist as shorthands for the respective predicate with an additional
user argument. In most cases, the “respective predicate” is one of the non-ISO
style predicate mentioned above, so there was no point in keeping the shorthand.

fileerrors/0

nofileerrors/0

These used to exist as shorthands for set_prolog_flag/2 with specific argu-
ments, and so can be trivially replaced.

call_residue/2

Dropped because it was not possible to ensure the correct behavior in all cir-
cumstances, it relied heavily on copying terms with attributed variables, and
it was not needed by any library module. It has been replaced by a simi-
lar predicate, call_residue_vars/2, which should suffice in most cases where
call_residue/2 was used; see below.

undo/1 Dropped because it was not possible to ensure the correct behavior in all cir-
cumstances. Users that know what they are doing can still call the unsupported
predicate prolog:undo/1. The argument should have a module prefix.

help/0

version/0

version/1

These predicates, managing and displaying messages, can be easily emulated
by feaures of the message system.

fcompile/1

load/1 These predicates used to compile Prolog source code into ‘.ql’ files, and load
such files. ‘.ql’ files serve a purpose when boot-strapping the Prolog system,
but offer no advantages over ‘.po’ files, the Prolog object code format used by
other built-in predicates.

load_foreign_files/2

This predicate provided a shorthand for building and loading a temporary for-
eign resource. Working with foreign resources is straightforward, and so the
shorthand was dropped.

Chapter 14: Revision History 27

require/1

This predicate provided a shorthand for locating and loading library predicates.
This was originally introduced for a compatibility reason that is now obsolete.
It is straightforward to provide the necessary :- use_module/2 directives, and
so the shorthand was dropped.

profile_data/4

profile_reset/1

As of release 4.2, the execution profiling technology has been reengineered,
eliminating the need to specially instrument code before it could be profiled.
The new scheme also keeps track of the number of calls per caller-callee pair.
Execution profiling is available for compiled as well as interpreted code. These
two predicates have been replaced by a small number of new ones.

The following predicates have been added:

call/N Generalizes call/1. For example, call(p(1,2), a, b) is equivalent to
call(p(1,2, a, b)).

skip_char/[1,2]

skip_code/[1,2]

skip_byte/[1,2]

ISO style replacements for the non-ISO style skip/[1,2].

call_residue_vars/2

Called as follows:

call_residue_vars(:Goal, -Vars)

Executes the procedure call Goal, unifying Vars with the list of residual vari-
ables that have blocked goals or attributes attached to them. Please note:
behaves differently from call_residue/2 of release 3.

copy_term/3

Called as follows:

copy_term(+Term, -Copy, -Body)

Unifies Copy with a copy of Term in which all variables have been replaced
by brand new variables, and all mutables by brand new mutables. If Term
contains variables with goals blocked on them, or variables with attributes that
can be interpreted as a goal (see Section “library(atts)” in the SICStus
Prolog Manual), then Body is unified with the conjunction of such goals. If no
such goals are present, then Body is unified with the atom true. The idea is
that executing Body will reinstate blocked goals and attributes on the variables
in Copy equivalent to those on the variables in Term.

profile_reset/0

profile_data/1

print_profile/[0,1]

coverage_data/1

print_coverage/[0,1]

As of release 4.2, the execution profiling technology has been reengineered,
eliminating the need to specially instrument code before it could be profiled.

Chapter 14: Revision History 28

Execution profiling is available for compiled as well as interpreted code. It has
been generalized to support coverage analysis for compiled as well as interpreted
code. The new scheme also keeps track of the number of calls per caller-callee
pair. These are the relevant new built-in predicates.

Some predicates have been changed slightly; in most cases, this affects predicates that take
a list of options:

[F1,F2,...]

This is now a short-hand for load_files([F1,F2,...]).

is_mutable/1

The predicate is_mutable/1 has been renamed to mutable/1, in analogy with
integer/1, atom/1 etc.

module/1

The predicate module/1 has been renamed to set_module/1, to avoid possible
confusion with the module/2 declaration.

format/[2,3]

For the predicate format/[2,3], the semantics of the ‘~@’ spec has changed
slightly: the goal Arg is called as if by \+ \+ Arg, i.e. any bindings made by
the goal are lost.

close/2

Takes new options:

direction/1

Specifies which directions to close.

open/4

The wcx/1 option has been dropped. Takes several new options. See Section
“open/4” in the SICStus Prolog Manual.

absolute_file_name/[2,3]

The ignore_underscores/1 option has been dropped. The file_type/1 op-
tion value ql has been dropped, whereas the option value executable is new.
The access/1 option values execute, executable and search are new. The
glob/1 option is new, allowing to match file names against a pattern. If avail-
able, then the load context directory (prolog_load_context/2) will be used
as default directory.

load_files/2

The load_type/1 option value ql has been dropped. encoding_signature/1,
encoding/1, subsuming the wcx/1 option of release 3, and eol/1, are new
options, corresponding to the respective stream properties.

write_term/3

The quoted_charset/1 option is new, reflecting the value of the Prolog flag
with the same name.

Chapter 14: Revision History 29

halt/1

The predicate halt/1 now raises an internal exception like halt/0. This gives
surrounding Prolog and C code an opportunity to perform cleanup.

append/3

member/2

memberchk/2

These are now built-in, they used to reside in library(lists).

14.1.2.10 Hook Predicates

The hook user:term_expansion/[2,4] is replaced by the hook:

user:term_expansion(Term1, Layout1, Tokens,

Term2, Layout2, [Token|Tokens]).

The purpose of the new argument Tokens is to support multiple, independent expansion
rules. The purpose of the arguments Layout1 and Layout2 is to support source-linked
debugging of term-expanded code. Each expansion rule should have its unique identifying
token Token.

The hook user:goal_expansion/3 is replaced by the following per-module hook:

M:goal_expansion(Term1, Layout1,

Module, Term2, Layout2).

Typically, Module has imported the predicate Term1 from module M. The purpose of the
arguments Layout1 and Layout2 is to support source-linked debugging of goal-expanded
code.

14.1.3 Library Modules

There is no consensus for a core library, portable across Prolog systems, let alone a standard
for such a library. Since release 3, SICS has acquired Quintus Prolog, which has a rather
rich library. For release 4, we have decided to make this asset be available to the SICStus
community by providing a library that is a merger of the previous SICStus and Quintus
libraries, which already overlap significantly.

The User’s Manual documents the library of release 4. For the purposes of aiding code
transition to release 4, the following is a list of the release 3 library modules, and their fate
in release 4. See also Section 14.2 [Guide to Porting Code from Release 3], page 35.

Chapter 14: Revision History 30

atts

comclient

fdbg

gauge

heaps

linda/client

linda/server

pillow

prologbeans

tcltk

timeout

trees

wgraphs

xml As in release 3.

arrays The native release 4 counterpart is called library(logarr). Also available is
a deprecated compatibility module library(arrays3).

assoc The native release 4 counterpart is called library(avl), reflecting the abstract
data type, AVL trees, and with a modified, richer API. Also available is a
deprecated compatibility module library(assoc3).

bdb As in release 3, but uses the default Berkeley DB hash function, so all of the
standard Berkeley DB utilites should now work.

charsio Called library(codesio) in release 4. Likewise, the syllable ‘chars’ has been
renamed to ‘codes’ in predicate names.

clpb

clpq

clpr As in release 3, unsupported.

clpfd As in release 3, plus the following additions and changes:

automaton/8

is a new constraint capturing any constraint whose checker of
ground instances can be expressed as a finite automaton.

minimum/2

maximum/2

are new constraints, constraining a value to be the minimum (max-
imum) of a list of values.

nvalue/2 is a new constraint, constraining the number of distinct values taken
by a list of values.

cumulative/[1,2]

provides a unified interface, subsuming serialized/[2,3] and
cumulative/[4,5].

table/[2,3]

defines an n-ary constraint by extension, subsuming relation/3.

Chapter 14: Revision History 31

all_different/[1,2]

all_distinct/[1,2]

Arguments can have unbounded domains.

scalar_product/[4,5]

can optionally be told to maintain arc-consistency. This function-
ality subsumes knapsack/3.

global_cardinality/[2,3]

can optionally be told to use a simple algorithm. This functionality
subsumes count/4.

fd_copy_term/3

is gone. Subsumed by built-in copy_term/3.

jasper The Jasper module is available in the current release. An alternative for Java
users is PrologBeans. The latter is the recommended method for interfacing
Java with SICStus. Jasper should only be used when PrologBeans is insufficient.

lists The native release 4 counterpart has a modified, richer API. Also available is a
deprecated compatibility module library(lists3).

ordsets As in release 3, plus several new predicates.

queues The native release 4 counterpart has a modified, richer API. Also available is a
deprecated compatibility module library(queues3).

random The native release 4 counterpart has a modified, richer API. Also available
is a deprecated compatibility module library(random3). Please note: The
random number generator state is slightly different from the one in release 3.

sockets The new predicate socket_client_open/3 subsumes socket/2 and socket_

connect/3.

socket_server_open/[2,3] subsumes socket/2, socket_bind/2 and
socket_listen/2.

socket_select/7 can wait for any kind of stream, not just socket streams.
socket_select/7 waits until one unit (character for text streams, byte for
binary streams) can be transferred.

socket_select/7 can wait for streams ready to write.

socket_select/7 does not create streams, you need to explicitly use socket_
server_accept/4.

Socket streams are binary by default.

Blocking socket operations can be interrupted on both UNIX and Windows.

library(sockets) should work with IPv6 (in addition to IPv4 and AF_UNIX).

system Operations on files and directories have been moved to its own module,
library(file_systems). Process primitives have been redesigned and moved
to a new module, library(process). The predicates for creating tempo-
rary files, mktemp/2 and tmpnam/1, have been removed. They used C li-
brary functionality that is broken by design and insecure. Instead, to cre-
ate and open a temporary file use something like open(temp(’foo’), write,

Chapter 14: Revision History 32

S, [if_exists(generate_unique_name)]), possibly together with stream_

property(S, file_name(Path)) if you need to know the path to the generated
file name.

The (little) remaining functionality is largely as in release 3. Also available is
a deprecated compatibility module library(system3).

terms As in release 3, plus several new predicates. term_hash/2 is not guaranteed to
compute the same hash values as in release 3.

ugraphs As in release 3, plus a couple of deletions.

objects Replaced by the Quintus Prolog flavor of library(objects).

chr A reimplementation of library(chr), based on the Leuven implementation.

flinkage

spaceout Not present in release 4.

vbsp Not available in the current release. Visual Basic .NET and other .NET lan-
guages can use PrologBeans .NET.

The following is a list of library modules that are new in release 4.

aggregate

provides an aggregation operator for data-base-style queries.

assoc uses unbalanced binary trees to implement “association lists”, i.e. extendible
finite mappings from terms to terms.

bags defines operations on bags, or multisets

between provides some means of generating integers.

file_systems

accesses files and directories.

objects provides a package for object-oriented programming, and can be regarded as a
high-level alternative to library(structs).

plunit Unit test harness.

process Creating, killing, releasing, and waiting on processes.

rem provides Rem’s algorithm for maintaining equivalence classes.

samsort provides generic sorting.

sets defines operations on sets represented as lists with the elements unordered.

structs provides access to C data structures, and can be regarded as a low-level alter-
native to library(objects).

types Provides type checking.

varnumbers

An inverse of numbervars/3.

Chapter 14: Revision History 33

14.1.4 Input-Output System

The internals of the I/O subsystem have been completely redesigned. The new version
should be faster while at the same time providing more functionality and more consistent
behavior between operating systems and between stream types.

The semantics of character codes has been fixed as (a superset of) Unicode. Redefining the
meaning of character codes is no longer supported.

New features and changes to the SICStus streams (SP_stream) include:

• Streams are binary or text also at the lowest level, e.g. in the C API, and there are
separate operations for performing I/O of bytes and characters.

• Streams have a layered design. This makes it possible to add character set translation
and other transformations (compression, encryption, automatic character set detection,
. . .) to any stream.

• All streams provide non-blocking operations and are interruptible, e.g. with ^C

(‘SIGINT’). This is also true for file streams and under Windows.

• Subject to OS limitations, file names can use Unicode and be of arbitrary length. In
particular, under Windows, the Unicode API is used for all operations.

• Limits on file size, file time stamps etc have been removed.

• Error handling has been simplified and made more consistent. In the C API all I/O
operations return an error code from a rich set of error codes. Errors during write and
close operations are no longer ignored.

• It is possible to wait for I/O ready (both for read and write) on any type of stream. This
works for all platforms, including Windows. Select operations wait for the appropriate
item type, e.g. until a whole (possibly multi-byte) character can be transferred on a
text stream.

Other minor changes:

• Now byte_count/2 can be called only on binary streams.

• at_end_of_stream/[0,1] never blocks. Instead it will fail, i.e. behave as if the stream
is not at its end, if the operation would otherwise block. See Section “at_end_of_
stream/[0,1]” in the SICStus Prolog Manual.

14.1.5 Foreign Language APIs

14.1.5.1 Foreign Language Interface

The conversion specifier (in foreign/[2,3] facts) string(N) has been dropped.

The conversion specifier chars has been renamed to codes, in analogy with the built-in
predicate atom_codes/2, the second argument of which is a list of character codes.

The C header generated by splfr from the foreign/[2,3] facts now uses the const at-
tribute where appopriate.

Chapter 14: Revision History 34

Foreign resources are no longer unloaded by save_program/[1,2]. For this reason, the
deinit function of a foreign resource is no longer called when saving a program so SP_WHEN_

SAVE has been removed.

14.1.5.2 C API Functions

Many functions in the C API has been changed or removed, especially those related to OS
and I/O operations. There are also a number of new C API functions.

Old API Replaced by

SP_make_stream, SP_make_stream_context SP_create_stream

SP_set_tty SP_CREATE_STREAM_OPTION_INTERACTIVE

SP_fgetc SP_get_byte, SP_get_code

SP_fputc SP_put_byte, SP_put_code

SP_fputs SP_put_codes, SP_put_encoded_string

SP_fflush SP_flush_output

SP_chdir SP_set_current_dir

SP_getcwd SP_get_current_dir

SP_set_wcx_hooks Gone

SP_wcx_getc, SP_wcx_putc Gone

SP_to_os, SP_from_os Gone

SP_put_number_chars SP_put_number_codes

SP_get_number_chars SP_get_number_codes

Other new functions include:

SP_get_stream_user_data

SP_get_stream_counts

SP_put_bytes

SP_fopen

Chapter 14: Revision History 35

SP_unget_code

SP_unget_byte

Also, many functions take new or changed parameters.

14.1.5.3 Java API

• The PrologBeans API has been extensively revised. See the PrologBeans HTML
(javadoc) documentation.

• PrologBeans was built with Java 1.5.

14.2 Guide to Porting Code from Release 3

Release 4 does not provide a mode in which it is 100% compatible with earlier releases.
However, in addition to what is said in Section 14.1 [What Is New In Release 4], page 24,
(read that first!), this section provides further guidelines for migrating Prolog code from
release 3 to release 4.

1. First of all, make sure that your code runs in ISO execution mode. In release 3, the
command line option --iso can be used.

2. A number of built-in predicates have been dropped. They are listed in the table below,
along with their approximate substitutes. Refer to the documentation for each case.

Dropped built-in Replaced by

get0/[1,2], get/[1,2] get_code/[1,2], get_byte/[1,2]

ttyget0/1, ttyget/1 get_code/2, get_byte/2

put/[1,2], tab/[1,2] put_code/[1,2], put_byte/[1,2]

ttyput/1, ttytab/1 put_code/2, put_byte/2

skip/[1,2] skip_code/[1,2], skip_byte/[1,2]

ttyskip/1 skip_code/2, skip_byte/2

ttynl/0 nl/1

ttyflush/0 flush_output/1

fileerrors/0, nofileerrors/0 set_prolog_flag/2

’C’/3 unification

call_residue/2 call_residue_vars/2

undo/1 prolog:undo/1

Chapter 14: Revision History 36

help/0 the message system

version/0 the message system

version/1 the message system

fcompile/1 save_files/2

load/1 load_files/2

load_foreign_files/2 splfr + load_foreign_resource/1

require/1 use_module/2

is_mutable/1 mutable/1

module/1 set_module/1

3. The hook predicates user:term_expansion/[2,4] and user:term_expansion/3 are
now called user:term_expansion/6 and Module:term_expansion/5 and have a mod-
ified API; see Section “Term and Goal Expansion” in the SICStus Prolog Manual.

4. The set of library modules has been enriched by incorporating a subset of the Quintus
Prolog library modules that we have deemed useful.

library(clpb), library(clpq) and library(clpr) are provided but not sup-
ported. library(flinkage) and library(spaceout) are not included in release 4.
library(objects) has been replaced by its Quintus counterpart, with a completely
different API.

The following table lists the affected SICStus 3 library modules.

Affected module Closest equivalent Comment

arrays arrays3 a

assoc assoc3 b

charsio codesio c

clpfd clpfd d

lists lists3 e

queues queues3 f

random random3 g

sockets sockets d

Chapter 14: Revision History 37

system system3 h

terms terms d

Comments to the table:

a. library(arrays3) is a code migration library module; the long-term solution is
to use library(logarrs) instead.

b. library(assoc3) is a code migration library module; the long-term solution is to
use library(avl) instead.

c. The syllable ‘chars’ has been changed to ‘codes’ throughout.

d. Several API changes; see the documentation.

e. library(lists3) is a code migration library module; the long-term solution is to
use library(lists) instead.

f. library(queues3) is a code migration library module; the long-term solution is
to use library(queues) instead.

g. library(random3) is a code migration library module; the long-term solution is
to use library(random) instead.

h. library(system3) is a code migration library module; the long-term solution is to
use library(system), library(file_systems) and library(process) instead.

One difference between library(system3) and the original release 3 version is
that exec/3 returns a process reference, a compound term, instead of an integer
process identifier.

14.3 Limitations in the Current Release

This section lists features that are missing or incompletely implemented in the current
release of SICStus Prolog (SICStus Prolog 4.5.0) but that may appear in future releases.
Please let us know what features are important to you!

library(tcltk): There is no way to pass non-Latin 1 characters from Tcl/Tk to Prolog.
The Tcl/Tk Terminal is not supported.

library(spaceout): not supported; see Section 14.1.3 [Library Modules], page 29.

The Visual Basic 6 module (vbsp) is not supported; see Section 14.1.3 [Library Modules],
page 29.

The Windows GUI spwin.exe does not support full Unicode. The console version
sicstus.exe fully supports Unicode when run from a console window or from within SPI-
DER or Emacs.

The Emacs mode may not work reliably when passing Prolog code between Emacs and
SICStus if the code is not written using Latin 1.

14.4 Changes Introduced in Version 4.0.1

14.4.1 New Features

Chapter 14: Revision History 38

14.4.2 Bugs Fixed

• Spurious SPIO_E_ERROR exceptions when interrupting Prolog. Most often seen when
using library(timeout) or when using ^C at the top-level prompt.

• Inconsistent error messages if the license information was missing or incomplete.

• library(fdbg): inconsistent trace messages for labeling steps.

• library(clpfd): error handling for user-defined global constraint actions.

• Source info of interpreted clauses.

• Memory management issue with garbage collection + pending unblocked goals

• CHR debugging and tracing did not work.

14.4.3 Other Changes

• Compatibility issue: The two Latin 1 character codes 0x00AA (FEMININE ORDINAL

INDICATOR) and 0x00BA (MASCULINE ORDINAL INDICATOR) are now classified as lower
case letters by the Prolog parser. They used to be (incorrectly) classified as symbol
chars. This may affect code that used any of these characters in unquoted atoms or
functors.

This change was made to align their classification with the Unicode standard.

• Quoted atoms and strings can now contain any character sequence from Unicode 5.0
when reading, with some restrictions; see Section “Syntax of Tokens as Character
Strings” in the SICStus Prolog Manual.

• Quoted atoms and strings are now by default written using a larger subset of Unicode
than before. See the documentation for the Prolog flag quoted_charset (see Section
“Prolog Flags” in the SICStus Prolog Manual).

• Windows: All code is built with the security options /GS, /SAFESEH, /NXCOMPAT.

• Corrected the documentation for SP_put_list_n_codes().

• Now UTF-8 is used when communicating with the SICStus Prolog sub-process in ver-
sions of Emacs and XEmacs that supports it.

14.4.4 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will allow some
input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

14.5 Changes Introduced in Version 4.0.2

Chapter 14: Revision History 39

14.5.1 New Features

• Added support for ISO-8859-2, a.k.a. Latin 2.

• absolute_file_name/3: new option file_type(executable)

expands to extensions([’’, ’.exe’]) on Windows and to extensions([’’]) on
other systems.

14.5.2 Bugs Fixed

• Memory manager: efficiency bug.

• library(structs): unsigned types, 64-bit issues.

• PrologBeans: Lists of integers with element values above 255 broke the communication
between Java and SICStus.

• Closing a stream would sometimes hang due to a race condition on UNIX-like platforms.
This was most likely to happen on MacOS X.

• set_stream_position/2 and seek/4 did not work on output streams.

• Multiple issues with absolute_file_name/3.

− Option file_errors(fail) would sometimes report permission errors (SPIO_E_
PERMISSION_ERROR) instead of silently failing.

− Option file_errors(fail) now fails instead of raising an exception for file name
domain errors like malformed file names and too many symbolic links (SPIO_E_
INVALID_NAME).

− Options access(execute) and access(search) now imply access(exist). This
is similar to how access(read) works.

− The undocumented internal option access(directory) was allowed. Use file_

type(directory) instead.

• library(process): process_create/[2,3] now skips non-executable file and non-
files if the File-argument can expand to more than one file. This is especially useful
when using the symbolic name path/1 to specify a file.

• library(avl): Bug in avl_delete/4.

• library(random): Document and check validity of the random number generator state.
Bug in random_numlist/4.

• get_atts/2: Could fail incorrectly.

• library(clpfd): A memory management problem. An integer overflow problem.
Propagation bug in case/[3,4], affecting automaton/8 too.

• A problem with shared subterms in copying, asserting, collecting and throwing terms.

• The Prolog flag title was truncated by spwin.exe under Windows.

• The spdet utility did not automatically add ‘.pl’ and ‘.pro’ extensions to file name
arguments.

14.5.3 Other Changes

• library(clpfd): minor efficiency issues.

• The user_error stream is always unbuffered, even when not attached to a terminal.

Chapter 14: Revision History 40

• Improved detection of the ‘executable’ file property under Windows, e.g. in absolute_

file_name/3 and process_create/[2,3].

• The Prolog flag title is now saved by set_prolog_flag(title, ...) on all platforms.
It used to be ignored except under Windows.

14.5.4 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will allow some
input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

14.6 Changes Introduced in Version 4.0.3

14.6.1 New Features

• The new Prolog flag legacy_char_classification makes it possible to use full Uni-
code, e.g. Chinese characters, in unquoted atoms and variable names. See Section
“Prolog Flags” in the SICStus Prolog Manual.

• The Prolog flag redefine_warnings can take new values, and is no longer ignored in
runtime systems. See Section “Prolog Flags” in the SICStus Prolog Manual.

• SP_load_sicstus_run_time(), and related functionality for loading multiple SICStus
runtimes into a process, is now available.

• Jasper Java interface (library(jasper)) is now available. Jasper is mainly for legacy
code; PrologBeans is still the preferred method of calling Prolog from Java.

• library(sockets) now supports UNIX domain (AF_UNIX) sockets on UNIX-like plat-
forms. The new predicate socket_server_open/3 allows some options when opening
a server socket.

• SP_set_argv(), a new C API function for setting the values returned by the argv

Prolog flag. Similar to the argv argument to SP_initialize(), but can report failure
and can use locale information.

• spld and splfr: new command line options. The new (POSIX) option -- is treated
the same as the older -LD. New option --conf VAR=VAL to override variable VAR in
the configuration file. Option processing has been rewritten to be more robust and
consistent. See Section “The Application Builder” in the SICStus Prolog Manual and
Section “The Foreign Resource Linker” in the SICStus Prolog Manual.

• sicstus The new (POSIX) option -- is a synonym for the old -a.

14.6.2 Bugs Fixed

• trimcore/0 could lead to memory corruption.

Chapter 14: Revision History 41

• append/3 “optimization” could cause garbage collector crash.

• spld and splfr: multiple --cflag options accumulate, as documented.

• sockets:current_host/1 would fail on Windows 2000 with some network configura-
tions.

• process:process_release/1 did not work.

• All process creation routines in library(system3) now work when there are command
line options in the command argument, as was intended.

• file_systems:current_directory/2 was sensitive to load context when passed a
relative path as its second argument.

• The Windows GUI spwin.exe command ‘Save Transcript’ now works and uses UTF-
16 with BOM which can be read by most Windows programs and by recent Emacs and
XEmacs.

• The menu commands of the Windows GUI spwin.exe no longer load foreign resources.
This prevents extra foreign resources from being recorded by save_program/[1,2].

• library(chr)

− Multiple occurrences of the same answer constraint are no longer suppressed.

− Error in compile-time error message.

• library(clpfd)

− element/3 and cumulatives/[2,3] could crash.

− Bug in dom(X)+dom(Y) in indexicals.

− Structure sharing issues with fd_set/2 and in_set/2 in the global constraint API.

− mod and rem are now available with the intended semantics.

− Incorrect reification of arithmetic relations involving division, mod and rem.

• Variables not transferred correctly in the PrologBeans process communication protocol.

14.6.3 Other Changes

• Output to different interactive output streams, like user_output and user_error, are
now properly ordered.

• If the standard OS streams cannot be used, then the SICStus runtime will use null
streams instead of failing initialization. Happened when started from recent Linux
nohup command.

• Under UNIX, sicstus now interprets command line arguments using locale information
(the Windows version already did this).

• Saved-states invoked as shell scripts will now use a version specific name for the sicstus
executable, e.g., exec sicstus-4.0.3 ... instead of exec sicstus

• The spld tool now ignores the --more-memory option and no longer attempts to use a
modified linker script on x86 Linux.

• The splfr tool no longer uses a fixed name for some temporary files, which prevented
parallel make.

Chapter 14: Revision History 42

14.6.4 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will allow some
input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

14.7 Changes Introduced in Version 4.0.4

14.7.1 New Features

14.7.2 Bugs Fixed

• OnWindows the result of absolute_file_name/[2,3] would contain backslash instead
of forward slash if the absolute file name contained certain non-ASCII characters. This
bug also broke all directory listing functions in library(file_systems), e.g. file_
systems:file_member_of_directory/[2,3,4].

• A change in 4.0.3 caused system3:popen/3, system3:shell/[1,2] and
system3:system/[1,2] to no longer work when the command string contains redi-
rection and other special constructs. These predicates now always invoke the system
shell.

• A change in 4.0.3 caused library(sockets) to not accept a lone port number as an
address. A port number Port is now treated the same as inet(’’, Port), as in earlier
releases. This also broke prologbeans:start/[0,1] when no port was specified.

• A few operators had non-ISO mode operator declarations. This has been corrected
to match the documentation, the ISO Prolog standard and the ISO language mode in
SICStus Prolog 3. See Section “Built-in Operators” in the SICStus Prolog Manual.

Please note: This is an incompatible change that may cause a Prolog program or data
to be parsed differently (or not at all). However, in practice we expect this to affect
little or no code. Data written using write_canonical/[1,2] or similar will not be
affected and will be read back correctly regardless of operator declarations.

To preserve the old, incorrect, operator declarations, insert the following at the top of
your Prolog files:

:- op(500, fx,[+,-]).

:- op(300, xfx,[mod,rem]).

To ensure that the new, correct, operator declarations are in effect also in releases
predating 4.0.4, insert the following at the top of your Prolog files (please note: this
documentation was updated after 4.0.4 to correct the associativity of +, -):

:- op(200, fy,[+,-]).

:- op(400, yfx,[mod,rem]).

Chapter 14: Revision History 43

14.7.3 Other Changes

14.7.4 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will allow some
input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

14.8 Changes Introduced in Version 4.0.5

14.8.1 New Features

• library(zinc): Interpreters for the MiniZinc and FlatZinc combinatorial problem
modeling languages being developed in the G12 project; see http://www.minizinc.

org.

• library(clpfd): Revived deprecated constraints count/4 and relation/3.

14.8.2 Bugs Fixed

• open/[3,4] error handling.

• Critical virtual machine bugs in floating point arithmetic.

• Garbage collection now runs in constant space.

• Opening a UNIX fifo, or other non-seekable file, in text mode would not terminate
until the other end closed the connection and then it would report a seek error. The
problem was with the read-ahead needed to detect character encoding. Non-seekable
files are now opened as if encoding_signature(false) were passed to open/4.

• Runtime systems generated by spld did not propagate exit code from halt/1.

• statistics/0 would sometimes report incorrect, including negative, “program space
breakdown” for the “miscellaneous” and “interpreted code” categories.

• SP_event() handlers are no longer allowed to run during SP_exception_term() or
SP_deinitialize().

SP_exception_term() calls Prolog code which could allow SP_event() handlers to run,
e.g. for library(timeout). In this case exceptions and failures from an SP_event()

handler would be ignored and possibly confuse SP_exception_term().

SP_deinitialize() does some cleanup by calling Prolog code. This can no longer
cause SP_event() handlers to run.

• Fixed a memory corruption issue that happened during exception handling.

• Prologbeans:

− Lists of one character atoms were incorrectly transferred from Java to SICStus.

http://www.minizinc.org
http://www.minizinc.org

Chapter 14: Revision History 44

− The example sessionsum was missing the line:

pSession.connect();

after the declaration of pSession.

− Session listeners were not notified when a client closed the stream.

• Jasper: A memory leak in multithread mode.

• Debugger:

A file/[1,2] breakpoint test or action would raise an exception when used with
uninstantiated first (file name) argument.

− Some conditional breakpoints could not be handled by SU_messages message pro-
cessing. This sometimes caused a raw message term to be presented in the debug-
ger.

− Sometimes breakpoint tests were evaluated with the wrong value for the bid/1

breakpoint condition. The bid/1 breakpoint condition was not always reset to
bid(off) when no breakpoint was selected. The documentation was updated to
correctly say bid(off) instead of bid(none).

• Sometimes, SICStus would enter an infinite loop if the error stream was closed in the
other read-end. This could happen, e.g. when SICStus was invoked as a subprocess
and the parent process exited ungracefully.

• Some Prolog code would not compile in profiledcode mode.

• Spurious type errors in several library modules.

• library(objects), library(structs): fixed a 64-bit issue, and putting integers now
checks for overflows.

• library(avl): bug in avl_max/3.

• library(clpfd): bug fixes for circuit/1, table/[2,3], lex_chain/[1,2], #\=.

• library(bdb):

− db_open/5 could crash if the option cache_size/1 was passed.

− Very long filenames could cause crashes.

− Did not work reliably with non-ASCII file names.

− db_enumerate/3, db_sync/1, db_make_iterator/2, db_iterator_next/3 and
db_iterator_done/1 crashed if called after the database had been closed.

14.8.3 Other Changes

• The windowed executable (spwin.exe) on Windows now saves and reads the command
history (see Section 4.4 [Command Line Editing], page 7).

• write/[1,2] is now much faster when writing atomic terms.

• assertz/1 and friends are now faster when asserting facts, i.e. clauses without bodies.

• library(terms): the new predicate term_hash/3 allows more control over the hashing
behavior and hash algorithm used.

Notable new features: a new, better, default hash algorithm and several other algo-
rithms, including the 4.0.4 version, are available; it is possible to obtain a full 32-bit
hash value; it is possible to get an instantiation error or hash value when the term
being hashed is nonground.

Chapter 14: Revision History 45

term_hash/[2,4] has been changed to use a better hash function by default. The
new hash function gives fewer collisions in general, and gives the same value on all
platforms.

Please note: The change of hash function is an incompatible change that may affect
programs or data that depend on the old hash algorithm. The old behavior can be
obtained as follows:

%% Pre 4.0.5 version

term_hash_4_0_4(Term, Hash) :-

term_hash(Term, [algorithm(’sicstus-4.0.4’)], Hash).

term_hash_4_0_4(Term, Depth, Range, Value) :-

term_hash(Term, [algorithm(’sicstus-4.0.4’), depth(Depth), range(Range)], Hash).

• library(debugger_examples) updated.

• Extended Runtime systems (a separate product, adding the compiler to runtime sys-
tems) now require a license at runtime. By default spld will embed the license into
the executable.

• The hook user:error_exception/1 is now called with the exception term specified
by ISO Prolog, i.e. the same term that is seen by catch/3 and on_exception/3.
It used to be called with an internal representation of the exception. This affects
error exceptions, i.e. those with functor error/2. The old (pre 4.0.5) value passed to
user:error_exception/1 is the second argument of the error/2 structure.

Please note: This is an incompatible change. Old code that uses user:error_

exception/1 may need to be updated. If the old code looked like:

%% Pre 4.0.5 version

user:error_exception(Old) :- do_something(Old).

then it can be rewritten as follows (which will also work in older versions of SICStus
Prolog):

%% >= 4.0.5 version

user:error_exception(New) :-

(New = error(_, Old) -> true; Old = New),

do_something(Old).

• trimcore/0 is now more thorough when releasing memory back to the operating sys-
tem. This also affects the trimcore-variant used by the top-level.

• It is now possible to tell SICStus to use malloc() et al. as memory manager instead
of the default custom allocator.

malloc() is selected when starting sicstus with the new option -m; when initializing
the SICStus runtime with the environment variable SP_USE_MALLOC set to yes; for
SICStus runtimes built with the new spld option --memhook=malloc; and when calling
SP_set_memalloc_hooks() with the new option SP_SET_MEMALLOC_HOOKS_HINT_USE_

MALLOC. See Section “SP set memalloc hooks” in the SICStus Prolog Manual.

• library(clpfd): unification with domain variables as well as propositional combina-
tions of arithmetic constraints have been accelerated.

Chapter 14: Revision History 46

14.8.4 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

• Exceptions in interpreted code will not get accurate source info in the source linked
debugger.

• Saved-states and ‘.po’ files are not portable across architectures that have the same
word size, which they should be. This will be fixed in release 4.1.0.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

14.9 Changes Introduced in Version 4.0.6

This section is intentionally left empty. Version 4.0.6 was skipped in the release series.

14.10 Changes Introduced in Version 4.0.7

14.10.1 New Features

• Most text streams can now be opened with reposition(true), allowing set_stream_

position/2 and seek/4. This works for fixed-width, single-byte encodings. This
includes Latin 1 and similar encodings provided LFD is used for end-of-line. See Section
“open” in the SICStus Prolog Manual.

• library(clpb) is revived from SICStus 3, unsupported.

14.10.2 Bugs Fixed

• SP_event() handlers are no longer allowed to run during SP_fclose(), which some-
times needs to perform some cleanup by calling Prolog code. This can no longer cause
SP_event() handlers to run.

• Exceptions during exception handling would cause the top-level to exit.

• SP_event() handlers were not always called during event handling. One symptom was
that, at least on Windows, timeout:time_out/3 could not always interrupt a goal
called from an event handler.

• Bug in redefining multifile predicates.

• sockets:socket_select/7 leaked memory on Windows.

• library(queues): bug in portray_queue/1.

• library(clpfd): Incorrect reification and efficiency bugs in arithmetic relations in-
volving division, mod and rem; incorrect handling of inf and sup in table/[2,3].

Chapter 14: Revision History 47

14.10.3 Other Changes

• Foreign resources compiled with releases predating 4.0.5 will not load into newer re-
leases. This change was already in release 4.0.5 but was not documented in the release
notes.

• The eol/1 stream property is now available also when not explicitly specified when
opening a file with open/[3,4].

• Decreased overhead for reclaiming dead dynamic clauses.

• Decreased garbage collection overhead in some cases.

14.10.4 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

• Exceptions in interpreted code will not get accurate source info in the source linked
debugger.

• Saved-states and ‘.po’ files are not portable across architectures that have the same
word size, which they should be.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

14.11 Changes Introduced in Version 4.0.8

14.11.1 New Features

GROWTHFACTOR

A new environment variable that controls the rate at which the Prolog stacks
grow when they are expanded. See Section “sicstus — SICStus Prolog Devel-
opment System” in the SICStus Prolog Manual.

14.11.2 Bugs Fixed

• Compiler: shallow backtracking bug.

• Virtual machine bugs (accesses to uninitialized, freed or dead data, spurious memory
corruption, recovery from memory resource error).

14.11.3 Other Changes

• Stack memory is maintained separately from other memory, which can sharply reduce
memory fragmentation.

• Decreased garbage collection overhead in some cases.

Chapter 14: Revision History 48

14.11.4 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

• Exceptions in interpreted code will not get accurate source info in the source linked
debugger.

• Saved-states and ‘.po’ files are not portable across architectures that have the same
word size, which they should be.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

14.12 Changes Introduced in Version 4.1.0

14.12.1 New Features

• SPIDER, the SICStus Prolog IDE, is a new Eclipse-based development environment
for SICStus with many powerful features. See Section “SICStus Prolog IDE” in the
SICStus Prolog Manual for more information.

• Do-loops, a new control structure and built-in predicate do/2 for performing simple
iterations. See Section “Do-Loops” in the SICStus Prolog Manual.

• Conditional compilation, a preprocessing step that selectively discards parts of a file
at compile time. This is especially useful for writing code that needs to be compatible
with more than one Prolog implementation. See Section “Conditional Compilation” in
the SICStus Prolog Manual for more information.

• New Prolog flags:

dialect

version_data

make it easier to determine which version of SICStus is running. Especially
useful with conditional compilation.

platform_data

os_data make it easier to determine on which operating system SICStus is running.

min_tagged_integer

max_tagged_integer

The range of small integers.

argv Not a new flag but is no longer read-only. Setting it can be useful, e.g. in
test cases.

• Added stream property interactive for interactive streams, like the standard input
and output streams when invoking SICStus on a terminal or with the -i command line
option.

Chapter 14: Revision History 49

• Meta-predicate declarations now allow an integer instead of : (colon) in order to help
analysis tools follow code references. All documentation and libraries have been up-
dated to reflect this. (This was always allowed in SICStus as a substitute for : (colon)
but was never documented).

• Compound terms denoting references to dynamic clauses are recognized by the new
built-in predicate db_reference/1.

• The previously reserved argument to SP_initialize() can now be used to pass ini-
tialization options.

• Saved-states and ‘.po’ files are portable across architectures that have the same word
size. Pre-4.1 ‘.sav’ and ‘.po’ files are not compatible with this and future releases.

• Several new statistics keywords are available. Also, statistics/0 now resets the “time
spent since the latest call” counters.

• library(odbc) is a new ODBC library for interfacing with databases. ODBC (Open
Database Connectivity) is a standard API for using a DBMS (DataBase Management
System). By using ODBC you can access data from a multitude of DBMSs without
having to know the details of each DBMS.

• It is now possible to pass environment variables to the sub-process using the new
environment/1 option to process:process_create/3.

• random:setrand/1 can now be passed an arbitrary integer for initializing the state of
the random number generators. This is easier than constructing a valid random state
like those returned by getrand/1.

• library(clpfd):

− geost/[2,3,4] is a new powerful constraint that constrains the location in space
of non-overlapping multi-dimensional objects.

− table/[2,3] is more scalable and has several new options for controlling its DAG
construction.

− automaton/3 is a shorthand for the most common use of automaton/8, and
automaton/9 extends automaton/8 with options.

− Unary minus (-) is allowed in arithmetic expressions.

− Several new demo examples.

• library(zinc): upgraded to FlatZinc version 1.0.

• library(system): a new predicate, environ/3, for reading system properties, envi-
ronment variables or a merged view of both. See below for the new concept “System
Properties” that has replaced most uses of environment variables.

• library(sockets): The predicates that create socket streams now take options
encoding/1 and eol/1 with the same meaning as for open/4.

14.12.2 Bugs Fixed

• Compiler: pathological case bug.

• SP_raise_exception() and SP_fail() would sometimes not be handled correctly
when foreign code called Prolog recursively. Now, exceptions are preserved in callbacks
from foreign functions.

Chapter 14: Revision History 50

• format/[2,3] et al. used to treat all non-reserved exceptions as consistency errors.
Now non-error exceptions, i.e. not error/2, are passed on to the caller.

Reserved exceptions from the goal invoked for the ‘~@’ spec are now passed on to the
caller. This ensures that timeout:time_out/3 and other interrupts will be able to
terminate such a goal.

• Source-linked debugging could sometimes indicate the wrong line of code.

• see/1 and tell/1 would not accept stream objects.

• Multiple issues when changing one of the standard streams (user_input, user_

output, and user_error) with set_prolog_flag/2. These issues affected stream_

property/2, current_stream/3 and could lead to access to freed memory during
close/[1,2].

• stream_property/2 no longer returns an eol/1 property for binary streams.

• SICStus no longer sets any environment variables. Setting environment variables has
undefined behavior in multi-threaded processes, especially on UNIX-like operating sys-
tems. Symptoms included segmentation fault in getenv() if several SICStus runtimes
were initialized at the same time in different threads of the same process. See below
for the new concept “System Properties”, which has replaced most uses of environment
variables.

• SP_event() handlers are no longer allowed to run when the SICStus runtime calls Pro-
log code in contexts where their result, e.g. failure or exception, cannot be propagated
to the caller. This could potentially lead to timeouts and other asynchronous events
being ignored.

• If open/4 fails to open a file for writing, then it will now generate a permission_error,
as prescribed by the ISO Prolog standard. It used to raise a system error.

• The open/4 option if_exists(generate_unique_name) would sometimes access and
use freed memory when generating a new file name.

• SP_get_list_n_codes() would report more bytes written than what was actually
written.

• Goals run as part of initialization/1 now have access to the load context (prolog_
load_context/2), similarly to how other goals appearing in directives are treated.
This also means that absolute_file_name/[2,3] will use the location saved in the
load context as default directory.

Please note: The change in default directory for absolute_file_name/[2,3], and
thus open/[3,4] et al., is an incompatible change that may affect some programs. Old
code that depends on the current directive may need to be updated to explicitly call
file_systems:current_directory/1.

If the old code looked like:

%% Pre 4.1.0 version

:- initialization read_some_file(’myfile’).

then it can be rewritten as follows (which will also work in older versions of SICStus
Prolog):

Chapter 14: Revision History 51

%% >= 4.1.0 version

:- use_module(library(file_systems), [current_directory/1]).

:- initialization current_directory(CWD),

absolute_file_name(’myfile’, Absfile,

[relative_to(CWD)]),

read_some_file(Absfile).

• prolog_load_context(stream,S) will now only succeed when compiling or consulting
the code. It used to return a closed stream instead of failing.

• library(clpfd):

− nvalue/2 would miss solutions.

− element/3 did not maintain arc-consistency in its first argument.

− Undefined behavior when combining CLPFD with frozen goals, now made consis-
tent.

− Strength reduction problem for some propositional constraints.

− Missing meta-predicate declaration for fd_global/[3,4].

− Some data was not protected from garbage collection.

− Output of copy_term/3 was sometimes incomplete or not correct.

• Exported, non-existing predicates: file_systems:file_must_exist/[1,2],
lists3:nextto/3, lists3:nth/4.

• The directory listing predicates in library(file_systems), e.g. directory_member_
of_directory/2, no longer fail if they encounter a broken symbolic link.

• library(process): Process creation would leak small amounts of memory.

• library(random): maybe/0 would always fail the first time.

• A typo prevented library(detcheck) from working.

• The spdet tool now tries the extension ‘.pro’ in addition to ‘.pl’. Other minor
improvements.

• library(xref): slighly more precise.

• sockets:socket_client_open/3 would give system error with SPIO_E_HOST_NOT_

FOUND when connecting to localhost on some platforms.

• system:environ/2 would leak memory if called with a variable as first argument.

• The Emacs mode did not work in recent Emacsen.

14.12.3 Other Changes

• The atom length restriction has been lifted.

• The Emacs command run-prolog now prompts for a (Lisp) list of extra command line
arguments, when invoked with a prefix argument, i.e. as C-U M-x run-prolog.

• While loading clauses from a PO file, if clauses for an existing multifile predicate are
encountered, but in a precompiled format different from the existing clauses, then the
existing clauses remain untouched, the multifile clauses from the PO file are simply
ignored, the load continues, and a permission error is raised at the end. Previously, the
existing clauses would silently be replaced by the loaded ones. This feature is mainly
relevant for hook predicates such as user:term_expansion/6.

Chapter 14: Revision History 52

• “System Properties” has been introduced as an abstraction to replace the direct use of
environment variables. See Section “System Properties and Environment Variables” in
the SICStus Prolog Manual for more information.

The change is largely backwards compatible with the following notable exceptions:

• The environment variables SP_APP_DIR, SP_RT_DIR, etc. are no longer set in the
environment. This means that their value can no longer be obtained, e.g. from C
code, by using getenv() or similar functions. Instead, SP_getenv() can be used
for a similar effect.

• For the same reason, sub-processes created with process:process_create/[2,3]

will no longer see SP_APP_DIR et al. in their inherited environment. Instead it is
now possible to explicitly pass environment variables to the sub-process using the
new environment/1 option to process:process_create/3.

• New automatically set system properties, SP_APP_PATH, the path to the executable,
SP_RT_DIR, the path to the SICStus runtime, and SP_STARTUP_DIR the initial working
directory. See Section “System Properties and Environment Variables” in the SICStus
Prolog Manual for more information.

• The initial working directory can be set with the system property SP_STARTUP_DIR,
independently from the process’s working directory. By setting the system property
SP_ALLOW_CHDIR to ‘no’, SICStus can be told to never change the process’s working
directory. These features are especially useful when embedding SICStus.

• The buffer argument to spio_t_simple_device_write is now a void const* instead of
a plain void *. This affects code that use SP_create_stream() to create user-defined
streams.

• SP_get_list_n_bytes() and SP_get_list_n_codes() now use stricter input valida-
tion.

• SICStus will no longer flush open streams on exit. This change is to prevent SIC-
Stus from hanging on exit due to some blocking I/O operation. All streams should
be explicitly closed (close/[1,2]) or flushed (flush_output/1) if their contents is
precious.

• clpfd:case/4: the leaves/2 option has been dropped, and the variable order must
be the same on every path.

• library(system): library(system) no longer depends on any foreign code so the
system foreign resource is gone.

• library(jasper): The SICStus (Java) working directory is now passed to Java (SIC-
Stus) when Java (SICStus) is started from SICStus (Java). Also, SICStus will not
change the process’s working directory when started from Java.

• The Berkeley DB library, library(bdb), is now built using Berkeley DB 4.8.24.

14.12.4 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

Chapter 14: Revision History 53

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

14.13 Changes Introduced in Version 4.1.1

Version 4.1.1 is a bugfix release only, no new features have been added. See Section 14.12
[4.1.0 Changes], page 48, for changes introduced in SICStus Prolog 4.1.

14.13.1 Bugs Fixed

• A compiler bug affecting disjunctions, introduced in released 4.1.0, fixed.

14.13.2 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

14.14 Changes Introduced in Version 4.1.2

Version 4.1.2 is a bugfix release only, no new features have been added. See Section 14.12
[4.1.0 Changes], page 48, for changes introduced in SICStus Prolog 4.1.

14.14.1 Bugs Fixed

• Term comparison now runs in constant C stack space.

• Virtual machine bugs.

• PO file compatibility bug.

• Memory management bugs.

• Memory and stack corruption on UNIX-like systems with large file number limit and
many open files (systems with ulimit -n larger than FD_SETSIZE, i.e. larger than
1024).

• pred spec tree parse error.

• Module expansion of args shadowed by do iterators.

• Command line arguments with certain non-ASCII characters would prevent SICStus
from initializing.

Chapter 14: Revision History 54

• ceiling/1, floor/1, round/1, truncate/1 now accept integers in addition to floats.

• statistics(garbage_collection,_) did not report the correct byte count.

• PrologBeans: one hook predicate was incorrectly declared dynamic.

• library(bdb): determinacy bugs.

• CLPFD:

− table/[2,3]: bugs with inf/sup, copy_term/2.

− geost/[2,3,4]: polymorphism with rules; volume/1 option.

• library(linda): The Linda server is now more robust against misbehaving clients. Es-
pecially on Windows the server would get a connection reset error if the client crashed.

• library(sockets): socket_select/7 would sometimes return with nothing selected
even though it was called with infinite timeout (UNIX-like platforms only).

• Prolog Beans clients (both Java and .NET) would sometimes get an array index out of
bounds error when more than ten concurrent sessions were active.

14.14.2 Other Changes

• Added a warning to the PrologBeans.NET ASPX example that it is not secure.

14.14.3 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

14.15 Changes Introduced in Version 4.1.3

See Section 14.12 [4.1.0 Changes], page 48, for changes introduced in SICStus Prolog 4.1.

14.15.1 New Features

• library(plunit) provides a Prolog unit-test framework.

• CLPFD:

− automaton/9 takes several new options that allow capturing properties of the input
string, such as the number of occurrences of given patterns, into domain variables.

− A much more general syntax is allowed for clauses of the form Head +: Body, which
define dedicated propagators as indexicals. In particular, propositional combina-
tions of arithmetic constraints are allowed.

Chapter 14: Revision History 55

14.15.2 Bugs Fixed

• Critical virtual machine bugs.

• Improvements to interrupt handling (SP_event(), SP_signal() and related function-
ality).

• When running under the SPIDER IDE, I/O operations could fail with SPIO_E_

INTERRUPTED.

• When running under the SPIDER IDE, restore/1 would disrupt the debugging ses-
sion.

• Linking with the SICStus runtime on Linux no longer marks the stack as executable.
This would prevent SICStus from starting on some versions of SE Linux.

• Work around OS bugs on Mac OS X 10.5, Mac OS X 10.6 and Linux that would
sometimes cause SICStus to hang when closing streams.

• Source-info bug for huge interpreted clauses.

• Source-info bug for interpreted code, introduced in 4.2.0.

• Profiling: profile_reset/1 was broken; problems with multifile.

• library(timeout): time_out/3 would sometimes interrupt I/O or miss a timeout
under Windows.

• library(sockets): Some operations would raise an exception when an interrupt oc-
curred, e.g. at ^C.

• CLPQ/CLPR: constants π and e were inaccurate.

• CLPFD:

− relation/3, table/[2,3]: bugs with empty and infinite sets.

− Missing propagation in the context of unification.

• Prologbeans: passing deeply nested terms to and from Prolog could lead to stack
overflow in Prologbeans client code (Java, .NET).

14.15.3 Other Changes

• The following I/O predicates are now several times faster: put_code/[1,2],
put_byte/[1,2], get_code/[1,2], peek_code/[1,2], get_byte/[1,2], peek_

byte/[1,2], and read_line/[1,2].

• Exceptions used internally by built-in predicates and library(timeout) are now trans-
parent to on_exception/3 and catch/3 as well as to debugger ports.

• JASPER: When creating a se.sics.sicstus.SICStus instance any (Java) system
property named se.sics.sicstus.property.NAME will be passed to the created
SICStus instance as the (Prolog) system property NAME.

• CLPFD: scalar_product/[4,5] is less prone to integer overflows, and faster in the
most common cases.

• Linux: The installer script would sometimes fail to configure support for Java.

14.15.4 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

Chapter 14: Revision History 56

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

14.16 Changes Introduced in Version 4.2.0

14.16.1 New Features

• If the Prolog flag source_info is on at compile time, then more information from the
source code is kept around at runtime, with improved functionality including:

− The debugger can show variable bindings for the current clause and its ancestors.

− The Emacs interface offers a variable bindings window that is updated on every
debugger port interaction.

− listing/[0,1] displays the clauses with their source code variable names.

− PO files and saved-states retain information about variable names and line num-
bers.

− The SICStus Prolog IDE (SPIDER) also takes advantage of the improved debug-
ging information, e.g. the variable bindings view in SPIDER now has information
for more variables than in earlier releases.

− Generic runtime systems are now available on all platforms, not only on Windows.
See Section “Generic Runtime Systems” in the SICStus Prolog Manual for details.

• Execution profiling has been reengineered:

− The execution profile can be printed in a format similar to gprof(1).

− There is no longer any need to specially instrument code for profiling.

− Execution profiling is available for compiled as well as interpreted code.

− Execution profiling is either globally on or globally off, reflected by the value of
the new profiling Prolog flag.

− The new scheme keeps track of the number of calls per caller-callee pair.

− The new scheme detects calls that succeed nondeterminately.

− No clause level data is maintained, all data is per predicate.

− The profiledcode value of the compiling Prolog flag has been dropped.

− PO files do not store any profiling data.

− The built-in predicates profile_data/4 and profile_reset/1 have been replaced
by profile_reset/0, profile_data/1, print_profile/[0,1], coverage_

data/1, and print_coverage/[0,1].

− SPIDER can present the profile information.

• Improved performance on Linux Intel, 32 and 64 bits.

• Coverage analysis is now available, for compiled as well as interpreted code:

− It uses the same infrastructure as execution profiling.

Chapter 14: Revision History 57

− Code coverage can be reported textually in a hierarchical format, or alternatively
by highlighting the relevant lines of code in the relevant Emacs buffers and in
SPIDER.

• It is now possible to debug runtime systems, e.g. when SICStus is embedded in some
other applications, such as Java. It is also possible to attach to a runtime system from
SPIDER. See Section “Debugging Runtime Systems” in the SICStus Prolog Manual.

• The meta_predicate/1 predicate property will retrieve the specifications used in the
original meta-predicate declaration, which can be integers or the atoms :, *, +, -,
or ?. Previously, only the atoms : or ? would be retrieved. Please note: This is
an incompatible change. Code that inspects this predicate property may need to be
updated.

• A new stream property, id, has been added. This property provides a unique identity
that is never re-used, even after the stream has been closed. See Section “stream_
property/2” in the SICStus Prolog Manual.

• CLPFD:

− The case/[3,4] constraint has been extended to take linear inequalities into ac-
count in addition to the DAG.

− The new constraint smt/1 provides a front-end to the extended case/[3,4] con-
straint.

− Reified constraints can be used as terms in arithmetic expressions.

• library(zinc): upgraded to FlatZinc version 1.2.

• Changes to library(odbc):

− New predicates:

odbc_current_table/[2,3]

Enumerate tables and their attributes.

odbc_table_column/[3,4]

Enumerate table columns and their attributes.

− odbc:odbc_query_close/1 can now close both result sets and statement handles.

− The format has changed for some odbc exceptions. Now all odbc-related exceptions
have the same basic structure.

• When SICStus is started from Emacs, using M-x run-prolog, or from the launcher
script in the Applications folder, the system property SP_ULIMIT_DATA_SEGMENT_

SIZE is set to unlimited. This ensures that overly restrictive default limits on process
memory usage do not affect SICStus. This is primarily an issue on Mac OS X. Previ-
ously, this setting was only applied when SICStus was invoked from the SICStus Prolog
IDE (SPIDER).

14.16.2 Bugs Fixed

• Interrupt latency problem fixed.

• Fixed exception handling bug introduced in 4.1.3.

• Misencoded and null strings from C are handled gracefully.

• write_term(X,[max_depth(D)]) did not always respect the depth limit.

Chapter 14: Revision History 58

• seeing/1 and telling/1 now return user for the current input resp. output stream,
which was always intended.

• If the standard input stream encounters an invalid character, then it will be silently
replaced with the Unicode replacement character 0xFFFD. This was already the case
for the standard output streams.

The same behavior, for the standard input and output streams, is now also in effect
when running SICStus in the SPIDER IDE.

• When open/[3,4] cannot expand a system property, e.g. open(’$FOO/bar.txt’,

read, S) when the system property FOO is undefined or empty, an exception is raised.
Previosly, open/[3,4] silently failed in this case.

• The system property SP_ALLOW_CHDIR could not be set using the environment variable
of the same name.

• The spld tool would ignore the --namebase argument for some generated files.

• CLPFD:

− Dangling pointer hazard fixed for domain variables with frozen goals.

− Missing propagation problems fixed.

− sorting/3 could fall into infinite loop.

− Indexical compilation problems fixed.

• CLPQ/CLPR: called the undefined predicate ’C’/3.

• library(terms): bugs in sub_term/2, term_variables/2, subsumeschk/2 and
friends.

•
Improvements in how library(’linda/server’) and library(’linda/client’)

handle server shutdown.

The server will stop listening for new connections as soon as it receives a shutdown
request from a client. Among other things this makes the socket port available for
re-use on the same machine.

A call to linda_client:shutdown_server/0, in the client, will not return until the
server has acknowledged the command. This removes a race condition when the client
attempts to re-connect to the server.

• A number of problems in library(odbc) has been fixed. There are also some new
features and other changes; see above.

14.16.3 Other Changes

• Windows 2000 is no longer supported, for it is no longer supported by Microsoft.

• The limitations on “temporary” and “permanent” variables for compiled clauses have
been dropped. There is no size limit on compiled clauses.

• PO files and saved-states are now much smaller than in earlier releases.

• The new features required changes to the PO file format. PO files and saved-states
created by previous versions are not compatible with this version, and vice versa.

• The spld tool now defaults to --moveable on Linux, Mac OS X and Solaris. This can
be turned off with the new option --no-moveable.

Chapter 14: Revision History 59

14.16.4 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

14.17 Changes Introduced in Version 4.2.1

See Section 14.16 [4.2.0 Changes], page 56, for changes introduced in SICStus Prolog 4.2.

14.17.1 New Features

• Compiled clauses could previously not be loaded from a ‘.po’ file into an existing
multifile, interpreted predicate, or vice versa. This limitation has now been lifted.
After loading the ‘.po’ file, the predicate will remain compiled if it was originally
compiled and the compiler is available. Otherwise, it will be interpreted.

Furthermore, in runtime systems with no compiler available, if source code clauses are
loaded into an existing, compiled predicate, then the predicate will become interpreted.

• CLPFD:

− full_answer/0 is volatile.

− automaton/9 takes a new option that provides access to the sequence of counter
values.

− lex_chain/2 takes a new option that enables a more aggressive algorithm.

− fd_batch/1 is a new exported predicate that posts a set of constraints with prop-
agation suspended until the whole set has been posted.

− Performance improvements in */2, linear arithmetic, Booleans, membership oper-
ations.

− New example models: Balanced Academic Curriculum Problem, Wolf Goat and
Cabbage Problem, Black Hole Patience Game, Open Stacks Problem.

• ZINC:

− SICStus Prolog has been brought up to date with MiniZinc version 1.4.

− The default search heuristic has been changed to first-fail, domain splitting.

− Native support for the following global constraints has been added: among,
bin_packing, bin_packing_capa, bin_packing_load, count, distribute, lex_
greater, lex_greatereq, regular, sliding_sum, value_precede, value_

precede_chain.

Chapter 14: Revision History 60

14.17.2 Bugs Fixed

• restore/1 would behave inconsistently if invoked while loading files.

• Nondet user:portray/1 would switch off the debugger.

• The prompt written to user_error would sometimes appear out of order wrt. output
to other interactive streams.

• Module name expansion of clauses was not robust to incorrect layout terms.

• Format strings with ‘~t’ not followed by tab stop would raise an instantiation error.

• Dead code elimination could interfere with garbage collection.

• Detection of redundant declarations is more precise.

• A performance issue on the Windows platform has been fixed.

• Typo in Section “The Action Variables” in the SICStus Prolog Manual: exception(E)
should read raise(E).

• Float to big integer conversion bug on 64-bit platforms.

• Better handling of do-loops whose iterators are not instantiated enough at compile
time.

• The virtual clauses beginning_of_file and end_of_file are now seen by term ex-
pansions only for source files, but not for files embedded by the :-include directive.

• predicate_property/2 with nonvar arguments would succeed nondeterminately.

• =..(+Term,+List) could raise spurious errors instead of merely failing.

• Stack overflow issue with pending unblocked goals.

• Saved-states would not preserve the attribute handler order.

• Source-info bug for huge interpreted clauses.

• On Windows only, writing large amounts of data to the Windows console could fail
with SPIO_E_IO_ERROR.

• library(between): between/3 was not steadfast for constrained variables.

• Exceptions used internally by library(timeout) can be intercepted by the debugger
again. They were made transparent in release 4.1.3, but that hinders debugging.

• library(timeout) did not work consulted.

• library(plunit) did not handle :- include directives correctly.

• library(bdb): db_findall/5 was not declared as a meta predicate. Determinacy
bugs.

• CHR: Spurious instantiation error bug fixed.

• library(zinc)

− Bug in constraint all_equal fixed.

− Removed --no-output-pred-decls to mzn2fzn, not supported as of release 1.3.

• CLPFD:

− Propagation phase could be preempted if domain variables had blocked goals or
attributes.

− Entailment detection bug in maximum/2, minimum/2 caused memory leak.

− Bug in the precedences/1 option to cumulative/2.

Chapter 14: Revision History 61

• library(ugraphs), library(wgraphs): determinacy bugs.

• library(odbc): Non-ASCII error messages from the ODBC driver could give an ex-
ception about misencoded string. Incorrect handling of SQL_BIGINT and related types.
Improved robustness.

14.17.3 Other Changes

• One of the bug fixes required a virtual machine change and a change to the PO file
format. So PO files and saved-states created by previous versions are not compatible
with this version, and vice versa.

• Singleton variable warnings are no longer generated for those directives that the com-
piler ignores. This includes mode/1 directives so you can now use more descriptive
arguments, e.g.

:- mode foo(+Input, -Output).

without getting a warning about the singleton variables Input and Output.

• print_coverage/[0,1] and print_profile/[0,1] now print to the current output
stream, like listing/[0,1].

• Static foreign resources are now compiled in a way that ensures that the code can be
linked into dynamic shared objects (like .so and .dll files). This solves a problem
where static foreign resources could not be included in all-in-one executable dynamic
shared objects.

14.17.4 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

14.18 Changes Introduced in Version 4.2.2

Version 4.2.2 is a bugfix release only, no major new features have been added. See
Section 14.16 [4.2.0 Changes], page 56, for changes introduced in SICStus Prolog 4.2.

14.18.1 New Features

• library(odbc):

− Unicode data is now passed to and from the ODBC manager on all platforms.
Also, some arbitrary size limits on the length of (text) data have been removed.

− The SQL “null” value is now supported as parameter to queries, and is represented
as the atom null. Please note: this is an incompatible change for string parame-
ters. When passing string parameters to odbc_query_execute_sql/[3,5] using

Chapter 14: Revision History 62

atoms, the atom null used to be treated as the four character string consisting
of the characters n, u, l and l but it is now treated as a SQL “null” value. A
workaround is to always pass strings as lists of character codes (which also works
in older versions of SICStus) or as a list of atoms (which only works in SICStus
4.2.2 and later).

14.18.2 Bugs Fixed

• Terms containing a hash mark (‘#’) was not transmitted correctly to the SICStus Prolog
IDE (SPIDER). This affected the SPIDER debugger view, among other things.

• Several built-in predicates did not handle constrained “output” variables correctly, e.g.
atom_length/2, char_code/2, atom_concat/3, sub_atom/5

• Fix variable binding display bug when inside disjunctions and do-loops

• Prevent state corruption upon out-of-memory exception in certain contexts

• library(random): random(L,L,X) would succeed with X = L instead of failing

• queues:singleton_queue/2 returned the wrong term

• CLPFD:

− Performance bug in special cases of case/[3,4]

− table/[2,3]: bug with inf/sup in binary relations

14.18.3 Other Changes

• SICStus Prolog is now available for 64-bit (x86 64) Windows.

• The C API, including the foreign language interface, now uses the type SP_integer in
all places where it used to use the type long int. This is a compatible change. On all
platforms available in SICStus Prolog 4.2.1 the two types are identical. The types only
differ on 64-bit Windows.

As part of this change, several printf conversion specifiers are defined as C macros
to allow platform independent printing of the types SP_integer, SP_uinteger and
size_t. See SPRIdINTEGER et al. in the sicstus.h header.

14.18.4 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

Chapter 14: Revision History 63

14.19 Changes Introduced in Version 4.2.3

Please note: Version 4.2.2 was never made generally available, so if you are upgrading from
4.2.1, then see also Section 14.18 [4.2.2 Changes], page 61. In particular, version 4.2.2
introduced support for 64-bit Windows.

Version 4.2.3 introduces support for Mac OS X 10.8 in addition to some new features and
bug fixes. See Section 14.16 [4.2.0 Changes], page 56, for changes introduced in SICStus
Prolog 4.2.

14.19.1 New Features

• ZINC:

− Now compatible with Version 1.6 of the G12 MiniZinc distribution.

− The options fzn_file(File), ozn_file(File), optimise(Bool),
optimize(Bool) are new.

− Solutions are printed with solns2out.

14.19.2 Bugs Fixed

• predicate_property/2 with nonvar arguments would succeed nondeterminately.

• ensure_loaded/1 would keep reloading non-module ‘.po’ file if compile-time module
was different from load-time module.

• Work around bugs in OS X 10.8 that affected SICStus I/O. This change may also
work around bugs in Linux that could cause SICStus to hang, especially when closing
streams.

• Error handling bug in phrase/[2,3].

• On Windows, SICStus executables would sometimes not start if put at the root of a
disk.

• CLPFD:

− Solutions were lost in interaction with nondet suspended goals.

− cumulative/2: holes in domains could cause wrong answers.

− minimum/2, maximum/2: some data was not protected from garbage collection.

ZINC:

− I/O streams could be left open upon errors.

− viz annotations do not cause parse errors any more.

− Do Not obfuscate error messages from mzn2fzn.

− Architecture dependent default integer bounds.

• library(types): The type tests for list and proper_list now fail for cyclic lists.
Previously, they did not terminate.

14.19.3 Other Changes

• The built-in predicate sort/2 is up to twice as fast compared to previous releases.

• The built-in predicates sort/2 and keysort/2 now terminate, with an error, if the
first argument is a cyclic list.

Chapter 14: Revision History 64

14.19.4 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

14.20 Changes Introduced in Version 4.3.0

14.20.1 New Features

• On some platforms, SICStus Prolog now has the ability to compile predicates just in
time (JIT) to native code. In this release, those platforms are the x86 ones, 32 and 64
bit, running Windows, OS X, and Linux. This happens automatically by default, but
can be switched off with the option:

-DSP_JIT=disabled

The following mutually exclusive predicate properties have also been added:

jittable The predicate is amenable to JIT compilation.

jitted The predicate has been JIT compiled.

• New stream properties input_encoding/1 and output_encoding/1.

• CLPFD:

− solve/2 generalizes labeling/2 and can perform optimization over multiple sets
of domain variables, with different search heuristics per set.

− labeling/2 with the option minimize/1 or maximize/1 can either enumerate
every solution that improves the objective function, or only the optimal one after
optimality has been proved, under the control of the new options best and all.
The same options are available to the predicates minimize/3 and maximize/3.

− labeling/2 with the option minimize/1 or maximize/1 can be told which opti-
mization method to use with the new options bab and restart.

− More labeling options, inspired by MiniZinc: input_order, smallest, largest,
first_fail, anti_first_fail, occurrence, most_constrained, max_regret,
median, middle.

− New constraints: bool_and/2, bool_or/2, bool_xor/2, bool_channel/4.

− all_different/2 and all_distinct/2 take a new side-constraint option L #=
R, where L is a sum, a product, or a sum of squares of the variables, and R is an
integer.

− div, floored division, is a new binary arithmetic operator. Corresponds to the new
Prolog arithmetic operator with the same name.

Chapter 14: Revision History 65

− //, truncated division, is a new alias for the existing binary operator /. Please
note that the Prolog arithmetic operators / and // do not mean the same thing.

• ZINC:

− The limitation that search annotations must include all variables or be absent has
been lifted.

− The limitation that solutions(all) had no effect on optimization problems has
been lifted.

− search(bab) and search(restart) are new options for choosing optimization
method.

− mzn-sicstus is a shortcut for minizinc with the proper defaults for using SICStus
as back-end.

− spfz is a small FlatZinc interpreter command-line tool for use from the shell.
Invoked by mzn-sicstus.

• library(structs), library(objects): The types integer_64 and unsigned_64

have been added for all platforms.

• PROCESS:

− A new option wait(Status) to process:process_create/3 that simplifies wait-
ing for a started process to terminate.

− process:process_create/[2,3] now uses file_type(executable) when resolv-
ing the path to the executable. This affects the Windows platform where ‘.exe’
will be added automatically, if needed.

− process:process_create/3 now allows a general argument specification when
specifying the values of environment variables passed to the subprocess.

− On Windows, when starting a console application with process:process_

create/[2,3], a console window is not created unless the option window(true)

is specified.

• Executables created by the spld tool now set the process locale from the environment
(UNIX-like platforms only). The locale can also be passed as an argument to spld.

• --objects is a new splfr option, which you must use if the Prolog source code uses
library(objects).

14.20.2 Bugs Fixed

• Compiler bug, surfaced for example for r(b) :- Y = b, t(X,Y)..

• Error handling bug in floating point overflows caused (a) spurious memory resource
errors, (b) different interpreted and compiled behavior.

• SP_printf() stopped working if the output exceeded 2048 bytes.

• Unintended limitation, max 100 million interpreted clauses in memory, lifted.

• predicate_property/2 with nonvar second argument would lose solutions.

• add_breakpoint/2 warns if an undefined predicate is specified; it used to silently accept
any well-formed predicate identifier.

• length/2: used to loop if first argument cyclic or second argument very large. Con-
formance with proposed future ISO standard.

Chapter 14: Revision History 66

• when/2 could cause stack overflow.

• Declarations are silently ignored if they would have no effect.

• [File|Files] now uses the calling module context for the second (Files) argument,
as documented.

• ensure_loaded/1 would keep reloading non-module ‘.po’ files whose name did not
correspond to an existing source file.

• stream_property(S,encoding(CS)) would succeed twice for bi-directional text
streams. It now succeeds at most once and the per-direction encoding information
can be obtained with the new stream properties input_encoding/1 and output_

encoding/1.

• call_cleanup/2: memory management could cause the cleanup action to be delayed.

• In trace mode, the debugger would stop at spurious calls among code in hidden modules,
which was never intended.

• On Windows, the absolute_file_name/3 option glob/1 is now case-normalized, just
like the file name.

• aggregate:term_variables/3 steadfastness bug. Note that this is largely made ob-
solecent by the new built-in term_variables/2.

• library(xref) and spxref would loop on cyclic import dependencies.

• library(gauge): logarithmic scale was broken.

• library(gauge): On OS X, menus had invisible text.

• library(process): On Windows, process_create/3 did not pass empty arguments
correctly.

• library(process): Some process_create/3 boolean options did not accept the value
‘false’.

• CLPFD:

− Bad use of the global constraint API could crash SICStus.

− Critical bug in bounds-consistent all_different/1.

− Enabling FDBG could cause missing propagation.

− geost/[2,3,4]: memory performance bug; ignored the lex/1 option in greedy
assignment mode

− Bugs in flattening logical and arithmetical expressions.

− X #= Y, with unbound X and Y, was handled by unification. This failed to type
X and Y as domain variables, and was often bad for performance. Now, such
equations are handled by a propagator.

• ZINC:

− Parsing floats was broken, causing spurious errors.

− The fzn_file/1 and ozn_file/1 options misbehaved if used without explicit
‘.fzn’ and ‘.ozn’ extensions.

− Empty arrays caused spurious existence errors.

• CHR:

− ‘+’ and ‘-’ are no longer incompatibly defined as prefix operators.

Chapter 14: Revision History 67

• In the build for 64-bit OS X 10.8, library(tcltk) would crash the process.

• The ‘codes’ command specification was incorrectly documented as ‘chars’.

• On Windows, pillow:fetch_url/3 would sometimes time out for some web servers.

• A bug in Microsoft J# caused PrologBeans.NET to transmit some data incorrectly
from Prolog to .NET.

• The splfr tool now ensures that the C compiler will find the generated headers also
when the --namebase option specifies a folder.

14.20.3 Changes Related to Standard Conformance

SICStus Prolog now complies with Technical Corrigenda 1 and 2 to the International Stan-
dard ISO/IEC 13211-1 (PROLOG: Part 1—General Core).

• throw/1 now throws its argument as is. raise_exception/1 however transforms SIC-
Stus error terms into ISO (error/2) exceptions. Unless a forged SICStus error term is
thrown by throw/1, the net behavior is unchanged.

• In cases where the ISO and SICStus error term previously had different principal func-
tors, the SICStus error term has been changed to correspond to the ISO one.

• subsumes_term/2 is a new standard
built-in predicate, aliased by terms:subsumeschk/2, and is now correct in case the
arguments share variables.

• term_variables/2 is a new standard built-in predicate, aliased by terms:term_

variables_bag/2, and performs conformant error handling. terms:term_

variables/2 has been renamed to terms:term_variables_set/2.

• acyclic_term/2, previously in library(terms), is now a standard built-in predicate.

• The built-in predicates callable/1, ground/1, retractall/1, call/n, false/0 are
now standard.

• The built-in predicates number_codes/2, number_chars/2, atom_codes/2, and atom_

chars/2 now perform conformant error handling. The syntax for numbers has changed
(plus sign is no longer allowed1). Full ISO syntax allowed in Codes/Chars, including
layout and comments.

• The built-in predicates length/2, keysort/2, sort/2, compare/3, and open/[3,4]

now perform conformant error handling.

• The built-in predicates call/1, assert/1 and similar predicates now perform confor-
mant error handling when encountering an invalid goal.

• X div Y is a new standard arithmetic expression, whose value is the integer quotient of
X and Y, rounded downwards to the nearest integer.

• xor(X,Y) is the standard syntax for X \ Y.

• X ^ Y is a new standard arithmetic expression, whose value is X raised to the power of
Y, represented as a float if any of X and Y is a float; otherwise, as an integer.

• pi is a new standard arithmetic expression, whose value is approximately 3.14159.

1 A term written by a previous release will still be read correctly by this release. A term written by
this release will be read correctly by releases prior to 4.3, except if the written term contains a prefix +

operator with a non-negative number as argument.

Chapter 14: Revision History 68

• + is a new standard prefix operator declared as :-op(200, fy, [+]).

• ‘|’ can now be declared as an operator. The default, when it has not been declared as
an operator, is to treat it like before, i.e. as a synonym for the standard infix ‘;’ when
used as an operator. If ‘|’ is declared as an operator, then you can no longer use ‘|’ to
denote disjunction in clause bodies and grammar rules. So, declaring ‘|’ as an operator
is not recommended. Please note: A future version of the ISO Prolog standard is likely
to define ‘|’ as an operator.

• Arithmetic error handling is now conformant. Previously, in many cases a domain error
would be thrown where an evaluation error was required.

• Quoted atoms are no longer written with the non-conformant escape sequences ‘\e’
and ‘\d’. They are still allowed when reading, though.

• Operators as immediate argument of an operator are now bracketed when written, as
required by the standard. E.g. writeq(^(*,\+)) outputs ‘(*)^(\+)’.

• clause/[2,3] and retract/1 return a close equivalent to the asserted clause, as re-
quired by the standard. This also affects listing/[0,1].

• The read_term/[2,3] option singletons/1 is now conformant. It now includes all
named variables that occur only once in the read term, as required by the standard.
It used to exclude some variables for which singleton warnings should not be emitted,
e.g. ‘_A’. Any such filtering must now be performed by the caller instead.

• The read_term/[2,3] options variable_names/1 and singletons/1 now order their
entries by the order the variable occurred in the input term, i.e. in the same order as the
variables/1 option. In previous releases the order was undefined, and unpredictable.
The new ordering is permitted, but not (yet) required, by the standard.

• The Prolog parser, read_term/[2,3], now correctly parses some valid input that used
to give syntax error.

• Back-quote, ‘‘’, can no longer be used for quoting atoms. Use the standard conformant
single-quote ‘’’ instead.

• The write_term/[2,3] option numbervars(true) (also used by writeq/[1,2] and
others), is now standard compliant and only affects terms $VAR(N) when N is a non-
negative integer. In particular it no longer does special processing when N is an atom.

To supply names for variables when writing a term you can use the new option
variable_names/1 that takes a list of Name=Variable pairs, exactly like the list pro-
duced by the read_term/[2,3] option variable_names/1.

To get the legacy behavior, where ’$VAR’(Name) is written as Name when Name is
an atom, you can use the new option legacy_numbervars(true) which behaves like
numbervars(true) did in earlier releases.

• A negative zero floating point value is now written as ‘0.0’, rather than ‘-0.0’. There
is no difference in behavior between these two zero values so the distinction should no
longer be detectable by Prolog code.

14.20.4 Other Changes

• Windows XP is no longer supported since it has reached its end of life (https://www.
microsoft.com/en-us/windows/enterprise/endofsupport.aspx)

https://www.microsoft.com/en-us/windows/enterprise/endofsupport.aspx
https://www.microsoft.com/en-us/windows/enterprise/endofsupport.aspx

Chapter 14: Revision History 69

• Solaris 8 and 9 are no longer supported. Solaris 10 is still supported on both SPARC
and x86/x86 64 platforms.

• Mac OS X 10.5 Leopard and Mac OS X 10.6 Snow Leopard are no longer supported.
Mac OS X 10.7 and later are supported (64-bit only).

• The Emacs mode will not actively be maintained for XEmacs. GNU Emacs is still
fully supported and we will consider fixing reported XEmacs problems. Users are
encouraged to migrate to SPIDER (see Section “SICStus Prolog IDE” in the SICStus
Prolog Manual).

• The Prolog flags single_var_warnings and discontiguous_warnings are now
volatile with default value off in runtime systems. This means that, as before, in
runtime systems, these warnings are off by default, but now they can be switched on.

• absolute_file_name/[2,3] no longer treats the file name user in a special way, by
default. The new option if_user/1 is available if the old behavior is needed.

• absolute_file_name/[2,3] now applies the same kind of case-normalization to the
extensions/1 and glob/1 arguments as to the file name. This affects Windows, where
extensions([’.pl’]) now will have the same effect as extensions([’.PL’]). Prior
to release 4.3 the extensions/1 and glob/1 options were case sensitive on all platforms.

• On Windows, open/[3,4], and other built-in predicates that creates files and directo-
ries, no longer applies case-normalization on the file name before creating a file. This
means that open/[3,4] creates files using the same character case as specified in the
file argument. The stream property file_name/1 is not affected, i.e. it still shows a
case-normalized name. This change is mostly invisible from Prolog but it means that
creating a file with open(’HelloWorld.txt’, write, S) will now create file named
‘HelloWorld.txt’ whereas earlier releases would create a file ‘helloworld.txt’.

• library(types): Goal and Arity arguments are now checked.

• Jasper: Java 6, e.g. JDK 1.6, or later is required for all Java code.

• Jasper: On OS X, the file suffix for the SICStus Java Native Library has changed from
‘.jnilib’ to ‘.dylib’, for compatibility with Java 8.

• library(lists): is_list/1 and proper_length/2 now fail for cyclic lists. They used
to not terminate.

• CLPFD:

− Some options of table/3 and case/4 have gone obsolete.

− Machine capacities of cumulatives/3 do not need to be fixed.

• ZINC: The Flatzinc parser is significantly faster, and solving is often faster too. Several
search options now have support in C.

• The unsupported library(tkconsole) and tcltk:tk_terminal/5 has been ported
from SICStus 3 to SICStus 4.

14.20.5 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

Chapter 14: Revision History 70

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

14.21 Changes Introduced in Version 4.3.1

14.21.1 New Features

library(clfpd) has the following new features, but see also below for bugs fixed in
library(fdbg):

• The constraint keysorting/[2,3], analogous to Prolog’s keysort/2, is new.

• scalar_product/5 takes a new option stating that some of the variables must belong
to a given set of integers.

• element/3 with a ground second argument and binary table/[2,3] have been re-
implemented and run faster.

14.21.2 Bugs Fixed

• Since 4.3.0, the garbage collector could make inconsistent changes to the choicepoint
stack.

• Since 4.3.0, character code constants specified with 0’... would give a syntax error
for non-Latin 1 characters.

• Since 4.3.0, printing variable bindings while debugging consulted code was broken.

• Foreign functions returning an invalid float or UTF-8 sequence could cause a crash.

• JIT compiler could underestimate memory need.

• CLPFD:

− cumulative/2 could crash on special cases. Since 4.3.0, geost/[2,3,4] could be
too conservative in greedy assignment mode

− Since 4.3.0, labeling([minimize(X), time_out(1000, F)], [X]) and similar
goals would leave F unbound upon success.

• FDBG:

− Was broken since at least 4.3.0, now works as intended.

− A major limitation was lifted: previously, only global constraints were debuggable,
and constraint expansion would depend on the debug CLPFD flag. Now, all con-
straints are debuggable, and constraint expansion does not depend on any flags.

• ZINC:

− Some global definition files failed to include sicstus.mzn.

• process:process_wait/3 with the timeout/1 option would raise an exception if called
more than once even if the first call reported timeout.

Chapter 14: Revision History 71

14.21.3 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

• The .NET interface to library(prologbeans) uses ‘J#’. The use of J# has several
disadvantages, since J# is no longer actively developed by Microsoft.

− Microsoft mainstream support for J# has ended (but extended support will be
available from Microsoft until October 2017).

− J# requires a separate runtime.

− The .NET on-line documentation for the .NET PrologBeans module has various
issues, including broken links, and Java-specific wording.

Our plan is to re-implement the .NET support in C#. For more information about
J#, see http://msdn.microsoft.com/en-US/vstudio/bb188593.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

14.22 Changes Introduced in Version 4.3.2

14.22.1 New Features

• The predicate lists:keyclumped/2 has been re-implemented in C and now provides
the same amount of error handling as keysort/2.

• process:process_create/3 can now communicate with the sub-process using binary
streams or with nonstandard character encodings.

• The predicate chr:find_chr_constraint/1 finds a constraint in the store.

• The Emacs command C-c < sets the print depth for the bindings window as well as for
the top-level. Prompts for an integer value. Equivalent to the < top-level command.

14.22.2 Bugs Fixed

• Reloading code during debugging could crash.

• ordsets:ordset_order/3 bug fixed.

• Some ISO annotations were missing.

• CLPFD:

− Critical GC hazard bug fixed.

− The constraint multi_cumulative/[2,3], added in 4.3.1, did not make it into the
manual.

− Efficiency bug while posting binary table/[2,3] constraints fixed.

• PrologBeans: PBTerm.isAtomic() was false for all terms, including atomic terms.

http://msdn.microsoft.com/en-US/vstudio/bb188593

Chapter 14: Revision History 72

14.22.3 Other Changes

• Improved performance of several memory management services: memory allocation,
dead clause reclamation, backtracking in dynamic code. Less memory fragmentation.

• The PrologBeans .NET code has been rewritten in C#. This makes it compatible
with recent versions of .NET and removes the dependecy on the legacy J# language
runtime. See Chapter 9 [PrologBeans .NET Notes], page 18, for more information.

14.22.4 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

14.23 Changes Introduced in Version 4.3.3

14.23.1 New Features

• Execution profiles now include internal predicates, which reside in the prolog mod-
ule. They can account for a significant part of the execution profile, and were hidden
previously.

• library(ugraphs): transitive_reduction/2, max_cliques/2 are new.

• library(types): new type boolean, similar to oneof([true,false]).

• library(types): The type oneof(X,L) now requires that X is ground and it no longer
binds variables in L. This makes it useful in some new cases, e.g. for “matching”
compound structures, e.g. must_be(X, list(oneof([foo(_),bar(_,_)]))) can now
be used to verify that X is a (ground) compound term with functor foo/1 or bar/2.

Previously oneof(X,L) only worked correctly when L was a list of atomic terms, and
for such usage the behavior is unchanged.

• ZINC: upgraded to and compatible with MiniZinc 2.0.

• CLPFD: more filtering in circuit/1.

14.23.2 Other Changes

• JIT speed improvements.

• The legacy J# version of PrologBeans has been removed in this release. It was dep-
recated in SICStus Prolog 4.3.2. Contact SICStus Support if you need the old J#
version.

Chapter 14: Revision History 73

14.23.3 Bugs Fixed

• Do-loops (do/2): documentation clarified.

• During compilation with the debugger switched on, it would spuriously stop at some
structs predicates.

• Documentation incorrectly mentioned non-ISO float syntax sign inf and sign nan.

• Error handling of mod/2 and friends.

• Incorrect result when using compare/3 et al. on atoms and functors with NUL characters
in their names, e.g. ’foo\0\bar’. NUL is now treated as smaller than all other character
codes.

• Attributed variables that have been deterministically bound were not garbage collected.

• Compiler warnings referring to variable names were ugly.

• use_module/2 et al. with empty import list no longer generate a message about “mod-
ule ... imported into ...”.

• Efficiency bug in SP_query() and friends.

• Decompiled code sometimes missed var/1 and nonvar/1 tests.

• Efficiency bug affecting call_cleanup/2, findall/3 and friends, and I/O.

• Minor issue when writing terms if ’.’ or ’$VAR’ has been declared as operators.

• call/1 at al. could hang, uninterruptibly, for certain cyclic goals.

• SP_put_float() will now fail if the argument is not finite (i.e. if the argument is +/-inf
or NaN).

• Error handling of bb_get/2, bb_put/2, bb_delete/2, bb_update/3.

• On OS X, sicstus would sometimes fail to set the locale, and would fail to launch.
This could prevent M-x run-prolog from starting Prolog in Emacs.

• library(atts): documentation and error handling.

• ugraphs:transitive_closure/2 and wgraphs:transitive_closure/2: wrong an-
swer for cyclic graphs.

• lists:same_length/2, lists:same_length/3, lists:rotate_list/2 and
lists:rotate_list/3 left a choicepoint behind for same cases when an argument
was a partial list.

• ugraph:random_ugraph/3 would loop if its output argument failed to unify with the
resulting graph.

• ordsets:ord_intersection/4 left a choicepoint behind.

• In the Emacs mode, some code formattng variables have been marked as “safe local
variables” so that they can be set when opening a file, without eliciting a prompt from
Emacs.

• CLPFD:

− Finite but very large domains could crash.

− Some propagators could access uninitialized data.

− Wrong attribute projection of minimum/2 and maximum/2.

Chapter 14: Revision History 74

14.23.4 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

14.24 Withdrawn Version 4.3.4

This version was never released, due to critical bugs found at a late stage.

14.25 Changes Introduced in Version 4.3.5

14.25.1 New Features

• library(csv) is a new library module that provides I/O on comma-separated values
(CSV) files and strings.

• library(statistics) is a new library module that provides commonly used sample
and population statistics functions.

• CLPFD: propagation for 0/1-variables is generally faster.

14.25.2 Other Changes

• Improved speed of various I/O routines.

14.25.3 Bugs Fixed

• Using call/1, et al. on \+ and once/1 could sometimes be slow if the argument was a
huge term. This problem was introduced in SICStus 4.3.3.

• Various problems, including crashes, could happen if SICStus was re-initialized. This
was caused by a dangling pointer after calling SP_deinitialize(). These crashes
often showed strtod.c in the backtrace.

• On Windows, file_systems:make_directory/1 would fail for very long paths.

• Retrieving source info for exceptions in abolished, compiled code could crash.

• CLPFD:

− Improved error handling for malformed set expressions and for sum/3.

− Better propagation in special cases of product and quotient.

− Better attribute projection for min/2, max/2, minimum/2, and maximum/2.

Chapter 14: Revision History 75

14.25.4 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

14.26 Changes Introduced in Version 4.4.0

14.26.1 New Features

• Indexing on large integers and floats is no longer coarse, but exact.

• Shorter interrupt latency for arithmetics.

• ZINC: upgraded to and compatible with MiniZinc 2.1.6.

• CLPFD:

− In order to distinguish an unsatisfiable problems from one that timed out before
any solution was found, if used with the best option, the time_out/2 option has
a slightly different output.

− A new bin-packing constraint, using Shaw’s algorithm.

− Shorter interrupt latency for a lot of constraints.

− table/[2,3] uses the fast Compact Table algorithm by Demeulenaere et al. for
relations over three or more variables.

− Speed up some special cases of element/3, bool_and/2, bool_or/2, bool_xor/2.

− Remove obsolete options.

14.26.2 Other Changes

• SICStus Prolog now complies with Technical Corrigenda 1, 2 and 3 to the International
Standard ISO/IEC 13211-1 (PROLOG: Part 1—General Core).

The only user-visible change is the choice of error exceptions for some errors: invalid,
partially instantiated, non-ground options now result in domain errors. They used to
result in instantiation errors.

• library(timeout) has been completely re-implemented. It no longer uses a foreign
resource, and it no longer uses signals. It can now be used by more than one SICStus
instance, in the same process, without restrictions.

• Windows Vista is no longer supported since it has reached its end of life (https://
support.microsoft.com/en-us/help/13853/windows-lifecycle-fact-sheet)

https://support.microsoft.com/en-us/help/13853/windows-lifecycle-fact-sheet
https://support.microsoft.com/en-us/help/13853/windows-lifecycle-fact-sheet

Chapter 14: Revision History 76

14.26.3 Bugs Fixed

• format/3 could crash with certain parameters to the ‘~*’ construct (and the equiva-
lent inline form). For some format control options, this was fixed by restricting the
magnitude of the ‘~*’ parameter.

• Profiling could crash.

• Locating source info for exceptions could crash.

• Minor efficiency bug in backtracking in dynamic code.

• Efficiency bug in append(L1,L2,L3) if called with L1 not a proper list.

• Reading a term could crash under low memory conditions.

• Multiple problems with the compatibility library system3.

• In some cases, large integers could overflow when converting to floating point values.
This could lead to incorrect behavior:

− For arithmetic expressions, e.g. sin/1 and (/)/2, which implicitly take floating
point values, a float overflow error will now be thrown if the argument evaluates
to a large integer that will not fit in a floating point value.

In some cases this now throws an error, where earlier versions computed a sensible
result, e.g. X is 1/(1<<1024) would compute X = 0.0 but now throws an error
(because the value of (1<<1024) is a large integer that does not fit in a floating
point number).

− SP_get_float() now fails if the argument term is a large integer that does not fit
in a C double. It used to return an infinity value.

− Foreign resource code using the type +float, or code that use the
library(structs) floating point types, will now give an error if the argument
is a large integer that does not fit in the destination type.

• In some cases, floating point negative zero, not a number (NaN) and positive or negative
infinity could enter the system. These values are not supported, and caused various
incorrect behavior:

− Reading the text ‘-0.0’ now creates an ordinary (unsigned) floating point zero.

− SP_put_float(-0.0) now creates an ordinary (unsigned) floating point zero.

− SP_put_float(-inf), SP_put_float(+inf) and SP_put_float(NaN) fail2.

− Foreign resource code using the type -float, or code that use the
library(structs) floating point types, will now throw an error if the value is
not finite. Negative zero will treated as an ordinary (unsigned) floating point zero.

This means that a call to a foreign function can throw an exception when the
function returns to Prolog, if it attempts to return a non-finite result.

• Foreign resource code using the type +integer, or code that uses the
library(structs) integer types, will now give an error if the argument is a large
integer that does not fit in the destination type.

• spld --extended-rt failed unless --license-file was specified. Now it tries to find
the license in the “usual” places.

2 This was fixed already in 4.3.3.

Chapter 14: Revision History 77

• ZINC: With the timeout/1 option of various predicates and the spfz option -time

Time together with one-solutions search, no solution was reported at time-out, even if
some solution had been found during optimization search.

• CLPFD:

− Incorrect special case for bool_channel/4.

− Propagation bug when mixing dif/2 and reified constraints.

− Idempotency and correctness bugs in multiple global constraints.

14.26.4 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

14.27 Changes Introduced in Version 4.4.1

Version 4.4.1 is a bugfix release only, no new features have been added.

14.27.1 Bugs Fixed

• Nested calls to timeout:time_out/3 would sometimes ignore the outer timeout
limit. This problem was introduced in SICStus 4.4.0 in the re-implemented
library(timeout).

• The cleanup phase of findall/3 and friends could scan an entire stack in the worst
case.

• Creating a saved state (‘.po’, ‘.sav’) could result in a corrupt file if one of the saved
predicates had been redefined after being imported. Loading the corrupt file could then
cause SICStus to crash and other errors.

• Propagation bug for X #= Y*Y.

14.27.2 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

Chapter 14: Revision History 78

This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

14.28 Changes Introduced in Version 4.5.0

14.28.1 New Features

• Added library(json) (see Section “JSON format serialization” in the SICStus Prolog
Manual) for reading and writing structured data using the JSON (https://json.org/
) (JavaScript Object Notation) serialization format.

Also added examples that use JSON for communicating between other programming
languages and SICStus. Example clients are provided in Python, Java, C#, C, and
Prolog.

• It is now possible to suppress fsync() when closing a stream created using the C API
function SP_fopen(). This can improve performance when opening and closing many
files.

• The spld option --shared can be combined with --static to produce an all-in-one
shared library; see Section “Runtime Systems” in the SICStus Prolog Manual.

• CLPFD:

− Constraint scalar_product/[4,5] is reifiable.

− Added constraint scalar_product_reif/[5,6], the reified version of scalar_

product/[4,5].

− Added constraint value_precede_chain/[2,3], which constrains the order in
which values occur in a list.

− Generic speedups.

• ZINC: upgraded to and compatible with MiniZinc 2.2.3, with performance improve-
ments.

14.28.2 Other Changes

• The sicstus command line flag -l can now be specified more than once and will load
the files in the order specified.

• The low-level memory allocator has been reimplemented. The new implementation
should be faster and avoids some poor worst-case behavior.

• The memory-allocation hook SP_set_memalloc_hooks() has been deprecated and is,
by default, no longer available. Please contact SICStus Support if this is a problem for
you.

• Improved performance of library(timeout).

• A performance problem when using the Linux performance monitoring tool perf has
been fixed.

• Stack shifting and garbage collection policies have been adjusted, and the gc_margin

Prolog flag has been given a more dynamic meaning.

• Changes to the testing framework, library(plunit):

− It is now possible to programmatically obtain the number of successful, skipped,
and failed tests.

https://json.org/
https://json.org/

Chapter 14: Revision History 79

− The number of skipped tests, i.e. where condition/1 is false, is reported when the
tests have run.

− Multiple occurrences of some options, like true/1, are combined. It used to quietly
discard all but one.

− Test options are more thorougly checked, and incompatible options are reported.

− Problems with options, and with test initialization, are now reported and counted
as a failure also when the test is run. It used to print a warning but not be counted
towards the number of failed tests.

− A test body that succeeds while leaving as choice point will now be treated as a
test failure, unless nondet is specified. This was always the documented behavior,
but it used to only print a warning.

• The Java code in libraries and examples has been cleaned up to avoid warnings and
use of deprecated features.

• The Java code in se/sics/jasper/ has been changed to use generic types. This may
trigger some Java compiler warnings for existing code. Code that use ‘raw’ types may
need to be updated, e.g. changing Map to Map<String,Term> for the maps that specify
variable bindings.

14.28.3 Bugs Fixed

• Multiple bugs in interpreted do-loops (do/2).

• Cleanup goals (call_cleanup/2) could sometimes be woken too late after a cut.

• Several problems with the way listing/[0,1] displayed calls to meta predicates.

• Clauses in included files did not get correct variable-name source info in the debugger.

• Error handling of arithmetics could loop.

• ZINC: The var_is_introduced annotation was treated specially, whereas is_

defined_var was intended. This could lead to invalid solutions.

14.28.4 Known Issues

The following are known issues with this release of SICStus. See Section 14.3 [Limitations
in the Current Release], page 37, for more information about missing or incomplete features
in this release.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.

When reading terms, SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.

This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

80

15 Generic Limitations

The number of arguments of a compound term may not exceed 255.

The number of atoms created may not exceed 1048575 (33554431) on 32-bit (64-bit) archi-
tectures.

Saved-states and ‘.po’ files are not portable between 32-bit and 64-bit architectures.

81

16 Contact Information

Current support status for the various platforms as well as a web interface for reporting
bugs can be found at the SICStus Prolog homepage:

https://sicstus.sics.se/

Information about and fixes for bugs that have shown up since the latest release can be
found there as well.

We also have a mailing list for SICStus Prolog users. You can subscribe at our site.

https://sicstus.sics.se/

	Overview
	Platforms
	Release Notes and Installation Guide for UNIX
	Installation
	Prerequisites
	C Compiler and Linker

	The Installation Script
	The Uninstallation Script

	Platform Specific Notes

	Release Notes and Installation Guide for Windows
	Requirements
	Installation
	Windows Notes
	Command Line Editing
	The Console Window
	Console Preferences

	Windows Limitations

	Special Releases
	Beta Releases

	Managing Extended Runtime License Information
	Tcl/Tk Notes
	The Tcl/Tk Terminal Window

	Jasper Notes
	Supported Java Versions
	Getting Started
	Windows
	UNIX
	Running Java from SICStus
	Running SICStus from Java

	Jasper Package Options
	Multi Threading
	Changes in Jasper from SICStus 3
	Known Bugs and Limitations
	Java Examples Directory

	PrologBeans .NET Notes
	Migrating from the older, J#, PrologBeans

	Berkeley DB Notes
	Berkeley DB on MS Windows
	Berkeley DB on Mac OS X

	ODBC Notes
	ODBC on MS Windows
	ODBC on Mac OS X
	ODBC on Linux

	The SICStus Prolog IDE (SPIDER)
	The Emacs Interface
	Installation
	Installing On-Line Documentation

	Revision History
	What Is New In Release 4
	Virtual Machine
	Prolog Language
	Single Language Mode
	DCG Notation
	Asserting Terms with Attributed Variables
	Arithmetic
	Syntax
	Prolog Flags
	Stream Properties
	Statistics Keywords
	Built-In Predicates
	Hook Predicates

	Library Modules
	Input-Output System
	Foreign Language APIs
	Foreign Language Interface
	C API Functions
	Java API

	Guide to Porting Code from Release 3
	Limitations in the Current Release
	Changes Introduced in Version 4.0.1
	New Features
	Bugs Fixed
	Other Changes
	Known Issues

	Changes Introduced in Version 4.0.2
	New Features
	Bugs Fixed
	Other Changes
	Known Issues

	Changes Introduced in Version 4.0.3
	New Features
	Bugs Fixed
	Other Changes
	Known Issues

	Changes Introduced in Version 4.0.4
	New Features
	Bugs Fixed
	Other Changes
	Known Issues

	Changes Introduced in Version 4.0.5
	New Features
	Bugs Fixed
	Other Changes
	Known Issues

	Changes Introduced in Version 4.0.6
	Changes Introduced in Version 4.0.7
	New Features
	Bugs Fixed
	Other Changes
	Known Issues

	Changes Introduced in Version 4.0.8
	New Features
	Bugs Fixed
	Other Changes
	Known Issues

	Changes Introduced in Version 4.1.0
	New Features
	Bugs Fixed
	Other Changes
	Known Issues

	Changes Introduced in Version 4.1.1
	Bugs Fixed
	Known Issues

	Changes Introduced in Version 4.1.2
	Bugs Fixed
	Other Changes
	Known Issues

	Changes Introduced in Version 4.1.3
	New Features
	Bugs Fixed
	Other Changes
	Known Issues

	Changes Introduced in Version 4.2.0
	New Features
	Bugs Fixed
	Other Changes
	Known Issues

	Changes Introduced in Version 4.2.1
	New Features
	Bugs Fixed
	Other Changes
	Known Issues

	Changes Introduced in Version 4.2.2
	New Features
	Bugs Fixed
	Other Changes
	Known Issues

	Changes Introduced in Version 4.2.3
	New Features
	Bugs Fixed
	Other Changes
	Known Issues

	Changes Introduced in Version 4.3.0
	New Features
	Bugs Fixed
	Changes Related to Standard Conformance
	Other Changes
	Known Issues

	Changes Introduced in Version 4.3.1
	New Features
	Bugs Fixed
	Known Issues

	Changes Introduced in Version 4.3.2
	New Features
	Bugs Fixed
	Other Changes
	Known Issues

	Changes Introduced in Version 4.3.3
	New Features
	Other Changes
	Bugs Fixed
	Known Issues

	Withdrawn Version 4.3.4
	Changes Introduced in Version 4.3.5
	New Features
	Other Changes
	Bugs Fixed
	Known Issues

	Changes Introduced in Version 4.4.0
	New Features
	Other Changes
	Bugs Fixed
	Known Issues

	Changes Introduced in Version 4.4.1
	Bugs Fixed
	Known Issues

	Changes Introduced in Version 4.5.0
	New Features
	Other Changes
	Bugs Fixed
	Known Issues

	Generic Limitations
	Contact Information

