A queue is a first-in, first-out store of information. This implementation of queues uses difference-lists, the head of the difference-list represents the beginning of the queue and the tail represents the end of the queue. The members of the difference-list are the elements in the queue. The first argument in the queue-representation is the number of elements in the queue in unary representation.
Thus, a queue with n elements is represented as follows:
q(s(...s(0)...), [X1,...,Xn,Y1,...,Ym], [Y1,...,Ym])
where n is the length of the queue and X1...Xn are the elements of the queue.
To load the package, enter the query
| ?- use_module(library(queues)).
empty_queue(?Queue)is_queue(+Queue)queue(?X, ?Queue)queue_head(?Head, ?Queue1, ?Queue2) | ?- queue_head(Head, Nq,
q(s(s(s(s(0)))),[1,2,3,4|R],R)).
Head = 1,
Nq = q(s(s(s(0))),[2,3,4|_193],_193),
R = _193
queue_head_list(+HeadList, ?Queue1, ?Queue2)queue_last(?Last, ?Queue1, ?Queue2)queue_last_list(+LastList, ?Queue1, ?Queue2) | ?- queue_last_list([5,6], q(s(s(0)))), [1,2|R], R), NQ).
NQ = q(s(s(s(s(0)))))),[1,2,5,6|_360],_360),
R = [5,6|_360]
list_queue(+List, ?Queue) | ?- list_queue([1,2,3,4], Q).
Q = q(s(s(s(s(0)))),[1,2,3,4|_138],_138)
queue_length(+Queue, ?Length) | ?- queue_length(q(s(s(s(s(s(0))))),[a,b,c,d,e|R],R), L).
L = 5,
R = _155