
SICStus Prolog User’s Manual
Mats Carlsson et al.

RISE Research Institutes of Sweden AB
PO Box 1263

SE-164 29 Kista, Sweden

Release 4.6.0
April 2020

RISE Research Institutes of Sweden AB
sicstus-request@sics.se https://sicstus.sics.se/

mailto:sicstus-request@sics.se
https://sicstus.sics.se/

Copyright c© 1995-2020 RISE Research Institutes of Sweden AB

RISE Research Institutes of Sweden AB
PO Box 1263
SE-164 29 Kista, Sweden

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by SICS.

i

Table of Contents

Introduction . 1

Acknowledgments . 3

1 Notational Conventions . 5
1.1 Keyboard Characters . 5
1.2 Mode Spec . 5
1.3 Development and Runtime Systems . 5
1.4 Function Prototypes . 5
1.5 ISO Compliance . 6

2 Glossary . 7

3 How to Run Prolog . 21
3.1 Getting Started . 21
3.2 Reading in Programs . 22
3.3 Inserting Clauses at the Terminal . 22
3.4 Queries and Directives . 23

3.4.1 Queries . 23
3.4.2 Directives . 24

3.5 Syntax Errors . 25
3.6 Undefined Predicates . 26
3.7 Program Execution And Interruption . 26
3.8 Exiting From The Top Level . 27
3.9 Nested Executions—Break . 27
3.10 Saving and Restoring Program States . 28
3.11 SICStus Prolog IDE . 29
3.12 Emacs Interface . 32

3.12.1 Installation . 32
3.12.1.1 Quick-Start . 32
3.12.1.2 Customizing Emacs . 33
3.12.1.3 Enabling Emacs Support for SICStus 33
3.12.1.4 Enabling Emacs Support for SICStus Documentation . . 34

3.12.2 Basic Configuration . 34
3.12.3 Usage . 34
3.12.4 Mode Line . 37
3.12.5 Configuration . 38
3.12.6 Tips . 41

3.12.6.1 Font-locking . 41
3.12.6.2 Auto-fill Mode . 41
3.12.6.3 Speed . 41
3.12.6.4 Changing Colors . 42

ii SICStus Prolog

4 The Prolog Language . 43
4.1 Syntax . 43

4.1.1 Overview . 43
4.1.2 Terms . 43

4.1.2.1 Overview . 43
4.1.2.2 Integers . 43
4.1.2.3 Floating-point Numbers . 44
4.1.2.4 Atoms . 44
4.1.2.5 Variables . 44
4.1.2.6 Foreign Terms . 45

4.1.3 Compound Terms . 45
4.1.3.1 Lists . 46
4.1.3.2 Strings As Lists . 46

4.1.4 Character Escaping . 47
4.1.5 Operators and their Built-in Predicates 47

4.1.5.1 Overview . 47
4.1.5.2 Manipulating and Inspecting Operators 50
4.1.5.3 Syntax Restrictions . 50
4.1.5.4 Built-in Operators . 51

4.1.6 Commenting . 52
4.1.7 Formal Syntax . 52

4.1.7.1 Overview . 52
4.1.7.2 Notation . 53
4.1.7.3 Syntax of Sentences as Terms . 53
4.1.7.4 Syntax of Terms as Tokens . 55
4.1.7.5 Syntax of Tokens as Character Strings 56
4.1.7.6 Escape Sequences . 60
4.1.7.7 Notes . 60

4.1.8 Summary of Predicates . 61
4.2 Semantics . 61

4.2.1 Programs . 61
4.2.2 Types of Predicates Supplied with SICStus Prolog 63

4.2.2.1 Hook Predicates . 63
4.2.3 Control Structures . 63

4.2.3.1 The Cut . 64
4.2.3.2 Disjunction . 66
4.2.3.3 If-Then-Else . 67
4.2.3.4 Negation as Failure . 68
4.2.3.5 Do Loops since release 4.1 . 68
4.2.3.6 Other Control Structures . 74

4.2.4 Declarative and Procedural Semantics . 74
4.2.5 Meta-Calls . 77
4.2.6 Exceptions Related to Procedure Calls . 77
4.2.7 Occurs Check . 78
4.2.8 Summary of Control Predicates . 78

4.3 Loading Programs . 79
4.3.1 Overview . 79
4.3.2 The Load Predicates . 80

iii

4.3.3 Redefining Procedures during Program Execution 82
4.3.4 Declarations and Initializations . 83

4.3.4.1 Multifile Declarations . 83
4.3.4.2 Dynamic Declarations . 84
4.3.4.3 Volatile Declarations . 84
4.3.4.4 Discontiguous Declarations . 84
4.3.4.5 Block Declarations . 84
4.3.4.6 Meta-Predicate Declarations . 85
4.3.4.7 Module Declarations . 85
4.3.4.8 Public Declarations . 86
4.3.4.9 Mode Declarations . 86
4.3.4.10 is/2 Declarations . 86
4.3.4.11 Include Declarations . 86
4.3.4.12 Initializations . 87

4.3.5 Term and Goal Expansion . 87
4.3.6 Conditional Compilation . 88

4.3.6.1 Conditional Compilation Examples 90
4.3.7 Predicate List . 91

4.4 Saving and Loading the Prolog Database . 92
4.4.1 Overview of PO Files . 92
4.4.2 Saved States . 93
4.4.3 Selective Saving and Loading of PO Files 94
4.4.4 Predicate List . 95

4.5 Files and Directories . 95
4.5.1 The File Search Path Mechanism . 95

4.5.1.1 Defining File Search Paths . 96
4.5.1.2 Frequently Used File Specifications 98
4.5.1.3 Predefined File Search Paths . 98

4.5.2 Syntactic Rewriting . 99
4.5.3 List of Predicates . 101

4.6 Input and Output . 102
4.6.1 Introduction . 102
4.6.2 About Streams . 102

4.6.2.1 Programming Note . 102
4.6.2.2 Stream Categories . 102

4.6.3 Term Input . 103
4.6.3.1 Reading Terms: The "Read" Predicates 103
4.6.3.2 Changing the Prompt . 104

4.6.4 Term Output . 104
4.6.4.1 Writing Terms: the “Write” Predicates 104
4.6.4.2 Common Characteristics . 104
4.6.4.3 Distinctions Among the “Write” Predicates 105
4.6.4.4 Displaying Terms . 106
4.6.4.5 Using the Portray Hook . 106
4.6.4.6 Portraying a Clause . 106

4.6.5 Byte and Character Input . 107
4.6.5.1 Overview . 107
4.6.5.2 Reading Bytes and Characters . 107

iv SICStus Prolog

4.6.5.3 Peeking . 107
4.6.5.4 Skipping . 107
4.6.5.5 Finding the End of Line and End of File 108

4.6.6 Byte and Character Output . 108
4.6.6.1 Writing Bytes and Characters . 108
4.6.6.2 New Line . 108
4.6.6.3 Formatted Output . 108

4.6.7 Stream and File Handling . 109
4.6.7.1 Stream Objects . 109
4.6.7.2 Exceptions Related to Streams . 109
4.6.7.3 Suppressing Error Messages . 110
4.6.7.4 Opening a Stream . 110
4.6.7.5 Text Stream Encodings . 111
4.6.7.6 Finding the Current Input Stream 112
4.6.7.7 Finding the Current Output Stream 113
4.6.7.8 Finding Out About Open Streams 113
4.6.7.9 Closing a Stream . 114
4.6.7.10 Flushing Output . 114

4.6.8 Reading the State of Opened Streams . 114
4.6.8.1 Stream Position Information for Terminal I/O 115

4.6.9 Random Access to Files . 115
4.6.10 Summary of Predicates and Functions 115

4.7 Arithmetic . 119
4.7.1 Overview . 119
4.7.2 Evaluating Arithmetic Expressions . 119
4.7.3 Exceptions Related to Arithmetic . 119
4.7.4 Arithmetic Comparison . 120
4.7.5 Arithmetic Expressions . 120
4.7.6 Predicate Summary . 125

4.8 Looking at Terms . 126
4.8.1 Meta-logical Predicates . 126

4.8.1.1 Type Checking . 126
4.8.1.2 Unification . 126

4.8.2 Analyzing and Constructing Terms . 127
4.8.3 Analyzing and Constructing Lists . 128
4.8.4 Converting between Constants and Text 128
4.8.5 Atom Operations . 129
4.8.6 Assigning Names to Variables . 129
4.8.7 Copying Terms . 129
4.8.8 Comparing Terms . 130

4.8.8.1 Introduction . 130
4.8.8.2 Standard Order of Terms . 130
4.8.8.3 Sorting Terms . 131

4.8.9 Mutable Terms . 131
4.8.10 Summary of Predicates . 132

4.9 Looking at the Program State . 135
4.9.1 Overview . 135
4.9.2 Associating Predicates with their Properties 135

v

4.9.3 Associating Predicates with Files . 136
4.9.4 Prolog Flags . 136
4.9.5 Load Context . 143
4.9.6 Predicate Summary . 143

4.10 Memory Use and Garbage Collection . 144
4.10.1 Overview . 144

4.10.1.1 Reclaiming Space . 146
4.10.1.2 Displaying Statistics . 146

4.10.2 Garbage Collection and Programming Style 152
4.10.3 Enabling and Disabling the Garbage Collector 154
4.10.4 Monitoring Garbage Collections . 154

4.10.5 Interaction of Garbage Collection
and Global Stack Expansion . 155

4.10.6 Invoking the Garbage Collector Directly 156
4.10.7 Atom Garbage Collection . 156

4.10.7.1 The Atom Garbage Collector User Interface 157
4.10.7.2 Protecting Atoms in Foreign Memory 158
4.10.7.3 Permanent Atoms . 160
4.10.7.4 Details of Atom Registration . 160

4.10.8 Summary of Predicates . 161
4.11 Modules . 161

4.11.1 Overview . 161
4.11.2 Basic Concepts . 162
4.11.3 Defining a Module . 162
4.11.4 Converting Non-module Files into Module Files 163
4.11.5 Loading a Module . 163
4.11.6 Visibility Rules . 164
4.11.7 The Source Module . 165
4.11.8 The Type-in Module . 166
4.11.9 Creating a Module Dynamically . 167
4.11.10 Module Prefixes on Clauses . 167

4.11.10.1 Current Modules . 168
4.11.11 Debugging Code in a Module . 168
4.11.12 Name Clashes . 168
4.11.13 Obtaining Information about Loaded Modules 169

4.11.13.1 Predicates Defined in a Module 169
4.11.13.2 Predicates Visible in a Module . 170

4.11.14 Importing Dynamic Predicates . 170
4.11.15 Module Name Expansion . 171
4.11.16 The meta_predicate Declaration . 171
4.11.17 Semantics of Module Name Expansion 173
4.11.18 Predicate Summary . 176

4.12 Modification of the Database . 176
4.12.1 Introduction . 176
4.12.2 Dynamic and Static Procedures . 177
4.12.3 Database References . 178
4.12.4 Adding Clauses to the Database . 179
4.12.5 Removing Clauses from the Database 179

vi SICStus Prolog

4.12.5.1 A Note on Efficient Use of retract/1 180
4.12.6 Accessing Clauses . 181
4.12.7 Modification of Running Code: Examples 181

4.12.7.1 Example: assertz . 181
4.12.7.2 Example: retract . 182
4.12.7.3 Example: abolish . 183

4.12.8 The Internal Database . 183
4.12.9 Blackboard Primitives . 184
4.12.10 Summary of Predicates . 185

4.13 Sets and Bags: Collecting Solutions to a Goal 186
4.13.1 Introduction . 186
4.13.2 Collecting a Sorted List . 187

4.13.2.1 Existential Quantifier . 188
4.13.3 Collecting a Bag of Solutions . 188

4.13.3.1 Collecting All Instances . 188
4.13.4 Predicate Summary . 189

4.14 Grammar Rules . 189
4.14.1 Definite Clause Grammars . 189
4.14.2 How to Use the Grammar Rule Facility 190
4.14.3 An Example . 191
4.14.4 Semantics of Grammar Rules . 192
4.14.5 Summary of Predicates . 196

4.15 Errors and Exceptions . 197
4.15.1 Overview . 197
4.15.2 Throwing Exceptions . 197
4.15.3 Handling Exceptions . 198

4.15.3.1 Protecting a Particular Goal . 198
4.15.3.2 Handling Unknown Predicates . 199

4.15.4 Error Classes . 200
4.15.4.1 Instantiation Errors . 203
4.15.4.2 Uninstantiation Errors . 203
4.15.4.3 Type Errors . 204
4.15.4.4 Domain Errors . 204
4.15.4.5 Evaluation Errors . 205
4.15.4.6 Representation Errors . 205
4.15.4.7 Existence Errors . 206
4.15.4.8 Permission Errors . 206
4.15.4.9 Context Errors . 207
4.15.4.10 Consistency Errors . 207
4.15.4.11 Syntax Errors . 208
4.15.4.12 Resource Errors . 208
4.15.4.13 System Errors . 209

4.15.5 An Example . 209
4.15.6 Legacy Predicates . 210
4.15.7 Interrupting Execution . 211
4.15.8 Summary of Predicates . 211

4.16 Messages and Queries . 212
4.16.1 Message Processing . 212

vii

4.16.1.1 Phases of Message Processing . 213
4.16.1.2 Message Generation Phase . 214
4.16.1.3 Message Printing Phase . 215

4.16.2 Message Handling Predicates . 215
4.16.3 Query Processing . 216

4.16.3.1 Query Classes . 216
4.16.3.2 Phases of Query Processing . 217
4.16.3.3 Hooks in Query Processing . 220
4.16.3.4 Default Input Methods . 221
4.16.3.5 Default Map Methods . 221
4.16.3.6 Default Query Classes . 221

4.16.4 Query Handling Predicates . 222
4.16.5 Predicate Summary . 223

4.17 Other Topics . 224
4.17.1 System Properties and Environment Variables 224

4.17.1.1 System Properties Set by SICStus Prolog 225
4.17.1.2 System Properties Affecting Initialization 226
4.17.1.3 Other System Properties . 229

5 Debugging . 231
5.1 The Procedure Box Control Flow Model . 231
5.2 Basic Debugging Predicates . 233
5.3 Plain Spypoints . 235
5.4 Format of Debugging Messages . 236
5.5 Commands Available during Debugging . 237
5.6 Advanced Debugging — an Introduction . 243

5.6.1 Creating Breakpoints . 243
5.6.2 Processing Breakpoints . 244
5.6.3 Breakpoint Tests . 245
5.6.4 Specific and Generic Breakpoints . 251
5.6.5 Breakpoint Actions . 252
5.6.6 Advice points . 258
5.6.7 Built-in Predicates for Breakpoint Handling 260
5.6.8 Accessing Past Debugger States . 262
5.6.9 Storing User Information in the Backtrace 265
5.6.10 Hooks Related to Breakpoints . 267
5.6.11 Programming Breakpoints . 268

5.7 Breakpoint Handling Predicates . 272
5.8 The Processing of Breakpoints . 275
5.9 Breakpoint Conditions . 277

5.9.1 Tests Related to the Current Goal . 277
5.9.2 Tests Related to Source Information . 278
5.9.3 Tests Related to the Current Port . 279
5.9.4 Tests Related to the Break Level . 280
5.9.5 Other Conditions . 281
5.9.6 Conditions Usable in the Action Part . 281
5.9.7 Options for Focusing on a Past State . 282
5.9.8 Condition Macros . 282

viii SICStus Prolog

5.9.9 The Action Variables . 282
5.10 Consulting during Debugging . 285
5.11 Catching Exceptions . 285
5.12 Predicate Summary . 285

6 Mixing C/C++ and Prolog 289
6.1 Notes . 289
6.2 Calling C from Prolog . 290

6.2.1 Foreign Resources . 291
6.2.2 Conversion Declarations . 292
6.2.3 Conversions between Prolog Arguments and C Types 293
6.2.4 Interface Predicates . 295
6.2.5 The Foreign Resource Linker . 296

6.2.5.1 Customizing splfr. 296

6.2.5.2 Creating Linked Foreign
Resources Manually under UNIX . 296

6.2.5.3 Windows-specific splfr issues . 296
6.2.6 Init and Deinit Functions . 296
6.2.7 Creating the Linked Foreign Resource . 297
6.2.8 Foreign Code Examples . 298

6.3 Calling C++ from Prolog . 300
6.4 Support Functions . 300

6.4.1 Creating and Manipulating SP term refs 300
6.4.2 Atoms in C . 301
6.4.3 Creating Prolog Terms . 302
6.4.4 Accessing Prolog Terms . 303
6.4.5 Testing Prolog Terms . 303
6.4.6 Unifying and Comparing Terms . 304
6.4.7 Operating System Services . 304

6.4.7.1 Memory Management . 304
6.4.7.2 File System . 305
6.4.7.3 Threads . 305

6.5 Calling Prolog from C . 305
6.5.1 Finding One Solution of a Call . 306
6.5.2 Finding Multiple Solutions of a Call . 306
6.5.3 Backtracking Loops . 308
6.5.4 Calling Prolog Asynchronously . 308

6.5.4.1 Signal Handling . 309
6.5.5 Exception Handling in C . 309
6.5.6 Reading a goal from a string . 310

6.6 SICStus Streams . 310
6.6.1 Prolog Streams . 310
6.6.2 Defining a New Stream . 312

6.6.2.1 Low Level I/O Functions . 316
6.6.3 Hookable Standard Streams . 316

6.6.3.1 Writing User-stream Hooks . 317
6.6.3.2 Writing User-stream Post-hooks . 317

6.7 Stand-Alone Executables . 317

ix

6.7.1 Runtime Systems . 318
6.7.2 Runtime Systems on Target Machines . 318

6.7.2.1 Runtime Systems on UNIX Target Machines 319
6.7.2.2 Runtime Systems on Windows Target Machines 320

6.7.3 The Application Builder . 322
6.7.3.1 Customizing spld . 322
6.7.3.2 All-in-one Executables . 322
6.7.3.3 Setting up the C compiler on Windows 326
6.7.3.4 Extended Runtime Systems . 326
6.7.3.5 Examples . 327

6.7.4 User-defined Main Programs . 328
6.7.4.1 Initializing the Prolog Engine . 329
6.7.4.2 Loading Prolog Code . 329

6.7.5 Generic Runtime Systems . 329
6.8 Mixing C and Prolog Examples . 330

6.8.1 Train Example (connections) . 330
6.8.2 Building for a Target Machine . 333
6.8.3 Exceptions from C . 338
6.8.4 Stream Example . 340

6.9 Debugging Runtime Systems . 340
6.9.1 Locating the License Information . 341
6.9.2 Customizing the Debugged Runtime System 341
6.9.3 Examples of Debugging Runtime Systems 342

7 Interfacing .NET and Java 345

8 Multiple SICStus Runtimes in a Process . . . 347
8.1 Multiple SICStus Runtimes in Java . 347
8.2 Multiple SICStus Runtimes in C . 347

8.2.1 Using a Single SICStus Runtime . 347
8.2.2 Using More than One SICStus Runtime 348

8.3 Foreign Resources and Multiple SICStus Runtimes 349
8.3.1 Foreign Resources Supporting Only One SICStus Runtime . . 349
8.3.2 Foreign Resources Supporting Multiple SICStus Runtimes . . 350

8.3.2.1 Full Support for Multiple SICStus Runtimes 350
8.4 Multiple Runtimes and Threads . 352

9 Writing Efficient Programs 353
9.1 Overview . 353
9.2 Execution Profiling . 353
9.3 Coverage Analysis . 354
9.4 The Cut . 355

9.4.1 Overview . 355
9.4.2 Making Predicates Determinate . 355
9.4.3 Placement of Cuts . 357
9.4.4 Terminating a Backtracking Loop . 357

9.5 Indexing . 358

x SICStus Prolog

9.5.1 Overview . 358
9.5.2 Data Tables . 358
9.5.3 Determinacy Detection . 359

9.6 Last Clause Determinacy Detection . 360
9.7 The Determinacy Checker . 361

9.7.1 Using the Determinacy Checker . 361
9.7.2 Declaring Nondeterminacy . 362
9.7.3 Checker Output . 362
9.7.4 Example . 363
9.7.5 Options . 364
9.7.6 What is Detected . 365

9.8 Last Call Optimization . 366
9.8.1 Accumulating Parameters . 366
9.8.2 Accumulating Lists . 367

9.9 Building and Dismantling Terms . 368
9.10 Conditionals and Disjunction . 371
9.11 Programming Examples . 373

9.11.1 Simple List Processing . 373
9.11.2 Family Example (descendants) . 374
9.11.3 Association List Primitives . 374
9.11.4 Differentiation . 374
9.11.5 Use of Meta-Logical Predicates . 375
9.11.6 Prolog in Prolog . 375
9.11.7 Translating English Sentences into Logic Formulae 376

9.12 The Cross-Referencer . 377
9.12.1 Introduction . 377
9.12.2 Practice and Experience . 377

10 The Prolog Library . 379
10.1 An Aggregation Operator for Data-Base-Style
Queries—library(aggregate) . 382

10.2 Association Lists—library(assoc) . 386
10.3 Attributed Variables—library(atts) . 388
10.4 AVL Trees—library(avl) . 395
10.5 Bags, or Multisets—library(bags) . 398
10.6 External Storage of Terms (Berkeley DB)—library(bdb) . . . 401

10.6.1 Basics . 402
10.6.2 Current Limitations . 402
10.6.3 Berkeley DB . 402
10.6.4 The DB-Spec—Informal Description . 403
10.6.5 Predicates . 403

10.6.5.1 Conventions . 403
10.6.5.2 The Environment . 404
10.6.5.3 Memory Leaks . 404
10.6.5.4 The Predicates . 404

10.6.6 An Example Session . 408
10.6.7 The DB-Spec . 408
10.6.8 Exporting and importing a database . 409

xi

10.7 Generating Integers—library(between) . 409
10.8 Constraint Handling Rules—library(chr) 410

10.8.1 Introduction . 410
10.8.2 Syntax and Semantics . 411

10.8.2.1 Syntax . 411
10.8.2.2 Semantics . 412

10.8.3 CHR in Prolog Programs . 413
10.8.3.1 Embedding in Prolog Programs . 413
10.8.3.2 Constraint Declaration . 414
10.8.3.3 Compilation . 415

10.8.4 Debugging . 415
10.8.4.1 Ports . 416
10.8.4.2 Tracing . 416
10.8.4.3 Debugging Predicates . 417

10.8.5 Examples . 418
10.8.6 Guidelines . 418

10.9 Constraint Logic Programming over Booleans—library(clpb) . . 419
10.9.1 Introduction . 419
10.9.2 Solver Interface . 420
10.9.3 Examples . 420

10.9.3.1 Example 1 . 421
10.9.3.2 Example 2 . 421
10.9.3.3 Example 3 . 422
10.9.3.4 Example 4 . 422

10.10 Constraint Logic Programming over Finite
Domains—library(clpfd) . 423
10.10.1 Introduction . 423

10.10.1.1 Referencing this Software . 424
10.10.1.2 Acknowledgments . 424

10.10.2 Caveats and Limitations . 425
10.10.3 Solver Interface . 425

10.10.3.1 Posting Constraints . 427
10.10.3.2 Forgetting Constraints . 428
10.10.3.3 Constraint Satisfaction Problems 428
10.10.3.4 Reified Constraints . 429

10.10.4 Available Constraints . 430
10.10.4.1 Arithmetic Constraints . 430
10.10.4.2 Membership Constraints . 432
10.10.4.3 Propositional Constraints . 432
10.10.4.4 Arithmetic-Logical Constraints 433
10.10.4.5 Extensional Constraints . 439
10.10.4.6 Graph Constraints . 445
10.10.4.7 Scheduling Constraints . 445
10.10.4.8 Placement Constraints . 448
10.10.4.9 Sequence Constraints . 457
10.10.4.10 User-Defined Constraints . 465

10.10.5 Enumeration Predicates . 465
10.10.6 Statistics Predicates . 471

xii SICStus Prolog

10.10.7 Answer Constraints . 472
10.10.8 Debugging . 472
10.10.9 Defining Global Constraints . 472

10.10.9.1 The Global Constraint Programming Interface 472
10.10.9.2 Reflection Predicates . 475
10.10.9.3 FD Set Operations . 476
10.10.9.4 Global Constraint Example . 478

10.10.10 Defining Primitive Constraints . 479
10.10.10.1 Definitions . 480
10.10.10.2 Pitfalls of Interval Reasoning . 480
10.10.10.3 Indexicals . 481
10.10.10.4 Range Expressions . 481
10.10.10.5 Term Expressions . 482
10.10.10.6 Monotonicity of Ranges . 482
10.10.10.7 FD Predicates . 483
10.10.10.8 Execution of Propagating Indexicals 485
10.10.10.9 Execution of Checking Indexicals 486
10.10.10.10 Compiled Indexicals . 487

10.10.11 Coexisting with Attributes and Blocked Goals 487
10.10.12 Example Programs . 487

10.10.12.1 Send More Money . 488
10.10.12.2 N Queens . 488
10.10.12.3 Cumulative Scheduling . 489

10.10.13 Syntax Summary . 490
10.10.13.1 Syntax of Indexicals . 490
10.10.13.2 Syntax of Arithmetic Expressions 492
10.10.13.3 Operator Declarations . 493

10.11 Constraint Logic Programming over Rationals or
Reals—library([clpq,clpr]) . 493
10.11.1 Introduction . 494

10.11.1.1 Referencing this Software . 494
10.11.1.2 Acknowledgments . 494

10.11.2 Solver Interface . 494
10.11.2.1 Notational Conventions . 495
10.11.2.2 Solver Predicates . 495
10.11.2.3 Unification . 499
10.11.2.4 Feedback and Bindings . 500

10.11.3 Linearity and Nonlinear Residues . 500
10.11.3.1 How Nonlinear Residues Are Made to Disappear . . 501
10.11.3.2 Isolation Axioms . 502

10.11.4 Numerical Precision and Rationals . 503
10.11.5 Projection and Redundancy Elimination 507

10.11.5.1 Variable Ordering . 508
10.11.5.2 Turning Answers into Terms . 509
10.11.5.3 Projecting Inequalities . 509

10.11.6 Why Disequations . 512
10.11.7 Monash Examples . 514
10.11.8 A Mixed Integer Linear Optimization Example 515

xiii

10.11.9 Implementation Architecture . 517
10.11.9.1 Fragments and Bits . 517
10.11.9.2 Bugs . 517

10.12 I/O on Lists of Character Codes—library(codesio) 518

10.13 I/O on Comma-Separated Values (CSV) Files
and Strings—library(csv) . 519

10.14 COM Client—library(comclient) . 521
10.14.1 Preliminaries . 521
10.14.2 Terminology . 521
10.14.3 Predicate Reference . 522
10.14.4 Examples . 524

10.15 Finite Domain Constraint Debugger—library(fdbg) 526
10.15.1 Introduction . 526
10.15.2 Concepts . 526

10.15.2.1 Events . 526
10.15.2.2 Labeling Levels . 526
10.15.2.3 Visualizers . 527
10.15.2.4 Names of Terms . 527
10.15.2.5 Selectors . 528
10.15.2.6 Name Auto-Generation . 528
10.15.2.7 Legend . 528
10.15.2.8 The fdbg_output Stream . 529

10.15.3 Basics . 529
10.15.3.1 FDBG Options . 529
10.15.3.2 Naming Terms . 530
10.15.3.3 Built-In Visualizers . 531
10.15.3.4 New Debugger Commands . 532
10.15.3.5 Annotating Programs . 533
10.15.3.6 An Example Session . 533

10.15.4 Advanced Usage . 537
10.15.4.1 Customizing Output . 537
10.15.4.2 Writing Visualizers . 538
10.15.4.3 Writing Legend Printers . 539
10.15.4.4 Showing Selected Constraints (simple version) 540
10.15.4.5 Showing Selected Constraints (advanced version) . . 541
10.15.4.6 Debugging Global Constraints . 545

10.16 Accessing Files And Directories—library(file_systems) . . 550
10.17 The Gauge Profiling Tool—library(gauge) 555
10.18 Heap Operations—library(heaps) . 557
10.19 Declaring determinacy attributes—library(is_directives) . . 559

10.19.1 Introduction . 559
10.19.2 Available Determinacy Annotations . 560
10.19.3 Syntax of Determinacy Declarations 560

10.19.3.1 Specifying Instantiation Patterns 561
10.19.3.2 Declaring Meta Predicate Determinacy 562

10.19.4 Using Determinacy Declarations . 564
10.19.5 Accessing Determinacy Declarations at Runtime 564

10.20 Jasper Interface—library(jasper) . 566

xiv SICStus Prolog

10.20.1 Jasper Overview . 566
10.20.2 Getting Started . 566
10.20.3 Calling Prolog from Java . 567

10.20.3.1 Single Threaded Example . 567
10.20.3.2 Multi Threaded Example . 569

10.20.3.3 Another Multi Threaded
Example (Prolog Top Level) . 571

10.20.4 Jasper Package Class Reference . 575
10.20.5 Java Exception Handling . 578
10.20.6 SPTerm and Memory . 578

10.20.6.1 Lifetime of SPTerms and Prolog Memory 578
10.20.6.2 Preventing SPTerm Memory Leaks 579

10.20.7 Java Threads . 580
10.20.8 The Jasper Library . 581

10.20.8.1 Jasper Method Call Example . 581
10.20.8.2 Jasper Library Predicates . 584

10.20.8.3 Conversion between
Prolog Arguments and Java Types . 587

10.20.8.4 Global vs. Local References . 591
10.20.8.5 Handling Java Exceptions . 592
10.20.8.6 Deprecated Jasper API . 594
10.20.8.7 Deprecated Argument Conversions 594
10.20.8.8 Deprecated Jasper Predicates . 594

10.21 JSON format serialization—library(json) 595
10.21.1 Options . 596
10.21.2 Examples . 597

10.21.2.1 Process Communication . 597
10.21.2.2 JSON Text as Atoms and Character Lists 598

10.21.3 Exported Predicates . 598
10.22 Process Communication—library(linda/[server,client]) . . 598

10.22.1 Linda Server . 600
10.22.2 Linda Client . 601

10.23 List Operations—library(lists) . 603
10.24 Array Operations—library(logarr) . 618
10.25 The Objects Package—library(objects) 619

10.25.1 Introduction . 619
10.25.1.1 Using SICStus Objects . 619
10.25.1.2 Defining Classes . 621
10.25.1.3 Using Classes . 622
10.25.1.4 Looking Ahead . 623

10.25.2 Simple Classes . 623
10.25.2.1 Scope of a Class Definition . 623
10.25.2.2 Slots . 624
10.25.2.3 Methods . 626

10.25.3 Inheritance . 635
10.25.3.1 Single Inheritance . 635
10.25.3.2 Multiple Inheritance . 638
10.25.3.3 Asking About Classes and Objects 641

xv

10.25.4 Term Classes . 643
10.25.4.1 Simple Term Classes . 644
10.25.4.2 Restricted Term Classes . 644
10.25.4.3 Specifying a Term Class Essence 645

10.25.5 Technical Details . 646
10.25.5.1 Syntax of Class Definitions . 646
10.25.5.2 Limitations . 648

10.25.6 Exported Predicates . 649
10.25.6.1 <-/2 . 650
10.25.6.2 <</2 . 651
10.25.6.3 >>/2 . 652
10.25.6.4 class/1 declaration . 653
10.25.6.5 class_ancestor/2 . 656
10.25.6.6 class_method/1 declaration . 657
10.25.6.7 class_superclass/2 . 658
10.25.6.8 class_of/2 . 659
10.25.6.9 create/2 . 660
10.25.6.10 current_class/1 . 662
10.25.6.11 debug_message/0 declaration 663
10.25.6.12 define_method/3 . 664
10.25.6.13 descendant_of/2 . 665
10.25.6.14 destroy/1 . 666
10.25.6.15 direct_message/4 . 667
10.25.6.16 end_class/[0,1] declaration 668
10.25.6.17 fetch_slot/2 . 669
10.25.6.18 inherit/1 declaration . 670
10.25.6.19 instance_method/1 declaration 672
10.25.6.20 message/4 . 673
10.25.6.21 nodebug_message/0 declaration 674
10.25.6.22 pointer_object/2 . 675
10.25.6.23 store_slot/2 . 676
10.25.6.24 undefine_method/3 . 677
10.25.6.25 uninherit/1 declaration . 678

10.25.7 Glossary . 678
10.26 The ODBC Interface Library–library(odbc) 681

10.26.1 Overview . 682
10.26.2 Examples . 682

10.26.2.1 Example 1 . 682
10.26.2.2 Example 2 . 682
10.26.2.3 Example 3 . 683
10.26.2.4 Example 4 . 684

10.26.3 Datatypes . 684
10.26.3.1 Reading from the database . 684
10.26.3.2 Writing to the database . 685

10.26.4 Exceptions . 686
10.26.5 Predicates . 687

10.27 Ordered Set Operations—library(ordsets) 691
10.28 The PiLLoW Web Programming Library—library(pillow) . . 693

xvi SICStus Prolog

10.29 Plunit Interface—library(plunit) . 693
10.29.1 Introduction . 693
10.29.2 A Unit Test Box . 694
10.29.3 Writing the Test-Body . 697

10.29.3.1 Determinate Tests . 698
10.29.3.2 Nondeterminate Tests . 698
10.29.3.3 Tests Expected to Fail . 698
10.29.3.4 Tests Expected to Raise Exceptions 699

10.29.4 Running the Test-Suite . 699
10.29.5 Tests and Production Systems . 700

10.30 Process Utilities—library(process) . 701
10.30.1 Examples . 701

10.30.1.1 Microsoft Windows Shell . 704
10.30.2 Quoting and Security . 705

10.31 PrologBeans Interface—library(prologbeans) 710
10.31.1 Introduction . 710
10.31.2 Features . 712
10.31.3 A First Example . 712
10.31.4 Prolog Server Interface . 715
10.31.5 Java Client Interface . 718
10.31.6 Java Examples . 718

10.31.6.1 Embedding Prolog in Java Applications 718
10.31.6.2 Application Servers . 719
10.31.6.3 Configuring Tomcat for PrologBeans 721

10.31.7 .NET Client Interface . 722
10.31.8 .NET Examples . 723

10.31.8.1 C# Examples . 723
10.31.8.2 Visual Basic Example . 724

10.32 Queue Operations —library(queues) . 724
10.33 Random Number Generator—library(random) 727
10.34 Rem’s Algorithm—library(rem) . 728
10.35 Generic Sorting—library(samsort) . 729
10.36 Unordered Set Operations—library(sets) 729
10.37 Socket I/O—library(sockets) . 733
10.38 Statistics Functions—library(statistics) 736
10.39 The Structs Package—library(structs) 738

10.39.1 Foreign Types . 739
10.39.1.1 Declaring Types . 741

10.39.2 Checking Foreign Term Types . 741
10.39.3 Creating and Destroying Foreign Terms 742
10.39.4 Accessing and Modifying Foreign Term Contents 742
10.39.5 Casting . 743
10.39.6 Null Foreign Terms . 743
10.39.7 Interfacing with Foreign Code . 743
10.39.8 Examining Type Definitions at Runtime 744
10.39.9 Tips . 745
10.39.10 Example . 745

10.40 Operating System Utilities—library(system) 747

xvii

10.41 Tcl/Tk Interface—library(tcltk) . 748
10.41.1 Introduction . 748

10.41.1.1 What Is Tcl/Tk? . 748
10.41.1.2 What Is Tcl/Tk Good For? . 749
10.41.1.3 What Is Tcl/Tks Relationship to SICStus Prolog? . . 749
10.41.1.4 A Quick Example of Tcl/Tk in Action 749
10.41.1.5 Outline of This Tutorial . 752

10.41.2 Tcl . 752
10.41.2.1 Syntax . 753
10.41.2.2 Variables . 755
10.41.2.3 Commands . 756
10.41.2.4 What We Have Left Out . 771

10.41.3 Tk . 772
10.41.3.1 Widgets . 772
10.41.3.2 Types of Widget . 772
10.41.3.3 Widgets Hierarchies . 774
10.41.3.4 Widget Creation . 776
10.41.3.5 Geometry Managers . 784
10.41.3.6 Event Handling . 797
10.41.3.7 Miscellaneous . 800
10.41.3.8 What We Have Left Out . 801
10.41.3.9 Example pure Tcl/Tk program 801

10.41.4 The Tcl/Tk Prolog Library . 805
10.41.4.1 How it Works - An Overview . 806
10.41.4.2 Basic Functions . 807
10.41.4.3 Evaluation Functions . 808
10.41.4.4 Event Functions . 813
10.41.4.5 Servicing Tcl and Tk events . 816
10.41.4.6 Passing Control to Tk . 818
10.41.4.7 Housekeeping functions . 818
10.41.4.8 Summary . 819

10.41.5 Putting It All Together . 821
10.41.5.1 Tcl The Master, Prolog The Slave 821
10.41.5.2 Prolog The Master, Tk The Slave 826

10.41.5.3 Prolog And Tcl Interact
through Prolog Event Queue . 829

10.41.5.4 The Whole 8-Queens Example . 831
10.41.6 Quick Reference . 837

10.41.6.1 Command Format Summary . 837

10.41.6.2 Predicates for Prolog to
Interact with Tcl Interpreters . 839

10.41.6.3 Predicates for Prolog to Interact with
Tcl Interpreters with Tk Extensions . 839

10.41.6.4 Commands for Tcl Interpreters to
Interact with The Prolog System . 840

10.41.7 Resources . 840
10.41.7.1 Web Sites . 841
10.41.7.2 Books . 841

xviii SICStus Prolog

10.41.7.3 Manual Pages . 841
10.42 Term Utilities—library(terms) . 841
10.43 Meta-Call with Limit on Execution Time—library(timeout) . . 846
10.44 Updatable Binary Trees—library(trees) 847
10.45 Type Checking—library(types) . 848
10.46 Unweighted Graph Operations—library(ugraphs) 850
10.47 An Inverse of numbervars/3—library(varnumbers) 853
10.48 Weighted Graph Operations—library(wgraphs) 854
10.49 Parsing and Generating XML—library(xml) 857
10.50 Zinc Interface—library(zinc) . 859

10.50.1 Prerequisites . 859
10.50.2 FlatZinc . 859

10.50.2.1 Exported Predicates . 861
10.50.3 MiniZinc . 868

10.50.3.1 Exported Predicates . 868
10.50.4 Error Messages . 873
10.50.5 Limitations . 875

11 Prolog Reference Pages . 877
11.1 Reading the Reference Pages . 877

11.1.1 Overview . 877
11.1.2 Mode Annotations . 877
11.1.3 Predicate Annotation . 878
11.1.4 Argument Types . 879

11.1.4.1 Simple Types . 880
11.1.4.2 Extended Types . 880

11.1.5 Exceptions . 881
11.1.6 Other Fields . 881

11.2 Topical List of Prolog Built-Ins . 881
11.2.1 All Solutions . 881
11.2.2 Arithmetic . 881
11.2.3 Character I/O . 882
11.2.4 Control . 883
11.2.5 Database . 885
11.2.6 Debugging . 886
11.2.7 Errors and Exceptions . 887
11.2.8 Filename Manipulation . 888
11.2.9 File and Stream Handling . 888
11.2.10 Foreign Interface . 889
11.2.11 Grammar Rules . 890
11.2.12 Hook Predicates . 890
11.2.13 List Processing . 891
11.2.14 Loading Programs . 892
11.2.15 Memory . 894
11.2.16 Messages and Queries . 894
11.2.17 Modules . 895
11.2.18 Program State . 896
11.2.19 Saving Programs . 896

xix

11.2.20 Term Comparison . 897
11.2.21 Term Handling . 897
11.2.22 Term I/O . 899
11.2.23 Type Tests . 900

11.3 Built-In Predicates . 900
11.3.1 abolish/[1,2] ISO . 902
11.3.2 abort/0 . 904
11.3.3 absolute_file_name/[2,3] hookable 905
11.3.4 acyclic_term/1 ISO . 912
11.3.5 add_breakpoint/2 development . 913
11.3.6 ,/2 ISO . 914
11.3.7 append/3 . 915
11.3.8 arg/3 ISO . 918
11.3.9 ask_query/4 hookable . 919
11.3.10 assert/[1,2] . 921
11.3.11 asserta/[1,2] ISO . 923
11.3.12 assertz/[1,2] ISO . 925
11.3.13 at_end_of_line/[0,1] . 927
11.3.14 at_end_of_stream/[0,1] ISO . 928
11.3.15 atom/1 ISO . 929
11.3.16 atom_chars/2 ISO . 930
11.3.17 atom_codes/2 ISO . 931
11.3.18 atom_concat/3 ISO . 932
11.3.19 atom_length/2 ISO . 933
11.3.20 atomic/1 ISO . 934
11.3.21 bagof/3 ISO . 935
11.3.22 bb_delete/2 . 936
11.3.23 bb_get/2 . 937
11.3.24 bb_put/2 . 938
11.3.25 bb_update/3 . 939
11.3.26 block/1 declaration . 940
11.3.27 break/0 development . 942
11.3.28 breakpoint_expansion/2 hook , development 943
11.3.29 byte_count/2 . 944
11.3.30 call/[1,2,...,255] ISO . 945
11.3.31 call_cleanup/2 . 946
11.3.32 call_residue_vars/2 . 947
11.3.33 callable/1 ISO . 948
11.3.34 catch/3 ISO . 949
11.3.35 char_code/2 ISO . 950
11.3.36 char_conversion/2 ISO . 951
11.3.37 character_count/2 . 952
11.3.38 clause/[2,3] ISO . 953
11.3.39 close/[1,2] ISO . 955
11.3.40 compare/3 ISO . 957
11.3.41 compile/1 . 958
11.3.42 compound/1 ISO . 959
11.3.43 consult/1 . 960

xx SICStus Prolog

11.3.44 copy_term/[2,3] ISO . 961
11.3.45 coverage_data/1 development . 963
11.3.46 create_mutable/2 . 964
11.3.47 current_atom/1 . 965
11.3.48 current_breakpoint/5 development 966
11.3.49 current_char_conversion/2 ISO . 967
11.3.50 current_input/1 ISO . 968
11.3.51 current_key/2 . 969
11.3.52 current_module/[1,2] . 970
11.3.53 current_op/3 ISO . 972
11.3.54 current_output/1 ISO . 973
11.3.55 current_predicate/[1,2] ISO . 974
11.3.56 current_prolog_flag/2 ISO . 976
11.3.57 current_stream/3 . 977
11.3.58 !/0 ISO . 978
11.3.59 db_reference/1 . 979
11.3.60 debug/0 development . 980
11.3.61 debugger_command_hook/2 hook , development 981
11.3.62 debugging/0 development . 982
11.3.63 dif/2 . 983
11.3.64 disable_breakpoints/1 development 984
11.3.65 discontiguous/1 declaration, ISO 985
11.3.66 display/1 . 986
11.3.67 do/2 . 987
11.3.68 dynamic/1 declaration, ISO . 989
11.3.69 enable_breakpoints/1 development 990
11.3.70 ensure_loaded/1 ISO . 991
11.3.71 =:=/2 ISO . 992
11.3.72 erase/1 . 993
11.3.73 error_exception/1 hook , development 994
11.3.74 execution_state/[1,2] development 995
11.3.75 ^/2 . 996
11.3.76 expand_term/2 hookable . 997
11.3.77 fail/0 ISO . 998
11.3.78 false/0 ISO . 999
11.3.79 file_search_path/2 hook . 1000
11.3.80 findall/[3,4] ISO . 1002
11.3.81 float/1 ISO . 1005
11.3.82 flush_output/[0,1] ISO . 1006
11.3.83 foreign/[2,3] hook . 1007
11.3.84 foreign_resource/2 hook . 1008
11.3.85 format/[2,3] . 1009
11.3.86 freeze/2 . 1015
11.3.87 frozen/2 . 1016
11.3.88 functor/3 ISO . 1017
11.3.89 garbage_collect/0 . 1019
11.3.90 garbage_collect_atoms/0 . 1020
11.3.91 generate_message/3 hook . 1021

xxi

11.3.92 generate_message_hook/3 hook . 1023
11.3.93 get_byte/[1,2] ISO . 1025
11.3.94 get_char/[1,2] ISO . 1026
11.3.95 get_code/[1,2] ISO . 1027
11.3.96 get_mutable/2 . 1028
11.3.97 goal_expansion/5 hook . 1029
11.3.98 goal_source_info/3 . 1031
11.3.99 >/2 ISO . 1032
11.3.100 ground/1 ISO . 1033
11.3.101 halt/[0,1] ISO . 1034
11.3.102 if/3 . 1035
11.3.103 ->/2 ISO . 1036
11.3.104 include/1 declaration, ISO . 1037
11.3.105 initialization/1 declaration, ISO 1038
11.3.106 instance/2 . 1039
11.3.107 integer/1 ISO . 1040
11.3.108 is/2 ISO . 1041
11.3.109 keysort/2 ISO . 1043
11.3.110 leash/1 development . 1044
11.3.111 length/2 . 1046
11.3.112 </2 ISO . 1048
11.3.113 library_directory/1 hook . 1049
11.3.114 line_count/2 . 1050
11.3.115 line_position/2 . 1051
11.3.116 listing/[0,1] . 1052
11.3.117 load_files/[1,2] . 1053
11.3.118 load_foreign_resource/1 hookable 1056
11.3.119 member/2 . 1058
11.3.120 memberchk/2 . 1059
11.3.121 message_hook/3 hook . 1060
11.3.122 meta_predicate/1 declaration . 1061
11.3.123 mode/1 declaration . 1063
11.3.124 module/[2,3] declaration . 1064
11.3.125 multifile/1 declaration, ISO . 1066
11.3.126 mutable/1 . 1068
11.3.127 name/2 deprecated . 1069
11.3.128 nl/[0,1] ISO . 1071
11.3.129 nodebug/0 development . 1072
11.3.130 nonmember/2 . 1073
11.3.131 nonvar/1 ISO . 1074
11.3.132 nospy/1 development . 1075
11.3.133 nospyall/0 development . 1076
11.3.134 =\=/2 ISO . 1077
11.3.135 =</2 ISO . 1078
11.3.136 >=/2 ISO . 1079
11.3.137 \+/1 ISO . 1080
11.3.138 \=/2 ISO . 1081
11.3.139 notrace/0 development . 1082

xxii SICStus Prolog

11.3.140 nozip/0 development . 1083
11.3.141 number/1 ISO . 1084
11.3.142 number_chars/2 ISO . 1085
11.3.143 number_codes/2 ISO . 1086
11.3.144 numbervars/3 . 1088
11.3.145 on_exception/3 . 1089
11.3.146 once/1 ISO . 1090
11.3.147 op/3 ISO . 1091
11.3.148 open/[3,4] ISO . 1092
11.3.149 open_null_stream/1 . 1097
11.3.150 ;/2 ISO . 1098
11.3.151 otherwise/0 . 1099
11.3.152 peek_byte/[1,2] ISO . 1100
11.3.153 peek_char/[1,2] ISO . 1101
11.3.154 peek_code/[1,2] ISO . 1102
11.3.155 phrase/[2,3] . 1103
11.3.156 portray/1 hook . 1105
11.3.157 portray_clause/[1,2] . 1106
11.3.158 portray_message/2 hook . 1108
11.3.159 predicate_property/2 . 1109
11.3.160 print/[1,2] hookable . 1111
11.3.161 print_coverage/[0,1] development 1112
11.3.162 print_message/2 hookable . 1114
11.3.163 print_message_lines/3 . 1116
11.3.164 print_profile/[0,1] development 1117
11.3.165 profile_data/1 development . 1118
11.3.166 profile_reset/0 development . 1119
11.3.167 prolog_flag/[2,3] . 1120
11.3.168 prolog_load_context/2 . 1122
11.3.169 prompt/2 . 1123
11.3.170 public/1 declaration . 1124
11.3.171 put_byte/[1,2] ISO . 1125
11.3.172 put_char/[1,2] ISO . 1126
11.3.173 put_code/[1,2] ISO . 1127
11.3.174 query_abbreviation/3 hook . 1128
11.3.175 query_class/5 hook . 1129
11.3.176 query_class_hook/5 hook . 1130
11.3.177 query_hook/6 hook . 1131
11.3.178 query_input/3 hook . 1132
11.3.179 query_input_hook/3 hook . 1133
11.3.180 query_map/4 hook . 1134
11.3.181 query_map_hook/4 hook . 1135
11.3.182 raise_exception/1 . 1136
11.3.183 read/[1,2] ISO . 1137
11.3.184 read_line/[1,2] . 1139
11.3.185 read_term/[2,3] ISO . 1140
11.3.186 reconsult/1 . 1143
11.3.187 recorda/3 . 1144

xxiii

11.3.188 recorded/3 . 1145
11.3.189 recordz/3 . 1146
11.3.190 remove_breakpoints/1 development 1147
11.3.191 repeat/0 ISO . 1148
11.3.192 restore/1 . 1150
11.3.193 retract/1 ISO . 1151
11.3.194 retractall/1 ISO . 1153
11.3.195 save_files/2 . 1154
11.3.196 save_modules/2 . 1155
11.3.197 save_predicates/2 . 1156
11.3.198 save_program/[1,2] . 1157
11.3.199 see/1 . 1159
11.3.200 seeing/1 . 1160
11.3.201 seek/4 . 1162
11.3.202 seen/0 . 1164
11.3.203 set_input/1 ISO . 1165
11.3.204 set_module/1 . 1166
11.3.205 set_output/1 ISO . 1167
11.3.206 set_prolog_flag/2 ISO . 1168
11.3.207 set_stream_position/2 ISO . 1169
11.3.208 setof/3 ISO . 1170
11.3.209 simple/1 . 1172
11.3.210 skip_byte/[1,2] . 1173
11.3.211 skip_char/[1,2] . 1174
11.3.212 skip_code/[1,2] . 1175
11.3.213 skip_line/[0,1] . 1176
11.3.214 sort/2 ISO . 1177
11.3.215 source_file/[1,2] . 1178
11.3.216 spy/[1,2] development . 1180
11.3.217 statistics/[0,2] . 1181
11.3.218 stream_code/2 . 1182
11.3.219 stream_position/2 . 1183
11.3.220 stream_position_data/3 . 1184
11.3.221 stream_property/2 ISO . 1185
11.3.222 sub_atom/5 ISO . 1188
11.3.223 subsumes_term/2 ISO . 1190
11.3.224 tell/1 . 1192
11.3.225 telling/1 . 1193
11.3.226 ==/2 ISO . 1195
11.3.227 term_expansion/6 hook . 1196
11.3.228 @>/2 ISO . 1198
11.3.229 @</2 ISO . 1199
11.3.230 \==/2 ISO . 1200
11.3.231 @=</2 ISO . 1201
11.3.232 @>=/2 ISO . 1202
11.3.233 ?=/2 . 1203
11.3.234 term_variables/2 ISO . 1204
11.3.235 throw/1 ISO . 1205

xxiv SICStus Prolog

11.3.236 told/0 . 1206
11.3.237 trace/0 development . 1207
11.3.238 trimcore/0 . 1208
11.3.239 true/0 ISO . 1209
11.3.240 =/2 ISO . 1210
11.3.241 unify_with_occurs_check/2 ISO 1211
11.3.242 =../2 ISO . 1212
11.3.243 unknown/2 development . 1214
11.3.244 unknown_predicate_handler/3 hook 1215
11.3.245 unload_foreign_resource/1 hookable 1216
11.3.246 update_mutable/2 . 1217
11.3.247 use_module/[1,2,3] . 1218
11.3.248 var/1 ISO . 1221
11.3.249 volatile/1 declaration . 1222
11.3.250 when/2 . 1223
11.3.251 write/[1,2] ISO . 1224
11.3.252 write_canonical/[1,2] ISO . 1225
11.3.253 write_term/[2,3] hookable, ISO 1226
11.3.254 writeq/[1,2] ISO . 1229
11.3.255 zip/0 development . 1230

12 C Reference Pages . 1231
12.1 Return Values and Errors . 1231
12.2 Topical List of C Functions . 1231

12.2.1 C Errors . 1231
12.2.2 I/O . 1231
12.2.3 Exceptions . 1232
12.2.4 Files and Streams . 1232
12.2.5 Foreign Interface . 1232
12.2.6 Initialization . 1235
12.2.7 Memory Management . 1235
12.2.8 Signal Handling . 1236
12.2.9 Terms in C . 1236
12.2.10 Type Tests . 1236

12.3 API Functions . 1237
12.3.1 SP_atom_from_string() . 1238
12.3.2 SP_atom_length() . 1239
12.3.3 SP_calloc() . 1240
12.3.4 SP_close_query() . 1241
12.3.5 SP_compare() . 1242
12.3.6 SP_cons_functor() . 1243
12.3.7 SP_cons_functor_array() . 1244
12.3.8 SP_cons_list() . 1245
12.3.9 SP_create_stream() . 1246
12.3.10 SP_cut_query() . 1248
12.3.11 SP_define_c_predicate() . 1249
12.3.12 SP_deinitialize() . 1251
12.3.13 SP_error_message() . 1252

xxv

12.3.14 SP_event() . 1253
12.3.15 SP_exception_term() . 1256
12.3.16 SP_expand_file_name() . 1257
12.3.17 SP_fail() . 1259
12.3.18 SP_fclose() . 1260
12.3.19 SP_flush_output() . 1262
12.3.20 SP_fopen() . 1264
12.3.21 SP_foreign_stash() macro . 1266
12.3.22 SP_fprintf() . 1267
12.3.23 SP_free() . 1268
12.3.24 SP_get_address() . 1269
12.3.25 SP_get_arg() . 1270
12.3.26 SP_get_atom() . 1271
12.3.27 SP_get_byte() . 1272
12.3.28 SP_get_code() . 1273
12.3.29 SP_get_current_dir() . 1274
12.3.30 SP_get_dispatch() . 1275
12.3.31 SP_get_float() . 1276
12.3.32 SP_get_functor() . 1277
12.3.33 SP_get_integer() . 1278
12.3.34 SP_get_integer_bytes() . 1279
12.3.35 SP_get_list() . 1281
12.3.36 SP_get_list_codes() . 1282
12.3.37 SP_get_list_n_bytes() . 1283
12.3.38 SP_get_list_n_codes() . 1284
12.3.39 SP_get_number_codes() . 1285
12.3.40 SP_get_stream_counts() . 1286
12.3.41 SP_get_stream_user_data() . 1288
12.3.42 SP_get_string() . 1290
12.3.43 SP_getenv() . 1291
12.3.44 SP_initialize() macro . 1292
12.3.45 SP_is_atom() . 1294
12.3.46 SP_is_atomic() . 1295
12.3.47 SP_is_compound() . 1296
12.3.48 SP_is_float() . 1297
12.3.49 SP_is_integer() . 1298
12.3.50 SP_is_list() . 1299
12.3.51 SP_is_number() . 1300
12.3.52 SP_is_variable() . 1301
12.3.53 SP_load() . 1302
12.3.54 SP_load_sicstus_run_time() . 1303
12.3.55 SP_malloc() . 1304
12.3.56 SP_mutex_lock() . 1305
12.3.57 SP_mutex_unlock() . 1306
12.3.58 SP_new_term_ref() . 1307
12.3.59 SP_next_solution() . 1308
12.3.60 SP_next_stream() . 1309
12.3.61 SP_open_query() . 1310

xxvi SICStus Prolog

12.3.62 SP_pred() . 1311
12.3.63 SP_predicate() . 1312
12.3.64 SP_printf() . 1313
12.3.65 SP_put_address() . 1314
12.3.66 SP_put_atom() . 1315
12.3.67 SP_put_byte() . 1316
12.3.68 SP_put_bytes() . 1317
12.3.69 SP_put_code() . 1318
12.3.70 SP_put_codes() . 1319
12.3.71 SP_put_encoded_string() . 1320
12.3.72 SP_put_float() . 1321
12.3.73 SP_put_functor() . 1322
12.3.74 SP_put_integer() . 1323
12.3.75 SP_put_integer_bytes() . 1324
12.3.76 SP_put_list() . 1325
12.3.77 SP_put_list_codes() . 1326
12.3.78 SP_put_list_n_bytes() . 1327
12.3.79 SP_put_list_n_codes() . 1328
12.3.80 SP_put_number_codes() . 1329
12.3.81 SP_put_string() . 1330
12.3.82 SP_put_term() . 1331
12.3.83 SP_put_variable() . 1332
12.3.84 SP_query() . 1333
12.3.85 SP_query_cut_fail() . 1334
12.3.86 SP_raise_exception() . 1335
12.3.87 SP_read_from_string() . 1336
12.3.88 SP_realloc() . 1338
12.3.89 SP_register_atom() . 1339
12.3.90 SP_restore() . 1340
12.3.91 SP_set_argv() . 1341
12.3.92 SP_set_current_dir() . 1343
12.3.93 SP_set_memalloc_hooks() deprecated , preinit 1344
12.3.94 SP_set_user_stream_hook() preinit 1345
12.3.95 SP_set_user_stream_post_hook() preinit 1346
12.3.96 SP_signal() . 1347
12.3.97 SP_strdup() . 1349
12.3.98 SP_string_from_atom() . 1350
12.3.99 SP_term_type() . 1351
12.3.100 SP_unget_byte() . 1352
12.3.101 SP_unget_code() . 1353
12.3.102 SP_unify() . 1354
12.3.103 SP_unregister_atom() . 1355
12.3.104 SU_initialize() hook . 1356
12.3.105 user_close() . 1357
12.3.106 user_flush_output() . 1359
12.3.107 user_read() . 1361
12.3.108 user_write() . 1363

xxvii

13 Command Reference Pages 1365
13.1 sicstus — SICStus Prolog Development System 1366
13.2 mzn-sicstus — Shortcut for MiniZinc with SICStus back-end . . 1368
13.3 spfz — FlatZinc Interpreter . 1369
13.4 spdet — Determinacy Checker . 1370
13.5 spld — SICStus Prolog Application Builder 1371
13.6 splfr — SICStus Prolog Foreign Resource Linker 1378
13.7 splm — SICStus Prolog License Manager 1382
13.8 spxref — Cross Referencer . 1383

References . 1385

Predicate Index . 1389

Keystroke Index . 1403

Book Index . 1405

1

Introduction

Prolog is a simple but powerful programming language developed at the University of Mar-
seille [Roussel 75], as a practical tool for programming in logic [Kowalski 74]. From a user’s
point of view the major attraction of the language is ease of programming. Clear, readable,
concise programs can be written quickly with few errors.

For an introduction to programming in Prolog, readers are recommended to consult [Sterling
& Shapiro 86]. However, for the benefit of those who do not have access to a copy of this
book, and for those who have some prior knowledge of logic programming, we include a
summary of the language. For a more general introduction to the field of Logic Programming
see [Kowalski 79]. See Chapter 4 [Prolog Intro], page 43.

This manual describes a Prolog system developed at the Swedish Institute of Computer
Science. Parts of the system were developed by the project “Industrialization of SICStus
Prolog” in collaboration with Ericsson Telecom AB, NobelTech Systems AB, Infologics AB
and Televerket. The system consists of aWAM emulator written in C, a library and runtime
system written in C and Prolog and an interpreter and a compiler written in Prolog. The
Prolog engine is a Warren Abstract Machine (WAM) emulator [Warren 83]. Two modes
of compilation are available: in-core i.e. incremental, and file-to-file. When compiled, a
predicate will run about 8 times faster and use memory more economically. Implementation
details can be found in [Carlsson 90] and in several technical reports available from SICS.

SICStus Prolog follows the mainstream Prolog tradition in terms of syntax and built-in
predicates. As of release 4, SICStus Prolog is fully compliant with the International Stan-
dard ISO/IEC 13211-1 (PROLOG: Part 1—General Core). SICStus Prolog complies with
Technical Corrigenda 1, 2 and 3.

3

Acknowledgments

The following people have contributed to the development of SICStus Prolog:

Jonas Almgren, Johan Andersson, Stefan Andersson, Nicolas Beldiceanu,
Tamás Benkő, Kent Boortz, Dave Bowen, Per Brand, Göran B̊age, Vicki Car-
leson, Mats Carlsson, Per Danielsson, Joakim Eriksson, Jesper Eskilson, Niklas
Finne, Lena Flood, György Gyaraki, Dávid Hanák, Seif Haridi, Ralph Hay-
good, Christian Holzbaur, Tom Howland, Key Hyckenberg, Péter László, Per
Mildner, Richard O’Keefe, Greger Ottosson, Dan Sahlin, Peter Schachte, Rob
Scott, Thomas Sjöland, Péter Szeredi, Tamás Szeredi, Peter Van Roy, David
Warren, Johan Widén, Magnus Ågren, and Emil Åström.

The Industrialization of SICStus Prolog (1988-1991) was funded by

Ericsson Telecom AB, NobelTech Systems AB, Infologics AB, and Televerket,
under the National Swedish Information Technology Program IT4.

The development of release 3 (1991-1995) was funded in part by

Ellemtel Utvecklings AB

This manual is based on DECsystem-10 Prolog User’s Manual by

D.L. Bowen, L. Byrd, F.C.N. Pereira, L.M. Pereira, D.H.D. Warren

See Section 10.8 [lib-chr], page 410, for acknowledgments relevant to the CHR constraint
solver.

See Section 10.11 [lib-clpqr], page 493, for acknowledgments relevant to the clp(Q,R) con-
straint solver.

UNIX is a registered trademark of The Open Group. Windows is a registered trademark of
Microsoft Corp.

5

1 Notational Conventions

1.1 Keyboard Characters

When referring to keyboard characters, printing characters are written thus: a, while control
characters are written like this: ^A. Thus ^C is the character you get by holding down the
CTL key while you type c. Finally, the special control characters carriage-return, line-feed
and space are often abbreviated to RET, LFD and SPC respectively.

Throughout, we will assume that ^D is the EOF character (it is usually ^Z under Windows)
and that ^C is the interrupt character. In most contexts, the term end_of_file terminated
by a full stop (.) can be typed instead of the EOF character.

1.2 Mode Spec

When describing a predicate, we present its usage with a mode spec, which has the form
name(arg, . . . , arg), where each arg denotes how that argument is used by the predicate,
and has one of the following forms:

:ArgName The argument is used as a term denoting a goal or a clause or a predicate name,
or that otherwise needs special handling of module prefixes. It is is subject to
module name expansion (see Section 4.11.15 [ref-mod-mne], page 171).

+ArgName
The argument is an input argument. Usually, but not always, this implies that
the argument should be instantiated.

-ArgName The argument is an output argument. Usually, but not always, this implies
that the argument should be uninstantiated.

?ArgName
The argument may be used for both input and output.

Please note: The reference pages for built-in predicate use slightly different mode specs.

1.3 Development and Runtime Systems

The full Prolog system with top level, compiler, debugger etc. is known as the development
system.

It is possible to link user-written C code with a subset of SICStus Prolog to create runtime
systems. When introducing a built-in predicate, any limitations on its use in runtime
systems will be mentioned.

1.4 Function Prototypes

Whenever this manual documents a C function as part of SICStus Prolog’s foreign language
interface, the function prototype will be displayed in ANSI C syntax.

6 SICStus Prolog

1.5 ISO Compliance

SICStus Prolog is fully compliant with the International Standard ISO/IEC 13211-1 (PRO-
LOG: Part 1—General Core) as augmented by Technical Corrigenda 1, 2 and 3.

To aid programmers who wish to write standard compliant programs, built-in predicates
and arithmetic functors that are part of the ISO Prolog Standard are annotated with [ISO]
in this manual.

7

2 Glossary

abolish To abolish a predicate is to retract all the predicate’s clauses and to remove all
information about it from the Prolog system, to make it as if that predicate
had never existed.

advice point
A special case of breakpoint, the advice breakpoint. It is distinguished from
spypoints in that it is intended for non-interactive debugging, such as checking
of program invariants, collecting information, profiling, etc.

alphanumeric
An alphanumeric character is any of the lowercase characters from ‘a’ to ‘z’, the
uppercase characters from ‘A’ to ‘Z’, the numerals from ‘0’ to ‘9’, or underscore
(‘_’).

ancestors An ancestor of a goal is any goal that the system is trying to solve when it calls
that goal. The most distant ancestor is the goal that was typed at the top-level
prompt.

anonymous variable
An anonymous variable is one that has no unique name, and whose value is
therefore inaccessible. An anonymous variable is denoted by an underscore
(‘_’).

argument See predicate, structure, and arity.

arity The arity of a structure is its number of arguments. For example, the structure
customer(jones,85) has an arity of 2.

atom A character sequence used to uniquely denote some entity in the problem do-
main. A number is not an atom. Examples of legal atoms are:

hello * := '#$%' 'New York' 'don\'t'

See Section 4.1.2.4 [ref-syn-trm-ato], page 44. Atoms are recognized by the
built-in predicate atom/1. Each Prolog atom is represented internally by a
unique integer, represented in C as an SP_atom.

atomic term
Synonym for constant.

backtrace A collection of information on the control flow of the program, gathered by the
debugger. Also the display of this information produced by the debugger. The
backtrace includes data on goals that were called but not exited and also on
goals that exited nondeterminately.

backtracking
The process of reviewing the goals that have been satisfied and attempting to
resatisfy these goals by finding alternative solutions.

binding The process of assigning a value to a variable; used in unification.

blocked goal
A goal that is suspended because it is not instantiated enough.

8 SICStus Prolog

body The body of a clause consists of the part of a Prolog clause following the ‘:-’
symbol.

breakpoint
A description of certain invocations in the program where the user wants the
debugger to stop, or to perform some other actions. A breakpoint is specific
if it applies to the calls of a specific predicate, possibly under some condi-
tions; otherwise, it is generic. Depending on the intended usage, breakpoints
can be classified as debugger breakpoints, also known as spypoints, or advice
breakpoints, also called advice points; see Section 5.6 [Advanced Debugging],
page 243.

breakpoint specification
A term describing a breakpoint. Composed of a test part, specifying the con-
ditions under which the breakpoint should be applied, and an action part,
specifying the effects of the breakpoint on the execution.

byte list A byte list is a list of bytes, i.e. integers in [0,. . . ,255].

buffer A temporary workspace in Emacs that contains a file being edited.

built-in predicate
A predicate that comes with the system and that does not have to be explicitly
loaded before it is used.

callable term
A callable term is either a compound term or an atom. Callable terms are
recognized by the built-in predicate callable/1.

char list A char list is a list of chars, i.e. atoms made up of a single character.

character code
An integer that is the numeric representation of a character in the character
code set.

character code set
A subset of the set {0, . . . , 2^31-1} that can be handled in input/output.
SICStus Prolog fixes the character code set to a superset of Unicode, which
includes the ASCII code set, i.e. codes 0..127, and these codes are interpreted
as ASCII characters

character-conversion mapping
SICStus Prolog maintains a character-conversion mapping, which is used while
reading terms and programs. Initially, the mapping prescribes no character
conversions. It can be modified by the built-in predicate char_conversion(In,
Out), following which In will be converted to Out. Character conversion can
be switched off by the char_conversion Prolog flag.

Please note: the mapping is global, as opposed to being local to the current
module, Prolog text, or otherwise.

character-type mapping
A function mapping each element of the character code set to one of the char-
acter categories (whitespace, letter, symbol-char, etc.), required for parsing
tokens.

Chapter 2: Glossary 9

choicepoints
Amemory block representing outstanding choices for some goals or disjunctions.

clause A fact or a rule. A rule comprises a head and a body. A fact consists of a head
only, and is equivalent to a rule with the body true.

code list A code list is a list of character codes.

conditional compilation
Conditionally including or excluding parts of a file at compile time.

compactcode
Virtual code representation of compiled code. A reasonable compromise be-
tween performance and space requirement. A valid value for the compiling

Prolog flag.

compile To load a program (or a portion thereof) into Prolog through the compiler.
Compiled code runs more quickly than interpreted code, and provides better
precision for execution profiling and coverage analysis. On the other hand, you
cannot debug compiled code in as much detail as interpreted code.

compound term
A compound term is a term that is an atom together with one or more argu-
ments. For example, in the term father(X), father is the name, and X is the
first and only argument. The argument to a compound term can be another
compound term, as in father(father(X)). Compound terms are recognized
by the built-in predicate compound/1.

conjunction
A series of goals connected by the connective “and” (that is, a series of goals
whose principal operator is ‘,’).

console-based executable
An executable that inherits the standard streams from the process that invoked
it, e.g. a UNIX shell or a DOS-prompt.

constant An integer (for example: 1, 20, -10), a floating-point number (for exam-
ple: 12.35), or an atom. Constants are recognized by the built-in predicate
atomic/1.

consult To load a program (or a portion thereof) into Prolog through the interpreter.
Interpreted code runs more slowly than compiled code, and does not provide
as good precision for execution profiling and coverage analysis. On the other
hand, you can debug interpreted code in more detail than compiled code.

control structure
A built-in predicate that is “part of the language” in the sense that it is treated
specially in certain language features. The set of such control structures and
language features is enuemrated in Section 4.2.3 [ref-sem-ctr], page 63.

creep What the debugger does in trace mode, also known as single-stepping. It goes
to the next port of a procedure box and prints the goal, then prompts you for
input. See Section 5.2 [Basic Debug], page 233.

10 SICStus Prolog

cursor The point on the screen at which typed characters appear. This is usually
highlighted by a line or rectangle the size of one space, which may or may not
blink.

cut Written as !. A built-in predicate that succeeds when encountered; if back-
tracking should later return to the cut, then the goal that matched the head of
the clause containing the cut fails immediately.

database The Prolog database comprises all of the clauses that have been loaded or
asserted into the Prolog system or that have been asserted, except those clauses
that have been retracted or abolished.

db reference
A compound term denoting a unique reference to a dynamic clause. Recognized
by the built-in predicate db_reference/1.

debug A mode of program execution in which the debugger stops to print the current
goal only at predicates that have spypoints set on them (see leap).

debugcode
Interpreted representation of compiled code. A valid value for the compiling

Prolog flag.

declaration
A declaration looks like a directive, but is not executed but rather conveys
information about predicates about to be loaded.

deinit function
A function in a foreign resource that is called prior to unloading the resource.

determinate
A predicate is determinate if it can supply only one answer.

development system
A stand-alone executable with the full programming environment, including top
level, compiler, debugger etc. The default sicstus executable is a development
system; new development systems containing prelinked foreign resources can
also be created.

directive A directive is a goal preceded by the prefix operator ‘:-’, whose intuitive mean-
ing is “execute this as a query, but do not print out any variable bindings.”

disjunction
A series of goals connected by the connective “or” (that is, a series of goals
whose principal operator is ‘;’).

do loop A control structure of the form (Iterators do Body). It expresses a simple
iteration. See Section 4.2.3.5 [ref-sem-ctr-dol], page 68.

dynamic predicate
A predicate that can be modified while a program is running. The semantics of
such updates is described in Section 4.12.1 [ref-mdb-bas], page 176. A predicate
must explicitly be declared to be dynamic or it must be added to the database
via one of the assertion predicates.

Chapter 2: Glossary 11

encoded string
A sequence of bytes representing a sequence of possibly wide character codes,
using the UTF-8 encoding.

escape sequence
A sequence of characters beginning with ‘\’ inside certain syntactic tokens (see
Section 4.1.7.6 [ref-syn-syn-esc], page 60).

export A module exports a predicate so that other modules can import it.

extended runtime system
A stand-alone executable. In addition to the normal set of built-in runtime
system predicates, extended runtime systems include the compiler. Extended
runtime systems require the extended runtime library, available from SICS as
an add-on product.

fact A clause with no conditions—that is, with an empty body. A fact is a statement
that a relationship exists between its arguments. Some examples, with possible
interpretations, are:

king(louis, france). % Louis was king of France.

have_beaks(birds). % Birds have beaks.

employee(nancy, data_processing, 55000).

% Nancy is an employee in the

% data processing department.

file specification
An atom or a compound term denoting the name of a file. The rules for mapping
such terms to absolute file names are described in Section 4.5 [ref-fdi], page 95.

floundered query
A query where all unsolved goals are blocked.

foreign predicate
A predicate that is defined in a language other than Prolog, and explicitly
bound to Prolog predicates by the Foreign Language Interface.

foreign resource
A named set of foreign predicates.

functor The functor of a compound term is its name and arity. For example, the
compound term foo(a,b) is said to have “the functor foo of arity two”, which
is generally written foo/2.

The functor of a constant is the term itself paired with zero. For example, the
constant nl is said to have “the functor nl of arity zero”, which is generally
written nl/0.

garbage collection
The freeing up of space for computation by making the space occupied by terms
that are no longer available for use by the Prolog system.

generalized predicate specification
A generalized predicate specification corresponds to the argument type
pred spec tree (see Section 11.1.4.2 [mpg-ref-aty-ety], page 880) and is a term

12 SICStus Prolog

of one of the following forms. It is always interpreted wrt. a given module
context:

Name all predicates called Name no matter what arity, where Name is an
atom for a specific name or a variable for all names, or

Name/Arity
the predicate of that name and arity, or

Module:Spec
specifying a particular module Module instead of the default mod-
ule, where Module is an atom for a specific module or a variable
for all modules, or

[Spec,. . . ,Spec]
the set of all predicates covered by the Specs.

glue code Interface code between the Prolog engine and foreign predicates. Automatically
generated by the foreign language interface as part of building a linked foreign
resource.

goal A simple goal is a predicate call. When called, it will either succeed or fail.

A compound goal is a formula consisting of simple goals connected by connec-
tives such as “and” (‘,’) or “or” (‘;’).

A goal typed at the top level is called a query.

ground A term is ground when it is free of (unbound) variables. Ground terms are
recognized by the built-in predicate ground/1.

guarded clause
A clause of the form

Head :- Goals, !, Goals.

head The head of a clause is the single goal, which will be satisfied if the conditions
in the body (if any) are true; the part of a rule before the ‘:-’ symbol. The
head of a list is the first element of the list.

hook predicate
A hook predicate is a predicate that somehow alters or customizes the behavior
of a hookable predicate. Typically, it is undefined initially, belongs to the user
module, and if defined by the user, it is best defined as multifile, so that new
clases can be added by different software modules. Please note: any exception
thrown by a hook predicate is caught locally. Then it is either printed as an
error message, or merely ignored.

hookable predicate
A hookable predicate is a built-in predicate whose behavior is somehow altered
or customized by a hook predicate.

interactive stream
A stream with the interactive stream property. Certain behavior of interac-
tive streams are optimized for the case where a human is at the other end of
the stream.

Chapter 2: Glossary 13

import Exported predicates in a module can be imported by other modules. Once a
predicate has been imported by a module, it can be called, or exported, as if it
were defined in that module.

There are two kinds of importation: predicate importation, in which only spec-
ified predicates are imported from a module; and module importation, in which
all the predicates exported by a module are imported.

indexing The process of filtering a set of potentially matching clauses of a predicate given
a goal.

For both interpreted and compiled code, indexing is done on the principal func-
tor of the first argument. Additionally, for interpreted code only, principal
functor filtering is done on each argument, but the filtering done for the first
argument is more efficient.

init function
A function in a foreign resource that is called upon loading the resource.

initialization
An initialization is a goal that is executed when the file in which the initial-
ization is declared is loaded. An initialization is declared as a directive :-

initialization Goal. They are executed in input order.

instantiation
A variable is instantiated if it is bound to a non-variable term; that is, to an
atomic term or a compound term.

interpret Load a program or set of clauses into Prolog through the interpreter (also known
as consulting). Interpreted code runs more slowly than compiled code, does not
provide as good precision for execution profiling and coverage analysis. On the
other hand, more extensive facilities are available for debugging interpreted
code.

invocation box
Same as procedure box.

iterator A compound term expressing how a do loop should be iterated. See
Section 4.2.3.5 [ref-sem-ctr-dol], page 68.

large integer
An integer that is not a small integer.

layout term
In the context of handling line number information for source code, a source
term Source gets associated to a layout term Layout, which is one of the fol-
lowing:

• [], if no line number information is available for Source.

• If Source is a simple term, then Layout is the number of the line where
Source occurs.

• If Source is a compound term, then Layout is a list whose head is the num-
ber of the line where the first token of Source occurs, and whose remaining
elements are the layouts of the arguments of Source.

14 SICStus Prolog

leap What the debugger does in debug mode. The debugger shows only the ports
of predicates that have spypoints on them. It then normally prompts you for
input, at which time you may leap again to the next spypoint (see trace).

leashing Determines how frequently the debugger will stop and prompt you for input
when you are tracing. A port at which the debugger stops is called a “leashed
port”.

linked foreign resource
A foreign resource that is ready to be installed in an atomic operation, normally
represented as a shared object or DLL.

list

A partial list is either a variable, or a compound term whose principal functor is
the list constructor ('.'/2) and whose second argument is a partial list. Often
it is implied that the partial list is not a variable.

A proper list is either the empty list, i.e. the atom [], or a compound term whose
principal functor is the list constructor ('.'/2) and whose second argument is
a proper list.

A partial list or a proper list that is a compound term is said to be non-empty.

In many cases list is used to denote both the case of a proper list and the case
of a, most often non-variable, partial list.

A cyclic list is a compound term whose principal functor is the list constructor
('.'/2) and whose second argument is a cyclic list, e.g. what could be con-
structed using L='.'(a,L), or L=[a,b|L]. Passing a cyclic list as an argument
to a predicate that expects a partial or proper list should be avoided as not all
predictes are prepared to handle such input.

A list is often written using list syntax, e.g. using [a,b] to denote the
(proper) list '.'(a,'.'(b,[])), or using [a,b|End] to denote the (partial)
list '.'(a,'.'(b,End)).

load To load a Prolog clause or set of clauses, in source or binary form, from a file
or set of files.

meta-call The process of interpreting a callable term as a goal. This is done e.g. by the
built-in predicate call/1.

meta-logical predicate
A predicate that performs operations that require reasoning about the current
instantiation of terms or decomposing terms into their constituents. Such op-
erations cannot be expressed using predicate definitions with a finite number
of clauses.

meta-predicate
A meta-predicate is one that calls one or more of its arguments; more generally,
any predicate that needs to assume some module in order to operate is called
a meta-predicate. Some arguments of a meta-predicate are subject to module
name expansion.

module Every predicate belongs to a module. The name of a module is an atom. Some
predicates in a module are exported. The default module is user.

Chapter 2: Glossary 15

module name expansion
The process by which certain arguments of meta-predicates get prefixed by the
source module. See Section 4.11.15 [ref-mod-mne], page 171.

module file
A module file is a file that is headed with a module declaration of the form:

:- module(ModuleName, ExportedPredList).

which must appear as the first term in the file. When a module file or its
corresponding object file is loaded, all predicates defined in the module are
removed, and all predicate imported into the module are unimported.

multifile predicate
A predicate whose definition is to be spread over more than one file. Such
a predicate must be preceded by an explicit multifile declaration in all files
containing clauses for it.

mutable term
A special form of compound term subject to destructive assignment. See
Section 4.8.9 [ref-lte-mut], page 131. Mutable terms are recognized by the
built-in predicate mutable/1.

name clash
A name clash occurs when a module attempts to define or import a predicate
that it has already defined or imported.

nondeterminate
A predicate is determinate if it can supply more than one answer.

occurs check
A test to ensure that binding a variable does not bind it to a term where that
variable occurs.

one-char atom
An atom that consists of a single character.

operator A notational convenience that allows you to express any compound term in a
different format. For example, if likes in

| ?- likes(sue, cider).

is declared an infix operator, then the query above could be written:

| ?- sue likes cider.

An operator does not have to be associated with a predicate. However, certain
built-in predicates are declared as operators. For example,

| ?- =..(X, Y).

can be written as

| ?- X =.. Y.

because =.. has been declared an infix operator.

Those predicates that correspond to built-in operators are written using infix
notation in the list of built-in predicates at the beginning of the part that
contains the reference pages.

16 SICStus Prolog

Some built-in operators do not correspond to built-in predicates; for example,
arithmetic operators. See Section 4.1.5.4 [ref-syn-ops-bop], page 51, for a list
of built-in operators.

pair A compound term K-V. Pairs are used by the built-in predicate keysort/2 and
by many library modules.

parent The parent of the current goal is a goal that, in its attempt to obtain a successful
solution to itself, is calling the current goal.

port One of the seven key points of interest in the execution of a Prolog predicate.
See Section 5.1 [Procedure Box], page 231, for a definition.

prelinked foreign resource
A linked foreign resource that is linked into a stand-alone executable as part of
building the executable.

precedence
A number associated with each Prolog operator, which is used to disambiguate
the structure of the term represented by an expression containing a number
of operators. Operators of lower precedence are applied before those of higher
precedence; the operator with the highest precedence is considered the principal
functor of the expression. To disambiguate operators of the same precedence,
the associativity type is also necessary. See Section 4.1.5 [ref-syn-ops], page 47.

predicate A functor that specifies some relationship existing in the problem domain. For
example, < /2 is a built-in predicate specifying the relationship of one number
being less than another. In contrast, the functor + /2 is not (normally used as)
a predicate.

A predicate is either built-in or is implemented by a procedure.

predicate specification
A compound term name/arity or module:name/arity denoting a predicate.

procedure A set of clauses in which the head of each clause has the same predicate. For
instance, a group of clauses of the following form:

connects(san_francisco, oakland, bart_train).

connects(san_francisco, fremont, bart_train).

connects(concord, daly_city, bart_train).

is identified as belonging to the predicate connects/3.

procedure box
A way of visualizing the execution of a Prolog procedure, A procedure box is
entered and exited via ports.

profiling The process of gathering execution statistics of the program, essentially count-
ing the number of times selected program points have been reached.

program A set of procedures designed to perform a given task.

PO file A PO (Prolog object) file contains a binary representation of a set of mod-
ules, predicates, clauses and directives. They are portable between different
platforms, except between 32-bit and 64-bit platforms. They are created by
save_files/2, save_modules/2, and save_predicates/2.

Chapter 2: Glossary 17

query A query is a question put by the user to the Prolog system. A query is written as
a goal followed by a full stop in response to the top-level prompt. For example,

| ?- father(edward, ralph).

refers to the predicate father/2. If a query has no variables in it, then the
system will respond either ‘yes’ or ‘no’. If a query contains variables, then the
system will try to find values of those variables for which the query is true. For
example,

| ?- father(edward, X).

X = ralph

After the system has found one answer, the user can direct the system to look
for additional answers to the query by typing ;.

recursion The process in which a running predicate calls itself, presumably with different
arguments and for the purpose of solving some subset of the original problem.

region The text between the cursor and a previously set mark in an Emacs buffer.

rule A clause with one or more conditions. For a rule to be true, all of its conditions
must also be true. For example,

has_stiff_neck(ralph) :-

hacker(ralph).

This rule states that if the individual ralph is a hacker, then he must also have
a stiff neck. The constant ralph is replaced in

has_stiff_neck(X) :-

hacker(X).

by the variable X. X unifies with anything, so this rule can be used to prove
that any hacker has a stiff neck.

runtime kernel
A shared object or DLL containing the SICStus virtual machine and other
runtime support for stand-alone executables.

runtime system
A stand-alone executable with a restricted set of built-in predicates and no top
level. Stand-alone applications containing debugged Prolog code and destined
for end-users are typically packaged as runtime systems.

saved state
A snapshot of the state of Prolog saved in a file by save_program/[1,2].

semantics The relation between the set of Prolog symbols and their combinations (as
Prolog terms and clauses), and their meanings. Compare syntax.

sentence A clause or directive.

side effect A predicate that produces a side effect is one that has any effect on the “outside
world” (the user’s terminal, a file, etc.), or that changes the Prolog database.

simple term
A simple term is a constant or a variable. Simple terms are recognized by the
built-in predicate simple/1.

18 SICStus Prolog

skeletal goal
A compound term name(arg, ..., arg) or module:name(arg, ..., arg) de-
noting a predicate.

small integer
An integer in the range [-2^28,2^28-1] on 32-bit platforms, or [-2^60,2^60-
1] on 64-bit platforms. The start and end of this range is available as the
value of the Prolog flags min_tagged_integer and max_tagged_integer, re-
spectively.

source code
The human-readable, as opposed to the machine-executable, representation of
a program.

source module
The module that is the context of a file being loaded. For module files, the
source module is named in the file’s module declaration. For other files, the
source module is inherited from the context.

SP atom since release 4.3
A C type for the internal representation of Prolog atoms. Used in SICStus API
functions.

SP integer since release 4.3
A C type denoting an integer that is large enough to hold a pointer. Used in
SICStus API functions.

SP term ref
A C type denoting a “handle” object providing an interface from C to Prolog
terms. Used in SICStus API functions.

spypoint A special case of breakpoint, the debugger breakpoint, intended for interactive
debugging. Its simplest form, the plain spypoint instructs the debugger to stop
at all ports of all invocations of a specified predicate. Conditional spypoints
apply to a single predicate, but are more selective: the user can supply appli-
cability tests and prescribe the actions to be carried out by the debugger. A
generic spypoint is like a conditional spypoint, but not restricted to a single
predicate. See Section 5.6 [Advanced Debugging], page 243.

stand-alone executable
A binary program that can be invoked from the operating system, containing
the SICStus runtime kernel. A stand-alone executable is a development system
(e.g. the default sicstus executable), or a runtime system. Both kinds are
created by the application builder. A stand-alone executable does not itself
contain any Prolog code; all Prolog code must be loaded upon startup.

static predicate
A predicate that can be modified only by being reloaded or by being abolished.
See dynamic predicate.

steadfast A predicate is steadfast if it refuses to give the wrong answer even when the
query has an unexpected form, typically with values supplied for arguments
intended as output.

Chapter 2: Glossary 19

stream An input/output channel. See Section 4.6 [ref-iou], page 102.

stream alias
A name assigned to a stream at the time of opening, which can be referred to
in I/O predicates. Must be an atom. There are also three predefined aliases for
the standard streams: user_input, user_output and user_error. Although
not a stream alias proper, the atom user also stands for the standard input or
output stream, depending on context.

stream object
A term denoting an open Prolog stream. See Section 4.6 [ref-iou], page 102.

stream position
A term representing the current position of a stream. This position is deter-
mined by the current byte, character and line counts and line position. Stan-
dard term comparison on stream position terms works as expected. When SP1

and SP2 refer to positions in the same stream, SP1@<SP2 if and only if SP1
is before SP2 in the stream. You should not otherwise rely on their internal
representation.

stream property
A term representing the property of an open Prolog stream. The possible forms
of this term are defined in Section 4.6.7.8 [ref-iou-sfh-bos], page 113.

string A special syntactic notation, which, by default, denotes a code list, e.g.:

"SICStus"

By setting the Prolog flag double_quotes, the meaning of strings can be
changed. With an appropriate setting, a string can be made to denote a char
list, or an atom. Strings are not a separate data type.

subterm selector
A list of argument positions selecting a subterm within a term (i.e. the subterm
can be reached from the term by successively selecting the argument positions
listed in the selector). Example: within the term q, (r, s; t) the subterm s

is selected by the selector [2, 1, 2].

syntax The part of Prolog grammar dealing with the way in which symbols are put
together to form legal Prolog terms. Compare semantics.

system property
SICStus Prolog stores some information in named variables called system prop-
erties. System properties are used as of release 4.1, where previous releases used
environment variables.

The default value for a system property is taken from the corresponding en-
vironment variable. Any exceptions to this rule is explicitly mentioned in the
documentation. See Section 4.17.1 [System Properties and Environment Vari-
ables], page 224, for more information.

term A basic data object in Prolog. A term can be a constant, a variable, or a
compound term.

trace A mode of program execution in which the debugger creeps to the next port
and prints the goal.

20 SICStus Prolog

type-in module
The module that is the context of queries.

unblocked goal
A goal that is not blocked any more.

unbound A variable is unbound if it has not yet been instantiated.

unification The process of matching a goal with the head of a clause during the evaluation
of a query, or of matching arbitrary terms with one another during program
execution.

The rules governing the unification of terms are:

• Two constants unify with one another if they are identical.

• A variable unifies with a constant or a compound term. As a result of the
unification, the variable is instantiated to the constant or compound term.

• A variable unifies with another variable. As a result of the unification, they
become the same variable.

• A compound term unifies with another compound term if they have the
same functor and if all of the arguments can be unified.

unit clause
See fact.

variable A logical variable is a name that stands for objects that may or may not be
determined at a specific point in a Prolog program. When the object for which
the variable stands is determined in the Prolog program, the variable becomes
instantiated. A logical variable may be unified with a constant, a compound
term, or another variable. Variables become uninstantiated when the predicate
they occur in backtracks past the point at which they were instantiated.

Variables may be written as any sequence of alphanumeric characters starting
with either a capital letter or ‘_’; e.g.:

X Y Z Name Position _c _305 One_stop

See Section 4.1.2.5 [ref-syn-trm-var], page 44.

volatile Predicate property. The clauses of a volatile predicate are not saved in saved
states.

windowed executable
An executable that pops up its own window when run, and that directs the
standard streams to that window.

zip Same as debug mode, except no debugging information is collected while zip-
ping.

21

3 How to Run Prolog

SICStus Prolog offers the user an interactive programming environment with tools for incre-
mentally building programs, debugging programs by following their executions, and modi-
fying parts of programs without having to start again from scratch.

The text of a Prolog program is normally created in a file or a number of files using one of
the standard text editors. The Prolog interpreter can then be instructed to read in programs
from these files; this is called consulting the file. Alternatively, the Prolog compiler can be
used for compiling the file.

3.1 Getting Started

Under UNIX, SICStus Prolog can be started from one of the shells. On other platforms, it
is normally started by clicking on an icon. However, it is often convenient to run SICStus
Prolog under GNU Emacs or the SPIDER IDE (see Section 3.11 [SPIDER], page 29),
instead. A GNU Emacs interface for SICStus Prolog is described later (see Section 3.12
[Emacs Interface], page 32). From a UNIX or Windows shell, SICStus Prolog can be
started by invoking the sicstus command-line tool, using the full path to sicstus unless
its location has been added to the shell’s path.

Under UNIX, a saved state file can be executed directly by typing:

% file argument...

This is equivalent to:

% sicstus -r file [-- argument...]

Please note: saved states do not store the complete path of the binary
sicstus. Instead, they call the main executable using the version specific name
sicstus-4.6.0, which is assumed to be found in the shell’s path. If there are
several versions of SICStus installed, then it is up to the user to make sure that
the correct start-script is found.

Notice that the flags are not available when executing saved states—all the command-line
arguments are treated as Prolog arguments.

The development system checks that a valid SICStus license exists and, unless the --nologo
option was used, responds with a message of identification and the prompt ‘| ?- ’ as soon
as it is ready to accept input, thus:

SICStus 4.6.0 ...

Licensed to SICS

| ?-

At this point the top level is expecting input of a query. You cannot type in clauses or
directives immediately (see Section 3.3 [Inserting Clauses], page 22). While typing in a

22 SICStus Prolog

query, the prompt (on following lines) becomes ‘ ’. That is, the ‘| ?- ’ appears only
for the first line of the query, and subsequent lines are indented.

3.2 Reading in Programs

A program is made up of a sequence of clauses and directives. The clauses of a predicate
do not have to be immediately consecutive, but remember that their relative order may be
important (see Section 4.2 [ref-sem], page 61).

To input a program from a file file, issue a query of the form:

| ?- consult(file).

This instructs the interpreter to read in (consult) the program. Note that it may be neces-
sary to enclose the filename file in single quotes to make it a legal Prolog atom; e.g.:

| ?- consult('myfile.pl').

| ?- consult('/usr/prolog/somefile').

The specified file is then read in. Clauses in the file are stored so that they can later be
interpreted, while any directives are obeyed as they are encountered. When the end of
the file is found, the system displays on the standard error stream the time spent. This
indicates the completion of the query.

Predicates that expect the name of a Prolog source file, or more generally a file specification,
use the facilities described in Section 4.5 [ref-fdi], page 95, to resolve the file name. File
extensions are optional. There is also support for libraries.

This query can also take any list of filenames, such as:

| ?- consult([myprog,extras,tests]).

In this case all three files would be consulted. The clauses for all the predicates in the
consulted files will replace any existing clauses for those predicates, i.e. any such previously
existing clauses in the database will be deleted.

3.3 Inserting Clauses at the Terminal

Clauses may also be typed in directly at the terminal, although this is only recommended
if the clauses will not be needed permanently, and are few in number. To enter clauses at
the terminal, you must give the special query:

| ?- consult(user).

|

and the new prompt ‘| ’ shows that the system is now in a state where it expects input of
clauses or directives. To return to top level, type ^D. The system responds thus:

% consulted user in module user, 20 msec 200 bytes

Chapter 3: How to Run Prolog 23

3.4 Queries and Directives

Queries and directives are ways of directing the system to execute some goal or goals.

In the following, suppose that list membership has been defined by loading the following
clauses from a file:

memb(X, [X|_]).

memb(X, [_|L]) :- memb(X, L).

(Notice the use of anonymous variables written ‘_’.)

3.4.1 Queries

The full syntax of a query is ‘?-’ followed by a sequence of goals. The top level expects
queries. This is signaled by the initial prompt ‘| ?- ’. Thus a query at top-level looks like:

| ?- memb(b, [a,b,c]).

Remember that Prolog terms must terminate with a full stop (‘.’, possibly followed by
whitespace), and that therefore Prolog will not execute anything until you have typed the
full stop (and then RET) at the end of the query.

If the goal(s) specified in a query can be satisfied, and if no variables not beginning with
‘_’ were bound, as in this example, then the system answers:

yes

and execution of the query terminates.

If some query variables not beginning with ‘_’ were bound, then the final value of each
variable is displayed. Thus the query:

| ?- memb(X, [a,b,c]).

would be answered by:

X = a ?

At this point, the development system accepts one-letter commands corresponding to certain
actions. To execute an action simply type the corresponding character (lower or upper case)
followed by RET. The available commands in development systems are:

RET

y “accepts” the solution; the query is terminated and the development system
responds with ‘yes’.

;

n “rejects” the solution; the development system backtracks (see Section 4.2 [ref-
sem], page 61) looking for alternative solutions. If no further solutions can be
found, then it outputs ‘no’.

b invokes a recursive top level.

24 SICStus Prolog

< In the top level, a global printdepth is in effect for limiting the subterm nesting
level when printing bindings. The limit is initially 10.

This command, without arguments, resets the printdepth to 10. With an ar-
gument of n, the printdepth is set to n, treating 0 as infinity. This command
works by changing the value of the toplevel_print_options Prolog flag.

^ A local subterm selector, initially [], is maintained. The subterm selector
provides a way of zooming in to some subterm of each binding. For example,
the subterm selector [2,3] causes the 3rd subterm of the 2nd subterm of each
binding to be selected.

This command, without arguments, resets the subterm selector to []. With
an argument of 0, the last element of the subterm selector is removed. With
an argument of n (> 0), n is added to the end of the subterm selector. With
multiple arguments separated by whitespace, the arguments are applied from
left to right.

h

? lists available commands.

While the variable bindings are displayed, all variables occurring in the values are replaced
by friendlier variable names. Such names come out as a sequence of letters and digits
preceded by ‘_’. The outcome of some queries is shown below.

| ?- memb(X, [tom,dick,harry]).

X = tom ;

X = dick ;

X = harry ;

no

| ?- memb(X, [a,b,f(Y,c)]), memb(X, [f(b,Z),d]).

X = f(b,c),

Y = b,

Z = c

| ?- memb(X, [f(_),g]).

X = f(_A)

Directives are like queries except that:

1. Variable bindings are not displayed if and when the directive succeeds.

2. You are not given the chance to backtrack through other solutions.

3.4.2 Directives

Directives start with the symbol ‘:-’. Any required output must be programmed explicitly;
e.g. the directive:

Chapter 3: How to Run Prolog 25

:- memb(3, [1,2,3]), write(ok).

asks the system to check whether 3 belongs to the list [1,2,3]. Execution of a direc-
tive terminates when all the goals in the directive have been successfully executed. Other
alternative solutions are not sought. If no solution can be found, then the system prints:

* Goal - goal failed

as a warning.

The principal use for directives (as opposed to queries) is to allow files to contain directives
that call various predicates, but for which you do not want to have the answers printed
out. In such cases you only want to call the predicates for their effect, i.e. you do not want
terminal interaction in the middle of consulting the file. A useful example would be the use
of a directive in a file that loads a whole list of other files, e.g.:

:- ensure_loaded([bits, bobs, main, tests, data, junk]).

If a directive like this were contained in the file myprog, then typing the following at top
level would be a quick way of reading in your entire program:

| ?- [myprog].

When simply interacting with the top level, this distinction between queries and directives
is not normally very important. At top level you should just type queries normally. In a
file, queries are in fact treated as directives, i.e. if you wish to execute some goals, then the
directive in the file must be preceded by ‘:-’ or ‘?-’; otherwise, it would be treated as a
clause.

3.5 Syntax Errors

Syntax errors are detected during reading1. Each clause, directive or, in general, any term
read in by the built-in predicate read/1 that fails to comply with syntax requirements is
displayed on the standard error stream as soon as it is read, along with its position in the
input stream and a mark indicating the point in the string of symbols where the parser has
failed to continue analysis, e.g.:

| memb(X, X$L).

! Syntax error

! , or) expected in arguments

! in line 5

! memb (X , X

! <<here>>

! $ L) .

if ‘$’ has not been declared as an infix operator.

1 The SICStus Prolog IDE (see Section 3.11 [SPIDER], page 29) will show syntax errors and many other
programming errors directly in the editor, while the code is written, without loading the code.

26 SICStus Prolog

Note that any comments in the faulty line are not displayed with the error message. If you
are in doubt about which clause was wrong, then you can use consult/12 to load the code
and then use the listing/1 predicate to list all the clauses that were successfully read in,
e.g.:

| ?- listing(memb/2).

Please note: The built-in predicates read/[1,2] normally raise an exception on
syntax errors (see Section 4.15 [ref-ere], page 197). The behavior is controlled
by the Prolog flag syntax_errors.

3.6 Undefined Predicates

There is a difference between predicates that have no definition and predicates that have
no clauses. The latter case is meaningful e.g. for dynamic predicates (see Section 4.3.4
[ref-lod-dcl], page 83) that clauses are being added to or removed from. There are good
reasons for treating calls to undefined predicates as errors, as such calls easily arise from
typing errors.

The system can optionally catch calls to predicates that have no definition. First, the
user defined predicate user:unknown_predicate_handler/3 (see Section 4.15 [ref-ere],
page 197) is called. If undefined or if the call fails, then the action is governed by the state
of the unknown Prolog flag; see Section 4.9.4 [ref-lps-flg], page 136. Calls to predicates that
have no clauses are not caught. See Section 11.3.244 [mpg-ref-unknown predicate handler],
page 1215. Two development system predicates are handy in this context:

| ?- unknown(X,error).

% Undefined predicates will raise an exception (error)

X = error

This sets the flag and prints a message about the new value.

| ?- debugging.

The debugger is switched off

Using leashing stopping at [call,exit,redo,fail,exception] ports

Undefined predicates will raise an exception (error)

There are no breakpoints

This prints a message about the current value, as well as information about the state of the
debugger.

3.7 Program Execution And Interruption

Execution of a program is started by giving the system a query that contains a call to one
of the program’s predicates.

2 By default, e.g. when using [myprog], code is compiled. Compiled code can not be listed with listing/1.
Using consult([myprog]) ensures that the code is interpreted, making it available for listing with
listing/1.

Chapter 3: How to Run Prolog 27

Only when execution of one query is complete does the system become ready for another
query. However, one may interrupt the normal execution of a query by typing ^C. This
^C interruption has the effect of suspending the execution, and the following message is
displayed:

Prolog interruption (h or ? for help) ?

At this point, the development system accepts one-letter commands corresponding to certain
actions. To execute an action simply type the corresponding character (lower or upper case)
followed by RET. The available commands in development systems are:

a aborts the current computation.

c continues the execution.

e exits from SICStus Prolog, closing all files.

h

? lists available commands.

b invokes a recursive top level.

d

z

t switch on the debugger. See Chapter 5 [Debug Intro], page 231.

If the standard input stream is not connected to the terminal, e.g. by redirecting standard
input to a file or a pipe, then the above ^C interrupt options are not available. Instead,
typing ^C causes SICStus Prolog to exit, and no terminal prompts are printed.

3.8 Exiting From The Top Level

To exit from the top level and return to the shell, either type ^D at the top level, or call the
built-in predicate halt/0, or use the e (exit) command following a ^C interruption.

3.9 Nested Executions—Break

The Prolog system provides a way to suspend the execution of your program and to enter
a new incarnation of the top level where you can issue queries to solve goals etc. This is
achieved by issuing the query (see Section 3.7 [Execution], page 26):

| ?- break.

This invokes a recursive top level, indicated by the message:

% Break level 1

You can now type queries just as if you were at top level.

If another call of break/0 is encountered, then it moves up to level 2, and so on. To close
the break and resume the execution that was suspended, type ^D. The debugger state and

28 SICStus Prolog

current input and output streams will be restored, and execution will be resumed at the
predicate call where it had been suspended after printing the message:

% End break

3.10 Saving and Restoring Program States

Once a program has been read, the system will have available all the information necessary
for its execution. This information is called a program state.

The saved state of a program may be saved on disk for future execution. To save a program
into a file File, type the following query. On UNIX platforms, the file becomes executable:

| ?- save_program(File).

You can also specify a goal to be run when a saved program is restored. This is done by:

| ?- save_program(File, start).

where start/0 is the predicate to be called.

Once a program has been saved into a file File, the following query will restore the system
to the saved state:

| ?- restore(File).

If a saved state has been moved or copied to another machine, or if it is a symbolic link,
then the path names of foreign resources and other files needed upon restore are typically
different at restore time from their save time values. To solve this problem, certain atoms
will be renamed during restore as follows:

• Atoms that had $SP_PATH/library (the name of the directory containing the Prolog
Library) as prefix at save time will have that prefix replaced by the corresponding
restore time value.

• Atoms that had the name of the directory containing File as prefix at save time will
have that prefix replaced by the corresponding restore time value.

The purpose of this procedure is to be able to build and deploy an application consisting of
a saved state and other files as a directory tree with the saved state at the root: as long as
the other files maintain their relative position in the deployed copy, they can still be found
upon restore. See Section 6.8.2 [Building for a Target Machine], page 333, for an example.

Please note: When creating a saved state with save_program/[1,2], the names
and paths of foreign resources, are included in the saved state. After restoring
a saved state, this information is used to reload the foreign resources again.

The state of the foreign resource in terms of global C variables and allocated
memory is thus not preserved. Foreign resources may define init and deinit
functions to take special action upon loading and unloading; see Section 6.2.6
[Init and Deinit Functions], page 296.

Chapter 3: How to Run Prolog 29

As of release 3.8, partial saved states corresponding to a set of source files, modules, and
predicates can be created by the built-in predicates save_files/2, save_modules/2, and
save_predicates/2 respectively. These predicates create files in a binary format, by default
with the suffix ‘.po’ (for Prolog object), which can be loaded by load_files/[1,2]. In
fact, PO files use exactly the same binary format as saved states, and are subject to the
same above-mentioned atom renaming rules. For example, to compile a program split into
several source files into a single PO file, type:

| ?- compile(Files), save_files(Files, Object).

For each filename given, the first goal will try to locate a source file and compile it into
memory. The second goal will save the program just compiled into a PO file whose default
suffix is ‘.po’. Thus the PO file will contain a partial memory image.

Please note: PO files can be created with any suffix, but cannot be loaded
unless the suffix is ‘.po’!

3.11 SICStus Prolog IDE

SICStus Prolog IDE, also known as SPIDER, is an Eclipse-based development environment
for SICStus with many powerful features.

SPIDER was added in release 4.1 and is described on its own site, https://sicstus.sics.
se/spider/.

Some of the features of SPIDER are:

Semantic Highligting
Code is highlighted based on semantic properties such as singleton variables,
. . . .

On-the-fly warnings
The editor flags things like calls to undefined predicates, incorrect use of direc-
tives, missing declarations, . . .

Pop-up documentation
Predicate documentation is parsed on-the-fly and shown when the mouse is
hovering over a call. This works for both built-in and user-defined predicates.

Open Definition
Clicking on a called predicate can bring up its source code.

Call Hierarchy
Show callers and other references to a predicate or file.

Profiling Show profiling data

Source Code Coverage
Show source code coverage, both as margin annotations and in various tabular
forms.

Call Hierarchy
Show callers and other references to a predicate or file.

https://sicstus.sics.se/spider/
https://sicstus.sics.se/spider/

30 SICStus Prolog

File outline
The predicates in a file are shown in an outline. They can be alphabetically
sorted and non-exported predicates can be hidden from the outline.

Variable Bindings in Debugger
The debugger shows the names and values of variables.

Debugger Backtrace
Backtrace is shown and there are buttons for common debugger actions (Step
Over, Step Out, Redo, . . .).

Source Code Debugging
Source-linked debugging. Works also for code that has no recorded source info,
like the SICStus library.

Prolog Toplevel
The ordinary toplevel is still available, including the traditional debugger in-
terface.

Attach to embedded code
SPIDER can attach to a SICStus runtime embedded in some other program.

Works With Existing Code
No need to reorganize your code, SPIDER can work with your existing folder
structure.

Powered by Eclipse
Eclipse provides many features for free, like support for other programming
languages, revision control, and much more.

Some of these features can be seen in the following screen shot.

Chapter 3: How to Run Prolog 31

32 SICStus Prolog

Some Features of SPIDER

3.12 Emacs Interface

This section explains how to use the GNU Emacs interface for SICStus Prolog, and how
to customize your GNU Emacs environment for it. Note that the SPIDER IDE (see
Section 3.11 [SPIDER], page 29) has many more features than the GNU Emacs interface.

Emacs is a powerful programmable editor especially suitable for program development. It
is available for free for many platforms, including various UNIX dialects, Windows and OS
X. For information specific to GNU Emacs , see http://www.gnu.org. For information on
running Emacs under Windows, see the ‘GNU Emacs FAQ For MS Windows’ at http://www.
gnu.org/software/emacs/windows/ntemacs.html.

The advantages of using SICStus in the Emacs environment are source-linked debugging,
auto indentation, syntax highlighting, help on predefined predicates (requires the SICStus
info files to be installed), loading code from inside Emacs, auto-fill mode, and more.

The Emacs interface is not part of SICStus Prolog proper, but is included in the distribution
for convenience. It was written by Emil Åström and Milan Zamazal, based on an earlier
version of the mode written by Masanobu Umeda. Contributions have also been made
by Johan Andersson, Peter Olin, Mats Carlsson, Johan Bevemyr, Stefan Andersson, Per
Danielsson, Per Mildner, Henrik B̊akman, and Tamás Rozmán. Some ideas and also a few
lines of code have been borrowed (with permission) from Oz.el, by Ralf Scheidhauer and
Michael Mehl, the Emacs major mode for the Oz programming language.

3.12.1 Installation

See Section “The Emacs Interface” in SICStus Prolog Release Notes for more information
about installing the Emacs interface.

3.12.1.1 Quick-Start

Assuming the Emacs interface for SICStus Prolog has been installed in the default location,
inserting a single line in your ~/.emacs will make Emacs use the SICStus Prolog mode
automatically when editing files with a ‘.pro’ or ‘.pl’ extension. It will also ensure Emacs
can find the SICStus executables and on-line documentation, etc.

Note to Windows users: ~/.emacs denotes a file .emacs in whatever Emacs considers to
be your home directory. See ‘GNU Emacs FAQ For MS Windows’ at http://www.gnu.org/

software/emacs/windows/ntemacs.html for details.

Under UNIX, assuming SICStus 4.6.0 was installed in /usr/local/sicstus4.6.0/, add
the following line:

(load "/usr/local/sicstus4.6.0/lib/sicstus-4.6.0/emacs/sicstus_emacs_init")

Under Windows, assuming SICStus 4.6.0 was installed in C:\Program Files\SICStus

Prolog VC16 4.6.0\, add the following line:

http://www.gnu.org
http://www.gnu.org/software/emacs/windows/ntemacs.html
http://www.gnu.org/software/emacs/windows/ntemacs.html
http://www.gnu.org/software/emacs/windows/ntemacs.html
http://www.gnu.org/software/emacs/windows/ntemacs.html

Chapter 3: How to Run Prolog 33

(load "C:/Program Files/SICStus Prolog VC16

4.6.0/emacs/sicstus_emacs_init")

No other configuration should be needed to get started. If you want to customize things,
then look in the sictus_emacs_init.el file and the rest of this section.

3.12.1.2 Customizing Emacs

Version 20 of GNU Emacs and XEmacs introduced a new method for editing and storing
user settings. This feature is available from the menu bar as ‘Customize’ and particular
Emacs variables can be customized with M-x customize-variable. Using ‘Customize’ is
the preferred way to modify the settings for Emacs and the appropriate customize commands
will be indicated below, sometimes together with the old method of directly setting Emacs
variables.

3.12.1.3 Enabling Emacs Support for SICStus

This section is for reference only, it can safely be skipped; it will let you understand the
setup that is performed by the sictus_emacs_init.el file.

Assuming the Emacs interface for SICStus Prolog has been installed in the default location,
inserting the following lines in your ~/.emacs will make Emacs use this mode automatically
when editing files with a ‘.pro’ or ‘.pl’ extension:

(setq load-path

(cons (expand-file-name "/usr/local/sicstus4.6.0/lib/sicstus-4.6.0/emacs")

load-path))

(autoload 'run-prolog "prolog" "Start a Prolog sub-process." t)

(autoload 'prolog-mode "prolog" "Major mode for editing Prolog programs." t)

(setq prolog-use-sicstus-sd t)

(setq auto-mode-alist (append '(("\\.pro$" . prolog-mode)

("\\.pl$" . prolog-mode))

auto-mode-alist))

where the path in the first line is the file system path to prolog.el (the generic Prolog
mode) and sicstus-support.el (SICStus specific code). For example, ~/emacs means
that the file is in the user’s home directory, in directory emacs. Windows paths can be
written like C:/Program Files/SICStus Prolog VC16 4.6.0/emacs.

The last line above makes sure that files ending with ‘.pro’ or ‘.pl’ are assumed to be
Prolog files and not Perl, which is the default Emacs setting for ‘.pl’. If this is undesirable,
then remove that line. It is then necessary for the user to manually switch to Prolog mode
by typing M-x prolog-mode after opening a Prolog file; for an alternative approach, see
Section 3.12.4 [Mode Line], page 37.

If the shell command sicstus is not available in the default path, then it is necessary to
set the value of the environment variable EPROLOG to a shell command to invoke SICStus
Prolog. This is an example for C Shell:

% setenv EPROLOG /usr/local/sicstus4.6.0/bin/sicstus

34 SICStus Prolog

3.12.1.4 Enabling Emacs Support for SICStus Documentation

If you follow the steps in Section Quick Start above, then you can skip this section.

It is possible to look up the documentation for any built-in or library predicate from within
Emacs (using C-c ? or the menu). For this to work Emacs must be told about the location
of the ‘info’-files that make up the documentation.

The default location for the ‘info’-files are <prefix>/lib/sicstus-4.6.0/doc/info/ on
UNIX platforms and C:/Program Files/SICStus Prolog VC16 4.6.0/doc/info/ under
Windows.

Add the following to your ~/.emacs file, assuming INFO is the path to the info files, e.g.
C:/Program Files/SICStus Prolog VC16 4.6.0/doc/info/

(setq Info-default-directory-list

(append Info-default-directory-list '("INFO")))

for GNU Emacs, or

(setq Info-directory-list

(append Info-directory-list '("INFO")))

for XEmacs. You can also use M-x customize-group RET info RET if your Emacs is recent
enough. You may have to quit and restart Emacs for these changes to take effect.

3.12.2 Basic Configuration

If the following lines are not present in ~/.emacs, then we suggest they are added, so that
the font-lock mode (syntax coloring support) is enabled for all major modes in Emacs that
support it.

(global-font-lock-mode t) ; GNU Emacs

(setq font-lock-auto-fontify t) ; XEmacs

(setq font-lock-maximum-decoration t)

These settings and more are also available through M-x customize-group RET font-lock.

If one wants to add font-locking only to the Prolog mode, then the two lines above could
be replaced by:

(add-hook 'prolog-mode-hook 'turn-on-font-lock)

Similarly, to turn it off only for Prolog mode use:

(add-hook 'prolog-mode-hook 'turn-off-font-lock)

3.12.3 Usage

A Prolog process can be started by choosing Run Prolog from the Prolog menu, by typing
C-c RET, or by typing M-x run-prolog. It is however not strictly necessary to start a Prolog
process manually since it is automatically done when consulting or compiling, if needed.

Chapter 3: How to Run Prolog 35

The process can be restarted (i.e. the old one is killed and a new one is created) by typing
C-u C-c RET, in this case Emacs will also prompt for a Lisp list of extra parameters to pass
on the command line.

Programs are run and debugged in the normal way, with terminal I/O via the *prolog*

buffer. The most common debugging predicates are available from the menu or via key-
bindings.

A particularly useful feature under the Emacs interface is source-linked debugging. This is
enabled or disabled using the Prolog/Source-linked debugging menu entry. It can also
be enabled by setting the Emacs variable prolog-use-sicstus-sd to t in ~/.emacs. Both
these methods set the Prolog flag source_info to emacs. Its value should be emacs while
loading the code to be debugged and while debugging. If so, then the debugger will display
the source code location of the current goal when it prompts for a debugger command, by
highlighting the current line. If source_info was off when the code was loaded, or if it was
asserted or loaded from user, then the current goal will still be shown but out of context.

Note that if the code has been modified since it was last loaded, then Prolog’s line number
information may be invalid. If this happens, then just reload the relevant buffer.

Another useful feature which is available for code loaded with source_info switched on is
that the debugger can show the variable bindings for the current goal, its ancestors, and
the clauses they occur in. The bindings are shown in a separate *Prolog Bindings* buffer.
This is enabled by the C-c C-g command and disabled by the C-u C-c C-g command.

Yet another feature which is available for compiled code loaded with source_info switched
on is code coverage highlighting (see Section 9.3 [Coverage Analysis], page 354). Highlight-
ing of the current buffer is refreshed by the C-c C-o command and cleared by the C-u C-c

C-o command.

Consultation and compilation is either done via the menu or with the following key-bindings:

C-c C-f Consult file.

C-c C-b Consult buffer.

C-c C-r Consult region.

C-c C-p Consult predicate.

C-c C-c f Compile file.

C-c C-c b Compile buffer.

C-c C-c r Compile region.

C-c C-c p Compile predicate.

The boundaries used when consulting and compiling predicates are the first and last clauses
of the predicate the cursor is currently in.

Other useful key-bindings are:

36 SICStus Prolog

M-a Go to beginning of clause. Go to the previous clause if already at the beginning.

M-e Go to end of clause. Go to the next clause if already at the end.

C-M-c Mark clause.

C-M-a Go to beginning of predicate.

C-M-e Go to end of predicate.

C-M-h Mark predicate.

M-{ Go to the previous paragraph (i.e. empty line).

M-} Go to the next paragraph (i.e. empty line).

M-h Mark paragraph.

C-M-n Go to matching right parenthesis.

C-M-p Go to matching left parenthesis.

M-; Creates a comment at comment-column. This comment will always stay at this
position when the line is indented, regardless of changes in the text earlier on
the line, provided that prolog-align-comments-flag is set to t.

C-c C-t

C-u C-c C-t

Enable and disable creeping, respectively.

C-c C-d

C-u C-c C-d

Enable and disable leaping, respectively.

C-c C-z

C-u C-c C-z

Enable and disable zipping, respectively.

C-c C-g since release 4.2

C-u C-c C-g since release 4.2

Enable and disable bindings window, respectively. When enabled, SICStus will
endeavor to show the variable bindings of the clause containing the current
goal. C-c C-g splits the *prolog* window vertically and inserts the *Prolog

Bindings* window, which shows the bindings and is updated upon every de-
bugger command. C-u C-c C-g deletes the *Prolog Bindings* window.

C-c < since release 4.3.2

Set the print depth for the bindings window as well as for the top level. Prompts
for an integer value. Equivalent to the < top-level command; see Section 3.4.1
[Queries], page 23.

C-c C-o since release 4.2

C-u C-c C-o since release 4.2

Refresh and clear coverage highlighting for the current buffer, respectively.
Lines containing coverage sites (see Section 9.3 [Coverage Analysis], page 354)
will be highlighted in face pltrace-face-reached-det (defaults to green) if

Chapter 3: How to Run Prolog 37

they were hit at least once and made no nondet calls with the execution profiler
switched on; in face pltrace-face-reached-nondet (defaults to yellow) if they
were hit at least once and made one or more nondet calls with the execution
profiler switched on; otherwise, they will be highlighted in face pltrace-face-
reached-not (defaults to red). Lines not containing coverage sites are not
highlighted.

C-x SPC

C-u C-x SPC

Set and remove a line breakpoint. This uses the advanced debugger features
introduced in release 3.8; see Section 5.6 [Advanced Debugging], page 243.

C-c C-s Insert the PredSpec of the current predicate into the code.

C-c C-n Insert the template of the current predicate (name, parentheses, commas) into
the code.

M-RET since release 4.2

Insert a line break followed by the template of the current predicate into the
code. This can be useful when writing recursive predicates or predicates with
several clauses. See also the prolog-electric-dot-flag variable below.

C-c C-v a Convert all variables in a region to anonymous variables. See also the
prolog-electric-underscore-flag Emacs variable.

C-c ? Help on predicate. This requires the SICStus info files to be installed. If the
SICStus info files are installed in a nonstandard way, then you may have to
change the Emacs variable prolog-info-predicate-index.

C-c RET since release 4.2

C-u C-c RET since release 4.2

Run Prolog. With the second variant, Emacs will prompt for a Lisp list of extra
parameters to pass on the command line.

C-c C-c since release 4.2

Interrupt Prolog. The same as typing ^C in a shell.

C-c C-\ since release 4.2

Kill Prolog. Immediately kills the process.

3.12.4 Mode Line

If working with an application split into several modules, then it is often useful to let files
begin with a “mode line”:

%%% -*- Mode: Prolog; Module: ModuleName; -*-

The Emacs interface will look for the mode line and notify the SICStus Prolog module sys-
tem that code fragments being incrementally reconsulted or recompiled should be imported
into the module ModuleName. If the mode line is missing, then the code fragment will be
imported into the type-in module. An additional benefit of the mode line is that it tells
Emacs that the file contains Prolog code, regardless of the setting of the Emacs variable
auto-mode-alist. A mode line can be inserted by choosing Insert/Module modeline in
the Prolog menu.

38 SICStus Prolog

3.12.5 Configuration

The behavior of the Emacs interface can be controlled by a set of user-configurable settings.
Some of these can be changed on the fly, while some require Emacs to be restarted. To
set a variable on the fly, type M-x set-variable RET VariableName RET Value RET. Note
that variable names can be completed by typing a few characters and then pressing TAB.

To set a variable so that the setting is used every time Emacs is started, add lines of the
following format to ~/.emacs:

(setq VariableName Value)

Note that the Emacs interface is presently not using the ‘Customize’ functionality to edit
the settings.

The available settings are:

prolog-system

The Prolog system to use. Defaults to 'sicstus, which will be assumed for
the rest of this chapter. See the on-line documentation for the meaning of
other settings. For other settings of prolog-system the variables below named
sicstus-something will not be used, in some cases corresponding functionality
is available through variables named prolog-something.

sicstus-version

The version of SICStus that is used. Defaults to '(4 . 2). Note that the spaces
are significant!

prolog-use-sicstus-sd

Set to t (the default) to enable the source-linked debugging extensions by de-
fault. The debugging can be enabled via the Prolog menu even if this variable
is nil. Note that the source-linked debugging only works if sicstus-version
is set correctly.

prolog-indent-width

How many positions to indent the body of a clause. Defaults to tab-width,
normally 8.

prolog-paren-indent

The number of positions to indent code inside grouping parentheses. Defaults
to 4, which gives the following indentation.

p :-

(q1

; q2,

q3

).

Note that the spaces between the parentheses and the code are automatically
inserted when TAB is pressed at those positions.

Chapter 3: How to Run Prolog 39

prolog-align-comments-flag

Set to nil to prevent single %-comments from being automatically aligned.
Defaults to t.

Note that comments with one % are indented to comment-column, comments
with two % to the code level, and that comments with three % are never changed
when indenting.

prolog-indent-mline-comments-flag

Set to nil to prevent indentation of text inside /* ... */ comments. Defaults
t.

sicstus-keywords

This is a list with keywords that are highlighted in a special color when used
as directives (i.e. as :- keyword). Defaults to

'("block" "discontiguous" "dynamic" "initialization"

"meta_predicate" "mode" "module" "multifile" "public" "volatile"

"det" "nondet" ; for spdet

)

prolog-electric-newline-flag

Set to nil to prevent Emacs from automatically indenting the next line when
pressing RET. Defaults to t.

prolog-hungry-delete-key-flag

Set to t to enable deletion of all whitespace before the cursor when pressing
DEL (unless inside a comment, string, or quoted atom). Defaults to nil.

prolog-electric-dot-flag

Set to t to enable the electric dot function. If enabled, then pressing . at the end
of a non-empty line inserts a dot and a newline. When pressed at the beginning
of a line, a new head of the last predicate is inserted. When pressed at the end of
a line with only whitespace, a recursive call to the current predicate is inserted.
The function respects the arity of the predicate and inserts parentheses and the
correct number of commas for separation of the arguments. Defaults to nil.

prolog-electric-underscore-flag

Set to t to enable the electric underscore function. When enabled, pressing
underscore (_) when the cursor is on a variable, replaces the variable with the
anynomous variable. Defaults to nil.

prolog-use-prolog-tokenizer-flag

Set to nil to use built-in functions of Emacs for parsing the source code when
indenting. This is faster than the default but does not handle some of the
syntax peculiarities of Prolog. Defaults to t.

prolog-parse-mode

What position the parsing is done from when indenting code. Two possible
settings: 'beg-of-line and 'beg-of-clause. The first is faster but may result
in erroneous indentation in /* ... */ comments. The default is 'beg-of-line.

40 SICStus Prolog

prolog-imenu-flag

Set to t to enable a new Predicate menu that contains all predicates of the
current file. Choosing an entry in the menu moves the cursor to the start of
that predicate. Defaults to nil.

prolog-info-predicate-index

The info node for the SICStus predicate index. This is important if the online
help function is to be used (by pressing C-c ?, or choosing the Prolog/Help on

predicate menu entry). The default setting is "(sicstus)Predicate Index".

prolog-underscore-wordchar-flag

Set to nil to not make underscore (_) a word-constituent character. Defaults
to t.

Font-locking uses a number of “faces”, which can be customized with regular Emacs com-
mands, for instance M-x describe-face RET FaceName RET. The following faces are rele-
vant:

highlight since release 4.2

Source code highlight at debug ports.

pltrace-face-reached-det since release 4.2

Highlight for a line of code reached by coverage analysis with no nondet calls
made from that line of code.

pltrace-face-reached-nondet since release 4.2

Highlight for a line of code reached by coverage analysis with one or more
nondet calls made from that line of code.

pltrace-face-reached-not since release 4.2

Highlight for a line of code not reached by coverage analysis.

prolog-warning-face since release 4.2

Face used in warning messages.

prolog-informational-face since release 4.2

Face used in informational messages.

prolog-exception-face since release 4.2

Face used in the first line of an error exception message, as well as to highlight
Exception port displays.

prolog-error-face since release 4.2

Face used in other lines of exception messages.

prolog-call-face since release 4.2

Face used to highlight Call port displays.

prolog-exit-face since release 4.2

Face used to highlight Exit port displays.

prolog-redo-face since release 4.2

Face used to highlight Redo port displays.

Chapter 3: How to Run Prolog 41

prolog-fail-face since release 4.2

Face used to highlight Fail port displays.

prolog-builtin-face since release 4.2

Face used to highlight keywords used in directives (see sicstus-keywords).

3.12.6 Tips

Some general tips and tricks for using the SICStus mode and Emacs in general are given
here. Some of the methods may not work in all versions of Emacs.

3.12.6.1 Font-locking

When editing large files, it might happen that font-locking is not done because the file is
too large. Typing M-x lazy-lock-mode, which is much faster, results in only the visible
parts of the buffer being highlighted; see its Emacs on-line documentation for details.

If the font-locking seems to be incorrect, then choose Fontify Buffer from the Prolog

menu.

3.12.6.2 Auto-fill Mode

Auto-fill mode is enabled by typing M-x auto-fill-mode. This enables automatic line
breaking with some features. For example, the following multiline comment was created
by typing M-; followed by the text. The second line was indented and a ‘%’ was added
automatically.

dynamics([]). % A list of pit furnace

% dynamic instances

3.12.6.3 Speed

There are several things to do if the speed of the Emacs environment is a problem:

• First of all, make sure that prolog.el and sicstus-support.el are compiled, i.e. that
there is a prolog.elc and a sicstus-support.elc file at the same location as the
original files. To do the compilation, start Emacs and type M-x byte-compile-file

RET path RET, where path is the path to the ‘*.el’ file. Do Not be alarmed if there
are a few warning messages as this is normal. If all went well, then there should now
be a compiled file, which is used the next time Emacs is started.

• The next thing to try is changing the setting of prolog-use-prolog-tokenizer-flag
to nil. This means that Emacs uses built-in functions for some of the source code
parsing, thus speeding up indentation. The problem is that it does not handle all
peculiarities of the Prolog syntax, so this is a trade-off between correctness and speed.

• The setting of the prolog-parse-mode variable also affects the speed, 'beg-of-line
being faster than 'beg-of-clause.

• Font locking may be slow. You can turn it off using customization, available through
M-x customize-group RET font-lock RET. An alternative is to enable one of the lazy
font locking modes. You can also turn it off completely; see Section 3.12.2 [Basic
Configuration], page 34.

42 SICStus Prolog

3.12.6.4 Changing Colors

The Prolog mode uses the default Emacs colors for font-locking as far as possible. The only
custom settings are in the Prolog process buffer. The default settings of the colors may not
agree with your preferences, so here is how to change them.

If your Emacs supports it, then use ‘Customize’. M-x customize-group RET font-lock

RET will show the ‘Customize’ settings for font locking and also contains pointers to the
‘Customize’ group for the font lock (type)faces. The rest of this section outlines the more
involved methods needed in older versions of Emacs.

First of all, list all available faces (a face is a combined setting of foreground and background
colors, font, boldness, etc.) by typing M-x list-faces-display.

There are several functions that change the appearance of a face, the ones you will most
likely need are:

• set-face-foreground

• set-face-background

• set-face-underline-p

• make-face-bold

• make-face-bold-italic

• make-face-italic

• make-face-unbold

• make-face-unitalic

These can be tested interactively by typing M-x function-name. You will then be asked
for the name of the face to change and a value. If the buffers are not updated according
to the new settings, then refontify the buffer using the Fontify Buffer menu entry in the
Prolog menu.

Colors are specified by a name or by RGB values. Available color names can be listed with
M-x list-colors-display.

To store the settings of the faces, a few lines must be added to ~/.emacs. For example:

;; Customize font-lock faces

(add-hook 'font-lock-mode-hook

'(lambda ()

(set-face-foreground font-lock-variable-name-face "#00a000")

(make-face-bold font-lock-keyword-face)

(set-face-foreground font-lock-reference-face "Blue")

))

43

4 The Prolog Language

This chapter describes the syntax and semantics of the Prolog language, and introduces
the central built-in predicates and other important language constructs. In many cases, an
entry in a list of built-in predicates, will be annotated with keywords. These annotations
are defined in Section 11.1.3 [mpg-ref-cat], page 878.

4.1 Syntax

4.1.1 Overview

This section describes the syntax of SICStus Prolog.

4.1.2 Terms

4.1.2.1 Overview

The data objects of the language are called terms. A term is either a constant, a variable,
or a compound term.

A constant is either a number (integer or floating-point) or an atom. Constants are definite
elementary objects, and correspond to proper nouns in natural language.

Variables and compound terms are described in Section 4.1.2.5 [ref-syn-trm-var], page 44,
and Section 4.1.3 [ref-syn-cpt], page 45, respectively.

Foreign data types are discussed in the context of library(structs); see Section 10.39
[lib-structs], page 738.

4.1.2.2 Integers

The printed form of an integer consists of a sequence of digits optionally preceded by a
minus sign (‘-’). These are normally interpreted as base 10 integers. It is also possible to
enter integers in base 2 (binary), 8 (octal), and 16 (hexadecimal); this is done by preceding
the digit string by the string ‘0b’, ‘0o’, or ‘0x’ respectively. The characters A-F or a-f stand
for digits greater than 9. For example, the following tokens all represent the integer fifteen:

15 0b1111 0o17 0xf

Note that

+525

is not a valid integer.

There is also a special notation for character constants. E.g.:

0'A 0'\x41\ 0'\101\

are all equivalent to 65 (the character code for ‘A’). ‘0'’ followed by any character except
‘\’ (backslash) is thus read as an integer. If ‘0'’ is followed by ‘\’, then the ‘\’ denotes
the start of an escape sequence with special meaning (see Section 4.1.7.6 [ref-syn-syn-esc],
page 60).

44 SICStus Prolog

4.1.2.3 Floating-point Numbers

A floating-point number (float) consists of a sequence of digits with an embedded decimal
point, optionally preceded by a minus sign (-), and optionally followed by an exponent
consisting of upper- or lowercase ‘E’ and a signed base 10 integer. Examples of floats are:

1.0 -23.45 187.6E12 -0.0234e15 12.0E-2

Note that there must be at least one digit before, and one digit after, the decimal point.

4.1.2.4 Atoms

An atom is identified by its name, which is a sequence characters, and can be written in
any of the following forms:

• Any sequence of alphanumeric characters (including ‘_’), starting with a lowercase
letter. Note that an atom may not begin with an underscore. The characters that are
allowed to occur in such an unquoted atom are restricted to a subset of Unicode; see
Section 4.1.7.5 [ref-syn-syn-tok], page 56.

• Any sequence from the following set of characters (except ‘/*’, which begins a com-
ment):

+ - * / \ ^ < > = ~ : . ? @ # $ &

• Any sequence of characters delimited by single quotes. Backslashes in the sequence
denote escape sequences (see Section 4.1.7.6 [ref-syn-syn-esc], page 60), and if the single
quote character is included in the sequence, then it must be escaped, e.g. 'can\'t'.
The characters that are allowed to occur in such a quoted atom are restricted to a
subset of Unicode; see Section 4.1.7.5 [ref-syn-syn-tok], page 56.

• Any of:

! ; [] {}

Note that the bracket pairs are special: ‘[]’ and ‘{}’ are atoms but ‘[’, ‘]’, ‘{’, and ‘}’
are not. The form [X] is a special notation for lists (see Section 4.1.3.1 [ref-syn-cpt-lis],
page 46) as an alternative to .(X,[]), and the form {X} is allowed as an alternative
to {}(X).

Examples of atoms are:

a void = := 'Anything in quotes' []

Please note: It is recommended that you do not invent atoms beginning with
the character ‘$’, since it is possible that such names may conflict with the
names of atoms having special significance for certain built-in predicates.

4.1.2.5 Variables

Variables may be written as any sequence of alphanumeric characters (including ‘_’) begin-
ning with either a capital letter or ‘_’. For example:

X Value A A1 _3 _RESULT

Chapter 4: The Prolog Language 45

If a variable is referred to only once in a clause, then it does not need to be named and
may be written as an anonymous variable, represented by the underline character ‘_’ by
itself. Any number of anonymous variables may appear in a clause; they are read as distinct
variables. Anonymous variables are not special at runtime.

4.1.2.6 Foreign Terms

Pointers to C data structures can be handled using the Structs package.

4.1.3 Compound Terms

The structured data objects of Prolog are compound terms. A compound term comprises
a functor (called the principal functor of the term) and a sequence of one or more terms
called arguments. A functor is characterized by its name, which is an atom, and its arity or
number of arguments. For example, the compound term whose principal functor is ‘point’
of arity 3, and which has arguments X, Y, and Z, is written

point(X, Y, Z)

When we need to refer explicitly to a functor we will normally denote it by the form
Name/Arity. Thus, the functor ‘point’ of arity 3 is denoted

point/3

Note that a functor of arity 0 is represented as an atom.

Functors are generally analogous to common nouns in natural language. One may think of
a functor as a record type and the arguments of a compound term as the fields of a record.
Compound terms are usefully pictured as trees. For example, the (compound) term

s(np(john), vp(v(likes), np(mary)))

would be pictured as the following tree:

s

/ \

np vp

| / \

john v np

| |

likes mary

The principal functor of this term is s/2. Its arguments are also compound terms. In
illustration, the principal functor of the first argument is np/1.

Sometimes it is convenient to write certain functors as operators; binary functors (that is,
functors of two arguments) may be declared as infix operators, and unary functors (that is,
functors of one argument) may be declared as either prefix or postfix operators. Thus it is
possible to write

X+Y P;Q X<Y +X P;

46 SICStus Prolog

as optional alternatives to

+(X,Y) ;(P,Q) <(X,Y) +(X) ;(P)

The use of operators is described fully in Section 4.1.5 [ref-syn-ops], page 47.

4.1.3.1 Lists

Lists form an important class of data structures in Prolog. They are essentially the same as
the lists of Lisp: a list is either the atom [], representing the empty list, or else a compound
term with functor . and two arguments, which are the head and tail of the list respectively,
where the tail of a list is another list. Thus a list of the first three natural numbers is the
structure

.

/ \

1 .

/ \

2 .

/ \

3 []

which could be written using the standard syntax, as (A) but which is normally written in
a special list notation, as (B). Two examples of this list notation, as used when the tail of
a list is a variable, are (C), which represent the structure in (D).

.(1,.(2,.(3,[]))) (A)

[1,2,3] (B)

[X|L] [a,b|L] (C)

. .

/ \ / \

X L a .

/ \

b L (D)

Note that the notation [X|L] does not add any new power to the language; it simply
improves readability. These examples could be written equally well as (E).

.(X,L) .(a,.(b,L)) (E)

4.1.3.2 Strings As Lists

For convenience, a further notational variant is allowed for lists of integers that correspond
to character codes. Lists written in this notation are called strings. E.g.:

"SICStus"

which, by default, denotes exactly the same list as

Chapter 4: The Prolog Language 47

[83,73,67,83,116,117,115]

The Prolog flag double_quotes can be used to change the way strings are interpreted. The
default value of the flag is codes, which implies the above interpretation. If the flag is set
to chars, then a string is transformed to a list of character atoms. E.g. with this setting
the above string represents the list:

['S','I','C','S',t,u,s]

Finally if double_quotes has the value atom, then the string is made equivalent to the
atom formed from its characters: the above sample string is then the same as the atom
'SICStus'.

Please note: Most code assumes that the Prolog flag double_quotes has its default value
(codes). Changing this flag is not recommended.

Backslashes in the sequence denote escape sequences (see Section 4.1.7.6 [ref-syn-syn-esc],
page 60). As for quoted atoms, if a double quote character is included in the sequence, then
it must be escaped, e.g. "can\"t".

The built-in predicates that print terms (see Section 4.6.4 [ref-iou-tou], page 104) do not
use string syntax even if they could.

The characters that are allowed to occur within double quotes are restricted to a subset of
Unicode; see Section 4.1.7.5 [ref-syn-syn-tok], page 56.

4.1.4 Character Escaping

The character escaping facility is prescribed by the ISO Prolog standard, and allows escape
sequences to occur within strings and quoted atoms, so that programmers can put non-
printable characters in atoms and strings and still be able to see what they are doing.

Strings or quoted atoms containing escape sequences can occur in terms obtained by
read/[1,2], compile/1, and so on. The ‘0'’ notation for the integer code of a charac-
ter is also affected by character escaping.

The only characters that can occur in a string or quoted atom are the printable characters
and SPC. All other whitespace characters must be expressed with escape sequences (see
Section 4.1.7.6 [ref-syn-syn-esc], page 60).

4.1.5 Operators and their Built-in Predicates

4.1.5.1 Overview

Operators in Prolog are simply a notational convenience. For example, ‘+’ is an infix
operator, so

2 + 1

is an alternative way of writing the term +(2, 1). That is, 2 + 1 represents the data
structure

48 SICStus Prolog

+

/ \

2 1

and not the number 3. (The addition would only be performed if the structure were passed
as an argument to an appropriate procedure, such as is/2; see Section 4.7.2 [ref-ari-eae],
page 119.)

Prolog syntax allows operators of three kinds: infix, prefix, and postfix. An infix operator
appears between its two arguments, while a prefix operator precedes its single argument
and a postfix operator follows its single argument.

Each operator has a precedence, which is a number from 1 to 1200. The precedence is used
to disambiguate expressions in which the structure of the term denoted is not made explicit
through the use of parentheses. The general rule is that the operator with the highest
precedence is the principal functor. Thus if ‘+’ has a higher precedence than ‘/’, then

a+b/c a+(b/c)

are equivalent, and denote the term +(a,/(b,c)). Note that the infix form of the term
/(+(a,b),c) must be written with explicit parentheses:

(a+b)/c

If there are two operators in the expression having the same highest precedence, then the
ambiguity must be resolved from the types of the operators. The possible types for an infix
operator are

• xfx

• xfy

• yfx

Operators of type ‘xfx’ are not associative: it is required that both of the arguments of the
operator be subexpressions of lower precedence than the operator itself; that is, the principal
functor of each subexpression must be of lower precedence, unless the subexpression is
written in parentheses (which gives it zero precedence).

Operators of type ‘xfy’ are right-associative: only the first (left-hand) subexpression must
be of lower precedence; the right-hand subexpression can be of the same precedence as the
main operator. Left-associative operators (type ‘yfx’) are the other way around.

An atom named Name is declared as an operator of type Type and precedence Precedence
by the command

:-op(Precedence, Type, Name).

An operator declaration can be cancelled by redeclaring the Name with the same Type, but
Precedence 0.

Chapter 4: The Prolog Language 49

The argumentName can also be a list of names of operators of the same type and precedence.

It is possible to have more than one operator of the same name, so long as they are of
different kinds: infix, prefix, or postfix. Note that the ISO Prolog standard contains the
restriction that there should be no infix and postfix operators with the same name, however,
SICStus Prolog lifts this restriction.

An operator of any kind may be redefined by a new declaration of the same kind. This
applies equally to operators that are provided as standard, except for the ',' operator.
Declarations for all these built-in operators can be found in Section 4.1.5.4 [ref-syn-ops-
bop], page 51.

For example, the built-in operators ‘+’ and ‘-’ are as if they had been declared by (A) so
that (B) is valid syntax, and means (C) or pictorially (D).

:-op(500, yfx, [+,-]). (A)

a-b+c (B)

(a-b)+c (C)

+

/ \

- c

/ \

a b (D)

The list functor ./2 is not a standard operator, but we could declare it to be (E) and then
(F) would represent the structure (G).

:-op(600, xfy, .). (E)

a.b.c (F)

.

/ \

a .

/ \

b c (G)

Contrasting this with the diagram above for a-b+c shows the difference between ‘yfx’ oper-
ators where the tree grows to the left, and ‘xfy’ operators where it grows to the right. The
tree cannot grow at all for ‘xfx’ operators; it is simply illegal to combine ‘xfx’ operators
having equal precedences in this way.

The possible types for a prefix operator are:

• fx

• fy

50 SICStus Prolog

and for a postfix operator they are:

• xf

• yf

The meaning of the types should be clear by analogy with those for infix operators. As an
example, if not were declared as a prefix operator of type fy, then

not not P

would be a permissible way to write not(not(P)). If the type were fx, then the preceding
expression would not be legal, although

not P

would still be a permissible form for not(P).

If these precedence and associativity rules seem rather complex, then remember that you
can always use parentheses when in any doubt.

4.1.5.2 Manipulating and Inspecting Operators

To add or remove an operator, use op(Precedence, Type, Name). op/3 declares the atom
Name to be an operator of the stated Type and Precedence. If Precedence is 0, then the
operator properties of Name (if any) are cancelled. Please note: operators are global, as
opposed to being local to the current module, Prolog text, or otherwise. See Section 11.3.147
[mpg-ref-op], page 1091.

To examine the set of operators currently in force, use current_op(Precedence, Type,

Name). See Section 11.3.53 [mpg-ref-current op], page 972.

4.1.5.3 Syntax Restrictions

Note carefully the following syntax restrictions, which serve to remove potential ambiguities
associated with prefix operators.

1. The arguments of a compound term written in standard syntax must be expressions
of precedence less than 1000. Thus it is necessary to write the expression P:-Q in
parentheses

assert((P:-Q))

because the precedence of the infix operator ‘:-’, and hence of the expression P:-Q, is
1200. Enclosing the expression in parentheses reduces its precedence to 0.

2. Similarly, the elements of a list written in standard syntax must be expressions of prece-
dence less than 1000. Thus it is necessary to write the expression P->Q in parentheses

[(P->Q)]

because the precedence of the infix operator ‘->’, and hence of the expression P->Q, is
1050. Enclosing the expression in parentheses reduces its precedence to 0.

3. In a term written in standard syntax, the principal functor and its following ‘(’ must
not be separated by any intervening spaces, newlines, or other characters. Thus

Chapter 4: The Prolog Language 51

point (X,Y,Z)

is invalid syntax.

4. If the argument of a prefix operator starts with a ‘(’, then this ‘(’ must be separated
from the operator by at least one space or other whitespace character. Thus

:-(p;q),r.

(where ‘:-’ is the prefix operator) is invalid syntax. The system would try to interpret
it as the structure:

,

/ \

:- r

|

;

/ \

p q

That is, it would take ‘:-’ to be a functor of arity 1. However, since the arguments of a
functor are required to be expressions of precedence less than 1000, this interpretation
would fail as soon as the ‘;’ (precedence 1100) were encountered.

In contrast, the term:

:- (p;q),r.

is valid syntax and represents the following structure:

:-

|

,

/ \

; r

/ \

p q

4.1.5.4 Built-in Operators

52 SICStus Prolog

:- op(1200, xfx, [:-, -->]).

:- op(1200, fx, [:-, ?-]).

:- op(1150, fx, [mode, public, dynamic, volatile, discontiguous,

multifile, block, meta_predicate,

initialization]).

:- op(1100, xfy, [;, do]).

:- op(1050, xfy, [->]).

:- op(1000, xfy, [',']).

:- op(900, fy, [\+, spy, nospy]).

:- op(700, xfx, [=, \=, is, =.., ==, \==, @<, @>, @=<, @>=,

=:=, =\=, <, >, =<, >=]).

:- op(550, xfy, [:]).

:- op(500, yfx, [+, -, \, /\, \/]).

:- op(400, yfx, [*, /, //, div, mod, rem, <<, >>]).

:- op(200, xfx, [**]).

:- op(200, xfy, [^]).

:- op(200, fy, [+, -, \]).

The above operators are as in the ISO Prolog standard, except the following, which are not
present in ISO Prolog at all:

:- op(1150, fx, [mode, public, dynamic, volatile, discontiguous,

multifile, block, meta_predicate,

initialization]).

:- op(1100, xfy, [do]).

:- op(900, fy, [spy, nospy]).

:- op(550, xfy, [:]).

:- op(500, yfx, [\]).

:- op(200, fy, [+]).

4.1.6 Commenting

Comments have no effect on the execution of a program, but they are very useful for making
programs more comprehensible. Two forms of comments are allowed:

1. The character ‘%’ followed by any sequence of characters up to the end of the line.

2. The symbol ‘/*’ followed by any sequence of characters (including newlines) up to the
symbol ‘*/’.

4.1.7 Formal Syntax

4.1.7.1 Overview

A Prolog program consists of a sequence of sentences. Each sentence is a Prolog term. How
sentences are interpreted as terms is defined in Section 4.1.7.3 [ref-syn-syn-sen], page 53,
below. Note that a term representing a sentence may be written in any of its equivalent
syntactic forms. For example, the functor :-/2 could be written in standard functional
notation instead of as the usual infix operator.

Chapter 4: The Prolog Language 53

Terms are written as sequences of tokens. Tokens are sequences of characters, which are
treated as separate symbols. Tokens include the symbols for variables, constants, and
functors, as well as punctuation characters such as parentheses and commas.

The interpretation of sequences of tokens as terms is defined in Section 4.1.7.4 [ref-syn-syn-
trm], page 55. Each list of tokens that is read in (for interpretation as a term or sentence)
must be terminated by a full stop (a period followed by a whitespace character such as
newline or space) token. Two tokens must be separated by a space if they could otherwise
be interpreted as a single token. Both spaces and comments are ignored when interpreting
the token list as a term. A comment may appear at any point in a token list (separated
from other tokens by spaces where necessary).

The interpretation of sequences of characters as tokens is defined in Section 4.1.7.5 [ref-syn-
syn-tok], page 56. The next section describes the notation used in the formal definition of
Prolog syntax.

4.1.7.2 Notation

• Syntactic categories (or nonterminals) are printed in italics, for example query. De-
pending on the section, a category may represent a class of either terms, token lists, or
character strings.

• A syntactic rule takes the general form

C ::= F1

| F2

| F3

.

.

.

which states that an entity of category C may take any of the alternative forms F1,
F2, or F3.

• Certain definitions and restrictions are given in ordinary English, enclosed in braces
(‘{}’).

• A category written as ‘C...’ denotes a sequence of one or more Cs.

• A category written as ‘?C’ denotes an optional C. Therefore ‘?C...’ denotes a sequence
of zero or more Cs.

• A few syntactic categories have names with arguments, and rules in which they appear
may contain meta-variables in the form of italicized capital letters. The meaning of
such rules should be clear from analogy with the definite clause grammars described in
Section 4.14 [ref-gru], page 189.

• In Section 4.1.7.4 [ref-syn-syn-trm], page 55, particular tokens of the category Name (a
name beginning with a capital letter) are written as quoted atoms, while tokens that
are individual punctuation characters are written literally.

4.1.7.3 Syntax of Sentences as Terms

sentence ::= module : sentence
| list { where list is a list of sentence }

54 SICStus Prolog

| clause
| directive
| query
| grammar-rule

clause ::= rule | unit-clause
rule ::= head :- body
unit-clause ::= head { where head is not otherwise a

sentence }
directive ::= :- body
query ::= ?- body
head ::= module : head

| goal { where goal is not a variable }
body ::= module : body

| body -> body disj body
| body -> body
| \+ body
| body disj body
| body , body
| once(body)

| do(iter,body)

| if(body,body,body)

| term ^ body
| goal

goal ::= term { where term is not otherwise a
body }

grammar-rule ::= gr-head --> gr-body
gr-head ::= module : gr-head

| gr-head , terminals
| non-terminal { where non-terminal is not a vari-

able }
gr-body ::= module : gr-body

| gr-body -> gr-body disj gr-
body

| gr-body -> gr-body
| \+ gr-body
| gr-body disj gr-body
| gr-body , gr-body
| once(gr-body)

| do(iter,gr-body)

| if(gr-body,gr-body,gr-

body)

| term ^ gr-body
| non-terminal
| terminals
| gr-condition

Chapter 4: The Prolog Language 55

non-terminal ::= term { where term is not otherwise a
gr-body }

terminals ::= list | string
gr-condition ::= ! | {body}

module ::= atom
disj ::= ; | | { read as ; unless | is declared

infix }
iter ::= iter , iter

|

fromto(term,term,term,term)

| foreach(term,term)

| foreacharg(term,term)

| foreacharg(term,term,term)

| count(term,term,term)

| for(term,term,term)

| param(term)

4.1.7.4 Syntax of Terms as Tokens

term-read-in ::= subterm(1200) full stop
subterm(N) ::= term(M) { where M is less than or equal to

N }
term(N) ::= op(N,fx) subterm(N-1) { except in the case of a number if

subterm starts with a ‘(’, op must
be followed by whitespace-text }

| op(N,fy) subterm(N) { if subterm starts with a ‘(’, op
must be followed by whitespace-
text }

| subterm(N-1) op(N,xfx)
subterm(N-1)

| subterm(N-1) op(N,xfy) sub-
term(N)

| subterm(N) op(N,yfx)
subterm(N-1)

| subterm(N-1) op(N,xf)
| subterm(N) op(N,yf)

term(1100) ::= subterm(1099) |

subterm(1100)
{ term with functor ;/2 unless |

is declared infix }
term(1000) ::= subterm(999) , subterm(1000) { term with functor ','/2 }
term(0) ::= functor (arguments) { provided there is no whitespace-

text between the functor and the
‘(’ }

| (subterm(1200))
| { subterm(1200) }
| list
| string
| constant

56 SICStus Prolog

| variable
op(N,T) ::= name { where name has been declared

as an operator of type T and
precedence N }

arguments ::= subterm(999)
| subterm(999) , arguments

list ::= []

| [listexpr]

listexpr ::= subterm(999)
| subterm(999) , listexpr
| subterm(999) | subterm(999)

constant ::= atom | number
number ::= unsigned-number

| sign unsigned-number
unsigned-number ::= natural-number | unsigned-

float

atom ::= name
functor ::= name

4.1.7.5 Syntax of Tokens as Character Strings

SICStus Prolog supports wide characters (up to 31 bits wide), interpreted as a superset of
Unicode.

Each character in the code set has to be classified as belonging to one of the character
categories, such as small-letter, digit, etc. This classification is called the character-type
mapping, and it is used for defining the syntax of tokens.

Only character codes 0..255, i.e. the ISO-8859-1 (Latin 1) subset of Unicode, can be
part of unquoted tokens1, unless the Prolog flag legacy_char_classification is set; see
Section 4.9.4 [ref-lps-flg], page 136. This restriction may be lifted in the future.

For quoted tokens, i.e. quoted atoms and strings, almost any sequence of code points as-
signed to non-private abstract characters in Unicode 5.0 is allowed. The disallowed char-
acters are those in the whitespace-char category except that space (character code 32) is
allowed despite it being a whitespace-char.

An additional restriction is that the sequence of characters that makes up a quoted token
must be in Normal Form C (NFC) http://www.unicode.org/reports/tr15/ . This
is currently not enforced. A future release may enforce this restriction or perform this
normalization automatically.

NFC is the normalization form used on the web (http://www.w3.org/TR/charmod/) and
what most software can be expected to produce by default. Any sequence consisting of only
characters from Latin 1 is already in NFC.

1 Characters outside this range can still be included in quoted atoms and strings by using escape sequences
(see Section 4.1.7.6 [ref-syn-syn-esc], page 60).

http://www.unicode.org/reports/tr15/
http://www.w3.org/TR/charmod/

Chapter 4: The Prolog Language 57

When the Prolog flag legacy_char_classification is set, characters in the whitespace-
char category are still treated as whitespace but other character codes outside the range
0..255, assigned to non-private abstract characters in Unicode 5.0, are treated as lower case.
Such characters can therefore appear as themselves, without using escape sequences, both
in quoted and unquoted tokens.

Note: Any output produced by write_term/2 with the option quoted(true) will be in
NFC. This includes output from writeq/[1,2] and write_canonical/[1,2].

whitespace-char
These are character codes 0..32, 127..160, 8206..8207, and 8232..8233. This
includes ASCII characters such as TAB, LFD, and SPC, as well as all characters
with Unicode property “Pattern Whitespace” including the Unicode-specific
LINE SEPARATOR (8232).

small-letter
These are character codes 97..122, i.e. the letters ‘a’ through ‘z’, as well as the
non-ASCII character codes 170, 186, 223..246, and 248..255.

If the Prolog flag legacy_char_classification (see Section 4.9.4 [ref-lps-flg],
page 136) is set, then the small-letter set will also include almost every code
point above 255 assigned to non-private abstract characters in Unicode 5.0.

capital-letter
These are character codes 65..90, i.e. the letters ‘A’ through ‘Z’, as well as the
non-ASCII character codes 192..214, and 216..222.

digit These are character codes 48..57, i.e. the digits ‘0’ through ‘9’.

symbol-char
These are character codes 35, 36, 38, 42, 43, 45..47, 58, 60..64, 92, 94, and 126,
i.e. the characters:

+ - * / \ ^ < > = ~ : . ? @ # $ &

In addition, the non-ASCII character codes 161..169, 171..185, 187..191, 215,
and 247 belong to this character type2.

solo-char These are character codes 33 and 59 i.e. the characters ‘!’ and ‘;’.

punctuation-char
These are character codes 37, 40, 41, 44, 91, 93, and 123..125, i.e. the characters:

% () , [] { | }

quote-char
These are character codes 34 and 39 i.e. the characters ‘"’ and ‘'’.

underline This is character code 95 i.e. the character ‘_’.

Other characters are unclassified and may only appear in comments and to some extent, as
discussed above, in quoted atoms and strings.

2 In release 3 and 4.0.0 the lower case characters 170 and 186 were incorrectly classified as symbol-char.
This was corrected in release 4.0.1.

58 SICStus Prolog

token ::= name
| natural-number
| unsigned-float
| variable
| string
| punctuation-char
| whitespace-text
| full stop

name ::= quoted-name
| word
| symbol
| solo-char
| [?whitespace-text]
| { ?whitespace-text }

word ::= small-letter ?alpha. . .
symbol ::= symbol-char. . . { except in the case of a full stop

or where the first 2 chars are ‘/*’
}

natural-number ::= digit. . .
| base-prefix alpha. . . { where each alpha must be

digits of the base indicated by
base-prefix, treating a,b,. . . and
A,B,. . . as 10,11,. . . }

| 0 ' char-item { yielding the character code for
char }

unsigned-float ::= simple-float
| simple-float exp exponent

simple-float ::= digit. . . . digit. . .
exp ::= e | E

exponent ::= digit. . . | sign digit. . .
sign ::= - | +

variable ::= underline ?alpha. . .
| capital-letter ?alpha. . .

string ::= " ?string-item. . . "
string-item ::= quoted-char { other than ‘"’ or ‘\’ }

| ""

| \ escape-sequence
quoted-atom ::= ' ?quoted-item. . . '
quoted-item ::= quoted-char { other than ‘'’ or ‘\’ }

| ''

| \ escape-sequence
whitespace-text ::= whitespace-text-item. . .
whitespace-text-
item

::= whitespace-char | comment

comment ::= /* ?char. . . */ { where ?char. . . must not con-
tain ‘*/’ }

Chapter 4: The Prolog Language 59

| % ?char. . . LFD { where ?char. . . must not con-
tain LFD }

full stop ::= . { the following token, if any, must
be whitespace-text}

char ::= whitespace-char
| printing-char

printing-char ::= alpha
| symbol-char
| solo-char
| punctuation-char
| quote-char

alpha ::= capital-letter | small-letter |

digit | underline

escape-sequence ::= b { backspace, character code 8 }
| t { horizontal tab, character code 9

}
| n { newline, character code 10 }
| v { vertical tab, character code 11 }
| f { form feed, character code 12 }
| r { carriage return, character code

13 }
| e { escape, character code 27 }
| d { delete, character code 127 }
| a { alarm, character code 7 }
| other-escape-sequence

quoted-name ::= quoted-atom
base-prefix ::= 0b { indicates base 2 }

| 0o { indicates base 8 }
| 0x { indicates base 16 }

char-item ::= quoted-item
other-escape-
sequence

::= x alpha. . . \ {treating a,b,. . . and A,B,. . . as
10,11,. . . } in the range [0..15],
hex character code }

| digit. . . \ { in the range [0..7], octal charac-
ter code }

| LFD { ignored }
| \ { stands for itself }
| ' { stands for itself }
| " { stands for itself }
| ‘ { stands for itself }

quoted-char ::= SPC

| printing-char

60 SICStus Prolog

4.1.7.6 Escape Sequences

A backslash occurring inside integers in ‘0'’ notation or inside quoted atoms or strings
has special meaning, and indicates the start of an escape sequence. The following escape
sequences exist:

\b backspace (character code 8)

\t horizontal tab (character code 9)

\n newline (character code 10)

\v vertical tab (character code 11)

\f form feed (character code 12)

\r carriage return (character code 13)

\e escape (character code 27)

\d delete (character code 127)

\a alarm (character code 7)

\xhex-digit...\

the character code represented by the hexadecimal digits

\octal-digit...\

the character code represented by the octal digits.

\LFD A backslash followed by a single newline character is ignored. The purpose of
this is to allow a string or quoted-name to be spread over multiple lines.

\\, \', \", \‘

Stand for the character following the ‘\’.

4.1.7.7 Notes

1. The expression of precedence 1000 (i.e. belonging to syntactic category term(1000)),
which is written

X,Y

denotes the term ','(X,Y) in standard syntax.

2. The parenthesized expression (belonging to syntactic category term(0))

(X)

denotes simply the term X.

3. The curly-bracketed expression (belonging to syntactic category term(0))

{X}

denotes the term {}(X) in standard syntax.

4. Note that, for example, -3 denotes a number whereas -(3) denotes a compound term
that has - /1 as its principal functor.

5. The character ‘"’ within a string must be written duplicated: ‘""’. Similarly for the
character ‘'’ within a quoted atom.

Chapter 4: The Prolog Language 61

6. Backslashes in strings, quoted atoms, and integers written in ‘0'’ notation denote
escape sequences.

7. A name token declared to be a prefix operator will be treated as an atom only if no
term-read-in can be read by treating it as a prefix operator.

8. A name token declared to be both an infix and a postfix operator will be treated as a
postfix operator only if no term-read-in can be read by treating it as an infix operator.

9. The whitespace following the full stop is not considered part of the full stop, and so it
remains in the input stream.

4.1.8 Summary of Predicates

Detailed information is found in the reference pages for the following:

current_op(P,T,A) ISO

atom A is an operator of type T with precedence P

op(P,T,A) ISO

make atom A an operator of type T with precedence P

4.2 Semantics

This section gives an informal description of the semantics of SICStus Prolog.

4.2.1 Programs

A fundamental unit of a logic program is the goal or procedure call for example:

gives(tom, apple, teacher)

reverse([1,2,3], L)

X < Y

A goal is merely a special kind of term, distinguished only by the context in which it appears
in the program. The principal functor of a goal is called a predicate. It corresponds roughly
to a verb in natural language, or to a procedure name in a conventional programming
language.

A logic program consists simply of a sequence of statements called sentences, which are
analogous to sentences in natural language.

A sentence comprises a head and a body. The head either consists of a single goal or is
empty. The body consists of a sequence of zero or more goals (it may be empty). If the
head is not empty, then the sentence is called a clause.

If the body of a clause is empty, then the clause is called a unit clause, and is written in the
form (A) where P is the head goal. We interpret this declaratively as (B) and procedurally
as (C).

62 SICStus Prolog

P. (A)

“P is true.” (B)

“Goal P is satisfied.” (C)

If the body of a clause is non-empty, then the clause is called a non-unit clause, and is
written in the form (D) where P is the head goal and Q, R, and S are the goals that make
up the body. We can read such a clause either declaratively as (E) or procedurally as (F).

P :- Q, R, S. (D)

“P is true if Q and R and S are true.” (E)

“To satisfy goal P, satisfy goals Q, R, and S.” (F)

A sentence with an empty head is called a directive, of which the most important kind is
called a query and is written in the form (G). Such a query is read declaratively as (H),
and procedurally as (I).

?- P, Q. (G)

“Are P and Q true?” (H)

“Satisfy goals P and Q.” (I)

Sentences generally contain variables. A variable should be thought of as standing for
some definite but unidentified object. This is analogous to the use of a pronoun in nat-
ural language. Note that a variable is not simply a writable storage location as in most
programming languages; rather it is a local name for some data object, like the variable
of pure Lisp. Note that variables in different sentences are completely independent, even
if they have the same name—the lexical scope of a variable is limited to a single sentence.
To illustrate this, here are some examples of sentences containing variables, with possible
declarative and procedural readings:

employed(X) :- employs(Y, X).

“Any X is employed if any Y employs X.”

“To find whether a person X is employed, find whether any Y employs X.”

derivative(X, X, 1).

“For any X, the derivative of X with respect to X is 1.”

Chapter 4: The Prolog Language 63

“The goal of finding a derivative for the expression X with respect to X itself
is satisfied by the result 1.”

?- ungulate(X), aquatic(X).

“Is it true, for any X, that X is an ungulate and X is aquatic?”

“Find an X that is both an ungulate and aquatic.”

In any program, the procedure for a particular predicate is the sequence of clauses in
the program whose head goals have that predicate as principal functor. For example, the
procedure for a predicate concatenate of three arguments might well consist of the two
clauses shown in (J) where concatenate(L1, L2, L3) means “the list L1 concatenated with
the list L2 is the list L3”.

concatenate([], L, L). (J)

concatenate([X|L1], L2, [X|L3]) :-

concatenate(L1, L2, L3). (K)

In Prolog, several predicates may have the same name but different arities. Therefore,
when it is important to specify a predicate unambiguously, the form Name/Arity is used,
for example concatenate/3.

4.2.2 Types of Predicates Supplied with SICStus Prolog

Certain predicates are predefined by the Prolog system. Most of these cannot be changed
or retracted. Such predicates are called built-in predicates.

Other predicates can be modified or totally redefined. These are the hook predicates used
e.g. in term expansion, the foreign language interface, file name resolution, printing, message
handling, and query handling.

4.2.2.1 Hook Predicates

Hook predicates are called by the system. They enable you to modify SICStus Prolog’s
behavior. Most of them are undefined by default. The idea of a hook predicate is that
its clauses are independent of each other, and it makes sense to spread their definitions
over several files (which may be written by different people). In other words, a hook
predicate is typically declared to be multifile (see Section 4.3.4.1 [Multifile Declarations],
page 83). Often, an application needs to combine the functionality of several software
modules, among which some define clauses for such hook predicates. By simply declaring
every hook predicate as multifile, the functionality of the clauses for the hook predicate is
automatically combined. If this is not done, then the last software module to define clauses
for a particular hook predicate will effectively supersede any clauses defined for the same
hook predicate in a previous module. Most hook predicates must be defined in the user

module, and usually only their first solution is relevant.

4.2.3 Control Structures

As we have seen, the goals in the body of a sentence are linked by the operator ‘,’, which
can be interpreted as conjunction (and). The Prolog language provides a number of other
operators, known as control structures, for building complex goals. Apart from being built-
in predicates, these control structures play a special role in certain language features, namely

64 SICStus Prolog

Grammar Rules (see Section 4.14 [ref-gru], page 189), and when code is loaded or asserted in
the context of modules (see Section 4.11 [ref-mod], page 161). The set of control structures
is described in this section, and consists of:

:P,:Q ISO

prove P and Q

:P;:Q ISO

prove P or Q

+M::P ISO

call P in module M

:P->:Q;:R ISO

if P succeeds, then prove Q; if not, then prove R

:P->:Q ISO

if P succeeds, then prove Q; if not, then fail

! ISO

cut any choices taken in the current procedure

\+ :P ISO

goal P is not provable

?X ^ :P there exists an X such that P is provable (used in setof/3 and bagof/3)

+Iterators do :Body

executes Body iteratively according to Iterators

if(:P,:Q,:R)

for each solution of P succeeds, prove Q; if none, then prove R

once(:P) ISO

Find the first solution, if any, of goal P.

4.2.3.1 The Cut

Besides the sequencing of goals and clauses, Prolog provides one other very important
facility for specifying control information. This is the cut, written ‘!’. It is inserted in the
program just like a goal, but is not to be regarded as part of the logic of the program and
should be ignored as far as the declarative semantics is concerned.

The effect of the cut is as follows. When first encountered as a goal, cut succeeds immedi-
ately. If backtracking should later return to the cut, then the effect is to fail the parent goal,
i.e. the goal that matched the head of the clause containing the cut, and caused the clause
to be activated. In other words, the cut operation commits the system to all choices made
since the parent goal was invoked, and causes other alternatives to be discarded. The goals
thus rendered determinate are the parent goal itself, any goals occurring before the cut in
the clause containing the cut, and any subgoals that were executed during the execution of
those preceding goals.

For example, the procedure

Chapter 4: The Prolog Language 65

member(X, [X|L]).

member(X, [Y|L]) :-

member(X, L).

can be used to test whether a given term is in a list:

| ?- member(b, [a,b,c]).

returns the answer ‘yes’. The procedure can also be used to extract elements from a list,
as in

| ?- member(X, [d,e,f]).

With backtracking this will successively return each element of the list. Now suppose that
the first clause had been written instead:

member(X, [X|L]) :- !.

In this case, the second call above would extract only the first element of the list (‘d’). On
backtracking, the cut would immediately fail the entire procedure.

Another example:

x :- p, !, q.

x :- r.

This is analogous to “if p then q else r” in an Algol-like language.

Note that a cut discards all the alternatives subsequent to the parent goal, even when the
cut appears within a disjunction. This means that the normal method for eliminating a
disjunction—by defining an extra predicate—cannot be applied to a disjunction containing
a cut.

A proper use of the cut is usually a major difficulty for new Prolog programmers. The usual
mistakes are to over-use cut, and to let cuts destroy the logic. A cut that does not destroy
the logic is called a green cut; a cut that does is called a red cut. We would like to advise
all users to follow these general rules. Also see Chapter 9 [Writing Efficient Programs],
page 353.

• Write each clause as a self-contained logic rule, which just defines the truth of goals
that match its head. Then add cuts to remove any fruitless alternative computation
paths that may tie up memory.

• Cuts are hardly ever needed in the last clause of a predicate.

• Use cuts sparingly, and only at proper places. A cut should be placed at the exact
point that it is known that the current choice is the correct one; no sooner, no later,
usually placed right after the head, sometimes preceded by simple tests.

• Make cuts as local in their effect as possible. If a predicate is intended to be determinate,
then define it as such; do not rely on its callers to prevent unintended backtracking.

• Binding output arguments before a cut is a common source of programming errors. If

66 SICStus Prolog

a predicate is not steadfast, then it is usually for this reason.

To illustrate the last issue, suppose that you want to write a predicate max/3 that finds the
greater of two numbers. The pure version is:

max(X, Y, X) :- X >= Y.

max(X, Y, Y) :- X < Y.

Now since the two conditions are mutually exclusive, we can add a green cut to the first
clause:

max(X, Y, X) :- X >= Y, !.

max(X, Y, Y) :- X < Y.

Furthermore, if the X >= Y test fails, then we know that X < Y must be true, and therefore
it is tempting to turn the green cut into a red one and drop the X < Y test:

max(X, Y, X) :- X >= Y, !.

max(X, Y, Y).

Unfortunately, this version of max/3 can give wrong answers, for example:

| ?- max(10, 0, 0).

yes

The reason is that the query does not match the head of the first clause, and so we never
executed the X >= Y test. When we dropped the X < Y test, we made the mistake of assuming
that the head of the first clause would match any query. This is an example of a predicate
that is not steadfast. A steadfast version is:

max(X, Y, Z) :- X >= Y, !, Z = X.

max(X, Y, Y).

4.2.3.2 Disjunction

It is sometimes convenient to use an additional operator ‘;’, standing for disjunction (or).
(The precedence of ‘;’ is such that it dominates ‘,’ but is dominated by ‘:-’.) An example
is the clause (A), which can be read as (B).

grandfather(X, Z) :-

(mother(X, Y)

; father(X, Y)

),

father(Y, Z). (A)

“For any X, Y, and Z,
X has Z as a grandfather if
either the mother of X is Y

or the father of X is Y,

Chapter 4: The Prolog Language 67

and the father of Y is Z.” (B)

Such uses of disjunction can usually be eliminated by defining an extra predicate. For
instance, (A) is equivalent to (C)

grandfather(X, Z) :- parent(X, Y), father(Y, Z).

parent(X, Y) :- mother(X, Y).

parent(X, Y) :- father(X, Y). (C)

For historical reasons, the token ‘|’, when used outside a list, is actually an alias for ‘;’.
The aliasing is performed when terms are read in. Since release 4.3, however, ‘|’ can be
defined as a proper infix operator, which then disables the aliasing. So the use of ‘|’ instead
of ‘;’ for disjunction is not recommended in new code.

4.2.3.3 If-Then-Else

As an alternative to the use of cuts, and as an extension to the disjunction syntax, Prolog
provides the construct:

(If -> Then ; Else)

This is the same as the if-then-else construct in other programming languages. Procedurally,
it calls the If goal, committing to it if it succeeds, then calling the Then goal, otherwise
calling the Else goal. Then and Else, but not If, can produce more solutions on backtracking.

Cuts inside of If do not make much sense and are not recommended. If you do use them,
then their scope is limited to If itself.

The if-then-else construct is often used in a multiple-branch version:

(If_1 -> Then_1

; If_2 -> Then_2

...

; /* otherwise -> */

WhenAllElseFails

)

In contexts other than as the first argument of ;/2, the following two goals are equivalent:

(If -> Then)

(If -> Then ; fail)

That is, the ‘->’ operator has nothing to do with, and should not be confused with, logical
implication.

once/1 is a control construct that provides a “local cut”. That is, the following three goals
are equivalent:

68 SICStus Prolog

once(If)

(If -> true)

(If -> true ; fail)

Finally, there is another version of if-then-else of the form:

if(If,Then,Else)

which differs from (If -> Then ; Else) in that if/3 explores all solutions to If. This
feature is also known as a “soft cut”. There is a small time penalty for this—if If is known
to have only one solution of interest, the form (If -> Then ; Else) should be preferred.

4.2.3.4 Negation as Failure

The following construct provides a kind of pseudo-negation meaning “P is not provable”.
This is not real negation (“P is false”). The following two goals are equivalent:

\+ P

(P -> fail ; true)

4.2.3.5 Do Loops since release 4.1

Proposed in [Schimpf 2002], the control structure

(Iterators do Body)

often eliminates the need to write an auxiliary predicate to perform some simple iteration.
Semantically a do loop can be viewed as a shorthand for a goal:

PreCallGoals, aux(CallArgs).

where aux is a new, unique predicate symbol, CallArgs is its initial arguments, and Pre-
CallGoals is a sequence of goals to be executed before calling aux, which is of the following
form:

aux(BaseArgs) :- !.

aux(HeadArgs) :- PreBodyGoals, Body, aux(RecArgs).

where BaseArgs, HeadArgs and RecArgs are sequence of arguments and PreBodyGoals is
a sequence of goals. Thus the semantics of a do loop is precisely defined by a set of rewrite
rules from Iterators to those sequences of arguments and goals. Those rules are given in
tabular form at the end of this section.

The ‘do’ operator is an infix operator of the same priority as ‘;’. It is recommended to always
enclose a do loop in parentheses. Iterators is a comma-separated sequence of iterators, and
Goal is any goal.

Before giving the full list of available iterators, we now show some simple examples.

Chapter 4: The Prolog Language 69

The iterator foreach(Var,List) provides iteration over a list:

| ?- (foreach(X,[1,2,3]) do write(X), nl).

1

2

3

yes

The same iterator can be used to construct a list:

| ?- (foreach(X,[1,2,3]), foreach(Y,List) do Y is X+3).

List = [4, 5, 6]

The iterator fromto(First,In,Out,Last) can be used to express an accumulator with
initial value First, final value Last, with In and Out being local variables in Body :

| ?- (foreach(X,[1,2,3]), fromto(0,In,Out,Sum) do Out is In+X).

Sum = 6

The iterator for(Var,Min,Max) will iterate Body with Var ranging over integers Min thru
Max, which can be expressions:

| ?- (for(I,1,5), foreach(I,List) do true).

List = [1,2,3,4,5]

The iterator count(Var,Min,Max) will iterate Body with Var ranging over ascending inte-
gers from Min, unifying Max with the final value. Its main use is to count the number of
iterations:

| ?- (foreach(X,[a,b,c,d,e]), count(I,1,N), foreach(I-

X,Pairs) do true).

N = 5,

Pairs = [1-a,2-b,3-c,4-d,5-e]

The iterator foreacharg(Var,Struct) provides iteration over the arguments of a structure.
The variant foreacharg(Var,Struct,I) also exists, with I ranging over the argument
number, 1-based:

| ?- (foreacharg(A,f(1,2,3)), foreach(A,List) do true).

List = [1,2,3]

| ?- (foreacharg(A,f(a,b,c,d,e),I), foreach(I-A,List) do true).

List = [1-a,2-b,3-c,4-d,5-e]

Do loops have special variable scoping rules, which sometimes contradict the default rule
that the scope of a variable is the clause in which it occurs: the scope of variables occurring
in Body as well as variables quantified by iterators is one loop iteration. The exact scope of
variables is given in the table below. To override the scoping rule, i.e. to enable a variable
to be passed to all loop iterations, use the param(Var) declaration:

70 SICStus Prolog

| ?- (for(I,1,5), foreach(X,List), param(X) do true).

List = [X,X,X,X,X]

An omitted param(Var) iterator is often spotted by the compiler, which issues a warning.
Suppose that we want to define a predicate that removes all occurrences of the element Kill
from the list List giving Residue. A do loop formulation is given below, along with a buggy
version where param(Kill) is missing:

% do.pl

delete1(List, Kill, Residue) :- % correct

(foreach(X,List),

fromto(Residue,S0,S,[]),

param(Kill)

do (X = Kill -> S0 = S ; S0 = [X|S])

).

delete2(List, Kill, Residue) :- % wrong

(foreach(X,List),

fromto(Residue,S0,S,[])

do (X = Kill -> S0 = S ; S0 = [X|S])

).

The compiler warns about the missing param(Kill), and for a good reason: the first version
works as intended, but the second does not:

| ?- [do].

% compiling /home/matsc/sicstus4/do.pl...

* [Kill] treated as local in do loop but also used outside

* suggest renaming or adding param([Kill])

* Approximate lines: 8-15, file: '/home/matsc/sicstus4/do.pl'

% compiled /home/matsc/sicstus4/do.pl in mod-

ule user, 10 msec 192 bytes

| ?- delete1([1,2,3,4,5], 3, R).

R = [1,2,4,5]

| ?- delete2([1,2,3,4,5], 3, R).

R = []

In some cases it is harmless and even useful to use the same local variable name in two
do-loops. The compiler tries to detect this and will suppress warnings in these cases:

Chapter 4: The Prolog Language 71

% do_scope.pl

sums_and_squares(List, Doubles, Squares) :-

% X is used as a local variable in both do-loops. This is

% harmless and will give no warning.

(foreach(X, List),

foreach(Double, Doubles)

do

Double is X+X

),

(foreach(X, List),

foreach(Square, Squares)

do

Square is X*X

).

Please note: In the context of multiple iterators, for the loop to terminate, all termination
conditions must hold simultaneously. For example:

| ?- (for(I,1,2), for(J,1,3) do writeq(I-J), nl).

1-1

2-2

3-3

4-4

...

will not terminate, because the two termination condition never hold simultaneously.

Finally, do loops can be used as a control structure in grammar rules as well. A do loop in
a grammar rule context will generate (or parse) the concatenation of the lists of symbols
generated (or parsed) by each loop iteration. For example, suppose that you are representing
three-dimensional points as lists [x,y,z]. Suppose that you need to generate a list of all
such points for x between 1 and Length, y between 1 and Width, and z between 1 and
Height. A generator of such lists can be written as a grammar rule with nested do loops as
follows.

72 SICStus Prolog

| ?- compile(user).

| points3d(Length, Width, Height) -->

| (for(X,1,Length),

| param(Width,Height)

| do (for(Y,1,Width),

| param(X,Height)

| do (for(Z,1,Height),

| param(X,Y)

| do [[X,Y,Z]]

|)

|)

|).

| ?- ^D

% compiled user in module user, 0 msec 1024 bytes

| ?- phrase(points3d(3,2,4), S).

S = [[1,1,1],[1,1,2],[1,1,3],[1,1,4],

[1,2,1],[1,2,2],[1,2,3],[1,2,4],

[2,1,1],[2,1,2],[2,1,3],[2,1,4],

[2,2,1],[2,2,2],[2,2,3],[2,2,4],

[3,1,1],[3,1,2],[3,1,3],[3,1,4],

[3,2,1],[3,2,2],[3,2,3],[3,2,4]]

We now summarize the available iterators. In this table, the phrase “var is a local variable”
means that var should occur in Goal and is a brand new variable in each iteration. All
other variables have global scope, i.e. the scope is the clause containing the do loop.

fromto(First,In,Out,Last)

In the first iteration, In=First. In the n:th iteration, In is the value that Out
had at the end of the (n-1):th iteration. In and Out are local variables. The
termination condition is Out=Last.

foreach(X,List)

Iterate with X ranging over all elements of List. X is a local variable. Can also
be used for constructing a list. The termination condition is Tail = [], where
Tail is the suffix of List that follows the elements that have been iterated over.

foreacharg(X,Struct)

with X ranging over all arguments of Struct. X is a local variable. Cannot
be used for constructing a term. So the termination condition is true iff all
arguments have been iterated over.

foreacharg(X,Struct,Idx)

Iterate with X ranging over all arguments of Struct and Idx ranging over the
argument number, 1-based. X and Idx are local variables. Cannot be used for
constructing a term. So the termination condition is true iff all arguments have
been iterated over.

for(I,MinExpr,MaxExpr)

This is used when the number of iterations is known. Let Min take the value
integer(MinExpr), let Max take the value integer(MaxExpr), and let Past

Chapter 4: The Prolog Language 73

take the value max(Min,Max+1). Iterate with I ranging over integers from Min
to max(Min,Max) inclusive. I is a local variable. The termination condition is
I = Past.

count(I,MinExpr,Max)

This is normally used for counting the number of iterations. Let Min take the
value integer(MinExpr). Iterate with I ranging over integers from Min. I is
a local variable. The termination condition is I = Max, i.e. Max can be and
typically is a variable.

param(Var)

For declaring variables global, i.e. shared with the context. Var can be a single
variable, or a list of them. The termination condition is true. Please note: By
default, variables have local scope.

IterSpec1, IterSpec2

The iterators are iterated synchronously; that is, they all take their first value
for the first iteration, their second value for the second iteration, etc. The order
in which they are written does not matter. The set of local variables is the union
of those of the iterators. The termination condition is the conjunction of those
of the iterators.

Finally, we present the set of rewrite rules for the conceptual aux predicate that was intro-
duced above. The rules define the translation from the iterators to the previously introduced
PreCallGoals, CallArgs, BaseArgs, HeadArgs, PreBodyGoals, and RecArgs. This defines
the precise semantics of any do loop:

iterator PreCallGoals PreBodyGoals
fromto(F,I0,I1,T) true true

foreach(X,L) true true

foreacharg(A,S) functor(S,_,N), N1 is N+1 I1 is I0+1, arg(I0,S,A)

foreacharg(A,S,I1) functor(S,_,N), N1 is N+1 I1 is I0+1, arg(I0,S,A)

count(I,FE,T) F is integer(FE)-1 I is I0+1

for(I,FE,TE) F is integer(FE), I1 is I+1

S is max(F,integer(TE)+1)

param(P) true true

74 SICStus Prolog

iterator CallArgs BaseArgs HeadArgs RecArgs
fromto(F,I0,I1,T) F,T L0,L0 I0,L1 I1,L1

foreach(X,L) L [] [X|T] T

foreacharg(A,S) S,1,N1 _,I0,I0 S,I0,I2 S,I1,I2

foreacharg(A,S,I1) S,1,N1 _,I0,I0 S,I0,I2 S,I1,I2

count(I,FE,T) F,T L0,L0 I0,L1 I,L1

for(I,FE,TE) F,S L0,L0 I,L1 I1,L1

param(P) P P P P

4.2.3.6 Other Control Structures

The “all solution” predicates recognize the following construct as meaning “there exists an
X such that P is true”, and treats it as equivalent to P. The use of this explicit existential
quantifier outside the setof/3 and bagof/3 constructs is superfluous and discouraged.
Thus, the following two goals are equivalent:

X^P

P

The following construct is meaningful in the context of modules (see Section 4.11 [ref-mod],
page 161), meaning “P is true in the context of the M module”:

M:P

4.2.4 Declarative and Procedural Semantics

The semantics of definite clauses should be fairly clear from the informal interpretations
already given. However, it is useful to have a precise definition. The declarative semantics
of definite clauses tells us which goals can be considered true according to a given program,
and is defined recursively as follows:

A goal is true if it is the head of some clause instance and each of the goals (if
any) in the body of that clause instance is true, where an instance of a clause
(or term) is obtained by substituting, for each of zero or more of its variables,
a new term for all occurrences of the variable.

For example, if a program contains the procedure for concatenate/3, declared in
Section 4.2.1 [ref-sem-pro], page 61, then the declarative semantics tells us that (A) is
true, because this goal is the head of a certain instance of the second clause (K) for
concatenate/3, namely (B), and we know that the only goal in the body of this clause
instance is true, because it is an instance of the unit clause that is the first clause for
concatenate/3.

concatenate([a], [b], [a,b])

concatenate([a], [b], [a,b]):-

concatenate([], [b], [b]).

Chapter 4: The Prolog Language 75

Note that the declarative semantics makes no reference to the sequencing of goals within
the body of a clause, nor to the sequencing of clauses within a program. This sequencing
information is, however, very relevant for the procedural semantics that Prolog gives to defi-
nite clauses. The procedural semantics defines exactly how the Prolog system will execute a
goal, and the sequencing information is the means by which the Prolog programmer directs
the system to execute his program in a sensible way. The effect of executing a goal is to
enumerate, one by one, its true instances. Here is an informal definition of the procedural
semantics.

To execute a goal, the system searches forwards from the beginning of the
program for the first clause whose head matches or unifies with the goal. The
unification process [Robinson 65] finds the most general common instance of the
two terms, which is unique if it exists. If a match is found, then the matching
clause instance is then activated by executing in turn, from left to right, each of
the goals (if any) in its body. If at any time the system fails to find a match for
a goal, then it backtracks; that is, it rejects the most recently activated clause,
undoing any substitutions made by the match with the head of the clause. Next
it reconsiders the original goal that activated the rejected clause, and tries to
find a subsequent clause that also matches the goal.

For example, if we execute the goal expressed by the query (A), then we find that it matches
the head of the second clause for concatenate/3, with X instantiated to [a|X1]. The new
variable X1 is constrained by the new goal produced, which is the recursive procedure call
(B) and this goal matches the second clause, instantiating X1 to [b|X2], and yielding the
new goal (C).

| ?- concatenate(X, Y, [a,b]). (A)

concatenate(X1, Y, [b]) (B)

concatenate(X2, Y, []) (C)

Now this goal will only match the first clause, instantiating both X2 and Y to []. Since
there are no further goals to be executed, we have a solution

X = [a,b]

Y = []

That is, the following is a true instance of the original goal:

concatenate([a,b], [], [a,b])

If this solution is rejected, then backtracking will generate the further solutions

X = [a]

Y = [b]

X = []

Y = [a,b]

76 SICStus Prolog

in that order, by re-matching goals already solved once using the first clause of
concatenate/3, against the second clause.

Thus, in the procedural semantics, the set of clauses

H :- B1, ..., Bm.

H' :- B1', ..., Bm'.

...

are regarded as a procedure definition for some predicate H, and in a query

?- G1, ..., Gn.

each Gi is regarded as a procedure call. To execute a query, the system selects by its
computation rule a goal, Gj say, and searches by its search rule a clause whose head matches
Gj. Matching is done by the unification algorithm (see [Robinson 65]), which computes the
most general unifier, mgu, of Gj and H). The mgu is unique if it exists. If a match is found,
then the current query is reduced to a new query

?- (G1, ..., Gj-1, B1, ..., Bm, Gj+1, ..., Gn)mgu.

and a new cycle is started. The execution terminates when the empty query has been
produced.

If there is no matching head for a goal, then the execution backtracks to the most recent
successful match in an attempt to find an alternative match. If such a match is found, then
an alternative new query is produced, and a new cycle is started.

In SICStus Prolog, as in other Prolog systems, the search rule is simple: “search forward
from the beginning of the program”.

The computation rule in traditional Prolog systems is also simple: “pick the leftmost goal
of the current query”. However, SICStus Prolog and other modern implementations have a
somewhat more complex computation rule “pick the leftmost unblocked goal of the current
query”.

A goal can be blocked on one ore more uninstantiated variables, and a variable may block
several goals. Thus binding a variable can cause blocked goals to become unblocked, and
backtracking can cause currently unblocked goals to become blocked again. Moreover, if
the current query is

?- G1, ..., Gj-1, Gj, Gj+1, ..., Gn.

where Gj is the first unblocked goal, and matching Gj against a clause head causes several
blocked goals in G1, . . . , Gj-1 to become unblocked, then these goals may become reordered.

Another consequence is that a query may be derived consisting entirely of blocked goals.
Such a query is said to have floundered. The top level checks for this condition. If detected,
then the outstanding blocked subgoals are printed on the standard error stream along

Chapter 4: The Prolog Language 77

with the answer substitution, to notify the user that the answer (s)he has got is really a
speculative one, since it is only valid if the blocked goals can be satisfied.

A goal is blocked if certain arguments are uninstantiated and its predicate definition is anno-
tated with a matching block declaration (see Section 4.3.4.5 [Block Declarations], page 84).
Goals of certain built-in predicates may also be blocked if their arguments are not sufficiently
instantiated.

When this mechanism is used, the control structure resembles that of coroutines, suspending
and resuming different threads of control. When a computation has left blocked goals
behind, the situation is analogous to spawning a new suspended thread.

When a blocked goal becomes unblocked, the situation is analogous to temporarily suspend-
ing the current thread and resuming the thread to which the blocked goal belongs. Please
note that a stretch of unifications is treated as atomic with respect to unblocking goals.
Also, if such a stretch is followed by an explicit failure (fail/0, false/0), any unblocked
goal is not run.

4.2.5 Meta-Calls

If X is instantiated to a term that would be acceptable as the body of a clause, then the
goal call(X) is executed exactly as if that term appeared textually in place of the call(X),
except the scope of any cut occurring in X is limited to the execution of X. That is, the
cut does not “propagate” into the clause in which call(X) occurs. If X is not properly
instantiated, then an error exception is raised as described in Section 4.2.6 [ref-sem-exc],
page 77.

In release 4, call/1 has been generalized to call/N of any arity N between 1 and 255:
the first argument is treated as template, which should be augmented by the remaining
arguments, giving the goal to call. For example, the goal call(p(X),Y,Z) is equivalent to
the goal p(X,Y,Z). Note in particular that the first argument does not need to be an atom.

4.2.6 Exceptions Related to Procedure Calls

All predicates that take a call argument will raise the following exceptions:

instantiation_error

Module prefix or goal uninstantiated.

type_error

Goal not a callable.

existence_error

Procedure does not exist.

context_error

Declaration or clause construct called as procedure.

The reference page for such predicates will simply refer to these as “Call errors” and will
go on to detail other exceptions that may be raised for a particular predicate.

78 SICStus Prolog

4.2.7 Occurs Check

Prolog’s unification does not have an occurs check; that is, when unifying a variable against
a term, the system does not check to see if the variable occurs in the term. When the
variable occurs in the term, unification should fail, but the absence of the check means
that the unification succeeds, producing a cyclic term. Operations such as trying to print
a cyclic term will cause a loop.

The absence of the occurs check is not a bug or a design oversight, but a conscious design
decision. The reason for this decision is that unification of a variable and a term with the
occurs check is at best linear in the sum of the term, whereas such unification without the
occurs check runs in constant time. For any programming language to be practical, basic
operations should take constant time. Unification against a variable may be thought of
as the basic operation of Prolog, and this can take constant time only if the occurs check
is omitted. Thus the absence of an occurs check is essential to Prolog’s practicality as a
programming language. The inconvenience caused by this restriction is, in practice, very
slight.

SICStus Prolog unifies, compares (see Section 4.8.8 [ref-lte-cte], page 130), asserts, and
copies cyclic terms without looping. The write_term/[2,3] built-in predicate can option-
ally handle cyclic terms. Unification with occurs check is available as a built-in predicate;
see Section 4.8.1.2 [ref-lte-met-usu], page 126. The acyclic_term/1 built-in predicate can
test whether a term is acyclic; subsumes_term/2 can test whether a term is subsumed by
another one (see Section 4.8 [ref-lte], page 126). Additional predicates for subsumption and
testing (a)cyclicity are available in a library package; see Section 10.42 [lib-terms], page 841.
Other predicates usually do not handle cyclic terms well.

4.2.8 Summary of Control Predicates

:P,:Q ISO

prove P and Q

:P;:Q ISO

prove P or Q

+M::P ISO

call P in module M

:P->:Q;:R ISO

if P succeeds, prove Q; if not, prove R

:P->:Q ISO

if P succeeds, prove Q; if not, fail

! ISO

cut any choices taken in the current procedure

\+ :P ISO

goal P is not provable

?X ^ :P there exists an X such that P is provable (used in setof/3 and bagof/3)

Chapter 4: The Prolog Language 79

block :P declaration

declaration that predicates specified by P should block until sufficiently instan-
tiated

call(:P) ISO

call(:P,...) ISO

execute P or P(...)

call_cleanup(:Goal,:Cleanup)

Executes the procedure call Goal. When Goal succeeds determinately, is cut,
fails, or raises an exception, Cleanup is executed.

call_residue_vars(:Goal,?Vars)

Executes the procedure call Goal. Vars is unified with the list of new vari-
ables created during the call that remain unbound and have blocked goals or
attributes attached to them.

+Iterators do :Body

executes Body iteratively according to Iterators

fail ISO

fail (start backtracking)

false ISO

same as fail

freeze(+Var,:Goal)

Blocks Goal until nonvar(Var) holds.

if(:P,:Q,:R)

for each solution of P that succeeds, prove Q; if none, prove R

once(:P) ISO

Find the first solution, if any, of goal P.

otherwise

same as true

repeat ISO

succeed repeatedly on backtracking

true ISO

succeed

when(+Cond,:Goal)

block Goal until Cond holds

4.3 Loading Programs

4.3.1 Overview

There are two ways of loading programs into Prolog—loading source files and loading pre-
compiled PO files. Source files can be compiled into virtual machine code, as well as
consulted for interpretation. Dynamic predicates are always stored in interpreted form,
however.

80 SICStus Prolog

Virtual machine code runs about 8 times faster than interpreted code, and requires less
runtime storage. Compiled code is fully debuggable, except certain constructs compile
inline and cannot be traced. Compiled code also provides better precision for execution
profiling and coverage analysis.

Since release 4.3, on 32 and 64 bit x86 platforms running Windows, OS X, and Linux,
SICStus Prolog has the ability to compile predicates from virtual machine code to native
code. This process, known as Just In Time (JIT) compilation, is controlled by a couple
of system properties (see Section 4.17.1 [System Properties and Environment Variables],
page 224), but is otherwise automatic. JIT compilation is seamless wrt. debugging, profiling,
coverage analysis, etc. JIT compiled code runs up to 4 times faster than virtual machine
code, but takes more space.

The virtual machine compiler operates in two different modes, controlled by the compiling
Prolog flag. The possible values of the flag are:

compactcode

Compilation produces byte-coded abstract instructions. The default.

debugcode

Compilation produces interpreted code, i.e. compiling is replaced by consulting.

This section contains references to the use of the module system. These can be ignored if
the module system is not being used (see Section 4.11 [ref-mod], page 161, for information
on the module system).

4.3.2 The Load Predicates

Loading a program is accomplished by one of these predicates

[]

[:File|:Files]

load_files(:Files)

load_files(:Files, +Options)

loads source or PO file(s), whichever is the more recent, according to Options.

compile(:Files)

loads source file(s) into virtual machine code.

consult(:Files)

reconsult(:Files)

loads source file(s) into interpreted representation.

ensure_loaded(:Files)

loads source or PO file(s), whichever is the more recent, unless the file has
already been loaded and it has not been modified since it was loaded.

use_module(:Files)

use_module(:File,+I)

use_module(?M,:File,+I)

loads module files, see Section 4.11.3 [ref-mod-def], page 162, for information
about module files.

Chapter 4: The Prolog Language 81

The following notes apply to all the Load Predicates:

1. The File argument must be one of the following:

• a file specification, that is the name of a file containing Prolog code; a ‘.pro’,
‘.pl’ or a ‘.po’ suffix to a filename may be omitted (see Section 4.5.1 [ref-fdi-fsp],
page 95)

• the atom user

2. The Files argument can be a File, as above, or a list of such elements.

3. These predicates resolve file specifications in the same way as absolute_file_name/2.
For information on file names refer to Section 4.5 [ref-fdi], page 95.

4. The above predicates raise an exception if any of the files named in Files does not exist,
unless the fileerrors flag is set to off.

Errors detected during compilation, such as an attempt to redefine a built-in predi-
cate, also cause exceptions to be raised. However, these exceptions are caught by the
compiler, an appropriate error message is printed, and compilation continues.

5. There are a number of style warnings that may appear when a file is compiled. These
are designed to aid in catching simple errors in your programs and are initially on, but
can be turned off if desired by setting the appropriate flags, which are:

single_var_warnings

If on, then warnings are printed when a sentence (see Section 4.1.7.3 [ref-
syn-syn-sen], page 53) containing variables not beginning with ‘_’ occurring
once only is compiled or consulted.

The Prolog flag legacy_char_classification (see Section 4.9.4 [ref-lps-
flg], page 136) expands the set of variable names for which warnings are
printed. When legacy_char_classification is in effect warnings are
printed also for variables that occur only once and whose name begin with
‘_’ followed by a character that is not an uppercase Latin 1 character.

redefine_warnings

This flag can take more values; see Section 4.9.4 [ref-lps-flg], page 136. If
on, then the user is asked what to do when:

• a module or predicate is being redefined from a different file than its
previous definition.

• a predicate is being imported whilst it was locally defined already.

• a predicate is being redefined locally whilst it was imported already.

• a predicate is being imported whilst it was imported from another
module already.

discontiguous_warnings

If on, then warnings are printed when clauses are not together in source
files, and the relevant predicate has not been declared discontiguous.

6. By default, all clauses for a predicate are required to come from just one file. A
predicate must be declared multifile if its clauses are to be spread across several
different files. See the reference page for multifile/1.

82 SICStus Prolog

7. If a file being loaded is not a module file, then all the predicates defined in the file are
loaded into the source module. The form load_files(Module:Files) can be used to
load the file into the specified module. See Section 4.11.3 [ref-mod-def], page 162, for
information about module files. If a file being loaded is a module file, then it is first
loaded in the normal way, the source module imports all the public predicates of the
module file except for use_module/[1,2,3] and load_files/[1,2] if you specify an
import list.

8. If there are any directives in the file being loaded, that is, any terms with principal
functor :-/1 or ?-/1, then these are executed as they are encountered. Only the first
solution of directives is produced, and variable bindings are not displayed. Directives
that fail or raise exceptions give rise to warning or error messages, but do not terminate
the load. However, these warning or error messages can be intercepted by the hook
user:portray_message/2, which can call abort/0 to terminate the load, if that is the
desired behavior.

9. A common type of directive to have in a file is one that loads another file, such as

:- [otherfile].

In this case, if otherfile is a relative filename, then it is resolved with respect to the
directory containing the file that is being loaded, not the current working directory of
the Prolog system.

Any legal Prolog goal may be included as a directive. There is no difference between a
‘:-/1’ and a ‘?-/1’ goal in a file being compiled.

10. If Files is the atom user, or Files is a list, and during loading of the list user is
encountered, then procedures are to be typed directly into Prolog from user_input,
e.g. the terminal. A special prompt, ‘| ’, is displayed at the beginning of every new
clause entered from the terminal. Continuation lines of clauses typed at the terminal
are preceded by a prompt of five spaces. When all clauses have been typed in, the last
should be followed by end-of-file, or the atom end_of_file followed by a full stop.

11. During loading of source code, all terms being read in are subject to term expansion.
Grammar rules is a special, built-in case of this mechanism. By defining the hook pred-
icates user:term_expansion/6 and goal_expansion/5, you can specify any desired
transformation to be done as clauses are loaded.

12. The current load context (module, file, stream, directory) can be queried using prolog_
load_context/2.

13. Predicates loading source code are affected by the character-conversion mapping, cf.
char_conversion/2.

4.3.3 Redefining Procedures during Program Execution

You can redefine procedures during the execution of the program, which can be very useful
while debugging. The normal way to do this is to use the ‘break’ option of the debugger to
enter a break state (see break/0, Section 4.15.7 [ref-ere-int], page 211), and then load an
altered version of some procedures. If you do this, then it is advisable, after redefining the
procedures and exiting from the break state, to wind the computation back to the first call
to any of the procedures you are changing: you can do this by using the ‘retry’ option with
an argument that is the invocation number of that call. If you do not wind the computation
back like this, then:

Chapter 4: The Prolog Language 83

• if you are in the middle of executing a procedure that you redefine, then you will find
that the old definition of the procedure continues to be used until it exits or fails;

• if you should backtrack into a procedure you have just redefined, then alternative
clauses in the old definition will still be used.

See Section 11.3.27 [mpg-ref-break], page 942.

4.3.4 Declarations and Initializations

When a program is to be loaded, it is sometimes necessary to tell the system to treat some of
the predicates specially. This information is supplied by including declarations about such
predicates in the source file, preceding any clauses for the predicates that they concern. A
declaration is written just as a directive is, beginning with ‘:-’. A declaration is effective
from its occurrence through the end of file.

Although declarations that affect more than one predicate may be collapsed into a single
declaration, the recommended style is to write the declarations for a predicate immediately
before its first clause.

Operator declarations are not declarations proper, but rather directives that modify the
global table of syntax operators. Operator declarations are executed as they are encountered
while loading programs.

The rest of this section details the available forms of predicate declarations.

4.3.4.1 Multifile Declarations

A declaration

:- multifile :PredSpec, ..., :PredSpec. ISO

where each PredSpec is a predicate specification, causes the specified predicates to become
multifile. This means that if more clauses are subsequently loaded from other files for the
same predicate, then the new clauses will not replace the old ones, but will be added at the
end instead.

An example where multifile declarations are particularly useful is in defining hook predi-
cates. A hook predicate is a user-defined predicate that somehow alters or customizes the
behavior of SICStus Prolog. A number of such hook predicates are described in this manual.
See also Section 4.2.2.1 [ref-sem-typ-hok], page 63.

Multifile declarations must precede any other declarations for the same predicate(s)!

If a file containing clauses for a multifile predicate is reloaded, then the old clauses from
the same file are removed. The new clauses are added at the end. Please note: if the file
being reloaded is a module file, however, then all predicates belonging to the module are
abolished, including any multifile predicate.

If a multifile predicate is loaded from a file with no multifile declaration for it, then the
predicate is redefined as if it were an ordinary predicate (i.e. the user is asked for confirma-
tion).

84 SICStus Prolog

If a multifile predicate is declared dynamic in one file, then it must also be done so in the
other files from which it is loaded. See Section 11.3.125 [mpg-ref-multifile], page 1066.

4.3.4.2 Dynamic Declarations

A declaration

:- dynamic :PredSpec, ..., :PredSpec. ISO

where each PredSpec is a predicate specification, causes the specified predicates to become
dynamic, which means that other predicates may inspect and modify them, adding or
deleting individual clauses. Dynamic predicates are always stored in interpreted form even
if a compilation is in progress. This declaration is meaningful even if the file contains no
clauses for a specified predicate—the effect is then to define a dynamic predicate with no
clauses.

The semantics of dynamic code is described in Section 4.12.1 [ref-mdb-bas], page 176. See
Section 11.3.68 [mpg-ref-dynamic], page 989.

4.3.4.3 Volatile Declarations

A declaration

:- volatile :PredSpec, ..., :PredSpec.

where each PredSpec is a predicate specification, causes the specified predicates to become
volatile.

A predicate should be declared as volatile if it refers to data that cannot or should not be
saved in a saved state. In most cases a volatile predicate will be dynamic, and it will be
used to keep facts about streams or memory references. When a program state is saved at
runtime, the clauses of all volatile predicates will be left unsaved. The predicate definitions
will be saved though, which means that the predicates will keep all its properties such as
volatile, dynamic or multifile when the saved state is restored. See Section 11.3.249
[mpg-ref-volatile], page 1222.

4.3.4.4 Discontiguous Declarations

By default, the development system issues warnings if it encounters clauses that are not
together for some predicate. A declaration:

:- discontiguous :PredSpec, ..., :PredSpec. ISO

disables such warnings for the predicates specified by each PredSpec. The warnings
can also be disabled globally by setting the discontiguous_warnings flag to off. See
Section 11.3.65 [mpg-ref-discontiguous], page 985.

4.3.4.5 Block Declarations

The declaration

:- block :BlockSpec, ..., :BlockSpec.

Chapter 4: The Prolog Language 85

where each BlockSpec is a skeletal goal, specifies conditions for blocking goals of the pred-
icate referred to by the skeletal goal (f/3 say). The arguments of the skeletal goal can
be:

‘-’ see below

‘?’
‘anything else’

ignored

When a goal for f/3 is to be executed, the mode specs are interpreted as conditions for
blocking the goal, and if at least one condition evaluates to true, the goal is blocked.

A block condition evaluates to true if and only if all arguments specified as ‘-’ are uninstan-
tiated, in which case the goal is blocked until at least one of those variables is instantiated.
If several conditions evaluate to true, then the implementation picks one of them and blocks
the goal accordingly.

The recommended style is to write the block declarations in front of the source code of the
predicate they refer to. Indeed, they are part of the source code of the predicate, and must
precede the first clause. For example, with the definition:

:- block merge(-,?,-), merge(?,-,-).

merge([], Y, Y).

merge(X, [], X).

merge([H|X], [E|Y], [H|Z]) :- H @< E, merge(X, [E|Y], Z).

merge([H|X], [E|Y], [E|Z]) :- H @>= E, merge([H|X], Y, Z).

calls to merge/3 having uninstantiated arguments in the first and third position or in the
second and third position will suspend.

The behavior of blocking goals for a given predicate on uninstantiated arguments cannot
be switched off, except by abolishing or redefining the predicate. See Section 11.3.26 [mpg-
ref-block], page 940.

4.3.4.6 Meta-Predicate Declarations

To ensure correct semantics in the context of multiple modules, some predicates are subject
to module name expansion. Clauses or directives containing goals for such predicates need
to have certain arguments annotated by a module prefix. A declaration:

:- meta_predicate :MetaPredSpec, ..., :MetaPredSpec.

where each MetaPredSpec is a skeletal goal, informs the compiler which predicates and
which of its arguments should be subject to such annotations. See Section 4.11.16 [ref-mod-
met], page 171, and Section 4.11.15 [ref-mod-mne], page 171, for details.

4.3.4.7 Module Declarations

One of the following declarations:

86 SICStus Prolog

:- module(+ModuleName, +ExportList).

:- module(+ModuleName, +ExportList, +Options).

where ExportList is a list of predicate specifications, declares that the forthcoming predi-
cates should go into the module named ModuleName and that the predicates listed should
be exported. See Section 4.11 [ref-mod], page 161, for details. See Section 11.3.122 [mpg-
ref-meta predicate], page 1061.

4.3.4.8 Public Declarations

The only effect of a declaration

:- public :PredSpec, ..., :PredSpec.

where each PredSpec is a predicate specification, is to give the SICStus cross-referencer
(see Section 9.12 [The Cross-Referencer], page 377) a starting point for tracing reachable
code. In some Prologs, this declaration is necessary for making compiled predicates visible.
In SICStus Prolog, predicate visibility is handled by the module system. See Section 4.11
[ref-mod], page 161.

4.3.4.9 Mode Declarations

A declaration

:- mode :ModeSpec, ..., :ModeSpec.

where each ModeSpec is a skeletal goal, has no effect whatsoever, but is accepted for
compatibility reasons. Such declarations may be used as a commenting device, as they
express the programmer’s intention of data flow in predicates.

4.3.4.10 is/2 Declarations

A declaration

:- SPEC is ANNOTATION.

is treated as a piece of documentation about the predicate specified by SPEC. It has no
effect on normal execution, but the information is recorded and can be accessed by e.g.
analysis and debugging tools. For details, see Section 10.19 [lib-is directives], page 559.

4.3.4.11 Include Declarations

A directive

:- include(+Files). ISO

where Files is a file name or a list of file names, instructs the processor to literally embed
the Prolog clauses and directives in Files into the file being loaded. This means that the
effect of the include directive is as if the include directive itself were being replaced by
the text in the Files. Including some files is thus different from loading them in several
respects:

Chapter 4: The Prolog Language 87

• The embedding file counts as the source file of the predicates loaded, e.g. with respect
to the built-in predicate source_file/2; see Section 4.9.3 [ref-lps-apf], page 136.

• Some clauses of a predicate can come from the embedding file, and some from included
files.

• When including a file twice, all the clauses in it will be entered twice into the program
(although this is not very meaningful).

• The virtual clauses beginning_of_file and end_of_file are seen by term expansions
for source files, but not for included files.

SICStus Prolog uses the included file name (as opposed to the embedding file name) only
in source-linked debugging and error reporting. See Section 11.3.104 [mpg-ref-include],
page 1037.

4.3.4.12 Initializations

A directive

:- initialization :Goal. ISO

in a file appends Goal to the list of goals that shall be executed after that file has been
loaded.

initialization/1 is actually callable at any point during loading of a file. Initializations
are saved by save_modules/2 and save_program/[1,2], and so are executed after loading
or restoring such files too, in input order.

Goal is associated with the file loaded, and with a module, if applicable. When a file, or
module, is going to be reloaded, all goals earlier installed by that file, or in that module,
are removed first. See Section 11.3.105 [mpg-ref-initialization], page 1038.

4.3.5 Term and Goal Expansion

During loading of source code, all terms being read in are subject to term expansion. Gram-
mar rules is a special, built-in case of this mechanism. By defining the hook predicates
user:term_expansion/6 and goal_expansion/5, you can specify any desired transforma-
tion to be done as clauses are loaded.

Term expansions are added by defining clauses for the following hook predicate. Such
clauses should follow the pattern:

:- multifile user:term_expansion/6.

user:term_expansion(Term1, Layout1, Ids, Term2, Layout2, [to-

ken|Ids]) :- ...

nonmember(token, Ids),

token_expansion(Term1, Layout1, Term2, Layout2), !.

where token expansion/4 should be a predicate defining how to transform a given Term1
into Term2. The hook is called for every Term1 read, including at end of file, represented as
the term end_of_file. If it succeeds, then Term2 is used for further processing; otherwise,

88 SICStus Prolog

the default grammar rule expansion is attempted. It is often useful to let a term expand to
a list of directives and clauses, which will then be processed sequentially.

A key idea here is Ids, which is used to look up what expansions have already been ap-
plied. The argument is supposed to be a list of tokens, each token uniquely identifying an
expansion. The tokens are arbitrary atoms, and are simply added to the input list, before
expansions recursively are applied. This token list is used to avoid cyclic expansions.

The other arguments are for supporting source-linked debugging; see the reference page for
details. See Section 11.3.227 [mpg-ref-term expansion], page 1196.

Please note: term expansions are global, i.e. they affect all code that are compiled or
consulted. In particular a term expansion is not affected by module imports. Care should
be taken so that a term expansion does not unintentionally affect some unrelated source
code. goal_expansion/5 provides a more robust, and module aware, way to transform
individual goals.

Goal expansions are added by defining the hook predicate:

M:goal_expansion(Goal1, Layout1, Module, Goal2, Layout2) :- ...

which should define how to transform a given Goal1 into Goal2. Expansions are per module
and should be defined in the module M in which Goal1 is locally defined. It is called for
every goal occurring in a clause being loaded, asserted, or meta-called. If it succeeds, then
Goal2 is used for further processing, and may be arbitrarily complex.

Please note: In general, the goal expansion can happen both at compile time and at runtime
(and sometimes both, even for the same goal). For this reason the code that implements
goal expansion should be present both at compile time and at runtime.

The other arguments are for supporting source-linked debugging and passing the source
module; see the reference page for details.

To invoke term expansion from a program, use:

?- expand_term(Term1, Term2).

which transforms Term1 into Term2 using the built-in (for grammar rules) as well as user-
defined term expansion rules. See Section 11.3.97 [mpg-ref-goal expansion], page 1029.

4.3.6 Conditional Compilation

A pair of directives

:- if(:Goal).

...

:- endif.

will evaluate Goal and, if the goal succeeds, then the sentences between the if/1 directive
and the matching endif/0 directive will be processed as usual.

Chapter 4: The Prolog Language 89

If the evaluation of Goal does not succeed, i.e. fails or raises an exception, then the sentences
between the if/1 directive and the endif/0 directive are completely ignored, except that
any conditional directives must be properly nested. In particular, term expansion will not
be performed on such ignored sentences and the goals of any nested conditional directives
will not be evaluated.

The full form of conditional compilation directives include optional else/0 and elif/1 and
are used as follows

:- if(:Goal1).

...

:- else.

...

:- endif.

If the goal of the if/1 directive succeeds, then the sentences up to the matching else/0

directive are processed as usual. Otherwise, if the goal fails or raises an exception, then the
sentences between the else/0 directive and the matching endif/0 directive are processed
as usual.

Finally, elif/1 is available as a shorthand for nested uses of if/1 and else/0

:- if(:Goal1).

...

:- elif(:Goal2).

...

:- elif(:Goal3).

...

:- else.

...

:- endif.

will evaluate the goals in turn, until one of them succeeds in which case the following
sentences will be processed as usual up to the corresponding else/0, endif/0 or elif/1.

A valid sequence of conditional compilation directives must contain exactly one if/1 direc-
tive followed by zero or more elif/1 directives followed by at most one else/0 directive
followed by exactly one endif/0 directive. Valid sequences of conditional directives can be
nested.

All directives that make up a sequence of conditional compilation directives must be in the
same file. For instance, you cannot have a if/1 directive in one file and then have the
corresponding endif/0 directive in a file included with an include/1 directive. Nested
conditional compilation sequences can of course be located in included files.

Conditional compilation directives are handled very early in the processing of an input
file. In particular, term expansion hooks will never see if/1, else/0, elif/1 or endif/0
directives. Also, neither of if/1, else/0, elif/1 or endif/0 are defined as predicates.

90 SICStus Prolog

If evaluation of a goal for if/1 directive or an elif/1 directive raises an exception, then
an error message will be written and the goal will be treated as if it failed.

4.3.6.1 Conditional Compilation Examples

Conditional compilation is useful for writing portable Prolog code since it makes it possible
to adapt to peculiarities of various implementations. The Prolog flag dialect, used by
several Prolog implementations, is especially useful here.

:- if(current_prolog_flag(dialect, sicstus).

%% We are being compiled in SICStus

%% Only SICStus has this library

:- use_module(library(process), [process_create/2]).

:- elif(current_prolog_flag(dialect, othervendor)).

%% We are being compiled in Other Vendor, we need to provide our own

%% compatibility layer

:- use_module(...).

process_create(A,B) :- ...

:- else.

%% We are being compiled in some unknown Prolog, give up.

process_create(_,_) :- throw(not_implemented).

:- endif.

Another possible usage is for disabling, perhaps costly, debugging code when building an
optimized version of the code.

%% Only need environ/2 at compile-time for conditional compilation

:- load_files(library(system), [when(compile_time), imports([environ/2])]).

:- if(\+ environ(optimize, true)).

%% This clause does some expensive sanity checks. Disabled when building

%% an optimized version.

foo(X) :-

\+ valid_x(X),

throw(invalid_x(X)).

:- endif.

%% This clause is always present.

foo(X) :-

do_x_things(X).

Chapter 4: The Prolog Language 91

Invoking the SICStus development system with an option -Doptimize=true, to set the
system property optimize, and then compiling the above code will ensure that the first,
sanity checking, clause is not part of the foo/1 predicate. Invoking the development system
without such an option will ensure that the sanity checking clause is part of the foo/1

predicate.

4.3.7 Predicate List

Detailed information is found in the reference pages for the following:

[]

[:F|+Fs] same as load_files([F|Fs])

block :P declaration

predicates specified by P should block until sufficiently instantiated

compile(:F)

load compiled clauses from files F

consult(:F)

reconsult(:F)

load interpreted clauses from files F

expand_term(+T,-X) hookable

term T expands to term X using user:term_expansion/6 or grammar rule
expansion

goal_expansion(+Term1, +Layout1, +Module, -Term2, -Layout2) hook

Defines transformations on goals while clauses are being compiled or asserted,
and during meta-calls.

discontiguous :P declaration, ISO

clauses of predicates P do not have to appear contiguously

dynamic :P declaration, ISO

predicates specified by P are dynamic

elif(:Goal) declaration

Provides an alternative branch in a sequence of conditional compilation direc-
tives.

else declaration

Provides an alternative branch in a sequence of conditional compilation direc-
tives.

endif declaration

Terminates a sequence of conditional compilation directives.

ensure_loaded(:F) ISO

load F if not already loaded

if(:Goal) declaration

Starts a sequence of conditional compilation directives for conditionally includ-
ing parts of a source file.

92 SICStus Prolog

include(+F) declaration, ISO

include the source file(s) F verbatim

initialization :G declaration, ISO

declares G to be run when program is started

load_files(:F)

load_files(:F,+O)

load files according to options O

meta_predicate :P declaration

declares predicates P that are dependent on the module from which they are
called

mode :P declaration

NO-OP: document calling modes for predicates specified by P

module(+M,+L) declaration

module(+M,+L,+O) declaration

module M exports predicates in L, options O

multifile :P declaration, ISO

the clauses for P are in more than one file

public :P declaration

NO-OP: declare predicates specified by P public

restore(+F)

restore the state saved in file F

user:term_expansion(+Term1, +Layout1, +Tokens1, -Term2, -Layout2, -Tokens2)

hook

Overrides or complements the standard transformations to be done by expand_

term/2.

use_module(:F)

use_module(:F,+I)

import the procedure(s) I from the module file F

use_module(?M,:F,+I)

import I from module M, loading module file F if necessary

volatile :P declaration

predicates specified by P are not to be included in saves

4.4 Saving and Loading the Prolog Database

4.4.1 Overview of PO Files

A PO file (Prolog object file) contains a binary representation of a set of modules, predicates,
clauses and directives. They are portable between different platforms, except between 32-bit
and 64-bit platforms.

PO files are created by save_files/2, save_modules/2, and save_predicates/2, which
all save a selected set of code and data from the running application. They can be loaded
by the predicates described in Section 4.3 [ref-lod], page 79.

Chapter 4: The Prolog Language 93

PO files provide tremendous flexibility that can be used for many purposes, for example:

• precompiling Prolog libraries for fast loading;

• packaging Prolog code for distribution;

• generating precompiled databases of application data;

• selectively loading particular application databases (and rule bases);

• saving Prolog data across application runs;

• building and saving new application databases from within applications;

The facilities for saving and loading PO files are more than just a convenience when devel-
oping programs; they are also a powerful tool that can be used as part of the application
itself.

4.4.2 Saved States

saved states are just a special case of PO files. The save_program/[1,2] predicate will save
the execution state in a file. The state consists of all predicates and modules except built-in
predicates and clauses of volatile predicates, the current operator declarations, the current
character-conversion mapping, the values of all writable Prolog flags except those marked
as volatile in Section 4.9.4 [ref-lps-flg], page 136, any blackboard data (see Section 4.12.9
[ref-mdb-bbd], page 184), database data (see Section 4.12.1 [ref-mdb-bas], page 176), and
as of release 4.2, information for source-linked debugging. See Section 11.3.198 [mpg-ref-
save program], page 1157.

A saved state, can be restored using the restore/1 predicate from within Prolog:

| ?- restore(File).

which will replace the current program state by the one in File. See Section 11.3.192 [mpg-
ref-restore], page 1150.

A saved state can also be given as an option to the sicstus command:

% sicstus -r File

which will start execution by restoring File.

The location (i.e. directory) of the saved state, when it is created with save_program/[1,2]

and loaded with restore/1, is treated in a special way in order to make it possible locate
files when the saved state has been moved. See Section 3.10 [Saving], page 28, for more
information.

The save_program/2 predicate can be used to specify an initial goal that will be run when
the saved state is restored. For example:

| ?- save_program(saved_state,initial_goal([a,b,c])).

When saved_state is loaded initial_goal/1 will be called. This allows saved states to be
generated that will immediately start running the user’s program when they are restored. In

94 SICStus Prolog

addition to this save_program/2 facility, see also the initialization/1 facility to declare
goal to be executed upon loading (see Section 4.3.4.12 [Initializations], page 87).

4.4.3 Selective Saving and Loading of PO Files

The save_program/[1,2] and restore/1 predicates discussed in the previous section are
used for saving and restoring the entire Prolog database. To save selected parts of a Prolog
database, the predicates save_files/2, save_modules/2, and save_predicates/2 are
used.

To save everything that was loaded from the files src1.pl and src2.pl into file1.po

(extensions optional), as well as from any file included by them, you would use:

| ?- save_files([src1,src2],file1).

Any module declarations, predicates, multifile clauses, or directives encountered in those
files will be saved. Source file information as provided by source_file/[1,2] for the
relevant predicates and modules is also saved.

To save the modules user and special into file2.po you would use:

| ?- save_modules([user,special],file2).

The module declarations, predicates and initializations belonging to those modules will
be saved. Source file information and embedded directives (except initializations) are not
saved.

To just save certain predicates into file3.po you would use:

| ?- save_predicates([person/2,dept/4],file3).

This will only save the predicates specified. When the PO file is loaded the predicates will
be loaded into the same module they were in originally.

Any PO file, however generated, can be loaded into Prolog with load_files/[1,2]:

| ?- load_files(file1).

or, equivalently:

| ?- [file1].

The information from each PO file loaded is incrementally added to the database. This
means that definitions from later loads may replace definitions from previous loads.

The predicates load_files/[1,2] are used for compiling and loading source files as well
as PO files. If file1.po and file1.pl both exist (and file1 does not), then load_

files(file1) will load the source (‘.pl’) or the PO, whichever is the most recent.

Refer to Section 4.3 [ref-lod], page 79, for more information on loading programs, and also
to the reference page for load_files/[1,2].

Chapter 4: The Prolog Language 95

4.4.4 Predicate List

Detailed information is found in the reference pages for the following:

initialization :G declaration,ISO

declares G to be run when program is started

load_files(:F)

load_files(:F,+O)

load files according to options O

user:runtime_entry(+S) hook

entry point for a runtime system

save_files(+L,+F)

saves the modules, predicates, clauses and directives in the given files L into
file F

save_modules(+L,+F)

save the modules specifed in L into file F

save_predicates(:L,+F)

save the predicates specified in L into file F

save_program(+F)

save_program(+F,:G)

save all Prolog data into file F with startup goal G

volatile :P declaration

declares predicates specified by P to not be included in saves.

4.5 Files and Directories

4.5.1 The File Search Path Mechanism

As a convenience for the developer and as a means for extended portability of the final
application, SICStus Prolog provides a flexible mechanism to localize the definitions of the
system dependent parts of the file and directory structure a program relies on, in such a
way that the application can be moved to a different directory hierarchy or to a completely
new file system, with a minimum of effort.

This mechanism, which can be seen as a generalization of the user:library_directory/1
scheme available in previous releases, presents two main features:

1. An easy way to create aliases for frequently used directories, thus localizing to one
single place in the program the physical directory name, which typically depends on
the file system and directory structure.

2. A possibility to associate more than one directory specification with each alias, thus
giving the developer full freedom in sub-dividing libraries, and other collections of
programs, as it best suits the structure of the external file system, without making the
process of accessing files in the libraries any more complicated. In this case, the alias
can be said to represent a file search path, not only a single directory.

96 SICStus Prolog

The directory aliasing mechanism, together with the additional file search capabilities of
absolute_file_name/3, can effectively serve as an intermediate layer between the external
world and a portable program. For instance, the developer can hide the directory repre-
sentation by defining directory aliases, and he can automatically get a proper file extension
added, dependent on the type of file he wants to access, by using the appropriate options
to absolute_file_name/3.

A number of directory aliases and file search paths, are predefined in the SICStus Prolog
system. The most important of those is the library file search path, giving the user instant
access to the SICStus library, consisting of several sub-directories and extensive supported
programs and tools.

Specifying a library file, using the alias, is possible simply by replacing the explicit file (and
directory) specification with the following term:

library(file)

The name of the file search path, in this case library, is the main functor of the term, and
indicates that file is to be found in one of the library directories.

The association between the alias library (the name of the search path) and the library
directories (the definitions of the search path), is extended by Prolog facts, user:library_
directory/1, which are searched in sequence to locate the file. Each of these facts specifies
a directory where to search for file, whenever a file specification of the form library(file)

is encountered.

The library mechanism discussed above, which can be extended with new directories associ-
ated with the alias library, has become subsumed by a more general aliasing mechanism,
in which arbitrary names can be used as aliases for directories. The general mechanism also
gives the possibility of defining path aliases in terms of already defined aliases.

In addition to library, the following aliases are predefined in SICStus Prolog: runtime,
system, application, temp, and path. The interpretation of the predefined aliases are
explained below.

4.5.1.1 Defining File Search Paths

The information about which directories to search when an alias is encountered is extended
by clauses for the hook predicate user:file_search_path/2, of the following form:

user:file_search_path(PathAlias, DirectorySpec).

PathAlias must be an atom. It can be used as an alias for DirectorySpec.

DirectorySpec
Can either be an atom, spelling out the name of a directory, or a compound
term using other path aliases to define the location of the directory.

The directory path may be absolute, as in (A) or relative as in (B), which defines a path
relative to the current working directory.

Chapter 4: The Prolog Language 97

Then, files may be referred to by using file specifications of the form similar to
library(file). For example, (C), names the file /usr/jackson/.login, while (D) speci-
fies the path etc/demo/my_demo relative to the current working directory.

user:file_search_path(home, '/usr/jackson'). (A)

user:file_search_path(demo, 'etc/demo'). (B)

home('.login') (C)

demo(my_demo) (D)

As mentioned above, it is also possible to have multiple definitions for the same alias. If
clauses (E) and (F) define the home alias, then to locate the file specified by (G) each home

directory is searched in sequence for the file .login. If /usr/jackson/.login exists, then
it is used. Otherwise, /u/jackson/.login is used if it exists.

user:file_search_path(home, '/usr/jackson'). (E)

user:file_search_path(home, '/u/jackson'). (F)

home('.login') (G)

The directory specification may also be a term of arity 1, in which case it specifies that the
argument of the term is relative to the user:file_search_path/2 defined by its functor.
For example, (H) defines a directory relative to the directory given by the home alias.
Therefore, the alias sp_directory represents the search path /usr/jackson/prolog/sp

followed by /u/jackson/prolog/sp. Then, the file specification (I) refers to the file (J), if
it exists. Otherwise, it refers to the file (K), if it exists.

user:file_search_path(sp_directory, home('prolog/sp')). (H)

sp_directory(test) (I)

/usr/jackson/prolog/sp/test (J)

/u/jackson/prolog/sp/test (K)

Aliases such as home or sp_directory are useful because even if the home directory changes,
or the sp_directory is moved to a different location, only the appropriate user:file_

search_path/2 facts need to be changed. Programs relying on these paths are not af-
fected by the change of directories because they make use of file specifications of the form
home(file) and sp_directory(file).

All built-in predicates that take file specification arguments allow these specifications to
include path aliases defined by user:file_search_path/2 facts. The main predicate for
expanding file specifications is absolute_file_name/[2,3]. See Section 11.3.79 [mpg-ref-
file search path], page 1000.

98 SICStus Prolog

Please note: The user:file_search_path/2 database may contain directories that do not
exist or are syntactically invalid (as far as the operating system is concerned). If an invalid
directory is part of the database, then the system will fail to find any files in it, and the
directory will effectively be ignored.

4.5.1.2 Frequently Used File Specifications

Frequently used user:file_search_path/2 facts are best defined using the initialization
file ~/.sicstusrc or ~/sicstus.ini, which is consulted at startup time by the Develop-
ment System. Therefore, with reference to the examples from Section 4.5.1.1 [ref-fdi-fsp-def],
page 96, clauses like the one following should be placed in the initialization file so that they
are automatically available to user programs after startup:

:- multifile user:file_search_path/2.

user:file_search_path(home, '/usr/jackson').

user:file_search_path(sp_directory, home('prolog/sp')).

user:file_search_path(demo, 'etc/demo').

4.5.1.3 Predefined File Search Paths

user:file_search_path/2 is undefined at startup, but all callers first try a number of
default file search paths, almost as if user:file_search_path/2 had the following initial
clauses. Therefore, to expand file search paths, you should not call user:file_search_
path/2 directly, but instead call absolute_file_name/[2,3].

See Section 4.9.4 [ref-lps-flg], page 136, for more info on the Prolog flag host_type.

The system properties SP_APP_DIR and SP_RT_DIR expand respectively to the absolute path
of the directory that contains the executable and the directory that contains the SICStus
runtime. The system property SP_TEMP_DIR expands to a directory suitable for storing
temporary files, it is particularly useful with the open/4 option if_exists(generate_

unique_name).

%% file_search_path/2 (virtual) initial clauses

file_search_path(library, '$SP_LIBRARY_DIR').

file_search_path(library, Path) :-

library_directory(Path).

file_search_path(system, Platform) :-

prolog_flag(host_type, Platform).

file_search_path(application, '$SP_APP_DIR').

file_search_path(runtime, '$SP_RT_DIR').

file_search_path(temp, '$SP_TEMP_DIR').

file_search_path(path, Path) :-

%% enumerate all directories in $PATH

...

The only default expansion for the library file search path is the value of the system
property SP_LIBRARY_DIR. However, you can add expansions for library by adding clauses
to user:library_directory/1 (which is initially undefined). This feature is mainly for

Chapter 4: The Prolog Language 99

compatibility with earlier releases. It is better to add your own names for file search paths
directly to user:file_search_path/2 and not extend the file search path library at all.

:- multifile user:library_directory/1.

user:library_directory('/home/joe/myprologcode/').

user:library_directory('/home/jane/project/code').

4.5.2 Syntactic Rewriting

A file specification must be an atom or a compound term with arity 1. Such compound
terms are transformed to atoms as described in Section 4.5.1 [ref-fdi-fsp], page 95. Let
FileSpec be the given or transformed atomic file specification.

A file specification FileSpec is subject to syntactic rewriting. Depending on the opera-
tion, the resulting absolute filename is subject to further processing. Syntactic rewriting is
performed wrt. a context directory Context (an absolute path), in the following steps:

• Under Windows, all ‘\’ characters are converted to ‘/’. This replacement is also per-
formed, as needed, during all subsequent steps.

• A ‘$PROP’ in the beginning of FileSpec, followed by ‘/’ or the end of the path, is
replaced by the absolute path of the value of the system property PROP. This is
especially useful when the system property has no explicit value and thus takes its
value from the environment variable with the same name. If var does not exist or its
value is empty, then a permission error is raised.

A relative path that does not begin with ‘/’ is made absolute by prepending Context
followed by a ‘/’. Note that, under UNIX, all paths that begin with ‘/’ are absolute.

Under Windows only, a relative path that begins with a ‘/’ is made absolute by prepend-
ing the root (see below) of Context.

• A ‘~user’ in the beginning of FileSpec, followed by ‘/’ or the end of the path, is replaced
by the absolute path of the home directory of user. If the home directory of user cannot
be determined, then a permission error is raised.

Under Windows this has not been implemented, instead a permission error is raised.

If the home directory of user is a relative path, then it is made absolute using Context
if needed.

• A ‘~’ in the beginning of FileSpec, followed by ‘/’ or the end of the path, is replaced
by the absolute path of the home directory of the current user. If the home directory
of the current user cannot be determined, then a permission error is raised.

The the home directory of the current user is a relative path it is made absolute using
Context if needed.

Under Windows, the home directory of the current user is determined using the system
properties or environment variables HOMEDRIVE and HOMEPATH.

• If FileSpec is a relative file name, then Context is prepended to it.

• The root of the file name is determined. Under UNIX this is simply the initial ‘/’, if
any. Under Windows there are several variants of roots, as follows.

− driveletter:/ where driveletter is a single upper or lower case character in the
range ‘a’ to ‘z’. For example, ‘C:/’.

100 SICStus Prolog

− //?/driveletter:/ This is transformed to driveletter:/.

− //host/share/ (a ‘UNC’ path, also known as a network path) where host and share
are non-empty and do not contain /.

− //?/unc/host/share/ This is transformed to //host/share/

If no root can be determined, then a permission error is raised.

A path is absolute if and only if it is begins with a root, as above.

• The following steps are repeatedly applied to the last ‘/’ of the root and the characters
that follow it repeatedly until no change occurs.

1. Repeated occurrences of / are replaced by a single /.

2. ‘/.’, followed by ‘/’ or the end of the path, is replaced by ‘/’.

3. /parent/.., followed by ‘/’ or the end of the path, is replaced by ‘/’.

If the path still contains /.., followed by ‘/’ or the end of the path, then a permission
error is raised.

• Any trailing ‘/’ is deleted unless it is part of the root.

• Finally, under Windows, the case-normalized path is obtained as follows: All Latin
1 characters (i.e. character codes in [0..255]) are converted to lower case. All other
characters are converted to upper case.

File systems under Windows are generally case insensitive. This step ensures that two
file names that differ only in case, and therefore would reference the same file in the
file system, will case-normalize to identical atoms.

Since release 4.3, open/[3,4], and other build-in predicates that create files and direc-
tories, creates files using the file name argument as obtained from syntactic rewriting
but before applying case-normalization. This means that open('HelloWorld.txt',

write, S), file_property(S,file_name(Name). will create a file that has the mixed-
case name HelloWorld.txt in the file system but Name will end in ‘helloworld.txt’,
i.e. the stream property will reflect the case-normalized path.

The fact that open/[3,4] et al. preserves case when creating files seldom matters,
except for aesthetics, since any Windows application that tries to open a file named
HelloWorld.txt will also find helloworld.txt.

The following UNIX examples assumes that Context is ‘/usr/’; that the environment vari-
ables VAR1, VAR2, VAR3 have the values ‘/opt/bin’, ‘foo’ and ‘~/temp’ respectively and that
the home directory of the current user, ‘joe’, is ‘/home/joe’.

/foo/bar

7→ /foo/bar

/foo/.//bar/../blip///

7→ /foo/blip

/foo//../bar/../../blip

7→ error

Chapter 4: The Prolog Language 101

$VAR1/../local/

7→ /opt/local

$VAR2/misc/.

7→ /usr/foo/misc

$VAR3/misc/.

7→ /home/joe/temp/misc

~joe/../jenny/bin.

7→ /home/jenny/bin

The following Windows examples assume that Context is ‘C:/Source/proj1’; that the
environment variables VAR1, VAR2, VAR3 have the values ‘\\server\docs\brian’, ‘foo’ and
‘~/temp’ respectively and that the home directory of the current user is ‘C:/home’.

/foo/bar

7→ c:/foo/bar

foo//../../blip

7→ c:/source/blip

$VAR1/../local/

7→ //server/docs/local

$VAR2/misc/.

7→ c:/source/proj1/foo/misc

$VAR3/misc/.

7→ c:/home/temp/misc

~joe/../jenny/bin.

7→ error

4.5.3 List of Predicates

Detailed information is found in the reference pages for the following:

absolute_file_name(+R,-A) hookable

absolute_file_name(+R,-A,+O) hookable

expand relative filename R to absolute file name A using options specified in O

user:file_search_path(+F,-D) hook

directory D is included in file search path F

102 SICStus Prolog

user:library_directory(-D) hook

D is a library directory that will be searched

4.6 Input and Output

4.6.1 Introduction

Prolog provides two classes of predicates for input and output: those that handle individual
bytes or characters, and those that handle complete Prolog terms.

Input and output happen with respect to streams. Therefore, this section discusses pred-
icates that handle files and streams in addition to those that handle input and output of
bytes, characters and terms.

4.6.2 About Streams

A Prolog stream can refer to a file or to the user’s terminal3. Each stream is used either for
input or for output, but typically not for both. A stream is either text, for character and
term I/O, or binary, for byte I/O. At any one time there is a current input stream and a
current output stream.

Input and output predicates fall into two categories:

1. those that use the current input or output stream;

2. those that take an explicit stream argument;

Initially, the current input and output streams both refer to the user’s terminal. Each input
and output built-in predicate refers implicitly or explicitly to a stream. The predicates that
perform byte, character and term I/O operations come in pairs such that (A) refers to the
current stream, and (B) specifies a stream.

predicate_name/n (A)

predicate_name/n+1 (B)

4.6.2.1 Programming Note

Deciding which version to use involves a trade-off between speed and readability of code: in
general, version (B), which specifies a stream, runs slower than (A). So it may be desirable
to write code that changes the current stream and uses version (A). However, the use of
(B) avoids the use of global variables and results in more readable programs.

4.6.2.2 Stream Categories

SICStus Prolog streams are divided into two categories, those opened by see/1 or tell/1
and those opened by open/[3,4]. A stream in the former group is referred to by its file spec-
ification, while a stream in the latter case is referred to by its stream object (see the figure
“Categorization of Stream Handling Predicates”). For further information about file spec-
ifications, see Section 4.5 [ref-fdi], page 95. Stream objects are discussed in Section 4.6.7.1

3 At the C level, you can define more general streams, e.g. referring to pipes or to encrypted files.

Chapter 4: The Prolog Language 103

[ref-iou-sfh-sob], page 109. Reading the state of open streams is discussed in Section 4.6.8
[ref-iou-sos], page 114.

Each operating system permits a different number of streams to be open.

4.6.3 Term Input

Term input operations include:

• reading a term and

• changing the prompt that appears while reading.

4.6.3.1 Reading Terms: The "Read" Predicates

The “Read” predicates are

• read(-Term)

• read(+Stream, -Term)

• read_term(-Term, +Options)

• read_term(+Stream, -Term, +Options)

read_term/[2,3] offers many options to return extra information about the term. See
Section 11.3.185 [mpg-ref-read term], page 1140.

When Prolog reads a term from the current input stream the following conditions must
hold:

• The term must be followed by a full stop. See Section 4.1.7.1 [ref-syn-syn-ove], page 52.
The full stop is removed from the input stream but is not a part of the term that is
read.

read/[1,2] does not terminate until the full stop is encountered. Thus, if you type at
top level

| ?- read(X)

then you will keep getting prompts (first ‘|: ’, and five spaces thereafter) every time
you type RET, but nothing else will happen, whatever you type, until you type a full
stop.

• The term is read with respect to current operator declarations. See Section 4.1.5 [ref-
syn-ops], page 47, for a discussion of operators.

• When a syntax error is encountered, an error message is printed and then the “read”
predicate tries again, starting immediately after the full stop that terminated the erro-
neous term. That is, it does not fail on a syntax error, but perseveres until it eventually
manages to read a term. This behavior can be changed with prolog_flag/3 or using
read_term/[2,3]. See Section 11.3.167 [mpg-ref-prolog flag], page 1120.

• If the end of the current input stream has been reached, then read(X) will cause X to
be unified with the atom end_of_file.

104 SICStus Prolog

4.6.3.2 Changing the Prompt

To query or change the sequence of characters (prompt) that indicates that the system is
waiting for user input, call prompt/2.

This predicate affects only the prompt given when a user’s program is trying to read from
the terminal (for example, by calling read/1 or get_code/1). Note also that the prompt is
reset to the default ‘|: ’ on return to the top level. See Section 11.3.169 [mpg-ref-prompt],
page 1123.

4.6.4 Term Output

Term output operations include:

• writing to a stream (various “write” Predicates)

• displaying, usually on the user’s terminal (display/1)

• changing the effects of print/[1,2] (user:portray/1)

• writing a clause as listing/[0,1] does, except original variable names are not retained
(portray_clause/[1,2])

4.6.4.1 Writing Terms: the “Write” Predicates

• write(+Stream, +Term)

• write(+Term)

• writeq(+Stream, +Term)

• writeq(+Term)

• write_canonical(+Term)

• write_canonical(+Stream, +Term)

• write_term(+Stream, +Term, +Options)

• write_term(+Term, +Options)

write_term/[2,3] is a generalization of the others and provides a number of options. See
Section 11.3.253 [mpg-ref-write term], page 1226.

4.6.4.2 Common Characteristics

The output of the “write” predicates is not terminated by a full stop; therefore, if you want
the term to be acceptable as input to read/[1,2], then you must send the terminating full
stop to the output stream yourself. For example,

| ?- write(a), write(' .'), nl.

Note that, in general, you need to prefix the full stop with a layout character, like space, to
ensure that it can not “glue” with characters in the term.

If Term is uninstantiated, then it is written as an anonymous variable (an underscore
followed by a non-negative integer).

Chapter 4: The Prolog Language 105

Please note: The “name” used when writing a variable may differ between separate calls to
a ‘Write“ predicate. If this is a concern, then you can use either of the following methods
to ensure that the variable is always written in same way.

• Avoid the problem altogher by writing the entire term with a single call to a “write“
predicate. Multiple occurrence of the same variable within the written term will be
written in the same way.

• Use the variable_names/1 write_term option to explicitly name the variable. This
option was added in release 4.3.

• Use numbervars/3 to bind the variables in the written term to (ground) '$VAR'(N)

terms and use the numbervars(true) write_term option. Note that this may not
work with attributed variables, like those used by library(clpfd).

write_canonical/[1,2] is provided so that Term, if written to a file, can be read back by
read/[1,2] regardless whether there are special characters in Term or prevailing operator
declarations.

4.6.4.3 Distinctions Among the “Write” Predicates

• For write and writeq, the term is written with respect to current operator declarations
(See Section 4.1.5 [ref-syn-ops], page 47, for a discussion of operators).

write_canonical(Term) writes Term to the current or specified output stream in
standard syntax (see Section 4.1 [ref-syn], page 43, on Prolog syntax), and quotes
atoms and functors to make them acceptable as input to read/[1,2]. That is, operator
declarations are not used and compound terms are always written in the form:

name(arg1, ..., argn)

and the special list syntax, e.g. [a,b,c], or braces syntax, e.g. {a,b,c} are not used.

Calling write_canonical/1 is a good way of finding out how Prolog parses a term
with several operators.

• Atoms output by write/[1,2] cannot in general be read back using read/[1,2]. For
example,

| ?- write('a b').

a b

For this reason write/[1,2] is only useful as a way to treat atoms as strings of char-
acters. It is rarely, if ever, useful to use write/[1,2] with other kinds of terms, i.e.
variables, numbers or compound terms.

If you want to be sure that the atom can be read back by read/[1,2], then you should
use writeq/[1,2], or write_canonical/[1,2], which put quotes around atoms when
necessary, or use write_term/[2,3] with the quoted option set to true. Note also
that the printing of quoted atoms is sensitive to character escaping (see Section 4.1.4
[ref-syn-ces], page 47).

• write/[1,2] and writeq/[1,2] use the write option numbervars(true), so treat
terms of the form '$VAR'(N) specially: they write ‘A’ if N=0, ‘B’ if N=1, . . . ‘Z’ if
N=25, ‘A1’ if N=26, etc. Terms of this form are generated by numbervars/3 (see
Section 4.8.6 [ref-lte-anv], page 129).

106 SICStus Prolog

| ?- writeq(a('$VAR'(0),'$VAR'(1))).
a(A,B)

write_canonical/1 does not treat terms of the form '$VAR'(N) specially.

4.6.4.4 Displaying Terms

Like write_canonical/[1,2], display/1 ignores operator declarations and shows all com-
pound terms in standard prefix form. For example, the command

| ?- display(a+b).

produces the following:

+(a,b)

Unlike write_canonical/[1,2], display/1 does not put quotes around atoms and func-
tors, even when needed for reading the term back in, so write_canonical/[1,2] is often
preferable. See Section 11.3.66 [mpg-ref-display], page 986.

4.6.4.5 Using the Portray Hook

By default, the effect of print/[1,2] is the same as that of write/[1,2], but you can
change its effect by providing clauses for the hook predicate user:portray/1.

If X is a variable, then it is printed using write(X). Otherwise the user-definable procedure
user:portray(X) is called. If this succeeds, then it is assumed that X has been printed
and print/[1,2] exits (succeeds).

If the call to user:portray/1 fails, and if X is a compound term, then write/[1,2] is used
to write the principal functor of X and print/[1,2] is called recursively on its arguments.
If X is atomic, then it is written using write/[1,2].

When print/[1,2] has to print a list, say [X1,X2,...,Xn], it passes the whole list
to user:portray/1. As usual, if user:portray/1 succeeds, then it is assumed to have
printed the entire list, and print/[1,2] does nothing further with this term. Otherwise
print/[1,2] writes the list using bracket notation, calling print/[1,2] on each element
of the list in turn.

Since [X1,X2,...,Xn] is simply a different way of writing .(X1,[X2,...,Xn]), one might
expect print/[1,2] to be called recursively on the two arguments X1 and [X2,...,Xn],
giving user:portray/1 a second chance at [X2,...,Xn]. This does not happen; lists are
a special case in which print/[1,2] is called separately for each of X1,X2,...Xn.

4.6.4.6 Portraying a Clause

If you want to print a clause, then portray_clause/[1,2] is almost certainly the command
you want. None of the other term output commands puts a full stop after the written term.
If you are writing a file of facts to be loaded by compile/1, then use portray_clause/[1,2],
which attempts to ensure that the clauses it writes out can be read in again as clauses.

The output format used by portray_clause/[1,2] and listing/[0,1] has been carefully
designed to be clear. We recommend that you use a similar style. In particular, never

Chapter 4: The Prolog Language 107

put a semicolon (disjunction symbol) at the end of a line in Prolog. See Section 11.3.157
[mpg-ref-portray clause], page 1106.

4.6.5 Byte and Character Input

4.6.5.1 Overview

The operations in this category are:

• reading (“get” predicates),

• peeking (“peek” predicates),

• skipping (“skip” predicates),

• checking for end of line or end of file (“at end” predicates).

4.6.5.2 Reading Bytes and Characters

• get_byte([Stream,] N) unifies N with the next consumed byte from the current or
given input stream, which must be binary.

• get_code([Stream,] N) unifies N with the next consumed character code from the
current or given input stream, which must be text.

• get_char([Stream,] A) unifies A with the next consumed character atom from the
current or given input stream, which must be text.

4.6.5.3 Peeking

Peeking at the next character without consuming it is useful when the interpretation of
“this character” depends on what the next one is.

• peek_byte([Stream,] N) unifies N with the next unconsumed byte from the current
or given input stream, which must be binary.

• peek_code([Stream,] N) unifies N with the next unconsumed character code from
the current or given input stream, which must be text.

• peek_char([Stream,] A) unifies A with the next unconsumed character atom from
the current or given input stream, which must be text.

4.6.5.4 Skipping

There are two ways of skipping over characters in the current or given input stream: skip
to a given character, or skip to the end of a line.

• skip_byte([Stream,] N) skips over bytes through the first occurrence of N from the
current or given input stream, which must be binary.

• skip_code([Stream,] N) skips over character codes through the first occurrence of N
from the current or given input stream, which must be text.

• skip_char([Stream,] A) skips over character atoms through the first occurrence of A
from the current or given input stream, which must be text.

• skip_line or skip_line(Stream) skips to the end of line of the current or given input
stream. Use of this predicate helps portability of code since it avoids dependence on
any particular character code(s) being returned at the end of a line.

108 SICStus Prolog

4.6.5.5 Finding the End of Line and End of File

To test whether the end of a line on the end of the file has been reached on the current or
given input stream, use at_end_of_line/[0,1] or at_end_of_stream/[0,1].

Note that these predicates never block waiting for input. This means that they may fail
even if the stream or line is in fact at its end. An alternative that will never guess wrong is
to use peek_code/[1,2] or peek_byte/[1,2].

4.6.6 Byte and Character Output

The byte and character output operations are:

• writing (putting) bytes and characters

• creating newlines and tabs

• flushing buffers

• formatting output.

4.6.6.1 Writing Bytes and Characters

• put_byte([Stream,] N) writes the byte N to the current or given output stream,
which must be binary.

• put_code([Stream,] N) writes the character code N to the current or given output
stream, which must be text.

• put_char([Stream,] A) writes the character atom A to the current or given output
stream, which must be text.

The byte or character is not necessarily printed immediately; they may be flushed if the
buffer is full. See Section 4.6.7.10 [ref-iou-sfh-flu], page 114.

4.6.6.2 New Line

nl or nl(Stream) terminates the record on the current or given output stream. A linefeed
character is printed.

4.6.6.3 Formatted Output

format([Stream,] Control, Arguments) interprets the Arguments according to the Con-
trol string and prints the result on the current or given output stream. Alternatively, an
output stream can be specified in an initial argument. This predicate is used to produce
formatted output, like the following example.

| ?- toc(1.5).

Table of Contents i

************************ NICE TABLE *************************

* *

* Right aligned Centered Left aligned *

* 123 45 678 *

* 1 2345 6789 *

Chapter 4: The Prolog Language 109

For details, including the code to produce this example, see the example program in the
reference page for format/[2,3]. See Section 11.3.85 [mpg-ref-format], page 1009.

4.6.7 Stream and File Handling

The operations implemented are opening, closing, querying status, flushing, error handling,
setting.

The predicates in the “see” and “tell” families are supplied for compatibility with other
Prologs. They take either file specifications or stream objects as arguments (see Section 11.1
[mpg-ref], page 877) and they specify an alternative, less powerful, mechanism for dealing
with files and streams than the similar predicates (open/[3,4], etc.), which take stream
objects (see the figure “Categorization of Stream Handling Predicates”).

4.6.7.1 Stream Objects

Each input and output stream is represented by a unique Prolog term, a stream object. In
general, this term is of the form

user Stands for the standard input or output stream, depending on context.

'$stream'(X)

A stream connected to some file. X is an integer.

Atom A stream alias. Aliases can be associated with streams using the alias(Atom)
option of open/4. There are also three predefined aliases:

user_input

An alias initially referring to the UNIX stdin stream. The alias
can be changed with prolog_flag/3 and accessed by the C variable
SP_stdin.

user_output

An alias initially referring to the UNIX stdout stream. The alias
can be changed with prolog_flag/3 and accessed by the C variable
SP_stdout.

user_error

An alias initially referring to the UNIX stderr stream. The alias
can be changed with prolog_flag/3 and accessed by the C vari-
able SP_stderr. This stream is used by the Prolog top level and
debugger, and for all unsolicited messages by built-in predicates.

Stream objects are created by the predicate open/[3,4] Section 4.6.7.4 [ref-iou-sfh-opn],
page 110, and passed as arguments to those predicates that need them. Representation for
stream objects to be used in C code is different. Use stream_code/2 to convert from one
to the other when appropriate. See Section 11.3.218 [mpg-ref-stream code], page 1182.

4.6.7.2 Exceptions Related to Streams

All predicates that take a stream argument will raise the following exceptions:

110 SICStus Prolog

instantiation_error

Stream argument is not ground

type_error

Stream is not an input (or output) stream type.

existence_error

Stream is syntactically valid but does not name an open stream.

permission_error

Stream names an open stream but the stream is not open for the required
operation, or has reached the end of stream on input, or is binary when text
is required, or vice versa, or there was an error in the bottom layer of write
function of the stream.

system_error

Some operating system dependent error occurred during I/O.

The reference page for each stream predicate will simply refer to these as “Stream errors”
and will go on to detail other exceptions that may be raised for a particular predicate.

4.6.7.3 Suppressing Error Messages

If the fileerrors flag is set to off, then the built-in predicates that open files simply fail,
instead of raising an exception if the specified file cannot be opened.

4.6.7.4 Opening a Stream

Before I/O operations can take place on a stream, the stream must be opened, and it must
be set to be current input or current output. As illustrated in the figure “Categorization
of Stream Handling Predicates”, the operations of opening and setting are separate with
respect to the stream predicates, and combined in the File Specification Predicates.

• open(File, Mode, Stream) attempts to open the file File in the mode specified
(read,write or append). If the open/3 request is successful, then a stream object,
which can be subsequently used for input or output to the given file, is unified with
Stream.

The read mode is used for input. The write and append modes are used for output.
The write option causes a new file to be created for output. If the file already exists,
then it is set to empty and its previous contents are lost. The append option opens an
already-existing file and adds output to the end of it. The append option will create
the file if it does not already exist.

Options can be specified by calling open/4. See Section 11.3.148 [mpg-ref-open],
page 1092.

• set_input(Stream) makes Stream the current input stream. Subsequent input predi-
cates such as read/1 and get_code/1 will henceforth use this stream.

• set_output(Stream) makes Stream the current output stream. Subsequent output
predicates such as write/1 and put_code/1 will henceforth use this stream.

Opening a stream and making it current are combined in see and tell:

Chapter 4: The Prolog Language 111

• see(S) makes file S the current input stream. If S is an atom, then it is taken to be a
file specification, and

− if there is an open input stream associated with the filename, and that stream was
opened by see/1, then it is made the current input stream;

− Otherwise, the specified file is opened for input and made the current input stream.
If it is not possible to open the file, and the fileerrors flag is on (as it is by
default), then see/1 raises an error exception. Otherwise, see/1 merely fails.

See Section 11.3.199 [mpg-ref-see], page 1159.

• tell(S) makes S the current output stream.

− If there is an open output stream currently associated with the filename, and that
stream was opened by tell/1, then it is made the current output stream;

− Otherwise, the specified file is opened for output and made the current output
stream. If the file does not exist, then it is created. If it is not possible to open the
file (because of protections, for example), and the fileerrors flag is on (which it
is by default), then tell/1 raises an error exception. Otherwise, tell/1 merely
fails.

See Section 11.3.224 [mpg-ref-tell], page 1192.

It is important to remember to close streams when you have finished with them. Use seen/0
or close/1 for input files, and told/0 or close/1 for output files.

• open_null_stream(Stream) opens a text output stream that is not connected to any
file and unifies its stream object with Stream. Characters or terms that are sent to
this stream are thrown away. This predicate is useful because various pieces of local
state are kept for null streams: the predicates character_count/2, line_count/2

and line_position/2 can be used on these streams (see Section 4.6.8 [ref-iou-sos],
page 114).

4.6.7.5 Text Stream Encodings

SICStus Prolog supports character codes up to 31 bits wide where the codes are interpreted
as for Unicode for the common subset.

When a character code (a “code point” in Unicode terminology) is read or written to a
stream, it must be encoded into a byte sequence. The method by which each character
code is encoded to or decoded from a byte sequence is called “character encoding”.

The following character encodings are currently supported by SICStus Prolog.

ANSI_X3.4-1968

The 7-bit subset of Unicode, commonly referred to as ASCII.

ISO-8859-1

The 8-bit subset of Unicode, commonly referred to as Latin 1.

ISO-8859-2

A variant of ISO-8859-1, commonly referred to as Latin 2.

112 SICStus Prolog

ISO-8859-15

A variant of ISO-8859-1, commonly referred to as Latin 9.

windows 1252

The Microsoft Windows code page 1252.

UTF-8

UTF-16

UTF-16LE

UTF-16BE

UTF-32

UTF-32LE

UTF-32BE

The suffixes LE and BE denote respectively little endian and big endian.

These encodings can be auto-detected if a Unicode signature is present in a
file opened for read. A Unicode signature is also known as a Byte order mark
(BOM).

In addition, it is possible to use all alternative names defined by the IANA registry http://

www.iana.org/assignments/character-sets.

All encodings in the table above, except the UTF-XXX encodings, supports the
reposition(true) option to open/4 (see Section 11.3.148 [mpg-ref-open], page 1092).

The encoding to use can be specified when using open/4 and similar predicates using the
option encoding/1. When opening a file for input, the encoding can often be determined
automatically. The default is ISO-8859-1 if no encoding is specified and no encoding can
be detected from the file contents.

The encoding used by a text stream can be queried using stream_property/2.

See Section 11.3.148 [mpg-ref-open], page 1092, for details on how character encoding is
auto-detected when opening text files.

4.6.7.6 Finding the Current Input Stream

• current_input(Stream) unifies Stream with the current input stream.

• If the current input stream is user_input, then seeing(S) unifies S with user. Other-
wise, if the current input stream was opened by see(F), then seeing(S) unifies S with
F. Otherwise, if the current input stream was opened by open/[3,4], then seeing(S)

unifies S with the corresponding stream object.

seeing/1 can be used to verify that a section of code leaves the current input stream
unchanged as follows:

/* nonvar(FileNameOrStream), */

see(FileNameOrStream),

...

seeing(FileNameOrStream)

WARNING : The sequence

http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

Chapter 4: The Prolog Language 113

seeing(File),

...

set_input(File),

will signal an error if the current input stream was opened by see/1. The
only sequences that are guaranteed to succeed are

seeing(FileOrStream),

...

see(FileOrStream)

and

current_input(Stream),

...

set_input(Stream)

4.6.7.7 Finding the Current Output Stream

• current_output(Stream) unifies Stream with the current output

stream.

• If the current output stream is user_output, then telling(S) unifies S with user.
Otherwise, if the current output stream was opened by tell(F), then telling(S)

unifies S with F. Otherwise, if the current output stream was opened by open/[3,4],
then telling(S) unifies S with the corresponding stream object.

telling/1 can be used to verify that a section of code leaves the current output stream
unchanged as follows:

/* nonvar(FileNameOrStream), */

tell(FileNameOrStream),

...

telling(FileNameOrStream)

WARNING : The sequence

telling(File),

...

set_output(File),

will signal an error if the current output stream was opened by tell/1.
The only sequences that are guaranteed to succeed are

telling(FileOrStream),

...

tell(FileOrStream)

and

current_output(Stream),

...

set_output(Stream)

4.6.7.8 Finding Out About Open Streams

current_stream(File, Mode, Stream) succeeds if Stream is a stream that is currently
open on file File in mode Mode, where Mode is either read, write, or append. None of
the arguments need be initially instantiated. This predicate is nondeterminate and can be

114 SICStus Prolog

used to backtrack through all open streams. current_stream/3 ignores certain predefined
streams, including the initial values of the special streams for the standard input, output,
and error channels. See Section 11.3.57 [mpg-ref-current stream], page 977.

stream_property(Stream, Property) succeeds if Stream is a currently open stream with
property Property. Predefined streams, like the three standard channels, are not ignored.
See Section 11.3.221 [mpg-ref-stream property], page 1185.

4.6.7.9 Closing a Stream

• close(X) closes the stream corresponding to X, where X should be a stream object
created by open/[3,4], or a file specification passed to see/1 or tell/1. In the
example:

see(foo),

...

close(foo)

foo will be closed. However, in the example:

open(foo, read, S),

...

close(foo)

an exception will be raised and foo will not be closed. See Section 11.3.39 [mpg-ref-
close], page 955.

• told/0 closes the current output stream. The current output stream is then set to be
user_output.

• seen/0 closes the current input stream. The current input stream is then set to be
user_input.

4.6.7.10 Flushing Output

Output to a stream is not necessarily sent immediately; it is buffered. The predicate flush_
output/1 flushes the output buffer for the specified stream and thus ensures that everything
that has been written to the stream is actually sent at that point.

• flush_output(Stream) sends all data in the output buffer to stream Stream.

See Section 11.3.82 [mpg-ref-flush output], page 1006.

4.6.8 Reading the State of Opened Streams

Byte, character, line count and line position for a specified stream are obtained as follows:

• byte_count(Stream, N) unifies N with the total number of bytes either read or written
on the open binary stream Stream.

• character_count(Stream, N) unifies N with the total number of characters either
read or written on the open text stream Stream.

• line_count(Stream, N) unifies N with the total number of lines either read or written
on the open text stream Stream. A freshly opened text stream has a line count of 0,
i.e. this predicate counts the number of newlines seen.

Chapter 4: The Prolog Language 115

• line_position(Stream, N) unifies N with the total number of characters either read
or written on the current line of the open text stream Stream. A fresh line has a line
position of 0, i.e. this predicate counts the length of the current line.

4.6.8.1 Stream Position Information for Terminal I/O

Input from Prolog streams that have opened the user’s terminal for reading is echoed back
as output to the same terminal. This is interleaved with output from other Prolog streams
that have opened the user’s terminal for writing. Therefore, all streams connected to the
user’s terminal share the same set of position counts and thus return the same values for
each of the predicates character_count/2, line_count/2 and line_position/2.

4.6.9 Random Access to Files

There are two methods of finding and setting the stream position, stream positioning and
seeking. The current position of the read/write pointer in a specified stream can be obtained
by using stream_position/2 or stream_property/2. It may be changed by using set_

stream_position/2. Alternatively, seek/4 may be used.

Seeking is more general, and stream positioning is more portable. The differences between
them are:

• stream_position/2 is similar to seek/4 with Offset = 0, and Method = current.

• Where set_stream_position/2 asks for stream position objects, seek/4 uses integer
expressions to represent the position or offset. Stream position objects are obtained by
calling stream_position/2, and are discussed in the reference page.

4.6.10 Summary of Predicates and Functions

Reference pages for the following provide further detail on the material in this section.

at_end_of_line

at_end_of_line(+S)

testing whether at end of line on input stream S

at_end_of_stream ISO

at_end_of_stream(+S) ISO

testing whether end of file is reached for the input stream S

flush_output ISO

flush_output(+S) ISO

flush the output buffer for stream S

get_byte(-C) ISO

get_byte(+S,-C) ISO

C is the next byte on binary input stream S

get_char(-C) ISO

get_char(+S,-C) ISO

C is the next character atom on text input stream S

116 SICStus Prolog

get_code(-C) ISO

get_code(+S,-C) ISO

C is the next character code on text input stream S

nl ISO

nl(+S) ISO

send a newline to stream S

peek_byte(+C) ISO

peek_byte(+S,+C) ISO

looks ahead for next input byte on the binary input stream S

peek_char(+C) ISO

peek_char(+S,+C) ISO

looks ahead for next input character atom on the text input stream S

peek_code(+C) ISO

peek_code(+S,+C) ISO

looks ahead for next input character code on the text input stream S

put_byte(+C) ISO

put_byte(+S,+C) ISO

write byte C to binary stream S

put_char(+C) ISO

put_char(+S,+C) ISO

write character atom C to text stream S

put_code(+C) ISO

put_code(+S,+C) ISO

write character code C to text stream S

skip_byte(+C)

skip_byte(+S,+C)

skip input on binary stream S until after byte C

skip_char(+C)

skip_char(+S,+C)

skip input on text stream S until after char C

skip_code(+C)

skip_code(+S,+C)

skip input on text stream S until after code C

skip_line

skip_line(+S)

skip the rest input characters of the current line (record) on the input stream
S

byte_count(+S,-N)

N is the number of bytes read/written on binary stream S

character_count(+S,-N)

N is the number of characters read/written on text stream S

Chapter 4: The Prolog Language 117

close(+F) ISO

close(+F,+O) ISO

close file or stream F with options O

current_input(-S) ISO

S is the current input stream

current_output(-S) ISO

S is the current output stream

current_stream(?F,?M,?S)

S is a stream open on file F in mode M

line_count(+S,-N)

N is the number of lines read/written on text stream S

line_position(+S,-N)

N is the number of characters read/written on the current line of text stream
S

open(+F,+M,-S) ISO

open(+F,+M,-S,+O) ISO

file F is opened in mode M, options O, returning stream S

open_null_stream(+S)

new output to text stream S goes nowhere

prompt(-O,+N)

queries or changes the prompt string of the current input stream

see(+F) make file F the current input stream

seeing(-N)

the current input stream is named N

seek(+S,+O,+M,+N)

seek to an arbitrary byte position on the stream S

seen close the current input stream

set_input(+S) ISO

select S as the current input stream

set_output(+S) ISO

select S as the current output stream

set_stream_position(+S,+P) ISO

P is the new position of stream S

stream_code(?S,?C)

Converts between Prolog and C representations of a stream

stream_position(+S,-P)

P is the current position of stream S

stream_position_data(?Field,?Position,?Data)

The Field field of the stream position term Position is Data.

118 SICStus Prolog

stream_property(?Stream, ?Property) ISO

Stream Stream has property Property.

tell(+F) make file F the current output stream

telling(-N)

to file N

told close the current output stream

char_conversion(+InChar, +OutChar) ISO

The mapping of InChar to OutChar is added to the character-conversion map-
ping.

current_char_conversion(?InChar, ?OutChar) ISO

InChar is mapped to OutChar in the current character-conversion mapping.

current_op(?P,?T,?A) ISO

atom A is an operator of type T with precedence P

display(+T)

write term T to the user output stream in functional notation

format(+C,:A)

format(+S,+C,:A)

write arguments A on stream S according to control string C

op(+P,+T,+A) ISO

make atom A an operator of type T with precedence P

user:portray(+T) hook

tell print/[1,2] and write_term/[2,3] what to do

portray_clause(+C)

portray_clause(+S,+C)

write clause C to the stream S

print(+T) hookable

print(+S,+T) hookable

display the term T on stream S using user:portray/1 or write/2

read(-T) ISO

read(+S,-T) ISO

read term T from stream S

read_term(-T,+O) ISO

read_term(+S,-T,+O) ISO

read T from stream S according to options O

write(+T) ISO

write(+S,+T) ISO

write term T on stream S

write_canonical(+T) ISO

write_canonical(+S,+T) ISO

write term T on stream S so that it can be read back by read/[1,2]

Chapter 4: The Prolog Language 119

writeq(+T) ISO

writeq(+S,+T) ISO

write term T on stream S, quoting atoms where necessary

write_term(+T,+O) hookable,ISO

write_term(+S,+T,+O) hookable,ISO

writes T to S according to options O

4.7 Arithmetic

4.7.1 Overview

In Prolog, arithmetic is performed by certain built-in predicates, which take arithmetic
expressions as their arguments and evaluate them. Arithmetic expressions can evaluate to
integers or floating-point numbers (floats).

The range of integers is [-2^2147483616, 2^2147483616). Thus for all practical purposes,
the range of integers can be considered infinite.

The range of floats is the one provided by the C double type, typically [4.9e-324,

1.8e+308] (plus or minus). In case of overflow or division by zero, an evaluation error
exception will be raised. Floats are represented by 64 bits and they conform to the IEEE
754 standard.

The arithmetic operations of evaluation and comparison are implemented in the predicates
described in Section 4.7.2 [ref-ari-eae], page 119, and Section 4.7.4 [ref-ari-acm], page 120.
All of them take arguments of the type Expr, which is described in detail in Section 4.7.5
[ref-ari-aex], page 120.

4.7.2 Evaluating Arithmetic Expressions

The most common way to do arithmetic calculations in Prolog is to use the built-in predicate
is/2.

-Term is +Expr

Term is the value of arithmetic expression Expr.

Expr must not contain any uninstantiated variables. Do Not confuse is/2 with =/2.

4.7.3 Exceptions Related to Arithmetic

All predicates that evaluate arithmetic expressions will raise the following exceptions:

instantiation_error

Nonground expression given.

type_error

Float given where integer required, or integer given where float is required, or
term given as expression with a principal functor that is not a defined function.

evaluation_error

Function undefined for the given argument. For example, attempt to divide by
zero.

120 SICStus Prolog

representation_error

Integer value too large to be represented.

The reference page for such predicates will simply refer to these as “Arithmetic errors” and
will go on to detail other exceptions that may be raised for a particular predicate.

4.7.4 Arithmetic Comparison

Each of the following predicates evaluates each of its arguments as an arithmetic expression,
then compares the results. If one argument evaluates to an integer and the other to a float,
then the integer is coerced to a float before the comparison is made.

Note that two floating-point numbers are equal if and only if they have the same bit pattern.
Because of rounding error, it is not normally useful to compare two floats for equality.

Expr1 =:= Expr2

succeeds if the results of evaluating terms Expr1 and Expr2 as arithmetic ex-
pressions are equal

Expr1 =\= Expr2

succeeds if the results of evaluating terms Expr1 and Expr2 as arithmetic ex-
pressions are not equal

Expr1 < Expr2

succeeds if the result of evaluating Expr1 as an arithmetic expression is less
than the result of evaluating Expr2 as an arithmetic expression.

Expr1 > Expr2

succeeds if the result of evaluating Expr1 as an arithmetic expression Expr1 is
greater than the result of evaluating Expr2 as an arithmetic expression.

Expr1 =< Expr2

succeeds if the result of evaluating Expr1 as an arithmetic expression is not
greater than the result of evaluating Expr2 as an arithmetic expression.

Expr1 >= Expr2

succeeds if the result of evaluating Expr1 as an arithmetic expression is not less
than the result of evaluating Expr2 as an arithmetic expression.

4.7.5 Arithmetic Expressions

Arithmetic evaluation and testing is performed by predicates that take arithmetic expres-
sions as arguments. An arithmetic expression is a term built from numbers, variables, and
functors that represent arithmetic functions. These expressions are evaluated to yield an
arithmetic result, which may be either an integer or a float; the type is determined by the
rules described below.

At the time of evaluation, each variable in an arithmetic expression must be bound to a
number or another arithmetic expression. If the expression is not sufficiently bound or if

Chapter 4: The Prolog Language 121

it is bound to terms of the wrong type, then Prolog raises exceptions of the appropriate
type (see Section 4.15.3 [ref-ere-hex], page 198). Some arithmetic operations can also detect
overflows. They also raise exceptions, e.g. division by zero results in an evaluation error
being raised.

Only certain functors are permitted in arithmetic expressions. These are listed below,
together with a description of their arithmetic meanings. For the rest of the section, X
and Y are considered to be arithmetic expressions. Unless stated otherwise, the arguments
of an expression may be any numbers and its value is a float if any of its arguments is
a float; otherwise, the value is an integer. Any implicit coercions are performed with the
integer/1 and float/1 functions. All trigonometric and transcendental functions take
float arguments and deliver float values. The trigonometric functions take arguments or
deliver values in radians.

Integers can for all practical purposes be considered to be of infinite size. Negative integers
can be considered to be infinitely sign extended.

The arithmetic functors are annotated with ISO, with the same meaning as for the built-in
predicates; see Section 1.5 [ISO Compliance], page 6.

+X ISO

The value is X.

-X ISO

The value is the negative of X.

X+Y ISO

The value is the sum of X and Y.

X-Y ISO

The value is the difference between X and Y.

X*Y ISO

The value is the product of X and Y.

X/Y ISO

The value is the float quotient of X and Y.

X//Y ISO

The value is the integer quotient of X and Y, truncated towards zero. X and
Y have to be integers.

X div Y since release 4.3, ISO

The value is the integer quotient of X and Y, rounded downwards to the nearest
integer. X and Y have to be integers.

X rem Y ISO

The value is the integer remainder after truncated division of X by Y, i.e.
X-Y*(X//Y). The sign of a nonzero remainder will thus be the same as that of
the dividend. X and Y have to be integers.

122 SICStus Prolog

X mod Y ISO

The value is the integer remainder after floored division of X by Y, i.e. X-Y*(X
div Y). The sign of a nonzero remainder will thus be the same as that of the
divisor. X and Y have to be integers.

integer(X)

The value is the closest integer between X and 0, if X is a float; otherwise, X
itself.

float_integer_part(X) ISO

The same as float(integer(X)). X has to be a float.

float_fractional_part(X) ISO

The value is the fractional part of X, i.e. X - float_integer_part(X).

X has to be a float.

float(X) ISO

The value is the float equivalent of X, if X is an integer; otherwise, X itself.

X/\Y ISO

The value is the bitwise conjunction of the integers X and Y. X and Y have
to be integers, treating negative integers as infinitely sign extended.

X\/Y ISO

The value is the bitwise disjunction of the integers X and Y. X and Y have to
be integers, treating negative integers as infinitely sign extended.

xor(X,Y) since release 4.3, ISO

The value is the bitwise exclusive or of the integers X and Y. X and Y have
to be integers, treating negative integers as infinitely sign extended.

X\Y

The same as xor(X,Y).

\(X) ISO

The value is the bitwise negation of the integer X. X has to be an integer,
treating negative integers as infinitely sign extended.

X<<Y ISO

The value is the integer X shifted arithmetically left by Y places. i.e. filling
with a copy of the sign bit. X and Y have to be integers, and Y can be negative,
in which case the shift is right.

X>>Y ISO

The value is the integer X shifted arithmetically right by Y places, i.e. filling
with a copy of the sign bit. X and Y have to be integers, and Y can be negative,
in which case the shift is left.

[X]

A list of just one number X evaluates to X. Since a quoted string is just a list
of integers, this allows a quoted character to be used in place of its character
code; e.g. "A" behaves within arithmetic expressions as the integer 65.

Chapter 4: The Prolog Language 123

abs(X) ISO

The value is the absolute value of X.

sign(X) ISO

The value is the sign of X, i.e. -1, if X is negative, 0, if X is zero, and 1, if X
is positive, coerced into the same type as X (i.e. the result is an integer, if and
only if X is an integer).

gcd(X,Y)

The value is the greatest common divisor of the two integers X and Y. X and
Y have to be integers.

min(X,Y) ISO

The value is the lesser value of X and Y.

max(X,Y) ISO

The value is the greater value of X and Y.

msb(X)

The value is the position of the most significant nonzero bit of the integer X,
counting bit positions from zero. It is equivalent to, but more efficient than,
integer(log(2,X)). X must be greater than zero, and X has to be an integer.

round(X) ISO

The value is the closest integer to X. If X is exactly half-way between two
integers, then it is rounded up (i.e. the value is the least integer greater than
X).

truncate(X) ISO

The value is the closest integer between X and 0.

floor(X) ISO

The value is the greatest integer less or equal to X.

ceiling(X) ISO

The value is the least integer greater or equal to X.

sin(X) ISO

The value is the sine of X.

cos(X) ISO

The value is the cosine of X.

tan(X) ISO

The value is the tangent of X.

cot(X)

The value is the cotangent of X.

sinh(X)

The value is the hyperbolic sine of X.

cosh(X)

The value is the hyperbolic cosine of X.

124 SICStus Prolog

tanh(X)

The value is the hyperbolic tangent of X.

coth(X)

The value is the hyperbolic cotangent of X.

asin(X) ISO

The value is the arc sine of X.

acos(X) ISO

The value is the arc cosine of X.

atan(X) ISO

The value is the arc tangent of X.

atan2(X,Y) ISO

The value is the four-quadrant arc tangent of X and Y.

acot(X)

The value is the arc cotangent of X.

acot2(X,Y)

The value is the four-quadrant arc cotangent of X and Y.

asinh(X)

The value is the hyperbolic arc sine of X.

acosh(X)

The value is the hyperbolic arc cosine of X.

atanh(X)

The value is the hyperbolic arc tangent of X.

acoth(X)

The value is the hyperbolic arc cotangent of X.

sqrt(X) ISO

The value is the square root of X.

log(X) ISO

The value is the natural logarithm of X.

log(Base,X)

The value is the logarithm of X in the base Base.

exp(X) ISO

The value is the natural exponent of X.

X ** Y ISO

The value is X raised to the power of Y, represented as a float. In particular,
the value of 0.0 ** 0.0 is 1.0.

exp(X,Y)

The same as X ** Y.

Chapter 4: The Prolog Language 125

X ^ Y since release 4.3, ISO

The value is X raised to the power of Y, represented as a float if any of X and
Y is a float; otherwise, as an integer. In particular, the value of 0^0 is 1.

pi since release 4.3, ISO

The value is approximately 3.14159.

The following operation is included in order to allow integer arithmetic on character codes.

[X] Evaluates to X for numeric X. This is relevant because character strings in
Prolog are lists of character codes, that is, integers. Thus, for those integers
that correspond to character codes, the user can write a string of one character
in place of that integer in an arithmetic expression. For example, the expression
(A) is equivalent to (B), which in turn becomes (C) in which case X is unified
with 2:

X is "c" - "a" (A)

X is [99] - [97] (B)

X is 99 - 97 (C)

A cleaner way to do the same thing is

X is 0'c - 0'a

4.7.6 Predicate Summary

-Y is +X ISO

Y is the value of arithmetic expression X

+X =:= +Y ISO

the results of evaluating terms X and Y as arithmetic expressions are equal.

+X =\= +Y ISO

the results of evaluating terms X and Y as arithmetic expressions are not equal.

+X < +Y ISO

the result of evaluating X as an arithmetic expression is less than the result of
evaluating Y as an arithmetic expression.

+X >= +Y ISO

the result of evaluating X as an arithmetic expression is not less than the result
of evaluating Y as an arithmetic expression.

+X > +Y ISO

the result of evaluating X as an arithmetic expression X is greater than the
result of evaluating Y as an arithmetic expression.

+X =< +Y ISO

the result of evaluating X as an arithmetic expression is not greater than the
result of evaluating Y as an arithmetic expression.

126 SICStus Prolog

4.8 Looking at Terms

4.8.1 Meta-logical Predicates

Meta-logical predicates are those predicates that allow you to examine the current instan-
tiation state of a simple or compound term, or the components of a compound term. This
section describes the meta-logical predicates as well as others that deal with terms as such.

4.8.1.1 Type Checking

The following predicates take a term as their argument. They are provided to check the
type of that term. The reference pages for these predicates include examples of their use.

atom(+T) ISO

term T is an atom

atomic(+T) ISO

term T is an atom or a number

callable(+T) ISO

T is an atom or a compound term

compound(+T) ISO

T is a compound term

db_reference(+X) since release 4.1

X is a db reference

float(+N) ISO

N is a floating-point number

ground(+T) ISO

term T is a nonvar, and all substructures are nonvar

integer(+T) ISO

term T is an integer

mutable(+X)

X is a mutable term

nonvar(+T) ISO

term T is one of atom, number, compound (that is, T is instantiated)

number(+N) ISO

N is an integer or a float

simple(+T)

T is not a compound term; it is either atomic or a var

var(+T) ISO

term T is a variable (that is, T is uninstantiated)

4.8.1.2 Unification

The following predicates are related to unification. Unless mentioned otherwise, unification
is performed without occurs check (see Section 4.2.7 [ref-sem-occ], page 78).

Chapter 4: The Prolog Language 127

To unify two terms, simply use:

?- X = Y.

Please note:

• Do Not confuse this predicate with =:=/2 (arithmetic comparison) or ==/2
(term identity).

• =/2 binds free variables in X and Y in order to make them identical.

To unify two terms with occurs check, use:

?- unify_with_occurs_check(X,Y).

To check whether two terms do not unify, use the following, which is equivalent to \+ (X=Y):

?- X \= Y.

To check whether two terms are either strictly identical or do not unify, use the following.
This construct is useful in the context of when/2:

?- ?=(X,Y).

To constrain two terms to not unify, use the following. It blocks until ?=(X,Y) holds:

?- dif(X,Y).

The goal:

?- subsumes_term(General,Specific).

is true when Specific is an instance of General. It does not bind any variables.

4.8.2 Analyzing and Constructing Terms

The built-in predicate functor/3:

• decomposes a given term into its name and arity, or

• given a name and arity, constructs the corresponding compound term creating new
uninstantiated variables for its arguments.

The built-in predicate arg/3 unifies a term with a specified argument of another term.

The built-in predicate Term =.. List unifies List with a list whose head is the atom cor-
responding to the principal functor of Term and whose tail is a list of the arguments of
Term.

The built-in predicate acyclic_term/2(Term) succeeds if and only if Term is finite
(acyclic).

128 SICStus Prolog

The built-in predicate term_variables(Term,Variables) unifies Variables with the set of
variables that occur in Term, in first occurrence order.

4.8.3 Analyzing and Constructing Lists

To combine two lists to form a third list, use append(Prefix, Suffix, List).

To analyze a list into its component lists in various ways, use append/3 with List instantiated
to a proper list. The reference page for append/3 includes examples of its usage, including
backtracking.

To check the length of a list call length(List, Length).

To produce a list of a certain length, use length/2 with Length instantiated and List partly
uninstantiated.

To check if a term is the element of a list, use memberchk(Element, List).

To enumerate the elements of a list via backtracking, use member(Element, List).

To check that a term is NOT the element of a list, use nonmember(Element, List), which
is equivalent to \+member(Element, List).

4.8.4 Converting between Constants and Text

Three predicates convert between constants and lists of character codes: atom_codes/2,
number_codes/2, and name/2. Two predicates convert between constants and lists of char-
acter atoms: atom_chars/2, number_chars/2.

atom_codes(Atom, Codes) is a relation between an atom Atom and a list Codes consisting
of the character codes comprising the printed representation of Atom. Initially, either Atom
must be instantiated to an atom, or Codes must be instantiated to a proper code list.

number_codes(Number, Codes) is a relation between a number Number and a list Codes
consisting of the character codes comprising the printed representation of Number. Initially,
either Number must be instantiated to a number, or Codes must be instantiated to a proper
code list.

Similarly, atom_chars(Atom, Chars) and number_chars(Atom, Chars) are relations be-
tween a constant and a list consisting of the character atoms comprising the printed repre-
sentation of the constant.

name/2 converts between a constant and a code list. Given a code list, name/2 will convert
it to a number if it can, otherwise to an atom. This means that there are atoms that can
be constructed by atom_codes/2 but not by name/2. name/2 is retained for backwards
compatibility with other Prologs. New programs should use atom_codes/2 or number_

codes/2 as appropriate.

char_code/2 converts between a character atom and a character code.

Chapter 4: The Prolog Language 129

4.8.5 Atom Operations

To compute Length, the number of characters of the atom Atom, use:

?- atom_length(Atom,Length).

To concatenate Atom1 with Atom2 giving Atom12, use the following. The predicate can
also be used to split a given Atom12 into two unknown parts:

?- atom_concat(Atom1,Atom2,Atom12).

To extract a sub-atom SubAtom from Atom, such that the number of characters preceding
SubAtom is Before, the number of characters after SubAtom is After, and the length of
SubAtom is Length, use the following. Only Atom needs to be instantiated:

?- sub_atom(Atom,Before,Length,After,SubAtom).

4.8.6 Assigning Names to Variables

Each variable in a term is instantiated to a term of the form '$VAR'(N), where N is an inte-
ger, by the predicate numbervars/3. The “write” predicates (write/[1,2], writeq/[1,2],
and write_term/[2,3] with the numbervars(true) option) transform these terms into
variable names starting with upper case letters.

4.8.7 Copying Terms

The meta-logical predicate copy_term/2 makes a copy of a term in which all variables have
been replaced by brand new variables, and all mutables by brand new mutables. This is
precisely the effect that would have been obtained from the definition:

copy_term(Term, Copy) :-

recorda(copy, copy(Term), DBref),

instance(DBref, copy(Temp)),

erase(DBref),

Copy = Temp.

although the built-in predicate copy_term/2 is more efficient.

When you call clause/[2,3] or instance/2, you get a new copy of the term stored in the
database, in precisely the same sense that copy_term/2 gives you a new copy. One of the
uses of copy_term/2 is in writing interpreters for logic-based languages; with copy_term/2

available you can keep “clauses” in a Prolog data structure and pass this structure as an
argument without having to store the “clauses” in the Prolog database. This is useful if
the set of “clauses” in your interpreted language is changing with time, or if you want to
use clever indexing methods.

A naive way to attempt to find out whether one term is a copy of another is shown in this
example:

130 SICStus Prolog

identical_but_for_variables(X, Y) :-

\+ \+ (

numbervars(X, 0, N),

numbervars(Y, 0, N),

X = Y

).

This solution is sometimes sufficient, but will not work if the two terms have any variables
in common. If you want the test to succeed even when the two terms do have some variables
in common, then you need to copy one of them; for example,

identical_but_for_variables(X, Y) :-

\+ \+ (

copy_term(X, Z),

numbervars(Z, 0, N),

numbervars(Y, 0, N),

Z = Y

).

Please note: If the term being copied contains attributed variables (see Section 10.3 [lib-
atts], page 388) or suspended goals (see Section 4.2.4 [ref-sem-sec], page 74), then those
attributes are not retained in the copy. To retain the attributes, you can use:

copy_term(Term, Copy, Body)

which in addition to copying the term unifies Body with a goal such that executing Body will
reinstate the attributes in the Copy. Copy as well as Body contain brand new (unattributed)
variables only.

4.8.8 Comparing Terms

4.8.8.1 Introduction

The predicates described in this section are used to compare and order terms, rather than to
evaluate or process them. For example, these predicates can be used to compare variables;
however, they never instantiate those variables. These predicates should not be confused
with the arithmetic comparison predicates (see Section 4.7.4 [ref-ari-acm], page 120) or with
unification.

4.8.8.2 Standard Order of Terms

These predicates use a standard total order when comparing terms. The standard total
order is:

• Variables, by age (oldest first—the order is not related to the names of variables).

• Floats, in numeric order (e.g. -1.0 is put before 1.0).

• Integers, in numeric order (e.g. -1 is put before 1).

• Atoms, in alphabetical (i.e. character code) order.

• Compound terms, ordered first by arity, then by the name of the principal functor,

Chapter 4: The Prolog Language 131

then by age for mutables and by the arguments in left-to-right order for other terms.
Recall that lists are equivalent to compound terms with principal functor ./2.

For example, here is a list of terms in standard order:

[X, -1.0, -9, 1, fie, foe, X = Y, foe(0,2), fie(1,1,1)]

Please note: the standard order is only well-defined for finite (acyclic) terms.
There are infinite (cyclic) terms for which no order relation holds. Furthermore,
blocking goals (see Section 4.2.4 [ref-sem-sec], page 74) on variables or modifying
their attributes (see Section 10.3 [lib-atts], page 388) does not preserve their
order.

The predicates for comparison of terms are described below.

+T1 == +T2
T1 and T2 are literally identical (in particular, variables in equivalent positions
in the two terms must be identical).

+T1 \== +T2
T1 and T2 are not literally identical.

+T1 @< +T2
T1 is before term T2 in the standard order.

+T1 @> +T2
T1 is after term T2

+T1 @=< +T2
T1 is not after term T2

+T1 @>= +T2
T1 is not before term T2

compare(-Op, +T1, +T2)

the result of comparing terms T1 and T2 is Op, where the possible values for
Op are:

= if T1 is identical to T2,

< if T1 is before T2 in the standard order,

> if T1 is after T2 in the standard order.

4.8.8.3 Sorting Terms

Two predicates, sort/2 and keysort/2 sort lists into the standard order. keysort/2 takes
a list consisting of key-value pairs and sorts according to the key.

Further sorting predicates are available in library(samsort).

4.8.9 Mutable Terms

One of the tenets of logic programming is that terms are immutable objects of the Herbrand
universe, and the only sense in which they can be modified is by means of instantiating

132 SICStus Prolog

non-ground parts. There are, however, algorithms where destructive assignment is essential
for performance. Although alien to the ideals of logic programming, this feature can be
defended on practical grounds.

SICStus Prolog provides an abstract datatype and four operations for efficient backtrackable
destructive assignment. In other words, any destructive assignments are transparently
undone on backtracking. Modifications that are intended to survive backtracking must be
done by asserting or retracting dynamic program clauses instead. Unlike previous releases
of SICStus Prolog, destructive assignment of arbitrary terms is not allowed.

A mutable term is represented as a compound term with a reserved functor:
'$mutable'(Value,Timestamp) where Value is the current value and Timestamp is re-
served for bookkeeping purposes [Aggoun & Beldiceanu 90].

Any copy of a mutable term created by copy_term/[2,3], assert, retract, a database
predicate, or an all solutions predicate, is an independent copy of the original mutable term.
Any destructive assignment done to one of the copies will not affect the other copy.

The following operations are provided:

create_mutable(+Datum,-Mutable)

Datum.

get_mutable(-Datum,+Mutable)

The current value of the mutable term Mutable is Datum.

update_mutable(+Datum,+Mutable)

Updates the current value of the mutable term Mutable to become Datum.

mutable(+Mutable)

X is currently instantiated to a mutable term.

Please note: the effect of unifying two mutables is undefined.

4.8.10 Summary of Predicates

atom(+T) ISO

term T is an atom

atomic(+T) ISO

term T is an atom or a number

callable(+T) ISO

T is an atom or a compound term

compound(+T) ISO

T is a compound term

db_reference(+X) since release 4.1

X is a db reference

float(+N) ISO

N is a floating-point number

Chapter 4: The Prolog Language 133

ground(+T) ISO

term T is a nonvar, and all substructures are nonvar

integer(+T) ISO

term T is an integer

mutable(+X)

X is a mutable term

nonvar(+T) ISO

term T is one of atom, number, compound (that is, T is instantiated)

number(+N) ISO

N is an integer or a float

simple(+T)

T is not a compound term; it is either atomic or a var

var(+T) ISO

term T is a variable (that is, T is uninstantiated)

compare(-C,+X,+Y) ISO

C is the result of comparing terms X and Y

+X == +Y ISO

terms X and Y are strictly identical

+X \== +Y ISO

terms X and Y are not strictly identical

+X @< +Y ISO

term X precedes term Y in standard order for terms

+X @>= +Y ISO

term X follows or is identical to term Y in standard order for terms

+X @> +Y ISO

term X follows term Y in standard order for terms

+X @=< +Y ISO

term X precedes or is identical to term Y in standard order for terms

?T =.. ?L ISO

the functor and arguments of term T comprise the list L.

?X = ?Y ISO

terms X and Y are unified.

+X \= +Y ISO

terms X and Y no not unify.

?=(+X,+Y)

X and Y are either strictly identical or do not unify.

acyclic_term(+T) since release 4.3, ISO

term T is a finite (acyclic) term.

134 SICStus Prolog

arg(+N,+T,-A) ISO

the Nth argument of term T is A.

atom_chars(?A,?L) ISO

A is the atom containing the character atoms in list L.

atom_codes(?A,?L) ISO

A is the atom containing the characters in code list L.

atom_concat(?Atom1,?Atom2,?Atom12) ISO

Atom Atom1 concatenated with Atom2 gives Atom12.

atom_length(+Atom,-Length) ISO

Length is the number of characters of the atom Atom.

char_code(?Char,?Code) ISO

Code is the character code of the one-char atom Char.

copy_term(+T,-C) ISO

C is a copy of T in which all variables have been replaced by new variables.

copy_term(+T,-C,-G)

C is a copy of T in which all variables have been replaced by new variables,
and G is a goal for reinstating any attributes in C.

create_mutable(+Datum,-Mutable)

Mutable is a new mutable term with current value Datum.

dif(+X,+Y)

X and Y are constrained to be different.

frozen(+Term,-Goal)

Goal is the conjunction of all goals blocked on some variable in Term.

functor(?T,?F,?N) ISO

the principal functor of term T has name F and arity N.

get_mutable(-Datum,+Mutable)

The current value of the mutable term Mutable is Datum.

name(?A,?L) deprecated

the code list of atom or number A is L.

number_chars(?N,?L) ISO

N is the numeric representation of list of character atoms L.

number_codes(?N,?L) ISO

N is the numeric representation of code list L.

numbervars(+T,+M,-N)

number the variables in term T from M to N -1.

sub_atom(+Atom,?Before,?Length,?After,?SubAtom) ISO

The characters of SubAtom form a sublist of the characters of Atom, such
that the number of characters preceding SubAtom is Before, the number of
characters after SubAtom is After, and the length of SubAtom is Length.

Chapter 4: The Prolog Language 135

subsumes_term(General,Specific) since release 4.3, ISO

Specific is an instance of General.

term_variables(+Term,-Variables) since release 4.3, ISO

Variables is the set of variables that occur in Term, in first occurrence order.

unify_with_occurs_check(?X,?Y) ISO

True if X and Y unify to a finite (acyclic) term.

?T =.. ?L ISO

the functor and arguments of term T comprise the list L

append(?A,?B,?C)

the list C is the concatenation of lists A and B

keysort(+L,-S) ISO

the list L sorted by key yields S

length(?L,?N)

the length of list L is N

member(?X,?L)

X is a member of L

memberchk(+X,+L)

X is a member of L

nonmember(+X,+L)

X is not a member of L

sort(+L,-S) ISO

sorting the list L into order yields S

4.9 Looking at the Program State

4.9.1 Overview

Various aspects of the program state can be inspected: the clauses of all or selected dynamic
procedures, currently available atoms, user defined predicates, source files of predicates and
clauses, predicate properties and the current load context can all be accessed by calling the
predicates listed in Section 4.9.1 [ref-lps-ove], page 135. Furthermore, the values of Prolog
flags can be inspected and, where it makes sense, changed.

4.9.2 Associating Predicates with their Properties

The following properties are associated with predicates either implicitly or by declaration:

built_in The predicate is built-in.

compiled The predicate is in virtual code representation.

interpreted

The predicate is in interpreted representation.

fd_constraint

The predicate is a so-called FD predicate; see Section 10.10.10 [Defining Prim-
itive Constraints], page 479.

136 SICStus Prolog

dynamic The predicate was declared dynamic.

volatile The predicate was declared volatile.

multifile

The predicate was declared multifile.

block(SkeletalGoal)

The predicate has block declarations.

meta_predicate(SkeletalGoal)

The predicate is a meta-predicate.

As of release 4.2, the SkeletalGoal will contain the specifications used in the
original meta-predicate declaration.

exported The predicate was exported from a module.

imported_from(Module)

The predicate was imported from the module Module.

Every predicate has exactly one of the properties [built_in, compiled, interpreted,

fd_constraint], at most one of the properties

[exported, imported_from(Module)], zero or more block(SkeletalGoal) properties,
and at most one of the remaining properties.

To query these associations, use predicate_property/2. The reference page contains sev-
eral examples. See Section 11.3.159 [mpg-ref-predicate property], page 1109.

4.9.3 Associating Predicates with Files

Information about loaded files and the predicates and clauses in them is returned by source_
file/[1,2]. source_file/1 can be used to identify an absolute filename as loaded, or to
backtrack through all loaded files. To find out the correlation between loaded files and
predicates, call source_file/2. See Section 11.3.215 [mpg-ref-source file], page 1178.

4.9.4 Prolog Flags

Certain aspects of the state of the program are accessible as values of the global Prolog flags.
Some of these flags are read-only and correspond to implementation defined properties and
exist to aid portability. Others can be set and impact the behavior of certain built-in
predicates.

The flags are accessed by the built-in predicates prolog_flag/[2,3], current_prolog_
flag/2, and set_prolog_flag/2.

Please note: Prolog flags are global, as opposed to being local to the current module, Prolog
text, or otherwise.

The possible Prolog flag names and values are listed below. Flags annotated ISO are
prescribed by the ISO standard. Flags annotated volatile are not saved by save_

program/[1,2]. Flags annotated read-only are read-only:

Chapter 4: The Prolog Language 137

agc_margin

An integer Margin. The atoms will be garbage collected when Margin new
atoms have been created since the last atom garbage collection. Initially 10000.

argv volatile

The value is a list of atoms of the program arguments supplied when the cur-
rent SICStus Prolog process was started. For example, if SICStus Prolog were
invoked with:

% sicstus -- hello world 2001

then the value will be [hello,world,'2001'].

Setting the value can be useful when writing test cases for code that expects to
be run with command line parameters.

bounded read-only,volatile,ISO

One of the flags defining the integer type. For SICStus, its value is false,
indicating that the domain of integers is practically unbounded.

char_conversion volatile,ISO

If this flag is on, then unquoted characters in terms and programs read in will
be converted, as specified by previous invocations of char_conversion/2. If
the flag is off, then no conversion will take place. The default value is on.

compiling

Governs the mode in which compile/1 operate (see Section 4.3 [ref-lod],
page 79).

compactcode

Compilation produces byte-coded abstract instructions (the de-
fault).

debugcode

Compiling is replaced by consulting.

debugging volatile

Corresponds to the predicates debug/0, nodebug/0, trace/0, notrace/0,
zip/0, nozip/0. The flag describes the mode the debugger is in, or is required
to be switched to:

trace Trace mode (the debugger is creeping).

debug Debug mode (the debugger is leaping).

zip Zip mode (the debugger is zipping).

off The debugger is switched off (the default).

debug volatile,ISO

The flag debug, prescribed by the ISO Prolog standard, is a simplified form of
the debugging flag:

off ISO The debugger is switched off (the default).

on ISO The debugger is switched on (to trace mode, if previously
switched off).

138 SICStus Prolog

profiling since release 4.2

This flag describes the mode the execution profiler (see Section 9.2 [Execution
Profiling], page 353) is in, or is required to be switched to:

off The profiler is switched off (the default).

on The profiler is switched on.

(The flags profiling, debugging and debug have no effect in runtime systems.)

double_quotes volatile,ISO

Governs the interpretation of double quoted strings (see Section 4.1.3.2 [ref-
syn-cpt-sli], page 46):

codes ISO

Code list comprising the string. The default.

chars ISO

Char list comprising the string.

atom ISO The atom composed of the same characters as the string.

quoted_charset

This flag is relevant when quoted(true) holds when writing terms. Its value
should be one of the atoms:

portable Atoms and functors are written using character codes less than 128
only, i.e. using the 7-bit subset of the ISO-8859-1 (Latin 1) character
set (see Section 4.1.7.5 [ref-syn-syn-tok], page 56).

prolog

Atoms and functors are written using a character set that can be
read back by read/[1,2]. This is a subset of Unicode that includes
all of ISO-8859-1 (Latin 1) as well as some additional characters.

This character set may grow but not shrink in subsequent releases.
This ensures that future releases can always read a term written by
an older release.

Note that the character set supported by the stream is not taken
into account. You can use portable instead of prolog if the stream
does not support Unicode.

debugger_print_options

The value is a list of options for write_term/3 (see Section 4.6.4.1 [ref-iou-tou-
wrt], page 104), to be used in the debugger’s messages. The initial value is
[quoted(true),numbervars(true),portrayed(true),max_depth(10)].

dialect since release 4.1,read-only

The value of this flag is sicstus. It is useful for distinguishing between Prolog
implementations.

Also see the Prolog flag version_data, below.

discontiguous_warnings volatile

on or off. Enable or disable warning messages when clauses are not together
in source files. Initially on in development systems, off in runtime systems.

Chapter 4: The Prolog Language 139

fileerrors

on or off. Enables or disables raising of file error exceptions. Initially on

(enabled).

gc on or off. Enables or disables garbage collection of the global stack. Initially
on (enabled).

gc_margin

Margin: At least Margin kilobytes of free global stack space are guaranteed
to exist after a garbage collection. Also, no garbage collection is attempted if
the global stack has grown less than Margin kilobytes since the last garbage
collection. Initially 1000.

gc_trace Governs global stack garbage collection trace messages.

verbose Turn on verbose tracing of garbage collection.

terse Turn on terse tracing of garbage collection.

off Turn off tracing of garbage collection (the default).

host_type read-only,volatile

The value is an atom identifying the platform on which SICStus was compiled,
such as 'x86-linux-glibc2.1' or 'sparc-solaris-5.7'.

informational volatile

on or off. Enables or disables the printing of informational messages. Initially
on (printing enabled) in development systems, unless the --noinfo command
line option was used; off (printing disabled) in runtime systems.

integer_rounding_function read-only,volatile,ISO

One of the flags defining the integer type. In SICStus Prolog its value is
toward_zero, indicating that the integer division ((//)/2) and integer remain-
der (rem/2) arithmetic functions use rounding toward zero; see Section 4.7
[ref-ari], page 119.

legacy_char_classification since release 4.0.3,volatile

on or off. When enabled, most legal Unicode codepoints above 255 are treated
as lowercase characters when reading Prolog terms. This improves compati-
bility with earlier versions of SICStus Prolog and makes it possible to use full
Unicode, e.g. Chinese characters, in unquoted atoms as well as variable names,
Section 4.1.7.5 [ref-syn-syn-tok], page 56. Initially off (disabled).

Setting this flag affects the read_term/[2,3] option singletons/1; see
Section 11.3.185 [mpg-ref-read term], page 1140. It also affects the style warn-
ing for singleton variables; see the description of the single_var_warnings in
Section 4.3.2 [ref-lod-lod], page 80.

max_arity read-only,volatile,ISO

Specifies the maximum arity allowed for a compound term. In SICStus Prolog
this is 255.

max_integer read-only,volatile,ISO

Specifies the largest possible integer value. As in SICStus Prolog the range
of integers in not bounded, prolog_flag/[2,3] and current_prolog_flag/2

will fail when accessing this flag.

140 SICStus Prolog

max_tagged_integer since release 4.1,read-only,volatile

The largest small integer, i.e. integers larger than this are less efficient to ma-
nipulate and are not available in library(clpfd).

min_integer read-only,volatile,ISO

Specifies the smallest possible integer value. As in SICStus Prolog the range
of integers in not bounded, prolog_flag/[2,3] and current_prolog_flag/2

will fail, when accessing this flag.

min_tagged_integer since release 4.1,read-only,volatile

The smallest small integer, i.e. integers smaller than this are less efficient to
manipulate and are not available in library(clpfd).

os_data since release 4.1,read-only,volatile

The value is a term os(Family,Name,Extra) describing the operating system
on which this SICStus process is running, i.e. it is the runtime version of the
platform_data flag, below.

Family has the same value and meaning as for the platform_data flag, below.

On UNIX-like systems the Name is the lower case value sysname returned from
uname(3) at runtime, i.e. the same as from the comamnd uname -s. On all
supported versions of Microsoft Windows this is win32nt.

Extra is a list of extra information. Entries may be added to this list without
prior notice.

Currently, at least up to release 4.2.3, the Family and Name for the platform_
data and os_data flags happens to be the same but this may change in the
unlikely case that the operating system starts to return something new. For
this reason it is probably better to use platform_data than os_data in most
cases.

The Extra value for os_data may differ from its platform_data counterpart
in order to accurately describe the running operating system.

platform_data since release 4.1,read-only,volatile

The value is a term platform(Family,Name,Extra) describing the operating
system platform for which this version of SICStus was built.

Family describes the family or class of operating system. Currently documented
values are unix, for UNIX-like systems like Linux, OS X, Solaris and Android;
and windows for all supported versions of Microsoft Windows. You should not
assume that these are the only two possibilities.

Name describes the name of the operating system. On UNIX-like systems this
correspond to the (lower case) output from uname -s. Currently documented
values are linux, darwin, sunos, android and win32nt.

Note that this implies that some operating systems may have unexpected names.
In particular the name for Apple OS X is darwin, for Oracle Solaris it is sunos
and for 64-bit versions of SICStus on Microsoft Windows it is win32nt.

Extra is bound to a list of extra information. Entries may be added to this list
without prior notice.

Chapter 4: The Prolog Language 141

redefine_warnings

Enable or disable warning messages when:

• a module or predicate is being redefined from a different file than its pre-
vious definition. Such warnings are currently not issued when a ‘.po’ file
is being loaded.

• a predicate is being imported while it was locally defined already.

• a predicate is being redefined locally while it was imported already.

• a predicate is being imported while it was imported from another module
already.

The possible values are:

on The default in development systems. The user is queried about
what to do in each case.

off The default in runtime systems, but note that this flag is not
volatile. Redefinitions are performed silently, as if the user had
accepted them.

reject since release 4.0.3

Redefinitions are refused silently, as if the user had rejected them.

proceed since release 4.0.3

Redefinitions are performed, and warnings are issued.

suppress since release 4.0.3

Redefinitions are refused, and warnings are issued.

single_var_warnings volatile

on or off. Enable or disable warning messages when a sentence (see
Section 4.1.7.3 [ref-syn-syn-sen], page 53) containing variables not beginning
with ‘_’ occurring once only is compiled or consulted. Initially on in develop-
ment systems, off in runtime systems.

source_info volatile

emacs or on or off. If not off while source code is being loaded, then informa-
tion about line numbers and file names are stored with the loaded code. If the
value is on while debugging, then this information is used to print the source
code location while prompting for a debugger command. If the value is on while
printing an uncaught error exception message, then the information is used to
print the source code location of the culprit goal or one of its ancestors, as far
as it can be determined. If the value is emacs in any of these cases, then the
appropriate line of code is instead highlighted, and no extra text is printed. The
value is off initially, and that is its only available value in runtime systems.

syntax_errors

Controls what action is taken upon syntax errors in read/[1,2].

dec10 The syntax error is reported and the read is repeated.

error An exception is raised. See Section 4.15 [ref-ere], page 197. (the
default).

142 SICStus Prolog

fail The syntax error is reported and the read fails.

quiet The read quietly fails.

system_type read-only,volatile

The value is development in development systems and runtime in runtime
systems.

title The window title. The default value is the same as the boot message ‘SICStus
4.6.0 ...

Licensed to SICS’. It is currently only used as the window title on the Win-
dows platform.

toplevel_print_options

The value is a list of options for write_term/3 (see Section 4.6.4.1 [ref-iou-tou-
wrt], page 104), to be used when the top level displays variable bindings and an-
swer constraints. It is also used when messages are displayed. The initial value
is [quoted(true),numbervars(true),portrayed(true),max_depth(10)].

typein_module

Permitted values are atoms. Controls the current type-in module (see
Section 4.11.8 [ref-mod-tyi], page 166). Corresponds to the predicate set_

module/1.

unknown ISO

The system can optionally catch calls to predicates that have no definition.
First, the user defined predicate user:unknown_predicate_handler/3 (see
Section 4.15 [ref-ere], page 197) is called. If undefined or if the call fails, then
the action is governed by the state of the this flag, which can be:

trace Causes calls to undefined predicates to be reported and the de-
bugger to be entered at the earliest opportunity. Not available in
runtime systems.

error ISO

Causes calls to such predicates to raise an exception (the default).
See Section 4.15 [ref-ere], page 197.

warning ISO

Causes calls to such predicates to display a warning message and
then fail.

fail ISO Causes calls to such predicates to fail.

user_input volatile

Permitted values are any stream opened for reading. Controls which stream
is referenced by user_input and SP_stdin. It is initially set to a stream con-
nected to UNIX stdin.

user_output volatile

Permitted values are any stream opened for writing. Controls which stream
is referenced by user_output and SP_stdout. It is initially set to a stream
connected to UNIX stdout.

Chapter 4: The Prolog Language 143

user_error volatile

Permitted values are any stream opened for writing. Controls which stream
is referenced by user_error and SP_stderr. It is initially set to a stream
connected to UNIX stderr.

version read-only,volatile

The value is an atom containing the banner text displayed on startup, such as
'SICStus 4.1.0 (i386-darwin-9.8.0): Wed Oct 14 14:43:58 CEST 2009'.

Also see the Prolog flag version_data, below.

version_data since release 4.1,read-only,volatile

The value is a term sicstus(Major,Minor,Revision,Beta,Extra) with inte-
ger major, minor, revision, and beta version.

Extra is bound to a list of extra information. Entries may be added to this list
without prior notice.

Also see the Prolog flag dialect, above.

You can use prolog_flag/2 to enumerate all the FlagNames that the system currently
understands, together with their current values. Use prolog_flag/2 to make queries,
prolog_flag/3 to make changes.

4.9.5 Load Context

When a Prolog source file is being read in, some aspects of the load context can be accessed
by the built-in predicate prolog_load_context/2, which accesses the value of a given key.
The available keys are:

source The absolute path name of the file being loaded. During loading of a PO file,
the corresponding source file name is returned.

file Outside included files (see Section 4.3.4.11 [Include Declarations], page 86) this
is the same as the source key. In included files this is the absolute path name
of the file being included.

directory

The absolute path name of the directory of the file being loaded. In included
files this is the directory of the file being included.

module The source module (see Section 4.11.15 [ref-mod-mne], page 171). This is useful
for example if you are defining clauses for user:term_expansion/6 and need
to access the source module at compile time.

stream The stream being loaded. This key is not available during loading of a PO file.

term_position

A term representing the stream position of the last clause read. This key is not
available during loading of a PO file.

4.9.6 Predicate Summary

current_atom(?A)

backtrack through all atoms

144 SICStus Prolog

current_module(?M)

M is the name of a current module

current_module(?M,?F)

F is the name of the file in which M ’s module declaration appears

current_predicate(:A/?N) ISO

current_predicate(?A,:P)

A is the name of a predicate with most general goal P and arity N

current_prolog_flag(?F,?V) ISO

V is the current value of Prolog flag F

listing list all dynamic procedures in the type-in module

listing(:P)

list the dynamic procedure(s) specified by P

predicate_property(:P,?Prop)

Prop is a property of the loaded predicate P

prolog_flag(?F,?V)

V is the current value of Prolog flag F

prolog_flag(+F,=O,+N)

O is the old value of Prolog flag F; N is the new value

prolog_load_context(?K,?V)

find out the context of the current load

set_module(+M)

make M the type-in module

set_prolog_flag(+F,+N) ISO

N is the new value of Prolog flag F

source_file(?F)

F is a source file that has been loaded into the database

source_file(:P,?F)

P is a predicate defined in the loaded file F

unknown(-O,+N) development

Changes action on undefined predicates from O to N.

4.10 Memory Use and Garbage Collection

4.10.1 Overview

SICStus Prolog uses five data areas: program space, global stack, local stack, choice stack,
and trail stack. Each of these areas is automatically expanded if it overflows.

The local stack contains all the control information and variable bindings needed in a Prolog
execution. Space on the local stack is reclaimed on determinate success of predicates and
by tail recursion optimization, as well as on backtracking.

Chapter 4: The Prolog Language 145

The choice stack contains data representing outstanding choices for some goals or disjunc-
tions. Space on the choice stack is reclaimed on backtracking.

The global stack contains all the data structures constructed in an execution of the program.
This area grows with forward execution and shrinks on backtracking.

The trail stack contains references to all the variables that need to be reset when backtrack-
ing occurs. This area grows with forward execution and shrinks on backtracking.

The program space contains compiled and interpreted code, recorded terms, and atoms.
The space occupied by compiled code, interpreted code, and recorded terms is recovered
when it is no longer needed; the space occupied by atoms that are no longer in use can be
recovered by atom garbage collection described in Section 4.10.7 [ref-mgc-ago], page 156.

These fluctuations in memory usage of the above areas can be monitored by
statistics/[0,2].

SICStus Prolog uses the global stack to construct compound terms, including lists. Global
Stack space is used as Prolog execution moves forward. When Prolog backtracks, it auto-
matically reclaims space on the global stack. However, if a program uses a large amount
of space before failure and backtracking occur, then this type of reclamation may be inad-
equate.

Without garbage collection, the Prolog system must attempt to expand the global stack
whenever a global stack overflow occurs. To do this, it first requests additional space from
the operating system. If no more space is available, then the Prolog system attempts to
allocate unused space from the other Prolog data areas. If additional space cannot be found,
then a resource error is raised.

Global stack expansion and abnormal termination of execution due to lack of stack space
can occur even if there are structures on the global stack that are no longer accessible to the
computation (these structures are what is meant by “garbage”). The proportion of garbage
to non-garbage terms varies during execution and with the Prolog code being executed.
The global stack may contain no garbage at all, or may be nearly all garbage.

The garbage collector periodically reclaims inaccessible global stack space, reducing the
need for global stack expansion and lessening the likelihood of running out of global stack.
When the garbage collector is enabled (as it is by default), the system makes fewer requests
to the operating system for additional space. The fact that less space is required from the
operating system can produce a substantial savings in the time taken to run a program,
because paging overhead can be much less.

For example, without garbage collection, compiling a file containing the sequence

p(_) :- p([a]).

:- p(_).

causes the global stack to expand until the Prolog process eventually runs out of space.
With garbage collection enabled, the above sequence continues indefinitely. The list built

146 SICStus Prolog

on the global stack by each recursive call is inaccessible to future calls (since p/1 ignores
its argument) and can be reclaimed by the garbage collector.

Garbage collection does not guarantee freedom from out-of-space errors, however. Compil-
ing a file containing the sequence

p(X) :- p([X]).

:- p(a).

expands the global stack until the Prolog process eventually runs out of space. This happens
in spite of the garbage collector, because all the terms built on the global stack are accessible
to future computation and cannot be reclaimed.

4.10.1.1 Reclaiming Space

trimcore/0 reclaims space in all of Prolog’s data areas. At any given time, each data area
contains some free space. For example, the local stack space contains the local stack and
some free space for that stack to grow into. The data area is automatically expanded when
it runs out of free space, and it remains expanded until trimcore/0 is called, even though
the stack may have shrunk considerably in the meantime. The effect of trimcore/0 is to
reduce the free space in all the data areas as much as possible, and to endeavor to give the
space no longer needed back to the operating system.

The system property PROLOGKEEPSIZE can be used to define a lower bound on the amount of
memory to be retained. Also, the system property PROLOGINITSIZE can be used to request
that an initial amount of memory be allocated. This initially allocated memory will not be
touched by trimcore/0.

When trimming a given stacks, trimcore/0 will retain at least the amount of space initially
allocated for that stack.

trimcore/0 is called each time Prolog returns to the top level or the top of a break level,
except it does not trim the stacks then. See Section 11.3.238 [mpg-ref-trimcore], page 1208.

4.10.1.2 Displaying Statistics

Statistics relating to memory usage, run time, and garbage collection, including information
about which areas of memory have overflowed and how much time has been spent expanding
them, can be displayed by calling statistics/0.

The output from statistics/0 looks like this:

Chapter 4: The Prolog Language 147

memory (total) 3334072 bytes

global stack 1507184 bytes: 2516 in use, 1504668 free

local stack 49296 bytes: 276 in use, 49020 free

trail stack 34758 bytes: 248 in use, 34510 free

choice stack 34874 bytes: 364 in use, 34510 free

program space 1707960 bytes: 1263872 in use, 444088 free

program space breakdown:

compiled code 575096 bytes

atom 166528 bytes

predicate 157248 bytes

try_node 144288 bytes

sw_on_key 105216 bytes

incore_info 51096 bytes

atom table 36864 bytes

interpreted code 13336 bytes

atom buffer 2560 bytes

SP_malloc 2288 bytes

FLI stack 2048 bytes

miscellaneous 1640 bytes

BDD hash table 1560 bytes

source info (B-tree) 1024 bytes

numstack 1024 bytes

int_info 880 bytes

file table 400 bytes

source info (itable) 328 bytes

module 320 bytes

source info (lheap) 80 bytes

foreign resource 32 bytes

all solutions 16 bytes

4323 atoms (151927 bytes) in use, 1044252 free

No memory resource errors

0.020 sec. for 7 global, 20 local, and 0 choice stack overflows

0.060 sec. for 15 garbage collections which collected 5461007 bytes

0.000 sec. for 0 atom garbage collections which collected 0 atoms (0 bytes)

0.000 sec. for 4 defragmentations

0.000 sec. for 7 dead clause reclamations

0.000 sec. for 0 dead predicate reclamations

39.410 sec. runtime

========

39.490 sec. total runtime

109.200 sec. elapsed time

Note the use of indentation to indicate sub-areas. That is, memory contains the program
space and the four stacks: global, local, choice, and trail.

148 SICStus Prolog

The memory (total) figure shown as “in use” is the sum of the spaces for the program space
and stacks. The “free” figures for the stacks are for free space within those areas. However,
this free space is considered used as far as the memory (total) area is concerned, because it
has been allocated to the stacks. The program space is not considered to have its own free
space. It always allocates new space from the general memory (total) free area.

If a memory resource error has occurred previously in the execution, then the memory area
for which memory could not be allocated is displayed.

Individual statistics can be obtained by statistics/2, which accepts a keyword and returns
a list of statistics related to that keyword.

The keys and values for statistics(Keyword, Value) are summarized below. The key-
words core and heap are included to retain compatibility with other Prologs. Times are
given in milliseconds and sizes are given in bytes.

Keyword Value

runtime [since start of Prolog,since previous statistics]

These refer to CPU time used while executing, excluding time spent in memory
management tasks or in system calls. The second element is the time since the
latest call to statistics/2 with this key or to statistics/0.

total_runtime

[since start of Prolog,since previous statistics]

These refer to total CPU time used while executing, including memory manage-
ment tasks such as garbage collection but excluding system calls. The second
element is the time since the latest call to statistics/2 with this key or to
statistics/0.

walltime [since start of Prolog,since previous statistics]

These refer to absolute time elapsed. The second element is the time since the
latest call to statistics/2 with this key or to statistics/0.

global_stack

[size used,free]

This refers to the global stack, where compound terms are stored. The values
are gathered before the list holding the answers is allocated. Formed from basic
values below.

local_stack

[size used,free]

This refers to the local stack, where recursive predicate environments are stored.
Formed from basic values below.

trail [size used,free]

This refers to the trail stack, where conditional variable bindings are recorded.
Formed from basic values below.

choice [size used,free]

This refers to the choice stack, where partial states are stored for backtracking
purposes. Formed from basic values below.

Chapter 4: The Prolog Language 149

memory

core [size used,0]

These refer to the amount of memory actually allocated by the Prolog engine.
The zero is there for compatibility with other Prolog implementations. Formed
from basic values below.

program

heap [size used,size free]

These refer to the amount of memory allocated for the database, symbol tables,
and the like. Formed from basic values below.

garbage_collection

[no. of GCs,bytes freed,time spent]

Formed from basic values below.

stack_shifts

[no. of global shifts,no. of local/choice shifts,time spent]

Formed from basic values below.

atoms [no. of atoms,bytes used,atoms free]

The number of atoms free is the number of atoms allocated (the first element in
the list) subtracted from the maximum number of atoms, i.e. 262143 (33554431)
on 32-bit (64-bit) architectures. Note that atom garbage collection may be able
to reclaim some of the allocated atoms. Formed from basic values below.

atom_garbage_collection

[no. of AGCs,bytes freed,time spent]

Formed from basic values below.

defragmentation

[no. of defragmentations,time spent]

Formed from basic values below.

memory_used since release 4.1

bytes used

memory_free since release 4.1

bytes free

global_stack_used since release 4.1

bytes used

global_stack_free since release 4.1

bytes free

local_stack_used since release 4.1

bytes used

150 SICStus Prolog

local_stack_free since release 4.1

bytes free

trail_used since release 4.1

bytes used

trail_free since release 4.1

bytes free

choice_used since release 4.1

bytes used

choice_free since release 4.1

bytes free

atoms_used since release 4.1

bytes used

atoms_nbused since release 4.1

atoms used

atoms_nbfree since release 4.1

atoms free

ss_global since release 4.1

number of global stack shifts

ss_local since release 4.1

number of local stack shifts

ss_choice since release 4.1

number of choice stack shifts

ss_time since release 4.1

time spent stack shifting

gc_count since release 4.1

number of garbage collections

gc_freed since release 4.1

number of bytes freed

Chapter 4: The Prolog Language 151

gc_time since release 4.1

time spent collecting garbage

agc_count since release 4.1

number of atom garbage collections

agc_nbfreed since release 4.1

number of garbage collected atoms

agc_freed since release 4.1

number of bytes freed by atom garbage collected

agc_time since release 4.1

time spent garbage collected atoms

defrag_count since release 4.1

number of memory defragmentations

defrag_time since release 4.1

time spent defragmenting memory

dpgc_count since release 4.1

number of dead predicate reclamations

dpgc_time since release 4.1

time spent reclaiming dead predicates

dcgc_count since release 4.1

number of dead clause reclamations

dcgc_time since release 4.1

time spent reclaiming dead clauses

memory_culprit since release 4.1

memory bucket in which latest memory resource error occurred

memory_buckets since release 4.1

list of bucket-size pair
where size is the amount of memory in use for memory bucket bucket.

jit_count since release 4.3

number of JIT-compiled predicates
This is zero when JIT compilation is not available.

152 SICStus Prolog

jit_time since release 4.3

time spent JIT-compiling predicates
This is zero when JIT compilation is not available.

To see an example of the use of each of these keywords, type

| ?- statistics(K, L).

and then repeatedly type ‘;’ to backtrack through all the possible keywords. As an addi-
tional example, to report information on the runtime of a predicate p/0, add the following
to your program:

:- statistics(runtime, [T0| _]),

p,

statistics(runtime, [T1|_]),

T is T1 - T0,

format('p/0 took ~3d sec.~n', [T]).

See Section 11.3.217 [mpg-ref-statistics], page 1181.

4.10.2 Garbage Collection and Programming Style

The availability of garbage collection can lead to a more natural programming style. With-
out garbage collection, a procedure that generates global stack garbage may have to be
executed in a failure-driven loop. Failure-driven loops minimize global stack usage from it-
eration to iteration of a loop via SICStus Prolog’s automatic recovery of global stack space
on failure. For instance, in the following procedure echo/0 echoes Prolog terms until it
reads an end-of-file character. It uses a failure-driven loop to recover inaccessible global
stack space.

echo :- repeat,

read(Term),

echo_term(Term),

!.

echo_term(Term) :-

Term == end_of_file.

echo_term(Term) :-

writeq(Term), nl,

fail.

Any global stack garbage generated by read/1 or write/1 is automatically reclaimed by
the failure of each iteration.

Although failure-driven loops are an accepted Prolog idiom, they are not particularly easy
to read or understand. So we might choose to write a clearer version of echo/0 using
recursion instead, as in

Chapter 4: The Prolog Language 153

echo :- read(Term),

echo_term(Term).

echo_term(Term) :-

Term == end_of_file,

!.

echo_term(Term) :-

writeq(Term), nl,

echo.

Without garbage collection the more natural recursive loop accumulates global stack
garbage that cannot be reclaimed automatically. While it is unlikely that this trivial exam-
ple will run out of global stack space, larger and more practical applications may be unable
to use the clearer recursive style without garbage collection. With garbage collection, all
inaccessible global stack space will be reclaimed by the garbage collector.

Using recursion rather than failure-driven loops can improve programming style further.
We might want to write a predicate that reads terms and collects them in a list. This
is naturally done in a recursive loop by accumulating results in a list that is passed from
iteration to iteration. For instance,

collect(List) :-

read(Term),

collect_term(Term, List).

collect_term(Term, []) :-

Term == end_of_file,

!.

collect_term(Term, [Term|List0]) :-

collect(List0).

For more complex applications this sort of construction might prove unusable without
garbage collection. Instead, we may be forced to use a failure-driven loop with side ef-
fects to store partial results, as in the following much less readable version of collect/1:

154 SICStus Prolog

collect(List) :-

repeat,

read(Term),

store_term(Term),

!,

collect_terms(List).

store_term(Term) :-

Term == end_of_file.

store_term(Term) :-

assertz(term(Term)),

fail.

collect_terms([M|List]) :-

retract(term(M)),

!,

collect_terms(List).

collect_terms([]).

The variable bindings made in one iteration of a failure-driven loop are unbound on failure
of the iteration. Thus partial results cannot simply be stored in a data structure that is
passed along to the next iteration. We must instead resort to storing partial results via
side effects (here, assertz/1) and collect (and clean up) partial results in a separate pass.
The second example is much less clear to most people than the first. It is also much less
efficient than the first. However, if there were no garbage collector, then larger examples of
the second type might be able to run where those of the first type would run out of memory.

4.10.3 Enabling and Disabling the Garbage Collector

The user has the option of executing programs with or without garbage collection. Proce-
dures that do not use a large amount of global stack space before backtracking may not
be affected when garbage collection is enabled. Procedures that do use a large amount of
global stack space may execute more slowly due to the time spent garbage collecting, but
will be more likely to run to completion. On the other hand, such programs may run faster
when the garbage collector is enabled because the virtual memory is not expanded to the
extent that “thrashing” occurs. The gc Prolog flag can be set to on or off. To monitor
garbage collections in verbose mode, set the gc_trace flag to verbose. By default, garbage
collection is enabled.

4.10.4 Monitoring Garbage Collections

By default, the user is given no indication that the garbage collector is operating. If no
program ever runs out of space and no program using a lot of global stack space requires
an inordinate amount of processing time, then such information is unlikely to be needed.

However, if a program thought to be using much global stack space runs out of space
or runs inordinately slowly, then the user may want to determine whether more or less

Chapter 4: The Prolog Language 155

frequent garbage collections are necessary. Information obtained from the garbage collector
by turning on the gc_trace Prolog flag can be helpful in this determination.

4.10.5 Interaction of Garbage Collection and Global Stack
Expansion

For most programs, the default settings for the garbage collection parameters should suffice.
For programs that have high global stack requirements, the default parameters may result
in a higher ratio of garbage collection time to run time. These programs should be given
more space in which to run.

The gc_margin is a non-negative integer specifying the desired margin in kilobytes. For
example, the default value of 1000 means that the global stack will not be expanded if
garbage collection can reclaim at least one megabyte. The advantage of this criterion is that
it takes into account both the user’s estimate of the global stack usage and the effectiveness
of garbage collecting.

1. Setting the gc_margin higher than the default will cause fewer global stack expansions
and garbage collections. However, it will use more space, and garbage collections will
be more time-consuming when they do occur.

Setting the margin too large will cause the global stack to expand so that if it does
overflow, then the resulting garbage collection will significantly disrupt normal pro-
cessing. This will be especially so if much of the global stack is accessible to future
computation.

2. Setting the gc_margin lower than the default will use less space, and garbage collections
will be less time-consuming. However, it will cause more global stack expansions and
garbage collections.

Setting the margin too small will cause many garbage collections in a small amount of
time, so that the ratio of garbage-collecting time to computation time will be abnor-
mally high.

3. Setting the margin correctly will cause the global stack to expand to a size where
expansions and garbage collections are infrequent and garbage collections are not too
time-consuming, if they occur at all.

The correct value for the gc_margin is dependent upon many factors. Here is a non-
prioritized list of some of them:

• The amount of memory available to the Prolog process

• The maximum memory limit imposed on the Prolog process

• The program’s rate of global stack garbage generation

• The program’s rate of global stack non-garbage generation

• The program’s backtracking behavior

• The amount of time needed to collect the generated garbage

• The growth rate of the other Prolog stacks

The algorithm used when the global stack overflows is as follows:

156 SICStus Prolog

if gc is on and
the global stack has grown at least gc_margin kilobytes
since the last garbage collection then
garbage collect the global stack
if less than gc_margin kilobytes are reclaimed then

try to expand the global stack
endif

else
try to expand the global stack

endif

The user can use the gc_margin option of prolog_flag/3 to reset the gc_margin (see
Section 4.9.1 [ref-lps-ove], page 135). If a garbage collection reclaims at least the gc_

margin kilobytes of global stack space, then the global stack is not expanded after garbage
collection completes. Otherwise, the global stack is expanded after garbage collection. This
expansion provides space for the future global stack usage that will presumably occur. In
addition, no garbage collection occurs if the global stack has grown less than gc_margin

kilobytes since the last garbage collection.

4.10.6 Invoking the Garbage Collector Directly

Normally, the garbage collector is invoked only when some Prolog data area overflows, so
the time of its invocation is not predictable. In some applications it may be desirable to
invoke the garbage collector at regular intervals (when there is known to be a significant
amount of garbage on the global stack) so that the time spent garbage collecting is more
evenly distributed in the processing time. For instance, it may prove desirable to invoke
the garbage collector after each iteration of a question-and-answer loop that is not failure-
driven.

In rare cases the default garbage collection parameters result in excessive garbage collect-
ing costs or global stack expansion, and the user cannot tune the gc_margin parameter
adequately. Explicitly invoking the garbage collector using the built-in predicate garbage_
collect/0 can be useful in these circumstances.

See Section 11.3.89 [mpg-ref-garbage collect], page 1019.

4.10.7 Atom Garbage Collection

By default, atoms created during the execution of a program remain permanently in the
system until Prolog exits. For the majority of applications this behavior is not a problem
and can be ignored. However, for two classes of application this can present problems.
Firstly the internal architecture of SICStus Prolog limits the number of atoms that be can
created to 1,048,575 on 32-bit machines, and this can be a problem for database applications
that read large numbers of atoms from a database. Secondly, the space occupied by atoms
can become significant and dominate memory usage, which can be a problem for processes
designed to run perpetually.

These problems can be overcome by using atom garbage collection to reclaim atoms that
are no longer accessible to the executing program.

Chapter 4: The Prolog Language 157

Atoms can be created in many ways: when an appropriate token is read with read_term/3,
when source or PO files are loaded, when atom_codes/2 is called with a character list, or
when SP_atom_from_string() is called in C code. In any of these contexts an atom is
only created if it does not already exist; all atoms for a given string are given the same
identification number, which is different from the atom of any other string. Thus, atom
recognition and comparison can be done quickly, without having to look at strings. An
occurrence of an atom is always of a fixed, small size, so where a given atom is likely to be
used in several places simultaneously the use of atoms can also be more compact than the
use of strings.

A Prolog functor is implemented like an atom, but also has an associated arity. For the
purposes of atom garbage collection, a functor is considered to be an occurrence of the atom
of that same name.

Atom garbage collection is similar to global stack garbage collection, invoked automatically
as well as through a call to the built-in predicate garbage_collect_atoms/0. The atom
garbage collector scans Prolog’s data areas looking for atoms that are currently in use and
then throws away all unused atoms, reclaiming their space.

Atom garbage collection can turn an application that continually grows and eventually either
runs into the atom number limit or runs out of space into one that can run perpetually. It
can also make feasible applications that load and manipulate huge quantities of atom-rich
data that would otherwise become full of useless atoms.

4.10.7.1 The Atom Garbage Collector User Interface

Because the creation of atoms does not follow any other system behaviors like memory
growth or global stack garbage collection, SICStus has chosen to keep the invocation of
atom garbage collection independent of any other operation and to keep the invocation of
atom garbage collection explicit rather than making it automatic. It is often preferable for
the programmer to control when it will occur in case preparations need to be made for it.

Atom garbage collection is invoked automatically when the number of new atoms created
since the last atom garbage collection reaches the value of the agc_margin flag.

Atom garbage collection can be invoked explicitly by calling garbage_collect_atoms/0.
The predicate normally succeeds silently. The user may determine whether to invoke
atom garbage collection at a given point based on information returned from a call to
statistics/2 with the keyword atoms. That call returns a list of the form

[number of atoms, atom space in use, atom space free]

For example,

| ?- statistics(atoms, Stats).

Stats = [4313,121062,31032]

158 SICStus Prolog

One would typically choose to call garbage_collect_atoms/0 prior to each iteration of
an iterative application, when either the number of atoms or the atom space in use passes
some threshold, e.g.

<driver loop> :-

...

repeat,

maybe_atom_gc,

<do next iteration>

...

fail.

<driver loop>.

where

maybe_atom_gc :-

statistics(atoms, [_,Inuse,_]),

atom_gc_space_threshold(Space),

(Inuse > Space -> garbage_collect_atoms ; true).

% Atom GC if there are more than 100000 bytes of atoms:

atom_gc_space_threshold(100000).

More sophisticated approaches might use both atom number, atom space and agc_margin

thresholds, or could adjust a threshold if atom garbage collection did not free an adequate
number of atoms.

To be most effective, atom garbage collection should be called when as few as possible
atoms are actually in use. In the above example, for instance, it makes the most sense to
do atom garbage collection at the beginning of each iteration rather than at the end, as
at the beginning of the iteration the previous failure may just have freed large amounts of
atom-rich global and local stack. Similarly, it is better to invoke atom garbage collection
after abolishing or retracting a large database than to do so before. See Section 11.3.90
[mpg-ref-garbage collect atoms], page 1020.

4.10.7.2 Protecting Atoms in Foreign Memory

SICStus Prolog’s foreign language interface allows atoms to be passed to foreign functions.
When calling foreign functions from Prolog, atoms are passed via the +atom argument type
in the predicate specifications of foreign/[2,3] facts. The strings of atoms can be passed
to foreign functions via the +string argument type. In the latter case a pointer to the
Prolog symbol table’s copy of the string for an atom is what is passed. When calling Prolog
from C, atoms are passed back from C to Prolog using the -atom and -string argument
types in extern/1 declarations. Atoms can also be created in foreign code via functions
like SP_atom_from_string().

Prolog does not keep track of atoms (or strings of atoms) stored in foreign memory. As such,
it cannot guarantee that those atoms will be retained by atom garbage collection. Therefore
SICStus Prolog provides functions to register atoms (or their strings) with the atom garbage

Chapter 4: The Prolog Language 159

collector. Registered atoms will not be reclaimed by the atom garbage collector. Atoms can
be registered while it is undesirable for them to be reclaimed, and then unregistered when
they are no longer needed.

Of course, the majority of atoms passed as atoms or strings to foreign functions do not
need to be registered. Only those that will be stored across foreign function calls (in global
variables) or across nested calls to Prolog are at risk. An extra margin of control is given by
the fact the programmer always invokes atom garbage collection explicitly, and can ensure
that this is only done in contexts that are “safe” for the individual application.

To register or unregister an atom, one of the following functions is used:

int SP_register_atom(atom)

SP_atom atom;

int SP_unregister_atom(atom)

SP_atom atom;

These functions return either SP_ERROR or a non-negative integer. The return values are
discussed further in Section 4.10.7.4 [ref-mgc-ago-are], page 160.

As noted above, when an atom is passed as a string (+string) to a foreign function, the
string the foreign function receives is the one in Prolog’s symbol table. When atom garbage
collection reclaims the atom for that string, the space for the string will also be reclaimed.

Thus, if the string is to be stored across foreign calls, then either a copy of the string or else
the atom (+atom) should be passed into the foreign function so that it can be registered
and SP_string_from_atom() can be used to access the string from the atom.

Keep in mind that the registration of atoms only pertains to those passed to foreign functions
or created in foreign code. Atoms in Prolog’s data areas are maintained automatically. Note
also that even though an atom may be unregistered in foreign code, atom garbage collection
still may not reclaim it as it may be referenced from Prolog’s data areas. But if an atom
is registered in foreign code, then it will be preserved regardless of its presence in Prolog’s
data areas.

The following example illustrates the use of these functions. In this example the current
value of an object (which is an atom) is being stored in a C global variable. There are two
C functions that can be called from Prolog, one to update the current value and one to
access the value.

160 SICStus Prolog

#include <sicstus/sicstus.h>

SP_atom current_object = NULL;

update_object(SP_atom newvalue)

{

/* if current_object contains an atom, unregister it */

if (current_object)

(void) SP_unregister_atom(current_object);

/* register new value */

(void) SP_register_atom(newvalue);

current_object = newvalue;

}

SP_atom get_object(void)

{

return current_object;

}

4.10.7.3 Permanent Atoms

Atom garbage collection scans all Prolog’s dynamic data areas when looking for atoms
that are in use. Scanning finds atoms in the Prolog stacks and in all compiled and inter-
preted code that has been dynamically loaded into Prolog via consult/1, use_module/1,
assert/2, etc. However, there are certain potential sources of atoms in the Prolog image
from which atoms cannot be reclaimed. Atoms for Prolog code that has been statically
linked with either the Prolog Development Environment or the Runtime Environment have
been placed in the text space, making them (and the code that contains them) effectively
permanent. Although such code can be abolished, its space can never be reclaimed.

These atoms are internally flagged as permanent by the system and are always retained
by atom garbage collection. An atom that has become permanent cannot be made non-
permanent, so can never be reclaimed.

4.10.7.4 Details of Atom Registration

The functions that register and unregister atoms are in fact using reference counting to
keep track of atoms that have been registered. As a result, it is safe to combine your code
with libraries and code others have written. If the other code has been careful to register
and unregister its atoms as appropriate, then atoms will not be reclaimed until everyone
has unregistered them.

Of course, it is possible when writing code that needs to register atoms that errors could
occur. Atoms that are registered too many times simply will not be garbage collected until
they are fully unregistered. However, atoms that are not registered when they should be
may be reclaimed on atom garbage collection. One normally does not need to think about
the reference counting going on in SP_register_atom() and SP_unregister_atom(), but
some understanding of its details could prove helpful when debugging.

Chapter 4: The Prolog Language 161

To help you diagnose problems with registering and unregistering atoms, SP_register_
atom() and SP_unregister_atom() both normally return the current reference count for
the atom. If an error occurs, e.g. a nonexistent atom is registered or unregistered, then
SP_ERROR is returned.

An unregistered atom has a reference count of 0. Unregistering an atom that is unregis-
tered is a no-op; in this case, SP_unregister_atom() returns 0. A permanent atom has
a reference count of 256. In addition, if an atom is simultaneously registered 256 times,
then it becomes permanent. (An atom with 256 distinct references is an unlikely candidate
for reclamation!) Registering or unregistering an atom that is permanent is also a no-op;
SP_register_atom() and SP_unregister_atom() return 256.

4.10.8 Summary of Predicates

garbage_collect

force an immediate garbage collection

garbage_collect_atoms

garbage collect atom space

statistics

display various execution statistics

statistics(?K,?V)

the execution statistic with key K has value V

trimcore reduce free stack space to a minimum

4.11 Modules

4.11.1 Overview

The module system lets the user divide large Prolog programs into modules, or rather
smaller sub-programs, and define the interfaces between those modules. Each module has
its own name space; that is, a predicate defined in one module is distinct from any predicates
with the same name and arity that may be defined in other modules. The module system
encourages a group of programmers to define the dependence each has on others’ work before
any code is written, and subsequently allows all to work on their own parts independently.
It also helps to make library predicates behave as extensions of the existing set of built-in
predicates.

The SICStus Prolog library uses the module system and can therefore serve as an extended
example of the concepts presented in the following text. The design of the module system
is such that loading library files and calling library predicates can be performed without
knowledge of the module system.

Some points to note about the module system are that:

• It is based on predicate modularity rather than on data modularity; that is, atoms and
functors are global.

• It is flat rather than hierarchical; any module may refer to any other module by its
name—there is no need to specify a path of modules.

162 SICStus Prolog

• It is not strict; modularity rules can be explicitly overridden. This is primarily for
flexibility during debugging.

• It is efficient; calls to predicates across module boundaries incur little or no overhead.

4.11.2 Basic Concepts

Each predicate in a program is identified by its module, as well as by its name and arity.

A module defines a set of predicates, among which some have the property of being public.
Public predicates are predicates that can be imported by other modules, which means
that they can then be called from within those modules. Predicates that are not public
are private to the module in which they are defined; that is, they cannot be called from
outside that module (except by explicitly overriding the modularity rules as described in
Section 4.11.6 [ref-mod-vis], page 164).

There are two kinds of importation:

1. A module M1 may import a specified set of predicates from another module M2. All
the specified predicates should be public in M2.

2. A module M1 may import all the public predicates of another module M2.

Built-in predicates do not need to be imported; they are automatically available from within
any module.

There is a special module called user, which is used by default when predicates are being
defined and no other module has been specified.

The other predefined module is the prolog module where all the built-in predicates reside.
The exported built-in predicates are automatically imported into each new module as it is
created.

If you are using a program written by someone else, then you need not be concerned as to
whether or not that program has been made into a module. The act of loading a module
from a file using compile/1, or ensure_loaded/1 (see Section 4.3 [ref-lod], page 79) will
automatically import all the public predicates in that module. Thus the command

:- ensure_loaded(library(lists)).

will load the list-processing predicates from the library and make them available.

4.11.3 Defining a Module

The normal way to define a module is by creating a module file for it and loading it into
the Prolog system. A module file is a Prolog file that begins with a module declaration.

A module declaration has one of the forms:

:- module(+ModuleName, +PublicPredList).

:- module(+ModuleName, +PublicPredList, +Options).

Chapter 4: The Prolog Language 163

Such a declaration must appear as the first term in a file, and declares that file to be a
module file. The predicates in the file will become part of the module ModuleName, and
the predicates specified in PublicPredList are those that can be imported by other modules;
that is, the public predicates of this module.

Options is an optional argument, and should be a list. The only available option is
hidden(Boolean), where Boolean is false (the default) or true. In the latter case, tracing
of the predicates of the module is disabled (although spypoints can be set), and no source
information is generated at compile time.

Instead of creating and loading a module file, it is also possible to define a module dynam-
ically by, for example, asserting clauses into a specified module. A module created in this
way has no public predicates; all its predicates are private. This means that they cannot be
called from outside that module except by explicitly overriding the modularity rules as de-
scribed in Section 4.11.6 [ref-mod-vis], page 164. Dynamic creation of modules is described
in more detail in Section 4.11.9 [ref-mod-dmo], page 167.

4.11.4 Converting Non-module Files into Module Files

The Prolog cross-referencer can automatically generate module/2 declarations from its
cross-reference information. This is useful if you want to take a set of files making up
a program and make each of those files into a module file. For more information, see
Section 9.12 [The Cross-Referencer], page 377,

Alternatively, if you have a complete Prolog program consisting of a set of source files
{file1, file2, ...}, and you wish to encapsulate it in a single module mod, then this
can be done by creating a “driver” file of the following form:

:- module(mod, [...]).

:- ensure_loaded(file1).

:- ensure_loaded(file2).

.

.

.

When a module is created in this way, none of the files in the program {file1, file2,

...} have to be changed.

4.11.5 Loading a Module

To gain access to the public predicates of a module file, load it as you would any other file—
using compile/1, or ensure_loaded/1 as appropriate. For example, if your code contains
a directive such as

:- ensure_loaded(File).

164 SICStus Prolog

then this directive will load the appropriate file File whether or not File is a module file.
The only difference is that if File is a module file, then any private predicates that it defines
will not be visible to your program.

The load predicates are adequate for use at Prolog’s top level, or when the file being
loaded is a utility such as a library file. When you are writing modules of your own,
use_module/[1,2,3] is the most useful.

The following predicates are used to load modules:

use_module(F)

import the module file(s) F, loading them if necessary; same as ensure_

loaded(F) if all files in F are module files

use_module(:F,+I)

import the procedure(s) I from the module file F, loading module file F if
necessary

use_module(?M,:F,+I)

import I from module M, loading module file F if necessary

Before a module file is loaded, the associated module is reinitialized: any predicates previ-
ously imported into or defined in that module are forgotten by the module.

If a module of the same name with a different PublicPredList or different meta-predicate
list has previously been loaded from a different module file, then a warning is printed and
you are given the option of abandoning the load. Only one of these two modules can exist
in the system at one time.

Normally, a module file can be reloaded after editing with no need to reload any other
modules. However, when a module file is reloaded after its PublicPredList has been changed,
any modules that import predicates from it may have become inconsistent. This is because
a module is associated with a predicate at compile time, rather than run time. Thus, other
modules may refer to predicates in a module file that are no longer public. In the case
of module importation (where all, rather than specific, public predicates of a module are
imported), it is possible that some predicates in the importing module should now refer to
a newly-public predicate but do not. SICStus Prolog tries to detect such inconsistencies,
and issues a warning when it does detect one. Similarly, if a meta-predicate declaration
of an exported predicate changes, then modules that have already imported that predicate
become inconsistent, because module name expansion requirements have changed. The
current release of SICStus Prolog is unable to detect such inconsistencies.

Modules may be saved to a PO file by calling save_modules(Modules,File) (see Section 4.4
[ref-sls], page 92).

4.11.6 Visibility Rules

By default, predicates defined in one module cannot be called from another module. This
section enumerates the exceptions to this—the ways in which a predicate can be visible to
modules other than the one in which it is defined.

Chapter 4: The Prolog Language 165

1. The built-in predicates can be called from any module.

2. Any predicate that is named in the PublicPredList of a module, and that is imported
by some other module M, can be called from within M.

3. Module Prefixing: Any predicate, whether public or not, can be called from any other
module if its module is explicitly given as a prefix to the goal, attached with the :/2

operator. The module prefix overrides the default module. For example,

:- mod:foo(X,Y).

always calls foo/2 in module mod. This is effectively a loophole in the module system,
which allows you to override the normal module visibility rules. It is intended primarily
to facilitate program development and debugging, and it should not be used extensively
since it subverts the original purposes of using the module system.

Note that a predicate called in this way does not necessarily have to be defined in the
specified module. It may be imported into it. It can even be a built-in predicate, and
this is sometimes useful—see Section 4.11.7 [ref-mod-som], page 165, for an example.

4.11.7 The Source Module

For any given procedure call, or goal, the source module is the module in which the cor-
responding predicate must be visible. That is, unless the predicate is built-in, it must be
defined in, or imported into, the source module.

For goals typed at the top level, the source module is the type-in module, which is user by
default—see Section 4.11.8 [ref-mod-tyi], page 166. For goals appearing in a file, whether
in a directive or in the body of a clause, the source module is the one into which that file
has been loaded.

There are a number of built-in predicates that take predicate specifications, clauses, or goals
as arguments. Each of these types of argument must be understood with reference to some
module. For example, assert/1 takes a clause as its argument, and it must decide into
which module that clause should be asserted. The default assumption is that it asserts the
clause into the source module. Another example is call/1. The goal (A) calls the predicate
foo/1 in the source module; this ensures that in the compound goal (B) both occurrences
of foo/1 refer to the same predicate.

call(foo(X)) (A)

call(foo(X)), foo(Y) (B)

All predicates that refer to the source module allow you to override it by explicitly naming
some other module to be used instead. This is done by prefixing the relevant argument
of the predicate with the module to be used followed by a ‘:’ operator. For example (C),
asserts f(x) in module m.

| ?- assert(m:f(x)). (C)

Note that if you call a goal in a specified module, overriding the normal visibility rules (see
Section 4.11.6 [ref-mod-vis], page 164), then the source module for that goal is the one you
specify, not the module in which this call occurs. For example (D), has exactly the same

166 SICStus Prolog

effect as (C)—f(x) is asserted in module m. In other words, prefixing a goal with a module
duplicates the effect of calling that goal from that module.

| ?- m:assert(f(x)). (D)

Another built-in predicate that refers to the source module is compile/1. In this case,
the argument is a file, or list of files, rather than a predicate specification, clause, or goal.
However, in the case where a file is not a module file, compile/1 must decide into which
module to compile its clauses, and it chooses the source module by default. This means
that you can compile a file File into a specific module M using

| ?- compile(M:File).

Thus if File is a module file, then this command would cause its public predicates to be
imported into module M. If File is a non-module file, then it is loaded into module M.

For a list of the built-in predicates that depend on the source module, see Section 4.11.15
[ref-mod-mne], page 171. In some cases, user-defined predicates may also require the concept
of a source module. This is discussed in Section 4.11.16 [ref-mod-met], page 171.

4.11.8 The Type-in Module

The type-in module is the module that is taken as the source module for goals typed in by
the user. The name of the default type-in module is user. That is, the predicates that are
available to be called directly by the user are those that are visible in the module user.

When debugging, it is often useful to call, directly from the top level, predicates that are
private to a module, or predicates that are public but that are not imported into user. This
can be done by prefixing each goal with the module name, as described in Section 4.11.6
[ref-mod-vis], page 164; but rather than doing this extensively, it may be more convenient
to make this module the type-in module.

The type-in module can be changed using the built-in predicate set_module/1; for example,

| ?- set_module(mod).

This command will cause subsequent goals typed at the top level to be executed with mod

as their source module.

The name of the type-in module is always displayed, except when it is user. If you are
running Prolog under the editor interface, then the type-in module is displayed in the status
line of the Prolog window. If you are running Prolog without the editor interface, then the
type-in module is displayed before each top-level prompt.

For example, if you are running Prolog without the editor:

| ?- set_module(foo).

yes

[foo]

| ?-

Chapter 4: The Prolog Language 167

It should be noted that it is unlikely to be useful to change the type-in module via a directive
embedded in a file to be loaded, because this will have no effect on the load—it will only
change the type-in module for commands subsequently entered by the user.

4.11.9 Creating a Module Dynamically

There are several ways in which you can create a module without loading a module file
for it. One way to do this is by asserting clauses into a specified module. For example,
the command (A) will create the dynamic predicate f/1 and the module m if they did not
previously exist.

| ?- assert(m:f(x)). (A)

Another way to create a module dynamically is to compile a non-module file into a specified
module. For example (B), will compile the clauses in File into the module M.

| ?- compile(M:File). (B)

The same effect can be achieved by (temporarily) changing the type-in module to M (see
Section 4.11.8 [ref-mod-tyi], page 166) and then calling compile(File), or executing the
command in module M as in (C).

| ?- M:compile(File). (C)

4.11.10 Module Prefixes on Clauses

Every clause in a Prolog file has a source module implicitly associated with it. If the file is
a module file, then the module named in the module declaration at the top of the file is the
source module for all the clauses. If the file is not a module file, then the relevant module
is the source module for the command that caused this file to be loaded.

The source module of a predicate decides in which module it is defined (the module of the
head), and in which module the goals in the body are going to be called (the module of
the body). It is possible to override the implicit source module, both for head and body, of
clauses and directives, by using prefixes. For example, consider the module file:

:- module(a, []).

:- dynamic m:a/1.

b(1).

m:c([]).

m:d([H|T]) :- q(H), r(T).

m:(e(X) :- s(X), t(X)).

f(X) :- m:(u(X), v(X)).

In the previous example, the following modules apply:

1. a/1 is declared dynamic in the module m.

2. b/1 is defined in module a (the module of the file).

3. c/1 is defined in module m.

168 SICStus Prolog

4. d/1 is defined in module m, but q/1 and r/1 are called in module a (and must therefore
be defined in module a).

5. e/1 is defined in module m, and s/1 and t/1 are called in module m.

6. f/1 is defined in module a, but u/1 and v/1 are called in module m.

Module prefixing is especially useful when the module prefix is user. There are several
predicates that have to be defined in module user but that you may want to define (or
extend) in a program that is otherwise entirely defined in some other module or modules;
see Section 11.2.12 [mpg-top-hok], page 890.

Note that if clauses for one of these predicates are to be spread across multiple files, then it
will be necessary to declare that predicate to be multifile by putting a multifile declaration
in each of the files.

4.11.10.1 Current Modules

A loaded, or dynamically created, module becomes current as soon as it is encountered, and
a module can never lose the property of being current. The set of current modules can be
obtained with current_module/1, see Section 4.11.13 [ref-mod-ilm], page 169.

4.11.11 Debugging Code in a Module

Having loaded a module to be debugged, you can trace through its execution in the normal
way. When the debugger stops at a port, the procedure being debugged is displayed with
its module name as a prefix unless the module is user.

The predicate spy/1 depends on the source module. It can be useful to override this during
debugging. For example,

| ?- spy mod1:f/3.

puts a spypoint on f/3 in module mod1.

It can also be useful to call directly a predicate that is private to its module in order to test
that it is doing the right thing. This can be done by prefixing the goal with its module; for
example,

| ?- mod1:f(a,b,X).

4.11.12 Name Clashes

A name clash can arise if:

1. a module tries to import a predicate from some other module m1 and it has already
imported a predicate with the same name and arity from a module m2;

2. a module tries to import a predicate from some other module m1 and it already contains
a definition of a predicate with the same name and arity; or

3. a module tries to define a predicate with the same name and arity as one that it has
imported.

Chapter 4: The Prolog Language 169

Whenever a name clash arises, a message is displayed beginning with the words ‘NAME
CLASH’. The user is asked to choose from one of several options; for example,

NAME CLASH: f/3 is already imported into module user

from module m1;

do you want to override this definition with

the one in m2? (y,n,p,s,a or ?)

The meanings of the five recognized replies are as follows:

y forget the previous definition of f/3 from m1 and use the new definition of f/3
from m2 instead.

n retain the previous definition of f/3 from m1 and ignore the new definition of
f/3 from m2.

p (for proceed) means forget the previous definition of f/3 and of all subsequent
predicate definitions in m1 that clash during the current load of m2. Instead, use
the new definitions in m2. When the p option is chosen, predicates being loaded
from m1 into m2 will cause no ‘NAME CLASH’ messages for the remainder of the
load, though clashes with predicates from other modules will still generate such
messages.

s (for suppress) means forget the new definition of f/3 and of all subsequent
predicate definitions in m1 that clash during the current load of m2. Instead,
use the old definitions in m2. When the s option is chosen, predicates being
loaded from m1 into m2 will cause no ‘NAME CLASH’ messages for the remainder of
the load, though clashes with predicates from other modules will still generate
such messages.

? gives brief help information.

4.11.13 Obtaining Information about Loaded Modules

The built-in predicate current_module/2 can be used to find all the currently loaded
module, and where they were loaded from. See Section 11.3.52 [mpg-ref-current module],
page 970.

current_module(?M)

M is the name of a current module

current_module(?M,?F)

F is the name of the file in which M ’s module declaration appears. Not all
modules have a corresponding file.

4.11.13.1 Predicates Defined in a Module

The built-in predicate current_predicate/2 can be used to find the predicates that are
defined in a particular module.

To backtrack through all of the predicates defined in module m, use

| ?- current_predicate(_, m:Goal).

170 SICStus Prolog

To backtrack through all predicates defined in any module, use

| ?- current_predicate(_, M:Goal).

This succeeds once for every predicate in your program. See Section 11.3.55 [mpg-ref-
current predicate], page 974.

4.11.13.2 Predicates Visible in a Module

The built-in predicate predicate_property/2 can be used to find the properties of any
predicate that is visible to a particular module.

To backtrack through all of the predicates imported by module m, use

| ?- predicate_property(m:Goal, imported_from(_)).

To backtrack through all of the predicates imported by module m1 from module m2, use

| ?- predicate_property(m1:Goal, imported_from(m2)).

For example, you can load the between module from the library and then remind yourself
of what predicates it defines like this:

| ?- compile(library(between)).

% ... loading messages ...

yes

| ?- predicate_property(P, imported_from(between)).

P = numlist(_A,_B) ? ;

P = numlist(_A,_B,_C,_D,_E) ? ;

.

.

.

This tells you what predicates are imported into the type-in module from basics.

You can also find all imports into all modules using

| ?- predicate_property(M1:G, imported_from(M2)).

To backtrack through all of the defined predicates exported by module m, use

| ?- predicate_property(m:Goal, exported).

See Section 11.3.159 [mpg-ref-predicate property], page 1109.

4.11.14 Importing Dynamic Predicates

Imported dynamic predicates may be asserted and retracted. For example, suppose the
following file is loaded via use_module/1:

Chapter 4: The Prolog Language 171

:- module(m1, [f/1]).

:- dynamic f/1.

f(0).

Then f/1 can be manipulated as if it were defined in the current module. For example,

| ?- clause(f(X), true).

X = 0

The built-in predicate listing/[0,1] distinguishes predicates that are imported into the
current source module by prefixing each clause with the module name. Thus,

| ?- listing(f).

m1:f(0).

However, listing/[0,1] does not prefix clauses with their module if they are defined in
the source module itself. Note that

| ?- listing.

can be used to see all the dynamic predicates defined in or imported into the current type-in
module. And

| ?- listing(m1:_).

can be used to see all such predicates that are defined in or imported into module m1. See
Section 11.3.116 [mpg-ref-listing], page 1052.

4.11.15 Module Name Expansion

The concept of a source module is explained in Section 4.11.7 [ref-mod-som], page 165. For
any goal, the applicable source module is determined when the goal is compiled rather than
when it is executed.

A procedure that needs to refer to the source module has arguments designated for mod-
ule name expansion. These arguments are expanded when code is consulted, compiled or
asserted by the transformation X -> M:X where M is the name of the source module. For
example, the goal call(X) is expanded into call(M:X) and the goal clause(Head, Body)

is expanded into clause(M:Head, Body).

Module name expansion is avoided if the argument to be expanded is already a :/2 term.
In this case it is unnecessary since the module to be used has already been supplied by the
programmer.

4.11.16 The meta_predicate Declaration

Sometimes a user-defined predicate will require module name expansion (see Section 4.11.15
[ref-mod-mne], page 171). This can be specified by providing a meta_predicate declaration
for that procedure.

172 SICStus Prolog

Module name expansion is needed whenever the argument of a predicate has some module-
dependent meaning. For example, if this argument is a goal that is to be called, then it
will be necessary to know in which module to call it—or, if the argument is a clause to be
asserted, in which module it should go.

Consider, for example, a sort routine to which the name of the comparison predicate is
passed as an argument. In this example, the comparison predicate should be called, with
two arguments like the built-in @=</2, with respect to the module containing the call to the
sort routine. Suppose that the sort routine is

mysort(CompareProc, InputList, OutputList)

An appropriate meta_predicate declaration for this is

:- meta_predicate mysort(2, +, -).

The significant argument in the mysort/3 term is the ‘2’, which indicates that module name
expansion is required for this argument and that two additional arguments will be added
when this argument is invoked as a goal. This means that whenever a goal mysort(A, B,

C) appears in a clause, it will be transformed at load time into mysort(M:A, B, C), where
M is the source module. There are some exceptions to this compile-time transformation
rule; the goal is not transformed if either of the following applies:

1. A is of the form Module:Goal.

2. A is a variable and the same variable appears in the head of the clause in a module-
name-expansion position.

The reason for (2) is that otherwise module name expansion could build larger and larger
structures of the form Mn: . . . :M2:M1:Goal. For example, consider the following program
fragment adapted from the library (see library(samsort) for the full program):

:- module(samsort, [samsort/3]).

:- meta_predicate

samsort(2, +, ?),

sam_sort(+, 2, +, +, ?).

samsort(_, [], []) :- !.

samsort(Order, List, Sorted) :-

sam_sort(List, Order, [], 0, Sorted).

.

.

.

Normally, the sam_sort/5 goal in this example would have the module name of its second
argument expanded thus:

sam_sort(List, samsort:Order, [], 0, Sorted)

Chapter 4: The Prolog Language 173

because of the meta_predicate declaration. However, in this situation the appropriate
source module will have already been attached to Order because it is the first argument
of samsort/3, which also has a meta_predicate declaration. Therefore it is not useful to
attach the module name (samsort) to Order in the call of sam_sort/5.

The argument of a meta_predicate declaration can be a term, or a sequence of terms
separated by commas. Each argument of each of these terms must be one of the following:

‘:’ requires module name expansion

If the argument will be treated as a goal, then it is better to explicitly indicate
this using an integer; see the next item.

nsuppressed
a non-negative integer.

This is a special case of ‘:’ which means that the argument can be made into
a goal by adding nsuppressed additional arguments. E.g., if the argument will
be passed to call/1, then 0 (zero) should be used.

An integer is treated the same as ‘:’ above by the SICStus runtime. Other tools,
such as the cross referencer (see Section 9.12 [The Cross-Referencer], page 377)
and the SICStus Prolog IDE (see Section 3.11 [SPIDER], page 29), will use this
information to better follow predicate references in analyzed source code.

If the number of extra arguments is unknown or varies, then the generic : is
always safe to use, but will give less accurate results from source analysis tools.

‘*’
‘+’
‘-’
‘?’ ignored

The reason for ‘+’, ‘-’ and ‘?’ is simply so that the information contained in a DEC-10
Prolog-style “mode” declaration may be represented in the meta_predicate declaration if
you wish. There are many examples of meta_predicate declarations in the library.

Prior to release 4.1, only : (colon) was used and the integer form was undocumented (but
supported, e.g. by the cross referencer).

4.11.17 Semantics of Module Name Expansion

Although module name expansion is performed when code is consulted, compiled or as-
serted, it is perhaps best explained in terms of an interpreter, especially the issue of how
deeply clauses are expanded. The semantics of call/1, taking meta_predicate declara-
tions into account, is shown as if defined by the interpreter shown below. The interpreter’s
case analysis is as follows:

control constructs
(Including cuts and module prefixes). The interpreter implements the semantics
of the construct, expanding its argument.

174 SICStus Prolog

callable terms with functor N/A
First, we look for a meta_predicate declaration for N/A. If one exists, then
the relevant arguments are expanded. Otherwise, the goal is left unexpanded.
Then, if N/A is a built-in predicate, then it is called. Otherwise, a clause with
head functor N/A is looked up using the imaginary predicate :-/2, unified
against, and its body is interpreted.

non-callable terms
Raise error exception.

Throughout the interpretation, we must keep track of the module context. The interpreter
is as follows, slightly simplified. -->/2 is not a predicate:

Chapter 4: The Prolog Language 175

call(M:Body) :-

icall(Body, M).

icall(Var, M) :- \+callable(Var), !,

must_be(Var, callable, call(M:Var), 1).

icall(M:Body, _) :- !,

icall(Body, M).

icall(!, _) :- !,

% cut relevant choicepoints.

icall((A, B), M) :- !,

icall(A, M),

icall(B, M).

icall((A -> B), M) :- !,

(icall(A, M) ->

icall(B, M)

).

icall((A -> B ; C), M) :- !,

(icall(A, M) ->

icall(B, M)

; icall(C, M)

).

icall((A ; B), M) :- !,

(icall(A, M)

; icall(B, M)

).

icall(\+(A), M) :- !,

(icall(A, M) ->

fail

; true

).

icall(_^A, M) :- !,

icall(A, M).

icall(do(Iter,Body), M) :- !,

(Iter,

param(M)

do icall(Body, M)

).

icall(if(A,B,C), M) :- !,

if(icall(A, M),

icall(B, M),

icall(C, M)).

icall(once(A), M) :- !,

(icall(A, M) -> true

).

icall(Goal, M) :-

(predicate_property(M:Goal, meta_predicate(Meta)) ->

functor(Goal, Name, Arity),

functor(AGoal, Name, Arity),

(foreacharg(Spec,Meta),

foreacharg(Arg,Goal),

foreacharg(Ann,AGoal),

param(M)

do (Spec==(:) -> Ann = M:Arg

; integer(Spec) -> Ann = M:Arg

; Ann = Arg

)

),

call_goal(AGoal, M)

; call_goal(Goal, M)

).

call_goal(asserta(X), M) :- !,

asserta(M:X).

call_goal(asserta(X,R), M) :- !,

asserta(M:X, R).

% and so on for all built-in predicates

call_goal(Goal, M) :-

(M:Goal :- Body),

icall(Body, M).

176 SICStus Prolog

4.11.18 Predicate Summary

current_module(?M)

M is the name of a current module

current_module(?M,?F)

F is the name of the file in which M ’s module declaration appears

meta_predicate :P declaration

declares predicates P that are dependent on the module from which they are
called

module(+M,+L) declaration

module(+M,+L,+O) declaration

declaration that module M exports predicates in L, options O

save_modules(+L,+F)

save the modules specifed in L into file F

set_module(+M)

make M the type-in module

use_module(:F)

import the module file(s) F, loading them if necessary

use_module(:F,+I)

import the procedure(s) I from the module file F

use_module(?M,:F,+I)

import I from module M, loading module file F if necessary

4.12 Modification of the Database

4.12.1 Introduction

The family of assertion and retraction predicates described below enables you to modify a
Prolog program by adding or deleting clauses while it is running. These predicates should
not be overused. Often people who are experienced with other programming languages have
a tendency to think in terms of global data structures, as opposed to data structures that
are passed as procedure arguments, and hence they make too much use of assertion and
retraction. This leads to less readable and less efficient programs.

An interesting question in Prolog is what happens if a procedure modifies itself, by asserting
or retracting a clause, and then fails. On backtracking, does the current execution of the
procedure use new clauses that are added to the bottom of the procedure?

Historical note: In some non-ISO-conforming implementations of Prolog,
changes to the Prolog database become globally visible upon the success of
the built-in predicate modifying the database. An unsettling consequence is
that the definition of a procedure can change while it is being run. This can
lead to code that is difficult to understand. Furthermore, the memory per-
formance of the interpreter implementing these semantics is poor. Worse yet,
the semantics rendered ineffective the added determinacy detection available
through indexing.

Chapter 4: The Prolog Language 177

SICStus Prolog implements the “logical” view in updating dynamic predicates, conforming
to the ISO standard. This means that the definition of a dynamic procedure that is visible
to a call is effectively frozen when the call is made. A procedure always contains, as far as
a call to it is concerned, exactly the clauses it contained when the call was made.

A useful way to think of this is to consider that a call to a dynamic procedure makes a
virtual copy of the procedure and then runs the copy rather than the original procedure.
Any changes to the procedure made by the call are immediately reflected in the Prolog
database, but not in the copy of the procedure being run. Thus, changes to a running
procedure will not be visible on backtracking. A subsequent call, however, makes and runs
a copy of the modified Prolog database. Any changes to the procedure that were made by
an earlier call will now be visible to the new call.

In addition to being more intuitive and easy to understand, the new semantics allow inter-
preted code to execute with the same determinacy detection (and excellent memory perfor-
mance) as static compiled code (see Section 9.5 [Indexing], page 358, for more information
on determinacy detection).

4.12.2 Dynamic and Static Procedures

All Prolog procedures are classified as being either static or dynamic procedures. Static
procedures can be changed only by completely redefining them using the Load Predicates
(see Section 4.3 [ref-lod], page 79). Dynamic procedures can be modified by adding or
deleting individual clauses using the assert and retract procedures.

If a procedure is defined by loading source code, then it is static by default. If you need to
be able to add, delete, or inspect the individual clauses of such a procedure, then you must
make the procedure dynamic.

There are two ways to make a procedure dynamic:

• If the procedure is defined by loading source code, then it must be declared to be
dynamic before it is defined.

• If the procedure is to be created by assertions only, then the first assert operation on
the procedure automatically makes it dynamic.

A procedure is declared dynamic by preceding its definition with a declaration of the form:

:- dynamic :Pred

where Pred must be a procedure specification of the form Name/Arity, or a sequence of
such specifications, separated by commas. For example,

:- dynamic exchange_rate/3, spouse_of/2,

gravitational_constant/1.

where ‘dynamic’ is a built-in prefix operator. If Pred is not of the specified form, then an
exception is raised, and the declaration is ignored.

178 SICStus Prolog

Note that the symbol ‘:- ’ preceding the word ‘dynamic’ is essential. If this symbol is
omitted, then a permission error is raised because it appears that you are trying to define
a clause for the built-in predicate dynamic/1. Although dynamic/1 is a built-in predicate,
it may only be used in declarations.

When a dynamic declaration is encountered in a file being loaded, it is considered to be a
part of the redefinition of the procedures specified in its argument. Thus, if you load a file
containing only

:- dynamic hello/0

then the effect will be to remove any previous definition of hello/0 from the database, and
to make the procedure dynamic. You cannot make a procedure dynamic retroactively. If
you wish to make an already-existing procedure dynamic, then it must be redefined.

It is often useful to have a dynamic declaration for a procedure even if it is to be created only
by assertions. This helps another person to understand your program, since it emphasizes
the fact that there are no pre-existing clauses for this procedure, and it also avoids the
possibility of Prolog stopping to tell you there are no clauses for this procedure if you
should happen to call it before any clauses have been asserted. This is because unknown
procedure catching (see Section 3.6 [Undefined Predicates], page 26) does not apply to
dynamic procedures; it is presumed that a call to a dynamic procedure should simply fail
if there are no clauses for it.

If a program needs to make an undefined procedure dynamic, then this can be achieved
by calling clause/2 on that procedure. The call will fail because the procedure has no
clauses, but as a side effect it will make the procedure dynamic and thus prevent unknown
procedure catching on that procedure. See the Reference page for details of clause/2.

Although you can simultaneously declare several procedures to be dynamic, as shown above,
it is recommended that you use a separate dynamic declaration for each procedure placed
immediately before the clauses for that procedure. In this way when you reload the proce-
dure using the editor interface, you will be reminded to include its dynamic declaration.

Dynamic procedures are implemented by interpretation, even if they are included in a file
that is compiled. This means that they are executed more slowly than if they were static,
and also that they can be printed using listing/0. Dynamic procedures, as well as static
procedures, are indexed on their first argument; see Section 9.5 [Indexing], page 358.

4.12.3 Database References

A database reference is a term that uniquely identifies a clause or recorded term (see
Section 4.12.8 [ref-mdb-idb], page 183) in the database. Database references are provided
only to increase efficiency in programs that access the database in complex ways. Use of a
database reference to a clause can save repeated searches using clause/2. However, it does
not normally pay to access a clause via a database reference when access via first argument
indexing is possible.

Chapter 4: The Prolog Language 179

4.12.4 Adding Clauses to the Database

The assertion predicates are used to add clauses to the database in various ways. The
relative position of the asserted clause with respect to other clauses for the same predicate
is determined by the choice among assert/1, asserta/1, and assertz/1. A database
reference that uniquely identifies the clause being asserted is established by providing an
optional second argument to any of the assertion predicates.

assert(:C)

clause C is asserted in an arbitrary position in its predicate

assert(:C,-R)

as assert/1; reference R is returned

asserta(:C)

clause C is asserted before existing clauses

asserta(:C,-R)

as asserta/1; reference R is returned

assertz(:C)

clause C is asserted after existing clauses

assertz(:C,-R)

as assertz/1; reference R is returned

Please note: If the term being asserted contains attributed variables (see Section 10.3
[lib-atts], page 388) or suspended goals (see Section 4.2.4 [ref-sem-sec], page 74), then those
attributes are not stored in the database. To retain the attributes, you can use copy_term/3
(see Section 4.8.7 [ref-lte-cpt], page 129).

4.12.5 Removing Clauses from the Database

This section briefly describes the predicates used to remove the clauses and/or properties
of a predicate from the system.

Please note: Removing all of a predicate’s clauses by retract/1 and/or
erase/1 (see Section 4.12.5.1 [ref-mdb-rcd-efu], page 180) does not remove
the predicate’s properties (and hence its definition) from the system. The
only way to completely remove a predicate’s clauses and properties is to use
abolish/[1,2].

retract(:C)

erase the first dynamic clause that matches C

retractall(:H)

erase every clause whose head matches H

abolish(:F)

abolish the predicate(s) specified by F

abolish(:F,+O)

abolish the predicate(s) specified by F with options O

180 SICStus Prolog

erase(+R)

erase the clause or recorded term (see Section 4.12.8 [ref-mdb-idb], page 183)
with reference R

4.12.5.1 A Note on Efficient Use of retract/1

WARNING: retract/1 is a nondeterminate procedure. Thus, we can use

| ?- retract((foo(X) :- Body)), fail.

to retract all clauses for foo/1. A nondeterminate procedure in SICStus Prolog uses a
choicepoint, a data structure kept on an internal stack, to implement backtracking. This
applies to user-defined procedures as well as to built-in and library procedures. In a simple
model, a choicepoint is created for each call to a nondeterminate procedure, and is deleted
on determinate success or failure of that call, when backtracking is no longer possible. In
fact, SICStus Prolog improves upon this simple model by recognizing certain contexts in
which choicepoints can be avoided, or are no longer needed.

The Prolog cut (‘!’) works by removing choicepoints, disabling the potential backtracking
they represented. A choicepoint can thus be viewed as an “outstanding call”, and a cut as
deleting outstanding calls.

To avoid leaving inconsistencies between the Prolog database and outstanding calls, a re-
tracted clause is reclaimed only when the system determines that there are no choicepoints
on the stack that could allow backtracking to the clause. Thus, the existence of a sin-
gle choicepoint on the stack can disable reclamation of retracted clauses for the procedure
whose call created the choicepoint. Space is recovered only when the choicepoint is deleted.

Often retract/1 is used determinately; for example, to retract a single clause, as in

| ?- <do some stuff>

retract(Clause),

<do more stuff without backtracking>.

No backtracking by retract/1 is intended. Nonetheless, if Clause may match more than one
clause in its procedure, then a choicepoint will be created by retract/1. While executing
“<do more stuff without backtracking>”, that choicepoint will remain on the stack, making it
impossible to reclaim the retracted Clause. Such choicepoints can also disable tail recursion
optimization. If not cut away, then the choicepoint can also lead to runaway retraction on
the unexpected failure of a subsequent goal. This can be avoided by simply cutting away
the choicepoint with an explicit cut or a local cut (‘->’). Thus, in the previous example, it
is preferable to write either

| ?- <do some stuff>

retract(Clause),

!,

<do more stuff without backtracking>.

or

Chapter 4: The Prolog Language 181

| ?- <do some stuff>

(retract(Clause) -> true),

<do more stuff without backtracking>.

This will reduce stack size and allow the earliest possible reclamation of retracted clauses.

4.12.6 Accessing Clauses

Goal Succeeds If:

clause(:P,?Q)

there is a clause for a dynamic predicate with head P and body Q

clause(:P,?Q,?R)

there is a clause for a dynamic predicate with head P, body Q, and reference R

instance(+R,-T)

T is an instance of the clause or term referenced by R

4.12.7 Modification of Running Code: Examples

The following examples show what happens when a procedure is modified while it is running.
This can happen in two ways:

1. The procedure calls some other procedure that modifies it.

2. The procedure succeeds nondeterminately, and a subsequent goal makes the modifica-
tion.

In either case, the question arises as to whether the modifications take effect upon back-
tracking into the modified procedure. In SICStus Prolog the answer is that they do not.
As explained in the overview to this section (see Section 4.12.1 [ref-mdb-bas], page 176),
modifications to a procedure affect only calls to that procedure that occur after the modi-
fication.

4.12.7.1 Example: assertz

Consider the procedure foo/0 defined by

:- dynamic foo/0.

foo :- assertz(foo), fail.

Each call to foo/0 asserts a new last clause for foo/0. After the Nth call to foo/0 there
will be N+1 clauses for foo/0. When foo/0 is first called, a virtual copy of the procedure
is made, effectively freezing the definition of foo/0 for that call. At the time of the call,
foo/0 has exactly one clause. Thus, when fail/0 forces backtracking, the call to foo/0

simply fails: it finds no alternatives. For example,

182 SICStus Prolog

| ?- compile(user).

| :- dynamic foo/0.

| foo :- assertz(foo), fail.

| ^D

% user compiled in module user, 0.100 sec 2.56 bytes

yes

| ?- foo. % The asserted clause is not found

no

| ?- foo. % A later call does find it, however

yes

| ?-

Even though the virtual copy of foo/0 being run by the first call is not changed by the
assertion, the Prolog database is. Thus, when a second call to foo/0 is made, the virtual
copy for that call contains two clauses. The first clause fails, but on backtracking the second
clause is found and the call succeeds.

4.12.7.2 Example: retract

| ?- assert(p(1)), assert(p(2)), assert(p(3)).

yes

| ?- p(N), write(N), nl, retract(p(2)),

retract(p(3)), fail.

1

2

3

no

| ?- p(N), write(N), fail.

1

no

| ?-

At the first call to p/1, the procedure has three clauses. These remain visible throughout
execution of the call to p/1. Thus, when backtracking is forced by fail/0, N is bound to 2
and written. The retraction is again attempted, causing backtracking into p/1. N is bound
to 3 and written out. The call to retract/1 fails. There are no more clauses in p/1, so
the query finally fails. A subsequent call to p/1, made after the retractions, sees only one
clause.

Chapter 4: The Prolog Language 183

4.12.7.3 Example: abolish

| ?- compile(user).

| :- dynamic q/1.

| q(1).

| q(2).

| q(3).

| ^D

% user compiled in modules user, 0.117 sec 260 bytes

yes

| ?- q(N), write(N), nl, abolish(q/1), fail.

1

2

3

no

| ?-

Procedures that are abolished while they have outstanding calls do not become invisible to
those calls. Subsequent calls however, will find the procedure undefined.

4.12.8 The Internal Database

The following predicates are provided solely for compatibility with other Prolog systems.
Their semantics can be understood by imagining that they are defined by the following
clauses:

recorda(Key, Term, Ref) :-

functor(Key, Name, Arity),

functor(F, Name, Arity),

asserta('$recorded'(F,Term), Ref).

recordz(Key, Term, Ref) :-

functor(Key, Name, Arity),

functor(F, Name, Arity),

assertz('$recorded'(F,Term), Ref).

recorded(Key, Term, Ref) :-

functor(Key, Name, Arity),

functor(F, Name, Arity),

clause('$recorded'(F,Term), _, Ref).

The reason for the calls to functor/3 in the above definition is that only the principal
functor of the key is significant. If Key is a compound term, then its arguments are ignored.

Please note: Equivalent functionality and performance, with reduced memory
costs, can usually be had through normal dynamic procedures and indexing (see
Section 4.12.1 [ref-mdb-bas], page 176, and Section 9.5 [Indexing], page 358).

184 SICStus Prolog

recorda(Key, Term, Ref) records the Term in the internal database as the first item for
the key Key ; a database reference to the newly-recorded term is returned in Ref.

recordz(Key, Term, Ref) is like recorda/3 except that it records the term as the last
item in the internal database.

recorded(Key, Term, Ref) searches the internal database for a term recorded under the
key Key that unifies with Term, and whose database reference unifies with Ref.

current_key(KeyName, KeyTerm) succeeds when KeyName is the atom or integer that is
the name of KeyTerm. KeyTerm is an integer, atom, or compound term that is the key for
a currently recorded term.

4.12.9 Blackboard Primitives

The predicates described in this section store arbitrary terms in a per-module repository
known as the “blackboard”. The main purpose of the blackboard was initially to provide a
means for communication between branches executing in parallel, but the blackboard works
equally well during sequential execution. The blackboard implements a mapping from keys
to values. Keys are restricted to being atoms or small integers, whereas values are arbitrary
terms. In contrast to the predicates described in the previous sections, a given key can map
to at most a single term.

Each Prolog module maintains its own blackboard, so as to avoid name clashes if different
modules happen to use the same keys. The “key” arguments of these predicates are subject
to module name expansion, so the module name does not have to be explicitly given unless
multiple Prolog modules are supposed to share a single blackboard.

The predicates below implement atomic blackboard actions.

bb_put(:Key, +Term)

A copy of Term is stored under Key. See Section 11.3.24 [mpg-ref-bb put],
page 938.

bb_get(:Key, ?Term)

If a term is currently stored under Key, then a copy of it is unified with
Term. Otherwise, bb_get/2 silently fails. See Section 11.3.23 [mpg-ref-bb get],
page 937.

bb_delete(:Key, ?Term)

If a term is currently stored under Key, then the term is deleted, and a copy of it
is unified with Term. Otherwise, bb_delete/2 silently fails. See Section 11.3.22
[mpg-ref-bb delete], page 936.

bb_update(:Key, ?OldTerm, ?NewTerm)

If a term is currently stored under Key and unifies with OldTerm, then the
term is replaced by a copy of NewTerm. Otherwise, bb_update/3 silently fails.
This predicate provides an atomic swap operation. See Section 11.3.25 [mpg-
ref-bb update], page 939.

Chapter 4: The Prolog Language 185

Please note: If the term being stored contains attributed variables (see Section 10.3 [lib-atts],
page 388) or suspended goals (see Section 4.2.4 [ref-sem-sec], page 74), then those attributes
are not stored. To retain the attributes, you can use copy_term/3 (see Section 4.8.7 [ref-
lte-cpt], page 129).

The following example illustrates how these primitives may be used to implement a “maxof”
predicate that finds the maximum value computed by some nondeterminate goal. We use
a single key max4. We assume that Goal does not produce any “false” solutions that would
be eliminated by cuts in a sequential execution. Thus, Goal may need to include redundant
checks to ensure that its solutions are valid, as discussed above.

maxof(Value, Goal, _) :-

bb_put(max, -1), % initialize max-so-far

call(Goal),

update_max(Value),

fail.

maxof(_, _, Max) :-

bb_delete(max, Max),

Max > 1.

update_max(New):-

bb_get(max, Old),

compare(C, Old, New),

update_max(C, Old, New).

update_max(<, Old, New) :- bb_update(max, Old, New).

update_max(=, _, _).

update_max(>, _, _).

4.12.10 Summary of Predicates

abolish(:F) ISO

abolish the predicate(s) specified by F

abolish(:F,+O)

abolish the predicate(s) specified by F with options O

assert(:C)

assert(:C,-R)

clause C is asserted; reference R is returned

asserta(:C) ISO

asserta(:C,-R)

clause C is asserted before existing clauses; reference R is returned

4 This is not necessarily a good example of using the blackboard. For instance, the implementation is not
reentrant, e.g. it will not work if the Goal itself uses maxof/3. A reentrant implementation would need
to ensure that multiple nested calls to maxof/3 do not interfer with each other.

186 SICStus Prolog

assertz(:C) ISO

assertz(:C,-R)

clause C is asserted after existing clauses; reference R is returned

bb_delete(:Key,-Term)

Delete from the blackboard Term stored under Key.

bb_get(:Key,-Term)

Get from the blackboard Term stored under Key.

bb_put(:Key,+Term)

Store Term under Key on the blackboard.

bb_update(:Key, -OldTerm, +NewTerm)

Replace OldTerm by NewTerm under Key on the blackboard.

clause(:P,?Q) ISO

clause(:P,?Q,?R)

there is a clause for a dynamic predicate with head P, body Q, and reference R

current_key(?N, ?K)

N is the name and K is the key of a recorded term

dynamic :P declaration,ISO

predicates specified by P are dynamic

erase(+R)

erase the clause or record with reference R

instance(+R,-T)

T is an instance of the clause or term referenced by R

recorda(+K,+T,-R)

make term T the first record under key K ; reference R is returned

recorded(?K,?T,?R)

term T is recorded under key K with reference R

recordz(+K,+T,-R)

make term T the last record under key K ; reference R is returned

retract(:C) ISO

erase the first dynamic clause that matches C

retractall(:H) ISO

erase every clause whose head matches H

4.13 Sets and Bags: Collecting Solutions to a Goal

4.13.1 Introduction

When there are many solutions to a goal, and a list of all those solutions is desired, one
means of collecting them is to write a procedure that repeatedly backtracks into that goal to
get another solution. In order to collect all the solutions together, it is necessary to use the
database (via assertion) to hold the solutions as they are generated, because backtracking

Chapter 4: The Prolog Language 187

to redo the goal would undo any list construction that had been done after satisfying the
goal.

The writing of such a backtracking loop can be avoided by the use of one of the built-
in predicates setof/3, bagof/3 and findall/[3,4], which are described below. These
provide a nice logical abstraction, whereas with a user-written backtracking loop the need
for explicit side effects (assertions) destroys the declarative interpretation of the code. The
built-in predicates are also more efficient than those a user could write.

Please note: If the solutions being collected contain attributed variables (see Section 10.3
[lib-atts], page 388) or suspended goals (see Section 4.2.4 [ref-sem-sec], page 74), then those
attributes are not retained in the list of solutions. To retain the attributes, you can use
copy_term/3 (see Section 4.8.7 [ref-lte-cpt], page 129).

4.13.2 Collecting a Sorted List

setof(Template, Generator, Set) returns the set Set of all instances of Template such
that Generator is provable, where that set is non-empty. The term Generator specifies a
goal to be called as if by call/1. Set is a set of terms represented as a list of those terms,
without duplicates, in the standard order for terms (see Section 4.8.8 [ref-lte-cte], page 130).

Obviously, the set to be enumerated should be finite, and should be enumerable by Prolog
in finite time. It is possible for the provable instances to contain variables, but in this case
Set will only provide an imperfect representation of what is in reality an infinite set.

If Generator is instantiated, but contains uninstantiated variables that do not also appear
in Template, then setof/3 can succeed nondeterminately, generating alternative values
for Set corresponding to different instantiations of the free variables of Generator. (It is to
allow for such usage that Set is constrained to be non-empty.) For example, if your program
contained the clauses

likes(tom, beer).

likes(dick, beer).

likes(harry, beer).

likes(bill, cider).

likes(jan, cider).

likes(tom, cider).

then the call

| ?- setof(X, likes(X,Y), S).

might produce two alternative solutions via backtracking:

Y = beer,

S = [dick,harry,tom] ;

Y = cider,

S = [bill,jan,tom] ;

no

188 SICStus Prolog

The call

| ?- setof((Y,S), setof(X,likes(X,Y),S), SS).

would then produce

SS = [(beer,[dick,harry,tom]),(cider,[bill,jan,tom])] ;

no

See Section 11.3.208 [mpg-ref-setof], page 1170.

4.13.2.1 Existential Quantifier

X ^ P is recognized as meaning “there exists an X such that P is true”, and is treated as
equivalent to simply calling P. The use of the explicit existential quantifier outside setof/3
and bagof/3 is superfluous.

Variables occurring in Generator will not be treated as free if they are explicitly bound
within Generator by an existential quantifier. An existential quantification is written:

Y^Q

meaning “there exists a Y such that Q is true”, where Y is some Prolog variable. For
example:

| ?- setof(X, Y^likes(X,Y), S).

would produce the single result

S = [bill,dick,harry,jan,tom] ;

no

in contrast to the earlier example.

Furthermore, it is possible to existentially quantify a term, where all the variables in that
term are taken to be existentially quantified in the goal. E.g.

A=term(X,Y), setof(Z, A^foo(X,Y,Z), L).

will treat X and Y as if they are existentially quantified.

4.13.3 Collecting a Bag of Solutions

bagof/3 is is exactly the same as setof/3 except that the list (or alternative lists) returned
will not be ordered, and may contain duplicates. This relaxation saves time and space in
execution. See Section 11.3.21 [mpg-ref-bagof], page 935.

4.13.3.1 Collecting All Instances

findall/3 is a special case of bagof/3, where all free variables in the generator are taken to
be existentially quantified. Thus the use of the operator ^ is avoided. Because findall/3

avoids the relatively expensive variable analysis done by bagof/3, using findall/3 where
appropriate rather than bagof/3 can be considerably more efficient.

Chapter 4: The Prolog Language 189

findall/4 is a variant of findall/3 with an extra argument to which the list of solutions
is appended. This can reduce the amount of append operations in the program. See
Section 11.3.80 [mpg-ref-findall], page 1002.

4.13.4 Predicate Summary

?X ^ :P there exists an X such that P is provable (used in setof/3 and bagof/3)

bagof(?X,:P,-B) ISO

B is the bag of instances of X such that P is provable

findall(?T,:G,-L) ISO

findall(?T,:G,?L,?R)

L is the list of all solutions T for the goal G, concatenated with R or with the
empty list

setof(?X,:P,-S) ISO

S is the set of instances of X such that P is provable

4.14 Grammar Rules

This section describes SICStus Prolog’s grammar rules, and the translation of these rules
into Prolog clauses. At the end of the section is a list of grammar-related built-in predicates.

4.14.1 Definite Clause Grammars

Prolog’s grammar rules provide a convenient notation for expressing definite clause gram-
mars, which are useful for the analysis of both artificial and natural languages.

The usual way one attempts to make precise the definition of a language, whether it is
a natural language or a programming language, is through a collection of rules called a
“grammar”. The rules of a grammar define which strings of words or symbols are valid
sentences of the language. In addition, the grammar generally analyzes the sentence into a
structure that makes its meaning more explicit.

A fundamental class of grammar is the context-free grammar (CFG), familiar to the com-
puting community in the notation of “BNF” (Backus-Naur form). In CFGs, the words,
or basic symbols, of the language are identified by “terminal symbols”, while categories
of phrases of the language are identified by non-terminal symbols. Each rule of a CFG
expresses a possible form for a non-terminal, as a sequence of terminals and non-terminals.
The analysis of a string according to a CFG is a parse tree, showing the constitutent phrases
of the string and their hierarchical relationships.

Context-free grammars (CFGs) consist of a series of rules of the form:

nt --> body.

where nt is a non-terminal symbol and body is a sequence of one or more items separated by
commas. Each item is either a non-terminal symbol or a sequence of terminal symbols. The
meaning of the rule is that body is a possible form for a phrase of type nt. A non-terminal
symbol is written as a Prolog atom, while a sequence of terminals is written as a Prolog
list, whereas a terminal may be any Prolog term.

190 SICStus Prolog

Definite clause grammars (DCGs) are a generalization of context-free grammars and rules
corresponding to DCGs are referred to as “Grammar Rules”. A grammar rule in Prolog
takes the general form

head --> body.

meaning “a possible form for head is body”. Both body and head are sequences of one or
more items linked by the standard Prolog conjunction operator ‘,’ (comma).

Definite clause grammars extend context-free grammars in the following ways:

• A non-terminal symbol may be any callable Prolog term.

• A terminal symbol may be any Prolog term. To distinguish terminals from non-
terminals, a sequence of one or more terminal symbols is written within a grammar rule
as a Prolog list. An empty sequence is written as the empty list ‘[]’. If the terminal
symbols are character codes, then such lists can be written (as elsewhere) as strings.
An empty sequence is written as the empty list (‘[]’ or ‘""’).

• Extra conditions, in the form of Prolog procedure calls, may be included in the right-
hand side of a grammar rule. These extra conditions allow the explicit use of procedure
calls in the body of a rule to restrict the constitutents accepted. Such procedure calls
are written enclosed in curly brackets (‘{’ and ‘}’).

• The left-hand side of a grammar rule consists of a non-terminal, optionally followed by
a sequence of terminals (again written as a Prolog list).

• Alternatives may be stated explicitly in the right-hand side of a grammar rule, using
the disjunction operator ‘;’ (semicolon) as in Prolog.

• The cut symbol ‘!’ may be included in the right-hand side of a grammar rule, as in a
Prolog clause. The cut symbol does not need to be enclosed in curly brackets. The same
is true for the control constructs. However, all other built-in predicates not enclosed
in curly brackets will be treated as non-terminal symbols. The precise meaning of this
rule is clarified in Section 4.14.4 [ref-gru-tra], page 192.

• The extra arguments of non-terminals provide the means of building structure (such as
parse trees) in grammar rules. As non-terminals are “expanded” by matching against
grammar rules, structures are progressively built up in the course of the unification
process.

• The extra arguments of non-terminals can also provide a general treatment of context
dependency by carrying test and contextual information.

4.14.2 How to Use the Grammar Rule Facility

Following is a summary of the steps that enable you to construct and utilize definite clause
grammars:

STEPS:

1. Write a grammar, using -->/2 to formulate rules.

2. Compile the file containing the grammar rules. The Load Predicates automatically
translate the grammar rules into Prolog clauses.

Chapter 4: The Prolog Language 191

3. Use phrase/[2,3] to parse or generate strings.

OPTIONAL STEPS:

1. Modify the way in which Prolog translates your grammar rules by defining clauses for
user:term_expansion/6; see Section 4.3.5 [ref-lod-exp], page 87.

2. In debugging or in using the grammar facility for more obscure purposes it may be
useful to understand more about expand_term/2.

4.14.3 An Example

As an example, here is a simple grammar that parses an arithmetic expression (made up of
digits and operators) and computes its value. Create a file containing the following rules:

grammar.pl

expr(Z) --> term(X), "+", expr(Y), {Z is X + Y}.

expr(Z) --> term(X), "-", expr(Y), {Z is X - Y}.

expr(X) --> term(X).

term(Z) --> number(X), "*", term(Y), {Z is X * Y}.

term(Z) --> number(X), "/", term(Y), {Z is X / Y}.

term(Z) --> number(Z).

number(C) --> "+", number(C).

number(C) --> "-", number(X), {C is -X}.

number(X) --> [C], {"0"=<C, C=<"9", X is C - "0"}.

In the last rule, C is the character code of a decimal digit.

This grammar can now be used to parse and evaluate an expression by means of the built-in
predicates phrase/[2,3]. See Section 11.3.155 [mpg-ref-phrase], page 1103. For example,

192 SICStus Prolog

| ?- [grammar].

| ?- phrase(expr(Z), "-2+3*5+1").

Z = 14

| ?- phrase(expr(Z), "-2+3*5", Rest).

Z = 13,

Rest = [] ;

Z = 1,

Rest = "*5" ;

Z = -2,

Rest = "+3*5" ;

no

4.14.4 Semantics of Grammar Rules

Grammar rules are best explained in terms of an interpreter. The semantics of phrase/3
is shown as if defined by the interpreter shown below. The interpreter’s case analysis is as
follows:

control constructs
(Including cuts and module prefixes). The interpreter implements the seman-
tics of the construct, descending into its argument. Note that other built-in
predicates are not treated this way.

lists Treated as terminal symbols.

curly brackets
Treated as procedure calls.

callable terms with functor N/A
A grammar rule with head functor N/A is looked up using the imaginary pred-
icate -->/2, unified against, and its body is interpreted. If none exists, then
this is treated as a procedure call to a predicate N/A+2.

non-callable terms
Raise error exception.

The following points are worth noting:

• The code below defines what constructs of and to what depth grammar rule bodies are
interpreted, as opposed to being treated as non-terminals.

• Throughout the interpretation, we must keep track of the module context.

• The head non-terminal of a grammar rule is optionally followed by a sequence of ter-
minals. This feature is not supported by the interpreter, but is supported in the actual
implementation.

Chapter 4: The Prolog Language 193

• As a general rule, the last argument is unified after any side effects, including cuts.
This is in line with the rule that output arguments should not be unified before a cut
(see Section 9.1 [Eff Overview], page 353). In other words, grammar rules are steadfast.

• The last clause gives a clue to how grammar rules are actually implemented, i.e. by
compile-time transformation to ordinary Prolog clauses. A grammar rule with head
functor N/A is transformed to a Prolog clause with head functor N/A+2, the extra
arguments being S0 and S. -->/2 is not a predicate.

The interpreter is as follows, slightly simplified:

194 SICStus Prolog

phrase(M:Body, S0, S) :-

phrase(Body, M, S0, S).

phrase(Var, M, S0, S) :- \+callable(Var), !,

must_be(Var, callable, phrase(M:Var,S0,S), 1).

phrase(M:Body, _, S0, S) :- !,

phrase(Body, M, S0, S).

phrase(!, _, S0, S) :- !,

cut relevant choicepoints,

S0 = S. % unification AFTER action

phrase((A, B), M, S0, S) :- !,

phrase(A, M, S0, S1),

phrase(B, M, S1, S).

phrase((A -> B), M, S0, S) :- !,

(phrase(A, M, S0, S1) ->

phrase(B, M, S1, S)

).

phrase((A -> B ; C), M, S0, S) :- !,

(phrase(A, M, S0, S1) ->

phrase(B, M, S1, S)

; phrase(C, M, S0, S)

).

phrase((A ; B), M, S0, S) :- !,

(phrase(A, M, S0, S)

; phrase(B, M, S0, S)

).

phrase(\+(A), M, S0, S) :- !,

(phrase(A, M, S0, _) ->

fail

; S0 = S

).

phrase(_^A, M, S0, S) :- !,

phrase(A, M, S0, S).

phrase(do(Iter,Body), M, S0, S) :- !,

(Iter,

fromto(S0,S1,S2,S)

do phrase(Body, M, S1, S2)

).

phrase(if(A,B,C), M, S0, S) :- !,

if(phrase(A, M, S0, S1),

phrase(B, M, S1, S),

phrase(C, M, S0, S)).

phrase(once(A), M, S0, S) :- !,

(phrase(A, M, S0, S1) ->

S1 = S % unification AFTER call

).

phrase([], _, S0, S) :- !,

S0 = S.

phrase([H|T], M, S0, S) :- !,

S0 = [H|S1],

phrase(T, M, S1, S).

phrase({G}, M, S0, S) :- !,

call(M:G), % Please note: transparent to cuts

S0 = S. % unification AFTER call

phrase(NT, M, S0, S) :-

\+ \+(M:NT --> Rhs), !, % grammar rule exists?

(M:NT --> Rhs),

phrase(Rhs, M, S0, S).

phrase(NT, M, S0, S) :-

call(M:NT, S0, S). % otherwise, treat as procedure call

Chapter 4: The Prolog Language 195

As mentioned above, grammar rules are merely a convenient abbreviation for ordinary
Prolog clauses. Each grammar rule is translated into a Prolog clause as it is compiled. This
translation is exemplified below.

The procedural interpretation of a grammar rule is that it takes an input list of symbols
or character codes, analyzes some initial portion of that list, and produces the remaining
portion (possibly enlarged) as output for further analysis. The arguments required for the
input and output lists are not written explicitly in a grammar rule, but are added when the
rule is translated into an ordinary Prolog clause. The translations shown differ from the
output of listing/[0,1] in that internal translations such as variable renaming are not
represented. This is done in the interests of clarity. For example, a rule such as (A) will be
depicted as translating into (B) rather than (C).

p(X) --> q(X). (A)

p(X, S0, S) :-

q(X, S0, S). (B)

p(A, B, C) :-

q(A, B, C). (C)

If there is more than one non-terminal on the right-hand side, as in (D), then the corre-
sponding input and output arguments are identified, translating into (E):

p(X, Y) --> q(X), r(X, Y), s(Y). (D)

p(X, Y, S0, S) :- (E)

q(X, S0, S1),

r(X, Y, S1, S2),

s(Y, S2, S).

Terminals are translated using the built-in predicate =/2. For instance, (F) is translated
into (G):

p(X) --> [go, to], q(X), [stop]. (F)

p(X, S0, S) :- (G)

S0 = [go,to|S1],

q(X, S1, S2),

S2 = [stop|S].

Extra conditions expressed as explicit procedure calls, enclosed in curly braces, naturally
translate into themselves. For example (H) translates to (I):

p(X) --> [X], {integer(X), X > 0}, q(X). (H)

196 SICStus Prolog

p(X, S0, S) :- (I)

S0 = [X|S1],

integer(X),

X > 0,

q(X, S1, S).

Terminals on the left-hand side of a rule, enclosed in square brackets, also translate into a
unification. For example, (J) becomes (K):

is(N), [not] --> [aint]. (J)

is(N, S0, S) :- (K)

S0 = [aint|S1],

S = [not|S1].

Disjunction and other control constructs have a fairly obvious translation. For example,
(L), a rule that equates phrases like “(sent) a letter to him” and “(sent) him a letter”,
translates to (M):

args(X, Y) --> (L)

(indir(X), [to], indir(Y)

; indir(Y), dir(X)

).

args(X, Y, S0, S) :- (M)

(dir(X, S0, S1),

S1 = [to|S2],

indir(Y, S2, S)

; indir(Y, S0, S1),

dir(X, S1, S)

).

In order to look at these translations, declare the grammar rules dynamic and use
listing/[0,1]. However, bear in mind that a grammar rule with head functor N/A is
transformed to a Prolog clause with head functor N/A+2. For example, the following dec-
laration for grammar rule (L) would enable you to list its translation, (M):

:- dynamic args/4.

4.14.5 Summary of Predicates

:Head --> :Body

A possible form for Head is Body

expand_term(+T,-X) hookable

term T expands to term X using user:term_expansion/6 or grammar rule
expansion

phrase(:P, -L)

phrase(:P, ?L, ?R)

R or the empty list is what remains of list L after phrase P has been found

Chapter 4: The Prolog Language 197

user:term_expansion(+Term1, +Layout1, +Tokens1, -Term2, -Layout2, -Tokens2)

hook

Overrides or complements the standard transformations to be done by expand_

term/2.

4.15 Errors and Exceptions

4.15.1 Overview

Whenever the Prolog system encounters a situation where it cannot continue execution, it
throws an exception. For example, if a built-in predicate detects an argument of the wrong
type, then it throws a type_error exception. The manual page description of each built-in
predicate lists the kinds of exceptions that can be thrown by that built-in predicate.

The default effect of throwing an exception is to terminate the current computation and
then print an error message. After the error message, you are back at Prolog’s top level.
For example, if the goal

X is a/2

is executed somewhere in a program, then you get

! Type error in argument 2 of (is)/2

! expected evaluable, but found a/0

! goal: _255 is a/2

| ?-

Particular things to notice in this message are:

‘!’ This character indicates that this is an error message rather than a warning5

or informational message.

‘Type Error’
This is the error class. Exceptions thrown by the Prolog system are called
errors. Every error is categorized into one of a small number of classes. The
classes are listed in Section 4.15.4 [ref-ere-err], page 200.

‘goal:’ The goal that caused the exception to be thrown.

Built-in predicates check their arguments, but predicates exported by library modules gen-
erally do not, although some do check their arguments to a lesser or greater extent.

4.15.2 Throwing Exceptions

You can throw exceptions from your own code using:

5 The difference between an error (including exceptions) and a warning: A warning is issued if Prolog
detects a situation that is likely to cause problems, though it is possible that you intended it. An error,
however, indicates that Prolog recognizes a situation where it cannot continue.

198 SICStus Prolog

throw(+ExceptionTerm) ISO

The argument to this predicate is the exception term, an arbitrary non-variable term. See
Section 11.3.235 [mpg-ref-throw], page 1205.

Please note: If the exception term contains attributed variables (see Section 10.3 [lib-atts],
page 388) or suspended goals (see Section 4.2.4 [ref-sem-sec], page 74), then those attributes
do not become part of the exception. To retain the attributes, you can use copy_term/3

(see Section 4.8.7 [ref-lte-cpt], page 129).

4.15.3 Handling Exceptions

It is possible to protect a part of a program against abrupt termination in the event of an
exception. There are several ways to do this:

• Trap exceptions to a particular goal by calling catch/3 as described in Section 4.15.3.1
[ref-ere-hex-pgo], page 198.

• Handle undefined predicates or subsets of them through the hook predicate
user:unknown_predicate_handler/3; see Section 4.15.3.2 [ref-ere-hex-hup], page 199.

• Trap exceptions matching Exception to the debugger by defining the following hook
predicate:

user:error_exception(+Exception) hook,development

See Section 11.3.73 [mpg-ref-error exception], page 994.

• Control syntax errors with the syntax_errors Prolog flag or with the same option to
read_term/[2,3]; see Section 4.15.4.11 [ref-ere-err-syn], page 208.

• Control existence and permission errors in the context of opening files with the
fileerrors Prolog flag or with the same option to absolute_file_name/3; see
Section 4.15.4.7 [ref-ere-err-exi], page 206, and Section 4.15.4.8 [ref-ere-err-per],
page 206.

4.15.3.1 Protecting a Particular Goal

The built-in predicate catch/3 enables you to handle exceptions to a specific goal:

catch(:ProtectedGoal, ?ExceptionTerm, :Handler) ISO

ProtectedGoal is executed. If all goes well, then it will behave just as if you had written
call(ProtectedGoal) instead. If an exception is thrown while ProtectedGoal is running,
then Prolog will abandon ProtectedGoal entirely. Any bindings made by ProtectedGoal
will be undone, just as if it had failed. If the exception occurred in the scope of a call_

cleanup(Goal,Cleanup), then Cleanup will be called. side effects, such as asserts and
retracts, are not undone, just as they are not undone when a goal fails. After undoing
the bindings, Prolog tries to unify the exception term thrown with the ExceptionTerm
argument. If this unification succeeds, then Handler will be executed as if you had written

ExceptionTerm=<the actual exception term>,
Handler

Chapter 4: The Prolog Language 199

If this unification fails, then Prolog will keep searching up the ancestor list looking for
another exception handler. If during this search it reaches a recursive call to Prolog from
C, then the recursive calls returns with an uncaught exception. If it reaches the top level
(or a break level), then an appropriate error message is printed (using print_message/2).

ProtectedGoal need not be determinate. That is, backtracking into ProtectedGoal is possi-
ble, and the exception handler becomes reactivated in this case. However, if ProtectedGoal
is determinate, then the call to catch/3 is also determinate.

The ProtectedGoal is logically inside the catch/3 goal, but the Handler is not. If an
exception is thrown inside the Handler, then this catch/3 goal will not be reactivated. If
you want an exception handler that protects itself, then you have to program it, perhaps
like this:

recursive_catch_handler(Err, Goal, Handler) :-

catch(Goal, Err,

recursive_catch_handler(Err, Handler, Handler)).

See Section 11.3.34 [mpg-ref-catch], page 949.

Certain built-in and library predicates rely on the exception mechanism, so it is usually a
bad idea to let Pattern be a variable, matching any exception. If it must be a variable, then
the Handler should examine the exception and pass it on if it is not relevant to the current
invocation.

4.15.3.2 Handling Unknown Predicates

Users can write a handler for the specific exception occurring when an undefined predicate
is called by defining clauses for the hook predicate user:unknown_predicate_handler/3.
This can be thought of as a “global” exception handler for this particular exception, because
unlike catch/3, its effect is not limited to a particular goal. Furthermore, the exception is
handled at the point where the undefined predicate is called.

The handler can be written to apply to all unknown predicates, or to a class of them. The
reference page contains an example of constraining the handler to certain predicates.

If call(Module:Goal) is the trapped call to the undefined predicate, then the hook is called
as:

user:unknown_predicate_handler(+Goal, +Module, -NewGoal) hook

If this succeeds, then Prolog replaces the call to the undefined predicate with the call to
Module:NewGoal. Otherwise, the action taken is governed by the unknown Prolog flag (see
Section 4.9.4 [ref-lps-flg], page 136), the allowed values of which are:

trace Causes calls to undefined predicates to be reported and the debugger to be
entered at the earliest opportunity. Not available in runtime systems.

error ISO

Causes calls to such predicates to raise an exception (the default).

200 SICStus Prolog

warning ISO

Causes calls to such predicates to display a warning message and then fail.

fail ISO Causes calls to such predicates to fail.

Finally, this flag can be accessed by the built-in predicate:

unknown(?OldValue, ?NewValue) development

This unifies OldValue with the current value, sets the flag to NewValue, and prints a
message about the new value. See Section 11.3.244 [mpg-ref-unknown predicate handler],
page 1215.

4.15.4 Error Classes

Exceptions thrown by the Prolog system are called errors.

Error terms have the form:

error(ISO_Error, SICStus_Error)

where the principal functor of ISO Error (resp. SICStus Error) indicates the error class
(see Section 4.15.4 [ref-ere-err], page 200). The classification always coincides.

Please note: Do Not throw error terms except when you re-throw a previously caught error
term. They correspond to the exceptions thrown by the built-in predicates. Throwing such
forged error terms can lead to unexpected results.

See Section 10.45 [lib-types], page 848, for an alternative interface to throwing error excep-
tions, which tries to include line number information for source-linked debugging.

Error messages like the one shown earlier are printed using the built-in predicate print_

message/2. One of the arguments to print_message/2 is the exception term. print_

message/2 can be customized, as described in Section 4.16 [ref-msg], page 212.

The set of error classes used by the system has been kept small:

Instantiation Error ISO
An input argument is insufficiently instantiated.

Uninstantiation Error ISO
An input argument is too instantiated.

Type Error ISO
An input argument is of the wrong type.

Domain Error ISO
An input argument is illegal but of the right type.

Evaluation Error ISO
An incorrect arithmetic expression was evaluated.

Representation Error ISO
A computed value cannot be represented.

Chapter 4: The Prolog Language 201

Existence Error ISO
Something does not exist.

Permission Error ISO
Specified operation is not permitted.

Context Error
Specified operation is not permitted in this context.

Consistency Error
Two otherwise correct values are inconsistent with each other.

Syntax Error ISO
Error in reading a term.

Resource Error ISO
Some resource limit has been exceeded.

System Error ISO
An error detected by the operating system.

The format of the exception thrown by the built-in predicates is:

error(ISO_Error, SICStus_Error)

where ISO Error is the error term prescribed by the ISO Prolog standard, while SICS-
tus Error is the part defined by the standard to be implementation defined. This so called
SICStus error term has the same principal functor as ISO Error but more arguments con-
taining additional information, such as the goal and the argument number causing the error.
Arguments are numbered from 1 upwards. An argument number given as zero means that
an unspecific argument caused the error.

The list below itemizes the error terms, showing the ISO Error and SICStus Error form of
each one, in that order. The SICStus and ISO error terms always belong to the same error
class, but note that the Context and Consistency error classes are extensions to the ISO
Prolog standard.

The goal part of the error term may optionally have the form $@(Callable,PC) where PC
is an internal encoding of the line of code containing the culprit goal or one of its ancestors.
To decompose an annotated goal AGoal into a Goal proper and a SourceInfo descriptor
term, indicating the source position of the goal, use:

?- goal_source_info(AGoal, Goal, SourceInfo).

The reference page gives details about the SourceInfo format. See Section 11.3.98 [mpg-ref-
goal source info], page 1031.

instantiation_error ISO

instantiation_error(Goal,ArgNo)

Goal was called with insufficiently instantiated arguments.

202 SICStus Prolog

uninstantiation_error(Culprit) ISO

uninstantiation_error(Goal,ArgNo,Culprit)

Goal was called with too instantiated arguments, expecting Culprit to be unin-
stantiated.

type_error(TypeName,Culprit) ISO

type_error(Goal,ArgNo,TypeName,Culprit)

Goal was called with the wrong type of argument(s). TypeName is the expected
type and Culprit what was actually found.

domain_error(Domain,Culprit) ISO

domain_error(Goal,ArgNo,Domain,Culprit)

Goal was called with argument(s) of the right type but with illegal value(s).
Domain is the expected domain and Culprit what was actually found.

existence_error(ObjectType,Culprit) ISO

existence_error(Goal,ArgNo,ObjectType,Culprit,Reserved)

Something does not exist as indicated by the arguments. See Section 4.15.4.7
[ref-ere-err-exi], page 206, for ways of controlling this behavior.

permission_error(Operation,ObjectType,Culprit) ISO

permission_error(Goal,Operation,ObjectType,Culprit,Reserved)

The Operation is not permitted on Culprit of the ObjectType. See
Section 4.15.4.8 [ref-ere-err-per], page 206, for ways of controlling this behavior.

context_error(ContextType,CommandType)

context_error(Goal,ContextType,CommandType)

The CommandType is not permitted in ContextType.

syntax_error(Message) ISO

syntax_error(Goal,Position,Message,Tokens,AfterError)

A syntax error was found when reading a term with read/[1,2] or assembling
a number from its characters with number_chars/2 or number_codes/2. See
Section 4.15.4.11 [ref-ere-err-syn], page 208, for ways of controlling this behav-
ior.

evaluation_error(ErrorType,Culprit) ISO

evaluation_error(Goal,ArgNo,ErrorType,Culprit)

An incorrect arithmetic expression was evaluated.

representation_error(ErrorType) ISO

representation_error(Goal,ArgNo,ErrorType)

A representation error occurs when the program tries to compute some well-
defined value that cannot be represented, such as a compound term with arity
> 255.

consistency_error(Culprit1,Culprit2,Message)

consistency_error(Goal,Culprit1,Culprit2,Message)

A consistency error occurs when two otherwise valid values or operations have
been specified that are inconsistent with each other.

Chapter 4: The Prolog Language 203

resource_error(ResourceType) ISO

resource_error(Goal,ResourceType)

A resource error occurs when SICStus Prolog has insufficient resources to com-
plete execution. The only value for ResourceType that is currently in use is
memory.

system_error ISO

system_error(Message)

An error occurred while dealing with the operating system.

Most exception terms include a copy of the Goal that threw the exception.

In general, built-in predicates that cause side effects, such as the opening of a stream or
asserting a clause into the Prolog database, attempt to do all error checking before the
side effect is performed. Unless otherwise indicated in the documentation for a particular
predicate or error class, it should be assumed that goals that throw exceptions have not
performed any side effect.

4.15.4.1 Instantiation Errors

An instantiation error occurs when a predicate or command is called with one of its input
arguments insufficiently instantiated.

The SICStus Error term associated with an instantiation error is

instantiation_error(Goal, ArgNo)

where ArgNo is a non-negative integer indicating which argument caused the problem.
ArgNo=0 means that the problem could not be localized to a single argument.

Note that the ArgNoth argument of Goal might well be a non-variable: the error is in that
argument. For example, the goal

X is Y+1

where Y is uninstantiated throws the exception

error(instantiation_error,

instantiation_error(_A is _B+1,2))

because the second argument to is/2 contains a variable.

4.15.4.2 Uninstantiation Errors

An uninstantiation error occurs when a predicate or command is called with one of its input
arguments instantiated when an unbound variable was expected.

The SICStus Error term associated with an instantiation error is

uninstantiation_error(Goal,ArgNo,Culprit)

For example, the goal

204 SICStus Prolog

open(f, write, bar)

throws the exception

error(uninstantiation_error(bar),

uninstantiation_error(open(f,write,bar),3,bar))

because the third argument was not a variable.

4.15.4.3 Type Errors

A type error occurs when an input argument is of the wrong type. In general, a type is
taken to be a class of terms for which there exists a unary type test predicate. Some types
are built-in, such as atom/1 and integer/1.

The type of a term is the sort of thing you can tell just by looking at it, without checking
to see how big it is. So “integer” is a type, but “non-negative integer” is not, and “atom”
is a type, but “atom with 5 letters in its name” and “atom starting with ‘x’” are not.

The point of a type error is that you have obviously passed the wrong sort of argument
to a command; perhaps you have switched two arguments, or perhaps you have called the
wrong predicate, but it is not a subtle matter of being off by one.

Most built-in predicates check all their input arguments for type errors.

The SICStus Error term associated with a type error is

type_error(Goal, ArgNo, TypeName, Culprit)

ArgNo Culprit occurs somewhere in the ArgNoth argument of Goal.

TypeName
says what sort of term was expected; it should be the name of a unary predicate
that is true of whatever terms would not provoke a type error.

Culprit is the actual term being complained about: TypeName(Culprit) should be false.

For example:

| ?- catch((write(3),1), Error, true).

Error = error(type_error(callable,(write(3),1)),

type_error(user:(write(3),1),0,callable,(write(3),1)))

4.15.4.4 Domain Errors

A domain error occurs when an input argument is of the right type but there is something
wrong with its value. For example, the second argument to open/[3,4] is supposed to be
an atom that represents a valid mode for opening a file, such as read or write. If a number
or a compound term is given instead, then that is a type error. If an atom is given that is
not a valid mode, then that is a domain error.

Chapter 4: The Prolog Language 205

The main reason that we distinguish between type errors and domain errors is that they
usually represent different sorts of mistakes in your program. A type error usually indicates
that you have passed the wrong argument to a command, whereas a domain error usually
indicates that you passed the argument you meant to check, but you hadn’t checked it
enough.

The SICStus Error term associated with a domain error is

domain_error(Goal, ArgNo, DomainName, Culprit)

The arguments correspond to those of the SICStus Error term for a type error, except that
DomainName is not in general the name of a unary predicate: it needn’t even be an atom.
For example, if some command requires an argument to be an integer in the range 1..99,
then it might use between(1,99) as the DomainName. With respect to the date_plus

example under Type Errors, if the month had been given as 13, then it would have passed
the type test but would throw a domain error.

For example, the goal

open(somefile,rread,S)

throws the exception

error(domain_error(io_mode,rread),

domain_error(open(somefile,rread,_A),2,io_mode,rread))

The Message argument is used to provide extra information about the problem.

4.15.4.5 Evaluation Errors

An evaluation error occurs when an incorrect arithmetic expression was evaluated. Floating-
point overflow is another evaluation error. The SICStus Error term associated with an
evaluation error is

evaluation_error(Goal, ArgNo, TypeName, Culprit)

This has the same arguments as a type error.

4.15.4.6 Representation Errors

A representation error occurs when your program calls for the computation of some well-
defined value that cannot be represented.

Most representation errors are some sort of overflow. For example, creating a compound
term with arity greater than 255 results in a representation error.

The SICStus Error term for a representation error is

representation_error(Goal, ArgNo, Message)

ArgNo identifies the argument of the goal that cannot be constructed.

206 SICStus Prolog

Message further classifies the problem. A message of 0 or '' provides no further infor-
mation.

4.15.4.7 Existence Errors

An existence error occurs when a predicate attempts to access something that does not
exist. For example, trying to compile a file that does not exist, erasing a database reference
that has already been erased.

The SICStus Error term associated with an existence error is

existence_error(Goal, ArgNo, ObjectType, Culprit, Message)

ArgNo index of argument of Goal where Culprit appears

ObjectType
expected type of non-existent object

Culprit name for the non-existent object

Message the constant 0 or '', or some additional information provided by the operating
system or other support system indicating why Culprit is thought not to exist.

For example, ‘see('../brother/niece')’ might throw the exception

error(existence_error(source_sink,'../brother/niece'),

existence_error(see('../brother/niece'),1,file,'../brother/niece',0))

An existence error does not necessarily cause an exception to be thrown. For I/O predicates,
the behavior can be controlled with the fileerrors Prolog flag (see Section 4.9.4 [ref-lps-
flg], page 136) or with the fileerrors/1 alias file_errors/1 option to absolute_file_

name/3. The following values are possible:

on (fileerrors flag value)
error (absolute file name/3 fileerrors value)

Throw an exception if a given file cannot be opened. The default.

off (fileerrors flag value)
fail (absolute file name/3 fileerrors value)

Merely fail if a given file cannot be opened.

4.15.4.8 Permission Errors

A permission error occurs when an operation is attempted that is among the kinds of
operation that the system is in general capable of performing, and among the kinds that
you are in general allowed to request, but this particular time it is not permitted. Usually,
the reason for a permission error is that the owner of one of the objects has requested that
the object be protected.

For example, an attempts to assert or retract clauses for a predicate that has not been
declared :-dynamic is rejected with a permission error.

File system protection is another major source of such errors.

Chapter 4: The Prolog Language 207

The SICStus Error term associated with a permission error is

permission_error(Goal, Operation, ObjectType, Culprit, Message)

Operation operation attempted; Operation exists but is not permitted with Culprit.

ObjectType
Culprit’s type.

Culprit name of protected object.

Message provides such operating-system-specific additional information as may be avail-
able. A message of 0 or '' provides no further information.

A permission error does not necessarily cause an exception to be thrown. For I/O predicates,
the behavior can be controlled with the fileerrors Prolog flag (see Section 4.9.4 [ref-lps-
flg], page 136) or with the fileerrors/1 alias file_errors/1 option to absolute_file_

name/3, exactly as for existence errors.

4.15.4.9 Context Errors

A context error occurs when a goal or declaration appears in the wrong place. There may
or may not be anything wrong with the goal or declaration as such; the point is that it is
out of place. Calling multifile/1 as a goal is a context error, as is having :-module/2

anywhere but as the first term in a source file. This error classe is an extension to the ISO
Prolog standard.

The SICStus Error term associated with a context error is

context_error(Goal, ContextType, CommandType)

ContextType
the context in which the command was attempted.

CommandType
the type of command that was attempted.

4.15.4.10 Consistency Errors

A consistency error occurs when two otherwise valid values or operations have been specified
that are inconsistent with each other. For example, if two modules each import the same
predicate from the other, then that is a consistency error. This error classe is an extension
to the ISO Prolog standard.

The SICStus Error term associated with a consistency error is

consistency_error(Goal, Culprit1, Culprit2, Message)

Culprit1 One of the conflicting values/operations.

Culprit2 The other conflicting value/operation.

Message Additional information, or 0, or ''.

208 SICStus Prolog

4.15.4.11 Syntax Errors

A syntax error occurs when data are read from some external source but have an improper
format or cannot be processed for some other reason. This category mainly applies to
read/1 and its variants.

The SICStus Error term associated with a syntax error is

syntax_error(Goal, Position, Message, Left, Right)

where Goal is the goal in question, Position identifies the position in the stream where
reading started, and Message describes the error. Left and right are lists of tokens before
and after the error, respectively.

Note that the Position is where reading started, not where the error is.

read/1 does two things. First, it reads a sequence of characters from the current input
stream up to and including a clause terminator, or the end of file marker, whichever comes
first. Then it attempts to parse the sequence of characters as a Prolog term. If the parse is
unsuccessful, then a syntax error occurs. Thus, in the case of syntax errors, read/1 disobeys
the normal rule that predicates should detect and report errors before they perform any
side effects, because the side effect of reading the characters has been done.

A syntax error does not necessarily cause an exception to be thrown. For I/O predicates,
but not for number_chars/2 and number_codes/2, The behavior can be controlled via the
syntax_errors Prolog flag (see Section 4.9.4 [ref-lps-flg], page 136), or via the syntax_

errors/1 option to read_term/[2,3]. The following values are possible:

quiet When a syntax error is detected, nothing is printed, and read/1 just quietly
fails.

dec10 This provides compatibility with other Prologs: when a syntax error is de-
tected, a syntax error message is issued with print_message/2, and the read

is repeated. This is the default.

fail This provides compatibility with other Prologs. When a syntax error is de-
tected, a syntax error message is printed on user_error, and the read then
fails.

error When a syntax error is detected, an exception is thrown.

4.15.4.12 Resource Errors

A resource error occurs when some resource runs out. For example, you can run out of vir-
tual memory, or you can exceed the operating system limit on the number of simultaneously
open files.

Often a resource error arises because of a programming mistake: for example, you may
exceed the maximum number of open files because your program does not close files when
it has finished with them. Or, you may run out of virtual memory because you have a
non-terminating recursion in your program.

Chapter 4: The Prolog Language 209

The SICStus Error term for a resource error is

resource_error(Goal, Resource)

Goal A copy of the goal, or 0 if no goal was responsible; for example there is no
particular goal to blame if you run out of virtual memory.

Resource identifies the resource that was exhausted. The only value currently in use is
memory.

4.15.4.13 System Errors

System errors are problems that the operating system notices (or causes). Note that many
of the exception indications returned by the operating system (such as “file does not exist”)
are mapped to Prolog exceptions; it is only really unexpected things that show up as system
errors.

The SICStus Error term for a system error is

system_error(Message)

where Message is not further specified.

4.15.5 An Example

Suppose you want a routine that is to prompt for a file name and open the file if it can;
otherwise it is to prompt the user for a replacement name. If the user enters an empty
name, then it is to fail. Otherwise, it is to keep asking the user for a name until something
works, and then it is to return the stream that was opened. There is no need to return the
file name that was finally used. We can get it from the stream. Code:

210 SICStus Prolog

retry_open_output(Stream) :-

ask_query(filename, format('Type name of file to open\n',[]), -, FileName),

FileName \== '',

catch(open(FileName, write, Stream),

Error,

(Error = error(_,Excp),

file_error(Excp)

-> print_message(warning, Excp),

retry_open_output(Stream)

; throw(Error)

)).

file_error(existence_error(open(_,_,_), 1, _, _, _)).

file_error(permission_error(open(_,_,_), _, _, _, _)).

:- multifile 'SU_messages':query_class/5.

'SU_messages':query_class(filename, '> ', line, atom_codes, help_query) :- !.

:- multifile 'SU_messages':query_map/4.

'SU_messages':query_map(atom_codes, Codes, success, Atom) :- !,

(Codes==end_of_file -> Atom = '' ; atom_codes(Atom, Codes)).

Sample session:

| ?- retry_open_output(S).

Type name of file to open

> nodir/nofile

* Existence error in argument 1 of open/3

* file '/tmp/nodir/nofile' does not exist

* goal: open('nodir/nofile',write,_701)

Type name of file to open

> newfile

S = '$stream'(3491752)

What this example does not catch is as interesting as what it does. All errors except
existence and permission errors are re-thrown, as they represent errors in the program. The
example also shows that you generally do not want to catch all exceptions that a particular
goal might throw.

4.15.6 Legacy Predicates

Exception handling for Prolog was originally introduced in Quintus Prolog, and later in-
herited by SICStus Prolog, with an API that predated the ISO standard. This API is
still supported but should be regarded as legacy, and consists of the two predicates raise_
exception/1 and on_exception/3:

Chapter 4: The Prolog Language 211

on_exception(?Template, :ProtectedGoal, :Handler)

Equivalent to catch(:ProtectedGoal, ?Template, :Handler). Any excep-
tion term matching Template is caught and handled. See Section 11.3.145
[mpg-ref-on exception], page 1089.

raise_exception(+ExceptionTerm)

If ExceptionTermmatches one of the SICStus error terms listed in Section 4.15.4
[ref-ere-err], page 200, then the corresponding error term error(ISO_Error,

SICStus_Error) is constructed and thrown. Otherwise, ExceptionTerm is
thrown as is.

Prior to release 4.3, throw/1 and raise_exception/3 used to be equivalent and throw
their argument as is, whereas catch/3 and on_exception/3 both used to attempt to rec-
ognize and expand SICStus error terms into error/2 terms. Unless a forged SICStus error
term is thrown by throw/1, the net behavior is unchanged. See Section 11.3.182 [mpg-ref-
raise exception], page 1136.

4.15.7 Interrupting Execution

There exist more drastic means of interrupting the normal control flow. To invoke a recursive
top level, use:

?- break.

See Section 11.3.27 [mpg-ref-break], page 942.

To exit from Prolog, use:

?- halt.

To exit from Prolog with return code Code, use:

?- halt(Code).

See Section 11.3.101 [mpg-ref-halt], page 1034.

To abort the execution of the current query and return to the top level, use:

?- abort.

See Section 11.3.2 [mpg-ref-abort], page 904.

Please note: halt/[0,1] and abort/0 are implemented by throwing a reserved
exception, which has a handler at the top level of development systems and
executables built with the spld tool. Thus they give the opportunity for cleanup
goals (see call_cleanup/2) to run.

4.15.8 Summary of Predicates

abort abort execution of the program; return to current break level

break start a new break level to interpret commands from the user

212 SICStus Prolog

catch(:P,?E,:H) ISO

specify a handler H for any exception E arising in the execution of the goal P

user:error_exception(+Exception) hook,development

Exception is an exception that traps to the debugger if it is switched on.

goal_source_info(+AGoal, -Goal, -SourceInfo)

Decomposes the annotated goal AGoal into a Goal proper and the SourceInfo
descriptor term, indicating the source position of the goal.

halt ISO

halt(C) ISO

exit from Prolog with exit code C

on_exception(?E,:P,:H)

specify a handler H for any exception E arising in the execution of the goal P

raise_exception(+E)

raise exception E

throw(+E) ISO

raise exception E

unknown(?OldValue, ?NewValue) development

access the unknown Prolog flag and print a message

user:unknown_predicate_handler(+Goal, +Module, -NewGoal) hook

tell Prolog to call Module:NewGoal if Module:Goal is undefined

4.16 Messages and Queries

This section describes the two main aspects of user interaction, displaying messages and
querying the user. We will deal with these two issues in turn.

4.16.1 Message Processing

Every message issued by the Prolog system is displayed using a single predicate:

print_message(Severity, Message)

Message is a term that encodes the message to be printed. The format of message terms is
subject to change, but can be inspected in the file library('SU_messages') of the SICStus
Prolog distribution.

The atom Severity specifies the type (or importance) of the message. The following table
lists the severities known to the SICStus Prolog system, together with the line prefixes used
in displaying messages of the given severity:

error '! ' for error messages
warning '* ' for warning messages
informational '% ' for informational messages
help '' for help messages
query '' for query texts (see Section 4.16.3 [Query Processing], page 216)

Chapter 4: The Prolog Language 213

silent '' a special kind of message, which normally does not produce any
output, but can be intercepted by hooks

print_message/2 is a built-in predicate, so that users can invoke it to have their own
messages processed in the same way as the system messages.

The processing and printing of the messages is highly customizable. For example, this
allows the user to change the language of the messages, or to make them appear in dialog
windows rather than on the terminal.

4.16.1.1 Phases of Message Processing

Messages are processed in two major phases. The user can influence the behavior of each
phase using appropriate hooks, described later.

The first phase is called the message generation phase: it determines the text of the message
from the input (the abstract message term). No printing is done here. In this phase the
user can change the phrasing or the language of the messages.

The result of the first phase is created in the form of a format-command list. This is a
list whose elements are format-commands, or the atom nl denoting the end of a line. A
format-command describes a piece of text not extending over a line boundary and it can be
one of the following:

FormatString-Args

format(FormatString, Args)

This indicates that the message text should appear as if printed by

format(FormatString, Args).

write_term(Term, Options)

This indicates that the message text should appear as if printed by

write_term(Term, Options).

write_term(Term)

Equivalent to write_term(Term, Options) where Options is the actual value
of the Prolog flag toplevel_print_options.

As an example, let us see what happens in case of the toplevel call _ =:= 3. An instan-
tiation error is raised by the Prolog system, which is caught, and the abstract message
term error(instantiation_error,instantiation_error(_=:=3,1)) is generated—the
first argument is the goal, and the second argument is the position of the uninstantiated
variable within the goal. In the first phase of message processing this is converted to the
following format-command list:

['Instantiation error'-[],' in argument ~d of ~q'-[1,=:= /2],nl,

'goal: '-[],write_term(_=:=3),nl]

A minor transformation, so-called line splitting is performed on the message text before it
is handed over to the second phase. The format-command list is broken up along the nl

214 SICStus Prolog

atoms into a list of lines, where each line is a list of format-commands. We will use the
term format-command lines to refer to the result of this transformation.

In the example above, the result of this conversion is the following:

[['Instantiation error'-[],' in argument ~d of ~q'-[1,=:= /2]],

['goal: '-[],write_term(_=:=3)]]

The above format-command lines term is the input of the second phase of message process-
ing.

The second phase is called the message printing phase, this is where the message is actually
displayed. The severity of the message is used here to prefix each line of the message with
some characters indicating the type of the message, as listed above.

The user can change the exact method of printing (e.g. redirection of messages to a stream,
a window, or using different prefixes, etc.) through appropriate hooks.

In our example the following lines are printed by the second phase of processing:

! Instantiation error in argument 1 of =:= /2

! goal: _=:=3

The user can override the default message processing mechanism in the following two ways:

• A global method is to define the hook predicate portray_message/2, which is the first
thing called by message processing. If this hook exists and succeeds, then it overrides
all other processing—nothing further is done by print_message/2.

• If a finer method of influencing the behavior of message processing is needed, then there
are several further hooks provided, which affect only one phase of the process. These
are described in the following paragraphs.

4.16.1.2 Message Generation Phase

The default message generation predicates are located in the library('SU_messages') file,
in the 'SU_messages' module, together with other message and query related predicates.
This is advantageous when these predicates have to be changed as a whole (for example
when translating all messages to another language), because this can be done simply by
replacing the file library('SU_messages') by a new one.

In the message generation phase three alternative methods are tried:

• First the hook predicate generate_message_hook/3 is executed, if it succeeds, then it
is assumed to deliver the output of this phase.

• Next the default message generation is invoked via 'SU_messages':generate_

message/3.

• In the case that neither of the above methods succeed, a built-in fall-back message
generation method is used.

Chapter 4: The Prolog Language 215

The hook predicate generate_message_hook/3 can be used to override the default be-
havior, or to handle new messages defined by the programmer that do not fit the default
message generation schemes. The latter can also be achieved by adding new clauses to the
hook predicate 'SU_messages':generate_message/3.

If both the hook and the default method refuses to handle the message, then the following
simple format-command list is generated from the abstract message term Message:

['~q'-[Message],nl]

This will result in displaying the abstract message term itself, as if printed by writeq/1.

For messages of the severity silent the message generation phase is skipped, and the []

format-command list is returned as the output.

4.16.1.3 Message Printing Phase

By default this phase is handled by the built-in predicate print_message_lines/3. Each
line of the message is prefixed with a string depending on the severity, and is printed to
user_error. The query severity is special—no newline is printed after the last line of the
message.

This behavior can be overridden by defining the hook predicate message_hook/3, which
is called with the severity of the message, the abstract message term and its translation
to format-command lines. It can be used to make smaller changes, for example by calling
print_message_lines/3 with a stream argument other than user_error, or to implement
a totally different display method such as using dialog windows for messages.

For messages of the severity silent the message printing phase consists of calling the hook
predicate message_hook/3 only. Even if the hook fails, no printing is done.

4.16.2 Message Handling Predicates

print_message(+Severity, +Message) hookable

Portrays or else writesMessage of a given Severity on the standard error stream.
See Section 11.3.162 [mpg-ref-print message], page 1114.

portray_message(+Severity, +Message) hook

user:portray_message(+Severity, +Message)

Tells print_message/2 what to do.

generate_message_hook(+Message, -L0, -L) hook

user:generate_message_hook(+Message, -L0, -L)

A way for the user to override the call to 'SU_messages':generate_message/3
in the message generation phase in print_message/2.

'SU_messages':generate_message(+Message, -L0, -L) hook

Predefined message generation rules.

216 SICStus Prolog

message_hook(+Severity, +Message, +Lines) hook

user:message_hook(+Severity, +Message, +Lines)

Overrides the call to print_message_lines/3 in print_message/2. A way
for the user to intercept the abstract message term Message of type Severity,
whose translation is Lines, before it is actually printed.

print_message_lines(+Stream, +Severity, +Lines)

Print the Lines to Stream, preceding each line with a prefix defined by Severity.

goal_source_info(+AGoal, -Goal, -SourceInfo)

Decomposes the annotated goal AGoal into a Goal proper and the SourceInfo
descriptor term, indicating the source position of the goal.

4.16.3 Query Processing

All user input in the Prolog system is handled by a single predicate:

ask_query(QueryClass, Query, Help, Answer)

QueryClass, described below, specifies the form of the query interaction. Query is an
abstract message term specifying the query text, Help is an abstract message term used as
a help message in certain cases, and Answer is the (abstract) result of the query.

ask_query/4 is a built-in predicate, so that users can invoke it to have their own queries
processed in the same way as the system queries.

The processing of queries is highly customizable. For example, this allows changing the
language of the input expected from the user, or to make queries appear in dialog windows
rather than on the terminal.

4.16.3.1 Query Classes

Queries posed by the system can be classified according to the kind of input they expect,
the way the input is processed, etc. Queries of the same kind form a query class.

For example, queries requiring a yes/no answer form a query class with the following char-
acteristics:

• the text ‘ (y or n) ’ is used as the prompt;

• a single line of text is input;

• if the first non-whitespace character of the input is y or n (possibly in capitals), then
the query returns the atom yes or no, respectively, as the abstract answer;

• otherwise a help message is displayed and the query is repeated.

There are built-in query classes for reading in yes/no answers, toplevel queries, debugger
commands, etc.

A query class is characterized by a ground Prolog term, which is supplied as the first
argument to the query processing predicate ask_query/4. The characteristics of a query
class are normally described by the hook predicate

Chapter 4: The Prolog Language 217

'SU_messages':query_class(QueryClass, Prompt, InputMethod,

MapMethod, FailureMode).

The arguments of the query_class predicate have the following meaning:

Prompt an atom to be used for prompting the user.

InputMethod
a non-variable term, which specifies how to obtain input from the user.

For example, a built-in input method is described by the atom line. This
requests that a line is input from the user, and the code list is returned. An-
other built-in input method is term(Options); here, a Prolog term is read and
returned.

The input obtained using InputMethod is called raw input, as it may undergo
further processing.

In addition to the built-in input methods, the user can define his/her own
extensions.

MapMethod
a non-variable term, which specifies how to process the raw input to get the
abstract answer to the query.

For example, the built-in map method char([yes-"yY", no-"nN"]) expects a
code list as raw input, and gives the answer term yes or no depending on the
first non-whitespace character of the input. For another example, the built-in
map method = requests that the raw input itself be returned as the answer
term—this is often used in conjunction with the input method term(Options).

In addition to the built-in map methods the user can define his/her own exten-
sions.

FailureMode
This is used only when the mapping of raw input fails, and the query must be
repeated. This happens for example if the user typed a character other than
y or n in case of the yes_or_no query class. FailureMode determines what to
print before re-querying the user. Possible values are:

help_query

print a help message, then print the text of the query again

help only print the help message

query only print the text of the query

none do not print anything

4.16.3.2 Phases of Query Processing

Query processing is done in several phases, described below. We will illustrate what is done
in each phase through a simple example: the question put to the user when the solution to
the toplevel query ‘X is 1+1’ is displayed, requesting a decision whether to find alternative
answers or not:

218 SICStus Prolog

| ?- X is 1+1.

X = 2 ? no

Please enter ";" for more choices; otherwise, <return>

? ;

We focus on the query ‘X = 2 ? ’ in the above script.

The example query belongs to the class next_solution, its text is described by the message
term solutions([binding("X",2)]), and its help text by the message term bindings_

help. Accordingly, such a query is executed by calling:

ask_query(next_solution, /* QueryClass */

solutions([binding("X",2)]), /* Query */

bindings_help, /* Help */

Answer)

In general, execution of ask_query(QueryClass, Query, Help, Answer) consists of the
following phases:

Preparation phase
The abstract message terms Query (for the text of the query) and Help (for
the help message) are converted to format-command lines via the message
generation and line splitting phases (see Section 4.16.1 [Message Processing],
page 212). Let us call the results of the two conversions QueryLines and
HelpLines, respectively. The text of the query, QueryLines is printed imme-
diately (via the message printing phase, using query severity). HelpLines may
be printed later, and QueryLines printed again, in case of invalid user input.

The characteristics of QueryClass (described in the previous subsubsection) are
retrieved to control the exact behavior of the further phases.

In our example, the following parameters are sent in the preparation phase:

QueryLines = [[],['~s = '-["X"],write_term(2)]]

HelpLines =

[['Please enter ";" for more choices; otherwise, <return>'-[]]]

Prompt = ' ? '

InputMethod = line

MapMethod = char([yes-";", no-[0'\n]])

FailureMode = help

QueryLines is displayed immediately, printing:

X = 2

(Note that the first element ofQueryLines is [], therefore the output is preceded
by a newline. Also note that no newline is printed at the end of the last line,
because the query severity is used.)

The subsequent phases will be called repeatedly until the mapping phase suc-
ceeds in generating an answer.

Chapter 4: The Prolog Language 219

Input phase
By default, the input phase is implemented by the hook predicate

'SU_messages':query_input(InputMethod, Prompt, RawInput).

This phase uses the Prompt and InputMethod characteristics of the query
class. InputMethod specifies the method of obtaining input from the user.
This method is executed, and the result (RawInput) is passed on to the next
phase.

The use of Prompt may depend on InputMethod. For example, the built-in
input method line prints the prompt unconditionally, while the input method
term(_) passes Prompt to prompt/2.

In the example, first the ‘ ? ’ prompt is displayed. Next, because InputMethod
is line, a line of input is read, and the code list is returned in RawInput. Sup-
posing that the user typed noRET, RawInput becomes " no" = [32,110,111].

Mapping phase
By default, the mapping phase is implemented by the hook predicate

'SU_messages':query_map(MapMethod, RawInput,

Result, Answer).

This phase uses the MapMethod parameter to control the method of converting
the raw input to the abstract answer.

In some cases RawInput is returned as it is, but otherwise it has to be processed
(parsed) to generate the answer.

The conversion process may have two outcomes indicated in the Result re-
turned:

• success, in which case the query processing is completed with the Answer
term returned;

• failure, the query has to be repeated.

In the latter case a message describing the cause of failure may be returned, to
be printed before the query is repeated.

In our example, the map method is char([yes-";", no-[0'\n]]). The map-
ping phase fails for the RawInput passed on by the previous phase of the ex-
ample, as the first non-whitespace character is n, which does not match any of
the given characters.

Query restart phase
This phase is executed only if the mapping phase returned with failure.

First, if a message was returned by the mapping, then it is printed. Subse-
quently, if requested by the FailureMode parameter, then the help message
HelpLines and/or the text of the query QueryLines is printed.

The query is then repeated—the input and mapping phase will be called again
to try to get a valid answer.

In the above example, the user typed an invalid character, so the mapping
failed. The char(_) mapping does not return any message in case of failure.

220 SICStus Prolog

The FailureMode of the query class is help, so the help message HelpLines is
printed, but the query is not repeated:

Please enter ";" for more choices; otherwise, <return>

Having completed the query restart phase, the example script continues by re-
entering the input phase: the prompt ‘ ? ’ is printed, another line is read, and
is processed by the mapping phase. If the user types the character ; this time,
then the mapping phase returns successfully and gives the abstract answer term
yes.

4.16.3.3 Hooks in Query Processing

As explained above, the major parts of query processing are implemented in the 'SU_

messages' module in the file library('SU_messages') through the following hook predi-
cates:

• 'SU_messages':query_class(+QueryClass, -Prompt, -InputMethod,

-MapMethod, -FailureMode)

• 'SU_messages':query_input(+InputMethod, +Prompt, -RawInput)

• 'SU_messages':query_map(+MapMethod, +RawInput, -Result, -Answer)

This is to enable the user to change the language used, the processing done, etc., simply by
changing or replacing the library('SU_messages') file.

To give more control to the user and to make the system more robust (for example if the 'SU_
messages' module is corrupt) the so-called four step procedure is used in the above three
cases—obtaining the query class parameters, performing the query input and performing
the mapping. The four steps of this procedure, described below, are tried in the given order
until the first one that succeeds. Note that if an exception is raised within the first three
steps, then a warning is printed and the step is considered to have failed.

• First, a hook predicate is tried. The name of the hook is derived from the name of the
appropriate predicate by appending ‘_hook’ to it, e.g. user:query_class_hook/5 in
case of the query class. If this hook predicate exists and succeeds, then it is assumed
to have done all necessary processing, and the following steps are skipped.

• Second, the predicate in the 'SU_messages' module is called (this is the default case,
these are the predicates listed above). Normally this should succeed, unless the mod-
ule is corrupt, or an unknown query-class/input-method/map-method is encountered.
These predicates are hook, so new classes and methods can be added easily by the user.

• Third, as a fall-back, a built-in minimal version of the predicates in the original 'SU_
messages' is called. This is necessary because the library('SU_messages') file is
modifiable by the user, therefore vital parts of the Prolog system (e.g. the toplevel
query) could be damaged.

• If all the above steps fail, then nothing more can be done, and an exception is raised.

Chapter 4: The Prolog Language 221

4.16.3.4 Default Input Methods

The following InputMethod types are implemented by the default 'SU_messages':query_
input(InputMethod, Prompt, RawInput) (and these are the input methods known to the
third, fall-back step):

line The Prompt is printed, a line of input is read using read_line/2 and the code
list is returned as RawInput.

term(Options)

Prompt is set to be the prompt (cf. prompt/2), and a Prolog term is read by
read_term/2 using the given Options, and is returned as RawInput.

FinalTerm^term(Term,Options)

A Prolog term is read as above, and is unified with Term. FinalTerm is returned
as RawInput. For example, the T-Vs^term(T,[variable_names(Vs)]) input
method will return the term read, paired with the list of variable names.

4.16.3.5 Default Map Methods

The following MapMethod types are known to 'SU_messages':query_map(MapMethod,

RawInput, Result, Answer) and to the built-in fall-back mapping:

char(Pairs)

In this map method RawInput is assumed to be a code list.

Pairs is a list of Name-Abbreviations pairs, where Name is a ground term, and
Abbreviations is a code list. The first non-whitespace character of RawInput
is used for finding the corresponding name as the answer, by looking it up in
the abbreviation lists. If the character is found, then Result is success, and
Answer is set to the Name found; otherwise, Result is failure.

= No conversion is done, Answer is equal to RawInput and Result is success.

debugger This map method is used when reading a single line debugger command. It
parses the debugger command and returns the corresponding abstract command
term. If the parse is unsuccessful, then the answer unknown(Line,Warning) is
returned. This is to allow the user to extend the debugger command language
via debugger_command_hook/2, see Section 5.5 [Debug Commands], page 237.

The details of this mapping can be obtained from the library('SU_messages')
file.

Note that the fall-back version of this mapping is simplified, it only accepts
parameterless debugger commands.

4.16.3.6 Default Query Classes

Most of the default query classes are designed to support some specific interaction with
the user within the Prolog development environment. The full list of query classes can
be inspected in the file library('SU_messages'). Here, we only describe the two classes
defined by 'SU_messages':query_class/5 that may be of general use:

QueryClass yes_or_no yes_no_proceed

222 SICStus Prolog

Prompt ' (y or n) ' ' (y, n, p, s, a, or ?) '

InputMethod line line

MapMethod char([yes-"yY",

no-"nN"])

char([yes-"yY", no-"nN", proceed-"pP",

suppress-"sS", abort-"aA"])

FailureMode help_query help_query

4.16.4 Query Handling Predicates

ask_query(+QueryClass, +Query, +Help, -Answer) hookable

Prints the question Query, then reads and processes user input according to
QueryClass, and returns the result of the processing, the abstract answer term
Answer. The Help message is printed in case of invalid input. See Section 11.3.9
[mpg-ref-ask query], page 919.

query_hook(+QueryClass, +Query, +QueryLines, +Help, +HelpLines, -Answer)

hook

user:query_hook(+QueryClass, +Query, +QueryLines, +Help, +HelpLines, -Answer)

Called by ask_query/4 before processing the query. If this predicate succeeds,
then it is assumed that the query has been processed and nothing further is
done.

query_class_hook(+QueryClass, -Prompt, -InputMethod, -MapMethod,

-FailureMode) hook

user:query_class_hook(+QueryClass, -Prompt, -InputMethod, -MapMethod,

-FailureMode)

Provides the user with a method of overriding the call to 'SU_

messages':query_class/5 in the preparation phase of query processing. This
way the default query class characteristics can be changed.

'SU_messages':query_class(+QueryClass, -Prompt, -InputMethod, -MapMethod,

-FailureMode) hook

Predefined query class characteristics table.

'SU_messages':query_abbreviation(+QueryClass, -Prompt, -Pairs) hook

Predefined query abbreviation table.

query_input_hook(+InputMethod, +Prompt, -RawInput) hook

user:query_input_hook(+InputMethod, +Prompt, -RawInput)

Provides the user with a method of overriding the call to 'SU_

messages':query_input/3 in the input phase of query processing. This way
the implementation of the default input methods can be changed.

'SU_messages':query_input(+InputMethod, +Prompt, -RawInput) hook

Predefined query input methods.

query_map_hook(+MapMethod, +RawInput, -Result, -Answer) hook

user:query_map_hook(+MapMethod, +RawInput, -Result, -Answer)

Provides the user with a method of overriding the call to 'SU_

messages':query_map/4 in the mapping phase of query processing. This way
the implementation of the default map methods can be changed.

'SU_messages':query_map(+MapMethod, +RawInput, -Result, -Answer) hook

Predefined query map methods.

Chapter 4: The Prolog Language 223

4.16.5 Predicate Summary

ask_query(+QueryClass, +Query, +Help, -Answer) hookable

Prints the question Query, then reads and processes user input according to
QueryClass, and returns the result of the processing, the abstract answer term
Answer. The Help message is printed in case of invalid input.

user:message_hook(+M,+S,+L) hook

intercept the printing of a message

'SU_messages':generate_message(+M,?SO,?S) hook

determines the mapping from a message term into a sequence of lines of text
to be printed

user:generate_message_hook(+M,?S0,?S) hook

intercept message before it is given to 'SU_messages':generate_message/3

goal_source_info(+AGoal, -Goal, -SourceInfo)

Decomposes the annotated goal AGoal into a Goal proper and the SourceInfo
descriptor term, indicating the source position of the goal.

user:portray_message(+Severity,+Message) hook

Tells print_message/2 what to do.

print_message(+S,+M) hookable

print a message M of severity S

print_message_lines(+S,+P,+L)

print the message lines L to stream S with prefix P

'SU_messages':query_abbreviation(+T,-P) hook

specifies one letter abbreviations for responses to queries from the Prolog system

user:query_hook(+QueryClass, +Query, +QueryLines, +Help, +HelpLines, -Answer)

hook

Called by ask_query/4 before processing the query. If this predicate succeeds,
then it is assumed that the query has been processed and nothing further is
done.

'SU_messages':query_class(+QueryClass, -Prompt, -InputMethod, -MapMethod,

-FailureMode) hook

Access the parameters of a given QueryClass.

user:query_class_hook(+QueryClass, -Prompt, -InputMethod, -MapMethod,

-FailureMode) hook

Provides the user with a method of overriding the call to 'SU_

messages':query_class/5 in the preparation phase of query processing. This
way the default query class characteristics can be changed.

'SU_messages':query_input(+InputMethod, +Prompt, -RawInput) hook

Implements the input phase of query processing.

user:query_input_hook(+InputMethod, +Prompt, -RawInput) hook

Provides the user with a method of overriding the call to 'SU_

messages':query_input/3 in the input phase of query processing. This way
the implementation of the default input methods can be changed.

224 SICStus Prolog

'SU_messages':query_map(+MapMethod, +RawInput, -Result, -Answer) hook

Implements the mapping phase of query processing.

user:query_map_hook(+MapMethod, +RawInput, -Result, -Answer) hook

Provides the user with a method of overriding the call to 'SU_

messages':query_map/4 in the mapping phase of query processing. This way
the implementation of the default map methods can be changed.

4.17 Other Topics

This section describes topics that do not fit elsewhere.

4.17.1 System Properties and Environment Variables

SICStus Prolog stores some information in named variables called system properties. System
properties are used since release 4.1, whereas previous releases used environment variables.

The default value when reading a system property is taken from the corresponding envi-
ronment variable. This makes system properties largely backward compatible with how
environment variables were used in previous releases. Any exceptions to this rule are ex-
plicitly mentioned in the documentation.

You can obtain the value of system properties and environment variables using
system:environ/[2,3] (see Section 10.40 [lib-system], page 747) and SP_getenv().

Some system properties affect the SICStus Prolog initialization process and must therefore
be set before SICStus Prolog has been initialized. There are three ways to affect the initial
values of system properties:

1. Set the corresponding environment variable.

System properties get their default value from the environment so this is often a con-
venient method. It was the only method available prior to release 4.1.

2. Pass the -Dvar=value option to the sicstus command line tool. See Section 13.1
[too-sicstus], page 1366.

3. Pass an option block to SP_initialize() if you initialize the SICStus runtime from
C. See Section 6.7.4.1 [Initializing the Prolog Engine], page 329.

Looking up system properties follows the platform convention for environment variables.
This means that the lookup is case sensitive on UNIX-like platforms and case insensitive
on Windows.

On UNIX-like systems, the environment is assumed to use the UTF-8 character encoding;
on Windows, the native Unicode encoding is used.

SICStus reads and copies the process environment during initialization, e.g. in SP_

initialize(). Any subsequent changes to the proces environment will not be detected
by SICStus. Note that, at least on UNIX-like systems, changing the process environment,
e.g. using setenv(), has undefined behavior when the process has multiple threads, which
is the case for any process running SICStus.

Chapter 4: The Prolog Language 225

While copying the environment, each entry in the environment is normalized as follows:

• If it does not contain an equal sign, then the entry is ignored.

• On Windows only, if it starts with an equal sign but has no other equal signs, then the
entry is ignored.

• If the entry consists of valid UTF-8, then it is kept as is. This is always true on
Windows where a Unicode encoding is used internally by the operating system.

• If the entry does not consist of valid UTF-8, then it is treated as Latin-1 and converted
to UTF-8. This cannot happen on Windows.

• On Windows only, if the entry starts with an equal sign, then the equal sign is treated
as part of the variable name.

In particular, on UNIX-like systems, this means that the environment should preferably be
in UTF-8.

4.17.1.1 System Properties Set by SICStus Prolog

The following system properties are set automatically on startup.

SP_APP_DIR

The absolute path to the directory that contains the executable. Also available
as the application file search path.

SP_APP_PATH

The absolute path to the executable. Unlike SP_APP_DIR, this system property
may not be available under all circumstances.

SP_RT_DIR

The full path to the directory that contains the SICStus runtime. If the ap-
plication was linked statically to the SICStus runtime, then SP_RT_DIR is the
same as SP_APP_DIR. Also available as the runtime file search path.

SP_RT_PATH

The absolute path to the SICStus runtime. Unlike SP_RT_DIR, this system
property may not be available under all circumstances, e.g. if the runtime is
not a shared library.

SP_LIBRARY_DIR

The absolute path to the directory that contains the SICStus library files. Also
available as the initial value of the library file search path.

SP_TEMP_DIR

A directory suitable for storing temporary files. It is particularly useful with
the open/4 option if_exists(generate_unique_name). Also available as the
temp file search path.

SP_STARTUP_DIR

During initialization the SP_STARTUP_DIR system property will be set to the
working directory used by SICStus.

Note that this system property can also be set prior to initialization, in order
to tell SICStus which working directory to use. See below.

226 SICStus Prolog

4.17.1.2 System Properties Affecting Initialization

The following system properties can be set before starting SICStus Prolog.

Some of these override the default sizes of certain areas. For variables ending with ‘SIZE’,
the size is in bytes, but may be followed by ‘K’, ‘M’, or ‘G’ meaning 2**10, 2**20 and 2**30
respectively.

Boolean values true and false are represented by ‘yes’ and ‘no’, respectively.

See Section 4.10 [ref-mgc], page 144, for more information about the properties that affect
memory management.

SP_PATH Can be used to specify the location of the Runtime Library. In most cases there
is no need to use it, but see Section 6.1 [CPL Notes], page 289.

SP_STARTUP_DIR

The value of this system property, if set, is used as the initial working directory.
Note that this system property is also set automatically during initialization;
see above.

This value of this system property is not read from the corresponding environ-
ment variable.

SP_ALLOW_CHDIR

If this system property is set to ‘no’, then SICStus will not change the process’s
working directory when the SICStus working directory changes. This is useful
when embedding SICStus and would probably be the better default behavior
except for backwards compatibility.

GLOBALSTKSIZE

Controls the initial size of the global stack. Please note: The global stack will
not be subsequently trimmed to a size smaller than this initial size.

LOCALSTKSIZE

Controls the initial size of the local stack. Please note: The local stack will not
be subsequently trimmed to a size smaller than this initial size.

CHOICESTKSIZE

Controls the initial size of the choicepoint stack. Please note: The choicepoint
stack will not be subsequently trimmed to a size smaller than this initial size.

TRAILSTKSIZE

Controls the initial size of the trail stack. Please note: The trail stack will not
be subsequently trimmed to a size smaller than this initial size.

GROWTHFACTOR since release 4.0.8

Meaningful values are between 10 and 100; the default is 62. Controls the rate
at which the Prolog stacks grow when they are expanded. These stacks are
stored in two data areas: one holding the global and local stacks; another one
holding the choicepoint and trail stacks. In addition, both data areas hold some
memory reserved for the garbage collector.

Chapter 4: The Prolog Language 227

The sizes of the two data areas are constrained to take certain discrete values
only. The initial size as well as the size after expansion is constrained to be
w*((1+g)^n) kilobytes, rounded up to an integral number of words, where w is
the word length in bits, g is GROWTHFACTOR/100, and n is an integer.

PROLOGINITSIZE

Controls the size of Prolog’s initial memory allocation. Please note: This
initially allocated memory will be kept by the Prolog process until SP_

deinitialize() is called or the process exits.

PROLOGMAXSIZE

Defines an upper bound on the amount of memory that Prolog will use. If not
set, then Prolog will try to use the available address space. Thus if Prolog needs
to allocate memory beyond this bound, then a memory resource error will be
raised.

PROLOGINCSIZE

Controls the amount of memory Prolog asks the operating system for in any
given memory expansion.

PROLOGKEEPSIZE

Defines a lower bound on the amount of memory retained by trimcore/0.
By default, Prolog gets memory from the O/S as the user program executes,
whereas trimcore/0 endeavors to return free memory back to the O/S. If the
programmer knows that her program, once it has grown to a certain size, then is
likely to need as much memory for future computations, she can advise Prolog
not to return all the free memory back to the operating system by setting
this variable. trimcore/0 only endeavors to return memory that is allocated
above and beyond PROLOGKEEPSIZE; the rest will be kept. Please note: The
initially allocated memory will be kept by the Prolog process forever, so it is
not meaningful to set PROLOGKEEPSIZE smaller than PROLOGINITSIZE.

SP_ULIMIT_DATA_SEGMENT_SIZE

Sets the maximum size of the data segment of the Prolog process. The value
can be unlimited or a numeric value as described in the first paragraph in
this section. A numeric value of zero (0) is equivalent to unlimited. Not used
under Windows.

SP_USE_MALLOC

If yes, then malloc() et al. will be used for memory management instead of
the default memory allocator. This is sometimes useful, e.g$: with debugging
tools like valgrind.

Please note: Enabling malloc() allocation is not compatible with JIT compi-
lation.

SP_JIT since release 4.3

Affects whether the JIT (Just In Time) compiler should be used to compile
Prolog code inte native (machine) code. One of:

yes JIT compilation is enabled and happens automatically. This is the
default on platforms that support JIT compilation.

228 SICStus Prolog

no JIT compilation is enabled but does not happen automatically.
Currently, there is no documented way to JIT compile predicates
manually.

disabled JIT compilation is disabled completely. Please report if you en-
counter any reason to disable the JIT compiler.

JIT compilation may need to be disabled on certain security-
hardened operating systems, e.g. because they do not permit mem-
ory to be both writeable and executable.

This system property is ignored on platforms that do not support the JIT
compiler.

SP_JIT_COUNTER_LIMIT since release 4.3

Determines how many times a predicate can be called before it is JIT compiled.
The default is 0.

The heuristics used in order to decide when, and whether, a predicate should
be JIT compiled, is subject to change without notice. In particular, this system
property may be treated differently in some future release.

SP_JIT_CLAUSE_LIMIT since release 4.3

Sets an upper bound on the number of clauses of a predicate for JIT compilation
to be attempted. The default is 1024.

SP_SPTI_PATH since release 4.3

Specify a plugin that will be told when predicates are JIT compiled. The details
of writing or using such plugins are currently not documented, and subject to
change without notice.

There are two predefined plugins,

verbose Write verbose information when a predicate is JIT compiled. This
can be useful when troubleshooting problems with JIT compilation,
e.g. if some predicate takes too long to JIT-compile.

This plugin can be activated by passing -DSP_SPTI_PATH=verbose

to sicstus.

perf

Tell the Linux perf profiler about the location and name of the JIT
compiled predicates. This makes it possible to use perf record

etc. for getting accurate and low-overhead profiling info about JIT
compiled code.

This plugin can be activated either by passing -DSP_SPTI_

PATH=perf to sicstus, or, once SICStus has started, with the goal
use_module(library(perf)).

The perf integration is only available on Linux.

oprofile

Tell OProfile profiler about the location and name of the JIT com-
piled predicates. This makes it possible to use OProfile for getting
accurate and low-overhead profiling info about JIT compiled code.

Chapter 4: The Prolog Language 229

Information about using OProfile for profiling jitted code is avail-
able at the OProfile site, http://oprofile.sourceforge.net/
.

This plugin can be activated either by passing -DSP_SPTI_

PATH=oprofile to sicstus, or, once SICStus has started, with
the goal use_module(library(oprofile)).

OProfile integration is only available on Linux.

4.17.1.3 Other System Properties

In addition some system properties are read during normal execution. In this case the
system property is typically not meant to be explicitly set, instead the value is intended to
be taken from the corresponding environment variable. Examples of such system properties
include PATH and HOME.

http://oprofile.sourceforge.net/
http://oprofile.sourceforge.net/

231

5 Debugging

This chapter describes the debugging facilities that are available in development systems.
The purpose of these facilities is to provide information concerning the control flow of your
program.

The main features of the debugging package are as follows:

• The Procedure Box model of Prolog execution, which provides a simple way of visualiz-
ing control flow, especially during backtracking. Control flow is viewed at the predicate
level, rather than at the level of individual clauses.

• The ability to exhaustively trace your program or to selectively set spypoints. Spypoints
allow you to nominate interesting predicates at which, for example, the program is to
pause so that you can interact.

• The ability to set advice points. An advice point allows you to carry out some actions
at certain points of execution, independently of the tracing activity. Advice points
can be used, e.g. for checking certain program invariants (cf. the assert facility of the
C programming language), or for gathering profiling or branch coverage information.
Spypoints and advice points are collectively called breakpoints.

• The wide choice of control and information options available during debugging.

The Procedure Box model of execution is also called the Byrd Box model after its inventor,
Lawrence Byrd.

Much of the information in this chapter is also in Chapter eight of [Clocksin & Mellish 81],
which is recommended as an introduction.

Unless otherwise stated, the debugger prints goals using write_term/3 with the value of
the Prolog flag debugger_print_options.

The debugger is not available in runtime systems and the predicates defined in this chapter
are undefined; see Section 6.7.1 [Runtime Systems], page 318.

5.1 The Procedure Box Control Flow Model

During debugging, the debugger prints out a sequence of goals in various states of instantia-
tion in order to show the state the program has reached in its execution. However, in order
to understand what is occurring it is necessary to understand when and why the debugger
prints out goals. As in other programming languages, key points of interest are predicate
entry and return, but in Prolog there is the additional complexity of backtracking. One
of the major confusions that novice Prolog programmers have to face is the question of
what actually happens when a goal fails and the system suddenly starts backtracking. The
Procedure Box model of Prolog execution views program control flow in terms of movement
about the program text. This model provides a basis for the debugging mechanism in devel-
opment systems, and enables the user to view the behavior of the program in a consistent
way.

Let us look at an example Prolog predicate :

232 SICStus Prolog

Call | | Exit

---------> + descendant(X,Y) :- offspring(X,Y). + --------->

| |

| descendant(X,Z) :- |

<--------- + offspring(X,Y), descendant(Y,Z). + <---------

Fail | | Redo

-------------------+------------------

|

<------------------------------+

Exception

The first clause states that Y is a descendant of X if Y is an offspring of X, and the second
clause states that Z is a descendant of X if Y is an offspring of X and if Z is a descendant
of Y. In the diagram a box has been drawn around the whole predicate and labeled arrows
indicate the control flow in and out of this box. There are five such arrows, which we shall
look at in turn.

Call This arrow represents initial invocation of the predicate. When a goal of the
form descendant(X,Y) is required to be satisfied, control passes through the
Call port of the descendant box with the intention of matching a component
clause and then satisfying the subgoals in the body of that clause. Note that
this is independent of whether such a match is possible; i.e. first the box is
called, and then the attempt to match takes place. Textually we can imagine
moving to the code for descendant when meeting a call to descendant in some
other part of the code.

Exit This arrow represents a successful return from the predicate. This occurs when
the initial goal has been unified with one of the component clauses and the
subgoals have been satisfied. Control now passes out of the Exit port of the
descendant box. Textually we stop following the code for descendant and go
back to the place we came from.

Redo This arrow indicates that a subsequent goal has failed and that the system is
backtracking in an attempt to find alternatives to previous solutions. Control
passes through the Redo port of the descendant box. An attempt will now be
made to resatisfy one of the component subgoals in the body of the clause that
last succeeded; or, if that fails, to completely rematch the original goal with an
alternative clause and then try to satisfy any subgoals in the body of this new
clause. Textually we follow the code backwards up the way we came looking
for new ways of succeeding, possibly dropping down on to another clause and
following that if necessary.

Fail This arrow represents a failure of the initial goal, which might occur if no
clause is matched, or if subgoals are never satisfied, or if any solution produced
is always rejected by later processing. Control now passes out of the Fail port
of the descendant box and the system continues to backtrack. Textually we
move back to the code that called this predicate and keep moving backwards
up the code looking for choicepoints.

Chapter 5: Debugging 233

Exception This arrow represents an exception that was raised in the initial goal, either by
a call to throw/1 or raise_exception/1 or by an error in a built-in predicate.
See Section 4.15 [ref-ere], page 197. Control now passes out of the Exception
port of the descendant box and the system continues to pass the exception to
outer levels. Textually we move back to the code that called this predicate
and keep moving backwards up the code looking for a call to catch/3 or on_
exception/3.

In terms of this model, the information we get about the procedure box is only the control
flow through these five ports. This means that at this level we are not concerned with
identifying the matching clause, and how any subgoals are satisfied, but rather we only
wish to know the initial goal and the final outcome. However, it can be seen that whenever
we are trying to satisfy subgoals, what we are actually doing is passing through the ports of
their respective boxes. If we were to follow this, then we would have complete information
about the control flow inside the procedure box.

Note that the box we have drawn round the predicate should really be seen as an invocation
box. That is, there will be a different box for each different invocation of the predicate.
Obviously, with something like a recursive predicate, there will be many different Calls and
Exits in the control flow, but these will be for different invocations. Since this might get
confusing each invocation box is given a unique integer identifier.

In addition to the five basic ports discussed above, there are two more ports for invocations
involving a blocked goal:

Block This port is passed through when a goal is blocked.

Unblock This port is passed through when a previously blocked goal is unblocked.

5.2 Basic Debugging Predicates

Development systems provide a range of built-in predicates for control of the debugging
facilities. The most basic predicates are as follows:

debug development

Switches the debugger on, and ensures that the next time control reaches a
spypoint, it will be activated. In basic usage this means that a message will be
produced and you will be prompted for a command. In order for the full range
of control flow information to be available it is necessary to have the debugger
on from the start. When it is off the system does not remember invocations
that are being executed. (This is because it is expensive and not required for
normal running of programs.) You can switch Debug Mode on in the middle of
execution, either from within your program or after a ^C (see trace/0 below),
but information prior to this will be unavailable. See Section 11.3.60 [mpg-ref-
debug], page 980.

234 SICStus Prolog

zip development

Same as debug/0, except no debugging information is being collected, and so is
almost as fast as running with the debugger switched off. See Section 11.3.255
[mpg-ref-zip], page 1230.

trace development

Switches the debugger on, and ensures that the next time control enters an
invocation box, a message will be produced and you will be prompted for a
command. The effect of trace/0 can also be achieved by typing t after a ^C

interruption of a program.

At this point you have a number of options. See Section 5.5 [Debug Commands],
page 237. In particular, you can just type RET to creep (or single-step) into your
program. If you continue to creep through your program, then you will see every
entry and exit to/from every invocation box, including compiled code, except
for code belonging to hidden modules (see Section 4.11 [ref-mod], page 161).
You will notice that the debugger stops at all ports. However, if this is not what
you want, then the next predicate gives full control over the ports at which you
are prompted. See Section 11.3.237 [mpg-ref-trace], page 1207.

leash(+Mode) development

Leashing Mode is set to Mode. Leashing Mode determines the ports of invo-
cation boxes at which you are to be prompted when you creep through your
program. At unleashed ports a tracing message is still output, but program
execution does not stop to allow user interaction. Note that leash/1 does not
apply to spypoints, the leashing mode of these can be set using the advanced
debugger features; see Section 5.6 [Advanced Debugging], page 243. Block and
Unblock ports cannot be leashed. Mode can be a subset of the following, spec-
ified as a list of the following:

call Prompt on Call.

exit Prompt on Exit.

redo Prompt on Redo.

fail Prompt on Fail.

exception

Prompt on Exception.

The following shorthands are also allowed:

leash(all)

Same as leash([exception,call,exit,redo,fail]).

leash(half)

Same as leash([exception,call,redo]).

leash(loose)

Same as leash([exception,call]).

leash(tight)

Same as leash([exception,call,redo,fail]).

Chapter 5: Debugging 235

leash(off)

Same as leash([]).

The initial value of Leashing Mode is [call,exit,redo,fail,exception] (full
leashing). See Section 11.3.110 [mpg-ref-leash], page 1044.

nodebug development

notrace development

nozip development

Switches the debugger off. Any spypoints set will be kept but will never be
activated.

debugging development

Prints information about the current debugging state. This will show:

1. Whether undefined predicates are being trapped.

2. What breakpoints have been set (see below).

3. What mode of leashing is in force (see above).

See Section 11.3.62 [mpg-ref-debugging], page 982.

5.3 Plain Spypoints

For programs of any size, it is clearly impractical to creep through the entire program.
Spypoints make it possible to stop the program whenever it gets to a particular predicate
of interest. Once there, one can set further spypoints in order to catch the control flow a
bit further on, or one can start creeping.

In this section we discuss the simplest form of spypoints, the plain spypoints. The more
advanced forms, the conditional and generic spypoints will be discussed later; see Section 5.6
[Advanced Debugging], page 243.

Setting a plain spypoint on a predicate indicates that you wish to see all control flow through
the various ports of its invocation boxes, except during skips. When control passes through
any port of an invocation box with a spypoint set on it, a message is output and the user is
asked to interact. Note that the current mode of leashing does not affect plain spypoints:
user interaction is requested on every port.

Spypoints are set and removed by the following built-in predicates. The first two are also
standard operators:

spy :Spec development

Sets plain spypoints on all the predicates given by the generalized predicate
specification Spec.

Examples:

| ?- spy [user:p, m:q/2, m:q/3].

| ?- spy m:[p/1, q/1].

If you set some spypoints when the debugger is switched off, then it will be
automatically switched on, entering zip mode. See Section 11.3.216 [mpg-ref-
spy], page 1180.

236 SICStus Prolog

nospy :Spec development

Similar to spy Spec except that all the predicates given by Spec will have all
previously set spypoints removed from them (including conditional spypoints;
see Section 5.6.1 [Creating Breakpoints], page 243). See Section 11.3.132 [mpg-
ref-nospy], page 1075.

nospyall development

Removes all the spypoints that have been set, including the conditional and
generic ones. See Section 11.3.133 [mpg-ref-nospyall], page 1076.

The commands available when you arrive at a spypoint are described later. See Section 5.5
[Debug Commands], page 237.

5.4 Format of Debugging Messages

We shall now look at the exact format of the message output by the system at a port.
All trace messages are output to the standard error stream, using the print_message/2

predicate; see Section 4.16 [ref-msg], page 212. This allows you to trace programs while
they are performing file I/O. The basic format is as follows:

N S 23 F6 Call: T foo(hello,there,_123) ?

N is only used at Exit ports and indicates whether the invocation could backtrack and
find alternative solutions. Unintended nondeterminacy is a source of inefficiency, and this
annotation can help spot such efficiency bugs. It is printed as ‘?’, indicating that foo/3

could backtrack and find alternative solutions, or ‘ ’ otherwise.

S is a spypoint indicator. If there is a plain spypoint on foo/3, then it is printed as ‘+’. In
case of conditional and generic spypoints it takes the form ‘*’ and ‘#’, respectively. Finally,
it is printed as ‘ ’, if there is no spypoint on the predicate being traced.

The first number is the unique invocation identifier. It is increasing regardless of whether
or not debugging messages are output for the invocations (provided that the debugger is
switched on). This number can be used to cross correlate the trace messages for the various
ports, since it is unique for every invocation. It will also give an indication of the number of
procedure calls made since the start of the execution. The invocation counter starts again
for every fresh execution of a command, and it is also reset when retries (see later) are
performed.

Just before the second number is an optional frame marker, printed as ‘@’ if present. This
marks the location of the current frame, the meaning of which is explained in the next
section.

The second number is the current depth; i.e. the number of direct ancestors this goal has,
for which a procedure box has been built by the debugger.

The next word specifies the particular port (Call, Exit, Redo, Fail, or Exception).

T is a subterm trace. This is used in conjunction with the ‘^’ command (set subterm),
described below. If a subterm has been selected, then T is printed as the sequence of

Chapter 5: Debugging 237

commands used to select the subterm. Normally, however, T is printed as ‘ ’, indicating
that no subterm has been selected.

The goal is then printed so that you can inspect its current instantiation state.

The final ‘?’ is the prompt indicating that you should type in one of the commands allowed
(see Section 5.5 [Debug Commands], page 237). If this particular port is unleashed, then
you will not get this prompt since you have specified that you do not wish to interact at
this point.

At Exception ports, the trace message is preceded by a message about the pending excep-
tion, formatted as if it would arrive uncaught at the top level.

Note that calls that are compiled inline are not traced.

Block and Unblock ports are exceptions to the above debugger message format. A message

S - - Block: p(_133)

indicates that the debugger has encountered a blocked goal, i.e. one which is temporar-
ily suspended due to insufficiently instantiated arguments (see Section 4.2.4 [ref-sem-sec],
page 74). By default, no interaction takes place at this point, and the debugger simply
proceeds to the next goal in the execution stream. The suspended goal will be eligible for
execution once the blocking condition ceases to exist, at which time a message

S - - Unblock: p(_133)

is printed. Although Block and Unblock ports are unleashed by default in trace mode, you
can make the debugger interact at these ports by using conditional spypoints.

5.5 Commands Available during Debugging

This section describes the particular commands that are available when the system prompts
you after printing out a debugging message. All the commands are one or two letter
mnemonics, among which some can be optionally followed by an argument. They are read
from the standard input stream with any blanks being completely ignored up to the end of
the line (RET).

While you are typing commands at a given port, the debugger maintains a notion of current
frame of the ancestor stack. The “current goal”, referred to by many commands, is the goal
of the current frame. The current frame is initially at the bottom of the ancestor stack,
but can be moved by certain commands. If the current frame is above the bottom of the
stack, then the port indicator, displayed in front of the current goal, is replaced by the word
Ancestor.

The only command that you really have to remember is ‘h’ (followed by RET). This provides
help in the form of the following list of available commands.

238 SICStus Prolog

RET creep c creep

l leap z zip

s skip s <i> skip i

o out o <n> out n

q q-skip q <i> q-skip i

r retry r <i> retry i

f fail f <i> fail i

j<p> jump to port j<p><i>jump to port i

d display w write

p print p <n> print partial

g ancestors g <n> ancestors n

t backtrace t <n> backtrace n

[frame up] frame down

[<i> frame i] <i> frame i

v variables v <i> variables i

& blocked goals & <n> nth blocked goal

n nodebug = debugging

+ spy this * spy conditionally

- nospy this \ <i> remove brkpoint

D <i> disable brkpoint E <i> enable brkpoint

a abort b break

@ command u unify

e raise exception . find this

< reset printdepth < <n> set printdepth

^ reset subterm ^ <n> set subterm

? help h help

c

RET creep causes the debugger to single-step to the very next port and print a mes-
sage. Then if the port is leashed (see Section 5.2 [Basic Debug], page 233), then
the user is prompted for further interaction. Otherwise, it continues creeping. If
leashing is off, then creep is the same as leap (see below) except that a complete
trace is printed on the standard error stream.

l leap causes the debugger to resume running your program, only stopping when
a spypoint is reached (or when the program terminates). Leaping can thus be
used to follow the execution at a higher level than exhaustive tracing. All you
need to do is to set spypoints on an evenly spread set of pertinent predicates,
and then follow the control flow through these by leaping from one to the other.
Debugging information is collected while leaping, so when a spypoint is reached,
it is possible to inspect the ancestor goals, or creep into them upon entry to
Redo ports.

z zip is like leap, except no debugging information is being collected while zipping,
resulting in significant savings in memory and execution time.

s skip is only valid for Call and Redo ports. It skips over the entire execution
of the predicate. That is, you will not see anything until control comes back
to this predicate (at either the Exit port or the Fail port). Skip is particularly

Chapter 5: Debugging 239

useful while creeping since it guarantees that control will be returned after the
(possibly complex) execution within the box. If you skip, then no message at
all will appear until control returns. This includes calls to predicates with spy-
points set; they will be masked out during the skip. No debugging information
is being collected while skipping.

If you supply an integer argument, then this should denote an invocation num-
ber of an ancestral goal. The system tries to get you to the Exit or Fail port of
the invocation box you have specified.

o out is a shorthand for skipping to the Exit or Fail port of the immediate ancestor
goal. If you supply an integer argument n, then it denotes skipping to the Exit
or Fail port of the nth ancestor goal.

q quasi-skip is like a combination of zip and skip: execution stops when either
control comes back to this predicate, or a spypoint is reached. No debugging
information is being collected while quasi-skipping.

An integer argument can be supplied as for skip.

r retry can be used at any port (although at the Call port it has no effect). It
transfers control back to the Call port of the box. This allows you to restart
an invocation when, for example, you find yourself leaving with some weird
result. The state of execution is exactly the same as when you originally called,
(unless you use side effects in your program; i.e. asserts etc. will not be undone).
When a retry is performed the invocation counter is reset so that counting
will continue from the current invocation number regardless of what happened
before the retry. This is in accord with the fact that you have, in executional
terms, returned to the state before anything else was called.

If you supply an integer argument, then it should denote an invocation number
of an ancestral goal. The system tries to get you to the Call port of the box
you have specified. It does this by continuously failing until it reaches the right
place. Unfortunately this process cannot be guaranteed: it may be the case
that the invocation you are looking for has been cut out of the search space by
cuts (!) in your program. In this case the system fails to the latest surviving
Call port before the correct one.

f fail can be used at any of the four ports (although at the Fail port it has no
effect). It transfers control to the Fail port of the box, forcing the invocation
to fail prematurely.

If you supply an integer after the command, then it is taken as specifying
an invocation number and the system tries to get you to the Fail port of the
invocation box you have specified. It does this by continuously failing until it
reaches the right place. Unfortunately this process cannot be guaranteed: it
may be the case that the invocation you are looking for has been cut out of the
search space by cuts (!) in your program. In this case the system fails to the
latest surviving Fail port before the correct one.

j<p> jump to port transfers control back to the prescribed port <p>. Here, <p> is
one of: ‘c’, ‘e’, ‘r’, ‘f’, standing for Call, Exit, Redo and Fail ports. Takes an
optional integer argument, an invocation number.

240 SICStus Prolog

Jumping to a Call port is the same as retrying it, i.e. ‘jc’ is the same as the ‘r’
debugger command; and similarly ‘jf’ is the same as ‘f’.

The ‘je’ jump to Exit port command transfers control back to the Exit port
of the box. It can be used at a Redo or an Exit port (although at the latter it
has no effect). This allows you to restart a computation following an Exit port,
which you first leapt over, but because of its unexpected failure you arrived at
the Redo port. If you supply an integer argument, then it should denote an
exact invocation number of an exited invocation present in the backtrace, and
then the system will get you to the specified Exit port. The debugger requires
here an exact invocation number so that it does not jump too far back in the
execution (if an Exit port is not present in the backtrace, it may be be a better
choice to jump to the preceding Call port, rather than to continue looking for
another Exit port).

The ‘jr’ jump to Redo port command transfers control back to the Redo port
of the box. It can be used at an Exit or a Redo port (although at the latter it
has no effect). This allows you to force the goal in question to try to deliver
another solution. If you supply an integer argument, then it should denote an
exact invocation number of an exited invocation present in the backtrace, and
then the system will get you to the specified Redo port.

d display goal displays the current goal using display/1. See Write (below).

p print goal displays the current goal using print/1. An argument will override
the default printdepth, treating 0 as infinity.

w write goal displays the current goal using writeq/1.

g print ancestor goals provides you with a list of ancestors to the current goal, i.e.
all goals that are hierarchically above the current goal in the calling sequence.
You can always be sure of jumping to the Call or Fail port of any goal in the
ancestor list (by using retry etc). If you supply an integer n, then only that
number of ancestors will be printed. That is to say, the last n ancestors will
be printed counting back from the current goal. Each entry is displayed just as
they would be in a trace message, except the current frame is indicated by a @

in front of the invocation number.

t print backtrace is the same as the above, but also shows any goals that have
exited nondeterminately and their ancestors. This information shows where
there are outstanding choices that the program could backtrack to. If you
supply an integer n, then only that number of goals will be printed.

Ancestors to the current goal are annotated with the ‘Call:’ port, as they have
not yet exited, whereas goals that have exited are annotated with the ‘Exit:’
port. You can always be sure of jumping to the Exit or Redo port of any goal
shown to be exited in the backtrace listing.

The backtrace is a tree rather than a stack: to find the parent of a given goal
with depth indicator d, look for the closest goal above it with depth indicator
d-1.

Chapter 5: Debugging 241

[since release 4.2

frame up: moves the frame up one step. If you supply an argument, then it
should denote an invocation number of an existing goal.

] since release 4.2

frame down: moves the frame down one step. If you supply an argument, then
it should denote an invocation number of an existing goal.

v since release 4.2

print variable bindings endeavors to print the variable bindings of the clause
containing the current goal. This is available for both compiled and interpreted
code, if the source code was originally loaded with the source_info Prolog flag
switched on. The coverage is usually better for compiled code. If you supply
an argument, then it should denote an invocation number of an existing goal.

Just like the top level, the debugger displays variable bindings as well as any
goals that are blocked on a variable found among those bindings, and prompts
for the same one-letter commands as the top level does; see Section 3.4.1
[Queries], page 23. To return to the debugger, simply type RET.

& print blocked goals prints a list of the goals that are currently blocked in the
current debugging session together with the variable that each such goal is
blocked on (see Section 4.2.4 [ref-sem-sec], page 74). The goals are enumerated
from 1 and up. If you supply an integer n, then only that goal will be printed.
Each entry is preceded by the goal number followed by the variable name.

n nodebug switches the debugger off. Note that this is the correct way to switch
debugging off at a trace point. You cannot use the @ or b commands because
they always return to the debugger.

= debugging outputs information concerning the status of the debugging package.
See the built-in predicate debugging/0.

+ spy this sets a plain spypoint on the current goal.

* spy this conditionally sets a conditional spypoint on the current goal. Prompts
for the Conditions, and calls the

spy(Func, Conditions)

goal, where Func is the predicate specification of the current invocation. For
spy/2, see Section 5.7 [Breakpoint Predicates], page 272.

- nospy this removes all spypoints applicable to the current goal. Equivalent to
nospy Func, where Func is the predicate specification of the current invocation.

\ remove this removes the spypoint that caused the debugger to interact at the
current port. With an argument n, it removes the breakpoint with identifier n.
Equivalent to remove_breakpoints(BID), where BID is the current breakpoint
identifier, or the supplied argument (see Section 5.7 [Breakpoint Predicates],
page 272).

D disable this disables the spypoint that caused the debugger to interact at the
current port. With an argument n, it disables the breakpoint with identi-
fier n. Equivalent to disable_breakpoints(BID), where BID is the current

242 SICStus Prolog

breakpoint identifier, or the supplied argument (see Section 5.7 [Breakpoint
Predicates], page 272).

E enable this enables all specific spypoints for the predicate at the current port.
With an argument n, it enables the breakpoint with identifier n. Equivalent
to enable_breakpoints(BID), where BID is the breakpoint identifiers for the
current predicate, or the supplied argument (see Section 5.7 [Breakpoint Pred-
icates], page 272).

. find this outputs information about where the predicate being called is defined.

a abort causes an abort of the current execution. All the execution states built
so far are destroyed and you are put right back at the top level. (This is the
same as the built-in predicate abort/0.)

b break calls the built-in predicate break/0, thus putting you at a recursive top
level with the execution so far sitting underneath you. When you end the break
(^D) you will be reprompted at the port at which you broke. The new execution
is completely separate from the suspended one; the invocation numbers will
start again from 1 during the break. The debugger is temporarily switched
off as you call the break and will be re-switched on when you finish the break
and go back to the old execution. However, any changes to the leashing or to
spypoints will remain in effect.

@ command gives you the ability to call arbitrary Prolog goals. It is effectively
a one-off break (see above). The initial message ‘| :- ’ will be output on the
standard error stream, and a command is then read from the standard input
stream and executed as if you were at top level. If the term read is of form
Pattern ^ Body, then Pattern is unified with the current goal and Body is
executed. Please note:

1. If Body is compound, then it should be parenthesized.

2. If the current goal has a module qualifier, then Pattern should not include
the module qualifier.

u unify is available at the Call port and gives you the option of providing a
solution to the goal from the standard input stream rather than executing the
goal. This is convenient e.g. for providing a “stub” for a predicate that has not
yet been written. A prompt will be output on the standard error stream, and
the solution is then read from the standard input stream and unified with the
goal. If the term read in is of the form Head :- Body, then Head will be unified
with the current goal, and Body will be executed in its place.

e raise exception is available at all ports. A prompt will be output on the standard
error stream, and an exception term is then read from the standard input stream
and raised in the program being debugged.

< This command, without arguments, resets the printdepth to 10. With an ar-
gument of n, the printdepth is set to n, treating 0 as infinity. This command
works by changing the value of the debugger_print_options Prolog flag.

Chapter 5: Debugging 243

^ While at a particular port, a current subterm of the current goal is maintained.
It is the current subterm that is displayed, printed, or written when prompt-
ing for a debugger command. Used in combination with the printdepth, this
provides a means for navigating in the current goal for focusing on the part of
interest. The current subterm is set to the current goal when arriving at a new
port. This command, without arguments, resets the current subterm to the
current goal. With an argument of n (> 0), the current subterm is replaced by
its n:th subterm. With an argument of 0, the current subterm is replaced by its
parent term. With multiple arguments separated by whitespace, the arguments
are applied from left to right.

?

h help displays the table of commands given above.

The user can define new debugger commands or modify the behavior of the above ones
using the user:debugger_command_hook/2 hook predicate, see Section 5.7 [Breakpoint
Predicates], page 272.

5.6 Advanced Debugging — an Introduction

This section gives an overview of the advanced debugger features. These center around the
notion of breakpoint. Breakpoints can be classified as either spypoints (a generalization of
the plain spypoint introduced earlier) or advice points (e.g. for checking program invariants
independently from tracing). The first five subsections will deal with spypoints only. Nev-
ertheless we will use the term breakpoint, whenever a statement is made that applies to
both spypoints and advice points.

Section 5.8 [Breakpoint Processing], page 275, describes the breakpoint processing mecha-
nism in full detail. Reference style details of built-in predicates dealing with breakpoints
are given in Section 5.7 [Breakpoint Predicates], page 272, and in Section 5.9 [Breakpoint
Conditions], page 277.

5.6.1 Creating Breakpoints

Breakpoints can be created using the add_breakpoint/2 built-in predicate. Its first argu-
ment should contain the description of the breakpoint, the so called breakpoint specification.
It will return the breakpoint identifier (BID) of the created breakpoint in its second argu-
ment. For example:

| ?- add_breakpoint(pred(foo/2), BID).

% Plain spypoint for user:foo/2 added, BID=1

BID = 1

Here, we have a simple breakpoint specification, prescribing that the debugger should stop
at all ports of all invocations of the predicate foo/2. Thus the above goal actually creates
a plain spypoint, exactly as ?- spy foo/2. does.

A slightly more complicated example follows:

244 SICStus Prolog

| ?- add_breakpoint([pred(foo/2),line('/myhome/bar.pl',123)], _).

% Conditional spypoint for user:foo/2 added, BID=1

This breakpoint will be activated only for those calls of foo/2 that occur in line 123 of the
Prolog program file '/myhome/bar.pl'. Because of the additional condition, this is called
a conditional spypoint.

The breakpoint identifier (BID) returned by add_breakpoint/2 is an integer, assigned in
increasing order, i.e. more recent breakpoints receive higher identifier values. When looking
for applicable breakpoints, the debugger tries the breakpoints in descending order of BIDs,
i.e. the most recent applicable breakpoint is used. Breakpoint identifiers can be used for
referring to breakpoints to be deleted, disabled or enabled (see later).

Generally, the breakpoint specification is a pair Tests-Actions. Here, the Tests part
describes the conditions under which the breakpoint should be activated, while the Actions
part contains instructions on what should be done at activation. The test part is built from
tests, while the action part from actions and tests. Test, actions and composite constructs
built from these are generally referred to as breakpoint conditions, or simply conditions.

The action part can be omitted, and then the breakpoint specification consists of tests only.
For spypoints, the default action part is [show(print),command(ask)]. This instructs the
debugger to print the goal in question and then ask the user what to do next, exactly as
described in Section 5.4 [Debug Format], page 236. To illustrate other possibilities let us
explain the effect of the [show(display),command(proceed)] action part: this will use
display/1 for presenting the goal (just as the ‘d’ debugger command does, see Section 5.5
[Debug Commands], page 237), and will then proceed with execution without stopping (i.e.
the spypoint is unleashed).

5.6.2 Processing Breakpoints

We first give a somewhat simplified sketch of how the debugger treats the breakpoints. This
description will be refined in the sequel.

The debugger allows us to prescribe some activities to be performed at certain points of
execution, namely at the ports of procedure boxes. In principle, the debugger is entered
at each port of each procedure invocation. It then considers the current breakpoints one
by one, most recent first. The first breakpoint for which the evaluation of the test part
succeeds is then activated, and the execution continues according to its action part. The
activated breakpoint “hides” the remaining (older) ones, i.e. those are not tried here. If
none of the current breakpoints is activated, then the debugger behaves according to the
actual debugging mode (trace, debug or zip).

Both the test and the action part can be simple or composite. Evaluating a simple test
amounts to checking whether it holds in the current state of execution, e.g. pred(foo/2)
holds if the debugger is at a port of predicate foo/2.

Composite conditions can be built from simple ones by forming lists, or using the ‘,’, ‘;’,
‘->’, and ‘\+’ operators, with the usual meaning of conjunction, disjunction, if-then-else
and negation. A list of conditions is equivalent to a conjunction of the same conditions.

Chapter 5: Debugging 245

For example, the condition [pred(foo/2), \+port(fail)] will hold for all ports of foo/2,
except for the Fail port.

5.6.3 Breakpoint Tests

This section gives a tour of the most important simple breakpoint tests. In all examples
here the action part will be empty. Note that the examples are independent, so if you want
to try out these, then you should get rid of the old breakpoints (e.g. using ?- nospyall.)
before you enter a new one.

The goal(...) test is a generalization of the pred(...) test, as it allows us to check the
arguments of the invocation. For example:

| ?- add_breakpoint(goal(foo(1,_)), _).

% Conditional spypoint for user:foo/2 added, BID=1

The goal(G) breakpoint test specifies that the breakpoint should be applied only if the
current goal is an instance of G, i.e. G and the current goal can be unified without sub-
stituting any variables in the latter. This unification is then carried out. The goal(G)

condition is thus equivalent to the subsumes(G,CurrentGoal) test (subsumes/2 is defined
in library(terms), see Section 10.42 [lib-terms], page 841).

In the above example the debugger will stop if foo/2 is called with 1 as its first argument,
but not if the first argument is, say, 2, nor if it is a variable.

You can use non-anonymous variables in the goal test, and then put further constraints on
these variables using the true condition:

| ?- add_breakpoint([goal(foo(X,_)),true(X>1)], _).

% Conditional spypoint for user:foo/2 added, BID=1

Here the first test, goal, specifies that we are only interested in invocations of foo/2, and
names the first argument of the goal as X. The second, the true/1 test, specifies a further
condition stated as a Prolog goal: X is greater than 1 (we assume here that the argument is
numeric). Thus this breakpoint will be applicable if and only if the first argument of foo/2
is greater than 1. Generally, an arbitrary Prolog goal can be placed inside the true test:
the test will succeed if and only if the goal completes successfully.

Any variable instantiations in the test part will be undone before executing the action part,
as the evaluation of the test part is enclosed in a double negation (\+ \+ (...)). This
ensures that the test part has no effect on the variables of the current goal.

Both the pred and the goal tests may include a module name. In fact, the first argument
of add_breakpoint is module name expanded, and the (explicit or implicit) module name
of this argument is then inherited by default by the pred, goal, and true tests. Notice the
module qualification inserted in front of the breakpoint specification of the last example, as
shown in the output of the debugging/0 built-in predicate:

246 SICStus Prolog

| ?- debugging.

(...)

Breakpoints:

1 * user:foo/2 if user:[goal(foo(A,B)),true(A>1)]

As no explicit module qualifications were given in the tests, this breakpoint specification is
transformed to the following form:

[goal(user:foo(A,B)),true(user:(A>1))]

For exported predicates, a pred or goal test will be found applicable for all invocations of the
predicate, irrespective of the module the call occurs in. When you add the breakpoint you
can use the defining or an importing module name, but this information is not remembered:
the module name is “normalized”, i.e. it is changed to the defining module. The example
below shows this: although the spypoint is placed on user:append, the message and the
breakpoint list both mention lists:append.

| ?- use_module(library(lists)).

(...)

% module lists imported into user

(...)

| ?- spy user:append.

% Plain spypoint for lists:append/3 added, BID=1

| ?- debugging.

(...)

Breakpoints:

1 + lists:append/3

Note that the debugger does not stop inside a library predicate when doing an exhaustive
trace. This is because the library modules are declared hidden (see Section 4.11 [ref-mod],
page 161), and no trace is produced for calls inside hidden modules that invoke predicates
defined in hidden modules. However, a spypoint is always shown in the trace, even if it
occurs in a hidden module:

+ 1 1 Call: append([1,2],[3,4],_531) ? RET

+ 2 2 Call: lists:append([2],[3,4],_1182) ? RET

+ 3 3 Call: lists:append([],[3,4],_1670) ? RET

+ 3 3 Exit: lists:append([],[3,4],[3,4]) ? RET

(...)

You can narrow a breakpoint to calls from within a particular module by using the module
test, e.g.

Chapter 5: Debugging 247

| ?- add_breakpoint([pred(append/3),module(user)], _).

% The debugger will first zip -- showing spypoints (zip)

% Conditional spypoint for lists:append/3 added, BID=1

% zip

| ?- append([1,2], [3,4], L).

* 1 1 Call: append([1,2],[3,4],_531) ? RET

* 1 1 Exit: append([1,2],[3,4],[1,2,3,4]) ? RET

L = [1,2,3,4]

With this spypoint, the debugger will only stop at the invocations of append/3 from the
user module.

Note that calling module information is not kept by the compiler for the built-in predicates,
therefore the module test will always unify its argument with prolog in case of compiled
calls to built-in predicates.

There are two further interesting breakpoint tests related to invocations: inv(Inv) and
depth(Depth). These unify their arguments with the invocation number and the depth,
respectively (the two numbers shown at the beginning of each trace message). Such tests
are most often used in more complex breakpoints, but there may be some simple cases when
they are useful.

Assume you put a plain spypoint on foo/2, and start leaping through your program. After
some time, you notice some inconsistency at an Exit port, but you cannot go back to the
Call port for retrying this invocation, because of side effects. So you would like to restart
the whole top-level goal and get back to the Call port of the suspicious goal as fast as
possible. Here is what you can do:

| ?- spy foo/2.

% Plain spypoint for user:foo/2 added, BID=1

| ?- debug, foo(23, X).

% The debugger will first leap -- showing spypoints (debug)

+ 1 1 Call: foo(23,_414) ? l

(...)

+ 81 17 Call: foo(7,_9151) ? l

+ 86 18 Call: foo(6,_9651) ? l

+ 86 18 Exit: foo(6,8) ? -

% Plain spypoint for user:foo/2, BID=1, removed (last)

86 18 Exit: foo(6,8) ? *

Placing spypoint on user:foo/2 with conditions: inv(86).

% Conditional spypoint for user:foo/2 added, BID=1

* 86 18 Exit: foo(6,8) ? a

% Execution aborted

% source_info

| ?- debug, foo(23, X).

% The debugger will first leap -- showing spypoints (debug)

* 86 18 Call: foo(6,_2480) ? RET

248 SICStus Prolog

When you reach the Exit port of the suspicious invocation (number 86), you remove the plain
spypoint (via the - debugger command), and add a conditional one using the ‘*’ debugger
command. This automatically includes pred(foo/2) among the conditions and displays
the prompt ‘Placing spypoint ... with conditions:’, requesting further ones. You enter
here the inv test with the invocation number in question, resulting in a breakpoint with
the [pred(foo/2),inv(86)] conditions. If you restart the original top-level goal in debug
mode, then the debugger immediately positions you at the invocation with the specified
number.

Note that when the debugger executes a skip or a zip command, no procedure boxes are
built. Consequently, the invocation and depth counters are not incremented. If skip and/or
zip commands were used during the first execution, then the suspicious invocation gets an
invocation number higher than 86 in the second run. Therefore it is better to supply the
inv(I),true(I>=86) condition to the ‘*’ debugger command, which will bring you to the
first call of foo/2 at, or after invocation number 86 (which still might not be the suspicious
invocation).

In the examples, the inv test was used both with a numeric and a variable argument
(inv(86) and inv(I)). This is possible because the debugger unifies the given feature with
the argument of the test. This holds for most tests, we will mention the exceptions.

Another similar example: if you suspect that a given predicate goes into an infinite recursion,
and would like the execution to stop when entering this predicate somewhere inside the
recursion, then you can do the following:

| ?- add_breakpoint([pred(foo/2),depth(_D),true(_D>=100)], _).

% Conditional spypoint for user:foo/2 added, BID=1

% zip,source_info

| ?- debug, foo(200, X).

% The debugger will first leap -- showing spypoints (debug)

* 496 100 Call: foo(101,_12156) ?

The above breakpoint specification will cause the debugger to stop at the first invocation
of foo/2 at depth 100 or greater. Note again that debug mode has to be entered for this
to work (in zip mode no debugging information is kept, so the depth does not change).

We now continue with tests that restrict the breakpoint to an invocation at a specific place
in the code.

Assume file /home/bob/myprog.pl contains the following Prolog program:

% /home/bob/myprog.pl

Chapter 5: Debugging 249

p(X, U) :- % line 1

q(X, Y), % line 2

q(Y, Z), % line 3

(\+ q(Z, _) % line 4

-> q(Z+1, U) % line 5

; q(Z+2, U) % line 6

). % ...

q(X, Y) :-

X < 10, !, Y is X+1. % line 10

q(X, Y) :-

Y is X+2. % line 12

If you are interested only in the last invocation of q/2 within p/2, then you can use the
following breakpoint:

| ?- add_breakpoint([pred(q/2),line('/home/bob/myprog.pl',6)], _).

% Conditional spypoint for user:q/2 added, BID=1

Generally, the test line(File,Line) holds if the current invocation was in line number
Line of a file whose absolute name is File. This test (as well as the line/1 and file/1

tests; see below) require the presence of source information: the file in question had to
be consulted or compiled with the source_info Prolog flag switched on (i.e. set to on or
emacs).

If e.g. q/2 is called only from a single file, then the file name need not be mentioned and a
line/1 test suffices: line(6). On the other hand, if we are interested in all invocations of
a predicate within a file, then we can omit the line number and use the file(File) test.

For Prolog programs that are interpreted (consulted or asserted), further positioning in-
formation can be obtained, even in the absence of source information. The test parent_
pred(Pred) unifies the module name expanded Pred with a predicate specification (of form
Module:PredName/Arity) identifying the predicate in which the current invocation resides.
The test parent_pred(Pred,N) will additionally unify N with the serial number of the
clause containing the current goal.

For example, assuming the above myprog.pl file is consulted, the breakpoint below will
cause the execution to stop when the call of is/2 in the second clause of q/2 is reached:

| ?- add_breakpoint([pred(is/2),parent_pred(q/2,2)], _).

% Conditional spypoint for prolog:is/2 added, BID=1

* Predicate prolog:is/2 compiled inline, breakable only in inter-

preted code

% zip,source_info

| ?- p(20, X).

in scope of a goal at line 12 in /home/bob/myprog.pl

* 1 1 Call: _579 is 20+2 ?

250 SICStus Prolog

Notice the warning issued by add_breakpoint/2: there are some built-in predicates (e.g.
arithmetic, functor/3, arg/3, etc.), for which the compiler generates specific inline trans-
lation, rather than the generic predicate invocation code. Therefore compiled calls to such
predicates are not visible to the debugger.

More exact positioning information can be obtained for interpreted programs by using the
parent_clause(Cl,Sel,I) test. This unifies Cl with the clause containing the current
invocation, while Sel and I both identify the current invocation within the body of this
clause. Sel is unified with a subterm selector, while I with the serial number of the call.
This test has the variants parent_clause/[1,2], in which only the Cl argument, or the
Cl,Sel arguments are present.

As an example, two further alternatives of putting a breakpoint on the last call of q/2
within myprog.pl (line 6) are shown below, together with a listing showing the selectors
and call serial numbers for the body of p/2:

| ?- add_breakpoint([pred(q/2),parent_clause((p(_,_):-_),[2,2,2])],_).

| ?- add_breakpoint([pred(q/2),parent_clause((p(_,_):-_),_,5)],_).

p(X, U) :- % line % call no. % subterm selector

q(X, Y), % 2 1 [1]

q(Y, Z), % 3 2 [2,1]

(\+ q(Z, _) % 4 3 [2,2,1,1,1]

-> q(Z+1, U) % 5 4 [2,2,1,2]

; q(Z+2, U) % 6 5 [2,2,2]

). % 7

Here, the first argument of the parent_clause test ensures that the current invocation is in
(the only clause of) p/2. If p/2 had more clauses, then we would have to use an additional
test, say parent_pred(user:p/2,1), and then the first argument of parent_clause could
be an anonymous variable.

In the examples so far the breakpoint tests referred only to the goal in question. Therefore,
the breakpoint was found applicable at all ports of the procedure box of the predicate. We
can distinguish between ports using the port breakpoint test:

| ?- add_breakpoint([pred(foo/2),port(call)], _).

With this breakpoint, the debugger will stop at the Call port of foo/2, but not at other
ports. Note that the port(call) test can be simplified to call — add_breakpoint/2 will
recognize this as a port name, and treat it as if it were enclosed in a port/1 functor.

Here are two equivalent formulations for a breakpoint that will cause the debugger to stop
only at the Call and Exit ports of foo/2:

Chapter 5: Debugging 251

| ?- add_breakpoint([pred(foo/2),(call;exit)], _).

| ?-

add_breakpoint([pred(foo/2),port(P),true((P=call;P=exit(_)))], _).

In both cases we have to use disjunction. In the first example we have a disjunctive break-
point condition of the two simple tests port(call) and port(exit) (with the port functor
omitted). In the second case the disjunction is inside the Prolog test within the true test.

Notice that the two examples refer to the Exit port differently. When you use port(P),
where P is a variable, then, at an exit port, P will be unified with either exit(nondet)

or exit(det), depending on the determinacy of the exited predicate. However, for conve-
nience, the test port(exit) will also succeed at Exit ports. So in the first example above,
exit can be replaced by exit(_), but the exit(_) in the second cannot be replaced by
exit.

Finally, there is a subtle point to note with respect to activating the debugger at non Call
ports. Let us look at the following breakpoint:

| ?- add_breakpoint([pred(foo/2),fail], _).

The intention here is to have the debugger stop at only the Fail port of foo/2. This is very
useful if foo/2 is not supposed to fail, but we suspect that it does. The above breakpoint
will behave as expected when the debugger is leaping, but not while zipping. This is because
for the debugger to be able to stop at a non Call port, a procedure box has to be built at
the Call port of the given invocation. However, no debugging information is collected in zip
mode by default, i.e. procedure boxes are not built. Later we will show how to achieve the
required effect, even in zip mode.

5.6.4 Specific and Generic Breakpoints

In all the examples so far a breakpoint was put on a specific predicate, described by a goal

or pred test. Such breakpoints are called specific, as opposed to generic ones.

Generic breakpoints are the ones that do not specify a concrete predicate. This can happen
when the breakpoint specification does not contain goal or pred tests at all, or their
argument is not sufficiently instantiated. Here are some examples of generic breakpoints:

| ?- add_breakpoint(line('/home/bob/myprog.pl',6), _).

% Generic spypoint added, BID=1

| ?- add_breakpoint(pred(foo/_), _).

% Generic spypoint added, BID=2

| ?- add_breakpoint([goal(G),true((arg(1,G,X),X==bar))], _).

% Generic spypoint added, BID=3

The first breakpoint will stop at all calls in line 6 of the given file, the second at all calls of a
predicate foo, irrespective of the number of arguments, while the third one will stop at any
predicate with bar as its first argument. However, there is an additional implicit condition:
the module name expansion inserts the type-in module as the default module name in the

252 SICStus Prolog

goal and pred conditions. Consequently, the second and third breakpoint applies only to
predicates in the type-in module (user by default). If you would like the breakpoint to
cover all modules, then you have to include an anonymous module prefix in the argument
of the goal or pred test:

| ?- add_breakpoint(pred(_:foo/_), _).

% Generic spypoint added, BID=1

% zip

| ?- add_breakpoint([goal(_:G),true((arg(1,G,X),X==bar))], _).

% Generic spypoint added, BID=2

Generic breakpoints are very powerful, but there is a price to pay: the zip mode is slowed
down considerably.

As said earlier, in principle the debugger is entered at each port of each procedure invocation.
As an optimization, the debugger can request the underlying Prolog engine to run at full
speed and invoke the debugger only when one of the specified predicates is called. This
optimization is used in zip mode, provided there are no generic breakpoints. In the presence
of generic breakpoints, however, the debugger has to be entered at each call, to check their
applicability. Consequently, with generic breakpoints, zip mode execution will not give
much speed-up over debug mode, although its space requirements will still be much lower.

It is therefore advisable to give preference to specific breakpoints over generic ones, whenever
possible. For example, if your program includes predicates foo/2 and foo/3, then it is much
better to create two specific breakpoints, rather than a single generic one with conditions
[pred(foo/_),...].

spy/2 is a built-in predicate that will create specific breakpoints only. Its first argument
is a generalized predicate specification, much like in spy/1, and the second argument is a
breakpoint specification. spy/2 will expand the first argument to one or more predicate
specifications, and for each of these will create a breakpoint, with a pred condition added
to the test part of the supplied breakpoint specifications. For example, in the presence of
predicates foo/2 and foo/3

| ?- spy(foo/_, file(...))

is equivalent to:

| ?- add_breakpoint([pred(foo/2),file(...)], _),

add_breakpoint([pred(foo/3),file(...)], _).

Note that with spy/[1,2] it is not possible to put a breakpoint on a (yet) undefined
predicate. On the other hand, add_breakpoint/2 is perfectly capable of creating such
breakpoints, but warns about them.

5.6.5 Breakpoint Actions

The action part of a breakpoint specification supplies information to the debugger as to
what should be done when the breakpoint is activated. This is achieved by setting the

Chapter 5: Debugging 253

three so called debugger action variables. These are listed below, together with their most
important values.

• The show variable prescribes how the debugged goal should be displayed:

print write the goal according to the debugger_print_options Prolog flag.

silent do not display the goal.

• The command variable prescribes what the debugger should do:

ask ask the user.

proceed continue the execution without stopping, creating a procedure box for the
current goal at the Call port,

flit continue the execution without stopping, without creating a procedure box
for the current goal at the Call port.

• The mode variable prescribes in what mode the debugger should continue the execution:

trace creeping.

debug leaping.

zip zipping.

off without debugging.

For example, the breakpoint below specifies that whenever the Exit port of foo/2 is reached,
no trace message should be output, no interaction should take place and the debugger should
be switched off.

| ?- add_breakpoint([pred(foo/2),port(exit)]-

[show(silent),command(proceed),mode(off)], _).

Here, the action part consists of three actions, setting the three action variables. This
breakpoint specification can be simplified by omitting the wrappers around the variable
values, as the sets of possible values of the variables are all disjoint. If we use spy/2, then
the pred wrapper goes away, too, resulting in a much more concise, equivalent formulation
of the above breakpoint:

| ?- spy(foo/2,exit-[silent,proceed,off]).

Let us now revisit the process of breakpoint selection. When the debugger arrives at a
port it first initializes the action variables according to the current debugging and leashing
modes, as shown below:

254 SICStus Prolog

debugging leashing | Action variables

mode mode | show command mode

--------------------------------|-------------------------------

trace at leashed port | print ask trace

|

trace at unleashed port | print proceed trace

|

debug - | silent proceed debug

|

zip - | silent flit zip

It then considers each breakpoint, most recent first, until it finds a breakpoint whose test
part succeeds. If such a breakpoint is found, then its action part is evaluated, normally
changing the action variable settings. A failure of the action part is ignored, in the sense
that the breakpoint is still treated as the selected one. However, as a side effect, a procedure
box will always be built in such cases. More precisely, the failure of the action part causes
the flit command value to be changed to proceed, all other command values being left
unchanged. This is to facilitate the creation of breakpoints that stop at non-Call ports (see
below for an example).

If no applicable breakpoint is found, then the action variables remain unchanged.

The debugger then executes the actions specified by the action variables. This process,
referred to as the action execution, means the following:

• The current debugging mode is set to the value of the mode action variable.

• A trace message is displayed according to the show variable.

• The program continues according to the command variable.

Specifically, if command is ask, then the user is prompted for a debugger command, which
in turn is converted to new assignments to the action variables. The debugger will then
repeat the action execution process, described above. For example, the ‘c’ (creep) inter-
active command is converted to [silent,proceed,trace], the ‘d’ (display) command to
[display,ask] (when command is ask, the mode is irrelevant), etc.

The default values of the action variables correspond to the standard debugger behavior
described in Section 5.2 [Basic Debug], page 233. For example, when an unleashed port is
reached in trace mode, a trace message is printed and the execution proceeds in trace mode,
without stopping. In zip mode, no trace message is shown, and execution continues in zip
mode, without building procedure boxes at Call ports.

Note that a spypoint action part that is empty ([] or not present) is actually treated as
[print,ask]. Again, this is the standard behavior of spypoints, as described in Section 5.2
[Basic Debug], page 233.

If an action part is nonempty, but it does not set the action variables, then the only effect
it will have is to hide the remaining older spypoints, as the debugger will behave in the

Chapter 5: Debugging 255

standard way, according to the debugging mode. Still, such breakpoints may be useful if
they have side effects, for example:

| ?- spy(foo/2, -[parent_pred(P),

goal(G),

true(format('~q called from:~w~n',[G,P]))]).

% The debugger will first zip -- showing spypoints (zip)

% Conditional spypoint for user:foo/2 added, BID=1

true

% zip

| ?- foo(3,X).

foo(2,_701) called from:bar/3

foo(1,_1108) called from:bar/3

foo(0,_1109) called from:bar/3

foo(1,_702) called from:bar/3

X = 2 ? ;

no

This spypoint produces some output at ports of foo/2, but otherwise will not influence the
debugger. Notice that a breakpoint specification with an empty test part can be written
-Actions.

Let us look at some simple examples of what other effects can be achieved by appropriate
action variable settings:

| ?- spy(foo/2, -[print,proceed]).

This is an example of an unleashed spypoint: it will print a trace message passing each port
of foo/2, but will not stop there. Note that because of the proceed command a procedure
box will be built, even in zip mode, and so the debugger will be activated at non-Call ports
of foo/2.

The next example is a variant of the above:

| ?- spy(foo/2, -[print,flit]).

This will print a trace message at the Call port of foo/2 and will then continue the execution
in the current debugging mode, without building a procedure box for this call. This means
that the debugger will not be able to notice any other ports of foo/2.

Now let us address the task of stopping at a specific non-Call port of a predicate. For this
to work in zip mode, one has to ensure that a procedure box is built at the Call port. In
the following example, the first spypoint causes a box to be built for each call of foo/2,
while the second one makes the debugger stop when the Fail port of foo/2 is reached.

| ?- spy(foo/2, call-proceed), spy(foo/2, fail).

% Conditional spypoint for user:foo/2 added, BID=1

% Conditional spypoint for user:foo/2 added, BID=2

256 SICStus Prolog

You can achieve the same effect with a single spypoint, by putting the fail condition (which
is a shortcut for port(fail)) in the action part, rather than in the test part.

| ?- spy(foo/2, -[fail,print,ask]).

Here, when the execution reaches the Call port of foo/2, the test part (which contains the
pred(foo/2) condition only) succeeds, so the breakpoint is found applicable. However, the
action part fails at the Call port. This has a side effect in zip mode, as the default flit
command value is changed to proceed. In other modes the action variables are unaffected.
The net result is that a procedure box is always built for foo/2, which means that the
debugger will actually reach the Fail port of this predicate. When this happens, the action
part succeeds, and executing the actions print,ask will cause the debugger to stop.

Note that we have to explicitly mention the print,ask actions here, because the action part
is otherwise nonempty (contains the fail condition). It is only the empty or missing action
part, which is replaced by the default [print,ask]. If you want to include a condition in
the action part, then you have to explicitly mention all action variable settings you need.

To make this simpler, the debugger handles breakpoint condition macros, which expand
to other conditions. For example leash is a macro that expands to [print,ask]. Conse-
quently, the last example can be simplified to:

| ?- spy(foo/2, -[fail,leash]).

Similarly, the macro unleash expands to [print,proceed], while hide to
[silent,proceed].

We now briefly describe further possible settings to the action variables.

The mode variable can be assigned the values skip(Inv) and qskip(Inv), meaning skipping
and quasi-skipping until a port is reached whose invocation number is less or equal to Inv.
When the debugger arrives at this port it sets the mode variable to trace.

It may be surprising that skip(...) is a mode, rather than a command. This is because
commands are executed and immediately forgotten, but skipping has a lasting effect: the
program is to be run with no debugging until a specific point, without creating new proce-
dure boxes, and ignoring the existing ones in the meantime.

Here is an example using the skip mode:

| ?- spy(foo/2,call-[print,proceed,inv(Inv),skip(Inv)]).

This breakpoint will be found applicable at Call ports of foo/2. It will print a trace message
there and will skip over to the Exit or Fail port without stopping. Notice that the number
of the current invocation is obtained in the action part, using the inv condition with a
variable argument. A variant of this example follows:

Chapter 5: Debugging 257

| ?- spy(foo/2,-[silent,proceed,

(call -> inv(Inv), skip(Inv)

; true

)]).

This spypoint makes foo/2 invisible in the output of the debugger: at all ports we silently
proceed (i.e. display nothing and do not stop). Furthermore, at the Call port we perform
a skip, so neither foo/2 itself, nor any predicate called within it will be shown by the
debugger.

Notice the use of the true/0 test in the above conditional! This is a breakpoint test that
always succeeds. The debugger also recognizes false as a test that always fails. Note that
while false and fail are synonyms as built-in predicates, they are completely different as
breakpoint conditions: the latter is a shortcut for port(fail).

The show variable has four additional value patterns. Setting it to display, write, or
write_term(Options) will result in the debugged goal G being shown using display(G),
writeq(G), or write_term(G, Options), respectively. The fourth pattern, Method-Sel,
can be used for replacing the goal in the trace message by one of its subterms, the one
pointed to by the selector Sel.

For example, the following spypoint instructs the debugger to stop at each port of foo/2,
and to only display the first argument of foo/2 in the trace message, instead of the complete
goal.

| ?- spy(foo/2, -[print-[1],ask]).

% Conditional spypoint for user:foo/2 added, BID=1

| ?- foo(5,X).

* 1 1 Call: ^1 5 ?

The command variable has several further value patterns. The variable can be set to
proceed(OldGoal,NewGoal). At a Call port this instructs the debugger to first build a
procedure box for the current goal, then to unify it with OldGoal and finally execute New-
Goal in its place (cf. the ‘u’ (unify) interactive debugger command). At non-Call ports this
command first goes back to the Call port (cf. the ‘r’ (retry) command), and then does the
above activities.

A variant of the proceed/2 command is flit(OldGoal,NewGoal). This has the same effect,
except for not building a procedure box for OldGoal.

We now just briefly list further command values (for the details, see Section 5.9.9 [Action
Variables], page 282). Setting command to raise(E) will raise an exception E, abort will
abort the execution. The values retry(Inv), reexit(Inv), redo(Inv), fail(Inv) will
cause the debugger to go back to an earlier Call, Exit, Redo, or Fail port with invocation
number Inv (cf. the ‘j’ (jump) interactive debugger command).

Sometimes it may be useful to access the value of an action variable. This can be done with
the get condition: e.g. get(mode(M)) will unify M with the current execution mode. The

258 SICStus Prolog

get(...) wrapper can be omitted in the test part, but not in the action part (since there
a mode(M) action will set, rather than read, the mode action variable). For example:

| ?- spy(foo/2, mode(trace)-show(print-[1])).

This spypoint will be found applicable only in trace mode (and will cause the first argument
of foo/2 to appear in the trace message). (The mode and show wrappers can also be
omitted in the above example, they are used only to help with interpreting the breakpoint
specification.)

5.6.6 Advice points

As mentioned earlier, there are two kinds of breakpoints: spypoints and advice points.
The main purpose of spypoints is to support interactive debugging. In contrast with this,
advice points can help you to perform non-interactive debugging activities. For example,
the following advice point will check a program invariant: whether the condition Y-X<3

always holds at exit from foo(X,Y).

| ?- add_breakpoint([pred(foo/2),advice]

-[exit,goal(foo(X,Y)),\+true(Y-X<3),trace], _).

% Conditional advice point for user:foo/2 added, BID=1

% advice

| ?- foo(4, Y).

Y = 3

% advice

| ?- foo(9, Y).

3 3 Exit: foo(7,13) ? n

2 2 Exit: foo(8,21) ?

The test part of the above breakpoint contains a pred test, and the advice condition,
making it an advice point. (You can also include the debugger condition in spypoint specs,
although this is the default interpretation.)

The action part starts with the exit port condition. Because of this the rest of the action
part is evaluated only at Exit ports. By placing the port condition in the action part, we
ensure the creation of a procedure box at the Call port, as explained earlier.

Next, we get hold of the goal arguments using the goal condition, and use the
\+true(Y-X<3) test to check if the invariant is violated. If this happens, then the last
condition sets the mode action variable to trace, switching on the interactive debugger.

Following the add_breakpoint/2 call the above example shows two top-level calls to foo/2.
The invariant holds within the first goal, but is violated within the second. Notice that the
advice mechanism works with the interactive debugger switched off.

You can ask the question, why do we need advice points? The same task could be imple-
mented using a spypoint. For example:

Chapter 5: Debugging 259

| ?- add_breakpoint(pred(foo/2)

-[exit,goal(foo(X,Y)),\+true(Y-X<3),leash], _).

% The debugger will first zip -- showing spypoints (zip)

% Conditional spypoint for user:foo/2 added, BID=1

% zip

| ?- foo(4, X).

X = 3

% zip

| ?- foo(9, X).

* 3 3 Exit: foo(7,13) ? z

* 2 2 Exit: foo(8,21) ?

The main reason to have a separate advice mechanism is to be able to perform checks
independently of the interactive debugging. With the second solution, if you happen to
start some interactive debugging, then you cannot be sure that the invariant is always
checked. For example, no spypoints will be activated during a skip. In contrast with this,
the advice mechanism is watching the program execution all the time, independently of the
debugging mode.

Advice points are handled in very much the same way as spypoints are. When arriving at
a port, advice point selection takes place first, followed by spypoint selection. This can be
viewed as the debugger making two passes over the current breakpoints, considering advice
points only in the first pass, and spypoints only in the second.

In both passes the debugger tries to find a breakpoint that can be activated, checking the
test and action parts, as described earlier. However, there are some differences between the
two passes:

• Advice processing is performed if there are any (non-disabled) advice points. Spypoint
processing is only done if the debugger is switched on, and is not doing a skip.

• For advice points, the action variables are initialized as follows: mode is set to current
debugging mode, command = proceed, show = silent. Note that this is done indepen-
dently of the debugging mode (in contrast with the spypoint search initialization).

• The default action part for advice points is []. This means that if no action part is
given, then the only effect of the advice point will be to build a procedure box (because
of the command = proceed initialization).

• If no advice point was found applicable, then command is set to flit.

Having performed advice processing, the debugger inspects the command variable. The
command values different from proceed and flit are called divertive, as they alter the
normal flow of control (e.g. proceed(...,...)), or involve user interaction (ask). If the
command value is divertive, then the prescribed action is performed immediately, without
executing the spypoint selection process. Otherwise, if command = proceed, then it is noted
that the advice part requests the building of a procedure box. Next, the second, spypoint
processing pass is carried out, and possible user interaction takes place, as described earlier.
A procedure box is built if either the advice point or the spypoint search requests this.

260 SICStus Prolog

Let us conclude this section by another example, a generic advice point for collecting branch
coverage information:

| ?- add_breakpoint(

(advice,call) -

(line(F,L) -> true(assert(line_reached(F,L))), flit

; flit

), _).

% Generic advice point added, BID=1

% advice,source_info

| ?- foo(4,X).

X = 3 ? ;

no

% advice,source_info

| ?- setof(X, line_reached(F,X), S).

F = '/home/bob/myprog.pl',

S = [31,33,34,35,36]

This advice point will be applicable at every Call port. It will then assert a fact with the file
name and the line number if source information is available. Finally, it will set the command
variable to flit on both branches of execution. This is to communicate the fact that the
advice point does not request the building of a procedure box.

It is important to note that this recording of the line numbers reached is performed inde-
pendently of the interactive debugging.

In this example we used the ','/2 operator, rather than list notation, for describing the
conjunction of conditions, as this seems to better fit the if-then-else expression used in the
action part. We could have still used lists in the tests part, and in the “then” part of the
actions. Note that if we omit the “else” branch, then the action part will fail if no source
information is available for the given call. This will cause a procedure box to be built,
which is an unnecessary overhead. An alternative solution, using the line/2 test twice, is
the following:

| ?- add_breakpoint([advice,call,line(_,_)]-

[line(F,L),true(assert(line_reached(F,L))),flit], _).

Further examples of advice points are available in library(debugger_examples).

5.6.7 Built-in Predicates for Breakpoint Handling

This section introduces built-in predicates for evaluating breakpoint conditions, and for
retrieving, deleting, disabling and enabling breakpoints.

The breakpoint specification of the last advice point example was quite complex. And, to be
practical, it should be improved to assert only line numbers not recorded so far. For this you
will write a Prolog predicate for the conditional assertion of file/line information, assert_
line_reached(File,Line), and use it instead of the assert(line_reached(F,L)) condi-
tion.

Chapter 5: Debugging 261

Because of the complexity of the breakpoint specification, it looks like a good idea to
move the if-then-else condition into Prolog code. This requires that we test the line(F,L)
condition from Prolog. The built-in predicate execution_state/1 serves for this purpose.
It takes a simple or a composite breakpoint condition as its argument and evaluates it,
as if in the test part of a breakpoint specification. The predicate will succeed if and only
if the breakpoint condition evaluates successfully. Thus execution_state/1 allows you
to access debugging information from within Prolog code. For example, you can write a
Prolog predicate, assert_line_reached/0, which queries the debugger for the current line
information and then processes the line number:

assert_line_reached :-

(execution_state(line(F,L)) -> assert_line_reached(F,L).

; true

).

| ?- add_breakpoint([advice,call]-

[true(assert_line_reached),flit], _).

Arbitrary tests can be used in execution_state/1, if it is called from within a true condi-
tion. It can also be called from outside the debugger, but then only a subset of conditions
is available. Furthermore, the built-in predicate execution_state/2 allows accessing in-
formation from past debugger states (see Section 5.6.8 [Accessing Past Debugger States],
page 262). See Section 11.3.74 [mpg-ref-execution state], page 995.

The built-in predicates remove_breakpoints(BIDs), disable_breakpoints(BIDs) and
enable_breakpoints(BIDs) serve for removing, disabling and enabling the given break-
points. Here BIDs can be a single breakpoint identifier, a list of these, or one of the atoms
all, advice, debugger.

We now show an application of remove_breakpoints/1 for implementing one-off break-
points, i.e. breakpoints that are removed when first activated.

For this we need to get hold of the currently selected breakpoint identifier. The bid(BID)

condition serves for this purpose: it unifies its argument with the identifier of the breakpoint
being processed. The following is an example of a one-off breakpoint.

| ?- spy(foo/2, -[bid(BID),true(remove_breakpoints(BID)),leash]).

% Conditional spypoint for user:foo/2 added, BID=1

% zip

| ?- foo(2, X).

% Conditional spypoint for user:foo/2, BID=1, removed (last)

1 1 Call: foo(2,_402) ? z

X = 1

The action part of the above breakpoint calls the bid test to obtain the breakpoint
identifier. It then uses this number as the argument to the built-in predicate remove_

breakpoints/1, which removes the activated breakpoint. See Section 11.3.190 [mpg-ref-
remove breakpoints], page 1147.

262 SICStus Prolog

The built-in predicate current_breakpoint(Spec, BID, Status, Kind, Type) enumer-
ates all breakpoints present in the debugger. For example, if we call current_breakpoint/5
before the invocation of foo/2 in the last example, then we get this:

| ?- current_breakpoint(Spec, BID, Status, Kind, Type).

Spec = [pred(user:foo/2)]-

[bid(_A),true(remove_breakpoints(_A)),leash],

BID = 1,

Status = on,

Kind = conditional(user:foo/2),

Type = debugger

Here Spec is the breakpoint specification of the breakpoint with identifier BID. Status
is on for enabled breakpoints and off for disabled ones. Kind is one of plain(MFunc),
conditional(MFunc) or generic, where MFunc is the module qualified functor of the
specific breakpoint. Finally Type is the breakpoint type: debugger or advice.

The Spec returned by current_breakpoint/5 is exactly the same as the one given in add_

breakpoint/2. If the breakpoint was created by spy/2, then the test part is extended by a
pred condition, as exemplified above. Earlier we described some preprocessing steps that the
specification goes through, such as moving the module qualification of the specification to
certain conditions. These transformations are performed on the copy of the breakpoint used
for testing. Independently of this, the debugger also stores the original breakpoint, which
is returned by current_breakpoint/5. See Section 11.3.48 [mpg-ref-current breakpoint],
page 966.

5.6.8 Accessing Past Debugger States

In this section we introduce the built-in predicates for accessing past debugger states, and
the breakpoint conditions related to these.

The debugger collects control flow information about the goals being executed, more pre-
cisely about those goals, for which a procedure box is built. This collection of information,
the backtrace, includes the invocations that were called but not exited yet, as well as those
that exited nondeterminately. For each invocation, the main data items present in the
backtrace are the following: the goal, the module, the invocation number, the depth and
the source information, if any.

Furthermore, as you can enter a new break level from within the debugger, there can be
multiple backtraces, one for each active break level.

You can access all the information collected by the debugger using the built-in predicate
execution_state(Focus, Tests). Here Focus is a ground term specifying which break
level and which invocation to access. It can be one of the following:

• break_level(BL) selects the current invocation within the break level BL.

• inv(Inv) selects the invocation number Inv within the current break level.

• A list containing the above two elements, selects the invocation with number Inv within
break level BL.

Chapter 5: Debugging 263

Note that the top level counts as break level 0, while the invocations are numbered from 1
upwards.

The second argument of execution_state/2, Tests, is a simple or composite breakpoint
condition. Most simple tests can appear inside Tests, with the exception of the port,
bid, advice, debugger, and get tests. These tests will be interpreted in the context of
the specified past debugger state. Specifically, if a true/1 condition is used, then any
execution_state/1 queries appearing in it will be evaluated in the past context.

To illustrate the use of execution_state/2, we now define a predicate last_call_

arg(ArgNo, Arg), which is to be called from within a break, and which will look at the last
debugged goal of the previous break level, and return in Arg the ArgNoth argument of this
goal.

last_call_arg(ArgNo, Arg) :-

execution_state(break_level(BL1)),

BL is BL1-1,

execution_state(break_level(BL), goal(Goal)),

arg(ArgNo, Goal, Arg).

We see two occurrences of the term break_level(...) in the above example. Although
these look very similar, they have different roles. The first one, in execution_state/1, is a
breakpoint test, which unifies the current break level with its argument. Here it is used to
obtain the current break level and store it in BL1. The second use of break_level(...),
in the first argument of execution_state/2, is a focus condition, whose argument has to
be instantiated, and which prescribes the break level to focus on. Here we use it to obtain
the goal of the current invocation of the previous break level.

Note that the goal retrieved from the backtrace is always in its latest instantiation state.
For example, it is not possible to get hold of the goal instantiation at the Call port, if the
invocation in question is at the Exit port.

Here is an example run, showing how last_call_arg/2 can be used:

5 2 Call: _937 is 13+8 ? b

% Break level 1

% 1

| ?- last_call_arg(2, A).

A = 13+8

There are some further breakpoint tests that are primarily used in looking at past execution
states.

The test max_inv(MaxInv) returns the maximal invocation number within the current (or
selected) break level. The test exited(Boolean) unifies Boolean with true if the invocation
has exited, and with false otherwise.

The following example predicate lists those goals in the backtrace, together with their
invocation numbers, that have exited. These are the invocations that are listed by the t

264 SICStus Prolog

interactive debugger command (print backtrace), but not by the g command (print ancestor
goals). Note that the predicate between(N,M, I) enumerates all integers such that N ≤
I ≤M .

exited_goals :-

execution_state(max_inv(Max)),

between(1, Max, Inv),

execution_state(inv(Inv), [exited(true),goal(G)]),

format('~t~d~6| ~p\n', [Inv,G]),

fail.

exited_goals.

(...)

?* 41 11 Exit: foo(2,1) ? @

| :- exited_goals.

26 foo(3,2)

28 bar(3,1,1)

31 foo(2,1)

33 bar(2,1,0)

36 foo(1,1)

37 foo(0,0)

39 foo(1,1)

41 foo(2,1)

43 bar(2,1,0)

46 foo(1,1)

47 foo(0,0)

?* 41 11 Exit: foo(2,1) ?

Note that similar output can be obtained by entering a new break level and calling exited_
goals from within an execution_state/2:

% 1

| ?- execution_state(break_level(0), true(exited_goals)).

The remaining two breakpoint tests allow you to find parent and ancestor invocations
in the backtrace. The parent_inv(Inv) test unifies Inv with the invocation number of
the youngest ancestor present in the backtrace, called debugger-parent for short. The test
ancestor(AncGoal,Inv) looks for the youngest ancestor in the backtrace that is an instance
of AncGoal. It then unifies the ancestor goal with AncGoal and its invocation number with
Inv.

Assume you would like to stop at all invocations of foo/2 that are somewhere within bar/1,
possibly deeply nested. The following two breakpoints achieve this effect:

| ?- spy(bar/1, advice), spy(foo/2, ancestor(bar(_),_)).

% Plain advice point for user:bar/1 added, BID=3

% Conditional spypoint for user:foo/2 added, BID=4

Chapter 5: Debugging 265

We added an advice point for bar/1 to ensure that all calls to it will have procedure boxes
built, and so become part of the backtrace. advice points are a better choice than spypoints
for this purpose, as with ?- spy(bar/1, -proceed) the debugger will not stop at the call
port of bar/1 in trace mode. Note that it is perfectly all right to create an advice point
using spy/2, although this is a bit of terminological inconsistency.

See Section 11.3.74 [mpg-ref-execution state], page 995. Further examples of accessing past
debugger states can be found in library(debugger_examples).

5.6.9 Storing User Information in the Backtrace

The debugger allows the user to store some private information in the backtrace. It al-
locates a Prolog variable in each break level and in each invocation. The breakpoint test
private(Priv) unifies Priv with the private information associated with the break level,
while the test goal_private(GPriv) unifies GPriv with the Prolog variable stored in the
invocation.

Both variables are initially unbound, and behave as if they were passed around the program
being debugged in additional arguments. This implies that any variable assignments done
within these variables are undone on backtracking.

In practice, the private condition gives you access to a Prolog variable shared by all
invocations of a break level. This makes it possible to remember a term and look at it later,
in a possibly more instantiated form, as shown by the following example.

memory(Term) :-

execution_state(private(P)),

memberchk(myterm(Term), P).

| ?- trace, append([1,2,3,4], [5,6], L).

1 1 Call: append([1,2,3,4],[5,6],_514) ? @

| :- append(_,_,L)^memory(L).

1 1 Call: append([1,2,3,4],[5,6],_514) ? c

2 2 Call: append([2,3,4],[5,6],_2064) ? c

3 3 Call: append([3,4],[5,6],_2422) ? c

4 4 Call: append([4],[5,6],_2780) ? @

| :- memory(L), write(L), nl.

[1,2,3|_2780]

4 4 Call: append([4],[5,6],_2780) ?

The predicate memory/1 receives the term to be remembered in its argument. It gets hold
of the private field associated with the break level in variable P, and calls memberchk/2 (see
Section 10.23 [lib-lists], page 603), with the term to be remembered, wrapped in myterm,
as the list element, and the private field, as the list. Thus the latter, initially unbound
variable, is used as an open-ended list. For example, when memory/1 is called for the first
time, the private field gets instantiated to [myterm(Term)|_]. If later you call memory/1
with an uninstantiated argument, then it will retrieve the term remembered earlier and
unify it with the argument.

266 SICStus Prolog

The above trace excerpt shows how this utility predicate can be used to remember an
interesting Prolog term. Within invocation number 1 we call memory/1 with the third,
output argument of append/3, using the ‘@’ command (see Section 5.5 [Debug Commands],
page 237). A few tracing steps later, we retrieve the term remembered and print it, showing
its current instantiation. Being able to access the instantiation status of some terms of
interest can be very useful in debugging. In library(debugger_examples) we describe
new debugger commands for naming Prolog variables and providing name-based access to
these variables, based on the above technique.

We could have avoided the use of memberchk/2 in the example by simply storing
the term to be remembered in the private field itself (memory(Term) :- execution_

state(private(Term)).). But this would have made the private field unusable for other
purposes. For example, the finite domain constraint debugger (see Section 10.15 [lib-fdbg],
page 526) would stop working, as it relies on the private fields.

There is only a single private variable of both kinds within the given scope. Therefore the
convention of using an open ended list for storing information in private fields, as shown
in the above example, is very much recommended. The different users of the private field
are distinguished by the wrapper they use (e.g. myterm/1 above, fdbg/1 for the constraint
debugger, etc.). Future releases may enforce this convention by providing appropriate break-
point tests.

We now present an example of using the goal private field. Earlier we have shown a spypoint
definition that made a predicate invisible in the sense that its ports are silently passed
through and it is automatically skipped over. However, with that earlier solution, execution
always continues in trace mode after skipping. We now improve the spypoint definition:
the mode in which the Call port was reached is remembered in the goal private field, and
the mode action variable is reset to this value at the Exit port.

mode_memory(Mode) :-

execution_state(goal_private(GP)),

memberchk(mymode(Mode), GP).

| ?- spy(foo/2, -[silent,proceed,

true(mode_memory(MM)),

(call -> get(mode(MM)), inv(Inv), skip(Inv)

; exit -> mode(MM)

; true

)]).

Here, we first define an auxiliary predicate mode_memory/1, which uses the open list con-
vention for storing information in the goal private field, applying the mymode/1 wrapper.
We then create a spypoint for foo/2, whose action part first sets the print and command

action variables. Next, the mode_memory/1 predicate is called, unifying the mode memory
with the MM variable. We then branch in the action part: at Call ports the uninstantiated
MM is unified with the current mode, and a skip command is issued. At Exit ports MM holds
the mode saved at the Call port, so the mode(MM) action re-activates this mode. At all
other ports we just silently proceed without changing the debugger mode.

Chapter 5: Debugging 267

5.6.10 Hooks Related to Breakpoints

There are two hooks related to breakpoints.

The hook breakpoint_expansion(Macro,Body) makes it possible for the user to extend
the set of allowed conditions. This hook is called, at breakpoint addition time, with each
simple test or action within the breakpoint specification, as the Macro argument. If the
hook succeeds, then the term returned in the Body argument is substituted for the original
test or action. Note that Body cannot span both the test and the action part, i.e. it cannot
contain the - /2 operator. The whole Body will be interpreted either as a test or as an
action, depending on the context of the original condition. See Section 11.3.28 [mpg-ref-
breakpoint expansion], page 943.

We now give a few examples for breakpoint macros. The last example defines a condition
making a predicate invisible, a reformulation of the last example of the previous subsection.

:- multifile user:breakpoint_expansion/2.

user:breakpoint_expansion(

skip, [inv(I),skip(I)]).

user:breakpoint_expansion(

gpriv(Value),

[goal_private(GP),true(memberchk(Value,GP))]).

user:breakpoint_expansion(

invisible,

[silent,proceed,

(call -> get(mode(M)), gpriv(mymode(M)), skip

; exit -> gpriv(mymode(MM)), mode(MM)

; true

)]).

| ?- spy(foo/2, -invisible).

We first define the skip macro, instructing the debugger to skip the current invocation.
This macro is only meaningful in the action part.

The second clause defines the gpriv/2 macro, a generalization of the earlier
mode_memory/1 predicate. For example, gpriv(mymode(M)) expands to goal_

private(GP),true(memberchk(mymode(M),GP)). This embodies the convention of using
open-ended lists for the goal private field.

Finally, the last clause implements the action macro invisible/0, which makes the predi-
cate in question disappear from the trace. The last line shows how this macro can be used
to make foo/2 invisible.

Below is an alternative implementation of the same macro. Here we use a Prolog predicate
that returns the list of action variable settings to be applied at the given port. Notice that
a variable can be used as a breakpoint condition, as long as this variable gets instantiated

268 SICStus Prolog

to a (simple or composite) breakpoint condition by the time it is reached in the process of
breakpoint evaluation.

user:breakpoint_expansion(invisible,

[true(invisible(Settings)),Settings]).

invisible([proceed,silent,NewMode]) :-

execution_state([mode(M),port(P),inv(Inv),goal_private(GP)]),

memberchk(mymode(MM), GP),

(P == call -> MM = M, NewMode = skip(Inv)

; P = exit(_) -> NewMode = MM

; NewMode = M

).

The second hook related to breakpoints is debugger_command_hook(DCommand, Actions).
This hook serves for customizing the behavior of the interactive debugger, i.e. for introducing
new interactive debugger commands. The hook is called for each debugger command read
in by the debugger. DCommand contains the abstract format of the debugger command
read in, as returned by the query facility (see Section 4.16.3 [Query Processing], page 216).
If the hook succeeds, then it should return in Actions an action part to be evaluated as the
result of the command.

If you want to redefine an existing debugger command, then you should study library('SU_
messages') to learn the abstract format of this command, as returned by the query facility.
If you want to add a new command, then it suffices to know that unrecognized debugger
commands are returned as unknown(Line,Warning). Here, Line is the code list typed in,
with any leading whitespace removed, and Warning is a warning message.

The following example defines the ‘S’ interactive debugger command to behave as skip at
Call and Redo ports, and as creep otherwise:

:- multifile user:debugger_command_hook/2.

user:debugger_command_hook(unknown([0'S|_],_), Actions) :-

execution_state([port(P),inv(I)]),

Actions = [Mode,proceed,silent],

(P = call -> Mode = skip(I)

; P = redo -> Mode = skip(I)

; Mode = trace

).

Note that the silent action is needed above; otherwise, the trace message will be printed
a second time, before continuing the execution.

See Section 11.3.61 [mpg-ref-debugger command hook], page 981. library(debugger_

examples) contains some of the above hooks, as well as several others.

5.6.11 Programming Breakpoints

We will show two examples using the advanced features of the debugger.

Chapter 5: Debugging 269

The first example defines a hide_exit(Pred) predicate, which will hide the Exit port for
Pred (i.e. it will silently proceed), provided the current goal was already ground at the
Call port, and nothing was traced inside the given invocation. The hide_exit(Pred) goal
creates two spypoints for predicate Pred:

:- meta_predicate hide_exit(:).

hide_exit(Pred) :-

add_breakpoint([pred(Pred),call]-

true(save_groundness), _),

add_breakpoint([pred(Pred),exit,true(hide_exit)]-hide, _).

The first spypoint is applicable at the Call port, and it calls save_groundness to check if
the given invocation was ground, and if so, then it stores a term hide_exit(ground) in the
goal_private attribute of the invocation.

save_groundness :-

execution_state([goal(_:G),goal_private(Priv)]),

ground(G), !, memberchk(hide_exit(ground), Priv).

save_groundness.

The second spypoint created by hide_exit/1 is applicable at the Exit port and it checks
whether the hide_exit/0 condition is true. If so, then it issues a hide action, which is a
breakpoint macro expanding to [silent,proceed].

hide_exit :-

execution_state([inv(I),max_inv(I),goal_private(Priv)]),

memberchk(hide_exit(Ground), Priv), Ground == ground.

Here, hide_exit encapsulates the tests that the invocation number be the same as the last
invocation number used (max_inv), and that the goal_private attribute of the invocation
be identical to ground. The first test ensures that nothing was traced inside the current
invocation.

If we load the above code, as well as the small example below, then the following interaction,
discussed below, can take place. Note that the hide_exit predicate is called with the _:_

argument, resulting in generic spypoints being created.

270 SICStus Prolog

| ?- consult(user).

| cnt(0) :- !.

| cnt(N) :-

N > 0, N1 is N-1, cnt(N1).

| ^D

% consulted user in module user, 0 msec 424 bytes

| ?- hide_exit(_:_), trace, cnt(1).

% The debugger will first zip -- showing spypoints (zip)

% Generic spypoint added, BID=1

% Generic spypoint added, BID=2

% The debugger will first creep -- showing everything (trace)

1 1 Call: cnt(1) ? c

2 2 Call: 1>0 ? c

3 2 Call: _2019 is 1-1 ? c

3 2 Exit: 0 is 1-1 ? c

4 2 Call: cnt(0) ? c

1 1 Exit: cnt(1) ? c

% trace

| ?-

Invocation 1 is ground, its Exit port is not hidden, because further goals were traced inside
it. On the other hand, Exit ports of ground invocations 2 and 4 are hidden.

Our second example defines a predicate call_backtrace(Goal, BTrace), which will ex-
ecute Goal and build a backtrace showing the successful invocations executed during the
solution of Goal.

The advantages of such a special backtrace over the one incorporated in the debugger are
the following:

• it has much lower space consumption;

• the user can control what is put on and removed from the backtrace (e.g. in this example
all goals are kept, even the ones that exited determinately);

• the interactive debugger can be switched on and off without affecting the “private”
backtrace being built.

The call_backtrace/2 predicate is based on the advice facility. It uses the variable ac-
cessible via the private(_) condition to store a mutable (see Section 4.8.9 [ref-lte-mut],
page 131) holding the backtrace. Outside the call_backtrace predicate the mutable will
have the value off.

The example is a module file, so that internal invocations can be identified by the module
name. We load the lists library, because memberchk/2 will be used in the handling of the
private field.

Chapter 5: Debugging 271

:- module(backtrace, [call_backtrace/2]).

:- use_module(library(lists)).

:- meta_predicate call_backtrace(0, ?).

call_backtrace(Goal, BTrace) :-

Spec = [advice,call]

-[true((goal(M:G),store_goal(M,G))),flit],

(current_breakpoint(Spec, _, on, _, _) -> B = []

; add_breakpoint(Spec, B)

),

call_cleanup(call_backtrace1(Goal, BTrace),

remove_breakpoints(B)).

call_backtrace(Goal, BTrace) is a meta-predicate, which first sets up an appropriate
advice point for building the backtrace. The advice point will be activated at each Call
port and will call the store_goal/2 predicate with arguments containing the module and
the goal in question. Note that the advice point will not build a procedure box (cf. the
flit command in the action part).

The advice point will be added just once: any further (recursive) calls to call_backtrace/2
will notice the existence of the breakpoint and will skip the add_breakpoint/2 call.

Having ensured the appropriate advice point exists, call_backtrace/2 calls call_

backtrace1/2 with a cleanup operation that removes the breakpoint added, if any.

:- meta_predicate call_backtrace1(0, ?).

call_backtrace1(Goal, BTrace) :-

execution_state(private(Priv)),

memberchk(backtrace_mutable(Mut), Priv),

(mutable(Mut) -> get_mutable(Old, Mut),

update_mutable([], Mut)

; create_mutable([], Mut), Old = off

),

call(Goal),

get_mutable(BTrace, Mut), update_mutable(Old, Mut).

The predicate call_backtrace1/2 retrieves the private field of the execution state and uses
it to store a mutable, wrapped in backtrace_mutable. When first called within a top level,
the mutable is created with the value []. In later calls, the mutable is re-initialized to [].
Having set up the mutable, Goal is called. In the course of the execution of the Goal, the
debugger will accumulate the backtrace in the mutable. Finally, the mutable is read, its
value is returned in BTrace, and it is restored to its old value (or off).

272 SICStus Prolog

store_goal(M, G) :-

M \== backtrace,

G \= call(_),

execution_state(private(Priv)),

memberchk(backtrace_mutable(Mut), Priv),

mutable(Mut),

get_mutable(BTrace, Mut),

BTrace \== off, !,

update_mutable([M:G|BTrace], Mut).

store_goal(_, _).

store_goal/2 is the predicate called by the advice point, with the module and the goal
as arguments. We first ensure that calls from within the backtrace module and those of
call/1 get ignored. Next, the module qualified goal term is prepended to the mutable value
retrieved from the private field, provided the mutable exists and its value is not off.

Below is an example run, using a small program:

| ?- consult(user).

| cnt(N):- N =< 0, !.

| cnt(N) :-

N > 0, N1 is N-1, cnt(N1).

| ^D

% consulted user in module user, 0 msec 424 bytes

| ?- call_backtrace(cnt(1), B).

% Generic advice point added, BID=1

% Generic advice point, BID=1, removed (last)

B = [user:(0=<0),user:cnt(0),user:(0 is 1-1),user:(1>0),user:cnt(1)]

| ?-

Note that the backtrace produced by call_backtrace/2 can not contain any information
regarding failed branches. For example, the very first invocation within the above execution,
1 =< 0, is first put on the backtrace at its Call port, but this is immediately undone because
the goal fails. If you would like to build a backtrace that preserves failed branches, then
you have to use side effects, e.g. dynamic predicates.

Further examples of complex breakpoint handling are contained in library(debugger_

examples).

This concludes the tutorial introduction of the advanced debugger features.

5.7 Breakpoint Handling Predicates

This section describes the advanced built-in predicates for creating and removing break-
points.

Chapter 5: Debugging 273

add_breakpoint(:Spec, ?BID) development

Adds a breakpoint with a spec Spec, the breakpoint identifier assigned is unified
with BID. Spec is one of the following:

Tests-Actions
Tests standing for Tests-[]

-Actions standing for []-Actions

Here, both Tests and Actions are either a simple Condition, see Section 5.9
[Breakpoint Conditions], page 277, or a composite Condition. Conditions can
be composed by forming lists, or by using the ‘,’, ‘;’, ‘->’, and ‘\+’ operators,
with the usual meaning of conjunction, disjunction, if-then-else, and negation,
respectively. A list of conditions is equivalent to a conjunction of the same
conditions ([A|B] is treated as (A,B)).

The add_breakpoint/2 predicate performs some transformations and checks
before adding the breakpoint. All condition macros invoked are expanded into
their bodies, and this process is repeated for the newly introduced bodies. The
goal and pred conditions are then extracted from the outermost conjunctions
of the test part and moved to the beginning of the conjunction. If these are
inconsistent, then a consistency error is signalled. Module name expansion is
performed for certain tests, as described below.

Both the original and the transformed breakpoint specification is recorded by
the debugger. The original is returned in current_breakpoint/5, while the
transformed specification is used in determining the applicability of breakpoints.

There can only be a single plain spypoint for each predicate. If a plain spypoint
is added, and there is already a plain spypoint for the given predicate, then:

a. the old spypoint is deleted and a new added as the most recent breakpoint,
if this change affects the breakpoint selection mechanism.

b. otherwise, the old spypoint is kept and enabled if needed.

See Section 11.3.5 [mpg-ref-add breakpoint], page 913.

spy(:PredSpec, :Spec) development

Adds a conditional spypoint with a breakpoint specification formed by adding
pred(Pred) to the test part of Spec, for each predicate Pred designated by
the generalized predicate specification PredSpec. See Section 11.3.216 [mpg-
ref-spy], page 1180.

current_breakpoint(:Spec, ?BID, ?Status, ?Kind, ?Type) development

There is a breakpoint with breakpoint specification Spec, identifier BID, sta-
tus Status, kind Kind, and type Type. Status is one of on or off, refer-
ring to enabled and disabled breakpoints. Kind is one of plain(MFunc),
conditional(MFunc) or generic, where MFunc is the module qualified functor
of the specific breakpoint. Type is the breakpoint type: debugger or advice.

current_breakpoint/5 enumerates all breakpoints on backtracking.

The Spec as returned by current_breakpoint/5 is exactly the same as
supplied at the creation of the breakpoint. See Section 11.3.48 [mpg-ref-
current breakpoint], page 966.

274 SICStus Prolog

remove_breakpoints(+BIDs) development

disable_breakpoints(+BIDs) development

enable_breakpoints(+BIDs) development

Removes, disables or enables the breakpoints with identifiers specified by BIDs.
BIDs can be a number, a list of numbers or one of the atoms: all, debugger,
advice. The atoms specify all breakpoints, debugger type breakpoints and
advice type breakpoints, respectively.

execution_state(:Tests) development

Tests are satisfied in the current state of the execution. Arbitrary tests can be
used in this predicate, if it is called from inside the debugger, i.e. from within a
true condition. Otherwise only those tests can be used, which query the data
stored in the backtrace. An exception is raised if the latter condition is violated,
i.e. a non-backtraced test (see Section 5.9 [Breakpoint Conditions], page 277)
occurs in a call of execution_state/1 from outside the debugger.

execution_state(+FocusConditions, :Tests) development

Tests are satisfied in the state of the execution pointed to by FocusConditions
(see Section 5.9.7 [Past States], page 282). An exception is raised if there is a
non-backtraced test among Tests.

Note that the predicate arguments holding a breakpoint specification (Spec or Tests above)
are subject to module name expansion. The first argument within simple tests goal(_),
pred(_), parent_pred(_), parent_pred(_,_), ancestor(_,_), and true(_) will inherit
the module name from the (module name expanded) breakpoint specification/tests predicate
argument, if there is no explicit module qualification within the simple test. Within the
proceed(Old,New) and flit(Old,New) command value settings, Old will get the module
name from the goal or pred condition by default, while New from the whole breakpoint
specification argument. See Section 11.3.74 [mpg-ref-execution state], page 995.

The following hook predicate can be used to customize the behavior of the interactive
debugger.

debugger_command_hook(+DCommand,?Actions) hook,development

user:debugger_command_hook(+DCommand,?Actions)

This predicate is called for each debugger command that SICStus Prolog
reads. The first argument is the abstract format of the debugger command
DCommand, as returned by the query facility (see Section 4.16.3 [Query Pro-
cessing], page 216). If it succeeds, then Actions is taken as the list of actions
(see Section 5.9.6 [Action Conditions], page 281) to be done for the given de-
bugger command. If it fails, then the debugger command is interpreted in the
standard way.

Note that if a line typed in response to the debugger prompt cannot be parsed
as a debugger command, then debugger_command_hook/2 is called with the
term unknown(Line,Warning). Here, Line is the code list typed in, with
any leading whitespace removed, and Warning is a warning message. This
allows the user to define new debugger commands, see Section 5.6.10 [Hooks

Chapter 5: Debugging 275

Related to Breakpoints], page 267, for an example. See Section 11.3.61 [mpg-
ref-debugger command hook], page 981.

5.8 The Processing of Breakpoints

This section describes in detail how the debugger handles the breakpoints. For the purpose
of this section disabled breakpoints are not taken into account: whenever we refer to the
existence of some breakpoint(s), we always mean the existence of enabled breakpoint(s).

The Prolog engine can be in one of the following three states with respect to the debugger:

no debugging
if there are no advice points and the debugger is either switched off, or doing a
skip;

full debugging
if the debugger is in trace or debug mode (creeping or leaping), or there are
any generic breakpoints;

selective debugging
in all other cases.

In the selective debugging state only those predicate invocations are examined, for which
there exists a specific breakpoint. In the full debugging state all invocations are examined,
except those calling a predicate of a hidden module (but even these will be examined, if
there is a specific breakpoint for them). In the no debugging state the debugger is not
entered at predicate invocations.

Now we describe what the debugger does when examining an invocation of a predicate, i.e.
executing its Call port. The debugger activities can be divided into three stages: advice
point processing, spypoint processing and interaction with the user. The last stage may be
repeated several times before program execution continues.

The first two stages are similar, as they both search for an applicable breakpoint (spypoint
or advice point). This common breakpoint search is carried out as follows. The debugger
considers all breakpoints of the given type, most recent first. For each breakpoint, the test
part of the specification is evaluated, until one successful is found. Any variable bindings
created in this successful evaluation are then discarded (this is implemented by enclosing it
in double negation). The first breakpoint, for which the evaluation of the test part succeeds
is selected. If such a breakpoint can be found, then the breakpoint search is said to have
completed successfully, otherwise it is said to have failed.

If a breakpoint has been selected, then its action part is evaluated, normally setting some
debugger action variables. If the action part fails, then as a side effect, it is ensured that a
procedure box will be built. This is achieved by changing the value of the command action
variable from flit to proceed.

Having described the common breakpoint search, let us look at the details of the first stage,
advice point processing. This stage is executed only if there are any advice points set.
First, the debugger action variables are initialized: mode is set to the current debugger

276 SICStus Prolog

mode, command to proceed and show to silent. Next, advice point search takes place. If
this fails, then command is set to flit, otherwise its value is unchanged.

After completing the advice point search the command variable is examined. If its value is
divertive, i.e. different from proceed and flit, then the spypoint search stage is omitted,
and the debugger continues with the third stage. Otherwise, it is noted that the advice
point processing has requested the building of a procedure box (i.e. command = proceed),
and the debugger continues with the second stage.

The second stage is spypoint processing. This stage is skipped if the debugger is switched
off or doing a skip (mode is off or skip(_)). First the show and command variables are re-
assigned, based on the hiddenness of the predicate being invoked, the debugger mode, and
the leashing status of the port. If the predicate is both defined in, and called from a hidden
module, then their values will be silent and flit. An example of this is when a built-in
predicate is called from a hidden module, e.g. from a library. Otherwise, in trace mode,
their values are print and ask for leashed ports, and print and proceed for unleashed
ports. In debug mode, the variables are set to silent and proceed, while in zip mode to
silent and flit (Section 5.6.5 [Breakpoint Actions], page 252, contains a tabulated listing
of these initialization values).

Having initialized the debugger action variables, the spypoint search phase is performed. If
an empty action part has been selected in a successful search, then show and command are
set to print and ask. The failure of the search is ignored.

The third stage is the interactive part. First, the goal in question is displayed according to
the value of show. Next, the value of command is checked: if it is other than ask, then the
interactive stage ends. Otherwise, (it is ask), the variable show is re-initialized to print, or
to print-Sel, if its value was of form Method-Sel. Next, the debugger prompts the user for
a command, which is interpreted either in the standard way, or through user:debugger_

command_hook/2. In both cases the debugger action variables are modified as requested,
and the interactive part is repeated.

After the debugger went through all the three stages, it decides whether to build a procedure
box. This will happen if either the advice point stage or the other two stages require it.
The latter is decided by checking the command variable: if that is flit or flit(Old,New),
then no procedure box is required by the spypoint part. If the advice point does require
the building of a procedure box, then the above command values are replaced by proceed

and proceed(Old,New), respectively.

At the end of the process the value of mode will be the new debugging mode, and command

will determine what the debugger will do; see Section 5.9.9 [Action Variables], page 282.

A similar three-stage process is carried out when the debugger arrives at a non-Call port of
a predicate. The only difference is that the building of a procedure box is not considered
(flit is equivalent to proceed), and the hiddenness of the predicate is not taken into
account.

Chapter 5: Debugging 277

While the Prolog system is executing the above three-stage process for any of the ports, it
is said to be inside the debugger. This is relevant, because some of the conditions can only
be evaluated in this context.

5.9 Breakpoint Conditions

This section describes the format of simple breakpoint conditions. We first list the tests that
can be used to enquire the state of execution. We then proceed to describe the conditions
usable in the action part and the options for focusing on past execution states. Finally, we
describe condition macros and the format of the values of the debugger action variables.

We distinguish between two kinds of tests, based on whether they refer to information
stored in the backtrace or not. The latter category, the non-backtraced tests, contains
the conditions related to the current port (port, bid, mode, show, command, get) and
the breakpoint type selection conditions (advice and debug). All remaining tests refer to
information stored in the backtrace.

Non-backtraced tests will raise an exception, if they appear in calls to execution_state/1

from outside the debugger, or in queries about past execution state, in execution_state/2.

Backtraced tests are allowed both inside and outside the debugger. However such tests
can fail if the given query is not meaningful in the given context, e.g. if execution_

state(goal(G)) is queried before any breakpoints were encountered.

Note that if a test is used in the second argument of execution_state/2, then the term
current, in the following descriptions, should be interpreted as referring to the execution
state focused on (described by the first argument of execution_state/2).

5.9.1 Tests Related to the Current Goal

The following tests give access to basic information about the current invocation.

inv(Inv) The invocation number of the current goal is Inv. Invocation numbers start
from 1.

depth(Depth)

The current execution depth is Depth.

goal(MGoal)

The current goal is an instance of the module name expanded MGoal tem-
plate. The current goal and MGoal are unified. This condition is equivalent to
subsumes(MGoal,CurrentGoal) (subsumes/2 is defined in library(terms),
see Section 10.42 [lib-terms], page 841).

pred(MFunc)

The module name expanded MFunc template matches (see notes below) the
functor (M:F/N) of the current goal. The unification required for matching is
carried out.

module(Module)

The current goal is invoked from module Module. For compiled calls to built-in
predicates Module will always be prolog.

278 SICStus Prolog

goal_private(GoalPriv)

The private information associated with the current goal is GoalPriv. This is
initialized to an unbound variable at the Call port. It is strongly recommended
that GoalPriv be used as an open ended list, see Section 5.6.9 [Storing User
Information in the Backtrace], page 265.

exited(Boolean)

Boolean is true if the current invocation has exited, and false otherwise. This
condition is mainly used for looking at past execution states.

parent_inv(Inv)

The invocation number of the debugger-parent (see notes below) of the current
goal is Inv.

ancestor(AncGoal,Inv)

The youngest debugger-ancestor of the current goal, which is an instance of the
module name expanded AncGoal template, is at invocation number Inv. The
unification required for matching is carried out.

Notes:

The debugger-parent of a goal is the youngest ancestor of the goal present on the backtrace.
This will differ from the ordinary parent if not all goals are traced, e.g. if the goal in question
is reached in zip mode. A debugger-ancestor of a goal is any of its ancestors on the backtrace.

In the goal and ancestor tests above, there is a given module qualified goal template, say
ModT:GoalT, and it is matched against a concrete goal term Mod:Goal in the execution
state. This matching is carried out as follows:

a. It is checked that Goal is an instance of GoalT.

b. Goal and GoalT are unified.

c. It is checked that Mod and ModT are either unifiable (and are unified), or name
such modules in which Goal has the same meaning, i.e. either one of Mod:Goal and
ModT:Goal is an exported variant of the other, or both are imported from the same
module.

Similar matching rules apply for predicate functors, in the pred condition. In this test the
argument holds a module qualified functor template, say ModT:Name/Arity, and this is
matched against a concrete goal term Mod:Goal in the execution state.

a. It is checked that the functor of Goal unifies with Name/Arity, and this unification is
carried out.

b. It is checked that Mod and ModT are either unifiable (and are unified), or name such
modules in which Goal has the same meaning.

5.9.2 Tests Related to Source Information

These tests provide access to source related information. The file and line tests will fail if
no source information is present. The parent_clause and parent_pred tests are available
for interpreted code only, they will fail in compiled code.

Chapter 5: Debugging 279

file(File)

The current goal is invoked from a file whose absolute name is File.

line(File,Line)

The current goal is invoked from line Line, from within a file whose absolute
name is File.

line(Line)

The current goal is invoked from line Line.

parent_clause(Cl)

The current goal is invoked from clause Cl.

parent_clause(Cl,Sel)

The current goal is invoked from clause Cl and within its body it is pointed to
by the subterm selector Sel.

parent_clause(Cl,Sel,I)

The current goal is invoked from clause Cl, it is pointed to by the subterm
selector Sel within its body, and it is the Ith goal within it. The goals in the
body are counted following their textual occurrence.

parent_pred(Pred)

The current goal is invoked from predicate Pred.

parent_pred(Pred,N)

The current goal is invoked from predicate Pred, clause number N.

The parent_pred tests match their first argument against the functor of the parent predi-
cate in the same way as the pred test does; see the notes in the previous section (Section 5.9.1
[Goal Tests], page 277).

5.9.3 Tests Related to the Current Port

These tests can only be used inside the debugger and only when focused on the current
invocation. If they appear in execution_state/2 or in execution_state/1 called from
outside the debugger, then an exception will be raised.

The notion of port in breakpoint handling is more general than outlined earlier in Section 5.1
[Procedure Box], page 231. Here, the following terms are used to describe a port:

call, exit(nondet), exit(det), redo, fail,

exception(Exception), block, unblock

Furthermore, the atoms exit and exception can be used in the port condition (see below),
to denote either of the two exit ports and an arbitrary exception port, respectively.

port(Port)

The current execution port matches Port in the following sense: either Port
and the current port unify, or Port is the functor of the current port (e.g.
port(exit) holds for both exit(det) and exit(nondet) ports).

As explained earlier, the port condition for a non Call port is best placed in
the action part. This is because the failure of the action part will cause the

280 SICStus Prolog

debugger to pass through the Call port silently, and to build a procedure box,
even in zip mode. The following idiom is suggested for creating breakpoints at
non Call ports:

add_breakpoint(Tests-[port(Port),Actions], BID).

bid(BID) The breakpoint being examined has a breakpoint identifier BID. (BID = off

if no breakpoint was selected.)

mode(Mode)

Mode is the value of the mode variable, which normally reflects the current
debugger mode.

command(Command)

Command is the value of the command variable, which is the command to be
executed by default, if the breakpoint is selected.

show(Show)

Show is the value of the show variable, i.e. the default show method (the method
for displaying the goal in the trace message).

The last three of the above tests access the debugger action variables. These break-
point conditions have a different meaning in the action part. For example, the condition
mode(trace), if it occurs in the tests, checks if the current debugger mode is trace. On
the other hand, if the same term occurs within the action part, then it sets the debugger
mode to trace.

To support the querying of the action variables in the action part, the following breakpoint
condition is provided:

get(ActVar)

Equivalent to ActVar, where this is an action variable test, i.e. one of the
terms mode(Mode), command(Command), show(Show). It has this meaning in
the action part as well.

For the port, mode, command and show conditions, the condition can be replaced by its
argument, if that is not a variable. For example the condition call can be used instead
of port(call). Conditions matching the terms listed above as valid port values will be
converted to a port condition. Similarly, any valid value for the three debugger action
variables is converted to an appropriate condition. These valid values are described in
Section 5.9.9 [Action Variables], page 282.

5.9.4 Tests Related to the Break Level

These tests can be used both inside and outside the condition evaluation process, and also
can be used in queries about past break levels.

break_level(N)

We are at (or focused on) break level N (N = 0 for the outermost break level).

Chapter 5: Debugging 281

max_inv(MaxInv)

The last invocation number used within the current break level is MaxInv. Note
that this invocation number may not be present in the backtrace (because the
corresponding call exited determinately).

private(Priv)

The private information associated with the break level is Priv. Similarly to
goal_private/1, this condition refers initially to an unbound variable and can
be used to store an arbitrary Prolog term. However, it is strongly recommended
that Priv be used as an open ended list, see Section 5.6.9 [Storing User Infor-
mation in the Backtrace], page 265.

5.9.5 Other Conditions

The following conditions are for prescribing or checking the breakpoint type. They cause
an exception if used outside the debugger or in execution_state/2.

advice The breakpoint in question is of advice type.

debugger The breakpoint in question is of debugger type.

The following construct converts an arbitrary Prolog goal into a condition.

true(Cond)

The Prolog goal Cond is true, i.e. once(Cond) is executed and the condition
is satisfied if and only if this completes successfully. If an exception is raised
during execution, then an error message is printed and the condition fails.

The substitutions done on executing Cond are carried out. Cond is subject to
module name expansion. If used in the test part of spypoint conditions, then
the goal should not have any side effects, as the test part may be evaluated
several times.

The following conditions represent the Boolean constants.

true

[] A condition that is always true. Useful e.g. in conditionals.

false A condition that is always false.

5.9.6 Conditions Usable in the Action Part

The meaning of the following conditions, if they appear in the action part, is different from
their meaning in the test part.

mode(Mode)

Set the debugger mode to Mode.

command(Command)

Set the command to be executed to Command.

show(Show)

Set the show method to Show.

282 SICStus Prolog

The values admissible for Mode, Command and Show are described in Section 5.9.9 [Action
Variables], page 282.

Furthermore, any other condition can be used in the action part, except for the ones spec-
ifying the breakpoint type (advice and debugger). Specifically, the get condition can be
used to access the value of an action variable.

5.9.7 Options for Focusing on a Past State

The following ground terms can be used in the first argument of execution_state/2 (see
Section 5.7 [Breakpoint Predicates], page 272). Alternatively, a list containing such terms
can be used. If a given condition occurs multiple times, then only the last one is considered.
The order of conditions within the list does not matter.

break_level(BL)

Focus on the current invocation of break level BL. BL is the break level num-
ber, the top level being break_level(0). For past break levels, the current
invocation is the one from which the next break level was entered.

inv(Inv) Focus on the invocation number Inv of the currently focused break level.

5.9.8 Condition Macros

There are a few condition macros expanding to a list of other conditions:

unleash Expands to [show(print),command(proceed)]

hide Expands to [show(silent),command(proceed)]

leash Expands to [show(print),command(ask)]

The user can also define condition macros using the hook predicate below.

breakpoint_expansion(+Macro, -Body) hook,development

user:breakpoint_expansion(+Macro, -Body)

This predicate is called with each (non-composite) breakpoint test or action, as
its first argument. If it succeeds, then the term returned in the second argument
(Body) is substituted for the original condition. The expansion is done at the
time the breakpoint is added.

Note that Body can be composite, but it cannot be of form Tests-Actions.
This means that the whole Body will be interpreted as being in either the test
or the action part, depending on the context.

The built-in breakpoint conditions cannot be redefined using this predicate. See
Section 11.3.28 [mpg-ref-breakpoint expansion], page 943.

5.9.9 The Action Variables

In this section we list the possible values of the debugger action variables, and their meaning.

Note that the Prolog terms, supplied as values, are copied when a variable is set. This is
relevant primarily in the case of the proceed/2 and flit/2 values.

Chapter 5: Debugging 283

Values allowed in the show condition:

print Write using options stored in the debugger_print_options Prolog flag.

silent Display nothing.

display Write using display.

write Write using writeq.

write_term(Options)

Write using options Options.

Method-Sel

Display only the subterm selected by Sel, using Method. Here, Method is one
of the methods above, and Sel is a subterm selector.

Values allowed in the command condition:

ask Ask the user what to do next.

proceed Continue the execution without interacting with the user (cf. unleashing).

flit Continue the execution without building a procedure box for the current goal
(and consequently not encountering any other ports for this invocation). Only
meaningful at Call ports, at other ports it is equivalent to proceed.

proceed(Goal,New)

Unless at call port, first go back to the call port (retry the current invocation;
see the retry(Inv) command value below). Next, unify the current goal with
Goal and execute the goal New in its place. Create (or keep) a procedure box
for the current goal.

This construct is used by the ‘u’ (unify) interactive debugger command.

Both the Goal and New arguments are module name expanded when the break-
point is added: the module of Goal defaults to the module of the current goal,
while that of New to the module name of the breakpoint specification. If the
command value is created during run time, then the module name of both
arguments defaults to the module of the current goal.

The term proceed(Goal,New) will be copied when the command action variable
is set. Therefore breakpoint specs of form

Tests - [goal(foo(X)),...,proceed(_,bar(X))]

should be avoided, and

Tests - [goal(foo(X)),...,proceed(foo(Y),bar(Y))

should be used instead. The first variant will not work as expected if X is non-
ground, as the variables in the bar/1 call will be detached from the original
ones in foo/1. Even if X is ground, the first variant may be much less efficient,
as it will copy the possibly huge term X.

flit(Goal,New)

Same as proceed(Goal,New), but do not create (or discard) a procedure box
for the current goal. (Consequently no other ports will be encountered for this
invocation.)

284 SICStus Prolog

Notes for proceed/2, on module name expansion and copying, also apply to
flit/2.

raise(E) Raise the exception E.

abort Abort the execution.

retry(Inv)

Retry the most recent goal in the backtrace with an invocation number less
or equal to Inv (go back to the Call port of the goal). This is used by the
interactive debugger command ‘r’, retry; see Section 5.5 [Debug Commands],
page 237.

reexit(Inv)

Re-exit the invocation with number Inv (go back to the Exit port of the goal).
Inv must be an exact reference to an exited invocation present in the backtrace
(exited nondeterminately, or currently being exited). This is used by the in-
teractive debugger command ‘je’, jump to Exit port; see Section 5.5 [Debug
Commands], page 237.

redo(Inv)

Redo the invocation with number Inv (go back to the Redo port of the goal).
Inv must be an exact reference to an exited invocation present in the backtrace.
This is used by the interactive debugger command ‘jr’, jump to Redo port; see
Section 5.5 [Debug Commands], page 237.

fail(Inv)

Fail the most recent goal in the backtrace with an invocation number less or
equal to Inv (transfer control back to the Fail port of the goal). This is used by
the interactive debugger command ‘f’, fail; see Section 5.5 [Debug Commands],
page 237.

Values allowed in the mode condition:

qskip(Inv)

Quasi-skip until the first port with invocation number less or equal to Inv
is reached. Having reached that point, mode is set to trace. Valid only if
Inv ≥ 1 and furthermore Inv ≤ CurrInv for entry ports (Call, Redo), and
Inv < CurrInv for all other ports, where CurrInv is the invocation number of
the current port.

skip(Inv)

Skip until the first port with invocation number less or equal to Inv is reached,
and set mode to trace there. Inv should obey the same rules as for qskip.

trace Creep.

debug Leap.

zip Zip.

off Continue without debugging.

Chapter 5: Debugging 285

5.10 Consulting during Debugging

It is possible, and sometimes useful, to consult a file whilst in the middle of program
execution. Predicates that have been successfully executed and are subsequently redefined
by a consult and are later reactivated by backtracking, will not notice the change of their
definitions. In other words, it is as if every predicate, when called, creates a copy of its
definition for backtracking purposes.

5.11 Catching Exceptions

Usually, exceptions that occur during debugging sessions are displayed only in trace mode
and for invocation boxes for predicates with spypoints on them, and not during skips.
However, it is sometimes useful to make exceptions trap to the debugger at the earliest
opportunity instead. The hook predicate user:error_exception/1 provides such a possi-
bility:

error_exception(+Exception) hook

user:error_exception(+Exception)

This predicate is called at all Exception ports. If it succeeds, then the debug-
ger enters trace mode and prints an exception port message. Otherwise, the
debugger mode is unchanged and a message is printed only in trace mode or
if a spypoint is reached, and not during skips. See Section 11.3.73 [mpg-ref-
error exception], page 994.

Note that this hook takes effect when the debugger arrives at an Exception port. For this
to happen, procedure boxes have to be built, e.g. by running (the relevant parts of) the
program in debug mode.

A useful definition that ensures that all standard error exceptions causes the debugger to
enter trace mode, is as follows:

:- multifile user:error_exception/1.

user:error_exception(error(_,_)).

(this example would not have worked prior to release 4.0.5).

5.12 Predicate Summary

add_breakpoint(+Conditions, -BID) development

Creates a breakpoint with Conditions and with identifier BID.

user:breakpoint_expansion(+Macro, -Body) hook,development

defines debugger condition macros

coverage_data(?Data) since release 4.2,development

Data is the coverage data accumulated so far

current_breakpoint(?Conditions, ?BID, ?Status, ?Kind, ?Type) development

There is a breakpoint with conditions Conditions, identifier BID, enabledness
Status, kind Kind, and type Type.

286 SICStus Prolog

debug development

switch on debugging

user:debugger_command_hook(+DCommand,-Actions) hook,development

Allows the interactive debugger to be extended with user-defined commands.

debugging development

display debugging status information

disable_breakpoints(+BIDs) development

Disables the breakpoints specified by BIDs.

enable_breakpoints(+BIDs) development

Enables the breakpoints specified by BIDs.

user:error_exception(+Exception) hook

Exception is an exception that traps to the debugger if it is switched on.

execution_state(+Tests) development

Tests are satisfied in the current state of the execution.

execution_state(+FocusConditions, +Tests) development

Tests are satisfied in the state of the execution pointed to by FocusConditions.

leash(+M) development

set the debugger’s leashing mode to M

nodebug development

switch off debugging

nospy(:P) development

remove spypoints from the procedure(s) specified by P

nospyall development

remove all spypoints

notrace development

switch off debugging (same as nodebug/0)

nozip development

switch off debugging (same as nodebug/0)

print_coverage since release 4.2,development

print_coverage(?Data) since release 4.2,development

The coverage data Data is displayed in a hierarchical format. Data defaults to
the coverage data accumulated so far.

print_profile since release 4.2,development

print_profile(?Data) since release 4.2,development

The profiling data Data is displayed in a format similar to gprof(1). Data
defaults to the profiling data accumulated so far.

profile_data(?Data) since release 4.2,development

Data is the profiling data accumulated so far

profile_reset since release 4.2,development

All profiling data is reset.

Chapter 5: Debugging 287

remove_breakpoints(+BIDs) development

Removes the breakpoints specified by BIDs.

spy(:P) development

spy(:P,:C)

set spypoints on the procedure(s) specified by P with conditions C

trace development

switch on debugging and start tracing immediately

unknown(-O,+N) development

Changes action on undefined predicates from O to N.

user:unknown_predicate_handler(+G,+M,-N) hook

handle for unknown predicates.

zip development

switch on debugging in zip mode

289

6 Mixing C/C++ and Prolog

SICStus Prolog provides a bi-directional, procedural interface for program parts written in
C and Prolog. The C side of the interface defines a number of functions and macros for
various operations. On the Prolog side, you have to supply declarations specifying the names
and argument/value types of C functions being called as predicates. These declarations are
used by the predicate load_foreign_resource/1, which performs the actual binding of
functions to predicates. They are also needed when the functions are unloaded, for example
when SICStus is halted.

In most cases, the argument/value type declarations suffice for making the necessary con-
versions of data automatically as they are passed between C and Prolog. However, it is
possible to declare the type of an argument to be a Prolog term, in which case the receiving
function will see it as a “handle” object, called an SP term ref, for which access functions
are provided.

The C support routines are available in a development system as well as in runtime systems.
The support routines include:

• Static and dynamic linking of C code into the Prolog environment.

• Automatic conversion between Prolog terms and C data with foreign/[2,3] declara-
tions.

• Functions for accessing and creating Prolog terms, and for creating and manipulating
SP term refs.

• The Prolog system may call C predicates, which may call Prolog back without limits
on recursion. Predicates that call C may be defined dynamically from C.

• Support for creating stand-alone executables.

• Support for creating user defined Prolog streams.

• Functions to read and write on Prolog streams from C.

• Functions to install interrupt handlers that can safely call Prolog.

• Functions for manipulating mutual exclusion locks.

• User hooks that can be used to perform user defined actions e.g. for customizing the
memory management bottom layer.

In addition to the interface described in this chapter, library(structs) and
library(objects) (see Section 10.39 [lib-structs], page 738, and Section 10.25 [lib-objects],
page 619) allow Prolog to hold pointers to C data structures and arrays and access and store
into fields in those data structures in a very efficient way, allowing the programmer to stay
completely inside Prolog.

6.1 Notes

The SP PATH variable
It is normally not necessary, nor desirable, to set this system property (or
environment variable), but its value will be used, as a fall-back, at runtime

290 SICStus Prolog

if it cannot be determined automatically during initialization of a runtime or
development system. In this chapter, SP_PATH is used as a shorthand, as follows.

On Windows, SP_PATH is a shorthand for the SICS-
tus Prolog installation directory, whose default location for SICStus 4.6.0 is
C:\Program Files\SICStus Prolog VC16 4.6.0\.

On UNIX, the default installation
directory for SICStus 4.6.0 is /usr/local/sicstus4.6.0/ and SP_PATH is a
shorthand for the subdirectory lib/sicstus-4.6.0/ of the installation direc-
tory, e.g.: /usr/local/sicstus4.6.0/lib/sicstus-4.6.0/.

See Section 4.17.1 [System Properties and Environment Variables], page 224,
for more information.

Definitions and declarations
Type definitions and function declarations for the interface are found in the
header file <sicstus/sicstus.h>.

Error Codes
The value of many support functions is a return code, namely: SP_SUCCESS for
success, SP_FAILURE for failure, SP_ERROR if an error condition occurred, or if
an uncaught exception was raised during a call from C to Prolog. If the value
is SP_ERROR, then the macro SP_errno will return a value describing the error
condition:

int SP_errno

The function SP_error_message() returns a pointer to the diagnostic message
corresponding to a specified error number.

Wide Characters
The foreign interface supports wide characters. Whenever a sequence of possibly
wide character codes is to be passed to or from a C function it is encoded as
a sequence of bytes, using the UTF-8 encoding. Unless noted otherwise the
encoded form is terminated by a NUL byte. This sequence of bytes will be
called an encoded string, representing the given sequence of character codes.
Note that it is a property of the UTF-8 encoding that it does not change ASCII
character code sequences.

If a foreign function is specified to return an encoded string, then
an exception will be raised if, on return to Prolog, the actual string
is malformed (is not a valid sequence of UTF-8 encoded charac-
ters). The exception raised is error(representation_error(mis_encoded_

string),representation_error(...,...,mis_encoded_string)).

6.2 Calling C from Prolog

Functions written in the C language may be called from Prolog using an interface in which
automatic type conversions between Prolog terms and common C types are declared as
Prolog facts. Calling without type conversion can also be specified, in which case the
arguments and values are passed as SP term refs. This interface is partly modeled after
Quintus Prolog.

Chapter 6: Mixing C/C++ and Prolog 291

The functions installed using this foreign language interface may invoke Prolog code and
use the support functions described in the other sections of this chapter.

Functions, or their equivalent, in any other language having C compatible calling conven-
tions may also be interfaced using this interface. When referring to C functions in the
following, we also include such other language functions. Note however that a C compiler is
needed since a small amount of glue code (in C) must be generated for interfacing purposes.

As an alternative to this interface, SP_define_c_predicate() defines a Prolog predicate
such that when the Prolog predicate is called it will call a C function with a term corre-
sponding to the Prolog goal. For details, see Section 12.3.11 [cpg-ref-SP define c predicate],
page 1249.

6.2.1 Foreign Resources

A foreign resource is a set of C functions, defined in one or more files, installed as an atomic
operation. The name of a foreign resource, the resource name, is an atom, which should
uniquely identify the resource. Thus, two foreign resources with the same name cannot be
installed at the same time, even if they correspond to different files.

The resource name of a foreign resource is derived from its file name by deleting
any leading path and the suffix. Therefore the resource name is not the same as
the absolute file name. For example, the resource name of both ~john/foo/bar.so

and ~ringo/blip/bar.so is bar. If load_foreign_resource('~john/foo/bar')

has been done, then ~john/foo/bar.so will be unloaded if either load_foreign_

resource('~john/foo/bar') or load_foreign_resource('~ringo/blip/bar') is subse-
quently called.

It is recommended that a resource name be all lowercase, starting with ‘a’ to ‘z’ followed by
a sequence consisting of ‘a’ to ‘z’, underscore (‘_’), and digits. The resource name is used
to construct the file name containing the foreign resource.

For each foreign resource, a foreign_resource/2 fact is used to declare the interfaced
functions. For each of these functions, a foreign/[2,3] fact is used to specify conver-
sions between predicate arguments and C-types. These conversion declarations are used for
creating the necessary interface between Prolog and C.

The functions making up the foreign resource, the automatically generated glue code, and
any libraries, are compiled and linked, using the splfr tool (see Section 6.2.5 [The Foreign
Resource Linker], page 296), to form a linked foreign resource. A linked foreign resource can
be either static or dynamic. A static resource is simply a relocatable object file containing
the foreign code. A dynamic resource is a shared library (‘.so’ under most UNIX dialects,
‘.dll’ under Windows), which is loaded into the Prolog executable at runtime.

Foreign resources can be linked into the Prolog executable either when the executable is built
(prelinked), or at runtime. Prelinking can only be done using static resources. Runtime-
linking can only be done using dynamic resources. Dynamic resources can also be unlinked.

292 SICStus Prolog

In all cases, the declared predicates are installed by the built-in predicate load_foreign_

resource/1. If the resource was prelinked, then only the predicate names are bound;
otherwise, runtime-linking is attempted (using dlopen(), LoadLibrary(), or similar).

6.2.2 Conversion Declarations

Conversion declaration predicates:

foreign_resource(+ResourceName,+Functions) hook

Specifies that a set of foreign functions, to be called from Prolog, are to be
found in the resource named by ResourceName. Functions is a list of functions
exported by the resource. Only functions that are to be called from Prolog and
optionally one init function and one deinit function should be listed. The init
and deinit functions are specified as init(Function) and deinit(Function)

respectively (see Section 6.2.6 [Init and Deinit Functions], page 296). This
predicate should be defined entirely in terms of facts (unit clauses) and will
be called in the relevant module, i.e. not necessarily in the user module. For
example:

foreign_resource('terminal', [scroll,pos_cursor,ask]).

specifies that functions scroll(), pos_cursor() and ask() are to be found
in the resource terminal. See Section 11.3.84 [mpg-ref-foreign resource],
page 1008.

foreign(+CFunctionName, +Predicate) hook

foreign(+CFunctionName, +Language, +Predicate) hook

Specify the Prolog interface to a C function. Language is at present constrained
to the atom c, so there is no advantage in using foreign/3 over foreign/2.
CFunctionName is the name of a C function. Predicate specifies the name
of the Prolog predicate that will be used to call CFunction(). Predicate also
specifies how the predicate arguments are to be translated to and from the
corresponding C arguments. These predicates should be defined entirely in
terms of facts (unit clauses) and will be called in the relevant module, i.e. not
necessarily in the user module. For example:

foreign(pos_cursor, c, move_cursor(+integer, +integer)).

The above example says that the C function pos_cursor() has two integer
value arguments and that we will use the predicate move_cursor/2 to call this
function. A goal move_cursor(5, 23) would translate into the C call pos_
cursor(5,23);.

The third argument of the predicate foreign/3 specifies how to translate be-
tween Prolog arguments and C arguments. A call to a foreign predicate will
throw an Instantiation Error if an input arguments is uninstantiated, a Type
Error if an input arguments has the wrong type, or a Domain Error if an input
arguments is in the wrong domain. The call will fail upon return from the
function if the output arguments do not unify with the actual arguments.

The available conversions are listed in the next subsection. See Section 11.3.83
[mpg-ref-foreign], page 1007.

Chapter 6: Mixing C/C++ and Prolog 293

6.2.3 Conversions between Prolog Arguments and C Types

The following table lists the possible values for the arguments in the predicate specification
of foreign/[2,3]. The value declares which conversion between corresponding Prolog
argument and C type will take place.

Prolog: +integer

C: SP_integer

The argument should be a number. It is converted to a C SP_integer and
passed to the C function. If the number does not fit in a SP_integer, an
exception is thrown.

Prolog: +float

C: double The argument should be a number. It is converted to a C double and passed
to the C function. If the number is a large integer that does not fit in a double,
then an exception is thrown.

Prolog: +atom

C: SP_atom

The argument should be an atom. Its canonical representation is passed to the
C function.

Prolog: +codes

C: char const *

The argument should be a code list. The C function will be passed the address
of an array with the encoded string representation of these characters. The
array is subject to reuse by other support functions, so if the value is going to
be used on a more than temporary basis, then it must be moved elsewhere.

Prolog: +string

C: char const *

The argument should be an atom. The C function will be passed the address
of an encoded string representing the characters of the atom. Please note: The
C function must not overwrite the string.

Prolog: +address

C: void * The value passed will be a void * pointer.

Prolog: +address(TypeName)

C: TypeName *

The value passed will be a TypeName * pointer.

Prolog: +term

C: SP_term_ref

The argument could be any term. The value passed will be the internal repre-
sentation of the term.

Prolog: -integer

C: SP_integer *

The C function is passed a reference to an uninitialized SP_integer. The value
returned will be converted to a Prolog integer.

294 SICStus Prolog

Prolog: -float

C: double *

The C function is passed a reference to an uninitialized double. The value
returned will be converted to a Prolog float. If the value returned is not finite,
i.e. it is infinite or NaN, then an exception is thrown.

Prolog: -atom

C: SP_atom *

The C function is passed a reference to an uninitialized SP_atom. The value
returned should be the canonical representation of a Prolog atom.

Prolog: -codes

C: char const **

The C function is passed the address of an uninitialized char *. The returned
encoded string will be converted to a Prolog code list.

Prolog: -string

C: char const **

The C function is passed the address of an uninitialized char *. The returned
encoded string will be converted to a Prolog atom. Prolog will copy the string
to a safe place, so the memory occupied by the returned string may be reused
during subsequent calls to foreign code.

Prolog: -address

C: void **

The C function is passed the address of an uninitialized void *.

Prolog: -address(TypeName)

C: TypeName **

The C function is passed the address of an uninitialized TypeName *.

Prolog: -term

C: SP_term_ref

The C function is passed a new SP term ref, and is expected to set its value
to a suitable Prolog term. Prolog will try to unify the value with the actual
argument.

Prolog: [-integer]

C: SP_integer F()

The C function should return an SP_integer. The value returned will be
converted to a Prolog integer.

Prolog: [-float]

C: double F()

The C function should return a double. The value returned will be converted
to a Prolog float. If the value returned is not finite, i.e. it is infinite or NaN,
then an exception is thrown.

Prolog: [-atom]

C: SP_atom F()

The C function should return an SP_atom. The value returned must be the
canonical representation of a Prolog atom.

Chapter 6: Mixing C/C++ and Prolog 295

Prolog: [-codes]

C: char const *F()

The C function should return a char *. The returned encoded string will be
converted to a Prolog code list.

Prolog: [-string]

C: char const *F()

The C function should return a char *. The returned encoded string will be
converted to a Prolog atom. Prolog will copy the string to a safe place, so the
memory occupied by the returned string may be reused during subsequent calls
to foreign code.

Prolog: [-address]

C: void *F()

The C function should return a void *, which will be converted to a Prolog
integer.

Prolog: [-address(TypeName)]

C: TypeName *F()

The C function should return a TypeName *.

Prolog: [-term]

C: SP_term_ref F()

The C function should return an SP term ref. Prolog will try to unify its value
with the actual argument.

6.2.4 Interface Predicates

load_foreign_resource(:Resource)

Unless a foreign resource with the same name as Resource has been statically
linked, the linked foreign resource specified by Resource is linked into the Prolog
load image. In both cases, the predicates defined by Resource are installed, and
any init function is called. Dynamic linking is not possible if the foreign resource
was linked using the --static option.

If a resource with the same name has been previously loaded, then it will
be unloaded, as if unload_foreign_resource(Resource) were called, before
Resource is loaded.

An example of usage of load_foreign_resource/1 can be found in its reference
page, Section 11.3.118 [mpg-ref-load foreign resource], page 1056.

unload_foreign_resource(:ResourceName)

Any deinit function associated with ResourceName, a resource name, is called,
and the predicates defined by ResourceName are uninstalled. If ResourceName
has been dynamically linked, then it is unlinked from the Prolog load image.

If no resource named ResourceName is currently loaded, then an existence error
is raised.

For backward compatibility, ResourceName can also be of the same type as the
argument to load_foreign_resource/1. In that case the resource name will be
derived from the absolute file name in the same manner as for load_foreign_
resource/1. Also for backward compatibility, unload_foreign_resource/1

296 SICStus Prolog

is a meta-predicate, but the module is ignored. See Section 11.3.245 [mpg-ref-
unload foreign resource], page 1216.

Please note: all foreign resources are unloaded before Prolog exits.
This implies that the C library function atexit(func) cannot be
used if func is defined in a dynamically linked foreign resource.

6.2.5 The Foreign Resource Linker

The foreign resource linker, splfr, is used for creating foreign resources (see Section 6.2.1
[Foreign Resources], page 291). splfr reads terms from a Prolog file extracting any
foreign_resource/2 fact with first argument matching the resource name and all
foreign/[2,3] facts. Based on this information, it generates the necessary glue code,
including a header file that the user code should include, and combines it with any addi-
tional C or object files provided by the user into a linked foreign resource. The output file
name will be the resource name with a suitable extension.

Note that no pathnames passed to splfr should contain spaces. Under Windows, this can
be avoided by using the short version of pathnames as necessary.

See Section 13.6 [too-splfr], page 1378, for detailed information about splfr options etc..

6.2.5.1 Customizing splfr.

The splfr tool reads a configuration file at start-up that contains default values for many
configurable parameters. It is sometimes useful to modify these in order to adapt to local
variations.

Both splfr and spld use the same configuration file and use the same options for changing
the default parameters. See Section 6.7.3.1 [Customizing spld], page 322, for details.

6.2.5.2 Creating Linked Foreign Resources Manually under UNIX

The only supported method for building foreign resources is by compiling and linking them
with splfr. However, this is sometimes inconvenient, for instance when writing a Makefile
for use with make. To figure out what needs to be done to build a foreign resource, you
should build it once with splfr --verbose --keep ..., note what compiler and linker flags
are used, and save away any generated files. You can then mimic the build commands used
by splfr in your Makefile. You should repeat this process each time you upgrade SICStus
Prolog.

6.2.5.3 Windows-specific splfr issues

splfr needs to be able to invoke the C compiler from the command line. On Windows, this
will only work if the command line environment has been properly set up. See Section 6.7.3.3
[Setting up the C compiler on Windows], page 326, for Windows-specific information about
getting the C compiler to work.

6.2.6 Init and Deinit Functions

An init function and/or a deinit function can be declared by foreign_resource/2. If this
is the case, then these functions should have the prototype:

Chapter 6: Mixing C/C++ and Prolog 297

void FunctionName (int when)

The init function is called by load_foreign_resource/1 after the resource has been loaded
and the interfaced predicates have been installed. If the init function fails (using SP_fail())
or raises an exception (using SP_raise_exception()), then the failure or exception is
propagated by load_foreign_resource/1 and the foreign resource is unloaded (without
calling any deinit function). However, using SP_fail() is not recommended, and operations
that may require SP_raise_exception() are probably better done in an init function that
is called explicitly after the foreign resource has been loaded.

The deinit function is called by unload_foreign_resource/1 before the interfaced predi-
cates have been uninstalled and the resource has been unloaded. If the deinit function fails
or raises an exception, then the failure or exception is propagated by unload_foreign_

resource/1, but the foreign resource is still unloaded. However, neither SP_fail() nor
SP_raise_exception() should be called in a deinit function. Complex deinitialization
should be done in an explicitly called deinit function instead.

The init and deinit functions may use the C-interface to call Prolog etc.

Foreign resources are unloaded when the saved state is restored; see Section 3.10 [Saving],
page 28. Foreign resources are also unloaded when exiting Prolog execution. The parameter
when reflects the context of the (un)load_foreign_resource/1 and is set as follows for
init functions:

SP_WHEN_EXPLICIT

Explicit call to load_foreign_resource/1.

SP_WHEN_RESTORE

Resource is reloaded after restore.

For deinit functions:

SP_WHEN_EXPLICIT

Explicit call to unload_foreign_resource/1 or a call to load_foreign_

resource/1 with the name of an already loaded resource.

SP_WHEN_EXIT

Resource is unloaded before exiting Prolog.

6.2.7 Creating the Linked Foreign Resource

Suppose we have a Prolog source file ex.pl containing:

% ex.pl

foreign(f1, p1(+integer,[-integer])).

foreign(f2, p2(+integer,[-integer])).

foreign_resource(ex, [f1,f2]).

:- load_foreign_resource(ex).

and a C source file ex.c with definitions of the functions f1 and f2, both returning SP_

integer and having an SP_integer as the only parameter. The conversion declarations in

298 SICStus Prolog

ex.pl state that these functions form the foreign resource ex. Normally, the C source file
should contain the following two line near the beginning (modulo the resource name):

#include <sicstus/sicstus.h>

/* ex_glue.h is generated by splfr from the foreign/[2,3] facts.

Always include the glue header in your foreign resource code.

*/

#include "ex_glue.h"

To create the linked foreign resource, simply type (to the Shell):

% splfr ex.pl ex.c

The linked foreign resource ex.so (file suffix .so is system dependent) has been created. It
will be dynamically linked by the directive :- load_foreign_resource(ex). when the file
ex.pl is loaded. For a full example, see Section 6.2.8 [Foreign Code Examples], page 298.

Dynamic linking of foreign resources can also be used by runtime systems.

6.2.8 Foreign Code Examples

Given: a Prolog file ex.pl and a C file ex.c shown below.

ex.pl

foreign_resource(ex, [c1, c2, c11, c21, c3, c4, c5, c6]).

foreign(c1, c, c1(+integer, [-integer])).

foreign(c2, c, c2(-integer)).

foreign(c11, c, c11(+atom, [-atom])).

foreign(c21, c, c21(+atom, -atom)).

foreign(c3, c, c3(+float, [-float])).

foreign(c4, c, c4(-float)).

foreign(c5, c, c5(+string,[-string])).

foreign(c6, c, c6(-string)).

:- load_foreign_resource(ex).

Chapter 6: Mixing C/C++ and Prolog 299

ex.c

#include <sicstus/sicstus.h>

/* ex_glue.h is generated by splfr from the foreign/[2,3] facts.

Always include the glue header in your foreign resource code.

*/

#include "ex_glue.h"

/* c1(+integer, [-integer]) */

SP_integer c1(SP_integer a)

{

return(a+9);

}

/* c2(-integer) */

void c2(SP_integer *a)

{

*a = 99;

}

/* c11(+atom, [-atom]) */

SP_atom c11(SP_atom a)

{

return(a);

}

/* c21(+atom, -atom) */

void c21(SP_atom a, SP_atom *b)

{

*b = a;

}

/* c3(+float, [-float]) */

double c3(double a)

{

return(a+9.0);

}

/* c4(-float) */

void c4(double *a)

{

*a = 9.9;

}

/* c5(string, [-string]) */

char const * c5(char const * a)

{

return(a);

}

/* c6(-string) */

void c6(char const * *a)

{

*a = "99";

}

300 SICStus Prolog

Dialog at the command level:

% splfr ex.pl ex.c

% sicstus -l ex

% compiling /home/matsc/sicstus4/ex.pl...

% loading foreign resource /home/matsc/sicstus4/ex.so in module user

% compiled /home/matsc/sicstus4/ex.pl in mod-

ule user, 0 msec 3184 bytes

SICStus 4.6.0 ...

Licensed to SICS

| ?- c1(1,X1), c2(X2), c11(foo,X11), c21(foo,X21),

c3(1.5,X3), c4(X4), c5(foo,X5), c6(X6).

X1 = 10,

X2 = 99,

X3 = 10.5,

X4 = 9.9,

X5 = foo,

X6 = '99',

X11 = foo,

X21 = foo ? RET

yes

6.3 Calling C++ from Prolog

Functions in C++ files that should be called from Prolog must use C linkage, e.g.

extern "C" {

void myfun(SP_integer i)

{...};

};

On Windows, C++ is a first class citizen and no special steps are needed in order to mix
C++ and C code.

On other platforms, to build a dynamically linked foreign resource with C++ code, you may
have to explicitly include certain libraries and you may need to use an executable compiled
and linked with a C++ compiler. The details are platform and C++ compiler dependent and
outside the scope of this manual.

6.4 Support Functions

The support functions include functions to manipulate SP term refs, functions to convert
data between the basic C types and Prolog terms, functions to test whether a term can be
converted to a specific C type, and functions to unify or compare two terms.

6.4.1 Creating and Manipulating SP term refs

Normally, C functions only have indirect access to Prolog terms via SP term refs. C func-
tions may receive arguments as unconverted Prolog terms, in which case the actual argu-

Chapter 6: Mixing C/C++ and Prolog 301

ments received will have the type SP_term_ref. Also, a C function may return an uncon-
verted Prolog term, in which case it must create an SP term ref. Finally, any temporary
Prolog terms created by C code must be handled as SP term refs.

SP term refs are motivated by the fact that SICStus Prolog’s memory manager must have
a means of reaching all live Prolog terms for memory management purposes, including such
terms that are being manipulated by the user’s C code. Previous releases provided direct
access to Prolog terms and the ability to tell the memory manager that a given memory
address points to a Prolog term, but this approach was too low level and highly error-prone.
The current design is modeled after and largely compatible with Quintus Prolog release 3.

SP term refs are created dynamically. At any given time, an SP term ref has a value (a
Prolog term, initially []). This value can be examined, accessed, and updated by the
support functions described in this section.

A new SP term ref is created by calling SP_new_term_ref().

An SP term ref can be assigned the value of another SP term ref by calling SP_put_term().

It is important to understand the rules governing the scope of SP term refs, and the terms
they hold, in conjunction with calls from Prolog to C and vice versa. This is explained in
Section 6.5.2 [Finding Multiple Solutions of a Call], page 306.

6.4.2 Atoms in C

Each Prolog atom is represented internally by a unique integer, its canonical representation,
with the corresponding C type SP_atom. This mapping between atoms and integers depends
on the execution history. Certain functions require this representation as opposed to an
SP term ref. It can be obtained by a special argument type declaration when calling C
from Prolog, by calling SP_get_atom(), or by looking up an encoded string s in the Prolog
symbol table by calling SP_atom_from_string(s) which returns the atom, or zero if the
given string is malformed (is not a valid sequence of UTF-8 encoded characters).

The encoded string containing the characters of a Prolog atom a can be obtained by calling
SP_string_from_atom().

The length of the encoded string representing a Prolog atom a can be obtained by calling
SP_atom_length().

Prolog atoms, and the space occupied by their print names, are subject to garbage col-
lection when the number of atoms has reached a certain threshold, under the control of
the agc_margin Prolog flag, or when the atom garbage collector is called explicitly. The
atom garbage collector will find all references to atoms from the Prolog specific memory
areas, including SP term refs and arguments passed from Prolog to foreign language func-
tions. However, atoms created by SP_atom_from_string() and merely stored in a local
variable are endangered by garbage collection. The functions SP_register_atom() and
SP_unregister_atom() make it possible to protect an atom while it is in use. The opera-
tions are implemented using reference counters to support multiple, independent use of the
same atom in different foreign resources.

302 SICStus Prolog

6.4.3 Creating Prolog Terms

The following functions create a term and store it as the value of an SP term ref, which
must exist prior to the call. They return zero if the conversion fails (as far as failure can be
detected), and a nonzero value otherwise, assigning to t the converted value.

SP_put_variable()

Creates a variable.

SP_put_integer()

Creates an integer.

SP_put_float()

Creates a float.

SP_put_atom()

Creates an atom.

SP_put_string()

Creates an atom.

SP_put_address()

Creates an integer representing a pointer.

SP_put_list_codes()

Creates a char list.

SP_put_list_n_codes()

Creates a char list.

SP_put_list_n_bytes()

Creates a byte list.

SP_put_integer_bytes()

Creates an arbitrarily sized integer.

SP_put_number_codes()

Creates a char list denoting a number.

SP_put_functor()

Creates a compound term.

SP_put_list()

Creates a list.

SP_cons_functor()

Creates a compound term with arguments filled in.

SP_cons_list()

Creates a list with arguments filled in.

SP_read_from_string() (C function)

Reads a term from its textual representation, replacing variables by specified
terms.

Chapter 6: Mixing C/C++ and Prolog 303

6.4.4 Accessing Prolog Terms

The following functions will take an SP term ref and convert it to C data. They return
zero if the conversion fails, and a nonzero value otherwise, and store the C data in output
arguments, except the last two, which merely decompose compound terms.

SP_get_integer()

Accesses an integer.

SP_get_float()

Accesses a float.

SP_get_atom()

Accesses an atom.

SP_get_string()

Accesses an atom.

SP_get_address()

Accesses an integer representing a pointer.

SP_get_list_codes()

Accesses a code list.

SP_get_list_n_codes()

Accesses a code list.

SP_get_list_n_bytes()

Accesses a byte list.

SP_get_number_codes()

Accesses a code list denoting a number.

SP_get_integer_bytes()

Accesses an arbitrarily sized integer.

SP_get_functor()

Accesses a compound term.

SP_get_list()

Accesses a list.

SP_get_arg()

Accesses an argument of a compound term.

6.4.5 Testing Prolog Terms

There is one general function for type testing of Prolog terms as well as a set of specialized,
more efficient, functions—one for each term type:

SP_term_type()

Accesses term type.

SP_is_variable()

Checks whether term is a variable.

304 SICStus Prolog

SP_is_integer()

Checks whether term is an integer.

SP_is_float()

Checks whether term is a float.

SP_is_atom()

Checks whether term is an atom.

SP_is_compound()

Checks whether term is compound.

SP_is_list()

Checks whether term is a list cell.

SP_is_atomic()

Checks whether term is atomic.

SP_is_number()

Checks whether term is a number.

6.4.6 Unifying and Comparing Terms

The two functions are:

SP_unify()

Unify terms.

SP_compare()

Compare terms.

6.4.7 Operating System Services

6.4.7.1 Memory Management

The standard C library memory allocation functions (malloc, calloc, realloc, and free)
are available in foreign code, but cannot reuse any free memory that SICStus Prolog’s
memory manager may have available, and so may contribute to memory fragmentation.

The following functions provide the same services via SICStus Prolog’s memory manager.

SP_malloc()

Allocates a piece of memory.

SP_calloc()

Allocates memory for an array of elements, and clears the allocated memory.

SP_realloc()

Changes the size of an allocated piece of memory.

SP_free()

Deallocates a piece of memory.

SP_strdup()

Makes a copy of a string in allocated memory.

Chapter 6: Mixing C/C++ and Prolog 305

6.4.7.2 File System

SICStus Prolog caches the name of the current working directory. To take advantage of the
cache and to keep it consistent, foreign code should call the following interface functions
instead of calling chdir() and getcwd() directly:

SP_set_current_dir()

Obtains the absolute name of the current working directory.

SP_get_current_dir()

Sets the current working directory.

6.4.7.3 Threads

When running more that one SICStus runtime in the same process it is often necessary
to protect data with mutual exclusion locks. The following functions implement recursive
mutual exclusion locks, which only need static initialization.

SP_mutex_lock()

Locks the mutex.

SP_mutex_unlock()

Unlocks the mutex.

A (recursive) mutual exclusion lock is declared as type SP_mutex. It should be initialized
to (the static initializer) SP_MUTEX_INITIALIZER before use.

Note that the SICStus runtime is not thread safe in general.

A dynamic foreign resource that is used by multiple SICStus runtimes in the same process
may need to maintain a global state that is kept separate for each SICStus runtime. Each
SICStus runtime maintains a location (containing a void*) for each foreign resource. By
calling SP_foreign_stash(), a foreign resource can then access this location to store any
data that is specific to the calling SICStus runtime.

6.5 Calling Prolog from C

In development and runtime systems alike, Prolog and C code may call each other to
arbitrary depths.

Before calling a predicate from C you must look up the predicate definition by module,
name, and arity. The function SP_predicate() will return a pointer to this definition or
return NULL if the predicate is not visible in the module. This definition can be used in
more than one call to the same predicate.

The function SP_pred() may be used as an alternative to the above. The only difference is
that the name and module arguments are passed as Prolog atoms rather than strings, and
the module argument is mandatory. This saves the cost of looking up the two arguments
in the Prolog symbol table. This cost dominates the cost of the operation.

306 SICStus Prolog

6.5.1 Finding One Solution of a Call

The easiest way to call a predicate if you are only interested in the first solution is to call the
function SP_query(). It will create a goal from the predicate definition and the arguments,
call it, and commit to the first solution found, if any.

If you are only interested in the side effects of a predicate, then you can call SP_query_cut_
fail(). It will try to prove the predicate, cut away the rest of the solutions, and finally
fail. This will reclaim any memory used after the call, and throw away any solution found.

6.5.2 Finding Multiple Solutions of a Call

If you are interested in more than one solution, then a more complicated scheme is used.
You find the predicate definition as above, but you do not call the predicate directly.

1. Set up a call with SP_open_query()

2. Call SP_next_solution() to find a solution. Call this predicate again to find more
solutions if there are any.

3. Terminate the call with SP_close_query() or SP_cut_query()

The function SP_open_query() will return an identifier of type SP_qid that you use in
successive calls. Note that if a new query is opened while another is already open, then
the new query must be terminated before exploring the solutions of the old one. That is,
queries must be strictly nested.

The function SP_next_solution() will cause the Prolog engine to backtrack over any
current solution of an open query and look for a new one.

A query must be terminated in either of two ways. The function SP_cut_query() will
discard the choices created since the corresponding SP_open_query(), like the goal !. The
current solution is retained in the arguments until backtracking into any enclosing query.

Alternatively, the function SP_close_query() will discard the choices created since the
corresponding SP_open_query(), and then backtrack into the query, throwing away any
current solution, like the goal !, fail.

A simple way to call arbitrary Prolog code, whether for one solution or for multiple solutions,
is to use SP_read_from_string() (see Section 6.4.3 [Creating Prolog Terms], page 302) to
create an argument to call/1. It is a good idea to always explicitly specify the module
context when using call/1 or other meta-predicates from C.

It is important to understand the rules governing the scope of SP term refs, and the terms
they hold, in conjunction with calls from Prolog to C and vice versa. SP term refs are
internally stored on a stack, which is manipulated by the various API functions as follows:

SP_new_term_ref()

The new SP term ref is pushed onto the stack.

Chapter 6: Mixing C/C++ and Prolog 307

calling C from Prolog
SP_query()

SP_query_cut_fail()

The top of the stack is saved on call and restored upon return.

SP_open_query()

The top of the stack is saved in the new query.

SP_close_query()

SP_cut_query()

SP_next_solution()

The top of the stack is restored from the query argument.

Among other things, this means that an SP term ref cannot be saved across multiple calls
from Prolog to C. Thus it makes no sense to declare an SP term ref as a static C variable.

Prolog terms are also generally stored on a stack, which keeps growing until the execution
backtracks, either spontaneously or by calling SP_close_query() or SP_next_solution().
It is an abuse of the SP_open_query() API to assign a term to an SP term ref, and then
backtrack over the term while the SP term ref is still live. Such abuse results in a dangling
pointer that can potentially crash SICStus Prolog. The API typically follows the pattern:

...

SP_pred_ref pred = SP_predicate(...);

SP_term_ref ref1 = SP_new_term_ref();

SP_qid goal = SP_open_query(pred,ref1,...);

/*

* PART A: perform some initializations, and

* loop through all solutions.

*/

while (SP_next_solution(goal)==SP_SUCCESS) {

/*

* PART B: perform some action on the current solution.

*/

}

SP_close_query(goal);

...

In order to avoid dangling pointer hazards, we recommend some simple coding rules:

PART A In this part of the code, do not call SP_new_term_ref() or the functions in
Section 6.4.3 [Creating Prolog Terms], page 302, at all.

PART B In this part of the code, do not call SP_new_term_ref() except to initial-
ize any SP term refs declared locally to Part B. Do Not call the functions in
Section 6.4.3 [Creating Prolog Terms], page 302, except to set SP term refs
declared locally to Part B.

308 SICStus Prolog

6.5.3 Backtracking Loops

If you want to call Prolog multiple times in a loop for side effect, for example over the
elements of a list, then some care is required in order not to cause a memory leak by creating
more and more SP term refs. The recommended coding scheme is to use a backtracking
loop (see Section 9.4.4 [Terminating a Backtracking Loop], page 357). For example, suppose
that you want the C equivalent of the following code:

process_list(L) :-

member(X, L),

once(process(X)),

fail.

process_list(_).

process(X) :- ...

That can be encoded as follows, where refL is the SP term ref that holds L:

...

SP_qid goal;

SP_pred_ref member2 = SP_predicate("member", 2, "user");

SP_pred_ref process1 = SP_predicate("process", 1, "user");

SP_term_ref refX = SP_new_term_ref();

SP_put_variable(refX);

goal = SP_open_query(member2, refX, refL);

while (SP_next_solution(goal)==SP_SUCCESS)

SP_query_cut_fail(process1, refX);

SP_close_query(goal);

...

This programming style is particularly relevant in a stand-alone executable, where the top
level iterates over some transactions to be processed.

6.5.4 Calling Prolog Asynchronously

If you wish to call Prolog back from a signal handler or a thread other than the thread that
called SP_initialize(), that is, the main thread, then you cannot use SP_query() etc.
directly. The call to Prolog has to be delayed until such time that the Prolog execution
can accept an interrupt and the call has to be performed from the main thread (the Prolog
execution thread). The function SP_event() serves this purpose, and installs the function
func to be called from Prolog (in the main thread) when the execution can accept a callback.

A queue of functions, with corresponding arguments, is maintained; that is, if several calls
to SP_event() occur before Prolog can accept an interrupt, then the functions are queued
and executed in turn at the next possible opportunity. A func installed with SP_event()

will not be called until SICStus is actually running. One way of ensuring that all pending
functions installed with SP_event() are run is to call, from the main thread, some dummy
goal, such as, SP_query_cut_fail(SP_predicate("true",0,"user")).

Chapter 6: Mixing C/C++ and Prolog 309

While SP_event() is safe to call from any thread, it is not safe to call from arbitrary signal
handlers. If you want to call SP_event() when a signal is delivered, then you need to install
your signal handler with SP_signal() (see below).

Note that SP_event() is one of the very few functions in the SICStus API that can safely
be called from another thread than the main thread.

6.5.4.1 Signal Handling

As noted above it is not possible to call e.g. SP_query() or even SP_event() from an
arbitrary signal handler. That is, from signal handlers installed with signal or sigaction.
Instead you need to install the signal handler using SP_signal().

When the OS delivers a signal sig for which SP_signal(sig,func,user_data) has been
called SICStus will not call func immediately. Instead the call to func will be delayed until
it is safe for Prolog to do so, in much the same way that functions installed by SP_event()

are handled (this is an incompatible change as of release 3.9).

Since the signal handling function func will not be called immediately upon delivery of the
signal to the process it only makes sense to use SP_signal() to handle certain asynchronous
signals such as SIGINT, SIGUSR1, SIGUSR2. Other asynchronous signals handled specially
by the OS, such as SIGCHLD are not suitable for handling via SP_signal(). Note that the
development system installs a handler for ‘SIGINT’, and, under Windows, ‘SIGBREAK’, to
catch keyboard interrupts. As of release 4.4, library(timeout) no longer uses any signals.

When func is called, it cannot call any SICStus API functions except SP_event(). Note
that func will be called in the main thread.

6.5.5 Exception Handling in C

When an exception has been raised, the functions SP_query(), SP_query_cut_fail() and
SP_next_solution() return SP_ERROR. To access the exception term (the argument of the
call to raise_exception/1), which is asserted when the exception is raised, the function
SP_exception_term() is used. As a side effect, the exception term is retracted, so if your
code wants to pass the exception term back to Prolog, then use SP_raise_exception().

To raise an exception from a C function called from Prolog, just call SP_raise_

exception(). Upon return, Prolog will detect that an exception has been raised, any
value returned from the function will be ignored, and the exception will be passed back to
Prolog. Please note: this should only be called right before returning to Prolog.

To propagate failure to Prolog, call SP_fail(). Upon return, Prolog will backtrack. Please
note: this should only be called right before returning to Prolog.

Prolog error handling is mostly done by raising and catching exceptions. However, some
faults are of a nature such that when they occur, the internal program state may be cor-
rupted, and it is not safe to merely raise an exception. In runtime systems, the C macro
SP_on_fault() provides an environment for handling faults.

310 SICStus Prolog

The function SP_raise_fault() can be used to raise a fault with an encoded string ex-
plaining the reason.

6.5.6 Reading a goal from a string

A simple way to call arbitrary Prolog code is to use SP_read_from_string() (see
Section 6.4.3 [Creating Prolog Terms], page 302) to create an argument to call/1. It
is a good idea to always explicitly specify the module context when using call/1 or other
meta-predicates from C.

This example calls a compound goal (without error checking):

SP_pred_ref call_pred = SP_predicate("call", 1, "prolog");

SP_term_ref x = SP_new_term_ref();

SP_term_ref goal = SP_new_term_ref();

SP_term_ref vals[] = {x, 0 /* zero termination */};

SP_integer len;

SP_put_variable(x);

/* The X=_ is a trick to ensure that X is the first variable

in the depth-first order and thus corresponds to vals[0] (x).

There are no entries in vals for _,L1,L2.

*/

SP_read_from_string(goal,

"user:(X=_, length([0,1,2],L1), length([3,4],L2), X is L1+L2).", vals);

SP_query(call_pred, goal);

SP_get_integer(x, &len);

/* here len is 5 */

6.6 SICStus Streams

With the SICStus Prolog C interface, the user can define his/her own streams as well as
from C read or write on the predefined streams. The stream interface provides:

• C functions to perform I/O on Prolog streams. This way you can use the same stream
from Prolog and C code.

• User defined streams. You can define your own Prolog streams in C.

• Bidirectional streams. A SICStus stream supports reading or writing or both.

• Hookable standard input/output/error streams.

6.6.1 Prolog Streams

From the Prolog level there is a unique number that identifies a stream. This identifier can
be converted from/to a Prolog stream:

Chapter 6: Mixing C/C++ and Prolog 311

stream_code(?Stream,?StreamCode)

StreamCode is the C stream identifier (an integer) corresponding to the Prolog
stream Stream. This predicate is only useful when streams are passed between
Prolog and C. See Section 11.3.218 [mpg-ref-stream code], page 1182.

The StreamCode is a Prolog integer representing an SP_stream * pointer.

To read or write on a Prolog stream from C, the following functions and macros can be
used:

SP_get_byte()

Read one byte from a binary stream.

SP_get_code()

Read one character code from a text stream.

SP_put_byte()

Write one byte to a binary stream.

SP_put_code()

Write one character code to a text stream.

SP_put_bytes()

Write multiple bytes to a binary stream.

SP_put_codes()

Write multiple character codes to a text stream.

SP_put_encoded_string()

Write a NUL terminated encoded string to a text stream.

SP_printf()

SP_fprintf()

Perform formatted output.

SP_flush_output()

Flush buffered data of an output stream.

SP_fclose()

Close a stream.

The following predefined streams are accessible from C:

SP_stdin Standard input. Refers to the same stream as user_input in Prolog. Which
stream is referenced by user_input is controlled by the Prolog flag user_input.

SP_stdout

Standard output. Refers to the same stream as user_output in Prolog. Which
stream is referenced by user_output is controlled by the Prolog flag user_

output.

SP_stderr

Standard error. Refers to the same stream as user_error in Prolog. Which
stream is referenced by user_error is controlled by the flag user_error.

312 SICStus Prolog

SP_curin Current input. It is initially set equal to SP_stdin. It can be changed with the
predicates see/1 and set_input/1.

SP_curout

Current output. It is initially set equal to SP_stdout. It can be changed with
the predicates tell/1 and set_output/1.

Note that these variables are read only.

6.6.2 Defining a New Stream

The following steps are required to define a new stream in C:

• Define low level functions (byte or character reading, writing etc).

• Initialize and open your stream.

• Allocate memory needed for your particular stream.

• Initialize and install a Prolog stream with SP_create_stream().

The following sample makes it possible to create read-only binary streams that use the C
FILE* API.

Chapter 6: Mixing C/C++ and Prolog 313

#include <sicstus/sicstus.h>

#include <stdio.h>

#include <string.h>

#include <errno.h>

struct stdio_t_stream {

FILE *f;

};

typedef struct stdio_t_stream stdio_t_stream;

static spio_t_error_code SPCDECL stdio_read(void *user_data,

void *buf,

size_t *pbuf_size,

spio_t_bits read_options)

{

spio_t_error_code ecode = SPIO_E_ERROR;

stdio_t_stream *s;

size_t res;

if (read_options & SPIO_DEVICE_READ_OPTION_NONBLOCKING) {

ecode = SPIO_E_NOT_SUPPORTED;

goto barf;

}

s = (stdio_t_stream *)user_data;

res = fread(buf, 1, *pbuf_size, s->f);

if (res == 0) { /* error */

if (feof(s->f)) {

ecode = SPIO_E_END_OF_FILE;

} else { /* some other error */

ecode = SPIO_E_OS_ERROR;

}

goto barf;

}

pbuf_size = res; / number of bytes read */

return SPIO_S_NOERR;

barf:

return ecode;

}

314 SICStus Prolog

static spio_t_error_code SPCDECL stdio_close(void **puser_data, spio_t_bits close_options)

{

stdio_t_stream *s;

s = (stdio_t_stream *)*puser_data;

/* we can ignore SPIO_DEVICE_CLOSE_OPTION_FORCE */

if (close_options & SPIO_DEVICE_CLOSE_OPTION_READ) {

puser_data = NULL; / tell caller we are gone */

if (fclose(s->f) != 0) {

; /* ignore errors */

}

}

return SPIO_S_NOERR;

}

Chapter 6: Mixing C/C++ and Prolog 315

/* Identify our streams with (an arbitrary) pointer that is unique to us */

#define STDIO_STREAM_CLASS ((void*)&stdio_open_c)

int stdio_open_c(char const *path,

char const *direction,

SP_stream **pstream)

{

spio_t_error_code ecode = SPIO_E_ERROR;

stdio_t_stream *s = NULL;

SP_stream *stream = NULL;

if (strcmp(direction, "read") != 0) goto not_supported;

/* read */

s = (stdio_t_stream*)SP_malloc(sizeof *s);

if (s == NULL) goto out_of_memory;

/* open binary */

s->f = fopen(path, "rb");

if (s->f == NULL) {

ecode = SPIO_E_OPEN_ERROR;

goto barf;

}

ecode = SP_create_stream((void*)s,

STDIO_STREAM_CLASS,

stdio_read,

NULL, /* write */ NULL, /* flush_output */ NULL, /* seek */

stdio_close,

NULL, /* interrupt */ NULL, /* ioctl */ NULL, /* args */

SP_CREATE_STREAM_OPTION_BINARY,

&stream);

if (SPIO_FAILED(ecode)) goto barf;

*pstream = stream;

return 0; /* success */

barf:

if (s != NULL) {

if (s->f != NULL) fclose(s->f);

SP_free(s);

}

return ecode;

out_of_memory:

ecode = SPIO_E_OUT_OF_MEMORY;

goto barf;

not_supported:

ecode = SPIO_E_NOT_IMPLEMENTED;

goto barf;

}

316 SICStus Prolog

Calling stdio_open_c("foo", "read", &stream) will open the file foo as binary stream
that can be read by all SICStus stream operations.

There are several stream implementions in the SICStus Prolog library that can serve as
sample, e.g. library(codesio) and library(tcltk).

See Section 12.3.9 [cpg-ref-SP create stream], page 1246, for details.

6.6.2.1 Low Level I/O Functions

For each new stream the appropriate low level I/O functions have to be defined. Error
handling, prompt handling and character counting is handled in a layer above these func-
tions. They all operate on a user defined private data structure specified when the stream
is created.

user read()
Should fill a buffer with data available from the stream. See Section 12.3.107
[cpg-ref-user read], page 1361.

user write()
Should write data from a buffer to the stream. See Section 12.3.108 [cpg-ref-
user write], page 1363.

user flush output()
Should flush the (output) stream.

user close()
Should close the stream in the specified directions. Note that bi-directional
streams can be closed one direction at a time.

Please note: A foreign resource that defines user defined streams must ensure that all its
streams are closed when the foreign resource is unloaded. Failure to do this will lead to
crashes when SICStus tries to close the stream using a user_close method that is no longer
present.

The easiest way to ensure that all user defined streams of a particular class is closed is to use
SP_fclose with the SP_FCLOSE_OPTION_USER_STREAMS. Another way is to use SP_next_

stream and SP_get_stream_user_data to find all your streams and close them one by one.
See Section 12.3.18 [cpg-ref-SP fclose], page 1260, Section 12.3.60 [cpg-ref-SP next stream],
page 1309, and Section 12.3.41 [cpg-ref-SP get stream user data], page 1288.

6.6.3 Hookable Standard Streams

The standard I/O streams (input, output, and error) are hookable, i.e. the streams can
be redefined by the user by calling SP_set_user_stream_hook() and/or SP_set_user_

stream_post_hook(). These hook functions must be called before SP_initialize() (see
Section 6.7.4.1 [Initializing the Prolog Engine], page 329). In custom built systems, they
may be called in the hook function SU_initialize(). See Section 6.7.3 [The Application
Builder], page 322.

Chapter 6: Mixing C/C++ and Prolog 317

6.6.3.1 Writing User-stream Hooks

The user-stream hook is, if defined, called during SP_initialize(). It has the following
prototype:

SP_stream *user_stream_hook(void *user_data, int which)

If the hook is not defined, then SICStus will attempt to open the standard TTY/console
versions of these streams. If they are unavailable (such as for non-console executables under
Windows), then the result is undefined.

It is called once for each stream. The which argument indicates which stream it is called
for. The value of which is one of the following:

SP_STREAMHOOK_STDIN

Create stream for standard input.

SP_STREAMHOOK_STDOUT

Create stream for standard output.

SP_STREAMHOOK_STDERR

Create stream for standard error.

The set of possible values for which may be expanded in the future.

The hook should return a standard SICStus I/O stream, as described in Section 6.6.2
[Defining a New Stream], page 312.

See Section 12.3.94 [cpg-ref-SP set user stream hook], page 1345, for details.

6.6.3.2 Writing User-stream Post-hooks

If defined, then the user-stream post-hook is called after all the streams have been defined,
once for each of the standard streams. It has a slightly different prototype:

void user_stream_post_hook(void *user_data, int which, SP_stream *str)

where str is a pointer to the corresponding SP_stream structure. There are no requirements
as to what this hook must do; the default behavior is to do nothing at all.

The post-hook is intended to be used to do things that may require that all streams have
been created.

See Section 12.3.95 [cpg-ref-SP set user stream post hook], page 1346, for details.

6.7 Stand-Alone Executables

So far, we have only discussed foreign code as pieces of code loaded into a Prolog executable.
This is often not the desired situation. Instead, one often wants to create stand-alone
executables, i.e. an application where Prolog is used as a component, accessed through the
API described in the previous sections.

318 SICStus Prolog

6.7.1 Runtime Systems

Stand-alone applications containing debugged Prolog code and destined for end-users are
typically packaged as runtime systems. No SICStus license is needed by a runtime system.
A runtime system has the following limitations:

• No top level. The executable will restore a saved state and/or load code, and call
user:runtime_entry(start). Alternatively, you may supply a main program and
explicitly initialize the Prolog engine with SP_initialize(). break/0 and require/1

are unavailable.

• No debugger. debugging, debug and debugger_print_options have no effect. Pred-
icates annotated as [development] in the reference pages are unavailable.

• Except in extended runtime systems: no compiler; compiling is replaced by consulting.
Extended runtime systems do provide the compiler.

• The discontiguous_warnings, single_var_warnings, redefine_warnings, and
informational Prolog flags are off by default, suppressing warnings about clauses
not being together, singleton variables, queries and warnings about name clashes and
redefinitions, and informational messages. Note that they can be switched on though,
to enable such warnings, queries and messages.

• No profiler or coverage analysis. The predicates profile_reset/0, profile_data/1,
print_profile/[0,1] coverage_data/1, and print_coverage/[0,1] are unavail-
able. The Prolog flag profiling is unavailable.

• No signal handling except as installed by SP_signal().

It is possible to tell a runtime system to start a development system instead, for debugging
purposes. See Section 6.9 [Debugging Runtime Systems], page 340, for details.

6.7.2 Runtime Systems on Target Machines

When a runtime system is delivered to the end user, chances are that the user does not
have an existing SICStus installation. To deliver such an executable, you need:

the executable
This is your executable program, usually created by spld (see Section 6.7.3
[The Application Builder], page 322).

the runtime kernel
This is a shared object or a DLL, usually libsprt4-6-0.so under UNIX, or
sprt4-6-0.dll under Windows.

the (extended) runtime library
The saved state sprt.sav contains the built-in predicates written in Prolog.
It is restored into the program at runtime by the function SP_initialize().
Extended runtime systems restore spre.sav instead, which requires a license,
available from SICS as an add-on product. See also Section “Managing Ex-
tended Runtime License Information” in SICStus Prolog Release Notes.

Chapter 6: Mixing C/C++ and Prolog 319

your Prolog code
As a saved state, ‘.po’ files, or source code (‘.pl’ files). They must be explicitly
loaded by the program at runtime (see Section 6.7.4.2 [Loading Prolog Code],
page 329).

your linked foreign resources
Any dynamically linked foreign resources, including any linked foreign resources
for library modules located in $SP_PATH/library.

The following two sections describe how to package the above components for UNIX and
Windows target machines, i.e. machines that do not have SICStus Prolog installed, respec-
tively. It is also possible to package all the above components into a single executable file,
an all-in-one executable. See Section 6.7.3.2 [All-in-one Executables], page 322.

6.7.2.1 Runtime Systems on UNIX Target Machines

In order to build a runtime system for distribution on a target machine, the option
--moveable must be passed to spld. This option prevents spld from hardcoding any
(absolute) paths into the executable. As of release 4.2, --moveable is the default on most
platforms, including Linux, Mac OS X and Solaris.

Next, in order for SICStus to be able to locate all relevant files, the following directory
structure should be used.

myapp.exe

sp-4.6.0/

+--- libsprt4-6-0.so

+--- sicstus-4.6.0/

+--- bin/

| +--- sprt.sav

+--- library/

+--- <files from $SP_PATH/library>

If support for multiple SICStus instances is needed, then the runtimes named e.g.
libsprt4-6-0_instance_01_.so need to be available as well, in the same place as
libsprt4-6-0.so.

If SICStus Prolog is installed on the target machine, then a symbolic link named sp-4.6.0

can be used, in which case it should point to the directory of the SICStus installation that
contains the libsprt4-6-0.so (or equivalent).

If the runtime system needs to be debugged, then the above file system layout should be
complemented as follows: The file spds.sav from the development system should be copied
and placed in the same folder as sprt.sav and the license information must be made
available. See Section 6.9 [Debugging Runtime Systems], page 340, for details.

myapp.exe is typically created by a call to spld:

% spld --main=user --moveable [...] -o ./myapp.exe

320 SICStus Prolog

On most platforms, the above directory layout will enable the executable to find the SICStus
runtime (e.q., libsprt4-6-0.so) as well as the boot file sprt.sav (spre.sav). In addition,
application specific files, e.g. a .sav file, can be found using the automatically set system
properties SP_APP_DIR or SP_RT_DIR. On some platforms a wrapper script, generated by
spld, is needed to ensure that the files are found.

Unless the --static option is passed to spld, it might also be necessary to set LD_LIBRARY_
PATH (or equivalent) to /home/joe/lib (in the example above) in order for the dynamic
linker to find libsprt4-6-0.so. If the --static option is used, then this is not necessary.
Setting LD_LIBRARY_PATH is not recommended unless it is really needed.

When a runtime system is redistributed to third parties, only the following files may be
included in the distribution. All filenames are relative to <prefix>/lib/sicstus-4.6.0:

../*.{a,so,sl,dylib}

bin/sprt.sav

bin/spre.sav

bin/jasper.jar

bin/prologbeans.jar

library/*.{tcl,po,pl}

Except license.pl!

library/*/*.{s.o,so,sl,dylib}

library/*/*.{po,pl}

sp_platform

(Located with InstallSICStus)

Please note: you cannot redistribute spds.sav or license.pl.

6.7.2.2 Runtime Systems on Windows Target Machines

In order to locate all relevant files, the following directory structure should be used:

myapp.exe

sprt4-6-0.dll

sp-4.6.0\

+--- bin\

| +--- sprt.sav

+--- library\

+--- <files from %SP_PATH%\library>

If support for multiple SICStus instances is needed, then the runtimes named e.g. sprt4-6-
0_instance_01_.dll need to be available as well, in the same place as sprt4-6-0.dll.

If the runtime system needs to be debugged, then the above file system layout should be
complemented as follows: The file spds.sav from the development system should be copied
and placed in the same folder as sprt.sav and the license information must be made
available. See Section 6.9 [Debugging Runtime Systems], page 340, for details.

myapp.exe is typically created by a call to spld:

Chapter 6: Mixing C/C++ and Prolog 321

% spld --main=user [...] -o ./myapp.exe

If the directory containing sprt4-6-0.dll contains a directory called sp-4.6.0, then
SICStus assumes that it is part of a runtime system as described in the picture below.
The (extended) runtime library, sprt.sav (spre.sav), is then looked up in the directory
(sp-4.6.0/bin), as in the picture. Furthermore, the initial library_directory/1 fact will
be set to the same directory with sp-4.6.0/library appended.

The directory structure under library/ should look like in a regularly installed SICStus,
including the platform-specific subdirectory (x86-win32-nt-4 in this case). If your applica-
tion needs to use library(timeout)1 and library(random), then your directory structure
may look like:

myapp.exe

sprt4-6-0.dll

sp-4.6.0\

+--- bin\

| +--- sprt.sav

+--- library\

+--- random.po

+--- timeout.po

+--- x86-win32-nt-4 \

+--- random.dll

The sp* files can also be put somewhere else in order to be shared by several applications
provided the sprt4-6-0.dll can be located by the DLL search.

Naming the files with version number enables applications using different SICStus versions
to install the sp* files in the same directory.

When a runtime system is redistributed to third parties, only the following files may be
included in the distribution. All filenames are relative to %SP_PATH%:

bin\sprt.sav

bin\spre.sav

bin\jasper.jar

bin\prologbeans.jar

bin*.dll

bin*.po

library*.{tcl,po,pl,bas}

Except license.pl!

library**.dll

library**.{po,pl}

Please note: you cannot redistribute spds.sav or license.pl.

1 Prior to release 4.4, library(timeout) also used a foreign resource. This is no longer the case.

322 SICStus Prolog

6.7.3 The Application Builder

The application builder, spld, is used for creating stand-alone executables. spld takes the
files specified on the command line and combines them into an executable file, much like
the UNIX ld or the Windows link commands.

Note that no pathnames passed to spld should contain spaces. Under Windows, this can
be avoided by using the short version of pathnames as necessary.

See Section 13.5 [too-spld], page 1371, for detailed information about spld options etc.

6.7.3.1 Customizing spld

The spld tool reads a configuration file at start-up that contains default values for many
configurable parameters. It is sometimes useful to modify these in order to adapt to local
variations.

The following methods can be used also with the splfr command, Section 6.2.5 [The Foreign
Resource Linker], page 296.

There are two methods

• Override some parameters with --conf VAR=VALUE.

This is useful when only a few parameters need to be changed, e.g. the C compiler.
You can override multiple parameters by specified --conf more than once.

For instance, to use a non-default C compiler you can pass --conf

CC=/home/joe/bin/mycc.

The option --conf was introduced in release 4.0.3.

• Use a modified configuration file with --config=File.

It may sometimes be convenient to use a separate, possibly modified, configuration file.
This should seldom be needed, use --conf instead.

To use a modified configuration file, follow these instructions:

1. Locate the configuration file spconfig-version. It should be located in the same
directory as spld.

2. Make a copy for spconfig-version; let us call it hacked_spld.config. Do Not
edit the original file.

3. The configuration file contains lines on the form CFLAGS=-g -O2. Edit these ac-
cording to your needs. Do Not add or remove any options.

4. You may now use the modified spconfig-version together with spld like this:

% spld [...] --config=/path/to/hacked_spld.config

5. Replace /path/to with the actual path to the hacked configuration file.

6.7.3.2 All-in-one Executables

It is possible to embed saved states into an executable (or shared object). Together with
static linking, this gives an all-in-one executable, an executable (or shared object) that does
not depend on external SICStus files.

Chapter 6: Mixing C/C++ and Prolog 323

In the simplest case, creating an all-in-one executable main.exe from a saved state main.sav
can be done with a command like:

% spld --output=main.exe --static main.sav

This will automatically embed the saved state, any foreign resources needed by the saved
state as well the SICStus runtime and its runtime saved state.

Creating a shared object is similar, e.g.

% spld --output=main.dll --shared --static main.sav

but the following examples cover the more common case of creating an ordinary executable.

The keys to this feature are:

• Static linking. By linking an application with a static version of the SICStus runtime,
you avoid any dependency on e.g. sprt4-6-0.dll (Windows) or libsprt4-6-0.so

(UNIX).

If the application needs foreign resources (predicates written in C code), as used for
example by library(random) and library(clpfd), then these foreign resources can
be linked statically with the application as well.

The remaining component is the Prolog code itself; see the next item.

• Data Resources (in-memory files). It is possible to link an application with data re-
sources that can be read directly from memory. In particular, saved states can be
embedded in an application and used when restoring the saved state of the application.

An application needs two saved states:

1. The SICStus runtime system (sprt.sav).

This is added automatically when spld is invoked with the --static (or -S)
option unless the spld-option --no-embed-rt-sav is specified. It can also be
added explicitly with the option --embed-rt-sav.

2. The user written code of the application as well as any SICStus libraries.

This saved state is typically created by loading all application code using
compile/1 and then creating the saved state with save_program/2.

Data resources are added by specifying their internal name and the path to a file as part
of the comma separated list of resources passed with the spld option --resources. Each
data resource is specified as file=name where file is the path to the file containing the data
(it must exist during the call to spld) and name is the name used to access the content
of file during runtime. A typical choice of name would be the base name, i.e. without
directories, of file, preceded by a slash (/). name should begin with a slash (/) and look
like an ordinary lowercase file path made up of ‘/’-separated, non-empty, names consisting
of ‘a’ to ‘z’, underscore (‘_’, period (‘.’), and digits.

Typically, you would use spld --main=restore, which will automatically restore the
first ‘.sav’ argument. To manually restore an embedded saved state you should

324 SICStus Prolog

use the syntax URL:x-sicstus-resource:name, e.g. SP_restore("URL:x-sicstus-

resource:/main.sav").

An example will make this clearer. Suppose we create a runtime system that consists of a
single file main.pl that looks like:

% main.pl

:- use_module(library(random)).

:- use_module(library(clpfd)).

% This will be called when the application starts:

user:runtime_entry(start) :-

%% You may consider putting some other code here...

write('hello world'),nl,

write('Getting a random value:'),nl,

random(1,10,R), % from random

write(R),nl,

(all_different([3,9]) -> % from clpfd

write('3 != 9'),nl

; otherwise ->

write('3 = 9!?'),nl

).

Then create the saved state main.sav, which will contain the compiled code of main.pl
as well as the Prolog code of library(random) and library(clpfd) and other Prolog
libraries needed by library(clpfd):

% sicstus -i -f

SICStus 4.6.0 ...

Licensed to SICS

| ?- compile(main).

% compiling .../main.pl...

% ... loading several library modules

| ?- save_program('main.sav').

% .../main.sav created in 201 msec

| ?- halt.

Finally, tell spld to build an executable statically linked with the SICStus runtime and
the foreign resources needed by library(random) and library(clpfd). Also, embed the
Prolog runtime saved state and the application specific saved state just created.

As noted above, it is possible to build the all-in-one executable with the command line:

% spld --output=main.exe --static main.sav

Chapter 6: Mixing C/C++ and Prolog 325

but for completeness the example below uses all options as if no options were added auto-
matically.

The example is using Cygwin bash (http://www.cygwin.com) under Windows but would
look much the same on other platforms. The command should be given on a single line; it
is broken up here for better layout:

% spld

--output=main.exe

--static

--embed-rt-sav

--main=restore

--resources=main.sav=/main.sav,clpfd,random

The arguments in the example are as follows:

--output=main.exe

This tells spld where to put the resulting executable.

--static Link statically with the SICStus runtime and foreign resources (clpfd and
random, in this case).

--embed-rt-sav

This option embeds the SICStus runtime ‘.sav’ file (sprt.sav). This option is
not needed since it is added automatically by --static.

--main=restore

Start the application by restoring the saved state and calling user:runtime_

entry(start). This is not strictly needed in the above example since it is the
default if any file with extension ‘.sav’ or a data resource with a name where
the extension is ‘.sav’ is specified.

--resources=...

This is followed by comma-separated resource specifications:

main.sav=/main.sav

This tells spld to make the content (at the time spld is invoked)
of the file main.sav available at runtime in a data resource named
/main.sav. That is, the data resource name corresponding to
"URL:x-sicstus-resource:/main.sav".

Alternatively, spld can create a default data resource specification
when passed a ‘.sav’ file argument and the option --embed-sav-

file (which is the default with --static).

clpfd

random These tell spld to link with the foreign resources (that is, C-code)
associated with library(clpfd) and library(random). Since
--static was specified the static versions of these foreign resources
will be used.

Alternatively, spld can extract the information about the required
foreign resources from the saved state (main.sav). This feature is

http://www.cygwin.com

326 SICStus Prolog

enabled by adding the option --resources-from-sav (which is the
default with --static). Using --resources-from-sav instead of
an explicit list of foreign resources is preferred since it is hard to
know what foreign resources are used by the SICStus libraries.

Since both --embed-sav-file and --resources-from-sav are the default
when --static is used the example can be built simply by doing:

% spld --output=main.exe --static main.sav

Finally, we may run this executable on any machine, even if SICStus is not installed:

bash-2.04$./main.exe

hello world

Getting a random value:

4

3 != 9

bash-2.04$

6.7.3.3 Setting up the C compiler on Windows

spld (and splfr) are command line tools and need to have access to a working C compiler
and linker. This is typically not a problem on UNIX-like systems but on Windows there
are some special steps needed in order to set up the environment so that the C compiler
can be used.

The easiest way to get a command prompt where the C compiler works is to open the ‘Visual
Studio 2005 Command Prompt’ from the Start menu. On Windows Vista this is located un-
der ‘All Programs/Microsoft Visual Studio 2005/Visual Studio Tools/’. This opens
up a command prompt where cl.exe (the C compiler) can be found via the PATH environ-
ment variable.

An alternative is to run the Visual Studio set up script from the command prompt, some-
thing like:

C:\>"C:\Program Files\Microsoft Visual Studio 8\VC\vcvarsall.bat" x86

This is in fact what the ‘Visual Studio 2005 Command Prompt’ shortcut does.

Similar steps will work for other versions of Visual Studio. Note that there are different
versions of SICStus Prolog for different versions of Visual Studio. This is necessary since
each version of Visual Studio comes with its own version of the C library.

Once the environment is set up for using the C compiler you should be able to use the spld
(and splfr) tools without problem.

6.7.3.4 Extended Runtime Systems

An extended runtime system is a variant of a runtime system with additional capabilities,
including the presence of the Prolog compiler. Extended runtime systems are created with
spld in a way similar to how ordinary runtime systems are created. An extended runtime

Chapter 6: Mixing C/C++ and Prolog 327

system requires a license; see Section “Managing Extended Runtime License Information”
in SICStus Prolog Release Notes for details about managing such license information.

6.7.3.5 Examples

1. The character-based SICStus development system executable (sicstus) can be created
using:

% spld --main=prolog -o sicstus

This will create a development system that is dynamically linked and has no prelinked
foreign resources.

2.

% spld --static -D --resources=random -o main

This will create a statically linked executable called main that has the resource random
prelinked (statically).

3. An all-in-one executable with a home-built foreign resource.

This example is similar to the example in Section 6.7.3.2 [All-in-one Executables],
page 322, with the addition of a foreign resource of our own.

% bar.pl

:- use_module(library(random)).

:- use_module(library(clpfd)).

% This will be called when the application starts:

user:runtime_entry(start) :-

%% You may consider putting some other code here...

write('hello world'),nl,

write('Getting a random value:'),nl,

random(1, 10, R), % from random

write(R),nl,

(all_different([3,9]) -> % from clpfd

write('3 != 9'),nl

; otherwise ->

write('3 = 9!?'),nl

),

'$pint'(4711). % from our own foreign resource 'bar'

foreign(print_int, '$pint'(+integer)).

foreign_resource(bar, [print_int]).

:- load_foreign_resource(bar).

328 SICStus Prolog

/* bar.c */

#include <sicstus/sicstus.h>

#include <stdio.h>

/* bar_glue.h is generated by splfr from the foreign/[2,3] facts.

Always include the glue header in your foreign resource code.

*/

#include "bar_glue.h"

extern void print_int(SP_integer a);

void print_int(SP_integer a)

{

/* Note the use of SPRIdINTEGER to get a format specifier corresponding

to the SP_integer type. For most platforms this corresponds

to "ld" and long, respectively. */

printf("a=%" SPRIdINTEGER "\n", (SP_integer)a);

}

To create the saved state bar.sav we will compile the file bar.pl and save it with
save_program('bar.sav'). When compiling the file the directive :- load_foreign_

resource(bar). is called so a dynamic foreign resource must be present.

Thus, first we build a dynamic foreign resource.

% splfr bar.c bar.pl

Then, we create the saved state.

% sicstus --goal "compile(bar), save_program('bar.sav'), halt."

We also need a static foreign resource to embed in our all-in-one executable.

% splfr --static bar.c bar.pl

Finally, we build the all-in-one executable with spld. We do not need to list the
foreign resources needed. spld will extract their names from the .sav file. Adding the
--verbose option will make spld output lots of progress information, among which are
the names of the foreign resources that are needed. Look for “Found resource name”
in the output.

% spld --verbose --static --main=restore --respath=. --

resources=bar.sav=/mystuff/bar.sav --output=bar

In this case four foreign resource names are extracted from the .sav file: bar, clpfd,
and random. The source file bar.pl loads the foreign resource named bar. It also uses
the library(random) module, which loads the foreign resource named random, and
the library(clpfd) module, which loads the foreign resource named clpfd.

By not listing foreign resources when running spld, we avoid the risk of omitting a
required resource.

6.7.4 User-defined Main Programs

Runtime systems may or may not have an automatically generated main program. This is
controlled by the --main option to spld. If --main=user is given, then a function user_

main() must be supplied:

Chapter 6: Mixing C/C++ and Prolog 329

int user_main(int argc, char *argv[])

user_main() is responsible for initializing the Prolog engine, loading code, and issuing any
Prolog queries. An alternative is to use --main=none and write your own main() function.

6.7.4.1 Initializing the Prolog Engine

The Prolog Engine is initialized by calling SP_initialize(). This must be done before
any interface functions are called, except those marked ‘preinit’ in this manual.

The function will allocate data areas used by Prolog and load the Runtime Library.

It will also initialize command line arguments so that they can be accessed by the argv

Prolog flag but it may be preferable to use SP_set_argv() for this.

To unload the SICStus emulator, SP_deinitalize() can be called.

You may also call SP_force_interactive() before calling SP_initialize(). This will
force the I/O built-in predicates to treat the standard streams as a interactive, even if
they do not appear to be connected to a terminal or console. Same as the -i option in
development systems (see Section 3.1 [Start], page 21).

The SICStus Prolog memory manager has a two-layer structure. The top layer has roughly
the same functionality as the standard UNIX functions malloc and free, whereas the
bottom layer is an interface to the operating system. It is the bottom layer that can be
customized by setting these hooks.

6.7.4.2 Loading Prolog Code

You can load your Prolog code with the call SP_load(). This is the C equivalent of the
Prolog predicate load_files/1.

Alternatively, you can restore a saved state with the call SP_restore(), which is the C
equivalent of the Prolog predicate restore/1.

6.7.5 Generic Runtime Systems

There are three ready-made runtime systems provided with the distributions, sprt.exe,
sprti.exe, and (only on Windows) sprtw.exe. These have been created using spld:

$ spld --main=restore '$SP_APP_DIR/main.sav' -o sprt.exe

$ spld --main=restore '$SP_APP_DIR/main.sav' -i -o sprti.exe

$ spld --main=restore '$SP_APP_DIR/main.sav' --window -o sprtw.exe

These are provided for users who do not have a C-compiler available. Each program launches
a runtime system by restoring the saved state main.sav (located in the same folder as the
program).

The saved state is created by save_program/[1,2]. If it was created by save_program/2,
then the given startup goal is run. Then, user:runtime_entry(start) is run. The pro-
gram exits with 0 upon normal temination and with 1 on failure or exception.

330 SICStus Prolog

The program sprti.exe assumes that the standard streams are connected to a terminal,
even if they do not seem to be (useful under Emacs, for example). On Windows only,
sprtw.exe is a windowed executable, corresponding to spwin.exe.

6.8 Mixing C and Prolog Examples

6.8.1 Train Example (connections)

This is an example of how to create a runtime system. The Prolog program train.pl will
display a route from one train station to another. The C program train.c calls the Prolog
code and writes out all the routes found between two stations:

% train.pl

connected(From, From, [From], _):- !.

connected(From, To, [From| Way], Been):-

(no_stop(From, Through)

;

no_stop(Through, From)

),

not_been_before(Been, Through),

connected(Through, To, Way, Been).

no_stop('Stockholm', 'Katrineholm').

no_stop('Stockholm', 'Vasteras').

no_stop('Katrineholm', 'Hallsberg').

no_stop('Katrineholm', 'Linkoping').

no_stop('Hallsberg', 'Kumla').

no_stop('Hallsberg', 'Goteborg').

no_stop('Orebro', 'Vasteras').

no_stop('Orebro', 'Kumla').

not_been_before(Way, _) :- var(Way),!.

not_been_before([Been| Way], Am) :-

Been \== Am,

not_been_before(Way, Am).

Chapter 6: Mixing C/C++ and Prolog 331

/* train.c */

#include <stdio.h>

#include <stdlib.h>

#include <sicstus/sicstus.h>

static void write_path(SP_term_ref path)

{

char const *text = NULL;

SP_term_ref

tail = SP_new_term_ref(),

via = SP_new_term_ref();

SP_put_term(tail,path);

while (SP_get_list(tail,via,tail)) {

if (text)

printf(" -> ");

SP_get_string(via, &text);

printf("%s",text);

}

printf("\n");

}

int user_main(int argc, char **argv)

{

int rval;

SP_pred_ref pred;

SP_qid goal;

SP_term_ref from, to, path;

/* Initialize Prolog engine. The third arg to SP_initialize is

an option block and can be NULL, for default options. */

if (SP_FAILURE == SP_initialize(argc, argv, NULL)) {

fprintf(stderr, "SP_initialize failed: %s\n",

SP_error_message(SP_errno));

exit(1);

}

rval = SP_restore("train.sav");

if (rval == SP_ERROR || rval == SP_FAILURE) {

fprintf(stderr, "Could not restore \"train.sav\".\n");

exit(1);

}

332 SICStus Prolog

/* train.c */

/* Look up connected/4. */

if (!(pred = SP_predicate("connected",4,"user"))) {

fprintf(stderr, "Could not find connected/4.\n");

exit(1);

}

/* Create the three arguments to connected/4. */

SP_put_string(from = SP_new_term_ref(), "Stockholm");

SP_put_string(to = SP_new_term_ref(), "Orebro");

SP_put_variable(path = SP_new_term_ref());

/* Open the query. In a development system, the query would look like:

*

* | ?- connected('Stockholm','Orebro',X).

*/

if (!(goal = SP_open_query(pred,from,to,path,path))) {

fprintf(stderr, "Failed to open query.\n");

exit(1);

}

/*

* Loop through all the solutions.

*/

while (SP_next_solution(goal)==SP_SUCCESS) {

printf("Path: ");

write_path(path);

}

SP_close_query(goal);

exit(0);

}

Create the saved state containing the Prolog code:

% sicstus

SICStus 4.6.0 ...

Licensed to SICS

| ?- compile(train),save_program('train.sav').

% compiling [...]/train.pl...

% compiled [...]/train.pl in module user, 10 msec 2848 bytes

% [...]/train.sav created in 0 msec

| ?- halt.

Create the executable using the application builder:

Chapter 6: Mixing C/C++ and Prolog 333

% spld --main=user train.c -o train.exe

And finally, run the executable:

% ./train

Path: Stockholm -> Katrineholm -> Hallsberg -> Kumla -> Orebro

Path: Stockholm -> Vasteras -> Orebro

6.8.2 Building for a Target Machine

The following example shows how to build an application with a dynamically loaded foreign
resource in such a way that it can be deployed into an arbitrary folder on a target system
that does not have SICStus installed. The example is run on Linux but it would be very
similar on other platforms.

The example consists of three source files, one toplevel file (main.pl) which in turn loads a
module file (b.pl). The latter also loads a foreign resource (b.c).

The initial directory structure, and the contents of the source files can be seen from the
following transcript:

334 SICStus Prolog

$ find build/

build/

build/myfiles

build/myfiles/main.pl

build/myfiles/b.pl

build/myfiles/b.c

$ cat build/myfiles/main.pl

:- module(main, [main/0]).

:- use_module(b,

[b_foreign/1]).

main :-

b_foreign(X),

write(X), nl.

user:runtime_entry(start) :-

main.

$ cat build/myfiles/b.pl

:- module(b, [b_foreign/1]).

foreign(b_foreign_c, b_foreign([-string])).

foreign_resource(b, [

b_foreign_c]).

:- load_foreign_resource(b).

$ cat build/myfiles/b.c

#include <sicstus/sicstus.h>

/* b_glue.h is generated by splfr from the foreign/[2,3] facts.

Always include the glue header in your foreign resource code.

*/

#include "b_glue.h"

char const * SPCDECL b_foreign_c(void)

{

return "Hello World!";

}

The following transcript shows how the foreign resource and the SICStus runtime executable
is built:

Chapter 6: Mixing C/C++ and Prolog 335

$ cd build/myfiles/

$ splfr b.pl b.c

$ cd ..

$ sicstus --nologo

% optional step for embedding source info in saved state.

| ?- set_prolog_flag(source_info, on).

yes

% source_info

| ?- compile('myfiles/main.pl').

% compiling .../build/myfiles/main.pl...

% module main imported into user

% compiling .../build/myfiles/b.pl...

% module b imported into main

% loading foreign resource .../build/myfiles/b.so in module b

% compiled .../build/myfiles/b.pl in module b, 0 msec 3104 bytes

% compiled .../build/myfiles/main.pl in module main, 0 msec 5344 bytes

yes

% source_info

| ?- save_program('main.sav').

% .../build/main.sav created in 20 msec

yes

% source_info

| ?- halt.

$ spld '$SP_APP_DIR/main.sav' -o main.exe

Created "main.exe"

(instead of creating main.exe you could use the generic runtime system sprt.exe provided
as part of the installation (see Section 6.7.5 [Generic Runtime Systems], page 329)).

Please note: it is important that main.sav be saved to a folder that is the “root” of the
folder tree. The folder in which the saved state is created (.../build/ above) is treated
specially by save_program/[1,2] and by restore/1. This special handling ensures that
myfiles/b.so will be found relative to the location of main.sav when main.sav is restored
on the target system. See Section 3.10 [Saving], page 28, for details.

Next, the necessary runtime files must be copied from the SICStus installation:

$ mkdir -p sp-4.6.0/sicstus-4.6.0/bin

$ cp /usr/local/sicstus4.6.0/lib/libsprt4-6-0.so sp-4.6.0/

$ cp /usr/local/sicstus4.6.0/lib/sicstus-4.6.0/bin/sprt.sav \

sp-4.6.0/sicstus-4.6.0/bin/sprt.sav

The resulting folder contents can be seen by running the find command:

336 SICStus Prolog

$ find . -print

.

./sp-4.6.0

./sp-4.6.0/libsprt4-6-0.so

./sp-4.6.0/sicstus-4.6.0

./sp-4.6.0/sicstus-4.6.0/bin

./sp-4.6.0/sicstus-4.6.0/bin/sprt.sav

./myfiles

./myfiles/b.so

./myfiles/main.pl

./myfiles/b.pl

./myfiles/b.c

./main.sav

./main.exe

It is possible to run the program from its current location:

$./main.exe

Hello World!

The folder build/myfiles/ contains some files that do not need to be present on the target
machine, i.e. the source files. The following transcript shows how a new folder, target/, is
created that contains only the files that need to be present on the target system.

$ cd ..

$ mkdir target

$ mkdir target/myfiles

$ cp build/main.sav target

$ cp build/main.exe target

$ cp build/myfiles/b.so target/myfiles/

$ cp -R build/sp-4.6.0 target

$ find target/ -print

target/

target/myfiles

target/myfiles/b.so

target/main.sav

target/main.exe

target/sp-4.6.0

target/sp-4.6.0/sicstus-4.6.0

target/sp-4.6.0/sicstus-4.6.0/bin

target/sp-4.6.0/sicstus-4.6.0/bin/sprt.sav

target/sp-4.6.0/libsprt4-6-0.so

$ target/main.exe

Hello World!

Note that target/myfiles/b.so was found since its location relative the directory con-
taining the saved state (main.sav) is the same on the target system as on the build system.

Chapter 6: Mixing C/C++ and Prolog 337

The folder target/ can now be moved to some other system and target/main.exe will
not depend on any files of the build machine.

As a final example, the following transcripts show how the runtime system can be debugged
on the build machine. It is possible to do this on the target system as well, if the necessary
files are made available. See Section 6.9 [Debugging Runtime Systems], page 340, for more
information.

First, the development system files and the license file must be made available:

$ mkdir sp-4.6.0/sicstus-4.6.0/library

$ cp /usr/local/sicstus4.6.0/lib/sicstus-

4.6.0/library/SU_messages.po \

sp-4.6.0/sicstus-4.6.0/library/

$ cp /usr/local/sicstus4.6.0/lib/sicstus-4.6.0/bin/spds.sav \

sp-4.6.0/sicstus-4.6.0/bin/

$ cp /usr/local/sicstus4.6.0/lib/sicstus-4.6.0/library/license.pl \

sp-4.6.0/sicstus-4.6.0/library/

As before, the resulting folder contents can be seen by running the find command:

$ find . -print

.

./sp-4.6.0

./sp-4.6.0/libsprt4-6-0.so

./sp-4.6.0/sicstus-4.6.0

./sp-4.6.0/sicstus-4.6.0/library

./sp-4.6.0/sicstus-4.6.0/library/SU_messages.po

./sp-4.6.0/sicstus-4.6.0/library/license.pl

./sp-4.6.0/sicstus-4.6.0/bin

./sp-4.6.0/sicstus-4.6.0/bin/spds.sav

./sp-4.6.0/sicstus-4.6.0/bin/sprt.sav

./myfiles

./myfiles/b.so

./myfiles/main.pl

./myfiles/b.pl

./myfiles/b.c

./main.sav

./main.exe

$

To tell the runtime system to start a development system. you can set the SP_USE_DEVSYS
environment variable as shown below. You could also set SP_ATTACH_SPIDER and debug in
the SICStus IDE (see Section 6.9 [Debugging Runtime Systems], page 340).

338 SICStus Prolog

$ SP_USE_DEVSYS=yes

$ export SP_USE_DEVSYS

$./main.exe

% The debugger will first creep -- showing everything (trace)

1 1 Call: restore('$SP_APP_DIR/main.sav') ? RET

% restoring .../build/main.sav...

% .../build/main.sav restored in 10 msec 5600 bytes

1 1 Exit: restore('$SP_APP_DIR/main.sav') ? RET

2 1 Call: runtime_entry(start) ? RET

in scope of a goal at line 12 in .../build/myfiles/main.pl

3 2 Call: main:main ? RET

in scope of a goal at line 7 in .../build/myfiles/main.pl

4 3 Call: main:b_foreign(_2056) ? RET

in scope of a goal at line 7 in .../build/myfiles/main.pl

4 3 Exit: main:b_foreign('Hello World!') ? v

Local variables (hit RET to return to debugger)

X = 'Hello World!' ? RET

in scope of a goal at line 7 in .../build/myfiles/main.pl

4 3 Exit: main:b_foreign('Hello World!') ? n

Hello World!

$

Please note: source info is available, since we used set_prolog_flag(source_info, on)

before we compiled main.pl and created the saved state main.sav.

6.8.3 Exceptions from C

Consider, for example, a function returning the square root of its argument after checking
that the argument is valid. If the argument is invalid, then the function should raise an
exception instead.

Chapter 6: Mixing C/C++ and Prolog 339

/* math.c */

#include <math.h>

#include <stdio.h>

#include <sicstus/sicstus.h>

/* math_glue.h is generated by splfr from the foreign/[2,3] facts.

Always include the glue header in your foreign resource code.

*/

#include "math_glue.h"

extern double sqrt_check(double d);

double sqrt_check(double d)

{

if (d < 0.0) { /* build a domain_error/4 exception term */

SP_term_ref culprit=SP_new_term_ref();

SP_term_ref argno=SP_new_term_ref();

SP_term_ref expdomain=SP_new_term_ref();

SP_term_ref t1=SP_new_term_ref();

SP_put_float(culprit, d);

SP_put_integer(argno, 1);

SP_put_string(expdomain, ">=0.0");

SP_cons_functor(t1, SP_atom_from_string("sqrt"), 1, culprit);

SP_cons_functor(t1, SP_atom_from_string("domain_error"), 4,

t1, argno, expdomain, culprit);

SP_raise_exception(t1); /* raise the exception */

return 0.0;

}

return sqrt(d);

}

The Prolog interface to this function is defined in a file math.pl. The function uses the
sqrt() library function, and so the math library -lm has to be included:

% math.pl

foreign_resource(math, [sqrt_check]).

foreign(sqrt_check, c, sqrt(+float, [-float])).

:- load_foreign_resource(math).

A linked foreign resource is created:

% splfr math.pl math.c -lm

A simple session using this function could be:

340 SICStus Prolog

$ sicstus

SICStus 4.6.0 ...

Licensed to SICS

| ?- [math].

% compiling .../math.pl...

% loading foreign resource .../math.so in module user

% compiled .../math.pl in module user, 0 msec 2400 bytes

yes

| ?- sqrt(5.0,X).

X = 2.23606797749979 ?

yes

| ?- sqrt(a,X).

! Type error in argument 1 of user:sqrt/2

! expected a number, but found a

! goal: user:sqrt(a,_110)

| ?- sqrt(-5,X).

! Domain error in argument 1 of user:sqrt/1

! expected '>=0.0', but found -5.0

! goal: sqrt(-5.0)

6.8.4 Stream Example

See Section 6.6.2 [Defining a New Stream], page 312, for a simple example of defining a
stream that reads from a C FILE stream.

For a more realistic example, library(codesio) implements a stream that can return
a list of all characters written to it. The source code for this library is located in
library/codesio.pl and library/codesio.c and can serve as a useful sample for user
defined streams both for input and output. That code also illustrates other important fea-
tures of user defined streams, for instance ensuring that all the streams have been closed
when the foreign resource is unloaded.

6.9 Debugging Runtime Systems

A runtime system does not contain the Prolog debugger by default. This makes it hard to
troubleshoot problems that only occur when the code is embedded in some other application.

As of release 4.2, it is possible to tell a runtime system to start the full development system
instead. This way, the Prolog debugger, compiler etc. can be used to debug the application,
either from the command line or by attaching to the SICStus Prolog IDE (SPIDER). In
the simplest case, this feature is enabled by setting the system property (or environment
variable) SP_USE_DEVSYS to yes before starting the runtime system. This will cause the
runtime system to become a development system and it will start the debugger, as if by a
call to trace/0. See Section 6.8.2 [Building for a Target Machine], page 333, for a complete
example.

For best effect, you should ensure that any compiled prolog code (‘.sav’ and ‘.po’ files)
has been compiled with the Prolog flag source_info enabled, i.e. with set_prolog_

flag(source_info, on).

Chapter 6: Mixing C/C++ and Prolog 341

When the runtime system is started as a development system in this way, it needs to be
able to find the file that makes up an ordinary development system, i.e. spds.sav; see
Section 6.7.2.1 [Runtime Systems on UNIX Target Machines], page 319, and Section 6.7.2.2
[Runtime Systems on Windows Target Machines], page 320, above. It also needs to find
the license information for the development system; see Section 6.9.1 [Locating the License
Information], page 341, below.

6.9.1 Locating the License Information

The license information for debugged runtime systems can be provided in several ways.
Most of them can also be used as alternative ways for providing the license information to
extended runtime systems (see Section “Managing Extended Runtime License Information”
in SICStus Prolog Release Notes).

On Windows only, if you have installed the SICStus Prolog development system on the
machine where the runtime system is to be debugged, then the license information will be
found in the Windows registry and no extra steps need to be performed. This method cannot
be used for providing an extended runtime system license since the license information for
the full development system is not the same as for an extended runtime system.

If you have the license in a file license.pl, i.e. you are using a UNIX platform or have
manually created a license.pl file on Windows, then you can make this file available to
the debugged runtime system in one of two ways:

• Set the system property or environment variable SP_LICENSE_FILE to the absolute
path of the license.pl file of a SICStus Prolog installation, or

• Copy the license.pl file into the appropriate location relative to the runtime sys-
tem executable, i.e. to sp-4.6.0/sicstus-4.6.0/library/license.pl on UNIX or
sp-4.6.0\library\license.pl on Windows.

Please note: you cannot redistribute license.pl.

The final alternative, available on all platforms, is to set the following system properties or
environment variables

SP_LICENSE_SITE

Set to the site name part of your license.

SP_LICENSE_CODE

Set to the code part of your license, e.g. something like a111-b222-c333-d444-
e444.

SP_LICENSE_EXPIRATION

Set to the expiration part of your license, e.g. permanent if you have a perma-
nent (non-evaluation) license.

6.9.2 Customizing the Debugged Runtime System

It is possible to fine-tune the behavior of the debugged runtime system in various ways,
both at compile time (setting C preprocessor symbols and passing system properties to
SP_initialize()) and at runtime (passing system properties as environment variables).

342 SICStus Prolog

The system properties and environment variables that affect the debugged runtime system
are:

SP_USE_DEVSYS

if set to yes, then the runtime system will try to start a development system,
as described above.

SP_ATTACH_SPIDER

if set to yes, then this has the same effect as SP_USE_DEVSYS=yes and in ad-
dition tries to attach to the SICStus Prolog IDE (SPIDER). You have to tell
SPIDER to ‘Attach to Prolog Process’, i.e. listen for an incoming connection.
This command is available from the SICStus top-level view menu in SPIDER.

SP_DEVSYS_NO_TRACE

if set to yes, then this will prevent the runtime system from calling trace/0 at
initialization. This is useful if you prefer to manually enable the debugger later
from your C or Prolog code.

SP_ALLOW_DEVSYS

if set to no, then this will prevent the runtime system from starting as a develop-
ment system. This may be useful in order to prevent inheriting SP_USE_DEVSYS
or SP_ATTACH_SPIDER from the environment. The same effect can be obtained
by passing the option --no-allow-devsys to spld when building the runtime
system.

SP_LICENSE_FILE

SP_LICENSE_SITE

SP_LICENSE_CODE

SP_LICENSE_EXPIRATION

These are described in Section 6.9.1 [Locating the License Information],
page 341, above.

If your C code calls SP_initialize(), then you can pass these system properties in the
call to SP_initialize() (see Section 12.3.44 [SP initialize], page 1292). You can also pass
these options to SP_initialize() by setting the SPLD_DSP C macro. See the definition of
SP_initialize() in the header file sictus/sicstus.h for details.

6.9.3 Examples of Debugging Runtime Systems

The following examples show how to start Prolog debugging when SICStus is run from
within Java via Jasper. The examples assume that the SICStus files are part of a develop-
ment system installation.

The first example initializes the SICStus system property SP_USE_DEVSYS by setting the en-
vironment variable with the same name. This method of passing SICStus system properties
also works well when SICStus is embedded in some other, non-Java, program.

Chapter 6: Mixing C/C++ and Prolog 343

$ SP=/usr/local/sicstus4.6.0

$ SP_USE_DEVSYS=yes

$ export SP_USE_DEVSYS

$ java -jar \

"$SP/lib/sicstus-4.6.0/bin/jasper.jar"
Trying to load SICStus.

% The debugger will first creep -- showing everything (trace)

1 1 Call: write('If you see this message, you have suc-

cessfully') ? RET

If you see this message, then you have successfully

1 1 Exit: write('If you see this message, you have suc-

cessfully') ? n

initialized the SICStus Prolog engine.

$ unset SP_USE_DEVSYS

The second example initializes the SICStus system property SP_USE_DEVSYS by setting
the Java system property se.sics.sicstus.property.SP_USE_DEVSYS. This method of
passing SICStus system properties is specific to Jasper.

$ SP='/usr/local/sicstus4.6.0'

$ java -Dse.sics.sicstus.property.SP_USE_DEVSYS=yes \

-jar "$SP/lib/sicstus-4.6.0/bin/jasper.jar"
Trying to load SICStus.

% The debugger will first creep -- showing everything (trace)

1 1 Call: write('If you see this message, you have suc-

cessfully') ? n

If you see this message, then you have successfully

initialized the SICStus Prolog engine.

$

345

7 Interfacing .NET and Java

SICStus Prolog supports two different ways of interfacing a Prolog program with a Java
client, and one for interfacing with a .NET client.

SICStus Prolog provides a uniform way of interfacing to Java and .NET clients via the Pro-
logBeans (see Section 10.31 [lib-prologbeans], page 710) interface. This is a loosely coupled
interface, which means that the client code runs in a different process from the Prolog code.
In fact, the client program and the Prolog program can run on separate machines, since the
communication is done via TCP/IP sockets. This design has the following advantages over
a tightly coupled interface, where they run in the same process:

• There is no competition for memory or other process-wide resources between the virtual
machines of the client (.NET or JVM) and of Prolog.

• Distribution over a network is trivial when using PrologBeans. The application is
distributable from the beginning.

• PrologBeans has support for user session handling both at the Java level (with support
for HTTP sessions and JNDI lookup) and at the Prolog level. This makes it easy to
integrate Prolog applications into applications based on Java servers.

The main limitation of the design is that callbacks from Prolog to the client is not provided
for.

PrologBeans is the recommended package unless you have special needs and are interfacing
with Java in which case you may consider using Jasper.

For interfacing to Java clients SICStus Prolog also provides Jasper (see Section 10.20 [lib-
jasper], page 566), a “tightly coupled” interface. This means that everything runs in the
same process (the necessary code is loaded at runtime via dynamic linking).

Advantages of Jasper:

• Jasper is bi-directional. Callbacks are possible (limited in levels only by memory), and
queries can backtrack.

347

8 Multiple SICStus Runtimes in a Process

It is possible to have more than one SICStus runtime in a single process. These are com-
pletely independent (except that they dynamically load the same foreign resources; see
Section 8.3 [Foreign Resources and Multiple SICStus Runtimes], page 349).

Even though the SICStus runtime can only be run in a single thread, it is now possible to
start several SICStus runtimes, optionally each in its own thread.

SICStus runtimes are rather heavy weight and you should not expect to be able to run more
than a handful.

8.1 Multiple SICStus Runtimes in Java

In Java, you can now create more than one se.sics.jasper.SICStus object. Each will
correspond to a completely independent copy of the SICStus runtime. Note that a SICStus
runtime is not deallocated when the corresponding SICStus object is no longer used. Thus,
the best way to use multiple SICStus objects is to create them early and then re-use them
as needed.

It is probably useful to create each in its own separate thread. One reason would be to gain
speed on a multi-processor machine.

8.2 Multiple SICStus Runtimes in C

Unless otherwise noted, this section documents the behavior when using dynamic linking
to access a SICStus runtime.

The key implementation feature that makes it possible to use multiple runtimes is that all
calls from C to the SICStus API (SP_query(), etc.) go through a dispatch vector. Two
runtimes can be loaded at the same time since their APIs are accessed through different
dispatch vectors.

By default, there will be a single dispatch vector, referenced from a global variable (sp_
GlobalSICStus). A SICStus API functions, such as SP_query(), is then defined as a
macro that expands to something similar to sp_GlobalSICStus->SP_query_pointer. The
name of the global dispatch vector is subject to change without notice; it should not
be referenced directly. If you need to access the dispatch vector, then use the C macro
SICStusDISPATCHVAR instead; see below.

8.2.1 Using a Single SICStus Runtime

When building an application with spld, by default only one SICStus runtime can be
loaded in the process. This is similar to what was the case before release 3.9. For most
applications built with spld, the changes necessary to support multiple SICStus runtimes
should be invisible, and old code should only need to be rebuilt with spld.

In order to maintain backward compatibility, the global dispatch vector is automatically set
up implicitly by SP_initialize() and explicitly by SP_setup_dispatch(). Other SICS-
tus API functions will not set up the dispatch vector, and will therefore lead to memory

348 SICStus Prolog

access errors if called before SP_initialize(). Currently, hook functions such as SP_set_
user_stream_hook() also set up the dispatch vector to allow them to be called before
SP_initialize(). However, only SP_initialize() and SP_setup_dispatch() are guar-
anteed to set up the dispatch vector. The hook installation functions may change to use
a different mechanism in the future. The SICStus API functions that perform automatic
setup of the dispatch vector are marked with SPEXPFLAG_PREINIT in sicstus.h.

8.2.2 Using More than One SICStus Runtime

Using more than one SICStus runtime in a process is only supported when the dynamic
library version of the SICStus runtime is used (e.g. sprt4-6-0.dll, libsprt4-6-0.so).

An application that wants to use more than one SICStus runtime needs to be built using
the --multi-sp-aware option to spld. C-code compiled by spld --multi-sp-aware will
have the C preprocessor macro MULTI_SP_AWARE defined and non-zero.

Unlike the single runtime case described above, an application built with --multi-sp-aware

will not have a global variable that holds the dispatch vector. Instead, your code will have
to take steps to ensure that the appropriate dispatch vector is used when switching between
SICStus runtimes.

There are several steps needed to access a SICStus runtime from an application built with
--multi-sp-aware.

1. You must obtain the dispatch vector of the initial SICStus runtime using SP_get_

dispatch(). Note that this function is special in that it is not accessed through
the dispatch vector; instead, it is exported in the ordinary manner from the SICStus
runtime dynamic library (sprt4-6-0.dll under Windows and, typically, libsprt4-6-
0.so under UNIX).

2. You must ensure that SICStusDISPATCHVAR expands to something that references the
dispatch vector obtained in step 1.

The C preprocessor macro SICStusDISPATCHVAR should expand to a SICSTUS_API_

STRUCT_TYPE *, that is, a pointer to the dispatch vector that should be used. When
--multi-sp-aware is not used SICStusDISPATCHVAR expands to sp_GlobalSICStus

as described above. When using --multi-sp-aware it is probably best to let
SICStusDISPATCHVAR expand to a local variable.

3. Once you have access to the SICStus API of the initial SICStus runtime you can call
the SICStus API function SP_load_sicstus_run_time() to load additional runtimes.

SICSTUS_API_STRUCT_TYPE *SP_get_dispatch(void *reserved);

SP_get_dispatch() returns the dispatch vector of the SICStus runtime. The argument
reserved should be NULL. This function can be called from any thread.

typedef SICSTUS_API_STRUCT_TYPE *SP_get_dispatch_type(void *);

int SP_load_sicstus_run_time(SP_get_dispatch_type **ppfunc, void *reserved);

Chapter 8: Multiple SICStus Runtimes in a Process 349

SP_load_sicstus_run_time() loads a new SICStus runtime. If a new runtime could be
loaded, then a positive value is returned and the address of the SP_get_dispatch() function
of the newly loaded SICStus runtime is stored at the address ppfunc. The second argument,
phandle, is reserved and should be NULL.

As a special case, if SP_load_sicstus_run_time() is called from a SICStus runtime that
has not been initialized (with SP_initialize()) and that has not previously been loaded
as the result of calling SP_load_sicstus_run_time(), then no new runtime is loaded.
Instead, the SP_get_dispatch() of the runtime itself is returned. In particular, the first
time SP_load_sicstus_run_time() is called on the initial SICStus runtime, and if this
happens before the initial SICStus runtime is initialized, then no new runtime is loaded.

Calling SP_load_sicstus_run_time() from a particular runtime can be done from any
thread.

An application that links statically with the SICStus runtime should not call SP_load_
sicstus_run_time().

You should not use prelinked foreign resources when using multiple SICStus runtimes in
the same process.

For an example of loading and using multiple SICStus run-
times, see library/jasper/spnative.c that implements this functionality for the Java
interface Jasper.

8.3 Foreign Resources and Multiple SICStus Runtimes

Foreign resources access the SICStus C API in the same way as an embedding application,
that is, through a dispatch vector. As for applications, the default and backward compatible
mode is to only support a single SICStus runtime. An alternative mode makes it possible
for a foreign resource to be shared between several SICStus runtimes in the same process.

Unless otherwise noted, this section documents the behavior when using dynamically linked
foreign resources. That is, shared objects (e.g.: .so-files) under UNIX, dynamic libraries
(DLLs) under Windows.

8.3.1 Foreign Resources Supporting Only One SICStus Runtime

A process will only contain one instance of the code and data of a (dynamic) foreign resource
even if the foreign resource is loaded and used from more than one SICStus runtime.

This presents a problem in the likely event that the foreign resource maintains some state,
e.g. global variables, between invocations of functions in the foreign resource. The global
state will probably need to be separate between SICStus runtimes. Requiring a foreign re-
source to maintain its global state on a per SICStus runtime basis would be an incompatible
change. Instead, by default, only the first SICStus runtime that loads a foreign resource
will be allowed to use it. If a subsequent SICStus runtime (in the same process) tries to
load the foreign resource, then an error will be reported to the second SICStus runtime.

350 SICStus Prolog

When splfr builds a foreign resource, it will also generate glue code. When the foreign
resource is loaded, the glue code will set up a global variable pointing to the dispatch vector
used in the foreign resource to access the SICStus API. This is similar to how an embedding
application accesses the SICStus API.

The glue code will also detect if a subsequent SICStus runtime in the same process tries to
initialize the foreign resource. In this case, an error will be reported.

This means that pre 3.9 foreign code should only need to be rebuilt with splfr to work with
the latest version of SICStus. However, a recommended change is that all C files of a foreign
resource include the header file generated by splfr. Inclusion of this generated header file
may become mandatory in a future release. See Section 6.2.5 [The Foreign Resource Linker],
page 296.

8.3.2 Foreign Resources Supporting Multiple SICStus Runtimes

A foreign resource that wants to be shared between several SICStus runtimes must somehow
know which SICStus runtime is calling it so that it can make callbacks using the SICStus
API into the right SICStus runtime. In addition, the foreign resource may have global
variables that should have different values depending on which SICStus runtime is calling
the foreign resource.

A header file is generated by splfr when it builds a foreign resource (before any C code
is compiled). This header file provides prototypes for any foreign-declared function, but
it also provides other things needed for multiple SICStus runtime support. This header
file must be included by any C file that contains code that either calls any SICStus API
function or that contains any of the functions called by SICStus. See Section 6.2.5 [The
Foreign Resource Linker], page 296.

8.3.2.1 Full Support for Multiple SICStus Runtimes

To fully support multiple SICStus runtimes, a foreign resource should be built with splfr

--multi-sp-aware.

C code compiled by splfr --multi-sp-aware will have the C preprocessor macro MULTI_

SP_AWARE defined to a non-zero value.

Full support for multiple SICStus runtimes means that more than one SICStus runtime can
execute code in the foreign resource at the same time. This rules out the option to use
any global variables for information that should be specific to each SICStus runtime. In
particular, the SICStus dispatch vector cannot be stored in a global variable. Instead, the
SICStus dispatch vector is passed as an extra first argument to each foreign function.

To ensure some degree of link time type checking, the name of each foreign function will be
changed (using #define in the generated header file).

The extra argument is used in the same way as when using multiple SICStus runtimes from
an embedding application. It must be passed on to any function that needs access to the
SICStus API.

Chapter 8: Multiple SICStus Runtimes in a Process 351

To simplify the handling of this extra argument, several macros are defined so that the same
foreign resource code can be compiled both with and without support for multiple SICStus
runtimes:

• SPAPI_ARG0

• SPAPI_ARG

• SPAPI_ARG_PROTO_DECL0

• SPAPI_ARG_PROTO_DECL

Their use is easiest to explain with an example. Suppose the original foreign code looked
like:

static int f1(void)

{

some SICStus API calls

}

static int f2(SP_term_ref t, int x)

{

some SICStus API calls

}

/* :- foreign(foreign_fun, c, foreign_pred(+integer)). */

void foreign_fun(SP_integer x)

{

... some SICStus API calls ...

f1();

...

f2(SP_new_term_ref(), 42);

...

}

Assuming no global variables are used, the following change will ensure that the SICStus
API dispatch vector is passed around to all functions:

352 SICStus Prolog

static int f1(SPAPI_ARG_PROTO_DECL0) // _DECL<ZERO> for no-arg functions

{

some SICStus API calls

}

static int f2(SPAPI_ARG_PROTO_DECL SP_term_ref t, int x) // Note: no comma

{

some SICStus API calls

}

/* :- foreign(foreign_fun, c, foreign_pred([-integer])). */

void foreign_fun(SPAPI_ARG_PROTO_DECL SP_integer x) // Note: no comma

{

... some SICStus API calls ...

f1(SPAPI_ARG0); // ARG<ZERO> for no-arg functions

...

f2(SPAPI_ARG SP_new_term_ref(), 42); // Note: no comma

...

}

If MULTI_SP_AWARE is not defined, i.e. --multi-sp-aware is not specified to splfr, then
all these macros expand to nothing, except SPAPI_ARG_PROTO_DECL0, which will expand to
void.

You can use SP_foreign_stash() to get access to a location, initially set to NULL, where
the foreign resource can store a void*. Typically this would be a pointer to a C struct that
holds all information that need to be stored in global variables. This struct can be allocated
and initialized by the foreign resource init function. It should be deallocated by the foreign
resource deinit function. See Section 6.4.7.3 [OS Threads], page 305, for details.

Most foreign resources that come with SICStus fully support multiple SICStus runtimes.
For a particularly simple example, see the code for library(random). For an example
that hides the passing of the extra argument by using the C preprocessor, see the files in
library/clpfd/.

8.4 Multiple Runtimes and Threads

Perhaps the primary reason to use more than one SICStus runtime in a process is to have
each runtime running in a separate thread. To this end, a few mutual exclusion primitives
are available. See Section 6.4.7 [Operating System Services], page 304, for details on mutual
exclusion locks.

Please note: the SICStus runtime is not thread safe in general. See Section 6.5.4
[Calling Prolog Asynchronously], page 308, for ways to safely interact with a
running SICStus from arbitrary threads.

353

9 Writing Efficient Programs

9.1 Overview

This chapter gives a number of tips on how to organize your programs for increased efficiency.
A lot of clarity and efficiency is gained by sticking to a few basic rules. This list is necessarily
very incomplete. The reader is referred to textbooks such as [O’Keefe 90] for a thorough
exposition of the elements of Prolog programming style and techniques.

• Do Not write code in the first place if there is a library predicate that will do the job.

• Write clauses representing base case before clauses representing recursive cases.

• Input arguments before output arguments in clause heads and goals.

• Use pure data structures instead of database changes.

• Use cuts sparingly, and only at proper places (see Section 4.2.3.1 [ref-sem-ctr-cut],
page 64). A cut should be placed at the exact point that it is known that the current
choice is the correct one: no sooner, no later.

• Make cuts as local in their effect as possible. If a predicate is intended to be determinate,
then define it as such; do not rely on its callers to prevent unintended backtracking.

• Binding output arguments before a cut is a common source of programming errors. If
a predicate is not steadfast, then it is usually for this reason.

• Replace cuts by if-then-else constructs if the test is simple enough (see Section 9.10
[Conditionals and Disjunction], page 371).

• Use disjunctions sparingly, always put parentheses around them, never put parentheses
around the individual disjuncts, never put the ‘;’ at the end of a line.

• Write the clauses of a predicate so that they discriminate on the principal functor of
the first argument (see below). For maximum efficiency, avoid “defaulty” programming
(“catch-all” clauses).

• Do Not use lists ([...]), “round lists” ((...)), or braces ({...}) to represent com-
pound terms, or “tuples”, of some fixed arity. The name of a compound term comes
for free.

• Before trying to optimize your program for speed, use execution profiling to get an idea
of where most of the time is being spent, and, more importantly, why.

9.2 Execution Profiling

Execution profiling is a common aid for improving software performance. As of release 4.2,
execution profiling is available for compiled as well as interpreted code. Execution profiling
requires no recompilation with instrumentation. Execution profiling is either globally on or
globally off for all compiled code. This is reflected by the profiling Prolog flag. When
the flag is on, the information gathered depends on the execution mode:

compiled code
Execution profiling counts the number of calls per caller-callee pair, the number
of instructions executed, and the number of choicepoint accesses per predicate.

354 SICStus Prolog

Calls that succeed nondeterminately are detected. Compiled codes runs 2-10
times slower with execution profiling than without.

interpreted code
Execution profiling counts the number of calls per caller-callee pair if the
source_info Prolog flag was on when the code was loaded; otherwise, the
number of calls per predicate. Calls that succeed nondeterminately are de-
tected.

A typical query pattern is:

| ?- [Load some code.]

| ?- prolog_flag(profiling,_,on).

| ?- [Run some queries.]

| ?- prolog_flag(profiling,_,off).

| ?- print_profile.

The predicate profile_data/1makes the accumulated data available as a Prolog term. The
predicate print_profile/0 prints the execution profile in a format similar to gprof(1). It
can also be given an argument which should be of the same type as the output of profile_
data/1. The predicate profile_reset/0 clears all profiling data. For the details, see
the respective reference page. See also the Gauge graphical user interface for inspecting
execution profiles (see Section 10.17 [lib-gauge], page 555) and the SICStus Prolog IDE (see
Section 3.11 [SPIDER], page 29) which both can visualize the profiling information.

profile_reset since release 4.2,development

Resets all profiling data. See Section 11.3.166 [mpg-ref-profile reset], page 1119.

profile_data(-Data) since release 4.2,development

Data is the profiling data accumulated so far. See Section 11.3.165 [mpg-ref-
profile data], page 1118.

print_profile since release 4.2,development

print_profile(+Data) since release 4.2,development

The profiling data Data is displayed in a format similar to gprof(1). Data
defaults to the profiling data accumulated so far. See Section 11.3.164 [mpg-
ref-print profile], page 1117.

9.3 Coverage Analysis

Coverage analysis is the gathering of information about which points in the code, or coverage
sites, were executed, and how many times, during a particular run of the program. It
is available as of release 4.2, for compiled as well as interpred code, provided that such
code was loaded with the source_info Prolog flag switched on. In fact, it uses the same
underlying support as execution profiling: while the program is running with execution
profiling switched on, the data accumulated can be used for both purposes. Roughly,
coverage sites correspond to points in the code at which the debugger would stop in trace

mode, plus one site at entry to every clause. A typical query pattern is:

Chapter 9: Writing Efficient Programs 355

| ?- [Load some code.]

| ?- prolog_flag(profiling,_,on).

| ?- [Run some queries.]

| ?- prolog_flag(profiling,_,off).

| ?- print_coverage.

The predicate coverage_data/1 makes the accumulated data available as a Prolog term.
The predicate print_coverage/0 prints the execution coverage in a hierarchical format. It
can also be given an argument which should be of the same type as the output of coverage_
data/1. The collected coverage information can be presented by the SICStus Prolog IDE,
SPIDER (see Section 3.11 [SPIDER], page 29). The Emacs interface also has commands
for code coverage highlighting of source code buffers (see Section 3.12.3 [Usage], page 34).
For the details, see the respective reference page.

profile_reset since release 4.2,development

Resets all profiling and coverage data. See Section 11.3.166 [mpg-ref-
profile reset], page 1119.

coverage_data(-Data) since release 4.2,development

Data is the coverage data accumulated so far. See Section 11.3.45 [mpg-ref-
coverage data], page 963.

print_coverage since release 4.2,development

print_coverage(+Data) since release 4.2,development

The coverage data Data is displayed in a hierarchical format. Data defaults
to the profiling data accumulated so far. See Section 11.3.161 [mpg-ref-
print coverage], page 1112.

9.4 The Cut

9.4.1 Overview

One of the more difficult things to master when learning Prolog is the proper use of the cut.
Often, when beginners find unexpected backtracking occurring in their programs, they try
to prevent it by inserting cuts in a rather random fashion. This makes the programs harder
to understand and sometimes stops them from working.

During program development, each predicate in a program should be considered indepen-
dently to determine whether or not it should be able to succeed more than once. In most
applications, many predicates should at most succeed only once; that is, they should be
determinate. Having decided that a predicate should be determinate, it should be verified
that, in fact, it is. The debugger can help in verifying that a predicate is determinate (see
Section 9.7 [The Determinacy Checker], page 361).

9.4.2 Making Predicates Determinate

Consider the following predicate, which calculates the factorial of a number:

356 SICStus Prolog

fac(0, 1).

fac(N, X) :-

N1 is N - 1,

fac(N1, Y),

X is N * Y.

The factorial of 5 can be found by typing:

| ?- fac(5, X).

X = 120

However, backtracking into the above predicate by typing a semicolon at this point, causes
an infinite loop because the system starts attempting to satisfy the goals fac(-1, X).,
fac(-2, X)., etc. The problem is that there are two clauses that match the goal fac(0,
F)., but the effect of the second clause on backtracking has not been taken into account.
There are at least three possible ways of fixing this:

1. Efficient solution: rewrite the first clause as

fac(0,1) :- !.

Adding the cut essentially makes the first solution the only one for the factorial of 0
and hence solves the immediate problem. This solution is space-efficient because as
soon as Prolog encounters the cut, it knows that the predicate is determinate. Thus,
when it tries the second clause, it can throw away the information it would otherwise
need in order to backtrack to this point. Unfortunately, if this solution is implemented,
then typing ‘fac(-1, X)’ still generates an infinite search.

2. Robust solution: rewrite the second clause as

fac(N, X) :-

N > 0,

N1 is N - 1,

fac(N1, Y),

X is N * Y.

This also solves the problem, but it is a more robust solution because this way it is
impossible to get into an infinite loop.

This solution makes the predicate logically determinate—there is only one possible
clause for any input—but the Prolog system is unable to detect this and must waste
space for backtracking information. The space-efficiency point is more important than
it may at first seem; if fac/2 is called from another determinate predicate, and if the cut
is omitted, then Prolog cannot detect the fact that fac/2 is determinate. Therefore,
it will not be able to detect the fact that the calling predicate is determinate, and
space will be wasted for the calling predicate as well as for fac/2 itself. This argument
applies again if the calling predicate is itself called by a determinate predicate, and so
on, so that the cost of an omitted cut can be very high in certain circumstances.

3. Preferred solution: rewrite the entire predicate as the single clause

Chapter 9: Writing Efficient Programs 357

fac(N, X) :-

(N > 0 ->

N1 is N - 1,

fac(N1, Y),

X is N * Y

; N =:= 0 ->

X = 1

).

This solution is as robust as solution 2, and more efficient than solution 1, since it
exploits conditionals with arithmetic tests (see Section 9.10 [Conditionals and Disjunc-
tion], page 371, for more information on optimization using conditionals).

9.4.3 Placement of Cuts

Programs can often be made more readable by the placing of cuts as early as possible in
clauses. For example, consider the predicate p/0 defined by

p :- a, b, !, c, d.

p :- e, f.

Suppose that b/0 is a test that determines which clause of p/0 applies; a/0 may or may
not be a test, but c/0 and d/0 are not supposed to fail under any circumstances. A cut
is most appropriately placed after the call to b/0. If in fact a/0 is the test and b/0 is not
supposed to fail, then it would be much clearer to move the cut before the call to b/0.

A tool to aid in determinacy checking is included in the distribution. It is described in
depth in Section 9.7 [The Determinacy Checker], page 361.

9.4.4 Terminating a Backtracking Loop

Cut is also commonly used in conjunction with the generate-and-test programming para-
digm. For example, consider the predicate find_solution/1 defined by

find_solution(X) :-

candidate_solution(X),

test_solution(X),

!.

where candidate_solution/1 generates possible answers on backtracking. The intent is
to stop generating candidates as soon as one is found that satisfies test_solution/1. If
the cut were omitted, then a future failure could cause backtracking into this clause and
restart the generation of candidate solutions. A similar example is shown below:

358 SICStus Prolog

process_file(F) :-

see(F),

repeat,

read(X),

process_and_fail(X),

!,

seen.

process_and_fail(end_of_file) :- !.

process_and_fail(X) :-

process(X),

fail.

The cut in process_file/1 is another example of terminating a generate-and-test loop. In
general, a cut should always be placed after a repeat/0 so that the backtracking loop is
clearly terminated. If the cut were omitted in this case, then on later backtracking Prolog
might try to read another term after the end of the file had been reached.

The cut in process_and_fail/1 might be considered unnecessary because, assuming the
call shown is the only call to it, the cut in process_file/1 ensures that backtracking into
process_and_fail/1 can never happen. While this is true, it is also a good safeguard to
include a cut in process_and_fail/1 because someone may unwittingly change process_
file/1 in the future.

9.5 Indexing

9.5.1 Overview

In SICStus Prolog, predicates are indexed on their first arguments. This means that when
a predicate is called with an instantiated first argument, a hash table is used to gain fast
access to only those clauses having a first argument with the same primary functor as the
one in the predicate call. If the first argument is atomic, then only clauses with a matching
first argument are accessed. Indexes are maintained automatically by the built-in predicates
manipulating the Prolog database (for example, assert/1, retract/1, and compile/1.

Keeping this feature in mind when writing programs can help speed their execution. Some
hints for program structuring that will best use the indexing facility are given below. Note
that interpreted, e.g. dynamic, predicates as well as compiled predicates are indexed. The
programming hints given in this section apply equally to compiled and to interpreted code.

9.5.2 Data Tables

The major advantage of indexing is that it provides fast access to tables of data. For
example, a table of employee records might be represented as shown below in order to gain
fast access to the records by employee name:

Chapter 9: Writing Efficient Programs 359

% employee(LastName,FirstNames,Department,Salary,DateOfBirth)

employee('Smith', ['John'], sales, 20000, 1-1-59).

employee('Jones', ['Mary'], engineering, 30000, 5-28-56).

...

If fast access to the data via department is also desired, then the data can be organized
little differently. The employee records can be indexed by some unique identifier, such as
employee number, and additional tables can be created to facilitate access to this table, as
shown in the example below. For example,

% employee(Id,LastName,FirstNames,Department,Salary,DateOfBirth)

employee(1000000, 'Smith', ['John'], sales, 20000, 1-1-59).

employee(1000020, 'Jones', ['Mary'], engineering, 30000, 5-28-56).

...

% employee_name(LastName,EmpId)

employee_name('Smith', 1000000).

employee_name('Jones', 1000020).

...

% department_member(Department,EmpId)

department_member(sales, 1000000).

department_member(engineering, 1000020).

...

Indexing would now allow fast access to the records of every employee named Smith, and
these could then be backtracked through looking for John Smith. For example:

| ?- employee_name('Smith', Id),

employee(Id, 'Smith', ['John'], Dept, Sal, DoB).

Similarly, all the members of the engineering department born since 1965 could be efficiently
found like this:

| ?- department_member(engineering, Id),

employee(Id, LN, FN, engineering, _, M-D-Y),

Y > 65.

9.5.3 Determinacy Detection

The other advantage of indexing is that it often makes possible early detection of deter-
minacy, even if cuts are not included in the program. For example, consider the following
simple predicate, which joins two lists together:

360 SICStus Prolog

concat([], L, L).

concat([X|L1], L2, [X|L3]) :- concat(L1, L2, L3).

If this predicate is called with an instantiated first argument, then the first argument in-
dexing of SICStus Prolog will recognize that the call is determinate—only one of the two
clauses for concat/3 can possibly apply. Thus, the Prolog system knows it does not have
to store backtracking information for the call. This significantly reduces memory use and
execution time.

Determinacy detection can also reduce the number of cuts in predicates. In the above
example, if there was no indexing, then a cut would not strictly be needed in the first clause
as long as the predicate was always to be called with the first argument instantiated. If the
first clause matched, then the second clause could not possibly match; discovery of this fact,
however, would be postponed until backtracking. The programmer might thus be tempted
to use a cut in the first clause to signal determinacy and recover space for backtracking
information as early as possible.

With indexing, if the example predicate is always called with its first argument instanti-
ated, then backtracking information is never stored. This gives substantial performance
improvements over using a cut rather than indexing to force determinacy. At the same time
greater flexibility is maintained: the predicate can now be used in a nondeterminate fashion
as well, as in

| ?- concat(L1, L2, [a,b,c,d]).

which will generate on backtracking all the possible partitions of the list [a,b,c,d] on
backtracking. If a cut had been used in the first clause, then this would not work.

For interpreted code, but not for compiled code, a filtering similar to indexing is done for
all argument positions. The primary benefit of this filtering is that it makes it possible to
detect determinacy in more cases. This filtering is currently not using hashing techniques,
so it is not as performant as the first argument indexing.

We may improve indexing and other filtering techniques in future releases, which may
decrease the number of choicepoints created.

9.6 Last Clause Determinacy Detection

Even if the determinacy detection made possible by indexing is unavailable to a predicate
call, SICStus Prolog still can detect determinacy before determinate exit from the predicate.
Space for backtracking information can thus be recovered as early as possible, reducing
memory requirements and increasing performance. For instance, the predicate member/2

(found in the SICStus Prolog library) could be defined by:

member(Element, [Element|_]).

member(Element, [_|Rest]) :-

member(Element, Rest).

Chapter 9: Writing Efficient Programs 361

member/2 might be called with an instantiated first argument in order to check for mem-
bership of the argument in a list, which is passed as a second argument, as in

| ?- member(4, [1,2,3,4]).

The first arguments of both clauses of member/2 are variables, so first argument indexing
cannot be used. However, determinacy can still be detected before determinate exit from
the predicate. This is because on entry to the last clause of a nondeterminate predicate, a
call becomes effectively determinate; it can tell that it has no more clauses to backtrack to.
Thus, backtracking information is no longer needed, and its space can be reclaimed. In the
example, each time a call fails to match the first clause and backtracks to the second (last)
clause, backtracking information for the call is automatically deleted.

Because of last clause determinacy detection, a cut is never needed as the first subgoal in
the last clause of a predicate. Backtracking information will have been deleted before a cut
in the last clause is executed, so the cut will have no effect except to waste time.

Note that last clause determinacy detection is exploited by dynamic code as well as static
code in SICStus Prolog.

9.7 The Determinacy Checker

Please note: the Determinacy Checker tool is mostly superseded by the analysis performed
by the SICStus Prolog IDE, SPIDER (see Section 3.11 [SPIDER], page 29). SPIDER will
analyze the source code fully automatically and will annotate the edited source code to
highlight unwanted nondeterminism. The analysis performed by SPIDER is more precise
than the analysis implemented by the determinism checker described below.

The determinacy checker can help you spot unwanted nondeterminacy in your programs.
This tool examines your program source code and points out places where nondeterminacy
may arise. It is not in general possible to find exactly which parts of a program will be
nondeterminate without actually running the program, best with the execution profiler,
which endeavors to find exactly those parts. However, this tool can find most unwanted
nondeterminacy. Unintended nondeterminacy should be eradicated because:

1. it may give you wrong answers on backtracking

2. it may cause a lot of memory to be wasted

9.7.1 Using the Determinacy Checker

There are two different ways to use the determinacy checker, either as a stand-alone tool, or
during compilation. You may use it whichever way fits best with the way you work. Either
way, it will discover the same nondeterminacy in your program.

The stand-alone determinacy checker is called spdet, and is run from the shell prompt,
specifying the names of the Prolog source files you wish to check.

The determinacy checker can also be integrated into the compilation process, so that you
receive warnings about unwanted nondeterminacy along with warnings about singleton vari-
ables or discontiguous clauses. To make this happen, simply insert the line

362 SICStus Prolog

:- load_files(library(detcheck),

[when(compile_time), if(changed)]).

Once this line is added, every time that file is loaded, it will be checked for unwanted
nondeterminacy.

9.7.2 Declaring Nondeterminacy

Some predicates are intended to be nondeterminate. By declaring intended nondeterminacy,
you avoid warnings about predicates you intend to be nondeterminate. Equally importantly,
you also inform the determinacy checker about nondeterminate predicates. It uses this
information to identify unwanted nondeterminacy.

Nondeterminacy is declared by putting a declaration of the form

:- name/arity is nondet.

using an is/2-declaration (see Section 10.19 [lib-is directives], page 559), or the legacy form

:- nondet name/arity.

in your source file. This is similar to a dynamic or discontiguous declaration. You may
have multiple is or nondet declarations, and a single declaration may mention several
predicates, separating them by commas.

Similarly, a predicate P/N may be classified as nondeterminate by the checker, whereas in
reality it is determinate. This may happen e.g. if P/N calls a dynamic predicate that in
reality never has more than one clause. To prevent false alarms arising from this, you can
inform the checker about determinate predicates by declarations of the form:

:- name/arity is det.

using an is/2-declaration (see Section 10.19 [lib-is directives], page 559), or the legacy form

:- det name/arity.

If you wish to include the legacy det and nondet declarations in your file and you plan to
use the stand-alone determinacy checker, then you must include the line

:- load_files(library(nondetdecl),

[when(compile_time), if(changed)]).

near the top of each file that contains such declarations. If you instead use the recommended
is/2-declarations, or the integrated determinacy checker, then you do not need (and should
not have) this line.

9.7.3 Checker Output

The output of the determinacy checker is quite simple. For each clause containing unex-
pected nondeterminacy, a single line is printed showing the module, name, arity, and clause
number (counting from 1). The form of the information is:

Chapter 9: Writing Efficient Programs 363

* Non-determinate: module:name/arity (clause number)

A second line for each nondeterminate clause indicates the cause of the nondeterminacy.
The recognized causes are:

• The clause contains a disjunction that is not forced to be determinate with a cut or by
ending the clause with a call to fail/0 or raise_exception/1.

• The clause calls a nondeterminate predicate. In this case the predicate is named.

• There is a later clause for the same predicate whose first argument has the same prin-
cipal functor (or one of the two clauses has a variable for the first argument), and this
clause does not contain a cut or end with a call to fail/0 or raise_exception/1. In
this case, the clause number of the other clause is mentioned.

• If the predicate is multifile, then clause indexing is not considered sufficient to ensure
determinacy. This is because other clauses may be added to the predicate in other files,
so the determinacy checker cannot be sure it has seen all the clauses for the predicate.
It is good practice to include a cut (or fail) in every clause of a multifile predicate.

The determinacy checker also occasionally prints warnings when declarations are made
too late in the file or not at all. For example, if you include a dynamic, nondet, or
discontiguous declaration for a predicate after some clauses for that predicate, or if you
put a dynamic or nondet declaration for a predicate after a clause that includes a call to
that predicate, then the determinacy checker may have missed some nondeterminacy in
your program. The checker also detects undeclared discontiguous predicates, which may
also have undetected nondeterminacy. Finally, the checker looks for goals in your program
that indicate that predicates are dynamic; if no dynamic declaration for those predicates
exists, then you will be warned.

These warnings take the following form:

! warning: predicate module:name/arity is property.

! Some nondeterminacy may have been missed.

! Add (or move) the directive

! :- property module:name/arity.

! near the top of this file.

9.7.4 Example

Here is an example file:

:- load_files(library(detcheck),

[when(compile_time), if(changed)]).

parent(abe, rob).

parent(abe, sam).

parent(betty, rob).

parent(betty, sam).

is_parent(Parent) :- parent(Parent, _).

364 SICStus Prolog

The determinacy checker notices that the first arguments of clauses 1 and 2 have the same
principal functor, and similarly for clauses 3 and 4. It reports:

* Non-determinate: user:parent/2 (clause 1)

* Indexing cannot distinguish this from clause 2.

* Non-determinate: user:parent/2 (clause 3)

* Indexing cannot distinguish this from clause 4.

In fact, parent/2 should be nondeterminate, so we should add the declaration

:- parent/2 is nondet.

before the clauses for parent/2. If run again after modifying file, then the determinacy
checker prints:

* Non-determinate: user:is_parent/1 (clause 1)

* This clause calls user:parent/2, which may be nondeterminate.

It no longer complains about parent/2 being nondeterminate, since this is declared. But
now it notices that because parent/2 is nondeterminate, then so is is_parent/1.

9.7.5 Options

When run from the command line, the determinacy checker has a few options to control its
workings.

The -r option specifies that the checker should recursively check files in such a way that it
finds nondeterminacy caused by calls to other nondeterminate predicates, whether they are
declared so or not. Also, predicates that appear to be determinate will be treated as such,
whether declared nondet or not. This option is quite useful when first running the checker
on a file, as it will find all predicates that should be either made determinate or declared
nondet at once. Without this option, each time a nondet declaration is added, the checker
may find previously unnoticed nondeterminacy.

For example, if the original example above, without any nondet declarations, were checked
with the -r option, then the output would be:

* Non-determinate: user:parent/2 (clause 1)

* Indexing cannot distinguish this from clause 2.

* Non-determinate: user:parent/2 (clause 3)

* Indexing cannot distinguish this from clause 4.

* Non-determinate: user:is_parent/1 (clause 1)

* Calls nondet predicate user:parent/2.

The -d option causes the tool to print out the needed nondet declarations. These can be
readily pasted into the source files. Note that it only prints the nondet declarations that
are not already present in the files. However, these declarations should not be pasted into
your code without each one first being checked to see if the reported nondeterminacy is
intended.

Chapter 9: Writing Efficient Programs 365

The -D option is like -d, except that it prints out all nondet declarations that should appear,
whether they are already in the file or not. This is useful if you prefer to replace all old
nondet declarations with new ones.

Your code will probably rely on operator declarations and possibly term expansion. The
determinacy checker handles this in the following way: you must supply an initialization
file, using the -i ifile option. spdet will execute any operator declaration it encounters.

9.7.6 What is Detected

As mentioned earlier, it is not in general possible to find exactly which places in a pro-
gram will lead to nondeterminacy. The determinacy checker gives predicates the benefit
of the doubt: when it is possible that a predicate will be determinate, it will not be re-
ported. The checker will only report places in your program that will be nondeterminate
regardless of which arguments are bound. Despite this, the checker catches most unwanted
nondeterminacy in practice.

The determinacy checker looks for the following sources of nondeterminacy:

• Multiple clauses that cannot be distinguished by the principal functor of the first ar-
guments, and are not made determinate with an explicit cut, fail/0, false/0, or
raise_exception/1. First argument indexing is not considered for multifile predi-
cates, because another file may have a clause for this predicate with the same principal
functor of its first argument.

• A clause with a disjunction not forced to be determinate by a cut, fail/0, false/0,
or raise_exception/1 in each arm of the disjunction but the last, or where the whole
disjunction is followed by a cut, fail/0, false/0, or raise_exception/1.

• A clause that calls something known to be nondeterminate, other than when it is
followed by a cut, fail/0, false/0, or raise_exception/1, or where it appears in the
condition of an if-then-else construct. Known nondeterminate predicates include hooks
and those declared nondeterminate or dynamic (since they can be modified, dynamic
predicates are assumed to be nondeterminate), plus the following built-in predicates:

− absolute_file_name/3, when the options list contains solutions(all).

− atom_concat/3, when the first two arguments are variables not appearing earlier
in the clause (including the clause head).

− bagof/3, when the second argument contains any variables not appearing earlier
in the clause (including the clause head).

− clause/[2,3].

− current_op/3, when any argument contains any variables not appearing earlier
in the clause (including the clause head).

− current_key/2, when the second argument contains any variables not appearing
earlier in the clause (including the clause head).

− current_predicate/2, when the second argument contains any variables not ap-
pearing earlier in the clause (including the clause head).

− length/2, when both arguments are variables not appearing earlier in the clause
(including the clause head).

366 SICStus Prolog

− predicate_property/2, when either argument contains any variables not appear-
ing earlier in the clause (including the clause head).

− recorded/3.

− repeat/0.

− retract/1.

− setof/3, when the second argument contains any variables not appearing earlier
in the clause (including the clause head).

− source_file/[1,2] when the last argument contains any variables not appearing
earlier in the clause (including the clause head).

− sub_atom/5, when at least two of the second, fourth and fifth arguments are
variables not appearing earlier in the clause (including the clause head).

9.8 Last Call Optimization

Another important efficiency feature of SICStus Prolog is last call optimization. This is a
space optimization technique, which applies when a predicate is determinate at the point
where it is about to call the last goal in the body of a clause. For example,

% for(Int, Lower, Upper)

% Lower and Upper should be integers such that Lower =< Upper.

% Int should be uninstantiated; it will be bound successively on

% backtracking to Lower, Lower+1, ... Upper.

for(Int, Int, _Upper).

for(Int, Lower, Upper) :-

Lower < Upper,

Next is Lower + 1,

for(Int, Next, Upper).

This predicate is determinate at the point where the recursive call is about to be made,
since this is the last clause and the preceding goals (<)/2 and is/2) are determinate. Thus
last call optimization can be applied; effectively, the stack space being used for the current
predicate call is reclaimed before the recursive call is made. This means that this predicate
uses only a constant amount of space, no matter how deep the recursion.

9.8.1 Accumulating Parameters

To take best advantage of this feature, make sure that goals in recursive predicates are
determinate, and whenever possible put the recursive call at the end of the predicate.

This is not always possible, but often can be done through the use of accumulating param-
eters. An accumulating parameter is an added argument to a predicate that builds up the
result as computation proceeds. For example, in our factorial example, the last goal in the
body of the recursive case is is/2, not the recursive call to fac/2.

Chapter 9: Writing Efficient Programs 367

fac(N, X) :-

(N > 0 ->

N1 is N - 1,

fac(N1, Y),

X is N * Y

; N =:= 0 ->

X = 1

).

This can be corrected by adding another argument to fac/2 to accumulate the factorial.

fac(N, X) :- fac(N, 1, X).

% fac(+N, +M, -X)

% X is M * the factorial of N.

fac(N, M, X) :-

(N > 0 ->

N1 is N - 1,

M1 is N * M,

fac(N1, M1, X)

; N =:= 0 ->

X = M

).

Here, we do the multiplication before calling fac/3 recursively. Note that we supply the
base case, 1, at the start of the computation, and that we are multiplying by decreasing
numbers. In the earlier version, fac/2, we multiply after the recursive call, and so we
multiply by increasing numbers. Effectively, the new version builds the result backwards.
This is correct because multiplication is associative.

9.8.2 Accumulating Lists

This technique becomes much more important when extended to lists, as in this case it can
save much building of unneeded lists through unnecessary calls to append sublists together.
For example, the naive way to reverse a list is:

nreverse([], []).

nreverse([H|T], L) :-

nreverse(T, L1),

append(L1, [H], L).

This is very wasteful, since each call to append/3 copies the initial part of the list, and adds
one element to it. Fortunately, this can be very easily rewritten to use an accumulating
parameter:

368 SICStus Prolog

reverse(L1, L2) :- reverse(L1, [], L2).

% reverse(+X, +Y, -Z)

% Z is X reversed, followed by Y

reverse([], Z, Z).

reverse([H|T], L0, L) :-

reverse(T, [H|L0], L).

This version of reverse is many times faster than the naive version, and uses much less
memory. The key to understanding the behavior of this predicate is the observation made
earlier: using an accumulating parameter, we build the result backwards.

Do Not let this confuse you. Building a list forward is easy. For example, a predicate
returning a list L of consecutive numbers from 1 to N could be written in two different ways:
counting up and collecting the resulting list forward, or counting down and accumulating
the result backward.

iota1(N, L) :- iota1(1, N, L).

iota1(N, Max, L) :-

(N > Max ->

L = []

; N1 is N+1,

L = [N|L1],

iota1(N1, Max, L1)

).

or,

iota2(N, L) :- iota2(N, [], L).

iota2(N, L0, L) :-

(N =< 0 ->

L = L0

; N1 is N-1,

iota2(N1, [N|L0], L)

).

Both versions generate the same results, and neither waste any space. The second version
is slightly faster. Choose whichever approach you prefer.

9.9 Building and Dismantling Terms

The built-in predicate (=..)/2 is a clear way of building terms and taking them apart.
However, it is almost never the most efficient way. functor/3 and arg/3 are generally
much more efficient, though less direct. The best blend of efficiency and clarity is to write a
clearly-named predicate that implements the desired operation and to use functor/3 and
arg/3 in that predicate.

Chapter 9: Writing Efficient Programs 369

Here is an actual example. The task is to reimplement the built-in predicate (==)/2. The
first variant uses (=..)/2 (this symbol is pronounced “univ” for historical reasons). Some
Prolog textbooks recommend code similar to this.

ident_univ(X, Y) :-

var(X), % If X is a variable,

!,

var(Y), % so must Y be, and

samevar(X, Y). % they must be the same.

ident_univ(X, Y) :- % If X is not a variable,

nonvar(Y), % neither may Y be;

X =.. [F|L], % they must have the

Y =.. [F|M], % same function symbol F

ident_list(L, M). % and identical arguments

ident_list([], []).

ident_list([H1|T1], [H2|T2]) :-

ident_univ(H1, H2),

ident_list(T1, T2).

samevar(29, Y) :- % If binding X to 29

var(Y), % leaves Y unbound,

!, % they were not the same

fail. % variable.

samevar(_, _). % Otherwise they were.

This code performs the function intended; however, every time it touches a non-variable
term of arity N, it constructs a list with N+1 elements, and if the two terms are identical,
then these lists are reclaimed only when backtracked over or garbage collected.

Better code uses functor/3 and arg/3.

370 SICStus Prolog

ident_farg(X, Y) :-

(var(X) -> % If X is a variable,

var(Y), % so must Y be, and

samevar(X, Y) % they must be the same;

; nonvar(Y), % otherwise Y must be nonvar

functor(X, F, N), % The principal functors of X

functor(Y, F, N), % and Y must be identical,

ident_farg(N, X, Y) % including the last N args.

).

ident_farg(0, _, _) :- !.

ident_farg(N, X, Y) :- % The last N arguments are

arg(N, X, Xn), % identical

arg(N, Y, Yn), % if the Nth arguments

ident_farg(Xn, Yn), % are identical,

M is N-1, % and the last N-1 arguments

ident_farg(M, X, Y). % are also identical.

This approach to walking through terms using functor/3 and arg/3 avoids the construction
of useless lists.

The pattern shown in the example, in which a predicate of arity K calls an auxiliary
predicate of the same name of arity K+1 (the additional argument denoting the number of
items remaining to process), is very common. It is not necessary to use the same name for
this auxiliary predicate, but this convention is generally less prone to confusion.

In order to simply find out the principal function symbol of a term, use

| ?- the_term_is(Term),

| functor(Term, FunctionSymbol, _).

The use of (=..)/2, as in

| ?- the_term_is(Term),

| Term =.. [FunctionSymbol|_].

is wasteful, and should generally be avoided. The same remark applies if the arity of a term
is desired.

(=..)/2 should not be used to locate a particular argument of some term. For example,
instead of

Term =.. [_F,_,ArgTwo|_]

you should write

arg(2, Term, ArgTwo)

Chapter 9: Writing Efficient Programs 371

It is generally easier to get the explicit number “2” right than to write the correct number
of anonymous variables in the call to (=..)/2. Other people reading the program will find
the call to arg/3 a much clearer expression of the program’s intent. The program will also
be more efficient. Even if several arguments of a term must be located, it is clearer and
more efficient to write

arg(1, Term, First),

arg(3, Term, Third),

arg(4, Term, Fourth)

than to write

Term =.. [_,First,_,Third,Fourth|_]

Finally, (=..)/2 should not be used when the functor of the term to be operated on is
known (that is, when both the function symbol and the arity are known). For example, to
make a new term with the same function symbol and first arguments as another term, but
one additional argument, the obvious solution might seem to be to write something like the
following:

add_date(OldItem, Date, NewItem) :-

OldItem =.. [item,Type,Ship,Serial],

NewItem =.. [item,Type,Ship,Serial,Date].

However, this could be expressed more clearly and more efficiently as

add_date(OldItem, Date, NewItem) :-

OldItem = item(Type,Ship,Serial),

NewItem = item(Type,Ship,Serial,Date).

or even

add_date(item(Type,Ship,Serial),

Date,

item(Type,Ship,Serial,Date)

).

9.10 Conditionals and Disjunction

There is an efficiency advantage in using conditionals whose test part consists only of arith-
metic comparisons or type tests. Consider the following alternative definitions of the predi-
cate type_of_character/2. In the first definition, four clauses are used to group characters
on the basis of arithmetic comparisons.

372 SICStus Prolog

type_of_character(Ch, Type) :-

Ch >= "a", Ch =< "z",

!,

Type = lowercase.

type_of_character(Ch, Type) :-

Ch >= "A", Ch =< "Z",

!,

Type = uppercase.

type_of_character(Ch, Type) :-

Ch >= "0", Ch =< "9",

!,

Type = digit.

type_of_character(_Ch, Type) :-

Type = other.

In the second definition, a single clause with a conditional is used. The compiler generates
equivalent, optimized code for both versions.

type_of_character(Ch, Type) :-

(Ch >= "a", Ch =< "z" ->

Type = lowercase

; Ch >= "A", Ch =< "Z" ->

Type = uppercase

; Ch >= "0", Ch =< "9" ->

Type = digit

; otherwise ->

Type = other

).

Following is a list of built-in predicates that are compiled efficiently in conditionals:

• atom/1

• atomic/1

• callable/1

• compound/1

• db_reference/1

• float/1

• ground/1

• integer/1

• nonvar/1

• mutable/1

• number/1

• simple/1

• var/1

• </2

Chapter 9: Writing Efficient Programs 373

• =</2

• =:=/2

• =\=/2

• >=/2

• >/2

• @</2

• @=</2

• ==/2

• \==/2

• @>=/2

• @>/2

This optimization is actually somewhat more general than what is described above. A
sequence of guarded clauses:

Head1 :- Guard1, !, Body1.

...

Headm :- Guardm, !, Bodym.

Headn :- Bodym.

is eligible for the same optimization, provided that the arguments of the clause heads are
all unique variables and that the “guards” are simple tests as listed above.

9.11 Programming Examples

The rest of this chapter contains a number of simple examples of Prolog programming,
illustrating some of the techniques described above.

9.11.1 Simple List Processing

The goal concatenate(L1,L2,L3) is true if list L3 consists of the elements of list L1
concatenated with the elements of list L2. The goal member(X,L) is true if X is one of the
elements of list L. The goal reverse(L1,L2) is true if list L2 consists of the elements of
list L1 in reverse order.

concatenate([], L, L).

concatenate([X|L1], L2, [X|L3]) :- concatenate(L1, L2, L3).

member(X, [X|_]).

member(X, [_|L]) :- member(X, L).

reverse(L, L1) :- reverse_concatenate(L, [], L1).

reverse_concatenate([], L, L).

reverse_concatenate([X|L1], L2, L3) :-

reverse_concatenate(L1, [X|L2], L3).

374 SICStus Prolog

9.11.2 Family Example (descendants)

The goal descendant(X,Y) is true if Y is a descendant of X.

descendant(X, Y) :- offspring(X, Y).

descendant(X, Z) :- offspring(X, Y), descendant(Y, Z).

offspring(abraham, ishmael).

offspring(abraham, isaac).

offspring(isaac, esau).

offspring(isaac, jacob).

If for example the query

| ?- descendant(abraham, X).

is executed, then Prolog’s backtracking results in different descendants of Abraham being
returned as successive instances of the variable X, i.e.

X = ishmael

X = isaac

X = esau

X = jacob

9.11.3 Association List Primitives

These predicates implement “association list” primitives. They use a binary tree represen-
tation. Thus the time complexity for these predicates is O(lg N), where N is the number
of keys. These predicates also illustrate the use of compare/3 for case analysis.

The goal get_assoc(Key, Assoc, Value) is true when Key is identical to one of the keys
in Assoc, and Value unifies with the associated value.

get_assoc(Key, t(K,V,L,R), Val) :-

compare(Rel, Key, K),

get_assoc(Rel, Key, V, L, R, Val).

get_assoc(=, _, Val, _, _, Val).

get_assoc(<, Key, _, Tree, _, Val) :-

get_assoc(Key, Tree, Val).

get_assoc(>, Key, _, _, Tree, Val) :-

get_assoc(Key, Tree, Val).

9.11.4 Differentiation

The goal d(E1, X, E2) is true if expression E2 is a possible form for the derivative of
expression E1 with respect to X.

Chapter 9: Writing Efficient Programs 375

d(X, X, D) :- atomic(X), !, D = 1.

d(C, X, D) :- atomic(C), !, D = 0.

d(U+V, X, DU+DV) :- d(U, X, DU), d(V, X, DV).

d(U-V, X, DU-DV) :- d(U, X, DU), d(V, X, DV).

d(U*V, X, DU*V+U*DV) :- d(U, X, DU), d(V, X, DV).

d(U**N, X, N*U**N1*DU) :- integer(N), N1 is N-1, d(U, X, DU).

d(-U, X, -DU) :- d(U, X, DU).

9.11.5 Use of Meta-Logical Predicates

This example illustrates the use of the meta-logical predicates var/1, arg/3, and
functor/3. The goal variables(Term, L, []) instantiates variable L to a list of all the
variable occurrences in Term. E.g.:

| ?- variables(d(U*V, X, DU*V+U*DV), L, []).

L = [U,V,X,DU,V,U,DV]

variables(X, [X|L0], L) :- var(X), !, L = L0.

variables(T, L0, L) :-

% nonvar(T),

functor(T, _, A),

variables(0, A, T, L0, L).

variables(A, A, _, L0, L) :- !, L = L0.

variables(A0, A, T, L0, L) :-

% A0<A,

A1 is A0+1,

arg(A1, T, X),

variables(X, L0, L1),

variables(A1, A, T, L1, L).

9.11.6 Prolog in Prolog

This example shows how simple it is to write a Prolog interpreter in Prolog, and illustrates
the use of a variable goal. In this mini-interpreter, goals and clauses are represented as
ordinary Prolog data structures (i.e. terms). Terms representing clauses are specified using
the predicate my_clause/1, e.g.:

my_clause((grandparent(X, Z) :- parent(X, Y), parent(Y, Z))).

A unit clause will be represented by a term such as

my_clause((parent(john, mary) :- true)).

The mini-interpreter consists of three clauses:

execute((P,Q)) :- !, execute(P), execute(Q).

execute(P) :- predicate_property(P, built_in), !, P.

execute(P) :- my_clause((P :- Q)), execute(Q).

376 SICStus Prolog

The second clause enables the mini-interpreter to cope with calls to ordinary Prolog predi-
cates, e.g. built-in predicates. The mini-interpreter needs to be extended to cope with the
other control structures, i.e. !, (P;Q), (P->Q), (P->Q;R), (\+ P), and if(P,Q,R).

9.11.7 Translating English Sentences into Logic Formulae

The following example of a definite clause grammar defines in a formal way the traditional
mapping of simple English sentences into formulae of classical logic. By way of illustration,
if the sentence

Every man that lives loves a woman.

is parsed as a sentence by the call

| ?- phrase(sentence(P), [every,man,that,lives,loves,a,woman]).

then P will get instantiated to

all(X):(man(X)&lives(X) => exists(Y):(woman(Y)&loves(X,Y)))

where :, & and => are infix operators defined by

:- op(900, xfx, =>).

:- op(800, xfy, &).

:- op(550, xfy, :). /* predefined */

The grammar follows:

sentence(P) --> noun_phrase(X, P1, P), verb_phrase(X, P1).

noun_phrase(X, P1, P) -->

determiner(X, P2, P1, P), noun(X, P3), rel_clause(X, P3, P2).

noun_phrase(X, P, P) --> name(X).

verb_phrase(X, P) --> trans_verb(X, Y, P1), noun_phrase(Y, P1, P).

verb_phrase(X, P) --> intrans_verb(X, P).

rel_clause(X, P1, P1&P2) --> [that], verb_phrase(X, P2).

rel_clause(_, P, P) --> [].

determiner(X, P1, P2, all(X):(P1=>P2)) --> [every].

determiner(X, P1, P2, exists(X):(P1&P2)) --> [a].

noun(X, man(X)) --> [man].

noun(X, woman(X)) --> [woman].

name(john) --> [john].

trans_verb(X, Y, loves(X,Y)) --> [loves].

intrans_verb(X, lives(X)) --> [lives].

Chapter 9: Writing Efficient Programs 377

9.12 The Cross-Referencer

9.12.1 Introduction

Please note: the Cross-References tool is mostly superseeded by the SICStus Prolog IDE,
SPIDER (see Section 3.11 [SPIDER], page 29). SPIDER will analyze the source code fully
automatically and will annotate the edited source code to highlight unused and undefined
predicates. The cross-reference analysis performed by SPIDER is more precise than the
analysis implemented by the cross-referencer described below.

The main purpose of the cross-referencer, spxref, is to find undefined predicates and un-
reachable code. To this end, it begins by looking for initializations, hooks and public direc-
tives to start tracing the reachable code from. If an entire application is being checked, then
it also traces from user:runtime_entry/1. If individual module files are being checked,
then it also traces from their export lists.

A second function of spxref is to aid in the formation of module statements. spxref can
list all of the required module/2 and use_module/2 statements by file.

The cross-referencer is called spxref, and is run from the shell prompt, specifying the names
of the Prolog source files you wish to check.

9.12.2 Practice and Experience

Your code will probably rely on operator declarations and possibly term expansion. The
cross-referencer handles this in the following way: you must supply an initialization file,
using the -i ifile option. spxref will execute any operator declaration it encounters.

Supply meta-predicate declarations for your meta-predicates. Otherwise, the cross-
referencer will not follow the meta-predicates’ arguments. Be sure the cross-referencer
encounters the meta-predicate declarations before it encounters calls to the declared predi-
cates.

The cross-referencer traces from initializations, hooks, predicates declared public, and
optionally from user:runtime_entry/1 and module declarations. The way it handles meta-
predicates requires that your application load its module files before its non-module files.

This cross-referencer was written in order to tear out the copious dead code from the
application that the author became responsible for. If you are doing such a thing, then the
cross-referencer is an invaluable tool. Be sure to save the output from the first run that
you get from the cross referencer: this is very useful resource to help you find things that
you’ve accidentally ripped out and that you really needed after all.

There are situations where the cross-referencer does not follow certain predicates. This
can happen if the predicate name is constructed on the fly, or if it is retrieved from the
database. In this case, add public declarations for these. Alternatively, you could create
term expansions that are peculiar to the cross-referencer.

379

10 The Prolog Library

The Prolog library comprises a number of packages that are thought to be useful in a number
of applications. Note that the predicates in the Prolog library are not built-in predicates.
One has to explicitly load each package to get access to its predicates.

As opposed to built-in predicates, predicates exported by library modules generally do not
check their arguments, although some do to a lesser or greater extent. Input arguments
that are lists are usually supposed to be proper lists, i.e., not end with an unbound variable.
Input arguments that are trees are usually not supposed to have uninstantiated leaves, and
so on.

To load a library package Package, you will normally enter a query:

| ?- use_module(library(Package)).

A library package normally consists of one or more hidden (see Section 4.11 [ref-mod],
page 161) modules. The following packages are provided:

aggregate (see Section 10.1 [lib-aggregate], page 382)
provides an aggregation operator for data-base-style queries.

assoc (see Section 10.2 [lib-assoc], page 386)
uses unbalanced binary trees trees to implement “association lists”, i.e. ex-
tendible finite mappings from terms to terms.

atts (see Section 10.3 [lib-atts], page 388)
provides a means of associating with variables arbitrary attributes, i.e. named
properties that can be used as storage locations as well as hooks into Prolog’s
unification.

avl (see Section 10.4 [lib-avl], page 395)
uses AVL trees to implement “association lists”, i.e. extendible finite mappings
from terms to terms.

bags (see Section 10.5 [lib-bags], page 398)
defines operations on bags, or multisets

bdb (see Section 10.6 [lib-bdb], page 401)
provides an interface to Berkeley DB, for storage and retrieval of terms on disk
files with user-defined multiple indexing.

between (see Section 10.7 [lib-between], page 409)
provides some means of generating integers.

chr (see Section 10.8 [lib-chr], page 410)
provides Constraint Handling Rules

clpb (see Section 10.9 [lib-clpb], page 419) since release 4.0.7,unsupported

provides constraint solving over Booleans

clpfd (see Section 10.10 [lib-clpfd], page 423)
provides constraint solving over Finite (Integer) Domains

380 SICStus Prolog

clpq (see Section 10.11 [lib-clpqr], page 493) unsupported

clpr (see Section 10.11 [lib-clpqr], page 493) unsupported

provides constraint solving over Q (Rationals) or R (Reals)

codesio (see Section 10.12 [lib-codesio], page 518)
defines I/O predicates that read from, or write to, a code list.

csv (see Section 10.13 [lib-csv], page 519)
defines I/O predicates that read from, or write to, comma-separated values
(CSV) files and strings.

comclient (see Section 10.14 [lib-comclient], page 521)
An interface to Microsoft COM automaton objects.

fdbg (see Section 10.15 [lib-fdbg], page 526)
provides a debugger for finite domain constraint programs

file_systems (see Section 10.16 [lib-file systems], page 550)
accesses files and directories.

gauge (see Section 10.17 [lib-gauge], page 555)
A profiling tool for Prolog programs with a graphical interface based on tcltk.

heaps (see Section 10.18 [lib-heaps], page 557)
implements binary heaps, the main application of which are priority queues.

is_directives (see Section 10.19 [lib-is directives], page 559)
Access information about predicates that have been declared with is/2 direc-
tives.

jasper (see Section 10.20 [lib-jasper], page 566) since release 4.0.3

Access Prolog from Java.

json (see Section 10.21 [lib-json], page 595) since release 4.5.0

defines I/O predicates that read and write using the JSON serialization format.
It also comes with several examples for using JSON to communicate between
SICStus and other programming languages.

linda/client (see Section 10.22 [lib-linda], page 598)
linda/server (see Section 10.22 [lib-linda], page 598)

provides an implementation of the Linda concept for process communication.

lists (see Section 10.23 [lib-lists], page 603)
provides basic operations on lists.

logarr (see Section 10.24 [lib-logarr], page 618)
provides an implementation of extendible arrays with logarithmic access time.

objects (see Section 10.25 [lib-objects], page 619)
provides a package for object-oriented programming, and can be regarded as a
high-level alternative to library(structs).

odbc (see Section 10.26 [lib-odbc], page 681) since release 4.1

provides an interface to an ODBC database driver.

Chapter 10: The Prolog Library 381

ordsets (see Section 10.27 [lib-ordsets], page 691)
defines operations on sets represented as lists with the elements ordered in
Prolog standard order.

pillow (see Section 10.28 [lib-pillow], page 693) unsupported

The PiLLoW Web Programming Library,

plunit (see Section 10.29 [lib-plunit], page 693) since release 4.1.3

A Prolog unit-test framework.

process (see Section 10.30 [lib-process], page 701)
provides process creation primitives.

prologbeans (see Section 10.31 [lib-prologbeans], page 710)
Access Prolog from Java and .NET.

queues (see Section 10.32 [lib-queues], page 724)
defines operations on queues (FIFO stores of information).

random (see Section 10.33 [lib-random], page 727)
provides a random number generator.

rem (see Section 10.34 [lib-rem], page 728)
provides Rem’s algorithm for maintaining equivalence classes.

samsort (see Section 10.35 [lib-samsort], page 729)
provides generic stable sorting and merging.

sets (see Section 10.36 [lib-sets], page 729)
defines operations on sets represented as lists with the elements unordered.

sockets (see Section 10.37 [lib-sockets], page 733)
provides an interface to sockets.

statistics (see Section 10.38 [lib-statistics], page 736) since release 4.3.4

provides commonly used sample and population statistics functions.

structs (see Section 10.39 [lib-structs], page 738)
provides access to C data structures, and can be regarded as a low-level alter-
native to library(objects).

system (see Section 10.40 [lib-system], page 747)
provides access to operating system services.

tcltk (see Section 10.41 [lib-tcltk], page 748)
An interface to the Tcl/Tk language and toolkit.

terms (see Section 10.42 [lib-terms], page 841)
provides a number of operations on terms.

timeout (see Section 10.43 [lib-timeout], page 846)
Meta-call with limit on execution time.

trees (see Section 10.44 [lib-trees], page 847)
uses binary trees to represent non-extendible arrays with logarithmic access
time. The functionality is very similar to that of library(logarr), but
library(trees) is slightly more efficient if the array does not need to be ex-
tendible.

382 SICStus Prolog

types (see Section 10.45 [lib-types], page 848)
Provides type checking.

ugraphs (see Section 10.46 [lib-ugraphs], page 850)
Provides an implementation of directed and undirected graphs with unlabeled
edges.

varnumbers (see Section 10.47 [lib-varnumbers], page 853)
An inverse of numbervars/3.

wgraphs (see Section 10.48 [lib-wgraphs], page 854)
provides an implementation of directed and undirected graphs where each edge
has an integral weight.

xml (see Section 10.49 [lib-xml], page 857)
provides an XML parser.

zinc (see Section 10.50 [lib-zinc], page 859) since release 4.0.5

provides an interpreter for FlatZinc programs

For the purpose of migrating code from release 3, the following deprecated library mod-
ules are also provided. For documentation, please see the release 3 documentation for the
corresponding library module with the trailing ‘3’ removed from its name:

arrays3

assoc3

lists3

queues3

random3

system3

10.1 An Aggregation Operator for Data-Base-Style
Queries—library(aggregate)

Data base query languages usually provide so-called "aggregation" operations. Given a
relation, aggregation specifies

• a column of the relation

• an operation, one of {sum,max,min,ave,var} or more

One might, for example, ask

PRINT DEPT,SUM(AREA) WHERE OFFICE(_ID,DEPT,AREA,_OCCUPANT)

and get a table of <Department,TotalArea> pairs. The Prolog equivalent of this might be

dept_office_area(Dept, TotalArea) :-

aggregate(sum(Area),

I^O^office(I,Dept,Area,O), TotalArea).

Chapter 10: The Prolog Library 383

where Area is the column and sum(_) is the aggregation operator. We can also ask who
has the smallest office in each department:

smallest_office(Dept, Occupant) :-

aggregate(min(Area),

I^O^office(I,Dept,Area,O), MinArea),

office(_, Dept, MinArea, Occupant).

This module provides an aggregation operator in Prolog:

aggregate(Template, Generator, Results)

where:

• Template is operator(expression) or constructor(arg,...,arg)

• each arg is operator(expression)

• operator is sum | min | max {for now}
• expression is an arithmetic expression

Results is unified with a form of the same structure as Template.

Things like mean and standard deviation can be calculated from sums, e.g. to find the
average population of countries (defined as "if you sampled people at random, what would
be the mean size of their answers to the question ’what is the population of your country?’?")
we could do

?- aggregate(x(sum(Pop),sum(Pop*Pop)),

Country^population(Country,Pop),

x(People,PeopleTimesPops)),

AveragePop is PeopleTimesPops/People.

Note that according to this definition, aggregate/3 FAILS if there are no solutions. For
max(_), min(_), and many other operations (such as mean(_)) this is the only sensible
definition (which is why bagof/3 works that way). Even if bagof/3 yielded an empty list,
aggregate/3 would still fail.

Concerning the minimum and maximum, it is convenient at times to know Which term had
the minimum or maximum value. So we write

min(Expression, Term)

max(Expression, Term)

and in the constructed term we will have

min(MinimumValue, TermForThatValue)

max(MaximumValue, TermForThatValue)

So another way of asking who has the smallest office is

384 SICStus Prolog

smallest_office(Dept, Occupant) :-

aggregate(min(Area,O),

I^office(I,Dept,Area,O), min(_,Occupant)).

Consider queries like

aggregate(sum(Pay), Person^pay(Person,Pay), TotalPay)

where for some reason pay/2 might have multiple solutions. (For example, someone might
be listed in two departments.) We need a way of saying "treat identical instances of the
Template as a single instance, UNLESS they correspond to different instances of a Discrim-
inator." That is what

aggregate(Template, Discriminator, Generator, Results)

does.

Operations available:

count sum(1)

sum(E) sum of values of E

min(E) minimum of values of E

min(E,X) min(E) with corresponding instance of X

max(E) maximum of values of E

max(E,X) max(E) with corresponding instance of X

set(X) ordered set of instances of X

bag(X) list of instances of X in generated order.

bagof(X, G, B) :- aggregate(bag(X), G, L).

setof(X, G, B) :- aggregate(set(X), X, G, L).

Exported predicates:

forall(:Generator, :Goal)

succeeds when Goal is provable for each true instance of Generator. Note that
there is a sort of double negation going on in here (it is in effect a nested pair
of failure-driven loops), so it will never bind any of the variables which occur
in it.

foreach(:Generator, :Goal)

for each proof of Generator in turn, we make a copy of Goal with the appro-
priate substitution, then we execute these copies in sequence. For example,
foreach(between(1,3,I), p(I)) is equivalent to p(1), p(2), p(3).

Note that
this is not the same as forall/2. For example, forall(between(1,3,I),

p(I)) is equivalent to \+ \+ p(1), \+ \+ p(2), \+ \+ p(3).

Chapter 10: The Prolog Library 385

The trick in foreach/2 is to ensure that the variables of Goal which do not
occur in Generator are restored properly. (If there are no such variables, you
might as well use forall/2.)

Like forall/2, this predicate does a failure-driven loop over the Generator.
Unlike forall/2, the Goals are executed as an ordinary conjunction, and may
succeed in more than one way.

aggregate(+Template, +Discriminator, :Generator, -Result)

is a generalisation of setof/3 which lets you compute sums, minima, maxima,
and so on.

aggregate(+Template, :Generator, -Result)

is a generalisation of findall/3 which lets you compute sums, minima, maxima,
and so on.

aggregate_all(+Template, +Discriminator, :Generator, -Result)

is like aggregate/4 except that it will find at most one solution, and does not
bind free variables in the Generator.

aggregate_all(+Template, :Generator, -Result)

is like aggregate/3 except that it will find at most one solution, and does not
bind free variables in the Generator.

free_variables(:Goal, +Bound, +Vars0, -Vars)

binds Vars to the union of Vars0 with the set of free variables in Goal, that
is the set of variables which are captured neither by Bound nor by any inter-
nal quantifiers or templates in Goal. We have to watch out for setof/3 and
bagof/3 themselves, for the explicit existential quantifier Vars^Goal, and for
things like \+(_) which might look as though they bind variables but can’t.

term_variables(+Term, +Vars0, -Vars)

binds Vars to a union of Vars0 and the variables which occur in Term. This
doesn’t take quantifiers into account at all.

New code should consider the built in term_variables/2 which is likely to be
faster, and works for cyclic terms.

Could be defined as:

term_variables(Term, Vars0, Vars) :-

nonvar(Term), !,

(foreacharg(Arg,Term),

fromto(Vars0,S0,S,Vars)

do term_variables(Arg, S0, S)

).

term_variables(Term, Vars0, Vars) :-

(foreach(X,Vars0),

param(Term)

do X\==Term

), !,

Vars = [Term|Vars0].

term_variables(_, Vars, Vars).

386 SICStus Prolog

10.2 Association Lists—library(assoc)

This library provides a binary tree implementation of "association lists". The binary tree is
not kept balanced, as opposed to library(avl), which provides similar functionality based
on balanced AVL trees.

Exported predicates:

empty_assoc(?Assoc)

is true when Assoc is an empty assoc.

assoc_to_list(+Assoc, -List)

assumes that Assoc is a proper "assoc" tree, and is true when List is a list of
Key-Value pairs in ascending order with no duplicate Keys specifying the same
finite function as Assoc. Use this to convert an assoc to a list.

gen_assoc(?Key, +Assoc, ?Value)

assumes that Assoc is a proper "assoc" tree, and is true when Key is associated
with Value in Assoc. Use this to enumerate Keys and Values in the Assoc, or
to find Keys associated with a particular Value. If you want to look up a
particular Key, you should use get_assoc/3. Note that this predicate is not
determinate. If you want to maintain a finite bijection, it is better to maintain
two assocs than to drive one both ways. The Keys and Values are enumerated
in ascending order of Keys.

get_assoc(+Key, +Assoc, -Value)

assumes that Assoc is a proper "assoc" tree. It is true when Key is identical
to (==) one of the keys in Assoc, and Value unifies with the associated value.
Note that since we use the term ordering to identify keys, we obtain logarithmic
access, at the price that it is not enough for the Key to unify with a key in Assoc,
it must be identical. This predicate is determinate. The argument order follows
the pattern established by the built-in predicate arg/3 (called the arg/3, or
selector, rule):

predicate(indices, structure, element).

The analogy with arg(N, Term, Element) is that

Key:N :: Assoc:Term :: Value:Element.

get_next_assoc(+Key, +Assoc, -Knext, -Vnext)

is true when Knext is the smallest key in Assoc such that Knext@>Key, and
Vnext is the value associated with Knext. If there is no such Knext, get_next_
assoc/4 naturally fails. It assumes that Assoc is a proper assoc. Key should
normally be ground. Note that there is no need for Key to be in the association
at all. You can use this predicate in combination with min_assoc/3 to traverse
an association tree; but if there are N pairs in the tree the cost will be O(N lg
N). If you want to traverse all the pairs, calling assoc_to_list/2 and walking
down the list will take O(N) time.

get_prev_assoc(+Key, +Assoc, -Kprev, -Vprev)

is true when Kprev is the largest key in Assoc such that Kprev@<Key, and
Vprev is the value associated with Kprev. You can use this predicate in com-

Chapter 10: The Prolog Library 387

bination with max_assoc/3 to traverse an assoc. See the notes on get_next_

assoc/4.

is_assoc(+Thing)

is true when Thing is a (proper) association tree. If you use the routines in
this file, you have no way of constructing a tree with an unbound tip, and
the heading of this file explicitly warns against using variables as keys, so such
structures are NOT recognised as being association trees. Note that the code
relies on variables (to be precise, the first anonymous variable in is_assoc/1)
being @< than any non-variable.

list_to_assoc(+List, -Assoc)

is true when List is a proper list of Key-Val pairs (in any order) and Assoc is an
association tree specifying the same finite function from Keys to Values. Note
that the list should not contain any duplicate keys. In this release, list_to_
assoc/2 doesn’t check for duplicate keys, but the association tree which gets
built won’t work.

ord_list_to_assoc(+List, -Assoc)

is a version of list_to_assoc/2 which trusts you to have sorted the list already.
If you pair up an ordered set with suitable values, calling this instead will save
the sort.

map_assoc(:Pred, +Assoc)

is true when Assoc is a proper association tree, and for each Key->Val pair in
Assoc, the proposition Pred(Val) is true. Pred must be a closure, and Assoc
should be proper. There should be a version of this predicate which passes Key
to Pred as well as Val, but there isn’t.

map_assoc(:Pred, ?OldAssoc, ?NewAssoc)

is true when OldAssoc and NewAssoc are association trees of the same shape
(at least one of them should be provided as a proper assoc, or map_assoc/3 may
not terminate), and for each Key, if Key is associated with Old in OldAssoc
and with New in NewAssoc, the proposition Pred(Old,New) is true. Normally
we assume that Pred is a function from Old to New, but the code does not
require that. There should be a version of this predicate which passes Key to
Pred as well as Old and New, but there isn’t. If you’d have a use for it, please
tell us.

max_assoc(+Assoc, -Key, -Val)

is true when Key is the largest Key in Assoc, and Val is the associated value. It
assumes that Assoc is a proper assoc. This predicate is determinate. If Assoc
is empty, it just fails quietly; an empty set can have no largest element!

min_assoc(+Assoc, -Key, -Val)

is true when Key is the smallest Key in Assoc, and Val is the associated value.
It assumes that Assoc is a proper assoc. This predicate is determinate. If Assoc
is empty, it just fails quietly; an empty set can have no smallest element!

portray_assoc(+Assoc)

writes an association tree to the current output stream in a pretty form so that
you can easily see what it is. Note that an association tree written out this way

388 SICStus Prolog

can NOT be read back in. For that, use writeq/1. The point of this predicate
is to get association trees displayed nicely by print/1.

put_assoc(+Key, +OldAssoc, +Val, -NewAssoc)

is true when OldAssoc and NewAssoc define the same finite function, except
that NewAssoc associates Val with Key. OldAssoc need not have associated
any value at all with Key,

10.3 Attributed Variables—library(atts)

This package implements attributed variables. It provides a means of associating with
variables arbitrary attributes, i.e. named properties that can be used as storage locations
as well as to extend the default unification algorithm when such variables are unified with
other terms or with each other. This facility was primarily designed as a clean interface
between Prolog and constraint solvers, but has a number of other uses as well. The basic
idea is due to Christian Holzbaur and he was actively involved in the final design. For
background material, see the dissertation [Holzbaur 90].

The package provides a means to declare and access named attributes of variables. The
attributes are compound terms whose arguments are the actual attribute values. The
attribute names are private to the module in which they are defined. They are defined with
a declaration

:- attribute AttributeSpec, ..., AttributeSpec.

where each AttributeSpec has the form (Name/Arity). There must be at most one such
declaration in a module Module. At most 255 modules can declare attributes at the same
time.

Having declared some attribute names, these attributes can now be added, updated and
deleted from unbound variables. For each declared attribute name, any variable can have
at most one such attribute (initially it has none).

The declaration causes the following two access predicates to become defined by means of
the goal_expansion/5 mechanism. They take a variable and an AccessSpec as arguments
where an AccessSpec is either +(Attribute), -(Attribute), or a list of such. The ‘+’
prefix may be dropped for convenience. Attribute must be nonvariable at compile time.
The meaning of the ‘+’/‘-’ prefix is documented below:

Module:get_atts(-Var, ?AccessSpec)

Gets the attributes of Var, which must be a variable, according to AccessSpec.
If AccessSpec was unbound at compile time, it will be bound to a list of all
present attributes of Var, otherwise the elements of AccessSpec have the fol-
lowing meaning:

+(Attribute)

The corresponding actual attribute must be present and is unified
with Attribute. The ‘+’ prefix may be dropped for convenience.

Chapter 10: The Prolog Library 389

-(Attribute)

The corresponding actual attribute must be absent. The arguments
of Attribute are ignored, only the name and arity are relevant.

Module:put_atts(-Var, +AccessSpec)

Sets the attributes of Var, which must be a variable, according to AccessSpec.
The effects of put_atts/2 are undone on backtracking.

+(Attribute)

The corresponding actual attribute is set to Attribute. If the actual
attribute was already present, it is simply replaced. The ‘+’ prefix
may be dropped for convenience.

-(Attribute)

The corresponding actual attribute is removed. If the actual at-
tribute was already absent, nothing happens.

A module that contains an attribute declaration has an opportunity to extend the default
unification algorithm by defining the following predicate:

Module:verify_attributes(-Var, +Value, -Goals) hook

This predicate is called whenever a variable Var that might have attributes in
Module is about to be bound to Value (it might have none). The unification
resumes after the call to verify_attributes/3. Value is a nonvariable, or
another attributed variable. Var might have no attributes present in Module;
the unification extension mechanism is not sophisticated enough to filter out
exactly the variables that are relevant for Module.

verify_attributes/3 is called before Var has actually been bound to Value.
If it fails, the unification is deemed to have failed. It may succeed nondetermi-
nately, in which case the unification might backtrack to give another answer.
It is expected to return, in Goals, a list of goals to be called after Var has been
bound to Value. Finally, after calling Goals, goals blocked on Var may have
become unblocked, in which case they are called.

verify_attributes/3 may invoke arbitrary Prolog goals, but Var should not
be bound by it. Binding Var will result in undefined behavior.

If Value is a nonvariable, verify_attributes/3 will typically inspect the at-
tributes of Var and check that they are compatible with Value and fail other-
wise. If Value is another attributed variable, verify_attributes/3 will typi-
cally copy the attributes of Var over to Value, or merge them with Value’s, in
preparation for Var to be bound to Value. In either case, verify_attributes/3
may determine Var’s current attributes by calling get_atts(Var,List) with
an unbound List.

In the case when a single unification binds multiple attributed variables, first
all such bindings are undone, then the following actions are carried out for each
relevant variable:

1. For each relevant module M, M:verify_attributes/3 is called, collecting
a list of returned Goals.

390 SICStus Prolog

2. The variable binding is redone.

3. Any Goals are called.

4. Any goals blocked on the variable, that has now become unblocked, are
called.

An important use for attributed variables is in implementing coroutining facilities as an
alternative or complement to the built-in coroutining mechanisms. In this context it might
be useful to be able to interpret some of the attributes of a variable as a goal that is blocked
on that variable. Certain built-in predicates (frozen/2, copy_term/3) and the Prolog top
level need to access blocked goals, and so need a means of getting the goal interpretation
of attributed variables by calling:

Module:attribute_goal(-Var, -Goal) hook

This predicate is called in each module that contains an attribute declaration,
when an interpretation of the attributes as a goal is needed, in particular in
frozen/2, copy_term/3 and the Prolog top level. It should unify Goal with
the interpretation, or merely fail if no such interpretation is available.

An important use for attributed variables is to provide an interface to constraint solvers. An
important function for a constraint solver in the constraint logic programming paradigm is
to be able to perform projection of the residual constraints onto the variables that occurred
in the top-level query. A module that contains an attribute declaration has an opportunity
to perform such projection of its residual constraints by defining the following predicate:

Module:project_attributes(+QueryVars, +AttrVars) hook

This predicate is called by the Prolog top level in each module that contains an
attribute declaration. QueryVars is the list of variables occurring in the query,
or in terms bound to such variables, and AttrVars is a list of possibly attributed
variables created during the execution of the query. The two lists of variables
may or may not be disjoint.

If the attributes on AttrVars can be interpreted as constraints, this predicate
will typically “project” those constraints onto the relevant QueryVars. Ideally,
the residual constraints will be expressed entirely in terms of the QueryVars,
treating all other variables as existentially quantified. Operationally, project_
attributes/2 must remove all attributes from AttrVars, and add transformed
attributes representing the projected constraints to some of the QueryVars.

Projection has the following effect on the Prolog top level. When the top-
level query has succeeded, project_attributes/2 is called first. The top level
then prints the answer substition and residual constraints. While doing so, it
searches for attributed variables created during the execution of the query. For
each such variable, it calls attribute_goal/2 to get a printable representation
of the constraint encoded by the attribute. Thus, project_attributes/2 is a
mechanism for controlling how the residual constraints should be displayed at
top level.

The exact definition of project_attributes/2 is constraint system dependent,
but see Section 10.10.7 [Answer Constraints], page 472, and see Section 10.11.5

Chapter 10: The Prolog Library 391

[CLPQR Projection], page 507, for details about projection in CLPFD and
CLP(Q,R) respectively.

In the following example we sketch the implementation of a finite domain “solver”. Note
that an industrial strength solver would have to provide a wider range of functionality and
that it quite likely would utilize a more efficient representation for the domains proper. The
module exports a single predicate domain(-Var,?Domain), which associates Domain (a list
of terms) with Var. A variable can be queried for its domain by leaving Domain unbound.

We do not present here a definition for project_attributes/2. Projecting finite domain
constraints happens to be difficult.

392 SICStus Prolog

% domain.pl

:- module(domain, [domain/2]).

:- use_module(library(atts)).

:- use_module(library(ordsets), [

ord_intersection/3,

ord_intersect/2,

list_to_ord_set/2

]).

:- attribute dom/1.

verify_attributes(Var, Other, Goals) :-

get_atts(Var, dom(Da)), !, % are we involved?

(var(Other) -> % must be attributed then

(get_atts(Other, dom(Db)) -> % has a domain?

ord_intersection(Da, Db, Dc),

Dc = [El|Els], % at least one element

(Els = [] -> % exactly one element

Goals = [Other=El] % implied binding

; Goals = [],

put_atts(Other, dom(Dc))% rescue intersection

)

; Goals = [],

put_atts(Other, dom(Da)) % rescue the domain

)

; Goals = [],

ord_intersect([Other], Da) % value in domain?

).

verify_attributes(_, _, []). % unification triggered

% because of attributes

% in other modules

attribute_goal(Var, domain(Var,Dom)) :- % interpretation as goal

get_atts(Var, dom(Dom)).

domain(X, Dom) :-

var(Dom), !,

get_atts(X, dom(Dom)).

domain(X, List) :-

list_to_ord_set(List, Set),

Set = [El|Els], % at least one element

(Els = [] -> % exactly one element

X = El % implied binding

; put_atts(Fresh, dom(Set)),

X = Fresh % may call

% verify_attributes/3

).

Chapter 10: The Prolog Library 393

Note that the “implied binding” Other=El was deferred until after the completion of
verify_attribute/3. Otherwise, there might be a danger of recursively invoke verify_

attribute/3, which might bind Var, which is not allowed inside the scope of verify_
attribute/3. Deferring unifications into the third argument of verify_attribute/3 ef-
fectively serializes the calls to verify_attribute/3.

Assuming that the code resides in the file domain.pl, we can load it via:

| ?- use_module(domain).

Let’s test it:

| ?- domain(X,[5,6,7,1]), domain(Y,[3,4,5,6]), domain(Z,[1,6,7,8]).

domain(X,[1,5,6,7]),

domain(Y,[3,4,5,6]),

domain(Z,[1,6,7,8])

| ?- domain(X,[5,6,7,1]), domain(Y,[3,4,5,6]), domain(Z,[1,6,7,8]),

X=Y.

Y = X,

domain(X,[5,6]),

domain(Z,[1,6,7,8])

| ?- domain(X,[5,6,7,1]), domain(Y,[3,4,5,6]), domain(Z,[1,6,7,8]),

X=Y, Y=Z.

X = 6,

Y = 6,

Z = 6

To demonstrate the use of the Goals argument of verify_attributes/3, we give an im-
plementation of freeze/2. We have to name it myfreeze/2 in order to avoid a name clash
with the built-in predicate of the same name.

394 SICStus Prolog

% myfreeze.pl

:- module(myfreeze, [myfreeze/2]).

:- use_module(library(atts)).

:- meta_predicate myfreeze(*, 0).

:- attribute frozen/1.

verify_attributes(Var, Other, Goals) :-

get_atts(Var, frozen(Fa)), !, % are we involved?

(var(Other) -> % must be attributed then

(get_atts(Other, frozen(Fb)) % has a pending goal?

->

put_atts(Other, frozen((Fa,Fb))) % rescue conjunction

; put_atts(Other, frozen(Fa)) % rescue the pending goal

),

Goals = []

; Goals = [Fa] % wake our frozen goal

).

verify_attributes(_, _, []).

attribute_goal(Var, myfreeze(Var,Goal)) :- % interpretation as goal

get_atts(Var, frozen(Goal)).

myfreeze(X, Goal) :-

put_atts(Fresh, frozen(Goal)),

Fresh = X.

Assuming that this code lives in file myfreeze.pl, we would use it via:

| ?- use_module(myfreeze).

| ?- myfreeze(X,print(bound(x,X))), X=2.

bound(x,2) % side-effect

X = 2 % bindings

The two solvers even work together:

| ?- myfreeze(X,print(bound(x,X))), domain(X,[1,2,3]),

domain(Y,[2,10]), X=Y.

bound(x,2) % side-effect

X = 2, % bindings

Y = 2

The two example solvers interact via bindings to shared attributed variables only. More
complicated interactions are likely to be found in more sophisticated solvers. The cor-

Chapter 10: The Prolog Library 395

responding verify_attributes/3 predicates would typically refer to the attributes from
other known solvers/modules via the module prefix in Module:get_atts/2.

10.4 AVL Trees—library(avl)

This library module provides an AVL tree implementation of "association lists". The binary
tree is kept balanced, as opposed to library(assoc), which provides similar functionality
based on binary trees that are not kept balanced.

Exported predicates:

empty_avl(?AVL)

is true when AVL is an empty AVL tree.

avl_to_list(+AVL, -List)

assumes that AVL is a proper AVL tree, and is true when List is a list of Key-
Value pairs in ascending order with no duplicate keys specifying the same finite
function as AVL. Use this to convert an AVL to an ordered list.

is_avl(+AVL)

is true when AVL is a (proper) AVL tree. It checks both the order condition
(that the keys are in ascending order as you go from left to right) and the
height balance condition. This code relies on variables (to be precise, the first
anonymous variable in is avl/1) being @< than any non-variable. in strict point
of fact you can construct an AVL tree with variables as keys, but is_avl/1

doesn’t believe it, and it is not good taste to do so.

avl_domain(+AVL, -Domain)

unifies Domain with the ordered set representation of the domain of the AVL
tree (the keys of it). As the keys are in ascending order with no duplicates, we
just read them off like avl_to_list/2.

avl_range(+AVL, -Range)

unifies Range with the ordered set representation of the range of the AVL
(the values associated with its keys, not the keys themselves). Note that the
cardinality (length) of the domain and the range are seldom equal, except of
course for trees representing invertible maps.

avl_min(+AVL, -Key)

is true when Key is the smallest key in AVL.

avl_min(+AVL, -Key, -Val)

is true when Key is the smallest key in AVL and Val is its value.

avl_max(+AVL, -Key)

is true when Key is the greatest key in AVL.

avl_max(+AVL, -Key, -Val)

is true when Key is the greatest key in AVL and Val is its value.

avl_height(+AVL, -Height)

is true when Height is the height of the given AVL tree, that is, the longest
path in the tree has Height ’node’s on it.

396 SICStus Prolog

avl_size(+AVL, -Size)

is true when Size is the size of the AVL tree, the number of ’node’s in it.

portray_avl(+AVL)

writes an AVL tree to the current output stream in a pretty form so that you
can easily see what it is. Note that an AVL tree written out this way can NOT
be read back in; for that use writeq/1. The point of this predicate is to get
AVL trees displayed nicely by print/1.

avl_member(?Key, +AVL)

is true when Key is one of the keys in the given AVL. This predicate should be
used to enumerate the keys, not to look for a particular key (use avl_fetch/2
or avl_fetch/3 for that). The Keys are enumerated in ascending order.

avl_member(?Key, +AVL, ?Val)

is true when Key is one of the keys in the given AVL and Val is the value the
AVL associates with that Key. This predicate should be used to enumerate
the keys and their values, not to look up the value of a known key (use avl_

fetch/3) for that. The Keys are enumerated in ascending order.

avl_fetch(+Key, +AVL)

is true when the (given) Key is one of the keys in the (given) AVL. Use this
to test whether a known Key occurs in AVL and you don’t want to know the
value associated with it.

avl_fetch(+Key, +AVL, -Val)

is true when the (given) Key is one of the keys in the (given) AVL and the value
associated with it therein is Val. It should be used to look up known keys, not
to enumerate keys (use either avl_member/2 or avl_member/3 for that).

avl_next(+Key, +AVL, -Knext)

is true when Knext is the next key after Key in AVL; that is, Knext is the
smallest key in AVL such that Knext @> Key.

avl_next(+Key, +AVL, -Knext, -Vnext)

is true when Knext is the next key after Key in AVL and Vnext is the value
associated with Knext in AVL. That is, Knext is the smallest key in AVL such
that Knext @> Key, and avl_fetch(Knext, AVL, Vnext).

avl_prev(+Key, +AVL, -Kprev)

is true when Kprev is the key previous to Key in AVL; that is, Kprev is the
greatest key in AVL such that Kprev @< Key.

avl_prev(+Key, +AVL, -Kprev, -Vprev)

is true when Kprev is the key previous to Key in AVL and Vprev is the value
associated with Kprev in AVL. That is, Kprev is the greatest key in AVL such
that Kprev @< Key, and avl_fetch(Kprev, AVL, Vprev).

avl_change(+Key, ?AVL1, ?Val1, ?AVL2, ?Val2)

is true when AVL1 and AVL2 are avl trees of exactly the same shape, Key
is a key of both of them, Val1 is the value associated with Key in AVL1 and
Val2 is the value associated with it in AVL2, and when AVL1 and AVL2 are

Chapter 10: The Prolog Library 397

identical except perhaps for the value they assign to Key. Use this to change
the value associated with a Key which is already present, not to insert a new
Key (it won’t).

ord_list_to_avl(+List, -AVL)

is given a list of Key-Val pairs where the Keys are already in standard order
with no duplicates (this is not checked) and returns an AVL representing the
same associations. This takes O(N) time, unlike list_to_avl/2 which takes
O(N lg N).

list_to_avl(+Pairs, -AVL)

is given a proper list of Key-Val pairs where the Keys are in no particular
order (but are sufficiently instantiated to be told apart) and returns an AVL
representing the same associations. This works by starting with an empty tree
and inserting the elements of the list into it. This takes O(N lg N) time. Since
it is possible to read off a sorted list in O(N) time from the result, O(N lg N)
is as good as can possibly be done. If the same Key appears more than once in
the input, the last value associated with it will be used. Could be defined as:

list_to_avl(Pairs, AVL) :-

(foreach(K-V,Pairs),

fromto(empty,AVL0,AVL1,AVL)

do avl_store(K, AVL0, V, AVL1)

).

avl_store(+Key, +OldAVL, +Val, ?NewAVL)

is true when OldAVL and NewAVL define the same finite function except that
NewAVL associates Val with Key. OldAVL need not have associated any value
at all with Key. When it didn’t, you can read this as "insert (Key->Val) into
OldAVL giving NewAVL".

avl_incr(+Key, +OldAVL, +Incr, +NewAVL)

if Key is not present in OldAVL, adds Key->Incr. if Key->N is present in
OldAvl, changes it to Key->N+Incr.

avl_delete(+Key, +OldAVL, -Val, -NewAVL)

is true when OldAVL and NewAVL define the same finite function except that
OldAVL associates Key with Val and NewAVL doesn’t associate Key with any
value.

avl_del_min(+OldAVL, -Key, -Val, -NewAVL)

is true when OldAVL and NewAVL define the same finite function except that
OldAVL associates Key with Val and NewAVL doesn’t associate Key with any
value and Key precedes all other keys in OldAVL.

avl_del_max(+OldAVL, -Key, -Val, -NewAVL)

is true when OldAVL and NewAVL define the same finite function except that
OldAVL associates Key with Val and NewAVL doesn’t associate Key with any
value and Key is preceded by all other keys in OldAVL.

avl_map(:Pred, +AVL)

is true when AVL is an association tree, and for each Key, if Key is associated
with Value in AVL, Pred(Value) is true.

398 SICStus Prolog

avl_map(:Pred, +OldAVL, -NewAVL)

is true when OldAVL and NewAVL are association trees of the same shape,
and for each Key, if Key is associated with Old in OldAVL and with New in
NewAVL, Pred(Old,New) is true.

10.5 Bags, or Multisets—library(bags)

This library module provides operations on bags. Bags are also known as multisets. A bag
B is a function from a set dom(B) to the non-negative integers. For the purposes of this
module, a bag is constructed from two functions:

bag creates an empty bag

bag(E,M,B)

extends the bag B with a new element E which occurs with multiplicity M, and
which precedes all elements of B in Prolog’s order.

A bag is represented by a Prolog term mirroring its construction. There is one snag with
this: what are we to make of

bag(f(a,Y), 1, bag(f(X,b), 1, bag)) ?

As a term it has two distinct elements, but f(a,b) will be reported as occurring in it twice.
But according to the definition above,

bag(f(a,b), 1, bag(f(a,b), 1, bag))

is not the representation of any bag, that bag is represented by

bag(f(a,b), 2, bag)

alone. We are apparently stuck with a scheme which is only guaranteed to work for "suffi-
ciently instantiated" terms, but then, that’s true of a lot of Prolog code.

The reason for insisting on the order is to make union and intersection linear in the sizes
of their arguments. library(ordsets) does the same for ordinary sets.

Exported predicates:

is_bag(+Bag)

recognises proper well-formed bags. You can pass variables to is_bag/1, and
it will reject them.

portray_bag(+Bag)

writes a bag to the current output stream in a pretty form so that you can
easily see what it is. Note that a bag written out this way can not be read
back in. For that, use write_canonical/1. The point of this predicate is to
have bags displayed nicely by print/1 and the debugger. This will print things
which are not fully instantiated, which is mainly of interest for debugging this
module.

Chapter 10: The Prolog Library 399

checkbag(:Pred, +Bag)

is true when Bag is a Bag{E1:M1, ..., En:Mn} with elements Ei of multiplicity
Mi, and Pred(Ei, Mi) is true for each i.

mapbag(:Pred, +Bag)

is true when Bag is a Bag{E1:M1, ..., En:Mn} with elements Ei of multiplicity
Mi, and Pred(Ei) is true for each element Ei. The multiplicities are ignored: if
you don’t want this, use checkbag/2.

mapbag(:Pred, +OldBag, -NewBag)

is true when OldBag is a Bag{E1:M1, ..., En:Mn} and NewBag is a
Bag{F1:M’1, ..., Fn:M’n} and the elements of OldBag and NewBag are related
by Pred(Ei, Fj). What happens is that the elements of OldBag are mapped,
and then the result is converted to a bag, so there is no positional correspon-
dence between Ei and Fj. Even when Pred is bidirectional, mapbag/3 is not.
OldBag should satisfy is_bag/1 before mapbag/3 is called.

somebag(:Pred, +Bag)

is true when Bag is a Bag{E1:M1, ..., En:Mn} with elements Ei of multiplicity
Mi and Pred(Ei, Mi) is true of some element Ei and its multiplicity. There is
no version which ignores the Mi.

somechkbag(:Pred, +Bag)

is like somebag(Pred, Bag), but commits to the first solution it finds. For exam-
ple, if p(X,X,_), somechk(p(X), Bag) would be an analogue of memberchk/2
for bags.

bag_to_list(+Bag, -List)

converts a Bag{E1:M1, ..., En:Mn} to a list where each element appears as many
times as its multiplicity requires. For example, Bag{a:1, b:3, c:2} would be
converted to [a,b,b,b,c,c].

bag_to_ord_set(+Bag, -Ordset)

converts a Bag{E1:M1, ..., En:Mn} to a list where each element appears once
without its multiplicity. The result is always an ordered (representation of a)
set, suitable for processing by library(ordsets). See also bag_to_list/2.

bag_to_ord_set(+Bag, +Threshold, -Ordset)

given a Bag{E1:M1, ..., En:Mn} returns a list in standard order of the set of
elements {Ei | Mi >= Threshold}. The result is an Ordset.

list_to_bag(+List, -Bag)

converts a proper list List to a Bag representing the same multi-set. Each
element of the List appears once in the Bag together with the number of times
it appears in the List.

bag_to_set(+Bag, -Set)

converts a Bag{E1:M1, ..., En:Mn} to a list which represents the Set {E1, ...,
En}. The order of elements in the result is not defined: for a version where the
order is defined use bag_to_ord_set/2.

400 SICStus Prolog

bag_to_set(+Bag, +Threshold, -Set)

given a Bag{E1:M1, ..., En:Mn} returns a list which represents the Set of
elements {Ei | Mi >= Threshold}. Because the Bag is sorted, the result is
necessarily an ordered set.

empty_bag(?Bag)

is true when Bag is the representation of an empty bag. It can be used both to
make and to recognise empty bags.

member(?Element, ?Multiplicity, +Bag)

is true when Element appears in the multi-set represented by Bag with the in-
dicated Multiplicity. Bag should be instantiated, but Element and Multiplicity
may severally be given or solved for.

memberchk(+Element, ?Multiplicity, +Bag)

is true when Element appears in the multi-set represented by Bag, with the
indicated Multiplicity. It should only be used to check whether a given element
occurs in the Bag, or whether there is an element with the given Multiplicity.
Note that guessing the multiplicity and getting it wrong may force the wrong
choice of clause, but the result will be correct if is_bag(Bag).

bag_max(+Bag, -CommonestElement)

unifies CommonestElement with the element of Bag which occurs most often,
picking the leftmost element if several have this multiplicity. To find the multi-
plicity as well, use bag_max/3. bag_max/2 and bag_min/2 break ties the same
way.

bag_min(+Bag, -RarestElement)

unifies RarestElement with the element of Bag which occurs least often, picking
the leftmost element if several have this multiplicity. To find the multiplicity
as well, use bag_min/3. bag_max/2 and bag_min/2 break ties the same way, so

bag_max(Bag, Elt), bag_min(Bag, Elt)

is true only when all the elements of Bag have the same multiplicity.

bag_max(+Bag, -CommonestElement, -Multiplicity)

unifies CommonestElement with the element of Bag which occurs most often,
and Multiplicity with the multiplicity of that element. If there are several
elements with the same greatest multiplicity, the left-most is returned. bag_

min/3 breaks ties the same way.

bag_min(+Bag, -RarestElement)

unifies RarestElement with the element of Bag which occurs least often, and
Multiplicity with the multiplicity of that element. If there are several elements
with the same least multiplicity, the left-most is returned. bag_max/3 breaks
ties the same way, so

bag_max(Bag, Elt, Mult), bag_min(Bag, Elt, Mult)

is true only when all the elements of Bag have multiplicity Mult.

Chapter 10: The Prolog Library 401

length(+Bag, -BagCardinality, -SetCardinality)

unifies BagCardinality with the total cardinality of the multi-set Bag (the sum
of the multiplicities of its elements) and SetCardinality with the number of
distinct elements.

make_sub_bag(+Bag, -SubBag)

enumerates the sub-bags of Bag, unifying SubBag with each of them in turn.
The order in which the sub-bags are generated is such that if SB2 is a sub-bag
of SB1 which is a sub-bag of Bag, SB1 is generated before SB2. In particular,
Bag is enumerated first and bag last.

test_sub_bag(+Bag, +SubBag)

is true when SubBag is (already) a sub-bag of Bag. That is, each element of
SubBag must occur in Bag with at least the same multiplicity. If you know
SubBag, you should use this to test, not make_sub_bag/2.

bag_union(+Bag1, +Bag2, -Union)

unifies Union with the multi-set union of bags Bag1 and Bag2.

bag_union(+ListOfBags, -Union)

is true when ListOfBags is given as a proper list of bags and Union is their
multi-set union. Letting K be the length of ListOfBags, and N the sum of the
sizes of its elements, the cost is O(N lg K).

bag_intersection(+Bag1, +Bag2, -Intersection)

unifies Intersection with the multi-set intersection of bags Bag1 and Bag2.

bag_intersection(+ListOfBags, -Intersection)

is true when ListOfBags is given as a non-empty proper list of Bags and Inter-
section is their intersection. The intersection of an empty list of Bags would be
the universe with infinite multiplicities!

bag_intersect(+Bag1, +Bag2)

is true when the multi-sets Bag1 and Bag2 have at least one element in common.

bag_add_element(+Bag1, +Element, +Multiplicity, -Bag2)

computes Bag2 = Bag1 U {Element:Multiplicity}. Multiplicity must be an
integer.

bag_del_element(+Bag1, +Element, +Multiplicity, -Bag2)

computes Bag2 = Bag1 \ {Element:Multiplicity}. Multiplicity must be an
integer.

bag_subtract(+Bag1, +Bag2, -Difference)

is true when Difference is the multiset difference of Bag1 and Bag2.

10.6 External Storage of Terms (Berkeley DB)—
library(bdb)

This library module handles storage and retrieval of terms on files. By using indexing, the
store/retrieve operations are efficient also for large data sets. The package is an interface
to the Berkeley DB toolset.

402 SICStus Prolog

10.6.1 Basics

The idea is to get a behavior similar to assert/1, retract/1 and clause/2, but the terms
are stored on files instead of in primary memory.

The differences compared with the Prolog database are:

• A database must be opened before any access and closed after the last access. (There
are special predicates for this: db_open/[4,5] and db_close/1.)

• The functors and the indexing specifications of the terms to be stored have to be given
when the database is created. (see Section 10.6.7 [The DB-Spec], page 408).

• The indexing is specified when the database is created. It is possible to index on other
parts of the term than just the functor and first argument.

• Changes affect the database immediately.

• The database will store variables with attributes or with blocked goals as ordinary
variables.

Some commercial databases can’t store non-ground terms or more than one instance of a
term. This library module can however store terms of either kind.

10.6.2 Current Limitations

• The terms are not necessarily fetched in the same order as they were stored.

• If the process dies during an update operation (db_store/3, db_erase/[2,3]), the
database can be inconsistent.

• Databases can only be shared between processes running on the machine where the
environment is created (see Section 10.6.5 [Predicates], page 403). The database itself
can be on a different machine.

• The number of terms ever inserted in a database cannot exceed 2^32-1.

• Duplicate keys are not handled efficiently by Berkeley DB. This limitation is supposed
to get lifted in the future. Duplicate keys can result from indexing on non-key attribute
sets, inserting terms with variables on indexing positions, or simply from storing the
same term more than once.

10.6.3 Berkeley DB

This library module is an interface to the Berkeley DB toolset to support persistent stor-
age of Prolog terms. Some of the notions of Berkeley DB are directly inherited, e.g. the
environment.

The interface uses the Concurrent Access Methods product of Berkeley DB. This means
that multiple processes can open the same database, but transactions and disaster recovery
are not supported.

The environment and the database files are ordinary Berkeley DB entities which means that
the standard support utilities (e.g. db_stat) will work.

Chapter 10: The Prolog Library 403

10.6.4 The DB-Spec—Informal Description

The db-spec defines which functors are allowed and which parts of a term are used for
indexing in a database. The syntax of a db-spec is a skeletal goal with no module. The
db-spec is a list of atoms and compound terms where the arguments are either + or -. A
term can be inserted in the database if there is a spec in the spec list with the same functor.

Multilevel indexing is not supported, terms have to be “flattened”.

Every spec with the functor of the indexed term specifies an indexing. Every argument
where there is a + in the spec is indexed on.

The idea of the db-spec is illustrated with a few examples. (A section further down explains
the db-spec in a more formal way).

Given a spec of [f(+,-), .(+,-), g, f(-,+)] the indexing works as follows. (The parts
with indexing are underlined.)

Term Store Fetch
g(x,y) domain error domain error
f(A,B) f(A,B) instantiation error

-

f(a,b) f(a,b) f(a,b) f(a,b)

- - - - - -

[a,b] .(a,.(b,[])) .(a,.(b,[]))

- - - -

g g g

- -

The specification [f(+,-), f(-,+)] is different from [f(+,+)]. The first specifies that two
indices are to be made whereas the second specifies that only one index is to be made on
both arguments of the term.

10.6.5 Predicates

10.6.5.1 Conventions

The following conventions are used in the predicate descriptions below.

• Mode is either update or read or enumerate. In mode read no updates can be made.
Mode enumerate is like mode read, but indexing cannot be used, i.e. you can only
sequentially enumerate the items in the database. In mode enumerate only the file
storing the terms along with their references is used.

• EnvRef is a reference to an open database environment. The environment is returned
when it is opened. The reference becomes invalid after the environment has been closed.

• DBRef is a reference to an open database. The reference is returned when the database
is opened. The reference becomes invalid after the database has been closed.

• TermRef is a reference to a term in a given database. The reference is returned
when a term is stored. The reference stays valid even after the database has been
closed and hence can be stored permanently as part of another term. However, if such

404 SICStus Prolog

references are stored in the database, automatic compression of the database (using db_
compress/[2,3]) is not possible, in that case the user has to write her own compressing
predicate.

• SpecList is a description of the indexing scheme; see Section 10.6.7 [The DB-Spec],
page 408.

• Term is any Prolog term.

• Iterator is a non-backtrackable mutable object. It can be used to iterate through a set
of terms stored in a database. The iterators are unidirectional.

10.6.5.2 The Environment

To enable sharing of databases between process, programs have to create environments and
the databases should be opened in these environments. A database can be shared between
processes that open it in the same environment. An environment physically consists of a
directory containing the files needed to enable sharing databases between processes. The
directory of the environment has to be located in a local file system.

Databases can be opened outside any environment (see db_open/4), but in that case a
process writing the database must ensure exclusive access or the behavior of the predicates
is undefined.

10.6.5.3 Memory Leaks

In order to avoid memory leaks, environments, databases and iterators should always be
closed explicitly. Consider using call_cleanup/2 to automate the closing/deallocation of
these objects. You can always use db_current_env/1, db_current/5 and db_current_

iterator/3 to enumerate the currently living objects.

Please note: a database must not be closed while there are outstanding choices
for some db_fetch/3 goal that refers to that database. Outstanding choices
can be removed with a cut (!).

10.6.5.4 The Predicates

db_open_env(+EnvName, -EnvRef)

db_open_env(+EnvName, +CacheSize, -EnvRef)

Opens an environment with the name EnvName. A directory with this name
is created for the environment if necessary.

By using db_open_env/3 one can specify the size of the cache: CacheSize is
the (integer) size of the cache in kilobytes. The size of the cache cannot be less
than 20 kilobytes. db_open_env/2 will create a cache of the system’s default
size.

The size of the cache is determined when the environment is created and cannot
be changed by future openings.

A process cannot open the same environment more than once.

db_close_env(+EnvRef)

Closes an environment. All databases opened in the environment will be closed
as well.

Chapter 10: The Prolog Library 405

db_current_env(?EnvName, ?EnvRef)

Unifies the arguments with the open environments. This predicate can be used
for enumerating all currently open environments through backtracking.

db_open(+DBName, +Mode, ?SpecList, -DBRef)

db_open(+DBName, +Mode, ?SpecList, +Options, -DBRef)

Opens a database with the name DBName. The database physically consists of
a directory with the same name, containing the files that make up the database.
If the directory does not exist, it is created. In that case Mode must be update
and the db-spec SpecList must be ground. If an existing database is opened
and Mode is read or update, SpecList is unified with the db-spec given when
the database was created. If the unification fails an error is raised. DBRef is
unified with a reference to the opened database.

If Mode is enumerate then the indexing specification is not read, and SpecList
is left unbound.

Options provides a way to specify an environment in which to open the data-
base, or a cache size. Options should be a list of terms of the following form:

environment(EnvRef)

The database will be opened in this environment.

cache_size(CacheSize)

This is the (integer) size of the cache in kilobytes. The size of the
cache cannot be less than 20 kilobytes. If CacheSize is given as the
atom default, a default cache size will be used. If CacheSize is
given as the atom off or the atom none, all modified records will
be flushed to disk after each operation.

To avoid inconsistency, if multiple processes open the same database, then all
of them should do that with Mode set to read or enumerate. (This is not
enforced by the system.)

db_close(+DBRef)

Closes the database referenced by DBRef. Any iterators opened in the database
will be deallocated.

db_current(?DBName, ?Mode, ?SpecList, ?EnvRef, ?DBRef)

Unifies the arguments with the open databases. This predicate can be used to
enumerate all currently open databases through backtracking. If the database
was opened without an environment, then EnvRef will be unified with the atom
none.

db_store(+DBRef, +Term, -TermRef)

Stores Term in the database DBRef. TermRef is unified with a corresponding
term reference. The functor of Term must match the functor of a spec in the
db-spec associated with DBRef.

db_fetch(+DBRef, ?Term, ?TermRef)

Unifies Term with a term from the databaseDBRef. At the same time, TermRef
is unified with a corresponding term reference. Backtracking over the predicate
unifies with all terms matching Term.

406 SICStus Prolog

If TermRef is not instantiated then both the functor and the instantiatedness
of Term must match a spec in the db-spec associated with DBRef.

If TermRef is instantiated, the referenced term is read and unified with Term.

If you simply want to find all matching terms, it is more efficient to use db_

findall/5 or db_enumerate/3.

db_erase(+DBRef, +TermRef)

db_erase(+DBRef, +TermRef, +Term)

Deletes the term from the database DBRef that is referenced by TermRef.

In the case of db_erase/2 the term associated with TermRef has to be looked
up. db_erase/3 assumes that the term Term is identical with the term asso-
ciated with TermRef (modulo variable renaming). If this is not the case, the
behavior is undefined.

db_enumerate(+DBRef, ?Term, ?TermRef)

Unifies Term with a term from the databaseDBRef. At the same time, TermRef
is unified with a corresponding term reference. Backtracking over the predicate
unifies with all terms matching Term.

Implemented by linear search—the db-spec associated with DBRef is ignored.
It is not useful to call this predicate with TermRef instantiated.

db_findall(+DBRef, +Template, +Term, :Goal, -Bag)

Unifies Bag with the list of instances of Template in all proofs of Goal found
when Term is unified with a matching term from the database DBRef. Both
the functor and the instantiatedness of Term must match a spec in the db-
spec associated with DBRef. Conceptually, this predicate is equivalent to
findall(Template, (db_fetch(DBRef, Term, _), Goal), Bag).

db_compress(+DBRef, +DBName)

db_compress(+DBRef, +DBName, +SpecList)

Copies the database given by DBRef to a new database named by DBName.
The new database will be a compressed version of the first one in the sense
that it will not have “holes” resulting from deletion of terms. Deleted term
references will also be reused, which implies that references that refer to terms
in the old database will be invalid in the new one.

db_compress/2 looks for a database with the db-spec of the original one. db_
compress/3 stores the terms found in the original database with the indexing
specification SpecList. db_compress/2 cannot be used if the database DBRef
was opened in mode enumerate.

If the database DBName already exists then the terms of DBRef will be ap-
pended to it. Of course DBName must have an indexing specification, which
enables the terms in DBRef to be inserted into it.

In the case of db_compress/3 if the database DBName does not exist, then
SpecList must be a valid indexing specification.

db_sync(+DBRef)

Flushes any cached information from the database referenced by DBRef to
stable storage.

Chapter 10: The Prolog Library 407

db_make_iterator(+DBRef, -Iterator)

db_make_iterator(+DBRef, +Term, -Iterator)

Creates a new iterator and unifies it with Iterator. Iterators created with db_

make_iterator/2 iterate through the whole database. Iterators created with
db_make_iterator/3 iterate through the terms that would be found by db_

fetch(DBRef, Term, _).

Every iterator created by db_make_iterator/[2,3] must be destroyed with
db_iterator_done/1.

db_iterator_next(+Iterator, -Term, -TermRef)

Iterator advances to the next term, Term and TermRef is unified with the term
and its reference pointed to by Iterator. If there is no next term, the predicate
fails.

db_iterator_done(+Iterator)

Deallocates Iterator, which must not be in use anymore.

db_current_iterator(?DBRef, ?Term, ?Iterator)

Unifies the variables with the respective properties of the living iterators. This
predicate can be used to enumerate all currently alive iterators through back-
tracking. If Iterator was made with db_make_iterator/2 then Term will be
left unbound.

db_export(+DBName, +ExportFile)

db_export(+DBName, +Options, +ExportFile)

Exports the database with the name DBName to the text file ExportFile. Ex-
portFile can be imported by db_import/[2,3].

Options should be an options list of the form acceptable by db_open/[4,5].

db_import(+DBName, +ImportFile)

db_import(+DBName, +Options, +ImportFile)

Imports the text file ImportFile into the database with the name DBName.

If ImportFile is imported into an existing database, the SpecList found in the
ImportFile will be unified with the SpecList in the database.

Options should be an options list of the form acceptable by db_open/[4,5].

408 SICStus Prolog

10.6.6 An Example Session

| ?- db_open(tempdb, update, [a(+,-)], DBRef), assert(tempdb(DBRef)).

DBRef = '$db'(1077241400)

| ?- tempdb(DBRef), db_store(DBRef, a(b,1), _).

DBRef = '$db'(1077241400)

| ?- tempdb(DBRef), db_store(DBRef, a(c,2), _).

DBRef = '$db'(1077241400)

| ?- tempdb(DBRef), db_fetch(DBRef, a(b,X), _).

X = 1,

DBRef = '$db'(1077241400) ? ;

no

| ?- tempdb(DBRef), db_enumerate(DBRef, X, _).

X = a(b,1),

DBRef = '$db'(1077241400) ? ;

X = a(c,2),

DBRef = '$db'(1077241400) ? ;

no

| ?- db_current(DBName, Mode, Spec, EnvRef, DBRef).

Mode = update,

Spec = [a(+,-)],

DBRef = '$db'(1077241400),

DBName = tempdb,

EnvRef = none ? ;

no

| ?- tempdb(DBRef), db_close(DBRef).

DBRef = '$db'(1077241400)

10.6.7 The DB-Spec

A db-spec has the form of a speclist:

speclist = [spec1, . . . , specM]

spec = functor(argspec1, . . . , argspecN)

argspec = + | -

where functor is a Prolog atom. The case N = 0 is allowed.

A spec F(argspec1, . . . , argspecN) is applicable to any nonvar term with principal functor
F/N.

Chapter 10: The Prolog Library 409

When storing a term T we generate a hash code for every applicable spec in the db-spec,
and a reference to T is stored with each of them. (More precisely with each element of the
set of generated hash codes). If T contains nonvar elements on each + position in the spec,
then the hash code depends on each of these elements. If T does contain some variables on
+ position, then the hash code depends only on the functor of T.

When fetching a term Q we look for an applicable spec for which there are no variables in
Q on positions maked +. If no applicable spec can be found a domain error is raised. If
no spec can be found where on each + position a nonvar term occurs in Q an instantiation
error is raised. Otherwise, we choose the spec with the most + postitions in it breaking ties
by choosing the leftmost one.

The terms that contain nonvar terms on every + postition will be looked up using indexing
based on the principal functor of the term and the principal functor of terms on + postitions.
The other (more general) terms will be looked up using an indexing based on the principal
functor of the term only.

As can be seen, storing and fetching terms with variables on + positions are not vigorously
supported operations.

10.6.8 Exporting and importing a database

Since the database format of a Berkeley DB may change from version to version it may
become necessary to migrate a database when upgrading. To this purpose there are two
predicates available: db_export/[2,3] and db_import/[2,3] (see Section 10.6.5.4 [The
Predicates], page 404).

The export/import feature was introduced in SICStus 3.12.0, but in that version you have to
use bdb:export/[2,3] and bdb:import/[2,3]. Neither is exported from the bdb module,
but can be used with module prefixing.

Since the bdb interface prior to SICStus 4 uses a custom hash function, the standard
Berkeley DB migration tools will not work when migrating a database from SICStus 3 to
SICStus 4.

10.7 Generating Integers—library(between)

This library module provides some means of generating integers. Exported predicates:

between(+Lower, +Upper, -Number)

is true when Lower, Upper, and Number are integers, and Lower =< Number
=< Upper. If Lower and Upper are given, Number can be tested or enumerated.
If either Lower or Upper is absent, there is not enough information to find it,
and an error will be reported.

gen_nat(?N)

is true when N is a natural number. If N is a variable, it will enumerate the
natural numbers 0,1,2,... and of course not terminate. It is not meant to be
applied to anything but integers and variables.

410 SICStus Prolog

gen_int(?I)

is true when I is an integer. If I is a variable, it will enumerate the integers in
the order 0, 1, -1, 2, -2, 3, -3, &c. Of course this sequence has no end. It is not
meant to be applied to anything but integers and variables.

repeat(+N)

(where N is a non-negative integer) succeeds exactly N times. You can only
understand it procedurally, and really it is only included for compatibility with
some other Prologs.

numlist(?Upper, ?List)

is true when List is the list of integers [1, ..., Upper]. For example,
numlist(3,L) binds L = [1,2,3].

numlist(?Lower, ?Upper, ?List)

is true when List is [Lower, ..., Upper], Lower and Upper integers. For example,
numlist(1, 3, L) binds L = [1,2,3].

numlist(?Lower, ?Step, ?Upper, ?Length, ?List)

is true when List is the list of integers [Lower, Lower+Step, ..., Upper] and of
length Length. For example, numlist(L,2,U,S,[1,X,Y,Z]) binds L=1, S=4,

U=7, X=3, U=5, Z=7.

10.8 Constraint Handling Rules—library(chr)

This section is written by Tom Schrijvers, K.U. Leuven, and adjustments by Jan Wiele-
maker.

The CHR system of SICStus Prolog is the K.U.Leuven CHR system. The runtime environ-
ment is written by Christian Holzbaur and Tom Schrijvers while the compiler is written by
Tom Schrijvers. Both are integrated with SICStus Prolog and licensed under compatible
conditions with permission from the authors.

The main reference for the CHR system is [Schrijvers & Demoen 04].

10.8.1 Introduction

Constraint Handling Rules (CHR) is a committed-choice rule-based language embedded in
Prolog. It is designed for writing constraint solvers and is particularly useful for provid-
ing application-specific constraints. It has been used in many kinds of applications, like
scheduling, model checking, abduction, type checking among many others.

CHR has previously been implemented in other Prolog systems (SICStus, Eclipse, Yap),
Haskell and Java. This CHR system is based on the compilation scheme and runtime
environment of CHR in SICStus.

In this documentation we restrict ourselves to giving a short overview of CHR in general
and mainly focus on elements specific to this implementation. For a more thorough review
of CHR we refer the reader to [Fruehwirth 98].

In Section 10.8.2 [CHR Syntax and Semantics], page 411, we present the syntax of CHR
in Prolog and explain informally its operational semantics. Next, Section 10.8.3 [CHR in

Chapter 10: The Prolog Library 411

Prolog Programs], page 413, deals with practical issues of writing and compiling Prolog pro-
grams containing CHR. Section 10.8.4 [CHR Debugging], page 415, explains the currently
primitive CHR debugging facilities. Section 10.8.4.3 [CHR Debugging Predicates], page 417,
provides a few useful predicates to inspect the constraint store and Section 10.8.5 [CHR
Examples], page 418, illustrates CHR with two example programs. Finally, Section 10.8.6
[CHR Guidelines], page 418, concludes with a few practical guidelines for using CHR.

10.8.2 Syntax and Semantics

10.8.2.1 Syntax

The syntax of CHR rules is the following:

rules ::= rule rules
rules ::= empty
rule ::= name actual rule pragma .

name ::= atom @

name ::= empty
actual rule ::= simplification rule
actual rule ::= propagation rule
actual rule ::= simpagation rule
simplification rule ::= head <=> guard body
propagation rule ::= head ==> guard body
simpagation rule ::= head \ head <=> guard body
head ::= constraints
constraints ::= constraint constraint id
constraints ::= constraint constraint id , constraints
constraint ::= compound term
constraint id ::= empty
constraint id ::= # variable
guard ::= empty
guard ::= goal disj
body ::= goal
pragma ::= empty
pragma ::= pragma actual pragmas
actual pragmas ::= actual pragma
actual pragmas ::= actual pragma , actual pragmas
actual pragma ::= passive(variable)

disj ::= ; | | { read as ; unless | is declared infix }

Note that the guard of a rule may not contain any goal that binds a variable in the head
of the rule with a non-variable or with another variable in the head of the rule. It may
however bind variables that do not appear in the head of the rule, e.g. an auxiliary variable
introduced in the guard.

Note also that, unless | has been declared as an operator, | and ; are indistinguishable as
infix operators—both are read as ; (see Section 4.1.7.3 [ref-syn-syn-sen], page 53). So if e.g.
a simplification rule is given as:

412 SICStus Prolog

head <=> (P ; Q)

then CHR will break the ambiguity by treating P as the guard and Q as the body, which is
probably not what you want. To get the intended interpretation, you must supply a dummy
guard ‘true |’:

head <=> true | (P ; Q)

Please note: the above is true as long as you do not declare | as an infix operator, which is
possible since release 4.3 for ISO compliance. Declaring | as an infix operator will confuse
CHR.

10.8.2.2 Semantics

In this subsubsection the operational semantics of CHR in Prolog are presented informally.
They do not differ essentially from other CHR systems.

When a constraint is called, it is considered an active constraint and the system will try
to apply the rules to it. Rules are tried and executed sequentially in the order they are
written.

A rule is conceptually tried for an active constraint in the following way. The active con-
straint is matched with a constraint in the head of the rule. If more constraints appear
in the head, then they are looked for among the suspended constraints, which are called
passive constraints in this context. If the necessary passive constraints can be found and
all match with the head of the rule and the guard of the rule succeeds, then the rule is
committed and the body of the rule executed. If not all the necessary passive constraint
can be found, then the matching fails or the guard fails, the body is not executed and the
process of trying and executing simply continues with the following rules. If for a rule, there
are multiple constraints in the head, then the active constraint will try the rule sequentially
multiple times, each time trying to match with another constraint.

This process ends either when the active constraint disappears, i.e. it is removed by some
rule, or after the last rule has been processed. In the latter case the active constraint
becomes suspended.

A suspended constraint is eligible as a passive constraint for an active constraint. The other
way it may interact again with the rules, is when a variable appearing in the constraint
becomes bound to either a non-variable or another variable involved in one or more con-
straints. In that case the constraint is triggered, i.e. it becomes an active constraint and all
the rules are tried.

Rule Types. There are three different kinds of rules, each with their specific semantics:

simplification
The simplification rule removes the constraints in its head and calls its body.

propagation
The propagation rule calls its body exactly once for the constraints in its head.

Chapter 10: The Prolog Library 413

simpagation
The simpagation rule removes the constraints in its head after the \ and then
calls its body. It is an optimization of simplification rules of the form:

constraints_1, constraints_2 <=> constraints_1, body

namely, in the simpagation form:

constraints_1 \ constraints_2 <=> body

the constraints 1 constraints are not called in the body.

Rule Names. Naming a rule is optional and has no semantical meaning. It only functions
as documentation for the programmer.

Pragmas. The semantics of the pragmas are:

passive(Identifier)

The constraint in the head of a rule Identifier can only match a passive con-
straint in that rule.

Additional pragmas may be released in the future.

Options.

It is possible to specify options that apply to all the CHR rules in the module. Options are
specified with the chr_option/2 declaration:

:- chr_option(Option,Value).

and may appear in the file anywhere after the first constraints declaration.

Available options are:

check_guard_bindings

This option controls whether guards should be checked for (illegal) variable
bindings or not. Possible values for this option are on, to enable the checks,
and off, to disable the checks. If this option is on, then any guard fails when
it binds a variable that appears in the head of the rule. When the option is off,
the behavior of a binding in the guard is undefined.

optimize This option controls the degree of optimization. Possible values are full, to
enable all available optimizations, and off (the default), to disable all opti-
mizations. If optimization is enabled, then debugging must be disabled.

debug This options enables or disables the possibility to debug the CHR code. Possible
values are on (the default) and off. See Section 10.8.4 [CHR Debugging],
page 415, for more details on debugging.

10.8.3 CHR in Prolog Programs

10.8.3.1 Embedding in Prolog Programs

The CHR constraints defined in a .pl file are associated with a module. The default module
is user. One should never load different .pl files with the same CHR module name.

414 SICStus Prolog

10.8.3.2 Constraint Declaration

Every constraint used in CHR rules has to be declared with a chr_constraint/1 declara-
tion by the constraint specifier. For convenience multiple constraints may be declared at
once with the same chr_constraint/1 declaration followed by a comma-separated list of
constraint specifiers.

A constraint specifier is, in its compact form, F/A where F and A are respectively the
functor name and arity of the constraint, e.g.

:- chr_constraint foo/1.

:- chr_constraint bar/2, baz/3.

In its extended form, a constraint specifier is c(A_1,...,A_n) where c is the constraint’s
functor, n its arity and the A i are argument specifiers. An argument specifier is a mode,
optionally followed by a type. E.g.

:- chr_constraint get_value(+,?).

:- chr_constraint domain(?int,+list(int)),

alldifferent(?list(int)).

A mode is one of the following:

- The corresponding argument of every occurrence of the constraint is always
unbound.

+ The corresponding argument of every occurrence of the constraint is always
ground.

? The corresponding argument of every occurrence of the constraint can have any
instantiation, which may change over time. This is the default value.

A type can be a user-defined type or one of the built-in types. A type comprises a (possibly
infinite) set of values. The type declaration for a constraint argument means that for every
instance of that constraint the corresponding argument is only ever bound to values in that
set. It does not state that the argument necessarily has to be bound to a value.

The built-in types are:

int The corresponding argument of every occurrence of the constraint is an integer.

float . . . a floating point number.

number . . . a number.

natural . . . a positive integer.

any The corresponding argument of every occurrence of the constraint can have any
type. This is the default value.

User-defined types are algebraic data types, similar to those in Haskell or the discriminated
unions in Mercury. An algebraic data type is defined using

Chapter 10: The Prolog Library 415

:- chr_type type ---> body.

If the type term is a functor of arity zero (i.e. one having zero arguments), then it names a
monomorphic type. Otherwise, it names a polymorphic type; the arguments of the functor
must be distinct type variables. The body term is defined as a sequence of constructor
definitions separated by semi-colons.

Each constructor definition must be a functor whose arguments (if any) are types. Discrim-
inated union definitions must be transparent: all type variables occurring in the body must
also occur in the type.

Here are some examples of algebraic data type definitions:

:- chr_type color ---> red ; blue ; yellow ; green.

:- chr_type tree ---> empty ; leaf(int) ; branch(tree, tree).

:- chr_type list(T) ---> [] ; [T | list(T)].

:- chr_type pair(T1, T2) ---> (T1 - T2).

Each algebraic data type definition introduces a distinct type. Two algebraic data types
that have the same bodies are considered to be distinct types (name equivalence).

Constructors may be overloaded among different types: there may be any number of con-
structors with a given name and arity, so long as they all have different types.

Aliases can be defined using ‘==’. For example, if your program uses lists of lists of integers,
then you can define an alias as follows:

:- chr_type lli == list(list(int)).

10.8.3.3 Compilation

The Prolog CHR compiler exploits user:term_expansion/6 rules to translate the con-
straint handling rules to plain Prolog. These rules are loaded from library(chr). They
are activated after finding a declaration of the format:

:- chr_constraint ...

It is advised to define CHR rules in a module file, where the module declaration is imme-
diately followed by loading library(chr) as exemplified below:

:- module(zebra, [zebra/0]).

:- use_module(library(chr)).

:- chr_constraint ...

10.8.4 Debugging

The CHR debugging facilities are currently rather limited. Only tracing is currently avail-
able. To use the CHR debugging facilities for a CHR file it must be compiled for debugging.
Generating debug info is controlled by the CHR option debug, whose default is derived from
the CHR flag generate_debug_info.

416 SICStus Prolog

10.8.4.1 Ports

For CHR constraints the four standard ports are defined:

call A new constraint is called and becomes active.

exit An active constraint exits: it has either been inserted in the store after trying
all rules or has been removed from the constraint store.

fail An active constraint fails.

redo An active constraint starts looking for an alternative solution.

In addition to the above ports, CHR constraints have five additional ports:

wake A suspended constraint is woken and becomes active.

insert An active constraint has tried all rules and is suspended in the constraint store.

remove An active or passive constraint is removed from the constraint store.

try An active constraints tries a rule with possibly some passive constraints. The
try port is entered just before committing to the rule.

apply An active constraints commits to a rule with possibly some passive constraints.
The apply port is entered just after committing to the rule.

10.8.4.2 Tracing

Tracing is enabled with the chr_trace/0 predicate and disabled with the chr_notrace/0

predicate.

When enabled, the tracer will step through the call, exit, fail, wake and apply ports,
accepting debug commands, and simply write out the other ports.

The following debug commands are currently supported:

CHR debug options:

<cr> creep c creep

s skip

g ancestors

n nodebug

b break

a abort

f fail

? help h help

Their meaning is:

creep Step to the next port.

skip Skip to exit port of this call or wake port.

Chapter 10: The Prolog Library 417

ancestors

Print list of ancestor call and wake ports.

nodebug Disable the tracer.

break Enter a recursive Prolog toplevel. See break/0.

abort Exit to the toplevel. See abort/0.

fail Insert failure in execution.

help Print the above available debug options.

10.8.4.3 Debugging Predicates

The chr module exports several predicates that allow inspecting and printing the content
of the constraint store.

chr_trace/0

Activate the CHR tracer. By default the CHR tracer is activated and deacti-
vated automatically by the Prolog predicates trace/0 and notrace/0.

chr_notrace/0

De-activate the CHR tracer. By default the CHR tracer is activated and deac-
tivated automatically by the Prolog predicates trace/0 and notrace/0.

chr_leash(+Spec)

Define the set of CHR ports on which the CHR tracer asks for user intervention
(i.e. stops). Spec is either a list of ports as defined in Section 10.8.4.1 [CHR
Ports], page 416, or a predefined alias. Defined aliases are: full to stop at all
ports, none or off to never stop, and default to stop at the call, exit, fail,
wake and apply ports. See also leash/1.

chr_flag(+FlagName, ?OldValue, ?NewValue)

OldValue is the value of the CHR flag FlagName, and the new value of
FlagName is set to NewValue. The valid CHR flag are the following:

toplevel_show_store

If on (the default), then the Prolog toplevel displays the constraint
store at the end of each query. If off, then the toplevel does not
display this.

generate_debug_info

Provides the default if the debug option is not given. The valid
values are true and false (the default).

optimize Provides the default if the optimize option is not given. The valid
values are full and off (the default).

chr_show_store(+Mod)

Prints all suspended constraints of module Mod to the current output stream.

find_chr_constraint(-Constraint) since release 4.3.2

Unifies Constraint with a constraint in the store.

418 SICStus Prolog

10.8.5 Examples

Here are two example constraint solvers written in CHR.

1. The program below defines a solver with one constraint, leq/2, which is a less-than-
or-equal constraint, also known as a partial order constraint.

:- module(leq,[leq/2]).

:- use_module(library(chr)).

:- chr_constraint leq/2.

reflexivity leq(X,X) <=> true.

antisymmetry leq(X,Y), leq(Y,X) <=> X = Y.

idempotence leq(X,Y) \ leq(X,Y) <=> true.

transitivity leq(X,Y), leq(Y,Z) ==> leq(X,Z).

When the above program is loaded, you can call the leq/2 constraint in a query, e.g.:

| ?- leq(X,Y), leq(Y,Z).

leq(X,Y),

leq(X,Z),

leq(Y,Z) ?

2. The program below implements a simple finite domain constraint solver.

:- module(dom,[dom/2]).

:- use_module(library(chr)).

:- use_module(library(sets), [intersection/3]).

:- chr_constraint dom(?int,+list(int)).

:- chr_type list(T) ---> [] ; [T|list(T)].

dom(X,[]) <=> fail.

dom(X,[Y]) <=> X = Y.

dom(X,L) <=> nonvar(X) | memberchk(X,L).

dom(X,L1), dom(X,L2) <=> intersection(L1,L2,L3), dom(X,L3).

When the above program is loaded, you can call the dom/2 constraint in a query, e.g.:

| ?- dom(A,[1,2,3]), dom(A,[3,4,5]).

A = 3

Finally, Martin Keser’s WebCHR package at http://chr.informatik.uni-ulm.de/

~webchr/ contains more than 40 example programs for SICStus 4, complete with docu-
mentation and example queries.

10.8.6 Guidelines

In this subsection we cover several guidelines on how to use CHR to write constraint solvers
and how to do so efficiently.

Check guard bindings yourself.
It is considered bad practice to write guards that bind variables of the head and
to rely on the system to detect this at runtime. It is inefficient and obscures
the working of the program.

http://chr.informatik.uni-ulm.de/~webchr/
http://chr.informatik.uni-ulm.de/~webchr/

Chapter 10: The Prolog Library 419

Set semantics.
The CHR system allows the presence of identical constraints, i.e. multiple con-
straints with the same functor, arity and arguments. For most constraint
solvers, this is not desirable: it affects efficiency and possibly termination.
Hence appropriate simpagation rules should be added of the form:

constraint \ constraint <=> true.

Multi-headed rules.
Multi-headed rules are executed more efficiently when the constraints share one
or more variables.

Mode and type declarations.
Provide mode and type declarations to get more efficient program execution.

Compile once, run many times.
Does consulting your CHR program take a long time? Probably it takes the
CHR compiler a long time to compile the CHR rules into Prolog code. When
you disable optimizations the CHR compiler will be a lot quicker, but you may
lose performance.

10.9 Constraint Logic Programming over Booleans—
library(clpb)

10.9.1 Introduction

The clp(B) system provided by this library module is an instance of the general Constraint
Logic Programming scheme introduced in [Jaffar & Michaylov 87]. It is a solver for con-
straints over the Boolean domain, i.e. the values 0 and 1. The library module is a direct
port from SICStus Prolog 3. It is not supported by SICS in any way.

The Boolean domain is particularly useful for modeling digital circuits, and the constraint
solver can be used for verification, design, optimization etc. of such circuits.

To load the solver, enter the query:

| ?- use_module(library(clpb)).

The solver contains predicates for checking the consistency and entailment of a constraint
wrt. previous constraints, and for computing particular solutions to the set of previous
constraints.

The underlying representation of Boolean functions is based on Boolean Decision Diagrams
[Bryant 86]. This representation is very efficient, and allows many combinatorial problems
to be solved with good performance.

Boolean expressions are composed from the following operands: the constants 0 and 1
(FALSE and TRUE), logical variables, and symbolic constants, and from the following con-
nectives. P and Q are Boolean expressions, X is a logical variable, Is is a list of integers or
integer ranges, and Es is a list of Boolean expressions:

~ P True if P is false.

420 SICStus Prolog

P * Q True if P and Q are both true.

P + Q True if at least one of P and Q is true.

P # Q True if exactly one of P and Q is true.

X ^ P True if there exists an X such that P is true. Same as P[X/0] + P[X/1].

P =:= Q Same as ~P # Q.

P =\= Q Same as P # Q.

P =< Q Same as ~P + Q.

P >= Q Same as P + ~Q.

P < Q Same as ~P * Q.

P > Q Same as P * ~Q.

card(Is, Es)

True if the number of true expressions in Es is a member of the set denoted by
Is.

Symbolic constants (Prolog atoms) denote parametric values and can be viewed as all-
quantified variables whose quantifiers are placed outside the entire expression. They are
useful for forcing certain variables of an equation to be treated as input parameters.

10.9.2 Solver Interface

The following predicates are defined:

sat(+Expression)

Expression is a Boolean expression. This checks the consistency of the ex-
pression wrt. the accumulated constraints, and, if the check succeeds, tells the
constraint that the expression be true.

If a variable X, occurring in the expression, is subsequently unified with some
term T, then this is treated as a shorthand for the constraint

| ?- sat(X=:=T).

taut(+Expression, ?Truth)

Expression is a Boolean expression. This asks whether the expression is now
entailed by the accumulated constraints (Truth=1), or whether its negation is
entailed by the accumulated constraints (Truth=0). Otherwise, it fails.

labeling(+Variables)

Variables is a list of variables. The variables are instantiated to a list of 0s
and 1s, in a way that satisfies any accumulated constraints. Enumerates all
solutions by backtracking, but creates choicepoints only if necessary.

10.9.3 Examples

Chapter 10: The Prolog Library 421

10.9.3.1 Example 1

| ?- sat(X + Y).

sat(X=\=_A*Y#Y)

illustrates three facts. First, any accumulated constraints affecting the top-level variables
are displayed floundered goals, since the query is not true for all X and Y. Secondly, accumu-
lated constraints are displayed as sat(V=:=Expr) or sat(V=\=Expr) where V is a variable
and Expr is a “polynomial”, i.e. an exclusive or of conjunctions of variables and constants.
Thirdly, _A had to be introduced as an artificial variable, since Y cannot be expressed as a
function of X. That is, X + Y is true iff there exists an _A such that X=\=_A*Y#Y. Let’s check
it!

| ?- taut(_A ^ (X=\=_A*Y#Y) =:= X + Y, T).

T = 1

verifies the above answer. Notice that the formula in this query is a tautology, and so it is
entailed by an empty set of constraints.

10.9.3.2 Example 2

| ?- taut(A =< C, T).

no

| ?- sat(A =< B), sat(B =< C), taut(A =< C, T).

T = 1,

sat(A=:=_A*_B*C),

sat(B=:=_B*C)

| ?- taut(a, T).

T = 0

| ?- taut(~a, T).

T = 0

illustrates the entailment predicate. In the first query, the expression “A implies C” is
neither known to be true nor false, so the query fails. In the second query, the system is
told that “A implies B” and “B implies C”, so “A implies C” is entailed. The expressions
in the third and fourth queries are to be read “for each a, a is true” and “for each a, a is
false”, respectively, and so T = 0 in both cases since both are unsatisfiable. This illustrates
the fact that the implicit universal quantifiers introduced by symbolic constants are placed
in front of the entire expression.

422 SICStus Prolog

10.9.3.3 Example 3

| ?- [user].

| adder(X, Y, Sum, Cin, Cout) :-

sat(Sum =:= card([1,3],[X,Y,Cin])),

sat(Cout =:= card([2-3],[X,Y,Cin])).

| ^D

% consulted user in module user, 0 msec 424 bytes

| ?- adder(x, y, Sum, cin, Cout).

sat(Sum=:=cin#x#y),

sat(Cout=:=x*cin#x*y#y*cin)

| ?- adder(x, y, Sum, 0, Cout).

sat(Sum=:=x#y),

sat(Cout=:=x*y)

| ?- adder(X, Y, 0, Cin, 1), labeling([X,Y,Cin]).

Cin = 0,

X = 1,

Y = 1 ? ;

Cin = 1,

X = 0,

Y = 1 ? ;

Cin = 1,

X = 1,

Y = 0 ? ;

illustrates the use of cardinality constraints and models a one-bit adder circuit. The first
query illustrates how representing the input signals by symbolic constants forces the output
signals to be displayed as functions of the inputs and not vice versa. The second query
computes the simplified functions obtained by setting carry-in to 0. The third query asks
for particular input values satisfying sum and carry-out being 0 and 1, respectively.

10.9.3.4 Example 4

The predicate fault/3 below describes a 1-bit adder consisting of five gates, with at most
one faulty gate. If one of the variables Fi is equal to 1, then the corresponding gate is faulty,
and its output signal is undefined (i.e. the constraint representing the gate is relaxed).

Assuming that we have found some incorrect output from a circuit, we are interesting in
finding the faulty gate. Two instances of incorrect output are listed in fault_ex/2:

Chapter 10: The Prolog Library 423

fault([F1,F2,F3,F4,F5], [X,Y,Cin], [Sum,Cout]) :-

sat(

card([0-1],[F1,F2,F3,F4,F5]) *

(F1 + (U1 =:= X * Cin)) *

(F2 + (U2 =:= Y * U3)) *

(F3 + (Cout =:= U1 + U2)) *

(F4 + (U3 =:= X # Cin)) *

(F5 + (Sum =:= Y # U3))

).

fault_ex(1, Faults) :- fault(Faults, [1,1,0], [1,0]).

fault_ex(2, Faults) :- fault(Faults, [1,0,1], [0,0]).

To find the faulty gates, we run the query

| ?- fault_ex(I,L), labeling(L).

I = 1,

L = [0,0,0,1,0] ? ;

I = 2,

L = [1,0,0,0,0] ? ;

I = 2,

L = [0,0,1,0,0] ? ;

no

Thus for input data [1,1,0], gate 4 must be faulty. For input data [1,0,1], either gate 1
or gate 3 must be faulty.

To get a symbolic representation of the outputs interms of the input, we run the query

| ?- fault([0,0,0,0,0], [x,y,cin], [Sum,Cout]).

sat(Cout=:=x*cin#x*y#y*cin),

sat(Sum=:=cin#x#y)

which shows that the sum and carry out signals indeed compute the intended functions if
no gate is faulty.

10.10 Constraint Logic Programming over Finite Domains—
library(clpfd)

10.10.1 Introduction

The clp(FD) solver described in this chapter is an instance of the general Constraint Logic
Programming scheme introduced in [Jaffar & Michaylov 87]. This constraint domain is
particularly useful for modeling discrete optimization and verification problems such as

424 SICStus Prolog

scheduling, planning, packing, timetabling etc. The treatise [Van Hentenryck 89] is an
excellent exposition of the theoretical and practical framework behind constraint solving in
finite domains, and summarizes the work up to 1989.

This solver has the following highlights:

• A rich set of global constraints with state-of-the-art propagators.

• Two classes of propagators are handled internally: indexicals and global propagators.

• Propagators of both classes can be user-defined, by means of programming interfaces.

• The constraints described in this chapter are automatically translated to sets of prop-
agators.

• The truth value of a primitive constraint can be reflected into a 0/1-variable, i.e. a
variable with domain 0..1 (reification).

This library fully supports multiple SICStus runtimes in a process.

The rest of this chapter is organized as follows: How to load the solver and how to
write simple programs is explained in Section 10.10.3 [CLPFD Interface], page 425. A
description of all constraints that the solver provides is contained in Section 10.10.4 [Avail-
able Constraints], page 430. The predicates for searching for solution are documented in
Section 10.10.5 [Enumeration Predicates], page 465. The predicates for getting execution
statistics are documented in Section 10.10.6 [Statistics Predicates], page 471. A few notes
on debugging are given in Section 10.10.8 [CLPFD Debugging], page 472. A few example
programs are given in Section 10.10.12 [CLPFD Example Programs], page 487. Finally,
Section 10.10.13 [Syntax Summary], page 490, contains syntax rules for all expressions.

The following sections discuss advanced features and are probably only relevant to expe-
rienced users: How to control the amount of information presented in answers to queries
is explained in Section 10.10.7 [Answer Constraints], page 472. How to add new global
constraints via a programming interface is described in Section 10.10.9 [Defining Global
Constraints], page 472. How to define new primitive constraints with indexicals is described
in Section 10.10.10 [Defining Primitive Constraints], page 479. The fine points of coexisting
with attributes and blocked goals are described in Section 10.10.11 [CLPFD Coexisting],
page 487.

10.10.1.1 Referencing this Software

When referring to this implementation of clp(FD) in publications, please use the following
reference:

Carlsson M., Ottosson G., Carlson B. An Open-Ended Finite Domain Con-
straint Solver, Proc. Programming Languages: Implementations, Logics, and
Programs, 1997.

10.10.1.2 Acknowledgments

The first version of this solver was written as part of Key Hyckenberg’s MSc thesis in 1995,
with contributions from Greger Ottosson at the Computing Science Department, Uppsala

Chapter 10: The Prolog Library 425

University. The code was later rewritten by Mats Carlsson with contributions by Nicolas
Beldiceanu. Péter Szeredi contributed material for this manual chapter.

The development of this software was supported by the Swedish National Board for Techni-
cal and Industrial Development (NUTEK) under the auspices of Advanced Software Tech-
nology (ASTEC) Center of Competence at Uppsala University.

We include a collection of examples, among which some have been distributed with the
INRIA implementation of clp(FD) [Diaz & Codognet 93].

10.10.2 Caveats and Limitations

Following are some general statements about the constraints and libraries of this library
module.

Domain Variables
Only small integers (see Chapter 2 [Glossary], page 7) and domain variables are
allowed as arguments to finite domain constraints. Whenever a domain variable
is required in the argument of a constraint, a small integer can be given instead.
The conversion from unbound variable to domain variable is automatic.

Aliasing In case of variable aliasing, i.e. if a variable occurs more than once in a global
constraint that is being posted, or due to a subsequent variable-variable uni-
fication, then any guarantee to maintain a particular level of consistency no
longer holds, and idempotency is almost always lost.

Termination
Of course, all constraints and predicates terminate. However, due to the com-
binatorial nature of constraint solving, and to the fact that constraint solving
is based on filtering domains, which can be huge, pathological cases where ter-
mination takes extremely long time are easily constructed. After about 15,000
years on a 64-bit machine, the following query terminates with a representation
error, when the lower bound of X exceeds the small integer range:

| ?- X #> abs(X).

[...]

! Representation error in user:'t=<u+c'/3

! CLPFD integer overflow

! goal: 't=<u+c'(_245,_247,-1)

Anyway, if you find non-pathological cases that take longer than reasonable
time to terminate, then please write to sicstus-support@sics.se.

Error Checking
Contrary to most library modules, CLPFD constraints and predicates check
their arguments to almost the same extent as built-in predicates. If you
find a case where reasonable error checking is missing, then please write to
sicstus-support@sics.se.

10.10.3 Solver Interface

The solver contains predicates for checking the consistency and entailment of finite domain
constraints, as well as solving for solution values for your problem variables.

mailto:sicstus-support@sics.se
mailto:sicstus-support@sics.se

426 SICStus Prolog

In the context of this constraint solver, a finite domain is a subset of small integers, and
a finite domain constraint denotes a relation over a tuple of small integers (see Chapter 2
[Glossary], page 7). Hence, only small integers and unbound variables are allowed in finite
domain constraints.

A finite domain is denoted symbolically by a ConstantRange (see Section 10.10.13.1 [Syn-
tax of Indexicals], page 490), a special case of which is an interval, written as one of the
expressions A..B, A..sup, inf..B, or inf..sup. Here, A and B should be small integers,
inf denotes minus infinity, and sup denotes plus infinity. Please note: inf and sup do
not denote integers, they only denote the absence of a lower resp. upper bound. Such
ConstantRange terms occur in certain contexts, the most common of which is the unary
constraint of the form:

| ?- X in 1..5.

X in 1..5

which constrains X to be in the given interval. Note that variables do not have to be
“declared” in this way before they are used in constraints. If an unconstrained variable
occurs in a constraint, then it will be treated as having the domain inf..sup.

All domain variables, i.e. variables that occur as arguments to finite domain constraints
get associated with a finite domain, either explicitly declared by the program, or implicitly
imposed by the constraint solver. Temporarily, the domain of a variable may actually be
infinite, if it does not have a finite lower or upper bound. If during the computation a
variable receives a new lower or upper bound that cannot be represented as a small integer,
then an overflow condition is issued. This is expressed as silent failure or as a representation
error, subject to the overflow option of fd_flag/3.

The set of current domains of all domain variables is called the domain store. Domain store
S is an extension of domain store T if each domain in S is a subset of the corresponding
domain in T. If some domain is empty, then the store is contradictory and execution
backtracks; otherwise, it is consistent.

At the end of a successful computation, all domains have usually become singletons, i.e.
the domain variables have become assigned. The domains do not become singletons auto-
matically. Usually, it takes some amount of search to find an assignment that satisfies all
constraints. It is the programmer’s responsibility to do so. If some domain variables are left
unassigned in a computation, then the garbage collector will preserve all constraint data
that is attached to them.

Please note: if a term containing domain variables is written, copied, asserted, gathered as
a solution to findall/3 and friends, or raised as an exception, then those domain variables
will be replaced by brand new variables in the copy. To retain the domains and any attached
constraints, you can use copy_term/3 with clpfd:full_answer asserted (see Section 4.8.7
[ref-lte-cpt], page 129, and Section 10.10.7 [Answer Constraints], page 472). API change
wrt. release 3.

Chapter 10: The Prolog Library 427

Every finite domain constraint is implemented by a propagator, or a set of such. Some
constraints have alternative propagators with differing properties. All propagators act
as coroutines performing incremental constraint solving, removing values from domains,
and/or entailment checking. They wake up by changes in the domains of its arguments. A
propagator P can be seen as a function on constraint store S: P(S) denotes the extension
of S resulting from applying P on S.

Propagators come in two kinds: indexicals, stateless reactive functional rules implemented
by a stack machine and running, and global propagators, usually stateful, implemented in
C or Prolog, and using algorithms from many fields of computer science. At the heart of the
constraint solver is a scheduler for propagators, where indexicals have priority over global
propagators.

Certain properties of propagators are desirable:

Correct A correct propagator never removes values that are consistent wrt. its con-
straint. This property is mandatory.

Checking A checking propagator accepts all ground assignments that satisfies the given
constraint, and rejects all ground assignments that violate it. This property is
also mandatory.

Contracting
A contracting propagator never adds any value to any domain. This property
is also mandatory.

Monotone A propagator P is monotone if, for all domain stores S and T, S is an extension
of T implies that P(S) is an extension of P(T). This property is not mandatory
but helps understanding and debugging.

Idempotent
A propagator P is idempotent if, for all domain stores S, P(S) equals P(P(S)).

Domain-Consistent
A domain-consistent propagator removes all inconsistent values. This property
is not mandatory and only a few propagators have it. The reason is that the
complexity of maintaining domain consistency is often prohibitively high.

Bounds-Consistent
A bounds-consistent propagator adjusts all inconsistent upper and lower domain
bounds. This property is not mandatory, and is implied by domain consistency.
This property is more widespread and usually less costly to maintain than
domain consistency, but far from all propagators have it.

10.10.3.1 Posting Constraints

A constraint is called as any other Prolog predicate. When called, the constraint is posted
to the store. For example:

428 SICStus Prolog

| ?- X in 1..5, Y in 2..8, X+Y #= T.

X in 1..5,

Y in 2..8,

T in 3..13

| ?- X in 1..5, T in 3..13, X+Y #= T.

X in 1..5,

T in 3..13,

Y in -2..12

Note that the answer constraint shows the domains of nonground query variables, but does
not show any constraints that may be attached to them.

Normally, after posting a constraint, propagation to fixpoint is performed, which can be
an overkill. The following provides a means of posting a set of constraints in one batch,
suspending all propagation until the whole set has been posted. Suspending propagation
can significantly reduce posting overhead.

fd_batch(+Constraints) since release 4.2.1

where Constraints should be a list of constraints, user-defined or exported by
library(clpfd). General Prolog goals among the constraints will have unde-
fined behavior.

10.10.3.2 Forgetting Constraints

Normally, once a constraint has been posted, it remains active until its entailment has been
detected, or it has been backtracked over. In special circumstances, it may be desirable to
completely forget any constraints attached to a given variable, as if they never had been
posted. The following predicate can be used for that purpose:

fd_purge(+Var) since release 4.6

Given a domain variable Var, any constraints and domain information attached
to Var are erased. Var ceases to be a domain variable.

10.10.3.3 Constraint Satisfaction Problems

Constraint satisfaction problems (CSPs) are a major class of problems for which this solver
is ideally suited. In a CSP, the goal is to pick values from predefined domains for certain
variables so that the given constraints on the variables are all satisfied.

As a simple CSP example, let us consider the Send More Money puzzle. In this problem,
the variables are the letters S, E, N, D, M, O, R, and Y. Each letter represents a digit
between 0 and 9. The problem is to assign a value to each digit, such that SEND + MORE
equals MONEY.

A program that solves the puzzle is given below. The program contains the typical three
steps of a clp(FD) program:

1. declare the domains of the variables

2. post the problem constraints

Chapter 10: The Prolog Library 429

3. look for a feasible solution via backtrack search, or look for an optimal solution via
branch-and-bound search

Sometimes, an extra step precedes the search for a solution: the posting of surrogate con-
straints to break symmetries or to otherwise help prune the search space. No surrogate
constraints are used in this example.

The domains of this puzzle are stated via the domain/3 goal and by requiring that S and M
be greater than zero. The two problem constraint of this puzzle are the equation (sum/8)
and the constraint that all letters take distinct values (all_different/1). Finally, the
backtrack search is performed by labeling/2. Different search strategies can be encoded
in the Type parameter. In the example query, the default search strategy is used (select the
leftmost variable, try values in ascending order).

:- use_module(library(clpfd)).

mm([S,E,N,D,M,O,R,Y], Type) :-

domain([S,E,N,D,M,O,R,Y], 0, 9), % step 1

S#>0, M#>0,

all_different([S,E,N,D,M,O,R,Y]), % step 2

sum(S,E,N,D,M,O,R,Y),

labeling(Type, [S,E,N,D,M,O,R,Y]). % step 3

sum(S, E, N, D, M, O, R, Y) :-

1000*S + 100*E + 10*N + D

+ 1000*M + 100*O + 10*R + E

#= 10000*M + 1000*O + 100*N + 10*E + Y.

| ?- mm([S,E,N,D,M,O,R,Y], []).

D = 7,

E = 5,

M = 1,

N = 6,

O = 0,

R = 8,

S = 9,

Y = 2

10.10.3.4 Reified Constraints

Instead of merely posting constraints it is often useful to reflect its truth value into a 0/1-
variable B, so that:

• the constraint is posted if B is set to 1

• the negation of the constraint is posted if B is set to 0

• B is set to 1 if the constraint becomes entailed

• B is set to 0 if the constraint becomes disentailed

430 SICStus Prolog

This mechanism is known as reification. Several frequently used operations can be defined
in terms of reified constraints. A reified constraint is written:

| ?- Constraint #<=> B.

where Constraint is reifiable. As an example of a constraint that uses reification, consider
exactly(X,L,N), defined to be true if X occurs exactly N times in the list L. It can be
defined thus:

exactly(_, [], 0).

exactly(X, [Y|L], N) :-

X #= Y #<=> B,

N #= M+B,

exactly(X, L, M).

Finally, reified constraints can be used as terms inside arithmetic expression. The value of
the term is 1 if the constraint is true, and 0 otherwise. For example:

| ?- X #= 10, B #= (X#>=2) + (X#>=4) + (X#>=8).

B = 3,

X = 10

10.10.4 Available Constraints

This section describes constraints that can be used with this solver, organized into classes.
Unless documented otherwise, constraints are not reifiable and do not guarantee any par-
ticular level of consistency. Whenever a domain variable is required in the argument of a
constraint, a small integer can be given instead.

10.10.4.1 Arithmetic Constraints

?Expr RelOp ?Expr reifiable

defines an arithmetic constraint. The syntax for Expr and RelOp is defined by a
grammar (see Section 10.10.13.2 [Syntax of Arithmetic Expressions], page 492).
Note that the expressions are not restricted to being linear. Constraints over
nonlinear expressions, however, will usually yield less constraint propagation
than constraints over linear expressions.

Arithmetic constraints can be reified as e.g.:

| ?- X in 1..2, Y in 3..5, X#=<Y #<=> B.

B = 1,

X in 1..2,

Y in 3..5

Linear arithmetic constraints, except equalities, maintain bounds consistency. Their reified
versions detect bounds entailment and disentailment.

The following constraints are among the library constraints that general arithmetic con-
straints compile to. They express a relation between a sum or a scalar product and a
value, using a dedicated algorithm, which avoids creating any temporary variables holding

Chapter 10: The Prolog Library 431

intermediate values. If you are computing a sum or a scalar product, then it can be much
more efficient to compute lists of coefficients and variables and post a single sum or scalar
product constraint than to post a sequence of elementary constraints.

sum(+Xs, +RelOp, ?Value)

where Xs is a list of domain variables, RelOp is a relational symbol as above,
and Value is an integer or a domain variable. True if sum(Xs) RelOp Value.
Corresponds roughly to sumlist/2 in library(lists).

scalar_product(+Coeffs, +Xs, +RelOp, ?Value) reifiable

scalar_product(+Coeffs, +Xs, +RelOp, ?Value, +Options) reifiable

where Coeffs is a list of length n of integers, Xs is a list of length n of integers or
domain variables, RelOp is a relational symbol as above, and Value is a domain
variable. True if sum(Coeffs*Xs) RelOp Value.

Options is a list that may include the following options:

among(Least,Most,Range) since release 4.3.1

If given, then Least and Most should be integers and Range should
be a ConstantRange (see Section 10.10.13.1 [Syntax of Indexicals],
page 490). This option imposes the additional constraint on Xs
that at least Least and at most Most elements belong to Range.
This side constraint invokes the algorithm of [Razakarison, Carls-
son, Beldiceanu & Simonis 13].

consistency(Cons)

This can be used to control the level of consistency used by the
constraint. The value is one of the following:

domain The constraint maintains domain consistency. Please
note: This option is only meaningful if RelOp is #=, and
requires that any domain variables have finite bounds.

bounds

value The constraint tries to maintain bounds consistency
(the default).

scalar_product_reif(+Coeffs, +Xs, +RelOp, ?Value, ?Reif) since release 4.5

scalar_product_reif(+Coeffs, +Xs, +RelOp, ?Value, ?Reif, +Options)

This is the reified version of scalar_product/[4,5], i.e., Reif is 1 if scalar_
product/[4,5] with the same argument holds; otherwise, Reif is 0.

The following constraints constrain a variable to be the minimum (maximum) value of a
given list.

minimum(?Value, +Xs)

where Xs is a list of domain variables, and Value is a domain variable. True if
Value is the minimum of Xs. Corresponds to min_member/2 in library(lists)

and to minimum in MiniZinc.

432 SICStus Prolog

maximum(?Value, +Xs)

where Xs is a list of domain variables, and Value is a domain variable.
True if Value is the maximum of Xs. Corresponds to max_member/2 in
library(lists) and to maximum in MiniZinc.

The following constraints constrain a variable to be index of the minimum (maximum) value
of a given list. They maintain domain consistency.

minimum_arg(+Xs, ?Index) since release 4.6

where Xs is a list of domain variables, and Index is a domain variable. True if
Index is the index of the minimum value of Xs. If that value occurs more than
once, Index is the index of the first occurrence. Corresponds to arg_min and
minimum_arg in MiniZinc.

maximum_arg(+Xs, ?Index) since release 4.6

where Xs is a list of domain variables, and Index is a domain variable. True if
Index is the index of the maximum value of Xs. If that value occurs more than
once, Index is the index of the first occurrence. Corresponds to arg_max and
maximum_arg in MiniZinc.

10.10.4.2 Membership Constraints

domain(+Variables, +Min, +Max)

where Variables is a list of domain variables, Min is an integer or the atom inf

(minus infinity), and Max is an integer or the atom sup (plus infinity). True if
the variables all are elements of the range Min..Max.

?X in +Range reifiable

where X is a domain variable and Range is a ConstantRange (see
Section 10.10.13.1 [Syntax of Indexicals], page 490). True if X is an element of
the range.

?X in_set +FDSet reifiable

where X is a domain variable and FDSet is an FD set (see Section 10.10.9.3
[FD Set Operations], page 476). True if X is an element of the FD set.

in/2 and in_set/2 constraints maintain domain consistency and their reified versions detect
domain entailment and disentailment.

10.10.4.3 Propositional Constraints

Propositional combinators can be used to combine reifiable constraints into propositional
formulae over such constraints. Such formulae are goal expanded by the system into se-
quences of reified constraints and arithmetic constraints. For example,

X #= 4 #\/ Y #= 6

expresses the disjunction of two equality constraints.

Chapter 10: The Prolog Library 433

The leaves of propositional formulae can be reifiable constraints, the constants 0 and 1,
or 0/1-variables. New primitive, reifiable constraints can be defined with indexicals as
described in Section 10.10.10 [Defining Primitive Constraints], page 479.

The propositional combinators maintain domain consistency and their reified versions de-
tect domain entailment and disentailment. The following propositional combinators are
available:

#\ :Q reifiable

True if the constraint Q is false.

:P #/\ :Q reifiable

True if the constraints P and Q are both true.

:P #\ :Q reifiable

True if exactly one of the constraints P and Q is true.

:P #\/ :Q reifiable

True if at least one of the constraints P and Q is true.

:P #=> :Q reifiable

:Q #<= :P reifiable

True if the constraint Q is true or the constraint P is false.

:P #<=> :Q reifiable

True if the constraints P and Q are both true or both false.

Note that the reification scheme introduced in Section 10.10.3.4 [Reified Constraints],
page 429, is a special case of a propositional constraint.

10.10.4.4 Arithmetic-Logical Constraints

smt(:ConstraintBody) since release 4.2,deprecated

The arithmetic, membership, and propositional constraints described earlier
are transformed at compile time to conjunctions of library constraints. Al-
though linear in the size of the source code, the expansion of a propositional
formula over reifiable constraints to library goals can have time and memory
overheads, and propagates disjunctions very weakly. Temporary variables hold-
ing intermediate values may have to be introduced, and the grain size of the
constraint solver invocations can be rather small. As an alternative to the de-
fault propagation of such constraint formulas, this constraint is a front-end to
the case/[3,4] propagator, which treats such a formula globally.

Although often convenient, this constraint is deprecated, because it cannot
guarantee better performance than a decomposition, nor any particular level of
consistency.

ConstraintBody should be of one of the following forms, or a propositional com-
bination of such forms. See Section 10.10.13.1 [Syntax of Indexicals], page 490,
for the exact definition:

• var in ConstantRange

• element(var,CList,var)

434 SICStus Prolog

• table([VList],CTable)

• LinExpr RelOp LinExpr

• var { X stands for X#=1 }

count(+Val,+List,+RelOp,?Count) since release 4.0.5,deprecated

where Val is an integer, List is a list of domain variables, Count a domain
variable, and RelOp is a relational symbol as in Section 10.10.4.1 [Arithmetic
Constraints], page 430. True if N is the number of elements of List that are
equal to Val and N RelOp Count. Implemented by decomposition into one
sum/3 constraint, one arithmetic comparison, and several reified equalities.

Corresponds to count_* and exactly in MiniZinc.

count/4 maintains domain consistency, but in practice, the following constraint
is a better alternative.

global_cardinality(+Xs,+Vals)

global_cardinality(+Xs,+Vals,+Options)

where Xs = [X1,. . . ,Xd] is a list of domain variables, and Vals = [K1-
V1,. . . ,Kn-Vn] is a list of pairs where each key Ki is a unique integer and
Vi is a domain variable. True if every element of Xs is equal to some key and
for each pair Ki-Vi, exactly Vi elements of Xs are equal to Ki.

If either Xs or Vals is ground, and in many other special cases, then global_

cardinality/[2,3] maintains domain consistency, but generally, bounds con-
sistency cannot be guaranteed. A domain-consistency algorithm [Regin 96] is
used, roughly linear in the total size of the domains.

Corresponds to global_cardinality* and distribute in MiniZinc.

Options is a list of zero or more of the following:

consistency(Cons)

Which filtering algorithm to use. One of the following:

domain The constraint will use the algorithm mentioned above.
Implies on(dom). The default.

bounds The constraint will use the algorithm mentioned above.
Implies on(minmax).

value The constraint will use a simple algorithm, which pre-
vents too few or too many of the Xs from taking values
among the Vals. Implies on(val).

on(On) How eagerly to wake up the constraint. One of the following:

dom to wake up when the domain of a variable is changed
(the default);

minmax to wake up when a bound of a variable is changed;

val to wake up when a variable is fixed.

cost(Cost,Matrix)

Overrides any consistency/1 option value. A cost is associated
with the constraint and reflected into the domain variable Cost.

Chapter 10: The Prolog Library 435

Matrix should be a d*n matrix of integers, represented as a list of
d lists, each of length n. Assume that each Xi equals K(pi). The
cost of the constraint is then Matrix[1,p1]+. . .+Matrix[d,pd].

With this option, a domain-consistency algorithm [Regin 99] is
used, the complexity of which is roughly O(d(m + n log n)) where
m is the total size of the domains.

all_different(+Variables)

all_different(+Variables, +Options)

all_distinct(+Variables)

all_distinct(+Variables, +Options)

where Variables is a list of domain variables. Each variable is constrained to
take a value that is unique among the variables. Declaratively, this is equivalent
to an inequality constraint for each pair of variables.

Corrfesponds to all_different in MiniZinc.

Options is a list of zero or more of the following:

L #= R since release 4.3

where R should be an integer, and L an expressions of one of the
following forms, where X1, . . . , Xj occur among Variables:

X1 + ... + Xj

X1*X1 + ... + Xj*Xj

X1 * ... * Xj

The given equation is a side constraint for the constraint to hold. A
special bounds-consistency algorithm is used, which considers the
main constraint and the side constraints globally. This option is
only valid if the domains of X1, . . . , Xj consist of integers strictly
greater than zero.

consistency(Cons)

Which algorithm to use, one of the following:

domain The default for all_distinct/[1,2] and
assignment/[2,3]. A domain-consistency algorithm
[Regin 94] is used, roughly linear in the total size of
the domains. Implies on(dom).

bounds A bounds-consistency algorithm [Lopez-Ortiz 03] is
used, which runs in O(n log n) time for n variables.
Implies on(minmax).

value The default for all_different/[1,2]. An algorithm
achieving exactly the same pruning as a set of pair-
wise inequality constraints is used, roughly linear in
the number of variables. Implies on(val).

on(On) How eagerly to wake up the constraint. One of the following:

dom (the default
for all_distinct/[1,2] and assignment/[2,3]), to
wake up when the domain of a variable is changed;

436 SICStus Prolog

min to wake up when the lower bound of a domain is
changed;

max to wake up when the upper bound of a domain is
changed;

minmax to wake up when some bound of a domain is changed;

val (the default for all_different/[1,2]), to wake up
when a variable is fixed.

all_different_except_0(+Variables) since release 4.6

all_distinct_except_0(+Variables) since release 4.6

where Variables is a list of domain variables with finite bounds. The variables
are constrained to be all different, except those elements that are assigned the
value 0.

In terms of consistency, all_different_except_0/1 corresponds to all_

different/1, and all_distinct_except_0/1 to all_distinct/1.

Corresponds to alldifferent_except_0 in MiniZinc.

nvalue(?N, +Variables)

where Variables is a list of domain variables with finite bounds, and N is a
domain variable. True if N is the number of distinct values taken by Variables.
Approximates bounds consistency in N and domain consistency in Variables.
Can be thought of as a relaxed version of all_distinct/2.

Corresponds to nvalue in MiniZinc.

The following is a constraint over two lists of length n of variables. Each variable is con-
strained to take a value in 1..n that is unique for its list. Furthermore, the lists are dual in
a sense described below.

assignment(+Xs, +Ys)

assignment(+Xs, +Ys, +Options)

where Xs = [X1,. . . ,Xn] and Ys = [Y1,. . . ,Yn] are lists of domain variables.
True if all Xi, Yi are in 1..n and Xi=j iff Yj=i.

Corresponds to inverse in MiniZinc.

The following is a constraint over a list of length n of variables, which all are constrained
to 1..n.

symmetric_all_different(+Xs) since release 4.6

symmetric_all_distinct(+Xs) since release 4.6

True if the list is all different, and that all Xi in 1..n, and Xi=j iff Xj=i.

Corresponds to symmetric_all_different in MiniZinc. symmetric_all_

distinct/1 maintains stronger consistency.

Options is a list of zero or more of the following, where Boolean must be true
or false (false is the default):

on(On) Same meaning as for all_different/2.

Chapter 10: The Prolog Library 437

consistency(Cons)

Same meaning as for all_different/2.

circuit(Boolean)

If true, then circuit(Xs,Ys) must hold for the constraint to be
true.

subcircuit(Boolean) since release 4.6

If true, then subcircuit(Xs,Ys) must hold for the constraint to
be true.

cost(Cost,Matrix)

A cost is associated with the constraint and reflected into the
domain variable Cost. Matrix should be an n*n matrix of inte-
gers, represented as a list of lists. The cost of the constraint is
Matrix[1,X1]+. . .+Matrix[n,Xn].

With this option, a domain-consistency algorithm [Sellmann 02] is
used, the complexity of which is roughly O(n(m + n log n)) where
m is the total size of the domains.

The following constraint captures the relation between a list of values, a list of the values
in ascending order, and their positions in the original list:

sorting(+Xs,+Ps,+Ys)

where Xs = [X1,. . . ,Xn], Ps = [P1,. . . ,Pn], and Ys = [Y1,. . . ,Yn] are lists of
domain variables. The constraint holds if the following are true:

• Ys is in ascending order.

• Ps is a permutation of 1..n.

• for all i in 1..n : Xi = Y(Pi)

In practice, the underlying algorithm [Mehlhorn 00] is likely to achieve bounds
consistency, and is guaranteed to do so if Ps is ground or completely free.

Corresponds to sort in MiniZinc.

The following constraint is a generalization of sorting/3, namely:

• It sorts not domain variables, but tuples of them.

• The tuples are split into a key prefix and a value suffix. They are sorted wrt. the key
part only.

• The sort is stable: if two tuples have identical keys, then their relative order is preserved
in the output.

keysorting(+Xs,+Ys) since release 4.3.1

keysorting(+Xs,+Ys,+Options)

where Xs and Ys are lists of tuples of domain variables. Both lists should be of
the same length n, and all tuples should have the same lengthm. The constraint
holds if the following are true:

• Ps is a permutation of 1..n.

438 SICStus Prolog

• for all i in 1..n, j in 1..m : Ys[i,j] = Xs[Ps[i],j].

• [[Ys[i,1],...,Ys[i,k],Ps[i]] | i in 1..n] is in lex ascending order, where k equals
Keys as defined below in the options.

The filtering algorithm is based on [Mehlhorn 00] and endeavors to achieve
bounds consistency, but does not guarantee it.

Corresponds to Prolog’s keysort/2. In particular, the sort is stable by defini-
tion. Corresponds to arg_sort in MiniZinc.

Options is a list of zero or more of the following:

keys(Keys)

where Keys should be a positive integer, denoting the length of the
key prefix. The default is 1.

permutation(Ps)

where Ps should be a list of length n of domain variables. Its
meaning is described above.

The following constraints express the fact that several vectors of domain variables are in
ascending lexicographic order:

lex_chain(+Vectors)

lex_chain(+Vectors,+Options)

where Vectors is a list of vectors (lists) of domain variables with finite bounds.
The constraint holds if Vectors are in ascending lexicographic order.

Corresponds to *lex2, lex_greater*, lex_less* in MiniZinc.

Options is a list of zero or more of the following:

op(Op) If Op is the atom #=< (the default), then the constraints holds if
Vectors are in non-descending lexicographic order. If Op is the
atom #<, then the constraints holds if Vectors are in strictly as-
cending lexicographic order.

increasing

This option imposes the additional constraint that each vector in
Vectors be sorted in strictly ascending order.

among(Least,Most,Values)

If given, then Least and Most should be integers such that 0 <=
Least <= Most and Values should be a list of distinct integers. This
option imposes the additional constraint on each vector in Vectors
that at least Least and at most Most elements belong to Values.

global(Boolean) since release 4.2.1

if true, then a more expensive algorithm [Carlsson & Beldiceanu
02], which guaranteed domain consistency unless the increasing/0
or among/3 options are given, will be used.

In the following constraints, a literal is either a term X or a term #\ X, where X is a 0/1
variable. They maintain domain consistency:

Chapter 10: The Prolog Library 439

bool_and(+Lits, +Lit) since release 4.3

where Lits is a list of literals [L0,...,Lj] and Lit is a literal. True if Lit equals
the Boolean conjunction of Lits, and usually more efficient than the equivalent
L0#/\...#/\Lj #<=> Lit.

bool_or(+Lits, +Lit) since release 4.3

where Lits is a list of literals [L0,...,Lj] and Lit is a literal. True if Lit equals
the Boolean disjunction of Lits, and usually more efficient than the equivalent
L0#\/...#\/Lj #<=> Lit.

bool_xor(+Lits, +Lit) since release 4.3

where Lits is a list of literals [L0,...,Lj] and Lit is a literal. True if Lit equals
the Boolean exclusive or of Lits, and usually more efficient than the equivalent
L0#\...#\Lj #<=> Lit.

bool_channel(+Lits, ?Y, +Relop, +Offset) since release 4.3

where Lits is a list of literals [L0,...,Lj], Y is a domain variable, RelOp is an
arithmetic comparison as in Section 10.10.13.2 [Syntax of Arithmetic Expres-
sions], page 492, and Offset is an integer. Expresses the constraint Li #<=> (Y
RelOp i+Offset) for i in 0..j. Usually more efficient than a bunch of reified
comparisons between a given variable and a sequence of integers.

10.10.4.5 Extensional Constraints

element(?X,+List,?Y)

where X and Y are domain variables and List is a list of domain variables. True
if the X :th element of List is Y. Operationally, the domains of X and Y are
constrained so that for every element in the domain of X, there is a compatible
element in the domain of Y, and vice versa.

Maintains domain consistency in X and bounds consistency in List and Y.
Corresponds to nth1/3 in library(lists) and to element and member in
MiniZinc.

relation(?X,+MapList,?Y) since release 4.0.5,deprecated

where X and Y are domain variables and MapList is a list of
integer-ConstantRange pairs, where the integer keys occur uniquely (see
Section 10.10.13.1 [Syntax of Indexicals], page 490). True if MapList contains
a pair X-R and Y is in the range denoted by R. Maintains domain consistency.

An arbitrary binary constraint can be defined with relation/3. relation/3 is
implemented by straightforward transformation to the following, more general
constraint, with which arbitrary relations can be defined compactly:

table(+Tuples,+Extension)

table(+Tuples,+Extension,+Options)

Defines an n-ary constraint by extension. Extension should be a list of lists of
integers, each of length n. Tuples should be a list of lists of domain variables,
each also of length n. The constraint holds if every Tuple in Tuples occurs in
the Extension. The constraint will maintain domain consistency.

Corresponds to table in MiniZinc.

440 SICStus Prolog

For convenience, Extension may contain ConstantRange (see Section 10.10.13.1
[Syntax of Indexicals], page 490) expressions in addition to integers.

Options is a list of zero or more of the following:

order(Order) since release 4.1

Determines the variable order used internally. The following values
are valid:

leftmost The order is the one given in the arguments (the de-
fault).

id3 Each tuple, and the columns of the extension, is per-
muted according to the heuristic that more discriminat-
ing columns should precede less discriminating ones.

method(Method) since release 4.1

Controls the choice of internal data structure and algorithm. The
following values are valid:

default since release 4.4

SICStus choice handles propagation as it sees fit (the
default).

noaux SICStus handles propagation with the case/[3,4]

constraint, see below, converting the extension to a
DAG.

aux SICStus handles propagation with the case/[3,4]

constraint, see below. Before converting the extension
to a DAG, an auxiliary, first variable is introduced, de-
noting extension row number.

table/[2,3] can be implemented in terms of the following, more general constraint, which
allows a compact representation of arbitrary relations:

case(+Template, +Tuples, +Dag)

case(+Template, +Tuples, +Dag, +Options)

This constraint encodes an n-ary constraint, defined by extension and/or linear
inequalities. It uses a DAG-shaped data structure where nodes corresponds to
variables and every arc is labeled by an admissible interval for the node above
it and optionally by linear inequalities. The variable order is fixed: every path
from the root node to a leaf node should visit every variable exactly once, in
the order in which they occur lexically in Template. The constraint is true for a
single ground tuple if there is a path from the root node to a leaf node such that
(a) each tuple element is contained in the corresponding Min..Max interval on
the path, and (b) any encountered linear inequalities along the path are true.

The case constraint is true for a set of ground tuples if it is true for each tuple
of the set. The details are given below.

Template is a nonground Prolog term, each variable of which should occur
exactly once. Its variables are merely place-holders; they should not occur
outside the constraint nor inside Tuples.

Chapter 10: The Prolog Library 441

Tuples is a list of terms of the same shape as Template. They should not share
any variables with Template.

Dag is a list of nodes of the form node(ID,X,Children), where X is a template
variable, and ID should be an integer, uniquely identifying each node. The first
node in the list is the root node.

Nodes are either internal nodes or leaf nodes. For an internal node, Children is
a list of terms (Min..Max)-ID2 or (Min..Max)-SideConstraints-ID2, where
ID2 is the ID of a child node, Min is an integer or the atom inf (minus infinity),
and Max is an integer or the atom sup (plus infinity). For a leaf node, Children
is a list of terms (Min..Max) or (Min..Max)-SideConstraints.

SideConstraints is a list of side constraints of the form scalar_

product(Coeffs, Xs, #=<, Bound), where Coeffs is a list of length k of in-
tegers, Xs is a list of length k of template variables, and Bound is an integer.

Variables in Tuples for which their template variable counterparts are con-
strained by side constraints, must have bounded domains. In the absence of
side constraint, the constraint maintains domain consistency.

The use of side constraint is deprecated, because the level of consistency is
no better than the alternative, namely to use separate, reified arithmetic con-
straints and possibly auxiliary variables.

Options is a list of zero or more of the following:

scalar_product(Coeffs, Xs, #=<, Bound) since release

4.2,deprecated

A side constraint located at the root of the DAG.

For example, recall that element(X,L,Y) wakes up when the domain of X or
the lower or upper bound of Y has changed, performs full pruning of X, but
only prunes the bounds of Y. The following two constraints:

element(X, [1,1,1,1,2,2,2,2], Y),

element(X, [10,10,20,20,10,10,30,30], Z)

can be replaced by the following single constraint, which is equivalent declara-
tively, but which maintains domain consistency:

elts(X, Y, Z) :-

case(f(A,B,C), [f(X,Y,Z)],

[node(0, A,[(1..2)-1,(3..4)-2,(5..6)-3,(7..8)-4]),

node(1, B,[(1..1)-5]),

node(2, B,[(1..1)-6]),

node(3, B,[(2..2)-5]),

node(4, B,[(2..2)-7]),

node(5, C,[(10..10)]),

node(6, C,[(20..20)]),

node(7, C,[(30..30)])]).

The DAG of the previous example has the following shape:

442 SICStus Prolog

DAG corresponding to elts/3.

A couple of sample queries:

| ?- elts(X, Y, Z).

X in 1..8,

Y in 1..2,

Z in {10}\/{20}\/{30}

| ?- elts(X, Y, Z), Z #>= 15.

X in(3..4)\/(7..8),

Y in 1..2,

Z in {20}\/{30}

| ?- elts(X, Y, Z), Y = 1.

Y = 1,

X in 1..4,

Z in {10}\/{20}

As an example with side constraints, consider assigning tasks to machines with
given unavailibility periods. In this case, one can use a calendar constraint
[CHIP 03, Beldiceanu, Carlsson & Rampon 05] to link the real origins of the
tasks (taking the unavailibility periods into account) with virtual origins of the
tasks (not taking the unavailibility periods into account). One can then state

Chapter 10: The Prolog Library 443

machine resource constraints using the virtual origins, and temporal constraints
between the tasks using the real origins.

Assume, for example, three machines with unavailibility periods given by the
following table:

Unavailibility periods for three machines.

Machine 1 is not available during (real) time periods 1-2 and 6-6, machine 2 is
not available during (real) time periods 3-4 and 7-7, and machine 3 is always
available.

The following can then be used to express a calendar constraint for a given task
scheduled on machine M in 1..3, with virtual origin V in 1..8, and real origin
R in 1..8:

calendar(M, V, R) :-

M in 1..3,

V in 1..8,

R in 1..8,

smt((M#=1 #/\ V in 1..3 #/\ R#=V+2) #\/

(M#=1 #/\ V in 4..5 #/\ R#=V+3) #\/

(M#=2 #/\ V in 1..2 #/\ R#=V) #\/

(M#=2 #/\ V in 3..4 #/\ R#=V+2) #\/

(M#=2 #/\ V in 5..5 #/\ R#=V+3) #\/

(M#=3 #/\ R#=V)).

or equivalently as:

444 SICStus Prolog

calendar(M, V, R) :-

case(f(A,B,C),

[f(M,V,R)],

[node(0, A, [(1..1)-1, (2..2)-2, (3..3)-3]),

node(1, B, [(1..3)-[scalar_product([1,-1],[B,C],#=<,-2),

scalar_product([1,-1],[C,B],#=<, 2)]-4,

(4..5)-[scalar_product([1,-1],[B,C],#=<,-3),

scalar_product([1,-1],[C,B],#=<, 3)]-4]),

node(2, B, [(1..2)-[scalar_product([1,-1],[B,C],#=<, 0),

scalar_product([1,-1],[C,B],#=<, 0)]-4,

(3..4)-[scalar_product([1,-1],[B,C],#=<,-2),

scalar_product([1,-1],[C,B],#=<, 2)]-4,

(5..5)-[scalar_product([1,-1],[B,C],#=<,-3),

scalar_product([1,-1],[C,B],#=<, 3)]-4]),

node(3, B, [(1..8)-[scalar_product([1,-1],[B,C],#=<, 0),

scalar_product([1,-1],[C,B],#=<, 0)]-4]),

node(4, C, [(1..8)])]).

Note that equality must be modeled as the conjunction of inequalities, as only
constraints of the form scalar_product(+Coeffs, +Xs, #=<, +Bound) are al-
lowed as side constraints.

The DAG of the calendar constraint has the following shape:

DAG corresponding to calendar/3.

A couple of sample queries:

Chapter 10: The Prolog Library 445

| ?- M in 1..3, V in 1..8, R in 1..8,

calendar(M, V, R).

M in 1..3,

V in 1..8,

R in 1..8

| ?- M in 1..3, V in 1..8, R in 1..8,

calendar(M, V, R), M #= 1.

M = 1,

V in 1..5,

R in 1..8

| ?- M in 1..3, V in 1..8, R in 1..8,

calendar(M, V, R), M #= 2, V #> 4.

M = 2,

V = 5,

R = 8

10.10.4.6 Graph Constraints

The following constraint can be thought of as constraining n nodes in a graph to form a
Hamiltonian (sub-)circuit. The nodes are numbered from 1 to n. A full circuit visits each
node exactly once and returns to the origin. A subcircuit visits a subset of the nodes exactly
once and returns to the origin.

circuit(+Succ)

circuit(+Succ, +Pred)

where Succ is a list of length n of domain variables. The value of the i:th
element of Succ (Pred) is the successor (predecessor) of node i in the graph.
True if the nodes form exacty one Hamiltonian circuit.

Corresponds to circuit in MiniZinc.

subcircuit(+Succ) since release 4.6

subcircuit(+Succ, +Pred) since release 4.6

where Succ is a list of length n of domain variables. If the value of the i:th
element of Succ (Pred) is i, then that corresponds to a node not in the graph.
Otherwise, the value is the successor (predecessor) of node i in the graph. True
if the nodes that are included form at most one Hamiltonian subcircuit.

Corresponds to subcircuit in MiniZinc.

10.10.4.7 Scheduling Constraints

The following constraint can be thought of as constraining n tasks so that the total resource
consumption does not exceed a given limit at any time. API change wrt. release 3:

446 SICStus Prolog

cumulative(+Tasks)

cumulative(+Tasks,+Options)

A task is represented by a term task(Oi,Di,Ei,Hi,Ti) where Oi is the start
time, Di the non-negative duration, Ei the end time, Hi the non-negative re-
source consumption, and Ti the task identifier. All fields are domain variables
with bounded domains.

Let n be the number of tasks and L the global resource limit (by default 1, but
see below), and:

Hij = Hi, if Oi <= j < Oi+Di
Hij = 0 otherwise

The constraint holds if:

1. For every task i, Oi+Di=Ei, and

2. For all instants j, H1j+. . .+Hnj <= L.

Corresponds to cumulative in MiniZinc. If all durations are 1, then it corre-
sponds to bin_packing in MiniZinc.

Options is a list of zero or more of the following, where Boolean must be true
or false (false is the default).

limit(L) See above.

precedences(Ps)

Ps encodes a set of precedence constraints to apply to the tasks.
Ps should be a list of terms of the form:

Ti-Tj #= Dij

where Ti and Tj should be task identifiers, and Dij should be a a
domain variable, denoting:

Oi-Oj = Dij

global(Boolean)

if true, then a more expensive algorithm will be used in order to
achieve tighter pruning of the bounds of the parameters.

This constraint is due to Aggoun and Beldiceanu [Aggoun & Beldiceanu 93].

The following constraint can be thought of as constraining n tasks to be placed in time
and on m machines. Each machine has a resource limit, which is interpreted as a lower or
upper bound on the total amount of resource used on that machine at any point in time
that intersects with some task.

cumulatives(+Tasks,+Machines)

cumulatives(+Tasks,+Machines,+Options)

A task is represented by a term task(Oi,Di,Ei,Hi,Mi) where Oi is the start
time, Di the non-negative duration, Ei the end time, Hi the resource consump-
tion (if positive) or production (if negative), and Mi a machine identifier. All
fields are domain variables with bounded domains.

A machine is represented by a term machine(Mj,Lj) where Mj is the identifier,
an integer; and Lj is the resource bound of the machine, which must be a
domain variable with bounded domains.

Chapter 10: The Prolog Library 447

Let there be n tasks and:

Hijm = Hi, if Mi=m and Oi <= j < Oi+Di
Hijm = 0 otherwise

If the resource bound is lower (the default), then the constraint holds if:

1. For every task i, Si+Di=Ei, and

2. For all machines m and instants j such that there exists a task i where
Mi=m and Oi <= j < Oi+Di, H1jm+. . .+Hnjm >= Lm.

If the resource bound is upper, then the constraint holds if:

1. For every task i, Si+Di=Ei, and

2. For all machines m and instants j, H1jm+. . .+Hnjm <= Lm.

Options is a list of zero or more of the following, where Boolean must be true
or false (false is the default):

bound(B) If lower (the default), then each resource limit is treated as a lower
bound. If upper, then each resource limit is treated as an upper
bound.

prune(P) If all (the default), then the constraint will try to prune as many
variables as possible. If next, then only variables that occur in the
first nonground task term (wrt. the order given when the constraint
was posted) can be pruned.

generalization(Boolean)

If true, then extra reasoning based on assumptions on machine
assignment will be done to infer more.

task_intervals(Boolean)

If true, then extra global reasoning will be performed in an attempt
to infer more.

The following constraint is a generalization of cumulative/[1,2] in the following sense:

• The new constraint deals with the consumption of multiple resources simultaneously,
not just a single resource. For the constraint to succeed, none of the resources can
exceed its limit.

• Resources can be of two kinds:

cumulative
This is the kind of resource that cumulative/[1,2] deals with: at no point
in time can the total resource use exceed the limit.

colored For this kind of resource, each task specifies not a resource use, but a color,
encoded as an integer. At no point in time can the total number of distinct
colors in use exceed the limit. The color code 0 is treated specially: it
denotes that the task does not have any color.

On the other hand, the new constraint has the limitation that all fields and parameters
except start and end times must be given as integers:

448 SICStus Prolog

multi_cumulative(+Tasks,+Capacities) since release 4.3.1

multi_cumulative(+Tasks,+Capacities,+Options) since release 4.3.1

A task is represented by a term task(Oi,Di,Ei,Hsi,Ti) where Oi is the start
time, Di the non-negative duration, Ei the end time, Hsi the list of non-negative
resource uses or colors, and Ti the task identifier. The start and end times
should be domain variables with bounded domains. The other fields should be
integers.

The capacities should be a list of terms of the following form, where Limit
should be a non-negative integer. Capacities and all the Hsi should be of the
same length:

cumulative(Limit)

denotes a cumulative resource.

colored(Limit)

denotes a colored resource.

Options is a list of zero or more of the following:

greedy(Flag)

If given, then Flag is a domain variable in 0..1. If Flag equals
1, either initially or by binding Flag during search, then the con-
straint switches behavior into greedy assignment mode. The greedy
assignment will either succeed and assign all start and end times
to values that satisfy the constraint, or merely fail. Flag is never
bound by the constraint; its sole function is to control the behavior
of the constraint.

precedences(Ps)

Ps encodes a set of precedence constraints to apply to the tasks.
Ps should be a list of pairs Ti-Tj where Ti and Tj should be task
identifiers, denoting that task Ti must complete before task Tj can
start.

This constraint is due to [Letort, Beldiceanu & Carlsson 14].

10.10.4.8 Placement Constraints

disjoint1(+Lines) obsolescent

disjoint1(+Lines,+Options)

constrains a set of lines to be non-overlapping. This constraint is best replaced
by diffn/[1,2] in new code.

Lines is a list of terms F(Sj,Dj) or F(Sj,Dj,Tj), Sj and Dj are domain variables
with finite bounds denoting the origin and length of line j respectively, F is any
functor, and the optional Tj is an atomic term denoting the type of the line.
Tj defaults to 0 (zero).

Options is a list of zero or more of the following, where Boolean must be true
or false (false is the default):

global(Boolean)

if true, then a redundant algorithm using global reasoning is used
to achieve more complete pruning.

Chapter 10: The Prolog Library 449

wrap(Min,Max)

If used, then the space in which the lines are placed should be
thought of as a circle where positions Min and Max coincide, where
Min and Max should be integers. That is, the space wraps around.
Furthermore, this option forces the domains of the origin variables
to be inside [Min,Max-1].

margin(T1,T2,D)

This option imposes a minimal distance D between the end point
of any line of type T1 and the origin of any line of type T2. D
should be a positive integer or sup. If sup is used, then all lines of
type T2 must be placed before any line of type T1.

This option interacts with the wrap/2 option in the sense that
distances are counted with possible wrap-around, and the distance
between any end point and origin is always finite.

disjoint2(+Rectangles) obsolescent

disjoint2(+Rectangles,+Options)

constrains a set of rectangles to be non-overlapping. This constraint is best
replaced by diffn/[1,2] in new code.

Rectangles is a list of terms F(Xj,Lj,Yj,Hj) or F(Xj,Lj,Yj,Hj,Tj), Xj and Lj are
domain variables with finite bounds denoting the origin and size of rectangle
j in the X dimension, Yj and Hj are the values for the Y dimension, F is
any functor, and the optional Tj is an atomic term denoting the type of the
rectangle. Tj defaults to 0 (zero).

Options is a list of zero or more of the following, where Boolean must be true
or false (false is the default):

global(Boolean)

Disabled.

wrap(Min1,Max1,Min2,Max2)

Min1 and Max1 should be either integers or the atoms inf and
sup respectively. If they are integers, then the space in which the
rectangles are placed should be thought of as a cylinder wrapping
around the X dimension where positions Min1 and Max1 coincide.
Furthermore, this option forces the domains of the Xj variables to
be inside [Min1,Max1-1].

Min2 and Max2 should be either integers or the atoms inf and
sup respectively. If they are integers, then the space in which the
rectangles are placed should be thought of as a cylinder wrapping
around the Y dimension where positions Min2 and Max2 coincide.
Furthermore, this option forces the domains of the Yj variables to
be inside [Min2,Max2-1].

If all four are integers, then the space is a toroid wrapping around
both dimensions.

450 SICStus Prolog

margin(T1,T2,D1,D2)

This option imposes minimal distances D1 in the X dimension and
D2 in the Y dimension between the end point of any rectangle of
type T1 and the origin of any rectangle of type T2. D1 and D2
should be positive integers or sup. If sup is used, then all rectangles
of type T2 must be placed before any rectangle of type T1 in the
relevant dimension.

This option interacts with the wrap/4 option in the sense that
distances are counted with possible wrap-around, and the distance
between any end point and origin is always finite.

synchronization(Boolean)

Disabled.

diffn(+Boxes) since release 4.6

diffn(+Boxes,+Options)

constrains a set of multidimensional boxes to be non-overlapping.

A box is represented by a term [Facet,Facet,...]. A facet is a term of the form
Origin-Length, where the domain variables Origin and Length are the coordi-
nate and length of the box in the given dimension. All boxes should have the
same dimensionality (length of the box term).

Options is a list of zero or more of the following, where Boolean must be true
or false:

strict(Boolean)

If false (the default), then the constraint is true iff, for all pairs
of boxes i, j, there exists a dimension with respective facets Oi-Li
and Oj-Lj and their overlap is zero, i.e.:

Oi+Li <= Oj or
Oj+Lj <= Oi or
Li = 0 or
Lj = 0

If true, then the constraint is true iff, for all pairs of boxes i, j,
there exists a dimension with respective facets Oi-Li and Oj-Lj and
one precedes the other, i.e.:

Oi+Li <= Oj or
Oj+Lj <= Oi

Corresponds to diffn* and disjunctive* in MiniZinc.

bin_packing(+Items,+Bins) since release 4.4

constrains the placement of items of given size in bins of given capacity, so that
the total load of any bin matches its capacity.

Items is a list of terms of the form item(Bin,Size) where Bin is a domain
variable denoting the bin where the item should be placed, and Size is an
integer >= 0 denoting its size.

Bins is a list of terms of the form bin(ID,Cap) where ID is an integer identifying
the bin, and Cap is a domain variable denoting is its capacity. The ID values
should be all different.

Chapter 10: The Prolog Library 451

The constraint holds if every Bin equals one of the ID values, and for every bin
bin(ID,Cap), the total size of the items assigned to it equals Cap.

Corresponds to bin_packing* in MiniZinc.

geost(+Objects,+Shapes) since release 4.1

geost(+Objects,+Shapes,+Options) since release 4.1

geost(+Objects,+Shapes,+Options,+Rules) since release 4.1

constrains the location in space of non-overlapping multi-dimensional Objects,
each of which taking a shape among a set of Shapes.

Each shape is defined as a finite set of shifted boxes, where each shifted box is
described by a box in a k-dimensional space at the given offset with the given
sizes. A shifted box is described by a ground term sbox(Sid,Offset,Size)

where Sid, an integer, is the shape id; Offset, a list of k integers, denotes the
offset of the shifted box from the origin of the object; and Size, a list of k
integers greater than zero, denotes the size of the shifted box. Then, a shape
is a collection of shifted boxes all sharing the same shape id. The shifted boxes
associated with a given shape must not overlap. Shapes is thus the list of such
sbox/3 terms.

Each object is described by a term object(Oid,Sid,Origin where Oid, an
integer, is the unique object id; Sid, a domain variable, is the shape id; and
Origin, a list of domain variables, is the origin coordinate of the object. If Sid
is nonground, then the object is said to be polymorphic. The possible values
for Sid are the shape ids that occur in Shapes. Objects is thus the list of such
object/3 terms.

If given, then Options is a list of zero or more of the following, where Boolean
must be true or false (false is the default):

lex(ListOfOid)

where ListOfOid should be a list of distinct object ids, denotes that
the origin vectors of the objects according to ListOfOid should be
in ascending lexicographic order. Multiple lex/1 options can be
given, but should mention disjoint sets of objects.

cumulative(Boolean)

If true, then redundant reasoning methods are enabled, based on
projecting the objects onto each dimension.

disjunctive(Boolean)

If true, then cliques of objects are detected that clash in one di-
mension and so must be separated in the other dimension. This
method only applies in the 2D case.

longest_hole(Value,Maxbacks)

This method only applies in the 2D case and in the absence of poly-
morphic objects. Value can be all, true or false. If true, then
the filtering algorithm computes and uses information about holes
that can be tolerated without necessarily failing the constraint. If
all,then more precise information is computed. If false, then no
such information is computed. Maxbacks should be an integer >=

452 SICStus Prolog

-1 and gives a bound on the effort spent tightening the longest hole
information. Experiments suggest that 1000 may be a reasonable
compromise value.

parconflict(Boolean)

If true, then redundant reasoning methods are enabled, based on
computing the number of items that can be put in parallel in the
different dimensions.

visavis_init(Boolean)

If true, then a redundant method is enabled that statically detects
placements that would cause too large holes. This method can be
quite effective.

visavis_floating(Boolean) obsolescent

Disabled, because it has not been shown to pay off experimentally
except in rare cases.

visavis(Boolean) obsolescent

Disabled, because it has not been shown to pay off experimentally.

corners(Boolean) obsolescent

Disabled, because it has not been shown to pay off experimentally.

task_intervals(Boolean) obsolescent

Disabled, because it has not been shown to pay off experimentally.

dynamic_programming(Boolean)

If true, then a redundant reasoning method is enabled that solves a
2D knapsack problem for every two adjacent columns of the projec-
tion of the objects onto each dimension. This method has pseudo-
polynomial complexity but can be quite powerful.

polymorphism(Boolean) obsolescent

Disabled, because it has not been shown to pay off experimentally.

pallet_loading(Boolean)

If true, and if all objects consist of a single shifted box of the same
shape, modulo rotations, then a redundant method is enabled that
recognizes necessary conditions for this special case.

overlap(Boolean)

If true, then the constraint that objects be non-overlapping is
lifted. This option is useful mainly in conjunction with the Rules
argument, in case the placement of objects should be restricted by
the Rules only.

volume(Total)

If given, then Total is constrained to be the total volume of Objects.

bounding_box(Lower,Upper)

Lower=[L1,...,Lk] and Upper=[U1,...,Uk] should be lists of domain
variables. The following conditions are imposed:

• For every point P = [P1,...,Pk] occupied by an object, L1 <=
P1 < U1, ..., Lk <= Pk < Uk.

Chapter 10: The Prolog Library 453

• For every j in 1..k, there exists a point P = [P1,...,Pj,...,Pk]
occupied by an object such that Pj=Lj.

• For every j in 1..k, there exists a point P = [P1,...,Pj,...,Pk]
occupied by an object such that Pj=Uj-1.

fixall(Flag,Patterns)

If given, then Flag is a domain variable in 0..1. If Flag equals
1, then either initially or by binding Flag during search, the con-
straint switches behavior into greedy assignment mode. The greedy
assignment will either succeed and assign all shape ids and origin co-
ordinates to values that satisfy the constraint, or merely fail. Flag
is never bound by the constraint; its sole function is to control the
behavior of the constraint.

Greedy assignment is done one object at a time, in the order of
Objects. The assignment per object is controlled by Patterns,
which should be a list of one or more pattern terms of the form
object(_,SidSpec,OriginSpec), where SidSpec is a term min(I)

or max(I), OriginSpec is a list of k such terms, and I is a unique
integer between 1 and k+1.

The meaning of the pattern is as follows. The variable in the posi-
tion of min(1) or max(1) is fixed first; the variable in the position
of min(2) or max(2) is fixed second; and so on. min(I) means
trying values in ascending order; max(I) means descending order.

If Patterns contains m pattern, then object 1 is fixed according to
pattern 1, . . . , objectm is fixed according to patternm, objectm+1
is fixed according to pattern 1, and so on. For example, suppose
that the following option is given:

fixall(F, [object(_,min(1),[min(3),max(2)]),

object(_,max(1),[min(2),max(3)])])

Then, if the program binds F to 1, then the constraint enters greedy
assignment mode and endeavors to fix all objects as follows.

• For object 1, 3, . . . , (a) the shape is fixed to the smallest pos-
sible value, (b) the Y coordinate is fixed to the largest possible
value, (c) the X coordinate is fixed to the smallest possible
value.

• For object 2, 4, . . . , (a) the shape is fixed to the largest possible
value, (b) the X coordinate is fixed to the smallest possible
value, (c) the Y coordinate is fixed to the largest possible value.

If given, then Rules is a list of zero or more terms of the form shown be-
low, and impose extra constraints on the placement of the objects. For
the time being, the details are described in [Carlsson, Beldiceanu & Mar-
tin 08]. Please note: the rules require that all shapes of a polymorphic ob-
jects consist of the same number of shifted boxes. For example, Shapes =

[sbox(1,[0,0],[3,1]),sbox(1,[0,1],[2,4]),sbox(2,[0,0],[3,1])] will
not work.

454 SICStus Prolog

sentence ::= macro | fol
macro ::= head --->

body

head ::= term { to be substituted by a
body }

body ::= term { to substitute for a head
}

fol ::= #\ fol { negation }
| fol #/\ fol { conjunction }
| fol #\/ fol { disjunction }
| fol #=> fol { implication }
| fol #<=> fol { equivalence }
| exists(var,collection,fol){ existential quantifica-

tion }
| forall(var,collection,fol){ universal quantifica-

tion }
| card(var,collection,integer,integer,fol){ cardinality }
| true

| false

| expr relop expr { rational arithmetic }
| head { macro application }

expr ::= expr + expr
| - expr
| expr - expr
| min(expr,expr)

| max(expr,expr)

| expr * ground-
expr

| groundexpr *

expr

| expr / ground-
expr

| attref
| integer
| fold(var,collection,fop,expr,expr)

| variable { quantified variable }
| head { macro application }

groundexpr ::= expr { where expr is ground }
attref ::= entity ^ attr
attr ::= term { attribute name }

| variable { quantified variable }
relop ::= #< | #= | #> |

#\= | #=< | #>=

fop ::= + | min | max

collection ::= list
| objects(list) { list of oids }

Chapter 10: The Prolog Library 455

| sboxes(list) { list of sids }
Corresponds to geost* in MiniZinc.

The following example shows geost/2 modeling three non-overlapping objects.
The first object has four possible shapes, and the other two have two possible
shapes each.

| ?- domain([X1,X2,X3,Y1,Y2,Y3], 1, 4),

S1 in 1..4,

S2 in 5..6,

S3 in 7..8,

geost([object(1,S1,[X1,Y1]),

object(2,S2,[X2,Y2]),

object(3,S3,[X3,Y3])],

[sbox(1,[0,0],[2,1]),

sbox(1,[0,1],[1,2]),

sbox(1,[1,2],[3,1]),

sbox(2,[0,0],[3,1]),

sbox(2,[0,1],[1,3]),

sbox(2,[2,1],[1,1]),

sbox(3,[0,0],[2,1]),

sbox(3,[1,1],[1,2]),

sbox(3,[-2,2],[3,1]),

sbox(4,[0,0],[3,1]),

sbox(4,[0,1],[1,1]),

sbox(4,[2,1],[1,3]),

sbox(5,[0,0],[2,1]),

sbox(5,[1,1],[1,1]),

sbox(5,[0,2],[2,1]),

sbox(6,[0,0],[3,1]),

sbox(6,[0,1],[1,1]),

sbox(6,[2,1],[1,1]),

sbox(7,[0,0],[3,2]),

sbox(8,[0,0],[2,3])]).

The shapes are illustrated in the following picture:

456 SICStus Prolog

geost/2: three objects and eight shapes

A ground solution is shown in the following picture:

geost/2: a ground solution

The following example shows how to encode in Rules “objects with oid 1, 2 and
3 must all be at least 2 units apart from objects with oid 4, 5 and 6”.

Chapter 10: The Prolog Library 457

[(origin(O1,S1,D) ---> O1^x(D)+S1^t(D)),

(end(O1,S1,D) ---> O1^x(D)+S1^t(D)+S1^l(D)),

(tooclose(O1,O2,S1,S2,D) --->

end(O1,S1,D)+2 #> origin(O2,S2,D) #/\

end(O2,S2,D)+2 #> origin(O1,S1,D)),

(apart(O1,O2) --->

forall(S1,sboxes([O1^sid]),

forall(S2,sboxes([O2^sid]),

#\ tooclose(O1,O2,S1,S2,1) #\/

#\ tooclose(O1,O2,S1,S2,2)))),

(forall(O1,objects([1,2,3]),

forall(O2,objects([4,5,6]), apart(O1,O2))))].

The following example shows how to encode in Rules “objects 3 and 7 model
rooms that must be adjacent and have a common border at least 1 unit long”.

[(origin(O1,S1,D) ---> O1^x(D)+S1^t(D)),

(end(O1,S1,D) ---> O1^x(D)+S1^t(D)+S1^l(D)),

(overlap(O1,S1,O2,S2,D) --->

end(O1,S1,D) #> origin(O2,S2,D) #/\

end(O2,S2,D) #> origin(O1,S1,D)),

(abut(O1,O2) --->

forall(S1,sboxes([O1^sid]),

forall(S2,sboxes([O2^sid]),

((origin(O1,S1,1) #= end(O2,S2,1) #\/

origin(O2,S2,1) #= end(O1,S1,1)) #/\

overlap(O1,S1,O2,S2,2)) #\/

((origin(O1,S1,2) #= end(O2,S2,2) #\/

origin(O2,S2,2) #= end(O1,S1,2)) #/\

overlap(O1,S1,O2,S2,1))))),

(forall(O1,objects([3]),

forall(O2,objects([7]), abut(O1,O2))))].

10.10.4.9 Sequence Constraints

The following constraint provides a general way of defining any constraint involving se-
quences whose checker, i.e. a procedure that classifies ground instances as solutions or
non-solutions, can be expressed by a finite automaton, deterministic or nondeterministic,
extended with counter operations on its arcs. The point is that it is very much easier to
come up with such a checker than to come up with a filtering algorithm for the constraint
of interest. In the absence of counters, it maintains domain consistency.

458 SICStus Prolog

Corresponds to regular* in MiniZinc.

automaton(Signature, SourcesSinks, Arcs) since release 4.1

automaton(Sequence, Template, Signature, SourcesSinks, Arcs, Counters,

Initial, Final)

automaton(Sequence, Template, Signature, SourcesSinks, Arcs, Counters,

Initial, Final, Options) since release 4.1

The arguments are described below in terms of their abstract syntax:

Sequence The sequence of terms of interest; abstract grammar category
sequence.

Template A template for an item of the sequence; abstract grammar category
template. Only relevant if some state transition involving counter
arithmetic mentions a variable occurring in Template, in which case
the corresponding term in a sequence element will be accessed.

Signature The signature of Sequence; abstract grammar category signature.
The automaton is not driven by Sequence itself, but by Signature,
which ranges over some alphabet, implicitly defined by the values
used by Arcs. In addition to automaton/[8,9], you must call a
constraint that maps Sequence to Signature.

SourcesSinks
The source and sink nodes of the automaton; abstract grammar
category sourcessinks.

Arcs The arcs (transitions) of the automaton; abstract grammar cat-
egory arcs. Any transition not mentioned is assumed to go to an
implicit failure node. An arc optionally contains expressions for up-
dated counter values; by default, the counters remain unchanged.
Conditional updates can be specified.

Counters A list of variables, local to the constraint; abstract grammar cate-
gory counters.

Initial A list of initial values, usually instantiated; abstract grammar cat-
egory initial.

Final A list of final values, usually uninstantiated; abstract grammar cat-
egory final.

Options Abstract grammar category options; a list of zero or more of the
following terms. All but the last option are implemented by adding
auxiliary counters to the automaton including the necessary up-
dates in the arcs:

valueprec(First,Later,N) since release 4.1.3

N is unified with n, computed such that: if the value
Later occurs in the Signature, then First occurs n times
before the first occurrence of Later, otherwise n=0.

Chapter 10: The Prolog Library 459

anystretchocc(N) since release 4.1.3

N is unified with the number of (nonempty) stretches
of any single value in the Signature.

stretchocc(ValuePat,N) since release 4.1.3

N is unified with the number of stretches of values
matching ValuePat (abstract grammar category val-
uepat) in the Signature.

stretchoccmod(ValuePat,Mod,N) since release 4.1.3

N is unified with the number (modulo Mod) of
stretches of values matching ValuePat (abstract gram-
mar category valuepat) the Signature.

stretchmaxlen(ValuePat,N) since release 4.1.3

N is unified with n, computed such that: if values
matching ValuePat (abstract grammar category val-
uepat) occur the Signature, then n is the length of the
longest such stretch, otherwise n=0.

stretchminlen(ValuePat,N) since release 4.1.3

N is unified with n, computed such that: if values
matching ValuePat (abstract grammar category val-
uepat) occur the Signature, then n is the length of the
shortest such stretch, otherwise n is a large integer.

wordocc(WordPat,N) since release 4.1.3

N is unified with the number of words matching
WordPat (abstract grammar category wordpat) in the
Signature.

wordoccmod(WordPat,Mod,N) since release 4.1.3

N is unified with the number (modulo Mod) of words
matching WordPat (abstract grammar category word-
pat) in the Signature.

wordprefix(WordPat,ZO) since release 4.1.3

If the prefix of the Signature matches WordPat (ab-
stract grammar category wordpat), then ZO is unified
with 1, otherwise with 0.

wordsuffix(WordPat,ZO) since release 4.1.3

If the suffix of the Signature matches WordPat (ab-
stract grammar category wordpat), then ZO is unified
with 1, otherwise with 0.

state(Map,StateSequence) since release 4.1

For a signature of length k, the constraint is imple-
mented by decomposition into k smaller constraints
mapping an old state to a new state. The states are
represented as domain variables. StateSequence forms
the list of these k+1 domain variables, starting with

460 SICStus Prolog

the initial state and ending with the final state. Map
gives the interpretation of their values: it is a list of
pairs Node-Value such that if the nth state variable
Sn equals Value, then the automaton is in state Node
having read n symbols.

counterseq(CounterSequence) since release 4.2.1

Similarly to the list of states, CounterSequence forms
the list of the k+1 instances of Counters, beginning
with Initial and ending with Final.

Abstract syntax:

sequence ::= list of template {all of which of the same shape}
template ::= term {most general shape of the se-

quence}
{its variables should be local to
the constraint}

signature ::= list of variable
sourcessinks ::= list of nodespec
nodespec ::= source(node) {an initial state}

| sink(node) {an accept state}
node ::= term
arcs ::= list of arc
arc ::= arc(node,integer,node) {from node, integer, to node}

|

arc(node,integer,node,exprs)

{exprs correspond to new counter
values}

|

arc(node,integer,node,conditional)

conditional ::= (cond -> exprs)
| (conditional ; conditional)

exprs ::= list of Expr {of same length as counters}
{Expr as defined in
Section 10.10.13.2 [Syntax
of Arithmetic Expressions],
page 492,}
{over counters, template and
constants}
{variables occurring in counters
correspond to old counter values}
{variables occurring in template
refer to the current element of se-
quence}

cond ::= constraint {over counters, template and
constants}
{must be reifiable or true}

counters ::= list of variable {should be local to the constraint}
initial ::= list of dvar {of same length as counters}

Chapter 10: The Prolog Library 461

final ::= list of dvar {of same length as counters}
option ::= state(list of term,list of

dvar)

|

valueprec(integer,integer,dvar)

| anystretchocc(dvar)

| stretchocc(valuepat,dvar)

|

stretchoccmod(valuepat,dvar,integer)

|

stretchmaxlen(valuepat,dvar)

|

stretchminlen(valuepat,dvar)

| wordocc(wordpat,dvar)

|

wordoccmod(wordpat,dvar,integer)

| wordprefix(wordpat,dvar)

| wordsuffix(wordpat,dvar)

valuepat ::= integer
| list of integer {alternatives}
| valuepat/valuepat {alternatives}

wordpat ::= list of valuepat
dvar ::= variable or integer

If no counters are used, then the arguments Counters, Initial and Final should
be []. The arguments Template and Sequence are only relevant if some Expr
mentions a variable in Template, in which case the corresponding position in
Sequence will be used at that point.

The constraint holds for a ground instance Sequence if:

• Signature is the signature corresponding to Sequence.

• The finite automaton encoded by SourcesSinks and Arcs stops in an accept
state.

• Any counter arithmetic on the transitions map their Initial values to the
Final values.

• Any extra constraint imposed by Options are true.

Here is an example. Suppose that you want to define the predicate
inflexion(N,L,Opt) which should hold if L is a list of domain variables, and N
is the number of times that the sequence order switches between strictly increas-
ing and strictly decreasing. For example, the sequence [1,1,4,8,8,2,7,1]

switches order three times.

Such a constraint is conveniently expressed by a finite automaton over the
alphabet [<,=,>] denoting the order between consecutive list elements. A
counter is incremented when the order switches, and is mapped to the first
argument of the constraint. The automaton could look as follows:

462 SICStus Prolog

Automaton for inflexion/3

The following piece of code encodes this using automaton/9. The auxiliary
predicate inflexion_signature/2 maps the sequence to a signature where the
consecutive element order is encoded over the alphabet [0,1,2]. We use one
counter with initial value 0 and final value N (an argument of inflexion/3).
Two transitions increment the counter. All states are accept states.

Chapter 10: The Prolog Library 463

inflexion(N, Vars, Opt) :-

inflexion_signature(Vars, Sign),

automaton(Sign, _, Sign,

[source(s),sink(i),sink(j),sink(s)],

[arc(s,1,s),

arc(s,2,i),

arc(s,0,j),

arc(i,1,i),

arc(i,2,i),

arc(i,0,j,[C+1]),

arc(j,1,j),

arc(j,0,j),

arc(j,2,i,[C+1])],

[C],[0],[N],Opt).

inflexion_signature([], []).

inflexion_signature([_], []) :- !.

inflexion_signature([X,Y|Ys], [S|Ss]) :-

S in 0..2,

X #> Y #<=> S #= 0,

X #= Y #<=> S #= 1,

X #< Y #<=> S #= 2,

inflexion_signature([Y|Ys], Ss).

Some queries:

/* count the #inflections of a ground string */

| ?- inflexion(N, [1,1,4,8,8,2,7,1], []).

N = 3 ? RET

yes

/* find strings with two inflections */

| ?- length(L,4), domain(L,0,1),

inflexion(2,L,[]), labeling([],L).

L = [0,1,0,1] ? ;

L = [1,0,1,0] ? ;

no

464 SICStus Prolog

/* find strings that are strictly increasing, strictly de-

creasing or all equal */

| ?- length(L,4), domain(L,0,3),

inflexion(I,L,[anystretchocc(1)]), labeling([],L).

I = 0,

L = [0,0,0,0] ? ;

I = 0,

L = [0,1,2,3] ? ;

I = 0,

L = [1,1,1,1] ? ;

I = 0,

L = [2,2,2,2] ? ;

I = 0,

L = [3,2,1,0] ? ;

I = 0,

L = [3,3,3,3] ? ;

no

/* find strings that contain an increase followed by a de-

crease */

| ?- length(L,4), domain(L,0,1),

inflexion(I,L,[wordocc([2,0],1)]), labeling([],L).

I = 1,

L = [0,0,1,0] ? ;

I = 1,

L = [0,1,0,0] ? ;

I = 2,

L = [0,1,0,1] ? ;

I = 2,

L = [1,0,1,0] ? ;

no

This constraint uses techniques from [Beldiceanu, Carlsson & Petit 04] and
[Beldiceanu, Carlsson, Flener & Pearson 10].

The following constraints are symmetry breaking constraints for removing value symmetries.

value_precede_chain(+Values,+Vars) since release 4.5

value_precede_chain(+Values,+Vars,+Options) since release 4.5

holds if for all adjacent pairs v,w in Values, either w does not occur in Vars, or
v occurs earlier than w in Vars.

seq_precede_chain(+Vars) since release 4.6

seq_precede_chain(+Vars,+Options) since release 4.6

The same as the above, for Values = [1,2,...].

Values should be a list of integers, and Vars should be a list of domain variables,
with no restriction on their domains.

Correspond to value_precede_chain and seq_precede_chain in MiniZinc.

Chapter 10: The Prolog Library 465

Options is a list that may include the following option:

global(Boolean)

If false (the default), then the constraint is implemented by de-
composition to automaton/3. If true, then a custom propagator
is used. Both methods maintain domain consistency, but their rel-
ative performance may vary from case to case.

10.10.4.10 User-Defined Constraints

New, primitive constraints can be added defined by the user on two different levels. On a
higher level, constraints can be defined using the global constraint programming interface;
see Section 10.10.9 [Defining Global Constraints], page 472. Such constraints can embody
specialized algorithms and use the full power of Prolog. They cannot be reified.

On a lower level, new primitive constraints can be defined with indexicals. In this case, they
take part in the basic constraint solving algorithm and express custom designed rules for
special cases of the overall local propagation scheme. Such constraints are called FD predi-
cates; see Section 10.10.10 [Defining Primitive Constraints], page 479. They can optionally
be reified.

10.10.5 Enumeration Predicates

As is usually the case with finite domain constraint solvers, this solver is not complete.
That is, it does not ensure that the set of posted constraints is satisfiable. One must resort
to search (enumeration) to check satisfiability and get particular solutions.

The following predicates provide several variants of search:

indomain(?X)

where X is a domain variable with a bounded domain. Assigns, in increasing
order via backtracking, a feasible value to X.

labeling(:Options, +Variables)

where Variables is a list of domain variables and Options is a list of search
options. The domain variables must all have bounded domains. True if an
assignment of the variables can be found, which satisfies the posted constraints.

first_bound(+BB0, -BB)

later_bound(+BB0, -BB)

Provides an auxiliary service for the value(Enum) option (see below).

minimize(:Goal,?X)

minimize(:Goal,?X,+Options) since release 4.3

maximize(:Goal,?X)

maximize(:Goal,?X,+Options) since release 4.3

Uses a restart algorithm to find an assignment that minimizes (maximizes)
the domain variable X. Goal should be a Prolog goal that constrains X to
become assigned, and could be a labeling/2 goal. The algorithm calls Goal
repeatedly with a progressively tighter upper (lower) bound on X until a proof
of optimality is obtained.

466 SICStus Prolog

Whether to enumerate every solution that improves the objective function, or
only the optimal one after optimality has been proved, is controlled by Options.
If given, then it whould be a list containing a single atomic value, one of:

best since release 4.3

Return the optimal solution after proving its optimality. This is
the default.

all since release 4.3

Enumerate all improving solutions, on backtracking seek the next
improving solution. Merely fail after proving optimality.

The Options argument of labeling/2 controls the order in which variables are selected for
assignment (variable choice heuristic), the way in which choices are made for the selected
variable (value choice heuristic), whether the problem is a satisfaction one or an optimization
one, and whether all solutions or only the optimal one should be returned. The options
are divided into five groups. One option may be selected per group. Also, the number
of assumptions (choices) made during the search can be counted. Finally, limits on the
execution time and discrepancy of the search can be imposed:

The following options control the order in which the next variable is selected
for assignment.

leftmost

input_order

The leftmost variable is selected. This is the default.

min

smallest The leftmost variable with the smallest lower bound is selected.

max

largest The leftmost variable with the greatest upper bound is selected.

ff

first_fail

The first-fail principle is used: the leftmost variable with the small-
est domain is selected.

anti_first_fail since release 4.3

The leftmost variable with the largest domain is selected.

occurrence since release 4.3

The leftmost variable among those that have the most constraints
suspended on it is selected.

ffc

most_constrained

The most constrained heuristic is used: a variable with the small-
est domain is selected, breaking ties by (a) selecting the variable
that has the most constraints suspended on it and (b) selecting the
leftmost one.

Chapter 10: The Prolog Library 467

max_regret since release 4.3

The variable with the largest difference between its first two do-
main elements is selected. Ties are broken by selecting the leftmost
variable.

variable(Sel)

Sel is a predicate to select the next variable. Given Vars,
the variables that remain to label, it will be called as
Sel(Vars,Selected,Rest).

Sel is expected to succeed determinately, unifying Selected and Rest
with the selected variable and the remaining list, respectively.

Sel should be a callable term, optionally with a module pre-
fix, and the arguments Vars,Selected,Rest will be appended to it.
For example, if Sel is mod:sel(Param), then it will be called as
mod:sel(Param,Vars,Selected,Rest).

The following options control the way in which choices are made for the selected
variable X :

step Makes a binary choice between X #= B and X #\= B, where B is the
lower or upper bound of X. This is the default.

enum Makes a multiple choice for X corresponding to the values in its
domain.

bisect Makes a binary choice between X #=< M and X #> M, where M is the
middle of the domain of X, i.e. the mean of min(X) and max(X)

rounded down to the nearest integer. This strategy is also known
as domain splitting.

median since release 4.3

Makes a binary choice between X #= M and X #\= M, where M is the
median of the domain of X. If the domain has an even number of
elements, then the smaller middle value is used.

middle since release 4.3

Makes a binary choice between X #= M and X #\= M, where M is the
middle of the domain of X, i.e. the mean of min(X) and max(X)

rounded down to the nearest integer.

value(Enum)

Enum is a predicate that should prune the domain of X, pos-
sibly but not necessarily to a singleton. It will be called as
Enum(X,Rest,BB0,BB) where Rest is the list of variables that need
labeling except X, and BB0 and BB are parameters described be-
low.

Enum is expected to succeed nondeterminately, pruning the domain
of X, and to backtrack one or more times, providing alternative
prunings. To ensure that branch-and-bound search works correctly,
it must call the auxiliary predicate first_bound(BB0,BB) in its

468 SICStus Prolog

first solution. Similarly, it must call the auxiliary predicate later_
bound(BB0,BB) in any alternative solution.

Enum should be a callable term, optionally with a module prefix,
and the arguments X,Rest,BB0,BB will be appended to it. For
example, if Enum is mod:enum(Param), then it will be called as
mod:enum(Param,X,Rest,BB0,BB).

The following options control the order in which the choices are made for the
selected variable X. Not useful with the value(Enum) option:

up The domain is explored in ascending order. This is the default.

down The domain is explored in descending order.

The following options tell the solver whether the given problem is a satisfaction
problem or an optimization problem. In a satisfaction problem, we wish to find
values for the domain variables, but we do not care about which values. In an
optimization problem, we wish to find values that minimize or maximize some
objective function reflected in a domain variable:

satisfy since release 4.3

We have a satisfication problem. Its solutions are enumerated by
backtracking. This is the default.

minimize(X)

maximize(X)

We have an optimization problem, seeking an assignment that min-
imizes (maximizes) the domain variable X. The labeling should
constrain X to become assigned for all assignments of Variables. It
is useful to combine these option with the time_out/2, best, and
all options (see below). If these options occur more than once,
then the last occurrence overrides previous ones.

The following options are only meaningful for optimization problems. They
tell the solver whether to enumerate every solution that improves the objective
function, or only the optimal one after optimality has been proved:

best since release 4.3

Return the optimal solution after proving its optimality. This is
the default.

all since release 4.3

Enumerate all improving solutions, on backtracking seek the next
improving solution. Merely fail after proving optimality.

The following options are only meaningful for optimization problems. They tell
the solver what search scheme to use, but have no effect on the semantics or on
the meaning of other options:

bab since release 4.3

Use a branch-and-bound scheme, which incrementally tightens the
bound on the objective as more and more solutions are found. This
is the default, and is usually the more efficient scheme.

Chapter 10: The Prolog Library 469

restart since release 4.3

Use a scheme that restarts the search with a tighter bound on the
objective each time a solution is found.

The following option counts the number of assumptions (choices) made during
the search:

assumptions(K)

When a solution is found, K is unified with the number of choices
made.

Finally, limits on the discrepancy of the search and the execution time can be
imposed:

discrepancy(D)

On the path leading to the solution there are at most D choicepoints
in which a non-leftmost branch was taken.

time_out(Time,Flag)

See Section 10.43 [lib-timeout], page 846. Time should be an integer
number of milliseconds. If the search is exhausted within this time
and no solution is found, then the search merely fails, as usual.
Otherwise, Flag is bound to a value reflecting the outcome:

optimality since release 4.4

If best was selected in an optimization problem, then
the search space was exhausted, having found the op-
timal solution. The variables are bound to the cor-
responding values. If best was not selected, this flag
value is not used.

success since release 4.4

If best was selected in an optimization problem, then
the search timed out before the search space was ex-
hausted, having found at least one solution. If best was
not selected, then a solution was simply found before
the time limit. In any case, the variables are bound to
the values corresponding to the latest solution found.

time_out since release 4.4

If best was selected in an optimization problem, then
the search timed out before any solution was found. If
best was not selected, then the search timed out while
searching for the next solution. The variables are left
unbound.

For example, to enumerate solutions using a static variable ordering, use:

| ?- constraints(Variables),

labeling([], Variables).

%same as [leftmost,step,up,satisfy]

470 SICStus Prolog

To minimize a cost function using branch-and-bound search, computing the best solution
only, with a dynamic variable ordering using the first-fail principle, and domain splitting
exploring the upper part of domains first, use:

| ?- constraints(Variables, Cost),

labeling([ff,bisect,down,minimize(Cost)], Variables).

To give a time budget and collect the solutions of a satisfiability problem up to the time
limit, use:

| ?- constraints(Variables),

findall(Variables, label-

ing([time_out(Budget,success)|Options]), Solutions).

where Flag=success will hold if all solutions were found, and Flag=time_out will hold if
the time expired.

The file library('clpfd/examples/tsp.pl') contains an example of user-defined variable
and value choice heuristics.

Note that, when used for optimization, labeling/2 has a limitation compared to
minimize/[2,3] and maximize/[2,3]: the variable and value choice heuristics specified by
labeling/2 must apply to the whole set of variables, with no provision for different heuris-
tics for different subsets. As of release 4.3, this limitation has been lifted by the following
predicate:

solve(:Options, :Searches) since release 4.3

where Options is a list of options of the same shape as taken by labeling/2,
and Searches is a list of labeling/2 and indomain/1 goals, or a single such
goal. The domain variables of Searches must all have bounded domains. True
if the conjunction of Searches is true.

The main purpose of this predicate is for optimization, allowing to use differ-
ent heuristics in the different Searches. For satisfiability problems, a simple
sequence of labeling/2 and indomain/1 goals does the trick.

The treatment of the Options, as well as the suboption lists given in the
labeling/2 goals of Searches, is a bit special. Some options are global for
the whole search, and are ignored if they occur in the suboption lists. Others
are local to the given labeling/2 goal, but provides a default value for the
whole search if it occurs in Options. The following table defines the role of each
option as global or local:

all global

anti_first_fail local

assumptions/1 global

bab global

best global

bisect local

discrepancy/1 local

down local

Chapter 10: The Prolog Library 471

enum local

ffc local

ff local

first_fail local

input_order local

largest local

leftmost local

maximize/1 global

max local

max_regret local

median local

middle local

minimize/1 global

min local

most_constrained local

occurrence local

restart global

satisfy global

smallest local

step local

time_out/2 global

up local

value/1 local

variable/1 local

For example, suppose that you want to minimize a cost function using branch-and-bound
search, enumerating every improving solution, using left-to-right search on some variables
followed by first-fail domain splitting search on some other variables. This can be expressed
as:

| ?- constraints([X1,X2,X3,Y1,Y2,Y3], Cost),

solve([minimize(Cost),all],

[labeling([leftmost],[X1,X2,X3]),

labeling([ff,bisect],[Y1,Y2,Y3])]).

10.10.6 Statistics Predicates

The following predicates can be used to access execution statistics.

fd_statistics

fd_statistics(?Key, ?Value)

This allows a program to access execution statistics specific to this solver. Gen-
eral statistics about CPU time and memory consumption etc. is available from
the built-in predicate statistics/2.

Without arguments, displays on the standard error stream a summary of the
following statistics, and zeroes all counters. With arguments, for each of the
possible keys Key, Value is unified with the current value of a counter, which
is simultaneously zeroed. The following counters are maintained:

472 SICStus Prolog

resumptions

The number of times a constraint was resumed.

entailments

The number of times a (dis)entailment was detected by a constraint.

prunings The number of times a domain was pruned.

backtracks

The number of times a contradiction was found by a domain being
wiped out, or by a global constraint signalling failure. Other causes
of backtracking, such as failed Prolog tests, are not covered by this
counter.

constraints

The number of propagators created.

10.10.7 Answer Constraints

By default, the answer constraint only shows the projection of the store onto the variables
that occur in the query, but not any constraints that may be attached to these variables,
nor any domains or constraints attached to other variables. This is a conscious decision, as
no efficient algorithm for projecting answer constraints onto the query variables is known
for this constraint system.

It is possible, however, to get a complete answer constraint including all variables that
took part in the computation and their domains and attached constraints. This is done by
asserting a clause for the following predicate:

clpfd:full_answer hook,volatile

If false (the default), then the answer constraint, as well as constraints projected
by copy_term/3, clpfd:project_attributes/2, clpfd:attribute_goal/2

and their callers, only contain the domains of the query variables. If true,
then those constraints contain the domains and any attached constraints of all
variables. Initially defined as a dynamic, volatile predicate with no clauses.

10.10.8 Debugging

Code using library(clpfd) can be debugged with the usual debugger, but it does not
capture all relevant aspects of constraint execution: the propagation cascade and domain
changes are not visible. To capture such aspects, a separate, dedicated debugger is available;
see Section 10.15 [lib-fdbg], page 526.

The v command (print variable bindings) of the usual debugger can be handy. It will
endeavor to print the variable bindings of the clause containing the current goal, as well as
any goals that are blocked on a variable found among those bindings. In particular, it will
show the current domains of such variables. See Section 5.5 [Debug Commands], page 237.

10.10.9 Defining Global Constraints

10.10.9.1 The Global Constraint Programming Interface

This section describes a programming interface by means of which new constraints can
be written. The interface consists of a set of predicates provided by this library module.

Chapter 10: The Prolog Library 473

Constraints defined in this way can take arbitrary arguments and may use any constraint
solving algorithm, provided it makes sense. Reification cannot be expressed in this interface;
instead, reification may be achieved by explicitly passing a 0/1-variable to the constraint in
question.

Global constraints have state, which may be updated each time the constraint is resumed.
The state information may be used e.g. in incremental constraint solving.

The following two predicates are the principal entrypoints for defining and posting new
global constraints:

clpfd:dispatch_global(+Constraint, +State0, -State, -Actions) hook

Tells the solver how to solve constraints of the form Constraint. Defined as a
multifile predicate.

When defining a new constraint, a clause of this predicate must be added. Its
body defines a constraint solving method and should always succeed determi-
nately. When a global constraint is called or resumed, the solver will call this
predicate to deal with the constraint.

Please note: the constraint is identified by its principal functor;
there is no provision for having two constraints with the same name
in different modules. It is good practice to include a cut in every
clause of clpfd:dispatch_global/4.

Please note: During propagation, if the domain of a variable be-
comes reduced to a single value, then the variable will eventually
be bound to that value, but it is undefined exactly when that hap-
pens. Therefore, clauses of clpfd:dispatch_global/4 should not
use nonvar/1 or integer/1 to check if a variable is fixed. Use e.g.
fd_min/1 and fd_max/1 instead.

State0 and State are the old and new state respectively.

The constraint solving method must not invoke the constraint solver recursively
e.g. by binding variables or posting new constraints; instead, Actions should
be unified with a list of requests to the solver. Each request should be of the
following form:

exit The constraint has become entailed, and ceases to exist.

fail The constraint has become disentailed, causing the solver to back-
track.

X = V The solver binds X to V.

X in R The solver constrains X to be a member of the ConstantRange R
(see Section 10.10.13.1 [Syntax of Indexicals], page 490).

X in_set S

The solver constrains X to be a member of the FD set S (see
Section 10.10.9.3 [FD Set Operations], page 476).

474 SICStus Prolog

call(Goal)

The solver calls the goal or constraintGoal, which should be module
prefixed unless it is a built-in predicate or an exported predicate of
the clpfd module.

Goal is executed as any Prolog goal, but in a context where some
constraints may already be enqueued for execution, in which case
those constraints will run after the completion of the call request.

fd_global(:Constraint, +State, +Susp)

fd_global(:Constraint, +State, +Susp, +Options)

where Constraint is a constraint goal, State is its initial state, and Susp is a term
encoding how the constraint should wake up in response to domain changes.
This predicate posts the constraint.

Susp is a list of F(Var) terms where Var is a variable to suspend on and F is a
functor encoding when to wake up:

dom(X) wake up when the domain of X has changed

min(X) wake up when the lower bound of X has changed

max(X) wake up when the upper bound of X has changed

minmax(X)

wake up when the lower or upper bound of X has changed

val(X) wake up when the lower and upper bounds of X have coincided

Options is a list of zero or more of the following:

source(Term)

By default, the symbolic form computed by copy_term/3, and
shown in the answer constraint if clpfd:full_answer holds, equals
Constraint, module name expanded. With this option, the sym-
bolic form will instead be Term. In particular, if Term equals true,
then the constraint will not appear in the Body argument of copy_
term/3. This can be useful if you are posting some redundant
(implied) constraint.

idempotent(Boolean)

If true (the default), then the constraint solving method is as-
sumed to be idempotent. That is, in the scope of clpfd:dispatch_
global/4, the solver will not check for the resumption conditions
for the given constraint, while performing its Actions. If false,
then an action may well cause the solver to resume the constraint
that produced the action.

If a variable occurs more than once in a global constraint that is be-
ing posted, or due to a variable-variable unification, then the solver
will no longer trust the constraint solving method to be idempotent.

For an example of usage, see Section 10.10.9.4 [Global Constraint Example], page 478.

Chapter 10: The Prolog Library 475

The following predicate controls operational aspects of the constraint solver:

fd_flag(+FlagName, ?OldValue, ?NewValue)

OldValue is the value of the FD flag FlagName, and the new value of FlagName
is set to NewValue. The possible FD flag names and values are:

overflow Determines the behavior on integer overflow conditions. Possible
values:

error Raises a representation error (the default).

fail Silently fails.

debug Controls the visibility of constraint propagation. Possible values
are on and off (the default). For internal use by library(fdbg).

10.10.9.2 Reflection Predicates

The constraint solving method needs access to information about the current domains
of variables. This is provided by the following predicates, which are all constant time
operations.

fd_var(?X)

Checks that X is currently an unbound variable that is known to the CLPFD
solver.

fd_min(?X, ?Min)

where X is a domain variable. Min is unified with the smallest value in the
current domain of X, i.e. an integer or the atom inf denoting minus infinity.

fd_max(?X, ?Max)

where X is a domain variable. Max is unified with the upper bound of the
current domain of X, i.e. an integer or the atom sup denoting plus infinity.

fd_size(?X, ?Size)

where X is a domain variable. Size is unified with the size of the current domain
of X, if the domain is bounded, or the atom sup otherwise.

fd_set(?X, ?Set)

where X is a domain variable. Set is unified with an FD set denoting the
internal representation of the current domain of X ; see below.

fd_dom(?X, ?Range)

where X is a domain variable. Range is unified with a ConstantRange (see
Section 10.10.13.1 [Syntax of Indexicals], page 490) denoting the current domain
of X.

fd_degree(?X, ?Degree)

where X is a domain variable. Degree is unified with the number of constraints
that are attached to X.

Please note: this number may include some constraints that have
been detected as entailed. Also, Degree is not the number of neigh-
bors of X in the constraint network.

476 SICStus Prolog

The following predicates can be used for computing the set of variables that are (transitively)
connected via constraints to some given variable(s).

fd_neighbors(+Var, -Neighbors)

Given a domain variable Var, Neighbors is the set of other variables, domain
or otherwise, that occur with Var in some constraint.

fd_closure(+Vars, -Closure)

Given a list Vars of domain variables, Closure is the set of variables (including
Vars) that can be transitively reached via constraints. Thus, fd_closure/2 is
the transitive closure of fd_neighbors/2.

10.10.9.3 FD Set Operations

The domains of variables are internally represented compactly as FD set terms. The details
of this representation are subject to change and should not be relied on. Therefore, a
number of operations on FD sets are provided, as such terms play an important role in
the interface. Under no circumstances should you try to construct FD sets with other
operations such as unification. The following operations are the primitive ones:

is_fdset(+Set)

Set is a valid FD set.

empty_fdset(?Set)

Set is the empty FD set.

fdset_parts(?Set, ?Min, ?Max, ?Rest)

Set is an FD set, which is a union of the non-empty interval [Min,Max] and the
FD set Rest, and all elements of Rest are greater than Max+1. Min and Max
are both integers or the atoms inf and sup, denoting minus and plus infinity,
respectively. Either Set or all the other arguments must be ground.

The following operations can all be defined in terms of the primitive ones, but in most cases,
a more efficient implementation is used:

empty_interval(+Min, +Max)

[Min,Max] is an empty interval.

fdset_interval(?Set, ?Min, ?Max)

Set is an FD set, which is the non-empty interval [Min,Max].

fdset_singleton(?Set, ?Elt)

Set is an FD set containing Elt only. At least one of the arguments must be
ground.

fdset_min(+Set, -Min)

Min is the lower bound of Set.

fdset_max(+Set, -Min)

Max is the upper bound of Set. This operation is linear in the number of
intervals of Set.

Chapter 10: The Prolog Library 477

fdset_size(+Set, -Size)

Size is the cardinality of Set, represented as sup if Set is infinite. This operation
is linear in the number of intervals of Set.

list_to_fdset(+List, -Set)

Set is the FD set containing the elements of List. Slightly more efficient if List
is ordered.

fdset_to_list(+Set, -List)

List is an ordered list of the elements of Set, which must be finite.

range_to_fdset(+Range, -Set)

Set is the FD set containing the elements of the ConstantRange (see
Section 10.10.13.1 [Syntax of Indexicals], page 490) Range.

fdset_to_range(+Set, -Range)

Range is a constant interval, a singleton constant set, or a union of such, de-
noting the same set as Set.

fdset_add_element(+Set1, +Elt -Set2)

Set2 is Set1 with Elt inserted in it.

fdset_del_element(+Set1, +Elt, -Set2)

Set2 is like Set1 but with Elt removed.

fdset_disjoint(+Set1, +Set2)

The two FD sets have no elements in common.

fdset_intersect(+Set1, +Set2)

The two FD sets have at least one element in common.

fdset_intersection(+Set1, +Set2, -Intersection)

Intersection is the intersection between Set1 and Set2.

fdset_intersection(+Sets, -Intersection)

Intersection is the intersection of all the sets in Sets.

fdset_member(?Elt, +Set)

is true when Elt is a member of Set. If Elt is unbound, then Set must be finite.

fdset_eq(+Set1, +Set2)

Is true when the two arguments represent the same set i.e. they are identical.

fdset_subset(+Set1, +Set2)

Every element of Set1 appears in Set2.

fdset_subtract(+Set1, +Set2, -Difference)

Difference contains all and only the elements of Set1 that are not also in Set2.

fdset_union(+Set1, +Set2, -Union)

Union is the union of Set1 and Set2.

fdset_union(+Sets, -Union)

Union is the union of all the sets in Sets.

fdset_complement(+Set, -Complement)

Complement is the complement of Set wrt. inf..sup.

478 SICStus Prolog

10.10.9.4 Global Constraint Example

The following example defines a new global constraint exactly(X,L,N), which is true if
X occurs exactly N times in the list L of domain variables. N must be an integer when
the constraint is posted. A version without this restriction and defined in terms of reified
equalities was presented earlier; see Section 10.10.3.4 [Reified Constraints], page 429.

This example illustrates the use of state information. The state has two components: the
list of variables that could still be X, and the number of variables still required to be X.

The constraint is defined to wake up on any domain change.

% exactly.pl

/*

An implementation of exactly(I, X[1]...X[m], N):

Necessary condition: 0 <= N <= m.

Rewrite rules:

[1] |= X[i]=I 7→ exactly(I, X[1]...X[i-1],X[i+1]...X[m], N-1):

[2] |= X[i]!=I 7→ exactly(I, X[1]...X[i-1],X[i+1]...X[m], N):

[3] |= N=0 7→ X[1]!=I ... X[m]!=I

[4] |= N=m 7→ X[1]=I ... X[m]=I

*/

:- use_module(library(clpfd)).

% the entrypoint

exactly(I, Xs, N) :-

dom_suspensions(Xs, Susp),

fd_global(exactly(I,Xs,N), state(Xs,N), Susp).

dom_suspensions([], []).

dom_suspensions([X|Xs], [dom(X)|Susp]) :-

dom_suspensions(Xs, Susp).

% the solver method

:- multifile clpfd:dispatch_global/4.

clpfd:dispatch_global(exactly(I,_,_), state(Xs0,N0), state(Xs,N), Actions) :-

exactly_solver(I, Xs0, Xs, N0, N, Actions).

exactly_solver(I, Xs0, Xs, N0, N, Actions) :-

ex_filter(Xs0, Xs, N0, N, I),

length(Xs, M),

(N=:=0 -> Actions = [exit|Ps], ex_neq(Xs, I, Ps)

; N=:=M -> Actions = [exit|Ps], ex_eq(Xs, I, Ps)

; N>0, N<M -> Actions = []

; Actions = [fail]

).

Chapter 10: The Prolog Library 479

% exactly.pl

% rules [1,2]: filter the X's, decrementing N

ex_filter([], [], N, N, _).

ex_filter([X|Xs], Ys, L, N, I) :- X==I, !,

M is L-1,

ex_filter(Xs, Ys, M, N, I).

ex_filter([X|Xs], Ys0, L, N, I) :-

fd_set(X, Set),

fdset_member(I, Set), !,

Ys0 = [X|Ys],

ex_filter(Xs, Ys, L, N, I).

ex_filter([_|Xs], Ys, L, N, I) :-

ex_filter(Xs, Ys, L, N, I).

% rule [3]: all must be neq I

ex_neq(Xs, I, Ps) :-

fdset_singleton(Set0, I),

fdset_complement(Set0, Set),

eq_all(Xs, Set, Ps).

% rule [4]: all must be eq I

ex_eq(Xs, I, Ps) :-

fdset_singleton(Set, I),

eq_all(Xs, Set, Ps).

eq_all([], _, []).

eq_all([X|Xs], Set, [X in_set Set|Ps]) :-

eq_all(Xs, Set, Ps).

end_of_file.

% sample queries:

| ?- exactly(5,[A,B,C],1), A=5.

A = 5,

B in(inf..4)\/(6..sup), C in(inf..4)\/(6..sup)

| ?- exactly(5,[A,B,C],1), A in 1..2, B in 3..4.

C = 5,

A in 1..2,

B in 3..4

10.10.10 Defining Primitive Constraints

Indexicals are the principal means of defining constraints, but it is usually not necessary
to resort to this level of programming—most commonly used constraints are available in
a library and/or via macro-expansion. The key feature about indexicals is that they give

480 SICStus Prolog

the programmer precise control over aspects of the operational semantics of the constraints.
Trade-offs can be made between the computational cost of the constraints and their pruning
power. The indexical language provides many degrees of freedom for the user to select the
level of consistency to be maintained depending on application-specific needs.

10.10.10.1 Definitions

For constraint store S, variable X, and finite domain R:

• D(X,S) denotes the domain of X in S.

• (X in R)(S) denotes the extension of S where D(X,S) has been intersected with R.

The following definitions, adapted from [Van Hentenryck et al. 95], define important notions
of consistency and entailment of constraints wrt. stores.

A ground constraint is true if it holds and false otherwise.

A constraint C is domain-consistent wrt. S iff, for each variable Xi and value Vi in D(Xi,S),
there exist values Vj in D(Xj,S), 1 <= j <= n /\ i != j, such that C(V1,. . . ,Vn) is true.

A constraint C is domain-entailed by S iff, for all values Vj in D(Xj,S), 1 <= j <= n,
C(V1,. . . ,Vn) is true.

Let D’(X,S) denote the interval [min(D(X,S)),max(D(X,S))].

A constraint C is bounds-consistent wrt. S iff, for each variable Xi, there exist values Vj
and Wj in D’(Xj,S), 1 <= j <= n, i != j, such that C(V1,. . . ,min(D(Xi,S)),. . . ,Vn) and
C(W1,. . . ,max(D(Xi,S)),. . . ,Wn) are both true.

A constraint C is bounds-entailed by S iff, for all values Vj in D’(Xj,S), 1 <= j <= n,
C(V1,. . . ,Vn) is true.

Finally, a constraint is domain-disentailed (bounds-disentailed) by S iff its negation is
domain-entailed (bounds-entailed) by S.

10.10.10.2 Pitfalls of Interval Reasoning

In most circumstances, arithmetic constraints maintain bounds consistency and detect
bounds entailment and disentailment. There are cases where a constraint maintaining
bounds consistency may detect a contradiction when the constraint is not yet bounds-
disentailed, as the following example illustrates. Note that X #\= Y maintains domain con-
sistency if both arguments are constants or variables:

| ?- X+Y #= Z, X=1, Z=6, Y in 1..10, Y #\= 5.

no

| ?- X+Y #= Z #<=> B, X=1, Z=6, Y in 1..10, Y #\= 5.

X = 1,

Z = 6,

Y in(1..4)\/(6..10),

B in 0..1

Chapter 10: The Prolog Library 481

Since 1+5#=6 holds, X+Y #= Z is not bounds-disentailed, although any attempt to make it
bounds-consistent wrt. the store results in a contradictory store.

10.10.10.3 Indexicals

An indexical is a reactive functional rule of the form X in R, where R is a finite domain
valued range expression (see below). See Section 10.10.13.1 [Syntax of Indexicals], page 490,
for a grammar defining indexicals and range expressions.

Indexicals can play one of two roles: propagating indexicals are used for constraint solving,
and checking indexicals are used for entailment checking. Let S(R) denote the value of R
in S. When a propagating indexical fires, the current store S is extended to (X in S(R))(S).
When a checking indexical fires, it checks if D(X,S) is contained in S(R), in which case the
constraint corresponding to the indexical is detected as entailed.

10.10.10.4 Range Expressions

A range expression has one of the following forms, where Ri denote range expressions, Ti
denote integer valued term expressions, S(Ti) denotes the integer value of Ti in S, X denotes
a variable, I denotes an integer, and S denotes the current store.

dom(X) evaluates to D(X,S)

{T1,...,Tn}

evaluates to {S(T1),. . . ,S(Tn)}. Any Ti containing a variable that is not “quan-
tified” by unionof/3 will cause the indexical to suspend until this variable has
been assigned.

T1..T2 evaluates to the interval between S(T1) and S(T2).

R1/\R2 evaluates to the intersection of S(R1) and S(R2)

R1\/R2 evaluates to the union of S(R1) and S(R2)

\R2 evaluates to the complement of S(R2)

R1+R2

R1+T2 evaluates to S(R2) or S(T2) added pointwise to S(R1)

-R2 evaluates to S(R2) negated pointwise

R1-R2

R1-T2

T1-R2 evaluates to S(R2) or S(T2) subtracted pointwise from S(R1) or S(T1)

R1 mod R2

R1 mod T2 evaluates to the pointwise floored modulo of S(R1) and S(R2) or S(T2)

R1 rem R2

R1 rem T2 evaluates to the pointwise truncated remainder of S(R1) and S(R2) or S(T2)

R1 ? R2 evaluates to S(R2) if S(R1) is a non-empty set; otherwise, evaluates to the
empty set. This expression is commonly used in the context (R1 ? (inf..sup)

\/ R3), which evaluates to S(R3) if S(R1) is an empty set; otherwise, evaluates
to inf..sup. As an optimization, R3 is not evaluated while the value of R1 is
a non-empty set.

482 SICStus Prolog

unionof(X,R1,R2)

evaluates to the union of S(E1),. . . ,S(EN), where each EI has been formed
by substituting K for X in R2, where K is the I :th element of S(R1). See
Section 10.10.12.2 [N Queens], page 488, for an example of usage.

Please note: if S(R1) is infinite, then the evaluation of the indexical
will be abandoned, and the indexical will simply suspend.

switch(T,MapList)

evaluates to S(E) if S(T1) equalsK andMapList contains a pair K-E. Otherwise,
evaluates to the empty set. If T contains a variable that is not “quantified” by
unionof/3, then the indexical will suspend until this variable has been assigned.

10.10.10.5 Term Expressions

A term expression has one of the following forms, where T1 and T2 denote term expressions,
X denotes a variable, I denotes an integer, and S denotes the current store.

min(X) evaluates to the minimum of D(X,S)

max(X) evaluates to the maximum of D(X,S)

card(X) evaluates to the size of D(X,S)

X evaluates to the integer value of X. The indexical will suspend until X is
assigned.

I an integer

inf minus infinity

sup plus infinity

-T1 evaluates to S(T1) negated

T1+T2 evaluates to the sum of S(T1) and S(T2)

T1-T2 evaluates to the difference of S(T1) and S(T2)

T1*T2 evaluates to the product of S(T1) and S(T2), where S(T2) must not be negative

T1/>T2 evaluates to the floored quotient of S(T1) and S(T2), where S(T2) must be
positive

T1/<T2 evaluates to the ceilinged quotient of S(T1) and S(T2), where S(T2) must be
positive

T1 mod T2 evaluates to the floored remainder of S(T1) and S(T2)

T1 rem T2 evaluates to the truncated remainder of S(T1) and S(T2)

10.10.10.6 Monotonicity of Ranges

A range R is monotone in S iff the value of R in S’ is contained in the value of R in S, for
every extension S’ of S. A range R is anti-monotone in S iff the value of R in S is contained
in the value of R in S’, for every extension S’ of S. By abuse of notation, we will say that
X in R is (anti-)monotone iff R is (anti-)monotone.

Chapter 10: The Prolog Library 483

The consistency or entailment of a constraint C expressed as indexicals X in R in a store
S is checked by considering the relationship between D(X,S) and S(R), together with the
(anti-)monotonicity of R in S. The details are given in Section 10.10.10.8 [Execution of
Propagating Indexicals], page 485, and Section 10.10.10.9 [Execution of Checking Indexi-
cals], page 486.

The solver checks (anti-)monotonicity by requiring that certain variables occurring in the
indexical be ground. This sufficient condition can sometimes be false for an (anti-)monotone
indexical, but such situations are rare in practice.

10.10.10.7 FD Predicates

The following example defines the constraint X+Y=T as an FD predicate in terms of three
indexicals. Each indexical is a rule responsible for removing values detected as incompatible
from one particular constraint argument. Indexicals are not Prolog goals; thus, the example
does not express a conjunction. However, an indexical may make the store contradictory,
in which case backtracking is triggered:

plus(X,Y,T) +:

X in min(T) - max(Y) .. max(T) - min(Y),

Y in min(T) - max(X) .. max(T) - min(X),

T in min(X) + min(Y) .. max(X) + max(Y).

The above definition contains a single clause used for constraint solving. The first indexical
wakes up whenever the bounds of S(T) or S(Y) are updated, and removes from D(X,S) any
values that are not compatible with the new bounds of T and Y. Note that in the event of
“holes” in the domains of T or Y, D(X,S) may contain some values that are incompatible
with X+Y=T but go undetected. Like most built-in arithmetic constraints, the above
definition maintains bounds consistency, which is significantly cheaper to maintain than
domain consistency, and suffices in most cases. The constraint could for example be used
as follows:

| ?- X in 1..5, Y in 2..8, plus(X,Y,T).

X in 1..5,

Y in 2..8,

T in 3..13

Thus, when an FD predicate is called, the ‘+:’ clause is activated.

The definition of a user constraint has to specify the variables involved and the finite domains
with which their domains should be intersected when the propagator is run. Therefore the
FD predicate with n arguments consists of n indexicals, each specifying a left hand side
variable and a right hand side expression that evaluates to a finite domain, which is a
function of the expression and of the constraint store. For example, the third indexical in
the above FD predicate evaluates to the finite domain 3..13 for T if D(X,S) = 1..5 and
D(Y,S) = 2..8. As the domain of some variables gets smaller, the indexical may further
narrow the domain of other variables. Therefore such an indexical (called a propagating
indexical) acts as a coroutine reacting to the changes in the store by enforcing further
changes in the store.

484 SICStus Prolog

In general there are three stages in the lifetime of a propagating indexical. When it is posted
it may not be evaluated immediately (e.g. has to wait until some variables are ground before
being able to modify the store). Until the preconditions for the evaluation are satisfied, the
coroutine is blocked. When the indexical becomes unblocked, it computes a finite domain
for intersecting with the domain of its left hand side. The coroutine then waits until some
change occurs in a domain of a variable occurring in its right hand side. Eventually, the
computation reaches a point when the indexical is entailed by the store, i.e. no changes in
its right hand side can prune its left hand side any longer, and the coroutine can cease to
exist.

Note that FD predicates must be correct and checking (see Section 10.10.3 [CLPFD Inter-
face], page 425).

There can be several alternative definitions for the same user constraint with different
strengths in propagation. For example, the definition of plusd below encodes the same
X+Y=T constraint as the plus predicate above, but maintaining domain consistency:

plusd(X,Y,T) +:

X in dom(T) - dom(Y),

Y in dom(T) - dom(X),

T in dom(X) + dom(Y).

| ?- X in {1}\/{3}, Y in {10}\/{20}, plusd(X, Y, T).

X in{1}\/{3},

Y in{10}\/{20},

T in{11}\/{13}\/{21}\/{23}

This costs more in terms of execution time, but gives more precise results. For singleton
domains plus and plusd behave in the same way.

In our design, general indexicals can only appear in the context of FD predicate definitions.
The rationale for this restriction is the need for general indexicals to be able to suspend
and resume, and this ability is only provided by the FD predicate mechanism.

If the program merely posts a constraint, then it suffices for the definition to contain a
single clause for solving the constraint. If a constraint is reified or occurs in a propositional
formula, then the definition must contain four clauses for solving and checking entailment of
the constraint and its negation. The role of each clause is reflected in the “neck” operator.
The following table summarizes the different forms of indexical clauses corresponding to
a constraint C. In all cases, Head should be a compound term with all arguments being
distinct variables:

Head +: Indexicals.

The body consists of propagating indexicals for solving C. The body can in
fact be of a more general form—see Section 10.10.10.10 [Compiled Indexicals],
page 487.

Head -: Indexicals.

The body consists of propagating indexicals for solving the negation of C.

Chapter 10: The Prolog Library 485

Head +? Indexical.

The body consists of a single checking indexical for testing entailment of C.

Head -? Indexical.

The body consists of a single checking indexical for testing entailment of the
negation of C.

When a constraint is reified as in Constraint #<=> B, the solver spawns two coroutines
corresponding to detecting entailment and disentailment. Eventually, one of them will
succeed in this and consequently will bind B to 0 or 1. A third coroutine is spawned,
waiting for B to become assigned, at which time the constraint (or its negation) is posted.
In the mean time, the constraint may have been detected as (dis)entailed, in which case the
third coroutine is dismissed.

As an example of a constraint with all methods defined, consider the following library
constraint defining a disequation between two domain variables:

'x\\=y'(X,Y) +:

X in \{Y},

Y in \{X}.

'x\\=y'(X,Y) -:

X in dom(Y),

Y in dom(X).

'x\\=y'(X,Y) +?

X in \dom(Y).

'x\\=y'(X,Y) -?

X in {Y}.

The following sections provide more precise coding rules and operational details for index-
icals. X in R denotes an indexical corresponding to a constraint C. S denotes the current
store.

10.10.10.8 Execution of Propagating Indexicals

Consider the definition of a constraint C containing a propagating indexical X in R. Let
TV(X,C,S) denote the set of values for X that can make C true in some ground extension
of the store S. Then the indexical should obey the following coding rules:

• all arguments of C except X should occur in R

• if R is ground in S, S(R) = TV(X,C,S)

If the coding rules are observed, then S(R) can be proven to contain TV(X,C,S) for all
stores in which R is monotone. Hence it is natural for the implementation to wait until R
becomes monotone before admitting the propagating indexical for execution. The execution
of X in R thus involves the following:

• If D(X,S) is disjoint from S(R), then a contradiction is detected.

• If D(X,S) is contained in S(R), then D(X,S) does not contain any values known to be

486 SICStus Prolog

incompatible with C, and the indexical suspends, unless R is ground in S, in which
case C is detected as entailed.

• Otherwise, D(X,S) contains some values that are known to be incompatible with C.
Hence, S is extended to (X in S(R))(S) (X is pruned), and the indexical suspends,
unless R is ground in S, in which case C is detected as entailed.

A propagating indexical is scheduled for execution as follows:

• it is evaluated initially as soon as it has become monotone

• it is re-evaluated when one of the following conditions occurs:

1. the domain of a variable Y that occurs as dom(Y) or card(Y) in R has been
updated

2. the lower bound of a variable Y that occurs as min(Y) in R has been updated

3. the upper bound of a variable Y that occurs as max(Y) in R has been updated

10.10.10.9 Execution of Checking Indexicals

Consider the definition of a constraint C containing a checking indexical X in R. Let
FV(X,C,S) denote the set of values for X that can make C false in some ground exten-
sion of the store S. Then the indexical should obey the following coding rules:

• all arguments of C except X should occur in R

• if R is ground in S, S(R) = TV(X,C,S)

If the coding rules are observed, then S(R) can be proven to exclude FV(X,C,S) for all
stores in which R is anti-monotone. Hence it is natural for the implementation to wait
until R becomes anti-monotone before admitting the checking indexical for execution. The
execution of X in R thus involves the following:

• If D(X,S) is contained in S(R), then none of the possible values for X can make C false,
and so C is detected as entailed.

• Otherwise, if D(X,S) is disjoint from S(R) and R is ground in S, then all possible values
for X will make C false, and so C is detected as disentailed.

• Otherwise, D(X,S) contains some values that could make C true and some that could
make C false, and the indexical suspends.

A checking indexical is scheduled for execution as follows:

• it is evaluated initially as soon as it has become anti-monotone

• it is re-evaluated when one of the following conditions occurs:

1. the domain of X has been pruned, or X has been assigned

2. the domain of a variable Y that occurs as dom(Y) or card(Y) in R has been pruned

3. the lower bound of a variable Y that occurs as min(Y) in R has been increased

4. the upper bound of a variable Y that occurs as max(Y) in R has been decreased

Chapter 10: The Prolog Library 487

10.10.10.10 Compiled Indexicals

The arithmetic, membership, and propositional constraints described earlier are trans-
formed at compile time to conjunctions of library constraints. Although linear in the size of
the source code, the expansion of a constraint to library goals can have time and memory
overheads. Temporary variables holding intermediate values may have to be introduced,
and the grain size of the constraint solver invocations can be rather small. Therefore, an
automatic translation by compilation to indexicals is also provided for a selected set of
constraints. The syntax for this construction is:

Head +: ConstraintBody since release 4.1.3

Head should be a compound term with all arguments being distinct variables.
ConstraintBody should be a constraint amenable to compilation to indexicals,
and should not contain any variable not mentioned in Head. This clause defines
the constraint Head to hold iff ConstraintBody is true.

Roughly, a constraint amenable to such compilation is of one of the following forms, or is
a propositional combination of such forms. See Section 10.10.13.1 [Syntax of Indexicals],
page 490, for the exact definition:

• var in ConstantRange

• element(var,CList,var)

• table([VList],CTable)

• LinExpr RelOp LinExpr

• var { X stands for X#=1 }

10.10.11 Coexisting with Attributes and Blocked Goals

Domain variables may have attributes from other modules, as well as blocked goals, attached
to them. However, the CLPFD propagation phase runs to completion before invoking
handlers for such attributes and resuming such blocked goals. This could mean in particular
that upon completion of the propagation phase, attribute handlers and blocked goals for
multiple variables are ready to execute. For details, see the verify_attributes/3 hook at
Section 10.3 [lib-atts], page 388.

Please note: fd_purge(X) (see Section 10.10.3.2 [Forgetting Constraints], page 428) does
not affect attributes of other modules, or blocked goals.

Please note: the garbage collector will preserve all variables with attached attributes or
blocked goals.

10.10.12 Example Programs

This section contains a few example programs. The first two programs are included in a
benchmark suite that comes with the distribution. The benchmark suite is run by typing:

| ?- compile(library('clpfd/examples/bench')).

| ?- make.

488 SICStus Prolog

10.10.12.1 Send More Money

Let us return briefly to the Send More Money problem (see Section 10.10.3.3 [Constraint
Satisfaction Problems], page 428). Its sum/8 predicate will expand to a scalar_product/4

constraint. An indexical version is defined simply by changing the neck symbol of sum/8
from ‘:-’ to ‘+:’, thus turning it into an FD predicate:

sum(S, E, N, D, M, O, R, Y) +:

1000*S + 100*E + 10*N + D

+ 1000*M + 100*O + 10*R + E

#= 10000*M + 1000*O + 100*N + 10*E + Y.

10.10.12.2 N Queens

The problem is to place N queens on an NxN chess board so that no queen is threatened
by another queen.

The variables of this problem are the N queens. Each queen has a designated row. The
problem is to select a column for it.

The main constraint of this problem is that no queen threaten another. This is encoded
by the no_threat/3 constraint and holds between all pairs (X,Y) of queens. It could be
defined as:

no_threat(X, Y, I) :-

X #\= Y,

X+I #\= Y,

X-I #\= Y.

However, this formulation introduces new temporary domain variables and creates twelve
fine-grained indexicals. Worse, the disequalities only maintain bounds consistency, and so
may miss some opportunities for pruning elements in the middle of domains.

A better idea is to formulate no_threat/3 as an FD predicate with two indexicals, as shown
in the program below. This constraint will not fire until one of the queens has been assigned
(the corresponding indexical does not become monotone until then). Hence, the constraint
is still not as strong as it could be.

For example, if the domain of one queen is 2..3, then it will threaten any queen placed in
column 2 or 3 on an adjacent row, no matter which of the two open positions is chosen for
the first queen. The commented out formulation of the constraint captures this reasoning,
and illustrates the use of the unionof/3 operator. This stronger version of the constraint
indeed gives less backtracking, but is computationally more expensive and does not pay off
in terms of execution time, except possibly for very large chess boards.

It is clear that no_threat/3 cannot detect any incompatible values for a queen with domain
of size greater than three. This observation is exploited in the third version of the constraint.

The first-fail principle is appropriate in the enumeration part of this problem.

Chapter 10: The Prolog Library 489

:- use_module(library(clpfd)).

queens(N, L, LabelingType) :-

length(L, N),

domain(L, 1, N),

constrain_all(L),

labeling(LabelingType, L).

constrain_all([]).

constrain_all([X|Xs]) :-

constrain_between(X, Xs, 1),

constrain_all(Xs).

constrain_between(_X, [], _N).

constrain_between(X, [Y|Ys], N) :-

no_threat(X, Y, N),

N1 is N+1,

constrain_between(X, Ys, N1).

% version 1: weak but efficient

no_threat(X, Y, I) +:

X in \({Y} \/ {Y+I} \/ {Y-I}),

Y in \({X} \/ {X+I} \/ {X-I}).

/*

% version 2: strong but very inefficient version

no_threat(X, Y, I) +:

X in unionof(B,dom(Y),\({B} \/ {B+I} \/ {B-I})),

Y in unionof(B,dom(X),\({B} \/ {B+I} \/ {B-I})).

% version 3: strong but somewhat inefficient version

no_threat(X, Y, I) +:

X in (4..card(Y)) ? (inf..sup) \/

unionof(B,dom(Y),\({B} \/ {B+I} \/ {B-I})),

Y in (4..card(X)) ? (inf..sup) \/

unionof(B,dom(X),\({B} \/ {B+I} \/ {B-I})).

*/

| ?- queens(8, L, [ff]).

L = [1,5,8,6,3,7,2,4]

10.10.12.3 Cumulative Scheduling

This example is a very small scheduling problem. We consider seven tasks where each task
has a fixed duration and a fixed amount of used resource:

490 SICStus Prolog

Task Duration Resource
t1 16 2
t2 6 9
t3 13 3
t4 7 7
t5 5 10
t6 18 1
t7 4 11

The goal is to find a schedule that minimizes the completion time for the schedule while not
exceeding the capacity 13 of the resource. The resource constraint is succinctly captured by a
cumulative/2 constraint. Branch-and-bound search is used to find the minimal completion
time.

This example was adapted from [Beldiceanu & Contejean 94].

:- use_module(library(clpfd)).

schedule(Ss, End) :-

Ss = [S1,S2,S3,S4,S5,S6,S7],

Es = [E1,E2,E3,E4,E5,E6,E7],

Tasks = [task(S1,16,E1, 2,0),

task(S2, 6,E2, 9,0),

task(S3,13,E3, 3,0),

task(S4, 7,E4, 7,0),

task(S5, 5,E5,10,0),

task(S6,18,E6, 1,0),

task(S7, 4,E7,11,0)],

domain(Ss, 1, 30),

domain(Es, 1, 50),

domain([End], 1, 50),

maximum(End, Es),

cumulative(Tasks, [limit(13)]),

append(Ss, [End], Vars),

labeling([minimize(End)], Vars). % label End last

%% End of file

| ?- schedule(Ss, End).

Ss = [1,17,10,10,5,5,1],

End = 23

10.10.13 Syntax Summary

10.10.13.1 Syntax of Indexicals

Constant ::= integer
| inf { minus infinity }
| sup { plus infinity }

Chapter 10: The Prolog Library 491

FixTerm ::= Constant
| var { suspend until assigned }

Term ::= min(var) { min. of domain of X }
| max(var) { max. of domain of X }
| card(var) { size of domain of X }
| FixTerm
| - FixTerm
| Term + FixTerm
| Term - FixTerm
| Term * FixTerm
| Term /> FixTerm { ceilinged division }
| Term /< FixTerm { floored division }
| Term mod FixTerm { floored remainder }
| Term rem FixTerm { truncated remainder }

TermSet ::= {FixTerm,...,FixTerm}

Range ::= TermSet
| dom(var) { domain of X }
| Term .. Term { interval }
| Range /\ Range { intersection }
| Range \/ Range { union }
| \ Range { complement }
| - Range { pointwise negation }
| Range + Range { pointwise addition }
| Range - Range { pointwise subtraction }
| Range mod Range { pointwise modulo }
| Range rem Range { pointwise remainder }
| Range + FixTerm { pointwise addition }
| Range - FixTerm { pointwise subtraction }
| FixTerm - Range { pointwise subtraction }
| Range mod FixTerm { pointwise floored remainder }
| Range rem FixTerm { pointwise truncated remainder }
| Range ? Range
| unionof(var,Range,Range)

| switch(FixTerm,MapList)

ConstantSet ::= {integer,...,integer}

ConstantRange ::= ConstantSet
| Constant .. Constant
| ConstantRange /\

ConstantRange

| ConstantRange \/

ConstantRange

| \ ConstantRange
MapList ::= []

|

[integer-ConstantRange|MapList]

CTable ::= []

492 SICStus Prolog

| [CRow|CTable]

CRow ::= []

| [integer|CRow]

| [ConstantRange|CRow]

CList ::= []

| [integer|CList]

VList ::= []

| [var|VList]

Indexical ::= var in Range
Indexicals ::= Indexical

| Indexical , Indexicals
ConstraintBody ::= var { X stands for X#=1 }

| true

| false

| 1

| 0

| var in ConstantRange
| element(var,CList,var)

| table([VList],CTable)

| LinExpr RelOp LinExpr
| #\ ConstraintBody

| ConstraintBody #/\

ConstraintBody

| ConstraintBody #\/

ConstraintBody

| ConstraintBody #=>

ConstraintBody

| ConstraintBody #\

ConstraintBody

| ConstraintBody #<=>

ConstraintBody

IxConstraintBody ::= Indexicals
| ConstraintBody

Head ::= term { a compound term with unique
variable args }

TellPos ::= Head +: IxConstraintBody
TellNeg ::= Head -: Indexicals
AskPos ::= Head +? Indexical
AskNeg ::= Head -? Indexical
ConstraintDef ::= TellPos

| TellNeg
| AskPos
| AskNeg

10.10.13.2 Syntax of Arithmetic Expressions

Please note: that the Prolog arithmetic operators / and // do not mean the same thing.

Chapter 10: The Prolog Library 493

N ::= integer
LinExpr ::= N

| var
| N * var
| N * N
| - LinExpr
| LinExpr + LinExpr
| LinExpr - LinExpr
| ConstraintBody { if true then 1 else 0 }

Expr ::= LinExpr
| - Expr
| Expr + Expr
| Expr - Expr
| Expr * Expr
| Expr / Expr { truncated division }
| Expr // Expr { truncated division } since

release 4.3

| Expr div Expr { floored division } since release
4.3

| Expr rem Expr { truncated remainder }
| Expr mod Expr { floored remainder }
| min(Expr,Expr)

| max(Expr,Expr)

| abs(Expr)

RelOp ::= #= | #\= | #< | #=< | #> | #>=

10.10.13.3 Operator Declarations

:- op(1200, xfx, [+:,-:,+?,-?]).

:- op(760, yfx, #<=>).

:- op(750, xfy, #=>).

:- op(750, yfx, #<=).

:- op(740, yfx, #\/).

:- op(730, yfx, #\).

:- op(720, yfx, #/\).

:- op(710, fy, #\).

:- op(700, xfx, [in,in_set]).

:- op(700, xfx, [#=,#\=,#<,#=<,#>,#>=]).

:- op(550, xfx, ..).

:- op(500, fy, \).

:- op(490, yfx, ?).

:- op(400, yfx, [/>,/<]).

10.11 Constraint Logic Programming over Rationals or
Reals—library([clpq,clpr])

494 SICStus Prolog

10.11.1 Introduction

The clp(Q,R) system described in this chapter is an instance of the general Constraint Logic
Programming scheme introduced by [Jaffar & Michaylov 87]. It is a third-party product,
bundled with SICStus Prolog as two library packages. It is not supported by SICS in any
way.

The implementation is at least as complete as other existing clp(R) implementations: It
solves linear equations over rational or real valued variables, covers the lazy treatment of
nonlinear equations, features a decision algorithm for linear inequalities that detects implied
equations, removes redundancies, performs projections (quantifier elimination), allows for
linear dis-equations, and provides for linear optimization.

10.11.1.1 Referencing this Software

When referring to this implementation of clp(Q,R) in publications, you should use the
following reference:

Holzbaur C., OFAI clp(q,r) Manual, Edition 1.3.3, Austrian Research Institute
for Artificial Intelligence, Vienna, TR-95-09, 1995.

10.11.1.2 Acknowledgments

The development of this software was supported by the Austrian Fonds zur Foerderung der
Wissenschaftlichen Forschung under grant P9426-PHY. Financial support for the Austrian
Research Institute for Artificial Intelligence is provided by the Austrian Federal Ministry
for Science and Research.

We include a collection of examples that has been distributed with the Monash University
version of clp(R) [Heintze et al. 87], and its inclusion into this distribution was kindly
permitted by Roland Yap.

10.11.2 Solver Interface

Until rational numbers become first class citizens in SICStus Prolog, rational arithmetics
has to be emulated. Because of the emulation it is too expensive to support arithmetics
with automatic coercion between all sorts of numbers, like you find it in CommonLisp, for
example.

You must choose whether you want to operate in the field of Q (Rationals) or R (Reals):

| ?- use_module(library(clpq)).

or

| ?- use_module(library(clpr)).

You can also load both modules, but the exported predicates listed below will name
clash (see Section 4.11.12 [ref-mod-ncl], page 168). You can avoid the interactive resolu-
tion dialog if the importation is skipped, e.g. via: use_module(library(clpq),[]),use_
module(library(clpr),[]).

Chapter 10: The Prolog Library 495

10.11.2.1 Notational Conventions

Throughout this chapter, the prompts clp(q) ?- and clp(r) ?- are used to differentiate
between clp(Q) and clp(R) in exemplary interactions.

In general there are many ways to express the same linear relationship. This degree of
freedom is manifest in the fact that the printed manual and an actual interaction with the
current version of clp(Q,R) may show syntactically different answer constraints, despite the
fact the same semantic relationship is being expressed. There are means to control the pre-
sentation; see Section 10.11.5.1 [CLPQR Variable Ordering], page 508. The approximative
nature of floating point numbers may also produce numerical differences between the text
in this manual and the actual results of clp(R), for a given edition of the software.

10.11.2.2 Solver Predicates

The solver interface for both Q and R consists of the following predicates, which are exported
from module(linear).

{+Constraint}

Constraint is a term accepted by the grammar below. The corresponding con-
straint is added to the current constraint store and checked for satisfiability.
Use the module prefix to distinguish the solvers if both clp(Q) and clp(R) were
loaded.

| ?- clpr:{Ar+Br=10}, Ar=Br, clpq:{Aq+Bq=10}, Aq=Bq.

Aq = 5,

Ar = 5.0,

Bq = 5,

Br = 5.0

Although clp(Q) and clp(R) are independent modules, you are asking for trouble
if you (accidently) share variables between them:

| ?- clpr:{A+B=10}, clpq:{A=B}.

! Type error in argument 2 of clpq:=/2

! a rational number expected, but 5.0 found

! goal: _118=5.0

This is because both solvers eventually compute values for the variables and
Reals are incompatible with Rationals.

Here is the constraint grammar:

Constraint ::= C
| C , C { conjunction }

C ::= Expr =:= Expr { equation }
| Expr = Expr { equation }
| Expr < Expr { strict inequation }
| Expr > Expr { strict inequation }
| Expr =< Expr { nonstrict inequation }
| Expr >= Expr { nonstrict inequation }
| Expr =\= Expr { disequation }

496 SICStus Prolog

Expr ::= variable { Prolog variable }
| number { floating point or integer }
| + Expr { unary plus }
| - Expr { unary minus }
| Expr + Expr { addition }
| Expr - Expr { subtraction }
| Expr * Expr { multiplication }
| Expr / Expr { division }
| abs(Expr) { absolute value }
| sin(Expr) { trigonometric sine }
| cos(Expr) { trigonometric cosine }
| tan(Expr) { trigonometric tangent }
| pow(Expr,Expr) { raise to the power }
| exp(Expr,Expr) { raise to the power }
| min(Expr,Expr) { minimum of the two arguments

}
| max(Expr,Expr) { maximum of the two arguments

}
| #(Const) { symbolic numerical constants }

Conjunctive constraints {C,C} have been made part of the syntax to control the
granularity of constraint submission, which will be exploited by future versions
of this software. Symbolic numerical constants are provided for compatibility
only; see Section 10.11.7 [CLPQR Monash Examples], page 514.

entailed(+Constraint)

Succeeds iff the linear Constraint is entailed by the current constraint store.
This predicate does not change the state of the constraint store.

clp(q) ?- {A =< 4}, entailed(A=\=5).

{A=<4}

clp(q) ?- {A =< 4}, entailed(A=\=3).

no

inf(+Expr, -Inf)

inf(+Expr, -Inf, +Vector, -Vertex)

Computes the infimum of the linear expression Expr and unifies it with Inf. If
given, then Vector should be a list of variables relevant to Expr, and Vertex
will be unified a list of the same length as Vector containing the values for
Vector, such that the infimum is produced when assigned. Failure indicates
unboundedness.

sup(+Expr, -Sup)

sup(+Expr, -Sup, +Vector, -Vertex)

Computes the supremum of the linear expression Expr and unifies it with Sup.
If given, then Vector should be a list of variables relevant to Expr, and Vertex
will be unified a list of the same length as Vector containing the values for

Chapter 10: The Prolog Library 497

Vector, such that the supremum is produced when assigned. Failure indicates
unboundedness.

clp(q) ?- { 2*X+Y =< 16, X+2*Y =< 11,

X+3*Y =< 15, Z = 30*X+50*Y

}, sup(Z, Sup, [X,Y], Vertex).

Sup = 310,

Vertex = [7,2],

{Z=30*X+50*Y},

{X+1/2*Y=<8},

{X+3*Y=<15},

{X+2*Y=<11}

minimize(+Expr)

Computes the infimum of the linear expression Expr and equates it with the
expression, i.e. as if defined as:

minimize(Expr) :- inf(Expr, Expr).

maximize(+Expr)

Computes the supremum of the linear expression Expr and equates it with the
expression.

clp(q) ?- { 2*X+Y =< 16, X+2*Y =< 11,

X+3*Y =< 15, Z = 30*X+50*Y

}, maximize(Z).

X = 7,

Y = 2,

Z = 310

bb_inf(+Ints, +Expr, -Inf)

Computes the infimum of the linear expression Expr under the additional con-
straint that all of variables in the list Ints assume integral values at the infimum.
This allows for the solution of mixed integer linear optimization problems; see
Section 10.11.8 [CLPQR MIP], page 515.

clp(q) ?- {X >= Y+Z, Y > 1, Z > 1}, bb_inf([Y,Z],X,Inf).

Inf = 4,

{Y>1},

{Z>1},

{X-Y-Z>=0}

bb_inf(+Ints, +Expr, -Inf, -Vertex, +Eps)

Computes the infimum of the linear expression Expr under the additional con-
straint that all of variables in the list Ints assume integral values at the infimum.
Eps is a positive number between 0 and 0.5 that specifies how close a number X
must be to the next integer to be considered integral: abs(round(X)-X) < Eps.
The predicate bb_inf/3 uses Eps = 0.001. With clp(Q), Eps = 0 makes sense.
Vertex is a list of the same length as Ints and contains the (integral) values

498 SICStus Prolog

for Ints, such that the infimum is produced when assigned. Note that this will
only generate one particular solution, which is different from the situation with
minimize/1, where the general solution is exhibited.

bb_inf/5 works properly for non-strict inequalities only! Disequations (=\=)
and higher dimensional strict inequalities (>,<) are beyond its scope. Strict
bounds on the decision variables are honored however:

clp(q) ?- {X >= Y+Z, Y > 1, Z > 1}, bb_inf([Y,Z],X,Inf,Vertex,0).

Inf = 4,

Vertex = [2,2],

{Y>1},

{Z>1},

{X-Y-Z>=0}

The limitation(s) can be addressed by:

• transforming the original problem statement so that only non-strict in-
equalities remain; for example, {X + Y > 0} becomes {X + Y >= 1} for inte-
gral X and Y;

• contemplating the use of clp(FD).

ordering(+Spec)

Provides a means to control one aspect of the presentation of the answer con-
straints; see Section 10.11.5.1 [CLPQR Variable Ordering], page 508.

dump(+Target, -NewVars, -CodedAnswer)

Reflects the constraints on the target variables into a term, where Target and
NewVars are lists of variables of equal length and CodedAnswer is the term
representation of the projection of constraints onto the target variables where
the target variables are replaced by the corresponding variables from NewVars
(see Section 10.11.5.2 [CLPQR Turning Answers into Terms], page 509).

clp(q) ?- {A+B =< 10, A>=4},

dump([A,B],Vs,Cs),

dump([B],Bp,Cb).

Cb = [_A=<6],

Bp = [_A],

Cs = [_B>=4,_C+_B=<10],

Vs = [_C,_B],

{A>=4},

{A+B=<10}

The current version of dump/3 is incomplete with respect to nonlinear con-
straints. It only reports nonlinear constraints that are connected to the target
variables. The following example has no solution. From the top level’s report
we have a chance to deduce this fact, but dump/3 currently has no means to
collect global constraints . . .

Chapter 10: The Prolog Library 499

q(X) :-

{X>=10},

{sin(Z)>3}.

clp(r) ?- q(X), dump([X],V,C).

C = [_A>=10.0],

V = [_A],

clpr:{3.0-sin(_B)<0.0},

{X>=10.0}

projecting_assert/1(:Clause)

If you use the database, then the clauses you assert might have constraints
associated with their variables. Use this predicate instead of assert/1 in order
to ensure that only the relevant and projected constraints get stored in the
database. It will transform the clause into one with plain variables and extra
body goals that set up the relevant constraint when called.

10.11.2.3 Unification

Equality constraints are added to the store implicitly each time variables that have been
mentioned in explicit constraints are bound—either to another such variable or to a number.

clp(r) ?- {2*A+3*B=C/2}, C=10.0, A=B.

A = 1.0,

B = 1.0,

C = 10.0

Is equivalent modulo rounding errors to

clp(r) ?- {2*A+3*B=C/2, C=10, A=B}.

A = 1.0,

B = 0.9999999999999999,

C = 10.0

The shortcut bypassing the use of {}/1 is allowed and makes sense because the interpretation
of this equality in Prolog and clp(R) coincides. In general, equations involving interpreted
functors, +/2 in this case, must be fed to the solver explicitly:

clp(r) ?- X=3.0+1.0, X=4.0.

no

Moreover, variables known by clp(R) may be bound directly to floats only. Likewise, vari-
ables known by clp(Q) may be bound directly to rational numbers only; see Section 10.11.9.1
[CLPQR Fragments and Bits], page 517. Failing to do so is rewarded with an exception:

500 SICStus Prolog

clp(q) ?- {2*A+3*B=C/2}, C=10.0, A=B.

! Type error in argument 2 of = /2

! 'a rational number' expected, but 10.0 found

! goal: _254=10.0

This is because 10.0 is not a rational constant. To make clp(Q) happy you have to say:

clp(q) ?- {2*A+3*B=C/2}, C=rat(10,1), A=B.

A = 1,

B = 1,

C = 10

If you use {}/1, then you do not have to worry about such details.

10.11.2.4 Feedback and Bindings

What was covered so far was how the user populates the constraint store. The other
direction of the information flow consists of the success and failure of the above predicates
and the binding of variables to numerical values. Example:

clp(r) ?- {A-B+C=10, C=5+5}.

{A = B},

C = 10.0

The linear constraints imply C=10.0 and the solver consequently exports this binding to the
Prolog world. The fact that A=B is deduced and represented by the solver but not exported
as a binding. More about answer presentation in Section 10.11.5 [CLPQR Projection],
page 507.

10.11.3 Linearity and Nonlinear Residues

The clp(Q,R) system is restricted to deal with linear constraints because the decision al-
gorithms for general nonlinear constraints are prohibitively expensive to run. If you need
this functionality badly, then you should look into symbolic algebra packages. Although
the clp(Q,R) system cannot solve nonlinear constraints, it will collect them faithfully in
the hope that through the addition of further (linear) constraints they might get simple
enough to solve eventually. If an answer contains nonlinear constraints, then you have to be
aware of the fact that success is qualified modulo the existence of a solution to the system
of residual (nonlinear) constraints:

clp(r) ?- {sin(X) = cos(X)}.

clpr:{sin(X)-cos(X)=0.0}

There are indeed infinitely many solutions to this constraint (X = 0.785398 + n*Pi), but
clp(Q,R) has no direct means to find and represent them.

Chapter 10: The Prolog Library 501

The systems goes through some lengths to recognize linear expressions as such. The method
is based on a normal form for multivariate polynomials. In addition, some simple isolation
axioms, that can be used in equality constraints, have been added. The current major limi-
tation of the method is that full polynomial division has not been implemented. Examples:

This is an example where the isolation axioms are sufficient to determine the value of X.

clp(r) ?- {sin(cos(X)) = 1/2}.

X = 1.0197267436954502

If we change the equation into an inequation, then clp(Q,R) gives up:

clp(r) ?- {sin(cos(X)) < 1/2}.

clpr:{sin(cos(X))-0.5<0.0}

The following is easy again:

clp(r) ?- {sin(X+2+2)/sin(4+X) = Y}.

Y = 1.0

And so is this:

clp(r) ?- {(X+Y)*(Y+X)/X = Y*Y/X+99}.

{Y=49.5-0.5*X}

An ancient symbol manipulation benchmark consists in rising the expression X+Y+Z+1 to
the 15th power:

clp(q) ?- {exp(X+Y+Z+1,15)=0}.

clpq:{Z^15+Z^14*15+Z^13*105+Z^12*455+Z^11*1365+Z^10*3003+...

. . . polynomial continues for a few pages . . .
=0}

Computing its roots is another story.

10.11.3.1 How Nonlinear Residues Are Made to Disappear

Binding variables that appear in nonlinear residues will reduce the complexity of the non-
linear expressions and eventually results in linear expressions:

clp(q) ?- {exp(X+Y+1,2) = 3*X*X+Y*Y}.

clpq:{Y*2-X^2*2+Y*X*2+X*2+1=0}

Equating X and Y collapses the expression completely and even determines the values of
the two variables:

502 SICStus Prolog

clp(q) ?- {exp(X+Y+1,2) = 3*X*X+Y*Y}, X=Y.

X = -1/4,

Y = -1/4

10.11.3.2 Isolation Axioms

These axioms are used to rewrite equations such that the variable to be solved for is moved to
the left hand side and the result of the evaluation of the right hand side can be assigned to the
variable. This allows, for example, to use the exponentiation operator for the computation
of roots and logarithms; see below.

A = B * C Residuates unless B or C is ground or A and B or C are ground.

A = B / C Residuates unless C is ground or A and B are ground.

X = min(Y,Z)

Residuates unless Y and Z are ground.

X = max(Y,Z)

Residuates unless Y and Z are ground.

X = abs(Y)

Residuates unless Y is ground.

X = pow(Y,Z), X = exp(Y,Z)

Residuates unless any pair of two of the three variables is ground. Example:

clp(r) ?- { 12=pow(2,X) }.

X = 3.5849625007211565

clp(r) ?- { 12=pow(X,3.585) }.

X = 1.9999854993443926

clp(r) ?- { X=pow(2,3.585) }.

X = 12.000311914286545

X = sin(Y)

Residuates unless X or Y is ground. Example:

clp(r) ?- { 1/2 = sin(X) }.

X = 0.5235987755982989

X = cos(Y)

Residuates unless X or Y is ground.

X = tan(Y)

Residuates unless X or Y is ground.

Chapter 10: The Prolog Library 503

10.11.4 Numerical Precision and Rationals

The fact that you can switch between clp(R) and clp(Q) should solve most of your numer-
ical problems regarding precision. Within clp(Q), floating point constants will be coerced
into rational numbers automatically. Transcendental functions will be approximated with
rationals. The precision of the approximation is limited by the floating point precision.
These two provisions allow you to switch between clp(R) and clp(Q) without having to
change your programs.

What is to be kept in mind however is the fact that it may take quite big rationals to
accommodate the required precision. High levels of precision are for example required if
your linear program is ill-conditioned, i.e. in a full rank system the determinant of the
coefficient matrix is close to zero. Another situation that may call for elevated levels of
precision is when a linear optimization problem requires exceedingly many pivot steps before
the optimum is reached.

If your application approximates irrational numbers, then you may be out of space partic-
ularly soon. The following program implements N steps of Newton’s approximation for the
square root function at point 2.

% library('clpqr/examples/root')

root(N, R) :-

root(N, 1, R).

root(0, S, R) :- !, S=R.

root(N, S, R) :-

N1 is N-1,

{ S1 = S/2 + 1/S },

root(N1, S1, R).

It is known that this approximation converges quadratically, which means that the number
of correct digits in the decimal expansion roughly doubles with each iteration. Therefore
the numerator and denominator of the rational approximation have to grow likewise:

504 SICStus Prolog

clp(q) ?- [library('clpqr/examples/root')].

clp(q) ?- root(3,R),print_decimal(R,70).

1.4142156862 7450980392 1568627450 9803921568 6274509803 9215686274

5098039215

R = 577/408

clp(q) ?- root(4,R),print_decimal(R,70).

1.4142135623 7468991062 6295578890 1349101165 5962211574 4044584905

0192000543

R = 665857/470832

clp(q) ?- root(5,R),print_decimal(R,70).

1.4142135623 7309504880 1689623502 5302436149 8192577619 7428498289

4986231958

R = 886731088897/627013566048

clp(q) ?- root(6,R),print_decimal(R,70).

1.4142135623 7309504880 1688724209 6980785696 7187537723 4001561013

1331132652

R = 1572584048032918633353217/1111984844349868137938112

clp(q) ?- root(7,R),print_decimal(R,70).

1.4142135623 7309504880 1688724209 6980785696 7187537694 8073176679

7379907324

R = 4946041176255201878775086487573351061418968498177 /

3497379255757941172020851852070562919437964212608

Iterating for 8 steps produces no further change in the first 70 decimal digits of sqrt(2).
After 15 steps the approximating rational number has a numerator and a denominator with
12543 digits each, and the next step runs out of memory.

Another irrational number that is easily computed is e. The following program implements
an alternating series for 1/e, where the absolute value of last term is an upper bound on
the error.

Chapter 10: The Prolog Library 505

% library('clpqr/examples/root')

e(N, E) :-

{ Err =:= exp(10,-(N+2)), Half =:= 1/2 },

inv_e_series(Half, Half, 3, Err, Inv_E),

{ E =:= 1/Inv_E }.

inv_e_series(Term, S0, _, Err, Sum) :-

{ abs(Term) =< Err }, !,

S0 = Sum.

inv_e_series(Term, S0, N, Err, Sum) :-

N1 is N+1,

{ Term1 =:= -Term/N, S1 =:= Term1+S0 },

inv_e_series(Term1, S1, N1, Err, Sum).

The computation of the rational number E that approximates e up to at least 1000 digits
in its decimal expansion requires the evaluation of 450 terms of the series, i.e. 450 calls of
inv_e_series/5.

506 SICStus Prolog

clp(q) ?- e(1000,E).

E = 7149056228932760213666809592072842334290744221392610955845565494

3708750229467761730471738895197792271346693089326102132000338192

0131874187833985420922688804220167840319199699494193852403223700

5853832741544191628747052136402176941963825543565900589161585723

4023097417605004829991929283045372355639145644588174733401360176

9953973706537274133283614740902771561159913069917833820285608440

3104966899999651928637634656418969027076699082888742481392304807

9484725489080844360397606199771786024695620205344042765860581379

3538290451208322129898069978107971226873160872046731879753034549

3130492167474809196348846916421782850086985668680640425192038155

4902863298351349469211627292865440876581064873866786120098602898

8799130098877372097360065934827751120659213470528793143805903554

7928682131082164366007016698761961066948371407368962539467994627

1374858249110795976398595034606994740186040425117101588480000000

00

00000000000000000000000000000000000000

/

2629990810403002651095959155503002285441272170673105334466808931

6863103901346024240326549035084528682487048064823380723787110941

6809235187356318780972302796570251102928552003708556939314795678

1978390674393498540663747334079841518303636625888963910391440709

0887345797303470959207883316838346973393937778363411195624313553

8835644822353659840936818391050630360633734935381528275392050975

7271468992840907541350345459011192466892177866882264242860412188

0652112744642450404625763019639086944558899249788084559753723892

1643188991444945360726899532023542969572584363761073528841147012

2634218045463494055807073778490814692996517359952229262198396182

1838930043528583109973872348193806830382584040536394640895148751

0766256738740729894909630785260101721285704616818889741995949666

6303289703199393801976334974240815397920213059799071915067856758

6716458821062645562512745336709063396510021681900076680696945309

3660590933279867736747926648678738515702777431353845466199680991

73361873421152165477774911660108200059

The decimal expansion itself looks like this:

Chapter 10: The Prolog Library 507

clp(q) ?- e(1000, E), print_decimal(E, 1000).

2.

7182818284 5904523536 0287471352 6624977572 4709369995 9574966967

6277240766 3035354759 4571382178 5251664274 2746639193 2003059921

8174135966 2904357290 0334295260 5956307381 3232862794 3490763233

8298807531 9525101901 1573834187 9307021540 8914993488 4167509244

7614606680 8226480016 8477411853 7423454424 3710753907 7744992069

5517027618 3860626133 1384583000 7520449338 2656029760 6737113200

7093287091 2744374704 7230696977 2093101416 9283681902 5515108657

4637721112 5238978442 5056953696 7707854499 6996794686 4454905987

9316368892 3009879312 7736178215 4249992295 7635148220 8269895193

6680331825 2886939849 6465105820 9392398294 8879332036 2509443117

3012381970 6841614039 7019837679 3206832823 7646480429 5311802328

7825098194 5581530175 6717361332 0698112509 9618188159 3041690351

5988885193 4580727386 6738589422 8792284998 9208680582 5749279610

4841984443 6346324496 8487560233 6248270419 7862320900 2160990235

3043699418 4914631409 3431738143 6405462531 5209618369 0888707016

7683964243 7814059271 4563549061 3031072085 1038375051 0115747704

1718986106 8739696552 1267154688 9570350354

10.11.5 Projection and Redundancy Elimination

Once a derivation succeeds, the Prolog system presents the bindings for the variables in
the query. In a CLP system, the set of answer constraints is presented in analogy. A
complication in the CLP context are variables and associated constraints that were not
mentioned in the query. A motivating example is the familiar mortgage relation:

% library('clpqr/examples/mg')

mg(P,T,I,B,MP):-

{

T = 1,

B + MP = P * (1 + I)

}.

mg(P,T,I,B,MP):-

{

T > 1,

P1 = P * (1 + I) - MP,

T1 = T - 1

},

mg(P1, T1, I, B, MP).

A sample query yields:

clp(r) ?- [library('clpqr/examples/mg')].

clp(r) ?- mg(P,12,0.01,B,Mp).

{B=1.1268250301319698*P-12.682503013196973*Mp}

508 SICStus Prolog

Without projection of the answer constraints onto the query variables we would observe the
following interaction:

clp(r) ?- mg(P,12,0.01,B,Mp).

{B=12.682503013196973*_A-11.682503013196971*P},

{Mp= -(_A)+1.01*P},

{_B=2.01*_A-1.01*P},

{_C=3.0301*_A-2.0301*P},

{_D=4.060401000000001*_A-3.0604009999999997*P},

{_E=5.101005010000001*_A-4.10100501*P},

{_F=6.152015060100001*_A-5.152015060099999*P},

{_G=7.213535210701001*_A-6.213535210700999*P},

{_H=8.285670562808011*_A-7.285670562808009*P},

{_I=9.368527268436091*_A-8.36852726843609*P},

{_J=10.462212541120453*_A-9.46221254112045*P},

{_K=11.566834666531657*_A-10.566834666531655*P}

The variables A . . . K are not part of the query, they originate from the mortgage program
proper. Although the latter answer is equivalent to the former in terms of linear algebra,
most users would prefer the former.

10.11.5.1 Variable Ordering

In general, there are many ways to express the same linear relationship between variables.
clp(Q,R) does not care to distinguish between them, but the user might. The predicate
ordering(+Spec) gives you some control over the variable ordering. Suppose that instead
of B, you want Mp to be the defined variable:

clp(r) ?- mg(P,12,0.01,B,Mp).

{B=1.1268250301319698*P-12.682503013196973*Mp}

This is achieved with:

clp(r) ?- mg(P,12,0.01,B,Mp), ordering([Mp]).

{Mp= -0.0788487886783417*B+0.08884878867834171*P}

One could go one step further and require P to appear before (to the left of) B in an
addition:

clp(r) ?- mg(P,12,0.01,B,Mp), ordering([Mp,P]).

{Mp=0.08884878867834171*P-0.0788487886783417*B}

Spec in ordering(+Spec) is either a list of variables with the intended ordering, or of the
form A<B. The latter form means that A goes to the left of B. In fact, ordering([A,B,C,D])
is shorthand for:

Chapter 10: The Prolog Library 509

ordering(A < B), ordering(A < C), ordering(A < D),

ordering(B < C), ordering(B < D),

ordering(C < D)

The ordering specification only affects the final presentation of the constraints. For all
other operations of clp(Q,R), the ordering is immaterial. Note that ordering/1 acts like
a constraint: you can put it anywhere in the computation, and you can submit multiple
specifications.

clp(r) ?- ordering(B < Mp), mg(P,12,0.01,B,Mp).

{B= -12.682503013196973*Mp+1.1268250301319698*P}

clp(r) ?- ordering(B < Mp), mg(P,12,0.01,B,Mp), ordering(P < Mp).

{P=0.8874492252651537*B+11.255077473484631*Mp}

10.11.5.2 Turning Answers into Terms

In meta-programming applications one needs to get a grip on the results computed by the
clp(Q,R) solver. You can use the predicate dump/3 for that purpose:

clp(r) ?- {2*A+B+C=10,C-

D=E,A<10}, dump([A,B,C,D,E],[a,b,c,d,e],Constraints).

Constraints = [e<10.0,a=10.0-c-d-2.0*e,b=c+d],

{C=10.0-2.0*A-B},

{E=10.0-2.0*A-B-D},

{A<10.0}

10.11.5.3 Projecting Inequalities

As soon as linear inequations are involved, projection gets more demanding complexity wise.
The current clp(Q,R) version uses a Fourier-Motzkin algorithm for the projection of linear
inequalities. The choice of a suitable algorithm is somewhat dependent on the number of
variables to be eliminated, the total number of variables, and other factors. It is quite easy
to produce problems of moderate size where the elimination step takes some time. For
example, when the dimension of the projection is 1, you might be better off computing the
supremum and the infimum of the remaining variable instead of eliminating n-1 variables
via implicit projection.

In order to make answers as concise as possible, redundant constraints are removed by the
system as well. In the following set of inequalities, half of them are redundant.

510 SICStus Prolog

% library('clpqr/examples/eliminat')

example(2, [X0,X1,X2,X3,X4]) :-

{

+87*X0 +52*X1 +27*X2 -54*X3 +56*X4 =< -93,

+33*X0 -10*X1 +61*X2 -28*X3 -29*X4 =< 63,

-68*X0 +8*X1 +35*X2 +68*X3 +35*X4 =< -85,

+90*X0 +60*X1 -76*X2 -53*X3 +24*X4 =< -68,

-95*X0 -10*X1 +64*X2 +76*X3 -24*X4 =< 33,

+43*X0 -22*X1 +67*X2 -68*X3 -92*X4 =< -97,

+39*X0 +7*X1 +62*X2 +54*X3 -26*X4 =< -27,

+48*X0 -13*X1 +7*X2 -61*X3 -59*X4 =< -2,

+49*X0 -23*X1 -31*X2 -76*X3 +27*X4 =< 3,

-50*X0 +58*X1 -1*X2 +57*X3 +20*X4 =< 6,

-13*X0 -63*X1 +81*X2 -3*X3 +70*X4 =< 64,

+20*X0 +67*X1 -23*X2 -41*X3 -66*X4 =< 52,

-81*X0 -44*X1 +19*X2 -22*X3 -73*X4 =< -17,

-43*X0 -9*X1 +14*X2 +27*X3 +40*X4 =< 39,

+16*X0 +83*X1 +89*X2 +25*X3 +55*X4 =< 36,

+2*X0 +40*X1 +65*X2 +59*X3 -32*X4 =< 13,

-65*X0 -11*X1 +10*X2 -13*X3 +91*X4 =< 49,

+93*X0 -73*X1 +91*X2 -1*X3 +23*X4 =< -87

}.

Consequently, the answer consists of the system of nine non-redundant inequalities only:

clp(q) ?- [library('clpqr/examples/eliminat')].

clp(q) ?- example(2, [X0,X1,X2,X3,X4]).

{X0-2/17*X1-35/68*X2-X3-35/68*X4>=5/4},

{X0-73/93*X1+91/93*X2-1/93*X3+23/93*X4=<-29/31},

{X0-29/25*X1+1/50*X2-57/50*X3-2/5*X4>=-3/25},

{X0+7/39*X1+62/39*X2+18/13*X3-2/3*X4=<-9/13},

{X0+2/19*X1-64/95*X2-4/5*X3+24/95*X4>=-33/95},

{X0+2/3*X1-38/45*X2-53/90*X3+4/15*X4=<-34/45},

{X0-23/49*X1-31/49*X2-76/49*X3+27/49*X4=<3/49},

{X0+44/81*X1-19/81*X2+22/81*X3+73/81*X4>=17/81},

{X0+9/43*X1-14/43*X2-27/43*X3-40/43*X4>=-39/43}

The projection (the shadow) of this polyhedral set into the X0,X1 space can be computed
via the implicit elimination of non-query variables:

clp(q) ?- example(2, [X0,X1|_]).

{X0+2619277/17854273*X1>=-851123/17854273},

{X0+6429953/16575801*X1=<-12749681/16575801},

{X0+19130/1213083*X1>=795400/404361},

{X0-1251619/3956679*X1>=21101146/3956679},

{X0+601502/4257189*X1>=220850/473021}

Chapter 10: The Prolog Library 511

Projection is quite a powerful concept that leads to surprisingly terse executable specifica-
tions of nontrivial problems like the computation of the convex hull from a set of points in
an n-dimensional space: Given the program

% library('clpqr/examples/elimination')

conv_hull(Points, Xs) :-

lin_comb(Points, Lambdas, Zero, Xs),

zero(Zero),

polytope(Lambdas).

polytope(Xs) :-

positive_sum(Xs, 1).

positive_sum([], Z) :- {Z=0}.

positive_sum([X|Xs], SumX) :-

{ X >= 0, SumX = X+Sum },

positive_sum(Xs, Sum).

zero([]).

zero([Z|Zs]) :- {Z=0}, zero(Zs).

lin_comb([], [], S1, S1).

lin_comb([Ps|Rest], [K|Ks], S1, S3) :-

lin_comb_r(Ps, K, S1, S2),

lin_comb(Rest, Ks, S2, S3).

lin_comb_r([], _, [], []).

lin_comb_r([P|Ps], K, [S|Ss], [Kps|Ss1]) :-

{ Kps = K*P+S },

lin_comb_r(Ps, K, Ss, Ss1).

we can post the following query:

clp(q) ?- conv_hull([[1,1], [2,0], [3,0], [1,2], [2,2]], [X,Y]).

{Y=<2},

{X+1/2*Y=<3},

{X>=1},

{Y>=0},

{X+Y>=2}

This answer is easily verified graphically:

512 SICStus Prolog

|

2 - * *

|

|

1 - *

|

|

0 -----|----*----*----

1 2 3

The convex hull program directly corresponds to the mathematical definition of the convex
hull. What does the trick in operational terms is the implicit elimination of the Lambdas
from the program formulation. Please note that this program does not limit the number
of points or the dimension of the space they are from. Please note further that quantifier
elimination is a computationally expensive operation and therefore this program is only
useful as a benchmark for the projector and not so for the intended purpose.

10.11.6 Why Disequations

A beautiful example of disequations at work is due to [Colmerauer 90]. It addresses the
task of tiling a rectangle with squares of all-different, a priori unknown sizes. Here is a
translation of the original Prolog-III program to clp(Q,R):

Chapter 10: The Prolog Library 513

% library('clpqr/examples/squares')

filled_rectangle(A, C) :-

{ A >= 1 },

distinct_squares(C),

filled_zone([-1,A,1], _, C, []).

distinct_squares([]).

distinct_squares([B|C]) :-

{ B > 0 },

outof(C, B),

distinct_squares(C).

outof([], _).

outof([B1|C], B) :-

{ B =\= B1 }, % *** note disequation ***

outof(C, B).

filled_zone([V|L], [W|L], C0, C0) :-

{ V=W,V >= 0 }.

filled_zone([V|L], L3, [B|C], C2) :-

{ V < 0 },

placed_square(B, L, L1),

filled_zone(L1, L2, C, C1),

{ Vb=V+B },

filled_zone([Vb,B|L2], L3, C1, C2).

placed_square(B, [H,H0,H1|L], L1) :-

{ B > H, H0=0, H2=H+H1 },

placed_square(B, [H2|L], L1).

placed_square(B, [B,V|L], [X|L]) :-

{ X=V-B }.

placed_square(B, [H|L], [X,Y|L]) :-

{ B < H, X= -B, Y=H-B }.

There are no tilings with less than nine squares except the trivial one where the rectangle
equals the only square. There are eight solutions for nine squares. Six further solutions are
rotations of the first two.

514 SICStus Prolog

clp(q) ?- [library('clpqr/examples/squares')].

clp(q) ?- filled_rectangle(A, Squares).

A = 1,

Squares = [1] ? ;

A = 33/32,

Squares = [15/32,9/16,1/4,7/32,1/8,7/16,1/32,5/16,9/32] ? ;

A = 69/61,

Squares = [33/61,36/61,28/61,5/61,2/61,9/61,25/61,7/61,16/61] ? RET

Depending on your hardware, the above query may take a few minutes. Supplying the
knowledge about the minimal number of squares beforehand cuts the computation time by
a factor of roughly four:

clp(q) ?- length(Squares, 9), filled_rectangle(A, Squares).

A = 33/32,

Squares = [15/32,9/16,1/4,7/32,1/8,7/16,1/32,5/16,9/32] ? ;

A = 69/61,

Squares = [33/61,36/61,28/61,5/61,2/61,9/61,25/61,7/61,16/61] ? RET

10.11.7 Monash Examples

This collection of examples has been distributed with the Monash University Version of
clp(R) [Heintze et al. 87], and its inclusion into this distribution was kindly permitted by
Roland Yap.

Assuming you are using clp(R):

clp(r) ?- [library('clpqr/examples/monash/rkf45')].

clp(r) ?- go.

Point 0.00000 : 0.75000 0.00000

Point 0.50000 : 0.61969 0.47793

Point 1.00000 : 0.29417 0.81233

Point 1.50000 : -0.10556 0.95809

Point 2.00000 : -0.49076 0.93977

Point 2.50000 : -0.81440 0.79929

Point 3.00000 : -1.05440 0.57522

Iteration finished

439 derivative evaluations

Chapter 10: The Prolog Library 515

10.11.8 A Mixed Integer Linear Optimization Example

The predicates bb_inf/[3,5] implement a simple Branch and Bound search algorithm
for Mixed Integer Linear (MIP) Optimization examples. Serious MIP is not trivial. The
implementation library('clpqr/bb.pl') is to be understood as a starting point for more
ambitious users who need control over branching, or who want to add cutting planes, for
example.

Anyway, here is a small problem from miplib, a collection of MIP models, housed at Rice
University:

NAME: flugpl

ROWS: 18

COLUMNS: 18

INTEGER: 11

NONZERO: 46

BEST SOLN: 1201500 (opt)

LP SOLN: 1167185.73

SOURCE: Harvey M. Wagner

John W. Gregory (Cray Research)

E. Andrew Boyd (Rice University)

APPLICATION: airline model

COMMENTS: no integer variables are binary

516 SICStus Prolog

% library('clpqr/examples/mip')

example(flugpl, Obj, Vs, Ints, []) :-

Vs = [Anm1,Anm2,Anm3,Anm4,Anm5,Anm6,

Stm1,Stm2,Stm3,Stm4,Stm5,Stm6,

UE1,UE2,UE3,UE4,UE5,UE6],

Ints = [Stm6, Stm5, Stm4, Stm3, Stm2,

Anm6, Anm5, Anm4, Anm3, Anm2, Anm1],

Obj = 2700*Stm1 + 1500*Anm1 + 30*UE1

+ 2700*Stm2 + 1500*Anm2 + 30*UE2

+ 2700*Stm3 + 1500*Anm3 + 30*UE3

+ 2700*Stm4 + 1500*Anm4 + 30*UE4

+ 2700*Stm5 + 1500*Anm5 + 30*UE5

+ 2700*Stm6 + 1500*Anm6 + 30*UE6,

allpos(Vs),

{ Stm1 = 60, 0.9*Stm1 +1*Anm1 -1*Stm2 = 0,

0.9*Stm2 +1*Anm2 -1*Stm3 = 0, 0.9*Stm3 +1*Anm3 -1*Stm4 = 0,

0.9*Stm4 +1*Anm4 -1*Stm5 = 0, 0.9*Stm5 +1*Anm5 -1*Stm6 = 0,

150*Stm1 -100*Anm1 +1*UE1 >= 8000,

150*Stm2 -100*Anm2 +1*UE2 >= 9000,

150*Stm3 -100*Anm3 +1*UE3 >= 8000,

150*Stm4 -100*Anm4 +1*UE4 >= 10000,

150*Stm5 -100*Anm5 +1*UE5 >= 9000,

150*Stm6 -100*Anm6 +1*UE6 >= 12000,

-20*Stm1 +1*UE1 =< 0, -20*Stm2 +1*UE2 =< 0, -20*Stm3 +1*UE3 =< 0,

-20*Stm4 +1*UE4 =< 0, -20*Stm5 +1*UE5 =< 0, -20*Stm6 +1*UE6 =< 0,

Anm1 =< 18, 57 =< Stm2, Stm2 =< 75, Anm2 =< 18,

57 =< Stm3, Stm3 =< 75, Anm3 =< 18, 57 =< Stm4,

Stm4 =< 75, Anm4 =< 18, 57 =< Stm5, Stm5 =< 75,

Anm5 =< 18, 57 =< Stm6, Stm6 =< 75, Anm6 =< 18

}.

allpos([]).

allpos([X|Xs]) :- {X >= 0}, allpos(Xs).

We can first check whether the relaxed problem has indeed the quoted infimum:

clp(r) ?- example(flugpl, Obj, _, _, _), inf(Obj, Inf).

Inf = 1167185.7255923203

Computing the infimum under the additional constraints that Stm6, Stm5, Stm4, Stm3, Stm2,
Anm6, Anm5, Anm4, Anm3, Anm2, Anm1 assume integer values at the infimum is computationally
harder, but the query does not change much:

Chapter 10: The Prolog Library 517

clp(r) ?- example(flugpl, Obj, _, Ints, _),

bb_inf(Ints, Obj, Inf, Vertex, 0.001).

Inf = 1201500.0000000005,

Vertex = [75.0,70.0,70.0,60.0,60.0,0.0,12.0,7.0,16.0,6.0,6.0]

10.11.9 Implementation Architecture

The system consists roughly of the following components:

• A polynomial normal form expression simplification mechanism.

• A solver for linear equations [Holzbaur 92a].

• A simplex algorithm to decide linear inequalities [Holzbaur 94].

10.11.9.1 Fragments and Bits

Rationals. The internal data structure for rational numbers is rat(Num,Den). Den is always
positive, i.e. the sign of the rational number is the sign of Num. Further, Num and Den
are relative prime. Note that integer N looks like rat(N,1) in this representation. You can
control printing of terms with user:portray/1.

Partial Evaluation, Compilation. Once one has a working solver, it is obvious and attractive
to run the constraints in a clause definition at read time or compile time and proceed with
the answer constraints in place of the original constraints. This gets you constant folding
and in fact the full algebraic power of the solver applied to the avoidance of computations
at runtime. The mechanism to realize this idea is to use dump/3 for the expansion of {}/1,
via the goal and term expansion hook predicates.

Asserting with Constraints. If you use the database, then the clauses you assert might have
constraints associated with their variables. You should use projecting_assert/1 instead
of assert/1 in order to ensure that only the relevant and projected constraints get stored
in the database.

| ?- {A+B=<33}, projecting_assert(test(A,B)).

{A+B=<33}

| ?- listing(test).

test(A, B) :-

{A+B=<rat(33,1)}

| ?- test(A,B).

{A+B=<33}

10.11.9.2 Bugs

• The fuzzy comparison of floats is the source for all sorts of weirdness. If a result in R
surprises you, then try to run the program in Q before you send me a bug report.

518 SICStus Prolog

• The projector for floundered nonlinear relations keeps too many variables. Its output
is rather unreadable.

• Disequations are not projected properly.

• This list is probably incomplete.

10.12 I/O on Lists of Character Codes—library(codesio)

This package defines I/O predicates that read from, or write to, a code list. There are also
predicates to open a stream referring to a code list. The stream may be used with general
Stream I/O predicates.

Exported predicates:

format_to_codes(+Format, :Arguments, -Codes)

format_to_codes(+Format, :Arguments, ?S0, ?S)

Prints Arguments into a code list using format/3. Codes is unified with the
list, alternatively S0 and S are unified with the list and its end, respectively.

write_to_codes(+Term, -Codes)

write_to_codes(+Term, ?S0, ?S)

A specialized format_to_codes/[3,4]. Writes Term into a code list using
write/2. Codes is unified with the list. Alternatively, S0 and S are unified
with the list and its end, respectively.

write_term_to_codes(+Term, -Codes, +Options)

write_term_to_codes(+Term, ?S0, ?S, +Options)

A specialized format_to_codes/[3,4]. Writes Term into a code list using
write_term/3 and Options. Codes is unified with the list. Alternatively, S0
and S are unified with the list and its end, respectively.

read_from_codes(+Codes, -Term)

Reads Term from Codes using read/2. The Codes must, as usual, be termi-
nated by a full stop, i.e. a ‘.’, possibly followed by layout-text.

read_term_from_codes(+Codes, -Term, +Options)

Reads Term from Codes using read_term/3 and Options. The Codes must, as
usual, be terminated by a full stop, i.e. a ‘.’, possibly followed by layout-text.

open_codes_stream(+Codes, -Stream)

Stream is opened as an input stream to an existing code list. The stream may
be read with the Stream I/O predicates and must be closed using close/1.
The list is copied to an internal buffer when the stream is opened and must
therefore be a ground code list at that point.

with_output_to_codes(:Goal, -Codes)

with_output_to_codes(:Goal, ?S0, ?S)

with_output_to_codes(:Goal, -Stream, ?S0, ?S)

Goal is called with the current_output stream set to a new stream. This
stream writes to an internal buffer, which is, after the successful execution of
Goal, converted to a list of character codes. Codes is unified with the list,

Chapter 10: The Prolog Library 519

alternatively S0 and S are unified with the list and its end, respectively. with_
output_to_codes/4 also passes the stream in the Stream argument. It can be
used only by Goal for writing.

10.13 I/O on Comma-Separated Values (CSV) Files and
Strings—library(csv)

This library module provides some utilities for Comma-Separated Values (CSV) files and
strings. In this context, a file is a sequence of records, and a record is a sequence of fields.
In a CSV file, fields are separated by commas, and each record is terminated by RET.

This module does not report any syntax errors. In the event of prematurely terminated
input file, the current field and record will be terminated silently.

Then a CSV record is read, it will yield a list of fields of the following form:

integer(Number,Codes)

Stands for the integer Number, where number_codes(Number,Codes) holds,
and Codes is the list of character codes actually read.

float(Number,Codes)

Stands for the float Number, where number_codes(Number,Codes) holds, and
Codes is the list of character codes actually read.

string(Codes)

Stands for the text string (list of character codes) Codes, and number_

codes(Number,Codes) does not hold.

When a CSV records is written, the Codes argument of the above terms is used, but the
following fields are also allowed:

integer(Number)

Stands for the integer Number.

float(Number)

Stands for the float Number.

atom(Atom)

Stands for the atom Atom.

Adapted to the conventions of this manual, RFC 4180 specifies the following. Where this
module relaxes the requirements, that is explicitly mentioned:

1. Each record is located on a separate line, delimited by a line break. For example:

aaa,bbb,ccc RET

zzz,yyy,xxx RET

2. The last record in the file may or may not have an ending line break. For example:

aaa,bbb,ccc RET

zzz,yyy,xxx

520 SICStus Prolog

3. There may be an optional header line appearing as the first line of the file with the
same format as normal record lines. This header will contain names corresponding to
the fields in the file and should contain the same number of fields as the records in the
rest of the file. For example:

field_name,field_name,field_name RET

aaa,bbb,ccc RET

zzz,yyy,xxx RET

This module does not attempt to detect a header line nor treat it in any special way.

4. Within the header and each record, there may be one or more fields, separated by
commas. Each record should contain the same number of fields throughout the file.
Spaces are considered part of a field and should not be ignored. The last field in the
record must not be followed by a comma, so if the record ends with a comma, the last
field is treated as empty. For example, the following is treated as four fields:

aaa,bbb,ccc,

This module does not require or check that each record contains the same number of
fields.

5. Each field may or may not be enclosed in double quotes. If fields contain line breaks
(RET), double quotes or commas, then they should be enclosed in double quotes, oth-
erwise the double quotes may be omitted. For example:

"aaa","bbb","ccc" RET

"aaa","b RET

bb","ccc" RET

zzz,yyy,xxx

If an unenclosed field is immediately followed by a ", (or vice versa), then this module
treats that as a new enclosed (or unenclosed) field to be read and appended to the field
read so far.

6. If double quotes are used to enclose fields, then a double quote appearing inside a field
must be escaped by preceding it with another double quote. For example:

"aaa","b""bb","ccc"

Exported predicates:

read_record(-Record)

read_record(+Stream, -Record)

Reads a single record from the stream Stream, which defaults to the current
input stream, and unifies it with Record. On end of file, Record is unified with
end_of_file.

read_records(-Records)

read_records(+Stream, -Records)

Reads records from the stream Stream, which defaults to the current input
stream, up to the end of the stream, and unifies them with Records.

read_record_from_codes(-Record, +Codes)

read_record_from_codes(-Record, +Codes, -Suffix)

Reads a record from the code list Codes. In the arity 2 variant, there must
be no trailing character codes after the record. In the arity 3 variant, any

Chapter 10: The Prolog Library 521

trailing character codes are unified with Suffix, which can be used for reading
subsequent records.

write_record(+Record)

write_record(+Stream, +Record)

Writes a single record to the stream Stream, which defaults to the current
output stream.

write_records(+Records)

write_records(+Stream, +Records)

Writes records to the stream Stream, which defaults to the current output
stream.

write_record_to_codes(+Record, -Codes)

Writes a single record to the code list Codes, without the terminating RET.

10.14 COM Client—library(comclient)

This library provides rudimentary access to COM automation objects. As an example it
is possible to manipulate Microsoft Office applications and Internet Explorer. It is not
possible, at present, to build COM objects using this library.

Feedback is very welcome. Please contact SICStus support (sicstus-support@sics.se) if
you have suggestions for how this library could be improved.

10.14.1 Preliminaries

In most contexts both atoms and code lists are treated as strings. With the wide character
support available in release 3.8 and later, is should now be possible to pass UNICODE
atoms and strings successfully to the COM interface.

10.14.2 Terminology

ProgID A human readable name for an object class, typically as an atom, e.g.
'Excel.Application'.

CLSID (Class Identifier)
A globally unique identifier of a class, typically as an atom, e.g.
'{00024500-0000-0000-C000-000000000046}'.

Where it makes sense a ProgID can be used instead of the corresponding CLSID.

IID (Interface Identifier)
A globally unique identifier of an interface. Currently only the 'IDispatch'

interface is used so you do not have to care about this.

IName (Interface Name)
The human readable name of an interface, e.g. 'IDispatch'.

Where it makes sense an IName can be used instead of the corresponding IID.

Object A COM-object (or rather a pointer to an interface).

ComValue A value that can be passed from COM to SICStus Prolog. Currently numeric
types, booleans (treated as 1 for true, 0 for false), strings, and COM objects.

mailto:sicstus-support@sics.se

522 SICStus Prolog

ComInArg
A value that can be passed as an input argument to COM, currently one of:

atom Passed as a string (BSTR)

numeric Passed as the corresponding number

list A code list is treated as a string.

COM object
A compound term referring to a COM object.

compound Other compound terms are presently illegal but will be used to
extend the permitted types.

SimpleCallSpec
Denotes a single method and its arguments. As an example, to call the
method named foo with the arguments 42 and the string "bar" the Simple-
CallSpec would be the compound term foo(42,'bar') or, as an alternative,
foo(42,"bar").

The arguments of the compound term are treated as follows:

ComInArg
See above

variable The argument is assumed to be output. The variable is bound to
the resulting value when the method returns.

mutable The argument is assumed to be input/output. The value of the
mutable is passed to the method and when the method returns the
mutable is updated with the corresponding return value.

CallSpec Either a SimpleCallSpec or a list of CallSpecs. If it is a list then all but the last
SimpleCallSpec are assumed to denote method calls that return a COM-object.
So for instance the VB statement app.workbooks.add can be expressed either
as:

comclient_invoke_method_proc(App, [workbooks, add])

or as

comclient_invoke_method_fun(App, workbooks, WorkBooks),

comclient_invoke_method_proc(WorkBooks, add),

comclient_release(WorkBooks)

10.14.3 Predicate Reference

comclient_garbage_collect

Release Objects that are no longer reachable from SICStus Prolog. To achieve
this the predicate comclient_garbage_collect/0 performs an atom garbage
collection, i.e. garbage_collect_atoms/0, so it should be used sparingly.

comclient_is_object(+Object)

Succeeds if Object "looks like" an object. It does not check that the object is
(still) reachable from SICStus Prolog, see comclient_valid_object/1. Cur-
rently an object looks like '$comclient_object'(stuff) where stuff is some
prolog term. Do not rely on this representation!

Chapter 10: The Prolog Library 523

comclient_valid_object(+Object)

Succeeds if Object is an object that is still available to SICStus Prolog.

comclient_equal(+Object1, +Object2)

Succeeds if Object1 and Object2 are the same object. (It succeeds if their
'IUnknown' interfaces are identical)

comclient_clsid_from_progid(+ProgID, -CLSID).

Obtain the CLSID corresponding to a particular ProgID. Uses the Win32
routine CLSIDFromProgID. You rarely need this since you can use the ProgID
directly in most cases.

comclient_progid_from_clsid(+CLSID, -ProgID).

Obtain the ProgID corresponding to a particular CLSID. Uses the Win32
routine ProgIDFromCLSID. Rarely needed. The ProgID returned will typically
have the version suffix appended.

Example, to determine what version of Excel.Application is installed:

| ?- comclient_clsid_from_progid('Excel.Application, CLSID),

comclient_progid_from_clsid(CLSID, ProgID).

CLSID = '{00024500-0000-0000-C000-000000000046}',

ProgID = 'Excel.Application.8'

comclient_iid_from_name(+IName, -IID)

Look in the registry for the IID corresponding to a particular Interface. Cur-
rently of little use.

| ?- comclient_iid_from_name('IDispatch', IID).

IID = '{00020400-0000-0000-C000-000000000046}'

comclient_name_from_iid(+IID, -IName)

Look in the registry for the name corresponding to a particular IID. Currently
of little use.

comclient_create_instance(+ID, -Object)

Create an instance of the Class identified by the CLSID or ProgID ID.

comclient_create_instance('Excel.Application', App)

Corresponds to CoCreateInstance.

comclient_get_active_object(+ID, -Object)

Retrieves a running object of the Class identified by the CLSID or ProgID ID.

comclient_get_active_object('Excel.Application', App)

An exception is thrown if there is no suitable running object. Corresponds to
GetActiveObject.

comclient_invoke_method_fun(+Object, +CallSpec, -ComValue)

Call a method that returns a value. Also use this to get the value of properties.

comclient_invoke_method_proc(+Object, +CallSpec)

Call a method that does not return a value.

comclient_invoke_put(+Object, +CallSpec, +ComInArg)

Set the property denoted by CallSpec to ComValue. Example: comclient_

invoke_put(App, visible, 1)

524 SICStus Prolog

comclient_release(+Object)

Release the object and free the datastructures used by SICStus Prolog to keep
track of this object. After releasing an object the term denoting the object
can no longer be used to access the object (any attempt to do so will raise an
exception).

Please note: The same COM-object can be represented by different
prolog terms. A COM object is not released from SICStus Prolog
until all such representations have been released, either explicitly by
calling comclient_release/1 or by calling comclient_garbage_

collect/0.

You cannot use Obj1 == Obj2 to determine whether two COM-
objects are identical. Instead use comclient_equal/2.

comclient_is_exception(+ExceptionTerm)

Succeeds if ExceptionTerm is an exception raised by the comclient module.

catch(<some code>,

Exception,

(comclient_is_exception(E) ->

handle_com_related_errors(E)

; otherwise -> % Pass other exceptions upwards

throw(E)

))

comclient_exception_code(+ExceptionTerm, -ErrorCode)

comclient_exception_culprit(+ExceptionTerm, -Culprit)

comclient_exception_description(+ExceptionTerm, -Description)

Access the various parts of a comclient exception. The ErrorCode is
the HRESULT causing the exception. Culprit is a term corresponding
to the call that gave an exception. Description, if available, is either
a term 'EXCEPINFO'(...) corresponding to an EXCEPINFO structure or
'ARGERR'(MethodName, ArgNumber).

The EXCEPINFO has six arguments corresponding to, and in the same order as,
the arguments of the EXCEPINFO struct.

10.14.4 Examples

The following example launches Microsoft Excel, adds a new worksheet, fill in some fields
and finally clears the worksheet and quits Excel

Chapter 10: The Prolog Library 525

:- use_module(library(comclient)).

:- use_module(library(lists)).

test :-

test('Excel.Application').

test(ProgID) :-

comclient_create_instance(ProgID, App),

%% Visuall Basic: app.visible = 1

comclient_invoke_put(App, visible, 1),

%% VB: app.workbooks.add

comclient_invoke_method_proc(App, [workbooks, add]),

%% VB: with app.activesheet

comclient_invoke_method_fun(App, activesheet, ActiveSheet),

Rows = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15],

Cols = Rows,

%% VB: .cells i,j . value = i+j/100

(

member(I, Rows),

member(J, Cols),

ValIJ is I+J/100,

comclient_invoke_put(ActiveSheet, [cells(I,J),value], ValIJ),

fail

; true

),

(

member(I, Rows),

member(J, Cols),

%% retrieve cell values

comclient_invoke_method_fun(ActiveSheet, [cells(I,J), value],CellValue),

format(user_error, '~nCell(~w,~w) = ~w', [I,J,CellValue]),

fail

; true

),

Range = 'A1:O15',

format(user_error, '~Npress return to clear range (~w)', [Range]),

flush_output(user_error),

get_code(_),

%% VB: .range A1:O15 .Clear

comclient_invoke_method_proc(ActiveSheet, [range(Range),clear]),

%% Avoid Excel query "do you want to save..."

%% VB: app.activeworkbook.saved = 1

comclient_invoke_put(App, [activeworkbook,saved], 1),

format(user_error, '~Npress return to quit \'~w\'', [ProgID]),

flush_output(user_error),

get_code(_),

%% VB: app.quit

comclient_invoke_method_proc(App, quit),

comclient_release(ActiveSheet),

comclient_release(App).

526 SICStus Prolog

10.15 Finite Domain Constraint Debugger—library(fdbg)

10.15.1 Introduction

FDBG is a CLP(FD) debugger for SICStus Prolog. Its main purpose is to enable the CLP
programmer to trace the changes of domains of variables. See [Hanak et al. 04].

FDBG defines the following prefix operator:

:- op(400, fy, #).

The presence of FDBG affects the translation and execution, but not the semantics, of
subsequently loaded arithmetic constraints.

10.15.2 Concepts

In this section, several concepts and terms are defined. These terms will later be heavily
used in the documentation; therefore, it is important that you understand them well.

10.15.2.1 Events

An FDBG event can (currently) belong to one of the two following major classes:

constraint event
A constraint is woken.

labeling event
Three events belong to this class, namely:

• the labeling of an FD variable is started

• an FD variable gets constrained

• the labeling of an FD variable fails, i.e. all elements of its domain have
been tried and caused failure

These events are intercepted by the FDBG core. When any of them occurs, the appro-
priate visualizer (see Section 10.15.2.3 [FDBG Visualizers], page 527) gets called with a
representation of the event (a Prolog term) as extra arguments.

10.15.2.2 Labeling Levels

In this subsection we give three definitions regarding the labeling procedure.

labeling session
This term denotes the whole labeling procedure that starts with the call of
labeling/2 or an equivalent predicate and finishes by exiting this predicate.
Normally, there is at most one labeling session per run.

labeling attempt
One choicepoint of a labeling session. Exactly one variable is associated with a
labeling attempt, although this is not necessarily true vice versa. For example
in enum mode labeling, a single labeling attempt tries every possible value, but
in step mode labeling, several binary choicepoints are created.

Chapter 10: The Prolog Library 527

labeling step
The event of somehow constraining the domain of a variable. This usually
means either setting the variable to a specific value or limiting it with a lower
or an upper bound.

As you can see there is a hierarchical relation among these definitions: a labeling session
consists of several labeling attempts, which, in turn, might consist of several labeling steps.

A labeling event, on the other hand, can either be a labeling step, or the start of a labeling
attempt, or the failure of the same. See Section 10.15.2.1 [FDBG Events], page 526.

10.15.2.3 Visualizers

A visualizer is a Prolog predicate reacting to FDBG events (see Section 10.15.2.1 [FDBG
Events], page 526). It is called directly by the FDBG core when any FDBG event occurs. It
is called visualizer, because usually it should present the events to the user, but in general
it can do any kind of processing, like checking invariants, etc.

For all major event classes, a different visualizer type is used. The set of visualiz-
ers you would like to use for a session is specified in the option list of fdbg_on/1 (see
Section 10.15.3.1 [FDBG Options], page 529), when FDBG is switched on.

A specific visualizer can have several arguments, some are supplied by the FDBG core,
the rest (if any) should be specified when FDBG is switched on. Note that the obligatory
arguments will be appended to the end of the user defined argument list.

The set of built-in visualizers installed by default (see Section 10.15.3.1 [FDBG Options],
page 529) is the following:

• for constraint awakenings: fdbg_show

• for labeling events: fdbg_label_show

For details on built-in visualizers, see Section 10.15.3.3 [FDBG Built-In Visualizers],
page 531.

10.15.2.4 Names of Terms

FDBG provides a service to assign names to Prolog terms for later reference. A name is an
atom and it is usually associated with a compound term containing constraint variables, or
with a single variable. In the former case, each variable appearing in the compound term
is also assigned a name automatically by FDBG. This auto-assigned name is derived from
the name of the term; see Section 10.15.2.6 [FDBG Name Auto-Generation], page 528.

Perhaps the most useful utilization of names is annotation, another service of FDBG. Here,
each variable appearing in a Prolog term is replaced with a compound term describing it
(i.e. containing its name, the variable itself, and some data regarding its domain). During
annotation, unnamed constraint variables are also given a unique “anonymous” name au-
tomatically, these names begin with a ‘fdvar’ prefix. See Section 10.15.4.2 [FDBG Writing
Visualizers], page 538.

528 SICStus Prolog

The names will be used by the built-in visualizers when referring to constraint variables,
and they can also be used to retrieve the terms assigned to them in user defined visualizers.
See Section 10.15.2.3 [FDBG Visualizers], page 527.

10.15.2.5 Selectors

A selector is a Prolog term denoting a (path to a) subterm of a given term T. Let sub-
term(T,S) denote the subterm of T wrt. a selector S, and let N denote an integer. A selector
then takes one of the following forms:

S subterm(T,S)
[] T
[...,N] Nth argument of the compound term subterm(T,[...])
[...,#N] Nth element of the list subterm(T,[...])

10.15.2.6 Name Auto-Generation

There are two cases when a name is automatically generated.

1. When a name is assigned to a compound term by the user, each variable appearing in
it is assigned a so called derived name, which is created by appending a variant of the
selector of the variable to the original name. For example, the call:

fdbg_assign_name(bar(A, [B, C], foobar(D, E)), foo)

will create the following name/term entries:

Name Term/Variable Selector
foo bar(A, [B, C], foobar(D, E)) []

foo_1 A [1]

foo_2_1 B [2,#1]

foo_2_2 C [2,#2]

foo_3_1 D [3,1]

foo_3_2 E [3,2]

See Section 10.15.3.2 [FDBG Naming Terms], page 530.

2. If, during the annotation of a term (see Section 10.15.3.5 [FDBG Annotation], page 533)
an unnamed constraint variable is found, then it is assigned a unique “anonymous”
name. This name consists of the prefix ‘fdvar’, an underscore character, and an integer.
The integer is automatically incremented when necessary.

10.15.2.7 Legend

The legend is a list of variables and their domains, usually appearing after a description
of the current constraint. This is necessary because the usual visual representation of a
constraint contains only the names of the variables in it (see Section 10.15.3.5 [FDBG
Annotation], page 533), and does not show anything about their domain. The legend
links these names to the corresponding domains. The legend also shows the changes of
the domains made by the constraint. Finally, the legend may contain some conclusions
regarding the behavior of the constraint, like failure or side effects.

Chapter 10: The Prolog Library 529

The format of the legend is somewhat customizable by defining a hook function; see
Section 10.15.4.1 [FDBG Customizing Output], page 537. The default format of the legend
is the following:

list_2 = 0..3

list_3 = 0..3

list_4 = 0..3

fdvar_2 = 0..3 -> 1..3

Here, we see four variables, with initial domains 0..3, but the domain of the (previously
unnamed) variable fdvar_2 is narrowed by the constraint (not shown here) to 1..3.

A legend is automatically printed by the built-in visualizer fdbg_show, but it can be easily
printed from user defined visualizers too.

10.15.2.8 The fdbg_output Stream

The fdbg_output is a stream alias created when FDBG is switched on and removed when it
is switched off. All built-in visualizers write to this stream, and the user defined visualizers
should do the same.

10.15.3 Basics

Here, we describe the set of FDBG services and commands necessary to do a simple debug-
ging session. No major modification of your CLP(FD) program is necessary to use FDBG
this way. Debugging more complicated programs, on the other hand, might also require user
written extensions to FDBG, since the wallpaper trace produced by the built-in visualizer
fdbg_show could be too detailed and therefore hard to analyze. See Section 10.15.4 [FDBG
Advanced Usage], page 537.

10.15.3.1 FDBG Options

FDBG is switched on and off with the predicates:

fdbg_on

fdbg_on(:Options)

Turns on FDBG by putting advice points on several predicates of the CLP(FD)
module. Options is a list of options; see Section 10.15.3.1 [FDBG Options],
page 529. The empty list is the default value.

fdbg_on/[0,1] can be called safely several times consecutively; only the first
call will have an effect.

fdbg_off Turns the debugger off by removing the previously installed advice points.

fdbg_on/1 accepts the following options:

file(Filename, Mode)

Tells FDBG to attach the stream alias fdbg_output to the file called Filename
opened in mode Mode. Mode can either be write or append. The file specified
is opened on a call to fdbg_on/1 and is closed on a call to fdbg_off/0.

530 SICStus Prolog

socket(Host, Port)

Tells FDBG to attach the stream alias fdbg_output to the socket connected to
Host on port Port. The specified socket is created on a call to fdbg_on/1 and
is closed on a call to fdbg_off/0.

stream(Stream)

Tells FDBG to attach the stream alias fdbg_output to the stream Stream. The
specified stream remains open after calling fdbg_off/0.

If none of the above three options is used, then the stream alias fdbg_output
is attached to the current output stream.

constraint_hook(Goal)

Tells FDBG to extend Goal with two (additional) arguments and call it on the
exit port of the constraint dispatcher.

no_constraint_hook

Tells FDBG not to use any constraint hook.

If none of the above two options is used, then the default is constraint_

hook(fdbg:fdbg_show).

labeling_hook(Goal)

Tells FDBG to extend Goal with three (additional) arguments and call it on
any of the three labeling events.

no_labeling_hook

Tells FDBG not to use any labeling hook.

If none of the above two options is used, then the default is labeling_

hook(fdbg:fdbg_label_show).

For both constraint_hook and labeling_hook, Goal should be a visualizer, either built-in
(see Section 10.15.3.3 [FDBG Built-In Visualizers], page 531) or user defined. More of these
two options may appear in the option list, in which case they will be called in their order
of occurrence.

See Section 10.15.4.2 [FDBG Writing Visualizers], page 538, for more details on these two
options.

10.15.3.2 Naming Terms

Naming is a procedure of associating names with terms and variables; see Section 10.15.2.4
[FDBG Names of Terms], page 527. Three predicates are provided to assign and retrieve
names, these are the following:

fdbg_assign_name(+Term, ?Name)

Assigns the atom Name to Term, and a derived name to each variable appearing
in Term. If Name is a variable, then use a default (generated) name, and return
it in Name. See Section 10.15.2.6 [FDBG Name Auto-Generation], page 528.

Chapter 10: The Prolog Library 531

fdbg_current_name(?Term, ?Name)

Retrieves Term associated with Name, or enumerates all term-name pairs.

fdbg_get_name(+Term, -Name)

Returns the name associated to Term in Name, if it exists. Otherwise, silently
fails.

10.15.3.3 Built-In Visualizers

The default visualizers are generic predicates to display FDBG events (see Section 10.15.2.1
[FDBG Events], page 526) in a well readable form. These visualizers naturally do not
exploit any problem specific information—to have more “fancy” output, you have to write
your own visualizers; see Section 10.15.4.2 [FDBG Writing Visualizers], page 538. To use
these visualizers, pass them in the appropriate argument to fdbg_on/1; see Section 10.15.3.1
[FDBG Options], page 529, or call them directly from user defined visualizers.

fdbg_show(+Constraint, +Actions)

This visualizer produces a trace output of all woken constraints, in which a line
showing the constraint is followed by a legend (see Section 10.15.2.7 [FDBG
Legend], page 528) of all the variables appearing in it, and finally an empty line
to separate events from each other. The usual output will look like this:

<fdvar_1>#=0

fdvar_1 = inf..sup -> {0}

Constraint exited.

Here, we can see an arithmetical constraint being woken. It narrows ‘fdvar_1’
to a domain consisting of the singleton value 0, and since this is the narrowest
domain possible, the constraint does not have anything more to do: it exits.

Note that when you pass fdbg_show as an option, you should omit the two
arguments, like in:

fdbg_on([..., constraint_hook(fdbg_show), ...]).

fdbg_label_show(+Event, +LabelID, +Variable)

This visualizer produces a wallpaper trace output of all labeling events. It is
best used together with fdbg_show/2. Each labeling event produces a single line
of output, some of them are followed by an empty line, some others are always
followed by another labeling action and therefore the empty line is omitted.
Here is a sample output of fdbg_label_show/3:

Labeling [9, <list_1>]: starting in range 0..3.

Labeling [9, <list_1>]: step: <list_1> = 0

What we see here is the following:

• The prefix ‘Labeling’ identifies the event.

• The number in the brackets (9) is a unique identification number belonging
to a labeling attempt. Only one labeling step with this number can be in
effect at a time. This number in fact is the invocation number of the
predicate doing the labeling for that variable.

• The name in the brackets (<list_1>) identifies the variable currently being
labeled. Note that several identification numbers might belong to the same
variable, depending on the mode of labeling.

532 SICStus Prolog

• The text after the colon specifies the actual labeling event. This string can
be:

− “starting in range Range.” meaning the starting of a labeling attempt
in range Range

− “Mode: Narrowing.” meaning a labeling step in mode Mode. Nar-
rowing is the actual narrowing done in the labeling step. Mode is one
of the following:

step meaning step mode labeling

indomain_up

meaning enummode labeling or a direct call to indomain/1

indomain_down

meaning enum,down mode labeling

bisect meaning bisect mode labeling

dual when the domain contains exactly two values and the la-
beling attempt is nothing more than a selection between
them

− “failed.” meaning the labeling attempt failed.

Note that when you pass fdbg_label_show/3 as an option, you should omit
the three arguments, like in

fdbg_on([..., labeling_hook(fdbg_label_show), ...]).

10.15.3.4 New Debugger Commands

The Prolog debugger is extended by FDBG. The & debugger is modified, and two new
commands are added:

&

& N This debugger command is extended so that the annotated form of domain
variables is also printed when listing the variables with blocked goals.

A

A Selector

Annotates and prints the current goal and a legend of the variables appearing
in it. If a selector is specified, then the subterm specified by it is assumed to
be an action list, and is taken into account when displaying the legend. For
example:

23 2 Exit: clpfd:dispatch_global_fast(no_threat(2,_1001,1),0,0,

[exit,_1001 in_set[[3|3]]]) ? A [2,4]

clpfd:dispatch_global_fast(no_threat(2,<board_2>,1),0,0,

[exit,<board_2> in_set[[3|3]]])

board_2 = 1..4 -> {3}

Constraint exited.

Chapter 10: The Prolog Library 533

W Name=Selector

Assigns the atom Name to the variable specified by the Selector. For example:

7 15 Call: bar(4, [_101,_102,_103]) ? W foo=[2,#2]

This would assign the name foo to _102, being the second element of the second
argument of the current goal.

10.15.3.5 Annotating Programs

In order to use FDBG efficiently, you have to make some changes to your CLP(FD) program.
Fortunately the calls you have to add are not numerous, and when FDBG is turned off they
do not decrease efficiency significantly or modify the behavior of your program. On the
other hand, they are necessary to make FDBG output easier to understand.

Assign names to the more important and more frequently occurring variables by inserting
fdbg_assign_name/2 calls at the beginning of your program. It is advisable to assign names
to variables in larger batches (i.e. as lists or compound terms) with a single call.

Use predefined labeling predicates if possible. If you define your own labeling predicates
and you want to use them even in the debugging session, then you should follow these
guidelines:

1. Add a call to clpfd:fdbg_start_labeling(+Var) at the beginning of the predicate
doing a labeling attempt, and pass the currently labeled variable as an argument to
the call.

2. Call clpfd:fdbg_labeling_step(+Var, +Step) before each labeling step. Step
should be a compound term describing the labeling step, this will be

a. printed “as is” by the built-in visualizer as the mode of the labeling step (see
Section 10.15.3.3 [FDBG Built-In Visualizers], page 531)—you can use portray/1
to determine how it should be printed;

b. passed as step(Step) to the user defined labeling visualizers in their Event argu-
ment; see Section 10.15.4.2 [FDBG Writing Visualizers], page 538.

This way FDBG can inform you about the labeling events created by your labeling predi-
cates exactly like it would do in the case of internal labeling. If you ignore these rules, then
FDBG will not be able to distinguish labeling events from other FDBG events any more.

10.15.3.6 An Example Session

The problem of magic sequences is a well known constraint problem. A magic sequence is
a list, where the i-th item of the list is equal to the number of occurrences of the number i
in the list, starting from zero. For example, the following is a magic sequence:

[1,2,1,0]

The CLP(FD) solution can be found in library('clpfd/examples/magicseq'), which
provides a couple of different solutions, one of which uses the global_cardinality/2 con-
straint. We’ll use this solution to demonstrate a simple session with FDBG.

First, the debugger is imported into the user module:

534 SICStus Prolog

| ?- use_module(library(fdbg)).

% loading /home/matsc/sicstus3/Utils/x86-linux-glibc2.2/lib/sicstus-

3.9.1/library/fdbg.po...

% module fdbg imported into user

[...]

% loaded /home/matsc/sicstus3/Utils/x86-linux-glibc2.2/lib/sicstus-

3.9.1/library/fdbg.po in module fdbg, 220 msec 453936 bytes

| ?- use_module(library(clpfd)).

[...]

Then, the magic sequence solver is loaded:

| ?- [library('clpfd/examples/magicseq')].

% consulting /home/matsc/sicstus3/Utils/x86-linux-

glibc2.2/lib/sicstus-3.9.1/library/clpfd/examples/magicseq.pl...

% module magic imported into user

% module clpfd imported into magic

% consulted /home/matsc/sicstus3/Utils/x86-linux-glibc2.2/lib/sicstus-

3.9.1/library/clpfd/examples/magicseq.pl in mod-

ule magic, 30 msec 9440 bytes

Now we turn on the debugger, telling it to save the trace in fdbg.log.

| ?- fdbg_on([file('fdbg.log',write)]).

% The clp(fd) debugger is switched on

To produce a well readable trace output, a name has to be assigned to the list representing
the magic sequence. To avoid any modifications to the source code, the name is assigned
by a separate call before calling the magic sequence finder predicate:

| ?- length(L,4), fdbg_assign_name(L,list), magic_demo(4,L).

L = [1,2,1,0] ? ;

L = [2,0,2,0] ? ;

no

Please note: the call to length/2 is necessary; otherwise, L would be a single
variable instead of a list of four variables when the name is assigned.

Finally we turn the debugger off:

| ?- fdbg_off.

% The clp(fd) debugger is switched off

Chapter 10: The Prolog Library 535

The output of the sample run can be found in fdbg.log. Here, we show selected parts of
the trace. In each block, the woken constraint appears on the first line, followed by the
corresponding legend.

In the first selected block, scalar_product/4 removes infeasible domain values from list_

4, adjusting its upper bound. The legend shows the domains before and after pruning. Note
also that the constraint is rewritten to a more readable form:

<list_2>+2*<list_3>+3*<list_4>#=<list_1>+<list_2>+<list_3>+<list_4>

list_1 = 0..3

list_2 = 0..3

list_3 = 0..3

list_4 = 0..3 -> 0..1

The following block shows the initial labeling events, trying the value 0 for list_1:

Labeling [9, <list_1>]: starting in range 0..3.

Labeling [9, <list_1>]: indomain_up: <list_1> = 0

This soon leads to a dead end:

<list_1>=0

list_1 = 0..3 -> {0}

Constraint exited.

<list_2>+2*<list_3>+3*<list_4>#=<list_2>+<list_3>+<list_4>

list_2 = 0..3

list_3 = 0..3 -> {0}

list_4 = 0..1 -> {0}

Constraint exited.

<list_2>+<list_3>+<list_4>#=4

list_2 = 0..3

list_3 = {0}

list_4 = {0}

Constraint failed.

We backtrack on list_1, trying instead the value 1. This leads to the following propagation
steps and to the first solution. In these propagation steps, the constraint exits, which means
that it holds no matter what value any remaining variable takes (like list_2 in the second
step):

536 SICStus Prolog

Labeling [9, <list_1>]: indomain_up: <list_1> = 1

<list_1>=1

list_1 = 0..3 -> {1}

Constraint exited.

<list_2>+2*<list_3>+3*<list_4>#=1+<list_2>+<list_3>+<list_4>

list_2 = 0..3

list_3 = 0..3 -> {1}

list_4 = 0..1 -> {0}

Constraint exited.

1+<list_2>+<list_3>+<list_4>#=4

list_2 = 0..3 -> {2}

list_3 = {1}

list_4 = {0}

Constraint exited.

global_cardinality([1,<list_2>,<list_3>,<list_4>],[0-1,1-<list_2>,2-<list_3>,3-<list_4>],[consistency(domain)])

list_2 = {2}

list_3 = {1}

list_4 = {0}

Constraint exited.

Then, we backtrack again on list_1, which leads to the second solution after a chain of
propagation steps:

Labeling [9, <list_1>]: indomain_up: <list_1> = 2

[...]

global_cardinality([2,<list_2>,<list_3>,<list_4>],[0-2,1-<list_2>,2-<list_3>,3-<list_4>],[consistency(domain)])

list_2 = {0}

list_3 = {2}

list_4 = {0}

Constraint exited.

Then we backtrack on list_1 yet another time, but no more solutions are found:

Chapter 10: The Prolog Library 537

Labeling [9, <list_1>]: indomain_up: <list_1> = 3

[...]

<list_2>+2*<list_3>+3*<list_4>#=3+<list_2>+<list_3>+<list_4>

list_2 = {0}

list_3 = {1}

list_4 = {0}

Constraint failed.

Labeling [9, <list_1>]: failed.

10.15.4 Advanced Usage

Sometimes the output of the built-in visualizer is inadequate. There might be cases when
only minor changes are necessary to produce a more readable output; in other cases, the
trace output should be completely reorganized. FDBG provides two ways of changing the
appearance of the output by defining hook predicates. In this section, these predicates will
be described in detail.

10.15.4.1 Customizing Output

The printing of variable names is customized by defining the following hook predicate.

fdbg:fdvar_portray(Name, Var, FDSet) hook

This hook predicate is called whenever an annotated constraint variable (see
Section 10.15.3.5 [FDBG Annotation], page 533) is printed. Name is the as-
signed name of the variable Var, whose domain will be FDSet as soon as the
narrowings of the current constraint take effect. The current domain is not
passed to the hook, but it can be easily determined with a call to fd_set/2.
(Although these two sets may be the same if the constraint did not narrow it.)

If fdbg:fdvar_portray/3 is undefined or fails, then the default representation
is printed, which is Name between angle brackets.

The printing of legend lines is customized by defining the following hook predicate.

fdbg:legend_portray(Name, Var, FDSet) hook

This hook is called for each line of the legend by the built-in legend printer.
The arguments are the same as in the case of fdbg:fdvar_portray/3. Note
that a prefix of four spaces and a closing newline character is always printed by
FDBG.

If fdbg:fdvar_portray/3 is undefined or fails, then the default representation
is printed, which is

Name = RangeNow [-> RangeAfter]

The arrow and RangeAfter are only printed if the constraint narrowed the
domain of Var.

538 SICStus Prolog

The following example will print a list of all possible values instead of the range for each
variable in the legend:

:- multifile fdbg:legend_portray/3.

fdbg:legend_portray(Name, Var, Set) :-

fd_set(Var, Set0),

fdset_to_list(Set0, L0),

fdset_to_list(Set, L),

(L0 == L

-> format('~p = ~p', [Name, L])

; format('~p = ~p -> ~p', [Name, L0, L])

).

10.15.4.2 Writing Visualizers

For more complicated problems you might want to change the output more drastically. In
this case you have to write and use your own visualizers, which could naturally be problem
specific, not like fdbg_show/2 and fdbg_label_show/3. As we described earlier, currently
there are two types of visualizers:

constraint visualizer
MyGlobalVisualizer([+Arg1, +Arg2, ...] +Con-

straint, +Actions)

This visualizer is passed in the constraint_hook option. It must take at least
two arguments, the last two of which being:

Constraint
the constraint that was handled by the dispatcher

Actions the action list returned by the dispatcher

Other arguments can be used for any purpose, for example to select the ver-
bosity level of the visualizer. This way you do not have to modify your code
if you would like to see less or more information. Note however, that the two
obligatory arguments must appear at the end of the argument list.

When passing as an option to fdbg_on/1, only the optional arguments have
to be specified; the two mandatory arguments should be omitted. See
Section 10.15.4.6 [FDBG Debugging Global Constraints], page 545, for an ex-
ample.

labeling visualizer
MyLabelingVisualizer([+Arg1, +Arg2, ...] +Event, +ID, +Var)

This visualizer is passed in the labeling_hook option. It must have at least
three arguments, the last three of which being:

Event a term representing the labeling event, can be one of the following:

start labeling has just started for a variable

fail labeling has just failed for a variable

Chapter 10: The Prolog Library 539

step(Step) variable has been constrained in a labeling step de-
scribed by the compound term Step, which is either
created by library(clpfd)’s labeling predicates (in
this case, simply print it—FDBG will know how to
handle it) or by you; see Section 10.15.3.5 [FDBG An-
notation], page 533.

ID identifies the labeling session, i.e. binds step and fail events to the
corresponding start event

Var the variable being the subject of labeling

The failure of a visualizer is ignored and multiple choices are cut by FDBG. Exceptions, on
the other hand, are not caught.

FDBG provides several predicates to ease the work of the visualizer writers. These predi-
cates are the following:

fdbg_annotate(+Term0, -Term, -Variables)

fdbg_annotate(+Term0, +Actions, -Term, -Variables)

Replaces each constraint variable in Term0 by a compound term describing it
and returns the result in Term. Also, collects these compound terms into the
list Variables. These compound terms have the following form:

fdvar(Name, Var, FDSet)

Name is the name of the variable (auto-generated, if necessary; see
Section 10.15.2.6 [FDBG Name Auto-Generation], page 528)

Var is the variable itself

FDSet is the domain of the variable after narrowing with Actions, if spec-
ified; otherwise, it is the current domain of the variable

fdbg_legend(+Vars)

Prints a legend of Vars, which is a list of fdvar/3 compound terms returned
by fdbg_annotate/[3,4].

fdbg_legend(+Vars, +Actions)

Prints a legend of Vars followed by some conclusions regarding the constraint
(exiting, failing, etc.) based on Actions.

10.15.4.3 Writing Legend Printers

When you write your own visualizers, you might not be satisfied with the default format
of the legend. Therefore you might want to write your own legend printer, replacing fdbg_

legend/[1,2]. This should be quite straightforward based on the variable list returned
by fdbg_annotate/[3,4]. Processing the rest of the action list and writing conclusions
about the constraint behavior is not that easy though. To help your work, FDBG provides
a predicate to transform the raw action list to a more readable form:

fdbg_transform_actions(+Actions, +Vars, -TransformedActions)

This will do the following transformations to Actions, returning the result in
TransformedActions:

540 SICStus Prolog

1. remove all actions concerning variables in Vars (the list returned by fdbg_

annotate/[3,4]);

2. remove multiple exit and/or fail commands;

3. remove all ground actions, translating those that will cause failure into
fail(Action);

4. substitute all other narrowings with an fdvar/3 compound term per vari-
able.

The transformed action list may contain the following terms:

exit the constraint exits

fail the constraint fails due to a fail action

fail(Action)

the constraint fails because of Action

call(Goal)

Actions originally contained this action. FDBG cannot do anything
with that but to inform the user about it.

fdvar(Name, Var, FDSet)

Actions also narrowed some variables that did not appear in the
Vars list, this is one of them. The meaning of the arguments is the
usual, described in Section 10.15.4.2 [FDBG Writing Visualizers],
page 538. This should normally not happen.

AnythingElse

Actions contained unrecognized actions too, these are copied un-
modified. This should not happen!

10.15.4.4 Showing Selected Constraints (simple version)

Sometimes the programmer is not interested in every constraint, only some selected ones.
Such a filter can be easily implemented with a user-defined visualizer. Suppose that you
are interested in the constraints all_different/[1,2] and all_distinct/[1,2] only:

%% spec_filter(+Constraint, +Actions): Call fdbg_show for all constraints

%% for which interesting_event(Constraint) succeeds.

%%

%% Use this filter by giving the constraint_hook(spec_filter) option to

%% fdbg_on.

spec_filter(Constraint, Actions) :-

interesting_event(Constraint),

fdbg_show(Constraint, Actions).

interesting_event(all_different(_)).

interesting_event(all_different(_,_)).

interesting_event(all_distinct(_)).

interesting_event(all_distinct(_,_)).

Chapter 10: The Prolog Library 541

Here is a session using the visualizer. Note that the initialization part (domain/3 events),
are filtered out, leaving only the all_distinct/[1,2] constraints:

| ?- [library('clpfd/examples/suudoku')].

[...]

| ?- fdbg_on([constraint_hook(spec_filter)]).

% The clp(fd) debugger is switched on

% advice

| ?- suudoku([], 1, domain).

all_distinct([1,<fdvar_1>,<fdvar_2>,8,<fdvar_3>,

4,<fdvar_4>,<fdvar_5>,<fdvar_6>],[consistency(domain)])

fdvar_1 = 1..9 -> (2..3)\/(5..7)\/{9}

fdvar_2 = 1..9 -> (2..3)\/(5..7)\/{9}

fdvar_3 = 1..9 -> (2..3)\/(5..7)\/{9}

fdvar_4 = 1..9 -> (2..3)\/(5..7)\/{9}

fdvar_5 = 1..9 -> (2..3)\/(5..7)\/{9}

fdvar_6 = 1..9 -> (2..3)\/(5..7)\/{9}

[...]

all_distinct([7,6,2,5,8,4,1,3,9],[consistency(domain)])

Constraint exited.

1 5 6 8 9 4 3 2 7

9 2 8 7 3 1 4 5 6

4 7 3 2 6 5 9 1 8

3 6 2 4 1 7 8 9 5

7 8 9 3 5 2 6 4 1

5 1 4 9 8 6 2 7 3

8 3 1 5 4 9 7 6 2

6 9 7 1 2 3 5 8 4

2 4 5 6 7 8 1 3 9

yes

% advice

| ?- fdbg_off.

% The clp(fd) debugger is switched off

Note that failure of spec_filter/2 does not cause any unwanted output.

10.15.4.5 Showing Selected Constraints (advanced version)

Suppose that you want to give the constraints that you are interested in as an argument to
the visualizer, instead of defining them in a table. The following visualizer implements this.

542 SICStus Prolog

%% filter_events(+CtrSpecs, +Constraint, +Actions): This predicate will

%% only show constraint events if they match an element in the list CtrSpecs,

%% or if CtrSpecs is wrapped in -/1, all the non-matching events will

%% be shown.

%% CtrSpecs can contain the following types of elements:

%% ctr_name - matches all constraints of the given name

%% ctr_name/arity - matches constraints with the given name and arity

%% ctr_name(...args...) - matches constraints unifyable with the given term

%%

%% For the selected events fdbg_show(Constraint, Actions) is called.

%% This visualizer can be specified when turning fdbg on, e.g.:

%% fdbg_on([constraint_hook(filter_events([count/4]))]), or

%% fdbg_on([constraint_hook(filter_events(-[in_set]))]).

filter_events(CtrSpecs, Constraint, Actions) :-

filter_events(CtrSpecs, fdbg_show, Constraint, Actions).

%% filter_events(+CtrSpecs, +Visualizer, +Constraint, +Actions): Same as

%% the above predicate, but the extra argument Visualizer specifies the

%% predicate to be called for the selected events (in the same form as

%% in the constraint_hook option, i.e. without the last two arguments). E.g.

%% fdbg_on([constraint_hook(filter_events([count/4],my_show))]).

filter_events(-CtrSpecs, Visualizer, Constraint, Actions) :- !,

\+ show_constraint(CtrSpecs, Constraint),

call(Visualizer, Constraint, Actions).

filter_events(CtrSpecs, Visualizer, Constraint, Actions) :-

show_constraint(CtrSpecs, Constraint),

call(Visualizer, Constraint, Actions).

show_constraint([C|_], Constraint) :-

matches(C, Constraint), !.

show_constraint([_|Cs], Constraint) :-

show_constraint(Cs, Constraint).

matches(Name/Arity, Constraint) :- !,

functor(Constraint, Name, Arity).

matches(Name, Constraint) :-

atom(Name), !,

functor(Constraint, Name, _).

matches(C, Constraint) :-

C = Constraint.

Here is a session using the visualizer, filtering out everything but all_distinct/2 con-
straints:

Chapter 10: The Prolog Library 543

| ?- [library('clpfd/examples/suudoku')].

[...]

| ?- fdbg_on([constraint_hook(filter_events([all_distinct/2]))]).

% The clp(fd) debugger is switched on

% advice

| ?- suudoku([], 1, domain).

all_distinct([1,<fdvar_1>,<fdvar_2>,8,<fdvar_3>,

4,<fdvar_4>,<fdvar_5>,<fdvar_6>],[consistency(domain)])

fdvar_1 = 1..9 -> (2..3)\/(5..7)\/{9}

fdvar_2 = 1..9 -> (2..3)\/(5..7)\/{9}

fdvar_3 = 1..9 -> (2..3)\/(5..7)\/{9}

fdvar_4 = 1..9 -> (2..3)\/(5..7)\/{9}

fdvar_5 = 1..9 -> (2..3)\/(5..7)\/{9}

fdvar_6 = 1..9 -> (2..3)\/(5..7)\/{9}

[...]

all_distinct([7,6,2,5,8,4,1,3,9],[consistency(domain)])

Constraint exited.

1 5 6 8 9 4 3 2 7

9 2 8 7 3 1 4 5 6

4 7 3 2 6 5 9 1 8

3 6 2 4 1 7 8 9 5

7 8 9 3 5 2 6 4 1

5 1 4 9 8 6 2 7 3

8 3 1 5 4 9 7 6 2

6 9 7 1 2 3 5 8 4

2 4 5 6 7 8 1 3 9

yes

% advice

| ?- fdbg_off.

% The clp(fd) debugger is switched off

In the next session, all constraints named all_distinct are ignored, irrespective of arity.
Also, we explicitly specified the visualizer to be called for the events that are kept (here,
we have written the default, fdbg_show, so the actual behavior is not changed).

544 SICStus Prolog

| ?- [library('clpfd/examples/suudoku')].

[...]

| ?- fdbg_on([constraint_hook(filter_events(-

[all_distinct],fdbg_show))]).

% The clp(fd) debugger is switched on

% advice

| ?- suudoku([], 1, domain).

domain([1,<fdvar_1>,<fdvar_2>,8,<fdvar_3>, ...,

<fdvar_50>,<fdvar_51>,9],1,9)

fdvar_1 = inf..sup -> 1..9

fdvar_2 = inf..sup -> 1..9

...

fdvar_50 = inf..sup -> 1..9

fdvar_51 = inf..sup -> 1..9

Constraint exited.

[...]

1 5 6 8 9 4 3 2 7

9 2 8 7 3 1 4 5 6

4 7 3 2 6 5 9 1 8

3 6 2 4 1 7 8 9 5

7 8 9 3 5 2 6 4 1

5 1 4 9 8 6 2 7 3

8 3 1 5 4 9 7 6 2

6 9 7 1 2 3 5 8 4

2 4 5 6 7 8 1 3 9

yes

% advice

| ?- fdbg_off.

% The clp(fd) debugger is switched off

In the last session, we specify a list of constraints to ignore, using a pattern to select the
appropriate constraints. Since all constraints in the example match one of the items in the
given list, no events are printed.

Chapter 10: The Prolog Library 545

| ?- [library('clpfd/examples/suudoku')].

[...]

| ?- fdbg_on([constraint_hook(filter_events(-

[domain(_,1,9),all_distinct]))]).

% The clp(fd) debugger is switched on

% advice

| ?- suudoku([], 1, domain).

1 5 6 8 9 4 3 2 7

9 2 8 7 3 1 4 5 6

4 7 3 2 6 5 9 1 8

3 6 2 4 1 7 8 9 5

7 8 9 3 5 2 6 4 1

5 1 4 9 8 6 2 7 3

8 3 1 5 4 9 7 6 2

6 9 7 1 2 3 5 8 4

2 4 5 6 7 8 1 3 9

yes

% advice

| ?- fdbg_off.

% The clp(fd) debugger is switched off

10.15.4.6 Debugging Global Constraints

Missing pruning and excessive pruning are the two major classes of bugs in the implemen-
tation of global constraints. Since CLP(FD) is an incomplete constraint solver, missing
pruning is mainly an efficiency concern (but ground instances for which the constraint does
not hold should be rejected). Excessive pruning, however, means that some valid combi-
nations of values are pruned away, leading to missing solutions. The following exported
predicate helps spotting excessive pruning in user-defined global constraints:

fdbg_guard(:Goal, +Constraint, +Actions)

A constraint visualizer that does no output, but notifies the user by calling
Goal if a solution is lost through domain narrowings. Naturally you have to
inform fdbg_guard/3 about the solution in question—stating which variables
should have which values. To use fdbg_guard/3, first:

1. Set it up as a visualizer by calling:

fdbg_on([..., constraint_hook(fdbg_guard(Goal)), ...])

As usual, the two other arguments will be supplied by the FDBG core when
calling fdbg_guard/3.

2. At the beginning of your program, form a pair of lists Xs-Vs where Xs is
the list of variables and Vs is the list of values in question. This pair should
then be assigned the name fdbg_guard using:

| ?- fdbg_assign_name(Xs-Vs, fdbg_guard).

When these steps have been taken, fdbg_guard/3 will watch the domain
changes of Xs done by each constraint C. Whenever Vs is in the domains
of Xs at entry to C, but not at exit from C, Goal is called with three more
arguments:

546 SICStus Prolog

Variable List
a list of Variable-Value terms for which Value was removed from
the domain of Variable

Constraint
the constraint that was handled by the dispatcher

Actions the action list returned by the dispatcher

We will now show an example using fdbg_guard/3. First, we will need a few extra lines of
code:

%% print_and_trace(MissValues, Constraint, Actions): To be used as a Goal for

%% fdbg_guard to call when the given solution was removed from the domains

%% of the variables.

%%

%% MissValues is a list of Var-Value pairs, where Value is the value that

%% should appear in the domain of Var, but has been removed. Constraint is

%% the current constraint and Actions is the list of actions returned by it.

%%

%% This predicate prints MissValues in a textual form, then shows the current

%% (culprit) constraint (as done by fdbg_show/2), then turns on the Prolog

%% tracer.

print_and_trace(MissValues, Constraint, Actions) :-

print(fdbg_output, '\nFDBG Guard:\n'),

display_missing_values(MissValues),

print(fdbg_output, '\nCulprit constraint:\n\n'),

fdbg_show(Constraint, Actions),

trace.

display_missing_values([]).

display_missing_values([Var-Val|MissVals]) :-

fdbg_annotate(Var,AVar,_),

format(fdbg_output, ' ~d was removed from ~p~n', [Val,AVar]),

display_missing_values(MissVals).

Suppose that we have written the following N Queens program, using a global constraint
no_threat/3 with a bug in it:

Chapter 10: The Prolog Library 547

:- use_module(library(fdbg)).

:- use_module(library(clpfd)).

queens(L, N) :-

length(L, N),

domain(L, 1, N),

constrain_all(L),

labeling([enum], L).

constrain_all([]).

constrain_all([X|Xs]):-

constrain_between(X,Xs,1),

constrain_all(Xs).

constrain_between(_X,[],_N).

constrain_between(X,[Y|Ys],N) :-

no_threat(X,Y,N),

N1 is N+1,

constrain_between(X,Ys,N1).

no_threat(X,Y,I) :-

fd_global(no_threat(X,Y,I), 0, [val(X),val(Y)]).

:- multifile clpfd:dispatch_global/4.

clpfd:dispatch_global(no_threat(X,Y,I), S, S, Actions) :-

ground(X), !,

remove_threat(Y, X, I, NewYSet),

Actions = [exit, Y in_set NewYSet].

clpfd:dispatch_global(no_threat(X,Y,I), S, S, Actions) :-

ground(Y), !,

remove_threat(X, Y, I, NewXSet),

Actions = [exit, X in_set NewXSet].

clpfd:dispatch_global(no_threat(_,_,_), S, S, []).

remove_threat(X, V, I, Set) :-

Vp is V+I+1, % Bug introduced here

% Vp is V+I, % Good code

Vn is V-I,

fd_set(X, Set0),

list_to_fdset([Vn, V, Vp], VSet),

fdset_subtract(Set0, VSet, Set).

missing(L, Tuple) :-

length(Tuple, N),

length(L, N),

domain(L, 1, N),

lex_chain([[2,4,1,3],L]),

fdbg_assign_name(L-Tuple, fdbg_guard),

fdbg_assign_name(L, board),

fdbg_on([constraint_hook(fdbg_guard(print_and_trace))]),

queens(L, N).

548 SICStus Prolog

We will now use print_and_trace/3 as an argument to the fdbg_guard visualizer to handle
the case when a solution has been removed by a constraint. The bug shown above causes
three invalid solutions to be found instead of the two correct solutions [2,4,1,3] and
[3,1,4,2]. The constraint:

lex_chain([[2,4,1,3],L]),

constraints the search to solutions lexicographically greater than or equal to the first correct
solution, and FDBG is told to watch for its disappearance. At some point, the buggy
constraint removes it, and fdbg_guard/3 calls the given predicate. This prints the cause
of waking (the value that should not have been removed by the constraint), prints the
constraint itself, then switches the Prolog debugger to trace mode. At this point, we type
‘A’ (see Section 10.15.3.4 [FDBG Debugger Commands], page 532) to print the annotated
form of the goal containing the culprit constraint. Finally, we type ‘A [2,4]’ to print the
same information, but taking into account the action list, which is the 4th argument of the
2nd argument of the module prefixed goal. For clarity, the labeling events were not turned
off in the session below.

This example shows how FDBG can be used to narrow down what causes invalid pruning.

Chapter 10: The Prolog Library 549

| ?- missing(L, [2,4,1,3]).

% The clp(fd) debugger is switched on

Labeling [8, <board_1>]: starting in range 2..4.

Labeling [8, <board_1>]: indomain_up: <board_1> = 2

FDBG Guard:

4 was removed from <board_2>

Culprit constraint:

user:no_threat(2,<board_2>,1)

board_2 = 1..4 -> {3}

Constraint exited.

% The debugger will first creep -- showing everything (trace)

11 2 Exit:

clpfd:dispatch_global_fast(no_threat(2,_1511,1),0,0,

[exit,_1511 in_set[[3|3]]],

global('$mutable'(0,0),no_threat(2,_1511,1),'$mutable'(11,596),

_10779,user:no_threat(2,_1511,1))) ? A

clpfd:dispatch_global_fast(no_threat(2,<board_2>,1),0,0,

[exit,<board_2> in_set[[3|3]]],global($mutable(0,0),no_threat(2,<board_2>,1),

$mutable(11,596),<fdvar_1>,user:no_threat(2,<board_2>,1)))

board_2 = 1..4

fdvar_1 = inf..sup

11 2 Exit:

clpfd:dispatch_global_fast(no_threat(2,_1511,1),0,0,

[exit,_1511 in_set[[3|3]]],

global('$mutable'(0,0),no_threat(2,_1511,1),'$mutable'(11,596),

_23859,user:no_threat(2,_1511,1))) ? A [2,4]

clpfd:dispatch_global_fast(no_threat(2,<board_2>,1),0,0,

[exit,<board_2> in_set[[3|3]]],global($mutable(0,0),no_threat(2,<board_2>,1),

$mutable(11,596),<fdvar_1>,user:no_threat(2,<board_2>,1)))

board_2 = 1..4 -> {3}

fdvar_1 = inf..sup

Constraint exited.

11 2 Exit:

clpfd:dispatch_global_fast(no_threat(2,_1511,1),0,0,

[exit,_1511

in_set[[3|3]]],global('$mutable'(0,0),no_threat(2,_1511,1),'$mutable'(11,596),

_23859,user:no_threat(2,_1511,1))) ? a

% Execution aborted

% advice,source_info

| ?- fdbg_off.

% The clp(fd) debugger is switched off

550 SICStus Prolog

10.16 Accessing Files And Directories—library(file_

systems)

This module provides operations on files and directories, such as renaming, deleting, open-
ing, checking permissions, accessing members of.

The following principles have been observed:

• An absolute distinction is drawn between files and directories. The set of operations
one can usefully perform on a directory is different from the set one can perform on a
file: for example, having write permission to a directory allows the user to create new
files in it, not to rewrite the entire directory! If any routine in this package tells you
that a “file” exists, you can be sure that it means a file and not a directory (and vice
versa for “directory” exists).

• The directory scanning routines do not actually open the files they find. Thus finer
discriminations, such as that between source and object code, are not made.

• All paths are expanded as if by absolute_file_name/3.

• Every predicate acts like a genuine logical relation insofar as it possibly can.

• If anything goes wrong, the predicates raise an error exception. Any time that a
predicate fails quietly, it should mean “this question is meaningful, but the answer is
no”.

• The directory scanning routines insist that the directory argument name a searchable
directory.

• On Unix-like systems, symbolic links are followed by default and symbolic links that
can not be followed are treated as non-existing. This means file_exists/1 will fail
if passed such a “broken” link and that neither file_members_of_directory/1 nor
directory_members_of_directory/1 et al. will return such a link.

On Windows, symbolic links (and other reparse points) are not followed when enu-
merating directory contents with file_members_of_directory/1 nor directory_

members_of_directory/1 et al. and are not returned for these predicates.

The behavior for symbolic links (and reparse points) may change on all platforms in
the future to ensure a well defined and consistent behavior on all platforms.

To see all members of a directory you can use absolute_file_name/3 with a
glob('*') option.

The “property” routines use the same simplistic access control model as that used by the
absolute_file_name/3 access/1-option. See Section 11.3.3 [mpg-ref-absolute file name],
page 905, for details.

Exported predicates:

rename_file(+OldName, +NewName)

OldName must identify an existing file, which will be renamed to NewName.
The details of just when this can be done are operating-system dependent.
Typically it is only possible to rename within the same file system.

Chapter 10: The Prolog Library 551

rename_directory(+OldName, +NewName)

OldName must identify an existing directory, which will be renamed to
NewName. The details of just when this can be done are operating-system
dependent. Typically it is only possible to rename empty directories within the
same file system.

delete_file(+OldName)

OldName must identify an existing file, which will be deleted.

delete_directory(+Directory)

delete_directory(+Directory, +Options)

Directory must identify an existing directory, which will be deleted, if empty.
Options should be a list of at most one term of the form:

if_nonempty(Value)

Defines what to do if the directory is nonempty. One of:

ignore The predicate simply succeeds, deleting nothing.

fail The predicate simply fails, deleting nothing.

error The predicate raises a permisison error.

delete The predicate recursively deletes the directory and its
contents.

directory_exists(+Directory)

directory_exists(+Directory, +Mode)

is true when Directory is an existing directory that is accessible according to
Mode. Mode defaults to exist.

This is more or less equivalent to absolute_file_name(File, _, [file_

type(directory),access([exist|Mode]),file_errors(fail)]).

make_directory(+Directory)

Directory is expanded, as if by absolute_file_name/3, and the resulting di-
rectory is created.

file_exists(+File)

file_exists(+File, +Mode)

is true when File is an existing file that is accessible according to Mode. Mode
defaults to exist.

This is more or less equivalent to absolute_file_name(File, _,

[access([exist|Mode]),file_errors(fail)]).

file_must_exist(+File)

file_must_exist(+File, +Mode)

is like file_exists(File[, Mode]) except that if the file is not accessible it
reports an error.

This is more or less equivalent to absolute_file_name(File, _,

[access([exist|Mode]),file_errors(error)]).

directory_must_exist(+File)

directory_must_exist(+File, +Mode)

is like file_must_exists(File[, Mode]), but for directories.

552 SICStus Prolog

This is more or less equivalent to absolute_file_name(File, _, [file_

type(directory),access([exists|Mode]),file_errors(error)]).

close_all_streams

closes all the streams (other than the standard streams) which are currently
open. The time to call this is after an abort/0. Note that current_stream/3
does not notice the standard streams.

directory_member_of_directory(?BaseName, ?FullName)

is true when BaseName is the name of a subdirectory of the current directory
(other than ’.’ or ’..’) and FullName is its absolute name.

This uses absolute_file_name/3 with the glob/1 option.

directory_member_of_directory(+Directory, ?BaseName, ?FullName)

is true when Directory is a name (not necessarily the absolute name) of a
directory, BaseName is the name of a subdirectory of that directory (other
than ’.’ or ’..’) and FullName is its absolute name.

This uses absolute_file_name/3 with the glob/1 option.

directory_member_of_directory(+Directory, +Pattern, ?BaseName, ?FullName)

is true when Directory is a name (not necessarily the absolute name) of a
directory, BaseName is the name of a directory of that directory (other than ’.’
or ’..’) which matches the given Pattern, and FullName is the absolute name
of the subdirectory.

This uses absolute_file_name/3 with a glob(Pattern) option.

directory_members_of_directory(-Set)

is true when Set is a set of BaseName-FullName pairs being the relative and
absolute names of subdirectories of the current directory.

This uses absolute_file_name/3 with the glob/1 option.

directory_members_of_directory(+Directory, -Set)

is true when Set is a set of BaseName-FullName pairs being the relative and
absolute names of subdirectories of the given Directory. Directory need not be
absolute; the FullNames will be regardless.

This uses absolute_file_name/3 with the glob/1 option.

directory_members_of_directory(+Directory, +Pattern, -Set)

is true when Set is a set of BaseName-FullName pairs being the relative and ab-
solute names of subdirectories of the given Directory, such that each BaseName
matches the given Pattern.

This uses absolute_file_name/3 with a glob(Pattern) option.

file_member_of_directory(?BaseName, ?FullName)

is true when BaseName is the name of a file in the current directory and Full-
Name is its absolute name.

This uses absolute_file_name/3 with the glob/1 option.

file_member_of_directory(+Directory, ?BaseName, ?FullName)

is true when Directory is a name (not necessarily the absolute name) of a
directory, BaseName is the name of a file in that directory, and FullName is its
absolute name.

Chapter 10: The Prolog Library 553

This uses absolute_file_name/3 with the glob/1 option.

file_member_of_directory(+Directory, +Pattern, ?BaseName, ?FullName)

is true when Directory is a name (not necessarily the absolute name) of a
directory, BaseName is the name of a file in that directory which matches the
given Pattern, and FullName is its absolute name.

This uses absolute_file_name/3 with a glob(Pattern) option.

file_members_of_directory(-Set)

is true when Set is a set of BaseName-FullName pairs being the relative and
absolute names of the files in the current directory.

This uses absolute_file_name/3 with the glob/1 option.

file_members_of_directory(+Directory, -Set)

is true when Set is a set of BaseName-FullName pairs being the relative and ab-
solute names of the files in the given Directory. Directory need not be absolute;
the FullNames will be regardless.

This uses absolute_file_name/3 with the glob/1 option.

file_members_of_directory(+Directory, +Pattern, -Set)

is true when Set is a set of BaseName-FullName pairs being the relative and ab-
solute names of subdirectories of the given Directory, such that each BaseName
matches the given Pattern.

This uses absolute_file_name/3 with a glob(Pattern) option.

directory_property(+Directory, ?Property)

is true when Directory is a name of a directory, and Property is a boolean
property which that directory possesses, e.g.

directory_property(., searchable).

The current set of file and directory properties include:

readable

writable

executable

searchable

Tries to determine whether the process has permission to read,
write, execute (only for files) or search (only for directories) the
file.

size_in_bytes

The size, in bytes, of the file. Not available for directories.

create_timestamp

modify_timestamp

access_timestamp

The time of creation, last modification or last access expressed as
a timestamp. A timestamp is an integer expressing the time in-
terval, in seconds, since the “Epoch”. The Epoch is the time zero
hours, zero minutes, zero seconds, on January 1, 1970 Coordinated
Universal Time (UTC).

554 SICStus Prolog

The timestamp is what should be used when comparing information
between files since it is independent of locale issues like time zone
and daylight savings time etc.

create_localtime

modify_localtime

access_localtime

The same as the corresponding ..._timestamp values passed
through system:datime/2, i.e. expressed as local time and split
up in the components year, month, day, hour, minute, seconds.

set_user_id

set_group_id

save_text

True if the set-uid, set-group-id, save-text bits, respectively, are set
for the file. Always false on Windows.

who_can_read

who_can_write

who_can_execute

who_can_search

A list containing the subset of [user,group,other] for the process
classes that can, respectively, read, write, execute (only for files) or
search (only for directories.

owner_user_id

owner_group_id

The id of the owner and group of the file. The id is an integer on
UNIX and an atom (expressed as a string security identifier) on
Windows.

owner_user_name

owner_group_group

The atom containing the name of the files owner and group respec-
tively. On Windows a name like 'DOMAIN\NAME' will be used.

If for some reason the name cannot be found it will fall back to
using the same value as owner_user_id and owner_group_id.

Other properties may be added in the future. You can backtrack through
the available properties by calling file_property/3 or directory_property/3
with an uninstantiated Property argument.

directory_property(+Directory, ?Property, ?Value)

is true when Directory is a name of a directory, Property is a property of direc-
tories, and Value is Directory ’s Property Value. See directory_property/2,
above, for a list of properties.

file_property(+File, ?Property)

is true when File is a name of a file, and Property is a boolean property which
that file possesses, e.g.

file_property('foo.txt', readable).

Chapter 10: The Prolog Library 555

See directory_property/2, above, for a list of properties.

file_property(+File, ?Property, ?Value)

is true when File is a name of a file, Property is a property of files, and Value
is File’s Property Value. See directory_property/2, above, for a list of prop-
erties.

current_directory(-Directory)

current_directory(-Directory, +NewDirectory)

Directory is unified with the current working directory and the working direc-
tory is set to NewDirectory.

10.17 The Gauge Profiling Tool—library(gauge)

The Gauge library package is a graphical interface to the SICStus built-in predicates
profile_data/1 and profile_reset/0. See Section 9.2 [Execution Profiling], page 353,
for more information about execution profiling. The interface is based on Tcl/Tk (see
Section 10.41 [lib-tcltk], page 748).

The SICStus IDE (see Section 3.11 [SPIDER], page 29) can also show profiling information.
This makes the Gauge library largely obsolescent.

view since release 4.2

Creates a graphical user interface for viewing the profile data accumulated so
far. When the display first comes up it is blank except for the control panel. A
screen shot is shown below.

556 SICStus Prolog

Gauge graphical user interface

The menus and buttons on the control panel are used as follows:

Specification
Selects what statistics to display. One of:

Calls The number of times a predicate was called.

Instructions
The number of abstract instructions executed, plus two times the
number of choice point accesses.

Choicepoints
Number of choicepoints accessed (saved or restored).

Sort Order
Selects the sort order of the histogram. One of:

Chapter 10: The Prolog Library 557

Alphabetic Sort the bars in alphabetic order.

Descending values
Sort the bars by descending values.

Ascending values
Sort the bars by ascending values.

Top 40 Show just the 40 highest values in descending order.

Scale Controls the scaling of the bars. One of:

Linear Display values with a linear scale.

Logarithmic
Display values with a logarithmic scale.

Show Controls whether to show bars with zero counts. One of:

All Show all values in the histogram.

No zero values
Show only non-zero values.

Font The font used in the histogram chart.

Calculate Calculates the values according to the current settings. The values are displayed
in a histogram.

Reset The execution counters of the selected predicates and clauses are reset.

Print A choice of printing the histogram on a Postscript printer, or to a file.

Help Shows a help text.

Quit Quits Gauge and closes its windows.

By clicking on the bars of the histogram, the figures are displayed in the Value Info window.

10.18 Heap Operations—library(heaps)

A heap is a labelled binary tree where the key of each node is less than or equal to the keys
of its sons. The point of a heap is that we can keep on adding new elements to the heap
and we can keep on taking out the minimum element. If there are N elements total, the
total time is O(N lg N). If you know all the elements in advance, you are better off doing
a merge-sort, but this file is for when you want to do say a best-first search, and have no
idea when you start how many elements there will be, let alone what they are.

A heap is represented as a triple heap(N,Free,Tree) where N is the number of elements
in the tree, Free is a list of integers which specifies unused positions in the tree, and Tree
is a tree made of:

heap terms for empty subtrees and

heap(Key,Datum,Lson,Rson)

terms for the rest

558 SICStus Prolog

The nodes of the tree are notionally numbered like this:

1

2 3

4 6 5 7

8 12 10 14 9 13 11 15

..

The idea is that if the maximum number of elements that have been in the heap so far is
M, and the tree currently has K elements, the tree is some subtreee of the tree of this form
having exactly M elements, and the Free list is a list of M-K integers saying which of the
positions in the M -element tree are currently unoccupied. This free list is needed to ensure
that the cost of passing N elements through the heap is O(N lg M) instead of O(N lg N).
For M say 100 and N say 10^4 this means a factor of two. The cost of the free list is slight.
The storage cost of a heap in a copying Prolog is 2K+3M words. Exported predicates:

add_to_heap(+OldHeap, +Key, +Datum, -NewHeap)

add_to_heap/4 (heaps)

inserts the new Key-Datum pair into the heap. The insertion is not stable,
that is, if you insert several pairs with the same Key it is not defined which of
them will come out first, and it is possible for any of them to come out first
depending on the history of the heap.

delete_from_heap(+OldHeap, +Key, -Datum, -NewHeap)

delete_from_heap/4 (heaps)

deletes a single Key-Datum pair from the OldHeap producing a NewHeap. This
is useful if you want to e.g. change the priority of Datum.

get_from_heap(+OldHeap, -Key, -Datum, -NewHeap)

get_from_heap/4 (heaps)

returns the Key-Datum pair in OldHeap with the smallest Key, and also a
NewHeap which is the OldHeap with that pair deleted.

heap_size(+Heap, -Size)

heap_size/2 (heaps)

reports the number of elements currently in the heap.

heap_to_list(+Heap, -List)

heap_to_list/2 (heaps)

returns the current set of Key-Datum pairs in the Heap as a List, sorted into
ascending order of Keys.

list_to_heap(+List, -Heap)

list_to_heap/2 (heaps)

takes a proper list of Key-Datum pairs (such as keysort/2 could be used to
sort) and forms them into a heap.

empty_heap(?Heap)

empty_heap/1 (heaps)

is true when Heap represents an empty heap. There is only one way it can be
true.

Chapter 10: The Prolog Library 559

is_heap(+Heap)

is_heap/1 (heaps)

is true when Heap is a well formed heap. For this to be true, the size must be
right and the tree must satisfy the heap condition.

min_of_heap(+Heap, -Key, -Datum)

min_of_heap/3 (heaps)

returns the Key-Datum pair at the top of the heap (which is of course the pair
with the smallest Key), but does not remove it from the heap. It fails if the
heap is empty.

min_of_heap(+Heap, -Key1, -Datum1, -Key2, -Datum2)

min_of_heap/5 (heaps)

returns the smallest (Key1) and second smallest (Key2) pairs in the heap,
without deleting them. It fails if the heap does not have at least two elements.

portray_heap(+Heap)

portray_heap/1 (heaps)

writes a heap to the current output stream in a pretty format so that you can
easily see what it is. Note that a heap written out this way can not be read
back in. The point of this predicate is that you can add a clause

portray(X) :- is_heap(X), !, portray_heap(X).

10.19 Declaring determinacy attributes—library(is_

directives)

This library module gives access to the information declared by is/2 directives. The is/2

declarations can be used for declaring arbitrary predicate attributes, but the main applica-

tion is for declaring determinacy information, and this is what is described here.

10.19.1 Introduction

Determinacy, i.e. whether a call to a predicate can produce more than one solution on
backtracking, is an important property for understanding the predicate and the code that
uses it. For this reason it is desirable to describe the behavior in the documentation that
accompanies a predicate.

The determinacy properties of a predicate can also be used by various tools, and for this
reason it is possible to declare the determinacy of a predicate in a way that can be automat-
ically processed by such tools. One example is the determinacy analyzer in the SPIDER
IDE (see Section 3.11 [SPIDER], page 29), which uses the declared determinacy of a called
predicate to improve the precision of the analysis of the caller in the common case that the
caller does not have any determinacy declaration of its own.

The SICStus libraries contain determinacy declarations for most exported predicates. These
can serve as useful examples.

Determinacy declarations are hints, i.e. they are meant to convey the expected behavior.
Due to the dynamic nature of Prolog, almost any call can fail, throw an exception, or
succeed more than once for reasons not directly related to the called predicate. Examples

560 SICStus Prolog

where these things can happen are timeouts (library(timeout)) and functionality that
can cause goals to run when a variable is bound, e.g. freeze/2. For this reason, anything
that uses determinacy declarations must be prepared to handle any runtime behavior, not
just the behavior specified by the declarations.

10.19.2 Available Determinacy Annotations

The following determinacy attributes are available:

det A call will always succeed exactly once. I.e. the number of solutions is expected
to be one. This is probably the most common behavior.

semidet A call will fail, or succeed exactly once. I.e. the number of solutions is expected
to be zero or one. This can be used for for describing tests, e.g. X>Y.

multi A call will succeed more than once. I.e. the number of solutions is expected to
be one or more. This is uncommon, but could be used to describe the builtin
repeat/0.

nondet A call may fail or succeed any number of times. I.e. the number of solutions is
expected to be zero or more. This is the most general determinacy information
and is what must be assumed unless no other information is available.

failing A call will fail. I.e. the number of solutions is expected to be zero. This is
uncommon, but could be used to describe the builtin false/0.

throwing A call is expected to throw an exception. This is similar to failing in that
the number of solutions is expected to be zero but differs in situations where
failure is treated specially, like if-then-else. This is uncommon, but could be
used to describe the builtin throw/1 and some of the error reporting predicates
in library(types).

10.19.3 Syntax of Determinacy Declarations

Determinacy is declared using directives that use is/2. Note that in this usage, is/2 has
nothing to do with the arithmetic predicate of the same name.

The format of a determinacy directive is:

:- SPEC is ANNOTATION.

where ANNOTATION is one of the atoms used for determinacy annotation. The SPEC
describes the predicate and can be either a predicate specification (like those used by the
abolish/1 predicate) or a skeletal goal (like those used by the meta_predicate/1 directive).

Example:

Chapter 10: The Prolog Library 561

% foo/2 is expected to always succeed, once, for any argument.

:- foo/2 is det.

foo(X, Y) :-

Y = hello(X).

% bar/2, when called with a non-variable first argument,

% is expected to succeed at most once.

:- bar(+, ?) is semidet.

% bar/2, when called with a variable first argument,

% is expected to succeed any number of times.

:- bar(-, ?) is nondet.

bar('a', lowercase).

bar('A', uppercase).

...

bar('z', lowercase).

bar('Z', uppercase).

The SPEC tells which predicate is being annotated and, if it is a skeletal goal, it can restrict
the declaration to only apply for the specified instantiation of the arguments. It can have
one of the following forms:

Module:Name/Arity

Name/Arity

Module and Name should be atoms, Arity should be a non-negative integer.
This predicate specification denotes the predicate Name with arity Arity in
module Module, where Module defaults to the source module.

Module:Name(ARG1, ARG2, ..., ARGN)

Name(ARG1, ARG2, ..., ARGN)

This skeletal goal denotes the predicate Name with arity N in the module
Module, where Module defaults to the source module. The argument positions
is typically used to indicate an instantiation pattern.

10.19.3.1 Specifying Instantiation Patterns

Many predicates have different determinacy depending on how their arguments are instanti-
ated. This can be indicated using the skeleton goal form of specification, with each argument
of the skeleton goal being one of the following:

+ Indicates that the argument is instantiated, i.e. it is not a variable when the
predicate is called.

- Indicates that the argument is uninstantiated, i.e. it is a variable when the
predicate is called.

562 SICStus Prolog

?

* Indicates that the argument can be anything, i.e. the declared determinism is
not affected by the instantiation of this argument

if the argument is a compound term with one argument (like + hello, or - Bar), only the
functor is used when interpreting the argument. This makes it possible to use variables as
descriptive names for the arguments, e.g.

:- parent_of(+Parent, -Child) is nondet.

Not only variables can be used as descriptions in this way, any term is accepted.

When declaring determinism, the skeleton argument only specifies whether an argument is
a variable or not. This is different from whether the argument should be considered input
or output (var(X) has only an input argument, but will often be called with a variable as
input argument).

10.19.3.2 Declaring Meta Predicate Determinacy

The declarations above is sufficient for most predicates. However, they do not suffice for
predicates whose determinism depends on an argument goal, like lists:maplist/2.

For such predicates, i.e. meta predicates that take a single closure (goal) argument, it is
possible to specify different determinacy for each of the possible determinacies of the closure
argument, as in the following example:

Chapter 10: The Prolog Library 563

% The last argument of dolist/3 is a closure with two

% suppressed arguments that will be supplied using call/3.

:- meta_predicate dolist(*, *, 2).

% This is the expected mode, a determinate producer. In this

% case dolist/3 will also succeed exactly once.

:- dolist(+, -, det) is det.

% If the closure can fail, then dolist/2 can also fail.

:- dolist(+, -, semidet) is semidet.

% If the closure succeeds more than once, then so will dolist/2.

:- dolist(+, -, multi) is multi.

% If the closure always fails (a strange usage, indeed) then dolist/3

% can nevertheless succeed, when the input is an empty list.

:- dolist(+, -, failing) is semidet.

% In general, dolist/3 will be nondeterminate if the closure is

% nondeterminate.

% This declaration may seem redundant, but it may not be for some tools.

:- dolist(+, -, nondet) is nondet.

% dolist/3 calls the argument closure, which expects two extra

% arguments, on each pair of corresponding list elements

dolist([], [], _G_2). % The closure is ignored here

dolist([X|Xs], [Y|Ys], G_2) :-

call(G_2, X, Y),

dolist(Xs, Ys, G_2).

:- square/2 is det. % always expected to succeed (once)

square(X, XX) :-

XX is X*X.

% Example use:

% | ?- square_list([1,2,3], Squares).

% Squares = [1,4,9] ?

%

% It can be inferred that this is expected to succeed exactly once.

square_list(Numbers, Squares) :-

% Calls square(X,Y) on each X in Numbers and Y in Squares.

% Since square/2 is 'det', the call do dolist/3 will

% be considered 'det' as well.

dolist(Numbers, Squares, square).

564 SICStus Prolog

10.19.4 Using Determinacy Declarations

Since determinacy declarations by necessity are only hints, it is often better to focus on
the expected behavior rather than the exact behavior when declaring determinism for a
predicate.

Also, only very simple instantiation patterns can be specified, so it may be useful to pretend
they indicate more than they actually do.

As an example, consider how to declare the determinacy of the builtin length(List,

Length):

1. It will succeed at most once if the second argument is instantiated (It will succeed
once if the first argument can be unified with a list of the specified length, otherwise
it will fail), regardless of the instantiation of the first argument. This corresponds to
the attribute semidet.

2. It will succeed exactly once if the first argument is a proper list and the second argument
is a variable. This corresponds to the attribute det.

3. It will succeed more than once if the first argument is a partial list (i.e. is a variable or
has a variable tail). This corresponds to the attribute multi.

4. Finally, it will throw an exception for some invalid inputs, but this is not specified with
determinacy declarations (... is throwing is only meant for predicates expected to
always throw an exception).

However, it is not possible to specify “proper list”, “partial list“ and non-list as instantiation
patterns. On the other hand, it would be unfortunate to not be able to say anything about
the determinacy of length/2.

In such cases it may make sense to pretend that ‘+’, the non-variable argument instantiation,
means “a properly/fully instantiated input”, i.e. a “proper list” in the case of length/2.
Similarly, it may make sense to pretend that ‘?’, any instantiation, means “a partially
instantiated input”, i.e. a “partial list” in the case of length/2.

So, for the builtin length/2 it would make sense to specify the following determinacy
declarations:

:- length(*, +) is semidet. % this is precise

:- length(+, -) is det. % pretend '+' means proper list

:- length(?, -) is multi. % pretend '?' means partial list

It is up to the documentation accompanying the predicate, and any tools that use these
declarations, to handle this appropriately.

10.19.5 Accessing Determinacy Declarations at Runtime

The determinacy declarations are saved when code is compiled or consulted and can be
accessed when the code has been loaded. This could be used by documentation generators,
smart debuggers, and many other purposes, not all of which documented. New uses may

Chapter 10: The Prolog Library 565

be added without notice, so you should ignore any recorded is/2 directive that you do not
understand.

The loaded is/2 directives can be accessed using the following, non-determinate, predicate:

current_is_directive(Skel, M, Annotation, Spec, Directive, Context).

Skel This is a compound term with the same name as the predicate and one anony-
mous variable in each argument position.

M This is the module of the predicate specification. Typically the same as the
source module.

Annotation
This is the second argument of the is/2 directive.

Spec This is the first argument of the is/2 directive, with module prefixes peeled
off.

Directive This is the entire is/2 directive (without the surrounding :- ...).

Context this is the source module.

Consider the following code:

:- module(example, [p1/3]).

:- p1/3 is det.

:- user:bar(+, +) is semidet.

This corresponds to the following two clauses of current_is_directive/6:

current_is_directive(p1(_,_,_),

example,

det,

p1/3,

(p1/3 is det),

example).

current_is_directive(bar(_,_),

user,

semidet,

bar(+,+),

(user:bar(+,+) is semidet),

example).

Exported predicates:

current_is_directive(Skel, M, Annotation, Spec, Directive, Context).

Low-level access to the information recorded by is/2 directives. See the library
documentation for details.

566 SICStus Prolog

current_is_directive(:MSkel, Annotation, Spec).

Like current_is_directive(Skel, M, Annotation, Spec, _, _) where M
and Skel are the parts of the meta argument MSkel.

10.20 Jasper Interface—library(jasper)

10.20.1 Jasper Overview

Jasper is a bi-directional interface between Java and SICStus. The Java side of the interface
consists of a Java package (se.sics.jasper) containing classes representing the SICStus
runtime system (SICStus, SPTerm, etc). The Prolog part is designed as a library module
(library(jasper)).

The library module library(jasper) (see Section 10.20.8 [The Jasper Library], page 581)
provides functionality for controlling the loading and unloading the JVM (Java Virtual
Machine), method call functionality (jasper_call/4), and predicates for managing object
references.

Jasper can be used in two modes, depending on which system acts as Parent Application.
If Java is the parent application, then the SICStus runtime kernel will be loaded into the
JVM using the System.loadLibrary() method (this is done indirectly when instantiating
a SICStus object). In this mode, SICStus is loaded as a runtime system (see Section 6.7.1
[Runtime Systems], page 318).

As of release 3.9, it is possible to use Jasper in multi threaded mode. This means that
several Java threads can call SICStus runtime via a server thread. The communication
between the client threads and the server thread is hidden from the programmer, and the
API is based on Java Interfaces, which are implemented both by the multi thread capable
classes and the pre-3.9 classes, which are restricted to single threaded mode. The decision
whether to run in single thread mode or in multi threaded mode can thus be left until
runtime.

If SICStus is the parent application, then Java will be loaded as a foreign resource using
the query use_module(library(jasper)). The Java engine is initialized using jasper_

initialize/[1,2].

• Some of the information in this chapter is a recapitulation of the information in
Chapter 6 [Mixing C and Prolog], page 289. The intention is that this chapter should
be possible to read fairly independently.

• Before proceeding, please read Section “Jasper Notes” in SICStus Prolog Release Notes.
It contains important information about requirements, availability, installation tips,
limitations, and how to access other (online) Jasper/Java resources.

10.20.2 Getting Started

See Section “Getting Started” in SICStus Prolog Release Notes for a detailed description
of how to get started using the interface. It addresses issues such as finding SICStus from
within Java and vice versa, setting the classpath correctly, etc. If you have trouble in getting
started with Jasper, then read that chapter before contacting SICStus Support.

Chapter 10: The Prolog Library 567

10.20.3 Calling Prolog from Java

Calling Prolog from Java is done by using the Java package se.sics.jasper. This package
contains a set of Java classes, which can be used to create and manipulate terms, ask
queries and request one or more solutions. The functionality provided by this set of classes
is basically the same as the functionality provided by the C-Prolog interface (see Chapter 6
[Mixing C and Prolog], page 289).

It is possible to debug the Prolog code using the Prolog debugger, either from the command
line or from the SICStus Prolog IDE (SPIDER), see Section 6.9.3 [Examples of Debugging
Runtime Systems], page 342.

The usage is easiest described by some examples.

10.20.3.1 Single Threaded Example

The following is a Java version of the train example. See Section 6.8.1 [Train Example],
page 330, for information about how the train.sav file is created.

This code demonstrates the use of Jasper in single threaded mode. In this mode only one
thread can access the SICStus runtime via a SICStus object.

568 SICStus Prolog

// Simple.java

import se.sics.jasper.SICStus;

import se.sics.jasper.Query;

import java.util.HashMap;

public class Simple

{

public static void main(String argv[]) {

SICStus sp;

Query query;

HashMap WayMap = new HashMap();

try {

sp = new SICStus(argv,null);

sp.restore("train.sav");

query = sp.openPrologQuery("connected('Örebro', 'Stockholm',

Way, Way).",

WayMap);

try {

while (query.nextSolution()) {

System.out.println(WayMap);

}

} finally {

query.close();

}

}

catch (Exception e) {

e.printStackTrace();

}

}

}

It is assumed that the reader has read the section on Section 10.20.2 [Getting Started],
page 566, which describes how to get the basics up and running.

This is how the example works:

1. Before any predicates can be called, the SICStus runtime system must be initialized.
This is done by instantiating the SICStus class. Each SICStus object correspond to
one independent copy of the SICStus runtime system (a rather heavy-weight entity).

In this example, we have specified null as the second argument to SICStus. This
instructs SICStus to search for sprt.sav using its own internal methods.

2. Queries are made through method query. The arguments to this method are a string

Chapter 10: The Prolog Library 569

specifying a Prolog goal, and a Map, which will contain a mapping of variable names
to bindings. This method is for finding a single solution. Note that the string is read
by the Prolog reader, so it must conform to the syntax rules for Prolog, including the
terminating period. There are two more methods for making queries: queryCutFail,
for side effects only, and openQuery to produce several solutions through backtracking.

3. The next step is to load the Prolog code. This is done by the method restore.
Corresponds to SP_restore() in the C-interface. See Section 6.7.4.2 [Loading Prolog
Code], page 329. Note that this method must be called before any other SICStus
method is called. See the HTML Jasper documentation for details.

4. The openQuery method returns a reference to a query, an object implementing the
Query interface. To obtain solutions, the method nextSolution is called with no
arguments. nextSolution returns true as long as there are more solutions, and the
example above will print the value of the Map WayMap until there are no more solutions.
Note that the query must be closed, even if nextSolution has indicated that there are
no more solutions.

10.20.3.2 Multi Threaded Example

Following is a Java version of the train example.

This is a multi threaded version of the train example. In this mode several threads can ac-
cess the SICStus runtime via a Prolog interface. The static method Jasper.newProlog()
returns an object that implements a Prolog interface. A thread can make queries by call-
ing the query-methods of the Prolog object. The calls will be sent to a separate server thread
that does the actual call to SICStus runtime.

570 SICStus Prolog

// MultiSimple.java

import se.sics.jasper.Jasper;

import se.sics.jasper.Query;

import se.sics.jasper.Prolog;

import java.util.HashMap;

public class MultiSimple

{

class Client extends Thread

{

Prolog jp;

String qs;

Client(Prolog p,String queryString)

{

jp = p;

qs = queryString;

}

public void run()

{

HashMap WayMap = new HashMap();

try {

synchronized(jp) {

Query query = jp.openPrologQuery(qs, WayMap);

try {

while (query.nextSolution()) {

System.out.println(WayMap);

}

} finally {

query.close();

}

}

} catch (Exception e) {

e.printStackTrace();

}

}

}

Chapter 10: The Prolog Library 571

{

try {

Prolog jp = Jasper.newProlog(argv,null,"train.sav");

Client c1 =

new Client(jp,"connected('Örebro', 'Hallsberg',

Way1, Way1).");

c1.start();

// The prolog variable names are different from above

// so we can tell which query gives what solution.

Client c2 =

new Client(jp,"connected('Stockholm', 'Hallsberg',

Way2, Way2).");

c2.start();

}

catch (Exception e) {

e.printStackTrace();

}

}

public static void main(String argv[])

{

new MultiSimple(argv);

}

}

1. The Prolog object jp is the interface to SICStus. It implements the methods of
interface Prolog, making it possible to write quite similar code for single threaded
and multi threaded usage of Jasper. The static method Jasper.newProlog() returns
such an object.

2. In this example, the Prolog code is loaded by the server thread just after creating the
SICStus object (which is invisible to the user). The third argument to the method
Jasper.newProlog is the .sav file to restore. Two threads are then started, which will
make different queries with the connected predicate.

3. openPrologQuery is not recommended in multi threaded mode, but if you must use it
from more than one Java thread, then you should enclose the call to openPrologQuery

and the closing of the query in a single synchronized block, synchronizing on the Prolog
object. See Section 10.20.6 [SPTerm and Memory], page 578, for details on one of the
reasons why this is necessary.

10.20.3.3 Another Multi Threaded Example (Prolog Top Level)

This is another multi threaded version of the train example (see Section 6.8.1 [Train
Example], page 330).

In this example, Prolog is the toplevel and Java is invoked via library(jasper).

572 SICStus Prolog

// MultiSimple2.java

import se.sics.jasper.Jasper;

import se.sics.jasper.Query;

import se.sics.jasper.Prolog;

import se.sics.jasper.SICStus;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.ListIterator;

public class MultiSimple2

{

class Client extends Thread

{

Prolog jp;

SICStus sp;

String qs;

Client(Prolog p, SICStus s, String queryString)

{

jp = p;

sp = s;

qs = queryString;

}

public void run()

{

HashMap WayMap = new HashMap();

try {

synchronized(jp) {

Query query = jp.openPrologQuery(qs, WayMap);

try {

while (query.nextSolution()) {

System.out.println(WayMap);

}

} finally {

query.close();

}

}

} catch (Exception e) {

e.printStackTrace();

}

}

}

Chapter 10: The Prolog Library 573

class Watcher extends Thread

{

SICStus mySp;

ArrayList threadList = new ArrayList(2);

public boolean add(Client cl)

{

return threadList.add((Object)cl);

}

boolean at_least_one_is_alive(ArrayList tl)

{

ListIterator li = tl.listIterator();

boolean f = false;

while (li.hasNext()) {

boolean alive = ((Client)(li.next())).isAlive();

f = f || alive;

}

return f;

}

public void run()

{

while (at_least_one_is_alive(threadList)) {

try {

this.sleep(1000);

} catch (InterruptedException ie) {

System.err.println("Watcher interrupted.");

}

}

mySp.stopServer();

}

Watcher(SICStus sp)

{

mySp = sp;

}

}

574 SICStus Prolog

public void CallBack()

{

try {

SICStus sp = SICStus.getCaller(); // get the SICStus object

sp.load("train.ql");

Prolog jp = sp.newProlog(); // Create a new Prolog Interface

Client c1 =

new Client(jp, sp,

"connected('Örebro', 'Hallsberg', Way1, Way1).");

c1.start();

// The prolog variable names in the Map are different from above so

// we can tell which query gives what solution.

Client c2 =

new Client(jp, sp,

"connected('Stockholm', 'Hallsberg', Way2, Way2).");

c2.start();

Watcher w = new Watcher(sp);

w.add(c1);

w.add(c2);

w.start();

sp.startServer(); // And finally start the server. This

// method call does not return until

// some other thread calls sp.stopServer().

}

catch (Exception e) {

e.printStackTrace();

}

}

}

% multisimple2.pl

:- use_module(library(jasper)).

main:-

jasper_initialize(JVM),

jasper_new_object(JVM,

'MultiSimple2',

init,

init,

Obj),

jasper_call(JVM,

method('', 'CallBack', [instance]),

'CallBack'(+object('')),

'CallBack'(Obj)).

1. This example is similar to the previous multi threaded example See Section 10.20.3.2

Chapter 10: The Prolog Library 575

[Multi Threaded Example], page 569, but in this case Prolog is the top level.

2. Since a SICStus object already exists when the java method CallBack is called, we
cannot use Jasper.newProlog to obtain a Prolog interface. Instead we can use the
SICStus method getCaller to get a handle on the SICStus object.

3. In this example we cannot use the restore method to load the Prolog saved state, since
it unloads all foreign resources. This includes library(jasper) from which the call
to Java was made. Instead the method SICStus.load can be used to load a compiled
Prolog file. See the HTML Jasper documentation for details on this method. See
Section 4.3.2 [ref-lod-lod], page 80, for how to create a ‘.ql’ file.

4. The rest of the example is similar to the previous multi threaded example with the
addition of a watcher class, which is used to monitor the client threads. This is necessary
if the method startServer is to return. See the HTML Jasper documentation on the
methods SICStus.startServer and SICStus.stopServer.

10.20.4 Jasper Package Class Reference

Detailed documentation of the classes in the jasper package can be found in the HTML doc-
umentation installed with SICStus and also on the SICStus documentation page (https://
sicstus.sics.se/documentation.html).

Please note: None of the se.sics.jasper methods are thread safe, unless
explicitly mentioned, they can only be called from the thread that created the
SICStus object. (This is different from how se.sics.jasper worked in release
3.8.)

As of release 3.9, Jasper supports multi threaded mode. Several Java threads can access
SICStus runtime through a server thread that does the actual calls.

The API is defined by three interfaces: Prolog, Query and Term. The methods of these
interfaces are implemented by inner classes of the Jasper server. Instances of these inner
classes are returned by methods of the class Jasper and can then be used from multiple
threads by the Java programmer.

In multi threaded mode the Java programmer obtains an object implementing the
interface Prolog. That interface has methods similar to the methods of the SICStus

class described below. Interface Query and interface Term have the same relations to
class SPQuery and class SPTerm, respectively. In addition the SICStus class, the SPQuery
class and the SPTerm class all implement the above interfaces. The methods of the interfaces
are preferred over the old methods.

See the HTML documentation for details on the methods of the interfaces.

See Section “Jasper Notes” in SICStus Prolog Release Notes for limitations in multi
threaded Jasper.

https://sicstus.sics.se/documentation.html
https://sicstus.sics.se/documentation.html

576 SICStus Prolog

[Method on SICStus]boolean query (String module, String name, SPTerm
args[])

Call name with args (a vector of SPTerm objects). Like
once(Module:Name(Args...)).

Returns true if the call succeeded, false if the call failed, i.e. there were no solutions.

Introduced in release 3.8.5.

[Method on SICStus]boolean query (String goal, Map varMap)
Call a goal specified as a string.

goal The textual representation of the goal to execute, with terminating pe-
riod.

varMap A map from variable names to SPTerm objects. Used both for passing
variable bindings into the goal and to obtain the bindings produced by
the goal. May be null.

On success, the values of variables with names that do not start with
underscore (‘_’) will be added to the map.

Returns true if the call succeeded, false if the call failed, i.e. there were no solutions.

HashMap varMap = new HashMap();

varMap.put("File", new SPTerm(sp, "datafile.txt"));

if (sp.query("see(File),do_something(Result),seen.", varMap)) {

System.out.println("Result==" +

((SPTerm)varMap.get("Result")).toString());

} else {

System.out.println("Failed);

}

Introduced in release 3.8.5.

[Method on SICStus]boolean query (SPPredicate pred, SPTerm args[])
Obsolescent version of SICStus::query() above.

[Method on SICStus]boolean queryCutFail (String module, String name,
SPTerm args[])

Call name with args for side effect only.

As SICStus.query() it only finds the first solution, and then it cuts away all other
solutions and fails.

It corresponds roughly to the following Prolog code:

(\+ call(Module:Name(Args...)) -> fail; true)

Chapter 10: The Prolog Library 577

Introduced in release 3.8.5.

[Method on SICStus]boolean queryCutFail (String goal, Map varMap)
Call a goal specified as a string, for side effect only. The map is only used for passing
variable bindings into the goal. See query for details

Introduced in release 3.8.5.

[Method on SICStus]boolean queryCutFail (SPPredicate pred, SPTerm
args[])

Obsolescent version of queryCutFail above.

[Method on SICStus]SPQuery openQuery (String module, String name,
SPTerm args[])

Sets up a query (an object of class SPQuery), which can later be asked to produce
solutions. You must close an opened query when no more solutions are required; see
below.

It corresponds roughly to the following Prolog code:

(true % just calling openQuery does not call the predicate

; % failing (nextSolution) will backtrack for more solutions

call(Module:Name(Args...))

)

Introduced in release 3.8.5.

[Method on SICStus]boolean openQuery (String goal, Map varMap)
Sets up a query specified as a string. See openQuery and query for details.

Introduced in release 3.8.5.

[Method on SICStus]SPQuery openQuery (SPPredicate pred, SPTerm args[])
Obsolescent version of openQuery above.

The following methods are used to obtain solutions from an opened query and to tell the
SICStus runtime system that no more answers are required.

[Method on SPQuery]boolean nextSolution ()
Obtain the next solution. Returns true on success and false if there were no more
solutions. When you are no longer interested in any more solutions, you should call
SPQuery.close or SPQuery.cut to close the query.

Returns true if a new solution was produced, false if there were no more solutions.
This corresponds roughly to fail/0. See Section 10.20.6 [SPTerm and Memory],
page 578, for additional details.

578 SICStus Prolog

[Method on SPQuery]close ()
Cut and fail away any previous solution to the query. After closing a query object, you
should not use it anymore. This corresponds roughly to !, fail. See Section 10.20.6
[SPTerm and Memory], page 578, for additional details.

[Method on SPQuery]cut ()
Cut, but do not fail away, any previous solution. After closing a query object with cut,
you should not use it anymore. This corresponds roughly to !. See Section 10.20.6
[SPTerm and Memory], page 578, for additional details.

10.20.5 Java Exception Handling

Exceptions are handled seamlessly between Java and Prolog. This means that exceptions
can be thrown in Prolog and caught in Java and the other way around. For example, if a
predicate called from Java throws an exception with throw/1 and the predicate itself does
not catch the exception, then the Java method that performed the query, queryCutFail()
for example, will throw an exception (of class SPException) containing the exception term.
Symmetrically, a Java exception thrown (and not caught) in a method called from Prolog
will cause the corresponding predicate (simple/2 in the example above) to throw an ex-
ception consisting of the exception object (in the internal Prolog representation of a Java
object). See Section 10.20.8.5 [Handling Java Exceptions], page 592, for examples of catch-
ing Java exceptions in Prolog.

10.20.6 SPTerm and Memory

Java and Prolog have quite different memory management policies. In Java, memory
is reclaimed when the garbage collector can determine that no code will ever use the
object occupying the memory. In Prolog, the garbage collector additionally reclaims
memory upon failure (such as the failure implied in the use of SPQuery.close() and
SPQuery::nextSolution()). This mismatch in the notion of memory lifetime can oc-
casionally cause problems.

10.20.6.1 Lifetime of SPTerms and Prolog Memory

There are three separate memory areas involved when manipulating Prolog terms from Java
using SPTerm objects. These areas have largely independent life times.

1. The SPTerm object itself.

2. Creating SPTerm object also tells Prolog to allocate an SP term ref. SP term refs have
a life-time that is independent of the lifetime of the corresponding SPTerm object.

3. Any Prolog terms allocated on the global stack. An SPTerm refer to a Prolog term
indirectly via a SP term ref.

A SP term ref ref (created as a side effect of creating a SPTerm object) will be reclaimed
if either:

• Java returns to Prolog. This may never happen, especially if Java is the top-level
application.

Chapter 10: The Prolog Library 579

• Assume there exists a still open query q that was opened before the SP term ref ref
was created. The SP term ref ref will be reclaimed if the query q is closed (using
q.close() or q.cut()) or if q.nextSolution() is called.

An SPTerm object will be invalidated (and eventually reclaimed by the garbage collector) if
the corresponding SP term ref is reclaimed as above. If passed an invalidated SP term ref,
then most methods will throw an IllegalTermException exception.

A Prolog term (allocated on the global stack) will be deallocated when:

• Assume there exists a still open query q that was openend before the term was created.
The memory of the term will be reclaimed if the query q is closed using q.close()

or if q.nextSolution() is called. The memory is not reclaimed if the query is closed
with q.cut().

Please note: it is possible to get a SPTerm object and its SP term ref to refer to
deallocated Prolog terms, in effect creating “dangling” pointers in cases where
the SPTerm would ordinarily still be valid. This will be detected and invalidate
the SPTerm:

{

SPTerm old = new SPTerm(sp);

SPQuery q;

q = sp.openQuery(....);

...

old.consFunctor(...); // allocate a Prolog term newer than q

...

q.nextSolution(); // or q.close()

// error:
// The SP_term_ref in q refers to an invalid part of the global stack

// the SPTerm old will be invalidated by q.nextSolution()

}

10.20.6.2 Preventing SPTerm Memory Leaks

Some uses of SPTerm will leak memory on the Prolog side. This happens if a new SPTerm

object is allocate, but Java neither returns to Prolog nor backtracks (using the method
close, cut or nextSolution) into a query opened before the allocation of the SPTerm

object.

As of release 3.8.5, it is possible to explicitly delete a SPTerm object using the
SPTerm.delete() method. The delete() method invalidates the SPTerm object and
makes the associated SP term ref available for reuse.

Another way to ensure that all SP term refs are deallocated is to open a dummy query
only for this purpose. The following code demonstrates this:

580 SICStus Prolog

// Always synchronize over creation and closing of SPQuery objects

synchronized (sp) {

// Create a dummy query that invokes true/0

SPQuery context = sp.openQuery("user","true",new SPTerm[]{});

// All SP_term_refs created after this point will be reclaimed by

// Prolog when doing context.close() (or context.cut())

try { // ensure context is always closed

SPTerm tmp = new SPTerm(sp); // created after context

int i = 0;

while (i++ < 5) {

// reused instead of doing tmp = new SPTerm(sp,"...");

tmp.putString("Iteration #" + i + "\n");

// e.g. user:write('Iteration #1\n')

sp.queryCutFail("user", "write", new SPTerm[]{tmp});

}

}

finally {

// This will invalidate tmp and make Prolog

// reclaim the corresponding SP_term_ref

context.close(); // or context.cut() to retain variable bindings.

}

}

10.20.7 Java Threads

None of the pre-3.9 methods in se.sics.jasper are thread safe. They can only be
called from the thread that created the SICStus object. (This is different from how
se.sics.jasper used to work in release 3.8.)

As of 3.9 there are two ways to set up for calls to SICStus from multiple threads.

One way is to use the static method newProlog in the class Jasper:

[Method on Jasper]Prolog newProlog (String argv[], String bootPath)
Creates a Prolog interface object. Starts a server thread, which will serve that
Prolog. The server thread takes care of all interaction with the Prolog runtime,
making sure that all calls to the Prolog runtime will be done from one and the same
thread.

See the HTML documentation on the interface Prolog for details on what methods are
available for a client thread.

Another way is to create a SICStus object and use the following methods:

Chapter 10: The Prolog Library 581

[Method on SICStus]Prolog newProlog ()
Returns the Prolog interface for this SICStus object. Creates a server and a client
(Prolog) interface for this SICStus object. The server may be started by calling
startServer()

[Method on SICStus]startServer ()
Start serving requests from a Prolog client. This method does not return until another
thread calls stopServer(). Before calling this method you should call newProlog()
and hand the result over to another Thread.

[Method on SICStus]stopServer ()
Stops the server. Calling this method causes the Thread running in the
startServer() method to return.

As with the first method, the interface Prolog defines the methods available for the client
threads.

10.20.8 The Jasper Library

The Jasper library module is the Prolog interface to the Java VM. It corresponds to the
se.sics.jasper package in Java. It is loaded by executing the query:

| ?- use_module(library(jasper)).

The Jasper library fully supports multiple SICStus runtimes in a process.

Jasper cannot be used when the SICStus runtime is statically linked to the executable, such
as when using spld --static.

The following functionality is provided:

• Initializing the Java VM using the JNI Invocation API (jasper_initialize/[1,2],
jasper_deinitialize/1).

• Creating and deleting Java objects directly from Prolog (jasper_new_object/5).

• Method calls (jasper_call/4).

• Global and local (object) reference management (jasper_create_global_ref/3,
jasper_delete_global_ref/2, jasper_delete_local_ref/2). Global references are
used to prevent the JVM from garbage collecting a Java object referenced from Prolog.

• There is also a subdirectory containing example programs
(library('jasper/examples')).

10.20.8.1 Jasper Method Call Example

We begin with a small example.

582 SICStus Prolog

// Simple.java

import se.sics.jasper.*;

public class Simple {

private String instanceDatum = "this is instance data";

static int simpleMethod(int value) {

return value*42;

}

public String getInstanceData(String arg) {

return instanceDatum + arg;

}

}

Compile Simple.java (UNIX):

% javac -deprecation \

-classpath <installdir>/lib/sicstus-4.6.0/bin/jasper.jar Simple.java

Under Windows this may look like (the command should go on a single line):

C:\> c:\jdk1.2.2\bin\javac -deprecation

-classpath "D:\Program Files\SICStus Prolog VC16

4.6.0\bin\jasper.jar" Simple.java

The option ‘-deprecation’ is always a good idea, it makes javac warn if your code use
deprecated methods.

Chapter 10: The Prolog Library 583

% simple.pl

:- use_module(library(jasper)).

main :-

%% Replace '/my/java/dir' below with the path containing

%% 'Simple.class', e.g. to look in the current directory use

%% classpath(['.']).

%% You can also use the CLASSPATH environment variable and call

%% jasper_initialize(JVM)

%% Under Windows it may look like classpath(['C:/MyTest'])

jasper_initialize([classpath(['/my/java/dir'])],JVM),

format('Calling a static method...~n',[]),

jasper_call(JVM,

method('Simple','simpleMethod',[static]), % Which method

simple_method(+integer,[-integer]), % Types of arguments

simple_method(42,X)), % The arguments.

format('simpleMethod(~w) = ~w~n',[42,X]),

format('Creating an object...~n',[]),

jasper_new_object(JVM, 'Simple', init, init, Object),

format('Calling an instance method on ~w...~n',[Object]),

jasper_call(JVM,

method('Simple','getInstanceData',[instance]),

%% first arg is the instance to call

get_instance_data(+object('Simple'), +string,[-string]),

get_instance_data(Object, 'foobar', X1)),

format('getInstanceData(~w) = ~w~n',['foobar',X1]).

Then, run SICStus:

% echo "[simple],main." | sicstus

SICStus 4.6.0 ...

Licensed to SICS

% consulting /home1/jojo/simple.pl...

[...]

% consulted /home1/jojo/simple.pl in module user, 100 msec 26644 bytes

Calling a static method...

simpleMethod(42) = 1764

Creating an object...

Calling and instance method on $java_object(135057576)...

getInstanceData(foobar) = this is instance datafoobar

This example performed three things.

• The static method simpleMethod was called with argument ’42’, and returned the
square of ’42’, ’1764’.

584 SICStus Prolog

• An object of class Simple was created.

• The method getInstanceData was executed on the object just created. The method
took an atom as an argument and appended the atom to a string stored as a field in
the object, yielding "this is instance datafoobar".

10.20.8.2 Jasper Library Predicates

jasper_initialize(-JVM)

jasper_initialize(+Options, -JVM)

Loads and initializes the Java VM. JVM is a reference to the Java VM. Options
is a list of options. The options can be of the following types:

classpath(<classpath>)

If <classpath> is an atom, then it will be added (unmodified)
to the Java VM’s classpath. If <classpath> is a list, then each
element will be expanded using absolute_file_name/2 and con-
catenated using the Java VM’s path separator. Example:

classpath([library('jasper/examples'),'$HOME/joe'])

In addition to the classpaths specified here, Jasper will automati-
cally add jasper.jar to the classpath together with the contents
of the CLASSPATH environment variable.

if_exists(option)

This option determines what happens if a JVM has already been
initialized, either through a previous call to jasper_initialize

or because Prolog have been called from Java. If a JVM already
exists, then the other options are ignored.

ok The default. Argument JVM is bound to the existing
JVM.

fail The call to jasper_initialize/2 fails.

error The call to jasper_initialize/2 throws an exception
(java_exception(some text)).

if_not_exists(option)

This option determines what happens if a JVM has not already
been initialized.

ok The default. The remaining options are used to initial-
ize the JVM.

fail The call to jasper_initialize/2 fails.

error The call to jasper_initialize/2 throws an exception
(java_exception(some text)).

As an example, to access the currently running JVM and to give
an error if there is no running JVM use jasper_initialize([if_
exists(ok),if_not_exists(error)], JVM).

Chapter 10: The Prolog Library 585

Option The option is an atom that will be passed directly to the Java VM
as an option. This enables the user to send additional options to
the Java VM. Example:

jasper_initialize(['-Dkenny.is.dead=42'],JVM),

In addition to the options specified by the user, Jasper adds a couple of options
on its own in order for Java to find the Jasper classes and the Jasper native
library.

There is currently no support for creating multiple JVMs (few JDKs, if any,
supports this).

jasper_deinitialize(+JVM)

De-initialize Java. Do Not call this, current versions of the JVM does not
support deinitialization.

jasper_call(+JVM,+Method,+TypeInfo,+Args)

Calls a Java static or instance method.

JVM A reference to the Java VM, as obtained by jasper_

initialize/[1,2].

Method

A term of the form method(ClassName, MethodName, Flags) that
identifies the method to call.

ClassName
This is the Fully Qualified Classname of the class (for
example, java/lang/String) of the object or where
to look for the static method. Note that you need to
surround the atom with single quotes since it contains
/ characters. The class is ignored when calling instance
methods but should still be an atom, e.g. ''.

Name This is the name of the method, as an atom.

Flags This is the singleton list [instance] for instance meth-
ods and [static] for static methods.

TypeInfo Information about the argument types and the argument conversion
that should be applied. See Section 10.20.8.3 [Conversion between
Prolog Arguments and Java Types], page 587, for more information
on specifying argument types.

Note that for an instance method the first argument must be an
object reference (specified with +object(Class)). In this case the
class is ignored but should still be an atom, e.g. ''.

Args A term with one position for each argument to the method. For an
instance method the first argument is the instance.

jasper_new_object(+JVM,+ClassName,+TypeInfo,+Args,-Object)

Creates a new Java object.

586 SICStus Prolog

See jasper_call/4 above for an explanation of the arguments JVM,
ClassName, TypeInfo and Args.

ClassName
An an atom containing the fully qualified classname

TypeInfo TypeInfo has the same format as for a static void method.

Args A term with one position for each argument to the constructor.

Object This argument is bound to a (local) reference to the created object.
See Section 10.20.8.4 [Global vs. Local References], page 591.

As an example, the following code creates a java/lang/Integer object initial-
ized from a string of digits. It then calls the instance method doubleValue to
obtain the floating point representation of the Integer.

| ?- Chars = "4711",

%% get existing JVM

jasper_initialize([if_not_exists(error)], JVM),

jasper_new_object(JVM, 'java/lang/Integer',

init(+chars), init(Chars), S),

jasper_call(JVM,

method('java/lang/Integer', double-

Value, [instance]),

to_double(+object('java/lang/Integer'), [-

double]),

to_double(S,X)).

S = '$java_object'(135875344),

X = 4711.0, % note that this is now a floating point number

JVM = '$jvm'(1076414148),

Chars = [52,55,49,49] % a.k.a. "4711"

jasper_create_global_ref(+JVM,+Ref,-GlobalRef)

Creates a global reference (GlobalRef) for a (non-null) Java object (Ref). See
Section 10.20.8.4 [Global vs. Local References], page 591.

jasper_delete_global_ref(+JVM,+GlobalRef)

Destroys a global reference. See Section 10.20.8.4 [Global vs. Local References],
page 591.

jasper_create_local_ref(+JVM,+Ref,-LocalRef)

Creates a local reference (LocalRef) for a (non-null) Java object (Ref). See
Section 10.20.8.4 [Global vs. Local References], page 591. Rarely needed.

jasper_delete_local_ref(+JVM,+GlobalRef)

Destroys a local reference. See Section 10.20.8.4 [Global vs. Local References],
page 591.

jasper_is_jvm(+JVM)

Succeeds if JVM is a reference to a Java Virtual Machine.

Chapter 10: The Prolog Library 587

jasper_is_object(+Object)

jasper_is_object(+JVM,+Object)

Succeeds if Object is a reference to a Java object. The representation of Java
object will change so use jasper_is_object/1 to recognize objects instead of
relying on the internal representation. Currently the JVM argument is ignored.
If, and when, multiple JVMs becomes a possibility jasper_is_object/2 will
verify that Object is an object in a particular JVM.

jasper_is_same_object(+JVM,+Object1,+Object2)

Succeeds if Object1 and Object2 refers to the same Java object (or both are null
object references). The same object may be represented by two different terms
in Prolog so ==/2 can not be used to reliably detect if two object references
refer to the same object.

jasper_is_instance_of(+JVM,+Object,+ClassName)

Succeeds if Object is an instance of class ClassName; fails otherwise. Class-
Name is a fully qualified classname; see jasper_call/4.

jasper_object_class_name(+JVM,+Object,-ClassName)

Returns the fully qualified name of the class of +Object as an atom.

jasper_null(+JVM,-NullRef)

Create a null object reference.

jasper_is_null(+JVM,+Ref)

Succeeds if Ref is a null object reference, fails otherwise, e.g. if Ref is not an
object reference.

10.20.8.3 Conversion between Prolog Arguments and Java Types

The following table lists the possible values of arguments of the argument type specifica-
tion to jasper_call/4 and jasper_new_object/5 (see Section 10.20.8.2 [Jasper Library
Predicates], page 584). The value specifies which conversion between corresponding Prolog
argument and Java type will take place.

There is currently no mechanism for specifying Java arrays in this way.

In the following the package prefix (java/lang or se/sics/jasper) has been left out for
brevity.

For several of the numerical types there is the possibility that the target type cannot accu-
rately represent the source type, e.g. when converting from a Prolog integer to a Java byte.
The behavior in such cases is unspecified.

Prolog: +integer

Java: int

The argument should be a number. It is converted to a Java int, a 32 bit
signed integer.

Prolog: +byte

Java: byte

The argument should be a number. It is converted to a Java byte.

588 SICStus Prolog

Prolog: +short

Java: short

The argument should be a number. It is converted to a Java short, a 16 bit
signed integer.

Prolog: +long

Java: long

The argument should be a number. It is converted to a Java long, a 64-bit
signed integer.

In releases prior to 3.9.1, the value was truncated to 32 bits when passed between
Java and Prolog. This is no longer the case.

Prolog: +float

Java: float

The argument should be a number. It is converted to a Java float.

Prolog: +double

Java: double

The argument should be a number. It is converted to a Java double.

Prolog: +term

Java: SPTerm

The argument can be any term. It is passed to Java as an object of the class
SPTerm.

Prolog: +object(Class)

Java: Class

The argument should be the Prolog representation of a Java object of class
Class. Unless it is the first argument in a non-static method (in which case is
it treated as the object on which the method should be invoked), it is passed
to the Java method as an object of class Class.

Prolog: +atom obsolescent

Java: SPCanonicalAtom

The argument should be an atom. The Java method will be passed an object
of class SPCanonicalAtom. Often +string, see below, is more useful.

Prolog: +boolean

Java: boolean

The argument should be an atom in {true,false}. The Java method will
receive a boolean.

Prolog: +chars

Java: String

The argument should be a code list. The Java method will receive an object of
class String.

Prolog: +codes

Java: String

+codes is an alias for +chars.

Chapter 10: The Prolog Library 589

Prolog: +string

Java: String

The argument should be an atom. The Java method will receive an object of
class String.

Note. When using +chars, +codes or +string the automatic type conversion mecha-
nism will also create a type signature of the form java/lang/String. If you want
to call a method that accepts a String object as a parameter, but has different
signature, then the method lookup will fail. A workaround is to explicitly create
a String object and then call the method. For example:

:- use_module(library(jasper)).

main :-

jasper_initialize([],JVM),

jasper_new_object(JVM,

'java/lang/String',

init(+chars),

init("hamburger"),

H),

Str = "urge",

jasper_new_object(JVM,

'java/lang/String',

init(+chars),

init(Str),

S),

jasper_call(JVM,

method('', contains, [instance]),

contains(+object(''),

+object('java/lang/CharSequence'),

[-boolean]),

contains(H, S, B)),

format('Contains? ~a~n', [B]).

Prolog: -atom obsolescent

Java: SPTerm

The Java method will receive an object of class SPTerm, which should be set to
an atom (e.g. using SPTerm.putString). The argument will be bound to the
value of the atom when the method returns. Often -term, see below, is more
useful.

Prolog: -chars

Java: StringBuffer

The Java method will receive an (empty) object of type StringBuffer, which
can be modified. The argument will be bound to a code list of the StringBuffer
object.

Prolog: -codes

Java: StringBuffer

-codes is an alias for -chars.

590 SICStus Prolog

Prolog: -string

Java: StringBuffer

The Java method will receive an object of type StringBuffer, which can
be modified. The argument will be bound to an atom converted from the
StringBuffer object.

Prolog: -term

Java: SPTerm

The Java method will receive an object of class SPTerm, which can be set to
a term (e.g. using SPTerm.consFunctor). The argument will be bound to the
term when the method returns.

Prolog: [-integer]

Java: int M()

The Java method should return an int. The value will be converted to a Prolog
integer.

Prolog: [-byte]

Java: byte M()

The Java method should return a byte. The value will be converted to a Prolog
integer.

Prolog: [-short]

Java: short M()

The Java method should return a short. The value will be converted to a
Prolog integer.

Prolog: [-long]

Java: long M()

The Java method should return a long, a 64 bit signed integer. The value will
be converted to a Prolog integer.

Prolog: [-float]

Java: float M()

The Java method should return a float. The value will be converted to a
Prolog float.

Prolog: [-double]

Java: double M()

The Java method should return a double. The value will be converted to a
Prolog float.

Prolog: [-term]

Java: SPTerm M()

The Java method should return an object of class SPTerm, which will be con-
verted to a Prolog term.

Prolog: [-object(Class)]

Java: SPTerm M()

The Java method should return an object of class Class, which will be converted
to the internal Prolog representation of the Java object.

Chapter 10: The Prolog Library 591

Prolog: [-atom] obsolescent

Java: SPTerm M()

The Java method should return an object of class SPCanonicalAtom, which will
be converted to a Prolog atom. Often [-term], see above, is more useful.

Prolog: [-boolean]

Java: boolean M()

The Java should return a boolean. The value will be converted to a Prolog
atom in {true,false}.

Prolog: [-chars]

Java: String M()

The Java method should return an object of class String, which will be con-
verted to a code list.

Prolog: [-codes]

Java: String M()

[-codes] is an alias for [-chars].

Prolog: [-string]

Java: String M()

The Java method should return an object of class String, which will be con-
verted to an atom.

10.20.8.4 Global vs. Local References

It is important to understand the rules determining the life-span of Java object references.
These are similar in spirit to the SP term refs of the C-Prolog interface, but since they are
used to handle Java objects instead of Prolog terms they work a little differently.

Java object references (currently represented in Prolog as '$java_object'/1 terms) exist
in two flavors: local and global. Their validity are governed by the following rules.

1. A local reference is valid until Prolog returns to Java or the reference is deleted with
jasper_delete_local_ref/2. It is only valid in the (native) thread in which is was
created. As a rule of thumb a local reference can be used safely as long as it is not
saved away using assert/3 or similar.

Since local references are never reclaimed until Prolog returns to Java (which may
never happen) you should typically call jasper_delete_local_ref/2 when your code
is done with an object.

2. A global reference is valid until explicitly freed. It can be used from any native thread.

3. All objects returned by Java methods are converted to local references.

4. Java exceptions not caught by Java are thrown as Prolog exceptions consisting of a
global reference to the exception object, see Section 10.20.8.5 [Handling Java Excep-
tions], page 592.

Local references can be converted into global references (jasper_create_global_ref/3).
When the global reference is no longer needed, it should be deleted using jasper_delete_

global_ref/2.

592 SICStus Prolog

For a more in-depth discussion of global and local references, consult the JNI Documentation
(https://docs.oracle.com/en/java/javase/11/docs/specs/jni/index.html).

Using a local (or global) reference that has been deleted (either explicitly or by returning
to Java) is illegal and will generally lead to crashes. This is a limitation of the Java Native
Interface used to implement the low level interface to Java.

10.20.8.5 Handling Java Exceptions

If a Java method throws an exception, e.g. by using throw new Exception("...") and the
exception is not caught by Java, then it is passed on as a Prolog exception. The thrown
term is a global reference to the Exception object. The following example code illustrates
how to handle Java exceptions in Prolog:

exception_example(JVM, ...) :-

catch(

%% Call Java method that may raise an exception

jasper_call(JVM, ...),

Excp,

(

(is_java_exception(JVM, Excp)

-> print_exception_info(JVM, Excp)

; throw(Excp) % pass non-Java exceptions to caller

)

)

).

is_java_exception(_JVM, Thing) :- var(Thing), !, fail.

is_java_exception(_JVM, Thing) :-

Thing = java_exception(_), % misc error in Java/Prolog glue

!.

is_java_exception(JVM, Thing) :-

jasper_is_object(JVM, Thing),

jasper_is_instance_of(JVM, Thing, 'java/lang/Throwable').

https://docs.oracle.com/en/java/javase/11/docs/specs/jni/index.html
https://docs.oracle.com/en/java/javase/11/docs/specs/jni/index.html

Chapter 10: The Prolog Library 593

print_exception_info(_JVM, java_exception(Message)) :- !,

format(user_error, '~NJasper exception: ~w~n', [Message]).

print_exception_info(JVM, Excp) :-

/*

// Approximate Java code

{

String messageChars = excp.getMessage();

}

*/

jasper_call(JVM,

method('java/lang/Throwable', 'getMessage', [instance]),

get_message(+object('java/lang/Throwable'), [-chars]),

get_message(Excp, MessageChars)),

/* // Approximate Java code

{

StringWriter stringWriter = new StringWriter();

PrintWriter printWriter = new PrintWriter(stringWriter);

excp.printStackTrace(printWriter);

printWriter.close();

stackTraceChars = StringWriter.toString();

}

*/

jasper_new_object(JVM, 'java/io/StringWriter',

init, init, StringWriter),

jasper_new_object(JVM, 'java/io/PrintWriter',

init(+object('java/io/Writer')),

init(StringWriter), PrintWriter),

jasper_call(JVM,

method('java/lang/Throwable', 'printStackTrace', [instance]),

print_stack_trace(+object('java/lang/Throwable'),

+object('java/io/PrintWriter')),

print_stack_trace(Excp, PrintWriter)),

jasper_call(JVM,

method('java/io/PrintWriter','close',[instance]),

close(+object('java/io/PrintWriter')),

close(PrintWriter)),

jasper_call(JVM,

method('java/io/StringWriter','toString',[instance]),

to_string(+object('java/io/StringWriter'),[-chars]),

to_string(StringWriter, StackTraceChars)),

jasper_delete_local_ref(JVM, PrintWriter),

jasper_delete_local_ref(JVM, StringWriter),

%% ! exceptions are thrown as global references

jasper_delete_global_ref(JVM, Excp),

format(user_error, '~NJava Exception: ~s\nStackTrace: ~s~n',

[MessageChars, StackTraceChars]).

594 SICStus Prolog

10.20.8.6 Deprecated Jasper API

The information in this section is only of interest to those that need to read or modify code
that used library(jasper) before release 3.8.5.

A different way of doing method call and creating objects was used in versions of
library(jasper) predating release 3.8.5. Use of these facilities are strongly discouraged
although they are still available in the interest of backward compatibility.

The old method call predicates are jasper_call_static/6 and jasper_call_instance/6

as well as the old way of calling jasper_new_object/5.

10.20.8.7 Deprecated Argument Conversions

The pre release 3.8.5 method call predicates in this library use a specific form of argument
lists containing conversion information so the predicates know how to convert the input
arguments from Prolog datatypes to Java datatypes. This is similar to the (new) mechanism
described in Section 10.20.8.3 [Conversion between Prolog Arguments and Java Types],
page 587. The argument lists are standard Prolog lists containing terms on the following
form:

jboolean(X)

X is the atom true or false, representing a Java boolean primitive type.

jbyte(X) X is an integer, which is converted to a Java byte.

jchar(X) X is an integer, which is converted to a Java char.

jdouble(X)

X is a float, which is converted to a Java double.

jfloat(X)

X is a float, which is converted to a Java float.

jint(X) X is an integer, which is converted to a Java int.

jlong(X) X is an integer, which is converted to a Java long.

jshort(X)

X is an integer, which is converted to a Java short.

jobject(X)

X is a reference to a Java object, as returned by jasper_new_object/5 (see
Section 10.20.8.2 [Jasper Library Predicates], page 584).

jstring(X)

X is an atom, which is converted to a Java String.

If the Prolog term does not fit in the corresponding Java data type (jbyte(4711), for
example), then the result is undefined.

10.20.8.8 Deprecated Jasper Predicates

jasper_new_object(+JVM,+Class,+TypeSig,+Args,-Object) obsolescent

Creates a new Java object.

Chapter 10: The Prolog Library 595

JVM A reference to the Java VM, as obtained by jasper_

initialize/[1,2].

Class An an atom containing the fully qualified classname (i.e. package
name separated with ’/’, followed by the class name), for example
java/lang/String, se/sics/jasper/SICStus.

TypeSig The type signature of the class constructor. A type signature is a
string that uniquely defines a method within a class. For a defini-
tion of type signatures, see the JNI Documentation (http://java.
sun.com/products/jdk/1.2/docs/guide/jni/index.html).

Args A list of argument specifiers. See Section 10.20.8.7 [Deprecated
Argument Conversions], page 594.

Object A term on the form '$java_object'(X), where X is a Java ob-
ject reference. This is the Prolog handle to the Java object. See
Section 10.20.8.4 [Global vs. Local References], page 591.

10.21 JSON format serialization—library(json)

This library module provides some utilities for reading and writing structured data using
the JSON (https://json.org/) (JavaScript Object Notation) serialization format. The
library module is part of SICStus Prolog since release 4.5.0.

JSON is a light-weight, language independent, data-interchange format with good support
in many environments. As such, it is a convenient format when transferring data between
Prolog and other programming languages. The format is specified in ECMA-404 and in
RFC 8259.

The Prolog representation of JSON values is as follows:

Number A JSON number is represented as the corresponding Prolog number; as a float-
ing point number when the JSON number has an exponent or a fractional part,
otherwise as an integer.

String A JSON string is represented as the corresponding Prolog atom (escaped sur-
rogate pairs are combined into the corresponding Unicode code point).

Array A JSON array is represented as a list of the corresponding Prolog terms.

Object A JSON object is a sequence of name:value pairs, where each name is a JSON
string and each value is an arbitrary JSON value. It is represented as a term
json(Members) where Members is a list of Name=Value pairs, where Name is
a representation of the JSON string name and Value is a representaton of the
JSON value.

null

true

false These special JSON literals are, by default, translated to the Prolog terms
@(null), @(true), and @(false), respectively.

http://java.sun.com/products/jdk/1.2/docs/guide/jni/index.html
http://java.sun.com/products/jdk/1.2/docs/guide/jni/index.html
https://json.org/
https://www.ecma-international.org/publications/standards/Ecma-404.htm
https://www.rfc-editor.org/info/rfc8259

596 SICStus Prolog

Examples:

123 ⇒ 123

12.3 ⇒ 12.3

12E3 ⇒ 12.0E3

"foo" ⇒ 'foo'

null ⇒ @(null)

["a", 2, "bar"] ⇒ ['a', 2, 'bar']

{"age": 42,

"name": {"first":"Kim", "last":"Jones"},

"children": ["Lisa","Jim","John"]

}

⇒
json(['age'=42,

'name'=json(['first'='Kim', 'last'='Jones']),

'children'=['Lisa','Jim','John']])

It is possible to specify other Prolog representations of a JSON value using the option
argument. See below for details.

10.21.1 Options

The following options are used. They are valid for all predicates that takes options, unless
stated otherwise.

compact(Boolean)

Valid values for Boolean are true and false (default).

If false (default), JSON values are written with extra whitespace and end-
of-line characters to make it easier for humans to read. The details of the
non-compact format is subject to change without notice.

If true, JSON values are written with a minimum of whitespace. Since this
implies that no end-of-line characters will be written, it makes it possible to
read the resulting JSON as a single line.

Only valid for predicates that write.

ascii(Boolean)

Valid values for Boolean are true (default) and false.

If true (default), JSON values are written using only 7-bit ASCII characters,
which makes the format less sensitive to stream encodings.

If false, JSON values are written using full Unicode. In this case any streams
should use UTF-8 encoding.

Chapter 10: The Prolog Library 597

Only valid for predicates that write.

null(X)

true(X)

false(X) The specified term X, which may be a variable, is used for representing the
corresponding JSON literal.

array_tag(Tag)

The Tag must be an atom.

A JSON array is represented as the compound term Tag(Elements), where
Elements is a list of the representations of the array elements. This may be
useful if you need to be able to distinguish between an empty JSON array ([]),
and a JSON string "[]", since these have the same Prolog representation (the
atom []) in the default representation.

If this option is not specified (the default), then JSON arrays are represented
as a list of the representations of the array elements.

object_tag(Tag)

The Tag must be an atom. Tag defaults to 'json'.

A JSON object is represented as the compound term Tag(Members), where
Members is a list of Name=Value pairs, where Name is a representation of the
JSON string name and Value is a representaton of the JSON value.

width(Width)

This option is present for compatibility with other systems.

If Width is 0 (zero), it is treated as a synonym for compact(true). Otherwise,
the option is currently ignored.

Only valid for predicates that write.

value_string_as(Value)

step(Value)

tab(Value)

serialize_unknown(Value)

These options are present for compatibility with other systems. They are cur-
rently ignored.

Only valid for predicates that write.

10.21.2 Examples

The folder library/json/examples/ contains examples and utilities for using JSON.

10.21.2.1 Process Communication

In library/json/examples/ there are several examples of using JSON to communicate
between a non-Prolog parent process and a SICStus sub-process. There are examples of
writing the parent process using Python, C#, Java, C, Prolog etc.. These examples pro-
vide functionality that is similar to what is available in the language-specific libraries, e.g.
library(jasper) and library(prologbeans), but do so in a language-agnostic way.

598 SICStus Prolog

10.21.2.2 JSON Text as Atoms and Character Lists

All functionality in library(json) read and write from text streams. Sometimes it is
convenient to read from a list of character codes etc., which can easily be implemented
using library(codesio).

Example code for this kind of functionality is available in library('json/examples/json_

codes').

| ?- use_module(library('json/examples/json_codes')).

...

% compiled .../json_codes.pl in module json_codes, ...

yes

| ?- JSONCodes = "{\"foo\": 42, \"bar\": null}",

json_from_codes(JSONCodes, JSONTerm),

json_to_atom(JSONTerm, JSONAtom, [compact(true)]).

JSONCodes = [123,34,102,111,111,34,58,32,52,50|...],

JSONTerm = json([foo=42,bar= @(null)]),

JSONAtom = '{"foo":42,"bar":null}' ?

yes

| ?-

10.21.3 Exported Predicates

The Options argument is described in the module documentation. All Options, both for
read and write predicates, are allowed. Irrelevant options are simply ignored.

json_read(+Stream, -Term)

json_read(+Stream, -Term, +Options)

Reads a single JSON value from the stream Stream and unifies it with Term.

json_write(+Stream, +Term)

json_write(+Stream, +Term, +Options)

Write the JSON value Term to the stream Stream.

is_json_term(+Term)

is_json_term(+Term, +Options)

True if the Term is a valid representation of a JSON value.

10.22 Process Communication—
library(linda/[server,client])

Linda is a concept for process communication.

For an introduction and a deeper description, see [Carreiro & Gelernter 89a] or [Carreiro &
Gelernter 89b], respectively.

One process is running as a server and one or more processes are running as clients. The
processes are communicating with sockets and supports networks.

Chapter 10: The Prolog Library 599

The server is in principle a blackboard on which the clients can write (out/1), read (rd/1)
and remove (in/1) data. If the data is not present on the blackboard, then the predicates
suspend the process until they are available.

There are some more predicates besides the basic out/1, rd/1 and in/1. The in_noblock/1
and rd_noblock/1 does not suspend if the data is not available—they fail instead. A
blocking fetch of a conjunction of data can be done with in/2 or rd/2.

Example: A simple producer-consumer. In client 1:

producer :-

produce(X),

out(p(X)),

producer.

produce(X) :-

In client 2:

consumer :-

in(p(A)),

consume(A),

consumer.

consume(A) :-

Example: Synchronization

...,

in(ready), %Waits here until someone does out(ready)

...,

Example: A critical region

...,

in(region_free), % wait for region to be free

critical_part,

out(region_free), % let next one in

...,

Example: Reading global data

600 SICStus Prolog

...,

rd(data(Data)),

...,

or, without blocking:

...,

rd_noblock(data(Data)) ->

do_something(Data)

; write('Data not available!'),nl

),

...,

Example: Waiting for one of several events

...,

in([e(1),e(2),...,e(n)], E),

% Here is E instantiated to the first tuple that became available

...,

10.22.1 Linda Server

The server is the process running the “blackboard process”. It is an ordinary SICStus
process, which can be run on a separate machine if necessary.

To load the package, enter the query

| ?- use_module(library('linda/server')).

and start the server with linda/[0,1].

linda

Starts a Linda-server in this SICStus. The network address is written to the
current output stream as Host:PortNumber.

linda(:Options)

Starts a Linda-server in this SICStus. Each option on the list Options is one of

Address-Goal

where Address must be unifiable with Host:Port and Goal must be
instantiated to a goal.

When the linda server is started, Host and Port are bound to the
server host and port respectively and the goal Goal is called. A
typical use of this would be to store the connection information in
a file so that the clients can find the server to connect to.

For backward compatibility, if Options is not a list, then it is as-
sumed to be an option of the form Address-Goal.

Before release 3.9.1, Goal needed an explicit module prefix to ensure
it was called in the right module. This is no longer necessary since
linda/1 is now a meta-predicate.

Chapter 10: The Prolog Library 601

accept_hook(Client,Stream,Goal)

When a client attempts to connects to the server Client and Stream
will be bound to the IP address of the client and the socket stream
connected to the client, respectively. The Goal is then called, and if
it succeeds, then the client is allowed to connect. If Goal fails, then
the server will close the stream and ignore the connection request.
A typical use of this feature would be to restrict the addresses of
the clients allowed to connect. If you require bullet proof security,
then you would probably need something more sophisticated.

Example:

| ?- linda([(Host:Port)-mypred(Host,Port),

accept_hook(C,S,should_accept(C,S))]).

will call mypred/2 when the server is started. mypred/2 could start the client-
processes, save the address for the clients etc. Whenever a client attempts
to connect from a host with IP address Addr, a bi-directional socket stream
Stream will be opened to the client, and should_accept(Addr,Stream) will
be called to determine if the client should be allowed to connect.

10.22.2 Linda Client

The clients are one or more SICStus processes that have connection(s) to the server.

To load the package, enter the query

| ?- use_module(library('linda/client')).

Some of the following predicates fail if they do not receive an answer from the Linda-server
in a reasonable amount of time. That time is set with the predicate linda_timeout/2.

linda_client(+Address)

Establishes a connection to a Linda-server specified by Address. The Address
is of the format Host:PortNumber as given by linda/[0,1].

It is not possible to be connected to two Linda-servers at the same time.

This predicate can fail due to a timeout.

close_client

Closes the connection to the server.

shutdown_server/0

Sends a Quit signal to the server, which immediately stops accepting new con-
nections before shutdown_server/0 returns. The server continues running after
receiving this signal, processing requests from existing clients, until such time
as all the clients have closed their connections. It is up to the clients to tell each
other to quit. When all the clients are done, the server stops (i.e. linda/[0,1]
succeeds). Courtesy of Malcolm Ryan. Note that close_client/0 should be
called after shutdown_server/0. shutdown_server/0 will raise an error if
there is no connection between the client and the server.

The behavior of shutdown_server/0 changed in SICStus Prolog 4.2. In previ-
ous releases the server continued to accept new connections after being told to

602 SICStus Prolog

shutdown. Now it immediately stops listening for new connections and releases
the listening socket and these server actions happens before the client returns
from shutdown_server/0.

linda_timeout(?OldTime, ?NewTime)

This predicate controls Linda’s timeout. OldTime is unified with the old time-
out and then timeout is set to NewTime. The value is either off or of the form
Seconds:Milliseconds. The former value indicates that the timeout mechanism
is disabled, that is, eternal waiting. The latter form is the timeout-time.

out(+Tuple)

Places the tuple Tuple in Linda’s tuple-space.

in(?Tuple)

Removes the tuple Tuple from Linda’s tuple-space if it is there. If not, then
the predicate blocks until it is available (that is, someone performs an out/1).

in_noblock(?Tuple)

Removes the tuple Tuple from Linda’s tuple-space if it is there. If not, then
the predicate fails.

This predicate can fail due to a timeout.

in(+TupleList, ?Tuple)

As in/1 but succeeds when either of the tuples in TupleList is available. Tuple
is unified with the fetched tuple. If that unification fails, then the tuple is not
reinserted in the tuple-space.

rd(?Tuple)

Succeeds if Tuple is available in the tuple-space, suspends otherwise until it is
available. Compare this with in/1: the tuple is not removed.

rd_noblock(?Tuple)

Succeeds if Tuple is available in the tuple-space, fails otherwise.

This predicate can fail due to a timeout.

rd(+TupleList, ?Tuple)

As in/2 but does not remove any tuples.

bagof_rd_noblock(?Template, +Tuple, ?Bag)

Bag is the list of all instances of Template such that Tuple exists in the tuple-
space.

The behavior of variables in Tuple and Template is as in bagof/3. The variables
could be existentially quantified with ^/2 as in bagof/3.

The operation is performed as an atomic operation.

This predicate can fail due to a timeout.

Example: Assume that only one client is connected to the server and that the
tuple-space initially is empty.

Chapter 10: The Prolog Library 603

| ?- out(x(a,3)), out(x(a,4)), out(x(b,3)), out(x(c,3)).

| ?- bagof_rd_noblock(C-N, x(C,N), L).

C = _32,

L = [a-3,a-4,b-3,c-3],

N = _52

| ?- bagof_rd_noblock(C, N^x(C,N), L).

C = _32,

L = [a,a,b,c],

N = _48

10.23 List Operations—library(lists)

This library module provides operations on lists. Exported predicates:

select(?Element, ?Set, ?Residue)

is true when Set is a list, Element occurs in Set, and Residue is everything in
Set except Element (things stay in the same order).

selectchk(+Element, +Set, ?Residue)

is to select/3 what memberchk/2 is to member/2. That is, it locates the first
occurrence of Element in Set, and deletes it, giving Residue. It is steadfast in
Residue.

append(+ListOfLists, -List)

is true when ListOfLists is a list [L1,...,Ln] of lists, List is a list, and appending
L1, ..., Ln together yields List. ListOfLists must be a proper list. Additionally,
either List should be a proper list, or each of L1, ..., Ln should be a proper list.
The behavior on non-lists is undefined. ListOfLists must be proper because for
any given solution, infinitely many more can be obtained by inserting nils ([])
into ListOfList. Could be defined as:

append(Lists, Appended) :-

(foreach(List,Lists),

fromto(Appended,S0,S,[])

do append(List, S, S0)

).

append(?Prefix, ?Tail1, ?List1, ?Tail2, ?List2)

is true when append(Prefix, Tail1, List1) and append(Prefix, Tail2,

List2) are both true. You could call append/3 twice, but that is order- depen-
dent. This will terminate if Prefix is a proper list or if either List1 or List2 is
a proper list.

correspond(?X, ?Xlist, ?Ylist, ?Y)

is true when Xlist and Ylist are lists, X is an element of Xlist, Y is an element
of Ylist, and X and Y are in similar places in their lists. No relation is implied

604 SICStus Prolog

between other elements of Xlist and Ylist. For a similar predicate without the
cut, see select/4.

delete(+List, +Kill, -Residue)

is true when List is a list, in which Kill may or may not occur, and Residue is a
copy of List with all elements equal to Kill deleted. To extract a single copy of
Kill, use select(Kill, List, Residue). Kill and the elements of List should
be sufficiently instantiated for \= to be sound. Could be defined as:

delete(List, Kill, Residue) :-

(foreach(X,List),

fromto(Residue,S0,S,[]),

param(Kill)

do (X = Kill -> S0 = S ; S0 = [X|S])

).

delete(+List, +Kill, +Count, -Residue)

is true when List is a list, in which Kill may or may not occur, and Count is a
non-negative integer, and Residue is a copy of List with the first Count elements
equal to Kill deleted. If List has fewer than Count elements equal to Count,
all of them are deleted. Kill and the elements of List should be sufficiently
instantiated for \= to be sound.

is_list(+List)

succeeds when List is a proper list. That is, List is nil ([]) or a cons cell
([Head|Tail]) whose Tail is a proper list. A variable, or a list whose final tail
is a variable, or a cyclic list, will fail this test.

keys_and_values(?[K1-V1,...,Kn-Vn], ?[K1,...,Kn], ?[V1,...,Vn])

is true when its arguments look like the picture above. It is meant for splitting
a list of Key-Value pairs (such as keysort/2 wants and produces) into separate
lists of Keys and of Values. It may just as well be used for building a list of
pairs from a pair of lists. In fact one usually wants just the keys or just the
values, but you can supply _ as the other argument. For example, suppose you
wanted to sort a list without having duplicates removed. You could do

keys_and_values(RawPairs, RawKeys, _),

keysort(RawPairs, OrdPairs),

keys_and_values(OrdPairs, OrdKeys, _).

Could be defined as:

keys_and_values([], [], []).

keys_and_values([Key-Value|Pairs], [Key|Keys], [Value|Values]) :-

keys_and_values(Pairs, Keys, Values).

last(+List, -Last)

is true when List is a List and Last is its last element. There is also a
last(?Fore, ?Last, ?List) whose argument order matches append/3. This
could be defined as

last(L, X) :- append(_, [X], L).

nextto(?X, ?Y, ?List)

is true when X and Y appear side-by-side in List. It could be written as

Chapter 10: The Prolog Library 605

nextto(X, Y, List) :- append(_, [X,Y|_], List).

It may be used to enumerate successive pairs from the list. List should be
proper, otherwise nextto/3 will generate it.

nth0(?N, ?List, ?Elem)

is true when Elem is the Nth member of List, counting the first as element 0.
That is, throw away the first N elements and unify Elem with the next. E.g.
nth0(0, [H|T], H). Either N should be an integer, or List should be proper.

nth1(?N, ?List, ?Element)

is true when Elem is the Nth member of List, counting the first as element
1. That is, throw away the first N-1 elements and unify Elem with the next
element (the Nth). E.g. nth1(1, [H|T], H). This is just like nth0/3 except
that it counts from 1 instead of 0. Either N should be an integer, or List should
be proper.

nth0(?N, ?List, ?Elem, ?Rest)

unifies Elem with the Nth element of List, counting from 0, and Rest with
the other elements. It can be used to select the Nth element of List (yielding
Elem and Rest), or to insert Elem before the Nth (counting from 0) element of
Rest, when it yields List, e.g. nth0(2, List, c, [a,b,d,e]) unifies List with
[a,b,c,d,e]. This can be seen as inserting Elem after the Nth element of Rest
if you count from 1 rather than 0. Either N should be an integer, or List or
Rest should be proper.

nth1(?N, ?List, ?Elem, ?Rest)

unifies Elem with the Nth element of List, counting from 1, and Rest with
the other elements. It can be used to select the Nth element of List (yielding
Elem and Rest), or to insert Elem before the Nth (counting from 1) element of
Rest, when it yields List, e.g. nth1(2, List, b, [a,c,d,e]) unifies List with
[a,b,c,d,e]. Either N should be an integer, or List or Rest should be proper.

one_longer(?Longer, ?Shorter)

is true when

length(Longer,N), length(Shorter,M), succ(M,N)

for some integers M, N. It was written to make {nth0,nth1}/4 able to find the
index, just as same_length/2 is useful for making things invertible.

perm(+List, ?Perm)

is true when List and Perm are permutations of each other. The main use of
perm/2 is to generate permutations. You should not use this predicate in new
programs; use permutation/2 instead. List must be a proper list. Perm may
be partly instantiated.

permutation(?List, ?Perm)

is true when List and Perm are permutations of each other. Unlike perm/2, it
will work even when List is not a proper list. Any way, it works by generating
permutations of List and unifying them with Perm. Be careful: this is quite
efficient, but the number of permutations of an N -element list is N!, and even
for a 7-element list that is 5040.

606 SICStus Prolog

perm2(?A,?B, ?C,?D)

is true when {A,B} = {C,D}. It is very useful for writing pattern matchers
over commutative operators.

proper_length(+List, ?Length)

succeeds when List is a proper list, binding Length to its length. That is,
is_list(List), length(List, Length). Will fail for cyclic lists.

remove_dups(+List, ?Pruned)

removes duplicated elements from List, which should be a proper list. If List has
non-ground elements, Pruned may contain elements which unify; two elements
will remain separate iff there is a substitution which makes them different. E.g.
[X,X] -> [X] but [X,Y] -> [X,Y]. The surviving elements, by ascending standard
order, is unified with Pruned.

reverse(?List, ?Reversed)

is true when List and Reversed are lists with the same elements but in opposite
orders. Either List or Reversed should be a proper list: given either argument
the other can be found. If both are incomplete reverse/2 can backtrack forever
trying ever longer lists.

rev(+List, ?Reversed)

is a version of reverse/2 which only works one way around. Its List argument
must be a proper list whatever Reversed is. You should use reverse/2 in new
programs, though rev/2 is faster when it is safe to use it.

same_length(?List1, ?List2)

is true when List1 and List2 are both lists and have the same number of ele-
ments. No relation between the values of their elements is implied. It may be
used to generate either list given the other, or indeed to generate two lists of
the same length, in which case the arguments will be bound to lists of length
0, 1, 2, ... If either List1 or List2 is bound to a proper list, same length is
determinate and terminating.

same_length(?List1, ?List2, ?Length)

is true when List1 and List2 are both lists, Length is a non-negative integer,
and both List1 and List2 have exactly Length elements. No relation between
the elements of the lists is implied. If Length is instantiated, or if either List1
or List2 is bound to a proper list, same length is determinate and terminating.

select(?X, ?Xlist, ?Y, ?Ylist)

is true when X is the Kth member of Xlist and Y the Kth element of Ylist for
some K, and apart from that Xlist and Ylist are the same. You can use it to
replace X by Y or vice versa. Either Xlist or Ylist should be a proper list.

selectchk(?X, +Xlist, ?Y, +Ylist)

is to select/4 as memberhck/2 is to member/2. That is, it finds the first K
such that X unifies with the Kth element of Xlist and Y with the Kth element
of Ylist, and it commits to the bindings thus found. If you have Keys and
Values in "parallel" lists, you can use this to find the Value associated with a
particular Key (much better methods exist). Except for argument order, this is

Chapter 10: The Prolog Library 607

identical to correspond/4, but selectchk/4 is a member of a coherent family.
Note that the arguments are like the arguments of memberchk/2, twice.

shorter_list(?Short, ?Long)

is true when Short is a list is strictly shorter than Long. Long doesn’t have
to be a proper list provided it is long enough. This can be used to generate
lists shorter than Long, lengths 0, 1, 2... will be tried, but backtracking will
terminate with a list that is one element shorter than Long. It cannot be used
to generate lists longer than Short, because it doesn’t look at all the elements
of the longer list.

subseq(?Sequence, ?SubSequence, ?Complement)

is true when SubSequence and Complement are both subsequences of the list Se-
quence (the order of corresponding elements being preserved) and every element
of Sequence which is not in SubSequence is in the Complement and vice versa.
That is, length(Sequence) = length(SubSequence)+length(Complement),
e.g. subseq([1,2,3,4], [1,3,4], [2]). This was written to generate sub-
sets and their complements together, but can also be used to interleave two
lists in all possible ways.

subseq0(+Sequence, ?SubSequence)

is true when SubSequence is a subsequence of Sequence, but may be Sequence
itself. Thus subseq0([a,b], [a,b]) is true as well as subseq0([a,b], [a]).
Sequence must be a proper list, since there are infinitely many lists with a given
SubSequence.

?- setof(X, subseq0([a,b,c],X), Xs).

Xs = [[],[a],[a,b],[a,b,c],[a,c],[b],[b,c],[c]]

?- bagof(X, subseq0([a,b,c,d],X), Xs).

Xs = [[a,b,c,d],[b,c,d],[c,d],[d],[],[c],[b,d],[b],[b,c],[a,c,d],

[a,d],[a],[a,c],[a,b,d],[a,b],[a,b,c]]

subseq1(+Sequence, ?SubSequence)

is true when SubSequence is a proper subsequence of Sequence, that is it con-
tains at least one element less. Sequence must be a proper list, as SubSequence
does not determine Sequence.

sumlist(+Numbers, ?Total)

is true when Numbers is a list of integers, and Total is their sum. Numbers
should be a proper list. Could be defined as:

sumlist(Numbers, Total) :-

(foreach(X,Numbers),

fromto(0,S0,S,Total)

do S is S0+X

).

transpose(?X, ?Y)

is true when X is a list of the form [[X11,...,X1m],...,[Xn1,...,Xnm]] and Y is
its transpose, that is, Y = [[X11,...,Xn1],...,[X1m,...,Xnm]] We insist that both
lists should have this rectangular form, so that the predicate can be invertible.
For the same reason, we reject empty arrays with m = 0 or n = 0.

608 SICStus Prolog

append_length(?Prefix, ?Suffix, ?List, ?Length)

is true when

append(Prefix, Suffix, List), length(Prefix, Length).

The normal use of this is to split a List into a Prefix of a given Length and the
corresponding Suffix, but it can be used any way around provided that Length
is instantiated, or Prefix is a proper list, or List is a proper list.

append_length(?Suffix, ?List, ?Length)

is true when there exists a list Prefix such that append_length(Prefix, Suf-

fix, List, Length) is true. When you don’t want to know the Prefix, you
should call this predicate, because it doesn’t construct the Prefix argument,
which append_length/4 would do.

prefix_length(?List, ?Prefix, ?Length)

is true when

prefix(List, Prefix) &

length(Prefix, Length).

The normal use of this is to find the first Length elements of a given List, but
it can be used any way around provided that Length is instantiated, or Prefix
is a proper list, or List is a proper list. It is identical in effect to append_

length(Prefix, _, List, Length).

proper_prefix_length(?List, ?Prefix, ?Length)

is true when

proper_prefix(List, Prefix) &

length(Prefix, Length).

The normal use of this is to find the first Length elements of a given List, but it
can be used any way around provided that Length is instantiated, or Prefix is a
proper list, or List is a proper list. It is logically equivalent to prefix(Prefix,

List, Length), Length > 0.

suffix_length(+List, ?Suffix, ?Length)

is true when

suffix(List, Suffix) &

length(Suffix, Length).

The normal use of this is to return the last Length elements of a given List. For
this to be sure of termination, List must be a proper list. The predicate suffix/2
has the same requirement. If Length is instantiated or Suffix is a proper list,
this predicate is determinate.

proper_suffix_length(+List, ?Suffix, ?Length)

is true when

proper_suffix(List, Suffix) &

length(Suffix, Length).

The normal use of this is to return the last Length elements of a given List.
For this to be sure of termination, List must be a proper list. The predicate
proper suffix/2 has the same requirement. If Length is instantiated or Suffix is
a proper list, this predicate is determinate.

Chapter 10: The Prolog Library 609

rotate_list(+Amount, ?List, ?Rotated)

is true when List and Rotated are lists of the same length, and

append(Prefix, Suffix, List) &

append(Suffix, Prefix, Rotated) &

(Amount >= 0 & length(Prefix, Amount)

| Amount =< 0 & length(Suffix, Amount)

).

That is to say, List rotated LEFT by Amount is Rotated. If either List or
Rotated is bound to a proper list, rotate list is determinate.

rotate_list(?List, ?Rotated)

is true when rotate_list(1, List, Rotated), but is a bit less heavy-handed.
rotate_list(X, Y) rotates X left one place yielding Y. rotate_list(Y, X)

rotates X right one place yielding Y. Either List or Rotated should be a proper
list, in which case rotate list is determinate and terminating.

sublist(+Whole, ?Part, ?Before, ?Length, ?After)

sublist(+Whole, ?Part, ?Before, ?Length)

sublist(+Whole, ?Part, ?Before)

is true when

• Whole is a list – it must be proper already

• Part is a list

• Whole = Alpha || Part || Omega

• length(Alpha, Before)

• length(Part, Length)

• length(Omega, After)

cons(?Head, ?Tail, ?List)

is true when Head is the head of List and Tail is its tail. i.e. append([Head],
Tail, List). No restrictions.

last(?Fore, ?Last, ?List)

is true when Last is the last element of List and Fore is the list of preceding
elements, e.g. append(Fore, [Last], List). Fore or Last should be proper.
It is expected that List will be proper and Fore unbound, but it will work in
reverse too.

head(?List, ?Head)

is true when List is a non-empty list and Head is its head. A list has only one
head. No restrictions.

tail(?List, ?Tail)

is true when List is a non-empty list and Tail is its tail. A list has only one
tail. No restrictions.

prefix(?List, ?Prefix)

is true when List and Prefix are lists and Prefix is a prefix of List. It terminates
if either argument is proper, and has at most N+1 solutions. Prefixes are
enumerated in ascending order of length.

610 SICStus Prolog

proper_prefix(?List, ?Prefix)

is true when List and Prefix are lists and Prefix is a proper prefix of List. That
is, Prefix is a prefix of List but is not List itself. It terminates if either argument
is proper, and has at most N solutions. Prefixes are enumerated in ascending
order of length.

suffix(?List, ?Suffix)

is true when List and Suffix are lists and Suffix is a suffix of List. It terminates
only if List is proper, and has at most N+1 solutions. Suffixes are enumerated
in descending order of length.

proper_suffix(?List, ?Suffix)

is true when List and Suffix are lists and Suffix is a proper suffix of List. That
is, Suffix is a suffix of List but is not List itself. It terminates only if List is
proper, and has at most N solutions. Suffixes are enumerated in descending
order of length.

segment(?List, ?Segment)

is true when List and Segment are lists and Segment is a segment of List. That
is, List = <> Segment <> . Terminates only if List is proper. If Segment
is proper it enumerates all solutions. If neither argument is proper, it would
have to diagonalise to find all solutions, but it doesn’t, so it is then incomplete.
If Segment is proper, it has at most N+1 solutions. Otherwise, it has at most
(1/2)(N+1)(N+2) solutions.

proper_segment(?List, ?Segment)

is true when List and Segment are lists and Segment is a proper segment of
List. It terminates only if List is proper. The only solution of segment/2 which
is not a solution of proper_segment/2 is segment(List,List). So proper_

segment/2 has one solution fewer.

cumlist(:Pred, +[X1,...,Xn], ?V0, ?[V1,...,Vn])

cumlist(:Pred, +[X1,...,Xn], +[Y1,...,Yn], ?V0, ?[V1,...,Vn])

cumlist(:Pred, +[X1,...,Xn], +[Y1,...,Yn], +[Z1,...,Zn], ?V0, ?[V1,...,Vn])

cumlist/4 maps a ternary predicate Pred down the list [X1,...,Xn] just as
scanlist/4 does, and returns a list of the results. It terminates when the lists
runs out. If Pred is bidirectional, it may be used to derive [X1...Xn] from V0
and [V1...Vn], e.g. cumlist(plus, [1,2,3,4], 0, /* -> */ [1,3,6,10]) and
cumlist(plus, [1,1,1,1], /* <- */ 0, [1,2,3,4]). Could be defined as:

Chapter 10: The Prolog Library 611

cumlist(Pred, Xs, V0, Cum) :-

(foreach(X,Xs),

foreach(V,Cum),

fromto(V0,V1,V,_),

param(Pred)

do call(Pred,X,V1,V)

).

cumlist(Pred, Xs, Ys, V0, Cum) :-

(foreach(X,Xs),

foreach(Y,Ys),

foreach(V,Cum),

fromto(V0,V1,V,_),

param(Pred)

do call(Pred,X,Y,V1,V)

).

cumlist(Pred, Xs, Ys, Zs, V0, Cum) :-

(foreach(X,Xs),

foreach(Y,Ys),

foreach(Z,Zs),

foreach(V,Cum),

fromto(V0,V1,V,_),

param(Pred)

do call(Pred,X,Y,Z,V1,V)

).

maplist(:Pred, +List)

succeeds when Pred(X) succeeds for each element X of List. List should be a
proper list. Could be defined as:

maplist(Pred, Xs) :-

(foreach(X,Xs),

param(Pred)

do call(Pred, X)

).

maplist(:Pred, +OldList, ?NewList)

succeeds when Pred(Old,New) succeeds for each corresponding Old in OldList,
New in NewList. Either OldList or NewList should be a proper list. Could be
defined as:

maplist(Pred, Xs, Ys) :-

(foreach(X,Xs),

foreach(Y,Ys),

param(Pred)

do call(Pred, X, Y)

).

612 SICStus Prolog

maplist(:Pred, +Xs, ?Ys, ?Zs)

is true when Xs, Ys, and Zs are lists of equal length, and Pred(X, Y, Z) is true
for corresponding elements X of Xs, Y of Ys, and Z of Zs. At least one of Xs,
Ys, and Zs should be a proper list. Could be defined as:

maplist(Pred, Xs, Ys, Zs) :-

(foreach(X,Xs),

foreach(Y,Ys),

foreach(Z,Zs),

param(Pred)

do call(Pred, X, Y, Z)

).

map_product(Pred, Xs, Ys, PredOfProduct)

Just as maplist(P, Xs, L) is the analogue of Miranda’s

let L = [P x | x <- Xs]

so map_product(P, Xs, Ys, L) is the analogue of Miranda’s

let L = [P x y | x <- Xs; y <- Ys]

That is, if Xs = [X1,...,Xm], Ys = [Y1,...,Yn], and P(Xi,Yj,Zij), L =
[Z11,...,Z1n,Z21,...,Z2n,...,Zm1,...,Zmn]. It is as if we formed the cartesian prod-
uct of Xs and Ys and applied P to the (Xi,Yj) pairs. Xs and Ys should be proper
lists. Could be defined as:

map_product(Pred, Xs, Ys, Zs) :-

(foreach(X,Xs),

fromto(Zs,S0,S,[]),

param([Ys,Pred])

do (foreach(Y,Ys),

fromto(S0,[Z|S1],S1,S),

param([X,Pred])

do call(Pred, X, Y, Z)

)

).

scanlist(:Pred, [X1,...,Xn], ?V1, ?V)

scanlist(:Pred, [X1,...,Xn], [Y1,...,Yn], ?V1, ?V)

scanlist(:Pred, [X1,...,Xn], [Y1,...,Yn], [Z1,...,Zn], ?V1, ?V)

scanlist/4 maps a ternary relation Pred down a list. The computation is
Pred(X1,V1,V2), Pred(X2,V2,V3), ..., Pred(Xn,Vn,V) So if Pred is plus/3,
scanlist(plus, [X1,...,Xn], 0, V) puts the sum of the list elements in V.
Note that the order of the arguments passed to Pred is the same as the order
of the arguments following Pred. This also holds for scanlist/5 and scanlist/6,
e.g. scanlist(Pred, Xs, Ys, Zs, V1, V) calls Pred(X3,Y3,Z3,V3,V4). Could be
defined as:

Chapter 10: The Prolog Library 613

scanlist(Pred, Xs, V0, V) :-

(foreach(X,Xs),

fromto(V0,V1,V2,V),

param(Pred)

do call(Pred, X, V1, V2)

).

scanlist(Pred, Xs, Ys, V0, V) :-

(foreach(X,Xs),

foreach(Y,Ys),

fromto(V0,V1,V2,V),

param(Pred)

do call(Pred, X, Y, V1, V2)

).

scanlist(Pred, Xs, Ys, Zs, V0, V) :-

(foreach(X,Xs),

foreach(Y,Ys),

foreach(Z,Zs),

fromto(V0,V1,V2,V),

param(Pred)

do call(Pred, X, Y, Z, V1, V2)

).

some(:Pred, +List)

succeeds when Pred(Elem) succeeds for some Elem in List. It will try all ways
of proving Pred for each Elem, and will try each Elem in the List. somechk/2
is to some/2 as memberchk/2 is to member/2.

member(X,L) <-> some(=(X), L).

memberchk(X, L) <-> somechk(=(X), L).

some(Pred,L) <-> member(X, L), call(Pred,X).

This acts on backtracking like member/2; List should be a proper list.

some(:Pred, +[X1,...,Xn], ?[Y1,...,Yn])

is true when Pred(Xi, Yi) is true for some i.

some(:Pred, +[X1,...,Xn], ?[Y1,...,Yn], ?[Z1,...,Zn])

is true when Pred(Xi, Yi, Zi) is true for some i.

somechk(:Pred, +[X1,...,Xn])

is true when Pred(Xi) is true for some i, and it commits to the first solution it
finds (like memberchk/2).

somechk(:Pred, +[X1,...,Xn], ?[Y1,...,Yn])

is true when Pred(Xi, Yi) is true for some i, and it commits to the first solution
it finds (like memberchk/2).

somechk(:Pred, +[X1,...,Xn], ?[Y1,...,Yn], ?[Z1,...,Zn])

is true when Pred(Xi, Yi, Zn) is true for some i, and it commits to the first
solution it finds (like memberchk/2).

614 SICStus Prolog

convlist(:Rewrite, +OldList, ?NewList)

is a sort of hybrid of maplist/3 and include/3. Each element of NewList
is the image under Rewrite of some element of OldList, and order is
preserved, but elements of OldList on which Rewrite is undefined (fails)
are not represented. Thus if foo(K,X,Y) :- integer(X), Y is X+K. then
convlist(foo(1), [1,a,0,joe(99),101], [2,1,102]). OldList should be a
proper list. Could be defined as:

convlist(Pred, Xs, News) :-

(foreach(X,Xs),

fromto(News,S0,S,[]),

param(Pred)

do (call(Pred,X,N) -> S0 = [N|S] ; S0 = S)

).

exclude(:Pred, +Xs, ?SubList)

exclude(:Pred, +Xs, +Ys, ?SubList)

exclude(:Pred, +Xs, +Ys, +Zs, ?SubList)

succeeds when SubList is the sublist of Xs containing all the elements Xi[,Yi[,Zi]]
for which Pred(Xi[,Yi[,Zi]]) is false. That is, it removes all the elements satis-
fying Pred. Xs, Ys or Zs should be a proper list. Could be defined as:

exclude(Pred, Xs, News) :-

(foreach(X,Xs),

fromto(News,S0,S,[]),

param(Pred)

do (call(Pred,X) -> S0 = S ; S0 = [X|S])

).

exclude(Pred, Xs, Ys, News) :-

(foreach(X,Xs),

foreach(Y,Ys),

fromto(News,S0,S,[]),

param(Pred)

do (call(Pred,X,Y) -> S0 = S ; S0 = [X|S])

).

exclude(Pred, Xs, Ys, Zs, News) :-

(foreach(X,Xs),

foreach(Y,Ys),

foreach(Z,Zs),

fromto(News,S0,S,[]),

param(Pred)

do (call(Pred,X,Y,Z) -> S0 = S ; S0 = [X|S])

).

Chapter 10: The Prolog Library 615

include(:Pred, +Xs, ?SubList)

include(:Pred, +Xs, +Ys, ?SubList)

include(:Pred, +Xs, +Ys, +Zs, ?SubList)

succeeds when SubList is the sublist of Xs containing all the elements Xi[,Yi[,Zi]]
for which Pred(Xi[,Yi[,Zi]]) is true. That is, it retains all the elements satisfying
Pred. Xs, Ys or Zs should be a proper list. Could be defined as:

include(Pred, Xs, News) :-

(foreach(X,Xs),

fromto(News,S0,S,[]),

param(Pred)

do (call(Pred,X) -> S0 = [X|S] ; S0 = S)

).

include(Pred, Xs, News) :-

(foreach(X,Xs),

fromto(News,S0,S,[]),

param(Pred)

do (call(Pred,X) -> S0 = [X|S] ; S0 = S)

).

include(Pred, Xs, Ys, News) :-

(foreach(X,Xs),

foreach(Y,Ys),

fromto(News,S0,S,[]),

param(Pred)

do (call(Pred,X,Y) -> S0 = [X|S] ; S0 = S)

).

include(Pred, Xs, Ys, Zs, News) :-

(foreach(X,Xs),

foreach(Y,Ys),

foreach(Z,Zs),

fromto(News,S0,S,[]),

param(Pred)

do (call(Pred,X,Y,Z) -> S0 = [X|S] ; S0 = S)

).

partition(:Pred, +List, ?Less, ?Equal, ?Greater)

is a relative of include/3 and exclude/3 which has some pretensions to being
logical. For each X in List, we call Pred(X,R), and route X to Less, Equal, or
Greater according as R is <, =, or > .

group(:Pred, +List, ?Front, ?Back)

is true when append(Front, Back, List), maplist(Pred, Front), and Front
is as long as possible.

616 SICStus Prolog

group(:Pred, +Key, +List, ?Front, ?Back)

is true when append(Front, Back, List), maplist(call(Pred,Key),

Front), and Front is as long as possible. Strictly speaking we don’t need it;
group(call(Pred,Key), List, Front, Back) would do just as well.

group(:Pred, +List, ?ListOfLists)

is true when append(ListOfLists, List), each element of ListOfLists has the
form [Head|Tail] such that group(Pred, Head, Tail, Tail, []), and each el-
ement of ListOfLists is as long as possible. For example, if you have a keysorted
list, and define same_key(K-_, K-_), then group(same_key, List, Buckets)

will divide List up into Buckets of pairs having the same key.

ordered(+List)

is true when List is a list of terms [T1,T2,...,Tn] such that for all k in 2..n Tk-1
@=< Tk, i.e. T1 @=< T2 @=< T3 ... The output of keysort/2 is always ordered,
and so is that of sort/2. Beware: just because a list is ordered does not mean
that it is the representation of an ordered set; it might contain duplicates.

ordered(+P, +[T1,T2,...,Tn])

is true when P(T1,T2) & P(T2,T3) & ... That is, if you take P as a "com-
parison" predicate like @=<, the list is ordered. This is good for generating
prefixes of sequences, e.g. L = [1,_,_,_,_], ordered(times(2), L) yields L

= [1,2,4,8,16].

max_member(?Xmax, +[X1,...,Xn])

unifies Xmax with the maximum (in the sense of @=<) of X1,...,Xn. The list
should be proper. If it is empty, the predicate fails quietly. Could be defined
as:

max_member(Maximum, [Head|Tail]) :-

(foreach(X,Tail),

fromto(Head,M0,M,Maximum)

do (X@=<M0 -> M = M0 ; M = X)

).

min_member(?Xmin, +[X1,...,Xn])

unifies Xmin with the minimum (in the sense of @=<) of X1,...,Xn. The list
should be proper. If it is empty, the predicate fails quietly. Could be defined
as:

min_member(Minimum, [Head|Tail]) :-

(foreach(X,Tail),

fromto(Head,M0,M,Minimum)

do (M0@=<X -> M = M0 ; M = X)

).

max_member(:P, ?Xmax, +[X1,...,Xn])

unifies Xmax with the maximum element of [X1,...,Xn], as defined by the com-
parison predicate P, which should act like @=< . The list should be proper. If
it is empty, the predicate fails quietly. Could be defined as:

Chapter 10: The Prolog Library 617

max_member(Pred, Maximum, [Head|Tail]) :-

(foreach(X,Tail),

fromto(Head,M0,M,Maximum),

param(Pred)

do (call(Pred,X,M0) -> M = M0 ; M = X)

).

min_member(:P, ?Xmin, +[X1,...,Xn])

unifies Xmin with the minimum element of [X1,...,Xn], as defined by the com-
parison predicate P, which should act like @=< . The list should be proper. If
it is empty, the predicate fails quietly. Could be defined as:

min_member(Pred, Minimum, [Head|Tail]) :-

(foreach(X,Tail),

fromto(Head,M0,M,Minimum),

param(Pred)

do (call(Pred,M0,X) -> M = M0 ; M = X)

).

select_min(?Element, +Set, ?Residue)

unifies Element with the smallest (in the sense of @=<) element of Set, and
Residue with a list of all the other elements.

select_min(:Pred, ?Element, +Set, ?Residue)

find the least Element of Set, i.e. Pred(Element,X) for all X in Set.

select_max(?Element, +Set, ?Residue)

unifies Element with the (leftmost) maximum element of the Set, and Residue
to the other elements in the same order.

select_max(:Pred, ?Element, +Set, ?Residue)

find the greatest Element of Set, i.e. Pred(X,Element) for all X in Set.

increasing_prefix(?Sequence, ?Prefix, ?Suffix)

is true when append(Prefix, Suffix, Sequence) and Prefix, together with
the first element of Suffix, forms a monotone non-decreasing sequence, and no
longer Prefix will do. Pictorially,

Sequence = [x1,...,xm,xm+1,...,xn]

Prefix = [x1,...,xm]

Suffix = [xm+1,...,xn]

x1 ¯< x2 ¯< ... ¯< xm ¯< xm+1

not xm+1 ¯< xm+2

This is perhaps a surprising definition; you might expect that the first element
of Suffix would be included in Prefix. However, this way, it means that if
Sequence is a strictly decreasing sequence, the Prefix will come out empty.

increasing_prefix(:Order, ?Sequence, ?Prefix, ?Suffix)

is the same as increasing_prefix/3, except that it uses the binary relation
Order in place of @=<.

618 SICStus Prolog

decreasing_prefix(?Sequence, ?Prefix, ?Suffix)

decreasing_prefix(:Order, ?Sequence, ?Prefix, ?Suffix)

is the same, except it looks for a decreasing prefix. The order is the converse
of the given order. That is, where increasing_prefix/[3,4] check X(R)Y,
these routines check Y(R)X.

clumps(+Items, -Clumps)

is true when Clumps is a list of lists such that

• append(Clumps, Items)

• for each Clump in Clumps, all the elements of Clump are identical (==)

Items must be a proper list of terms for which sorting would have been sound.
In fact, it usually is the result of sorting.

keyclumps(+Pairs, ?Clumps)

is true when Pairs is a list of pairs and Clumps a list of lists such that

• append(Clumps, Pairs)

• for each Clump in Clumps, all of the Key-Value pairs in Clump have iden-
tical (==) Keys.

Pairs must be a proper list of pairs for which keysorting would have been sound.
In fact, it usually is the result of keysorting.

clumped(+Items, ?Counts)

is true when Counts is a list of Item-Count pairs such that if clumps(Items,
Clumps), then each Item-Count pair in Counts corresponds to an element
[Item/*1*/,...,Item/*Count*/] of Clumps. Items must be a proper list of terms
for which sorting would have been sound. In fact, it usually is the result of
sorting.

keyclumped(+Pairs, ?Groups)

is true when Pairs is a list of Key-Item pairs and Groups is a list of Key-Items
pairs such that if keyclumps(Pairs, Clumps), then for each K-[I1,...,In] pair
in Groups there is a [K-I1,...,K-In] clump in Clumps. Pairs must be a proper
list of pairs for which keysorting would have been sound. In fact, it usually is
the result of keysorting.

10.24 Array Operations—library(logarr)

This libary module provides extendible arrays with logarithmic access time. Please note:
the atom $ is used to indicate an unset element, and the functor $/4 is used to indicate a
subtree. In general, array elements whose principal function symbol is $ will not work.

Exported predicates:

new array(-A) returns a new empty array A.

is_array(+A)

checks whether A is an array.

Chapter 10: The Prolog Library 619

alist(+Array, -List)

returns a list of pairs Index-Element of all the elements of Array that have been
set.

aref(+Index, +Array, -Element)

unifies Element with Array[Index], or fails if Array[Index] has not been set.

arefa(+Index, +Array, -Element)

is as aref/3, except that it unifies Element with a new array if Array[Index] is
undefined. This is useful for multidimensional arrays implemented as arrays of
arrays.

arefl(+Index, +Array, -Element)

is as aref/3, except that Element appears as [] for undefined cells.

aset(+Index, +Array, +Element, -NewArray)

unifies NewArray with the result of setting Array[Index] to Element.

10.25 The Objects Package—library(objects)

The SICStus Objects package enables programmers to write object-oriented programs in
SICStus Prolog. The objects in SICStus Objects are modifiable data structures that provide
a clean and efficient alternative to storing data in the Prolog database.

10.25.1 Introduction

The SICStus Objects package enables programmers to write object-oriented programs in
SICStus Prolog. The objects in SICStus Objects are modifiable data structures that provide
a clean and efficient alternative to storing data in the Prolog database.

This user’s guide is neither an introduction to object-oriented programming nor an intro-
duction to SICStus Prolog. A number of small, sample programs are described in this
manual, and some larger programs are in the demo directory.

10.25.1.1 Using SICStus Objects

One of the basic ideas of object-oriented programming is the encapsulation of data and
procedures into objects. Each object belongs to exactly one class, and an object is referred
to as an instance of its class. A class definition determines the following things for its
objects:

• slots, where an object holds data

• messages, the commands that can be sent to an object

• methods, the procedures the object uses to respond to the messages

All interaction with an object is by sending it messages. The command to send a message
to an object has the form

Object MessageOp Message

where Object is an object, MessageOp is one of the message operators (‘<<’, ‘>>’, or ‘<-’)
and Message is a message defined for the object’s class. Roughly speaking, the ‘>>’ message

620 SICStus Prolog

operator is used for extracting information from an object, ‘<<’ is for storing information
into an object, and ‘<-’ is for any other sort of operation.

For example, using the point class defined in the next section, it would be possible to give
the following command, which demonstrates all three message operators.

| ?- create(point, PointObj),

PointObj >> x(InitX),

PointObj >> y(InitY),

PointObj << x(2.71828),

PointObj << y(3.14159),

PointObj <- print(user_output),

nl(user_output).

(2.71828,3.14159)

PointObj = point(23461854),

InitX = 1.0,

InitY = 2.0

First it binds the variable PointObj to a newly created point object. Then, the two get
messages (sent with the ‘>>’ operator) fetch the initial values of the point’s x and y slots,
binding the variables InitX and InitY to these values. Next, the two put messages (sent
with the ‘<<’ operator) assign new values to the object’s x and y slots. Finally, the send
message (sent with the ‘<-’ operator) instructs the point object to print itself to the user_
output stream, followed by a newline. Following the goal, we see the point has been printed
in a suitable form. Following this, the values of PointObj, InitX, and InitY are printed as
usual for goals entered at the top-level prompt.

Because this goal is issued at the top-level prompt, the values of the variables PointObj,
InitX and InitY are not retained after the command is executed and their values are
displayed, as with any goal issued at the top-level prompt. However, the point object still
exists, and it retains the changes made to its slots. Hence, objects, like clauses asserted to
the Prolog database, are more persistent than Prolog variables.

Another basic idea of object-oriented programming is the notion of inheritance. Rather
than defining each class separately, a new class can inherit the properties of a more general
superclass. Or, it can be further specialized by defining a new subclass, which inherits
its properties. (C++ uses the phrase “base class” where we use “superclass.” It also uses
“derived class” where we use “subclass.”)

SICStus Objects uses term expansion to translate object-oriented programs into ordinary
Prolog. (This is the same technique that Prolog uses for its DCG grammar rules.) As much
as possible is done at compile time. Class definitions are used to generate Prolog clauses
that implement the class’s methods. Message commands are translated into calls to those
Prolog clauses. And, inheritance is resolved at translation time.

Chapter 10: The Prolog Library 621

SICStus Objects consists of two modules, obj_decl and objects. The obj_decl module
is used at compile time to translate the object-oriented features of SICStus Objects. Any
file that defines classes or sends messages should include the command

:- load_files(library(obj_decl),

[when(compile_time), if(changed)]).

The objects module provides runtime support for SICStus Objects programs. A file that
sends messages or asks questions about what classes are defined or to what class an object
belongs should include the command:

:- use_module(library(objects)).

You will probably include both in most files that define and use classes.

Please note: A file that loads library(obj_decl) currently cannot recursively load another
file that loads library(obj_decl), because that would confuse the internal database being
used by the package.

If you use the foreign resource linker, splfr, on a Prolog file that uses the objects package,
then you must pass it the --objects option. This will make splfr understand the package’s
syntax extensions.

10.25.1.2 Defining Classes

A class definition can restrict the values of any slot to a particular C-style type. It can
specify whether a slot is private (the default, meaning that it cannot be accessed except
by that methods of that class), protected (like private, except that the slot can also be
accessed by subclasses of the class), or public (meaning get and put methods for the slot
are generated automatically), and it can specify an initial value. The class definition also
may contain method clauses, which determine how instances of the class will respond to
messages. A class definition may also specify one or more superclasses and which methods
are to be inherited.

The point object created in the previous example had two floating point slots, named x

and y, with initial values of 1.0 and 2.0, respectively. As we have seen, the point class also
defined put and get methods for x and y, as well as a send method for printing the object.
The put and get methods for x and y can be automatically generated simply by declaring
the slots public, but the print method must be explicitly written. In addition, in order
to be able to create instances of this class, we must define a create method, as explained
in Section 10.25.2.3 [obj-scl-meth], page 626. We also provide a second create method,
taking two arguments, allowing us to specify an x and y value when we first create a point
object.

622 SICStus Prolog

:- class point =

[public x:float = 1.0,

public y:float = 2.0].

Self <- create.

Self <- create(X, Y) :-

Self << x(X),

Self << y(Y).

Self <- print(Stream) :-

Self >> x(X),

Self >> y(Y),

format(Stream, '(~w,~w)', [X,Y]).

:- end_class point.

The variable name Self in these clauses is arbitrary—any variable to the left of the message
operator in the head of a method clause refers to the instance of the class receiving the
message.

10.25.1.3 Using Classes

Given this definition, the following command creates an instance of the point class, assigning
values to its x and y slots, and prints a description of the point.

| ?- create(point(3,4), PointObj),

PointObj <- print(user_output).

The print message prints (3.0,4.0). The variable PointObj is bound to a Prolog term of
the form

point(Address)

where Address is essentially a pointer to the object.

In general, an object belonging to a class ClassName will be represented by a Prolog term
of the form

ClassName(Address)

The name ClassName must be an atom. This manual refers to such a term as if it were the
object, not just a pointer to the object. Users are strongly discouraged from attempting to
do pointer arithmetic with the address.

After execution of this command, the point object still exists, but the variable PointObj

can no longer be used to access it. So, while objects resemble clauses asserted into the
Prolog database in their persistence, there is no automatic way to search for an object.
Objects are not automatically destroyed when they are no longer needed. And, there is no
automatic way to save an object from one Prolog session to the next. It is the responsibility

Chapter 10: The Prolog Library 623

of the programmer to keep track of objects, perhaps calling the destroy/1 predicate for
particular objects that are no longer needed or asserting bookkeeping facts into the Prolog
database to keep track of important objects.

10.25.1.4 Looking Ahead

The next few sections of this manual describe the SICStus Objects package in greater detail.
In particular, they describe how to define classes, their methods and their slots, and how to
reuse class definitions via inheritance. Small sample programs and program fragments are
provided for most of the features described.

Experienced Prolog programmers may choose to skip over these sections and look at the
sample programs in this package’s demo directory, referring to the reference pages as neces-
sary. Everyone is encouraged to experiment with the sample programs before writing their
own programs.

10.25.2 Simple Classes

This section is about simple classes that inherit nothing—neither slots nor methods—from
more general superclasses. Everything about these classes is given directly in their defini-
tions, so they are the best starting point for programming with SICStus Objects.

The use of inheritance in defining classes is described in the next section. Classes that
inherit properties from superclasses are called derived classes in some systems, such as C++.
In general, the use of inheritance extends the properties of the simple classes in this section.

10.25.2.1 Scope of a Class Definition

A simple class definition begins with a statement of the form

:- class ClassName = [SlotDef, ...].

The class’s slots are described in the list of SlotDef terms. It is possible, though not often
useful, to define a class with no slots, by specifying the empty list. In that case the ‘=’ and
the list may be omitted.

The class’s methods are defined following the class/1 directive, by Prolog clauses. Most
of this section is about defining and using methods.

The class definition ends with any of the following:

:- end_class ClassName.

or

:- end_class.

or the next class/1 directive or the end of the file. The ClassName argument to end_

class/1 must match the class name in the corresponding class/1 directive. It is not
possible to nest one class definition inside another.

624 SICStus Prolog

10.25.2.2 Slots

A slot description has the form

Visibility SlotName:SlotType = InitialValue

where Visibility and ‘= InitialValue’ are optional. Each slot of a class must have a distinct
name, given by the atom SlotName. The Visibility, SlotType and InitialValue parts of the
slot description are described separately.

Visibility

A slot’s visibility is either private, protected, or public. If its visibility is not specified, then
the slot is private. The following example shows all four possibilities:

:- class example = [w:integer,

private x:integer,

protected y:integer,

public z:integer]

Slot z is public, y is protected, and both x and w are private.

Direct access to private slots is strictly limited to the methods of the class. Any other
access to such slots must be accomplished through these methods. Making slots private will
allow you later to change how you represent your class, adding and removing slots, without
having to change any code that uses your class. You need only modify the methods of the
class to accomodate that change. This is known as information hiding.

Protected slots are much like private slots, except that they can also be directly accessed
by subclasses. This means that if you wish to modify the representation of your class, then
you will need to examine not only the class itself, but also its subclasses.

Public slots, in contrast, can be accessed from anywhere. This is accomplished through
automatically generated get and put methods named for the slot and taking one argument.
In the example above, our example class would automatically support a get and put method
named z/1. Note, however, that unlike other object oriented programming languages that
support them, public slots in SICStus Objects do not violate information hiding. This is
because you may easily replace a public slot with your own get and put methods of the
same name. In this sense, a public slot is really only a protected slot with automatically
generated methods to fetch and store its contents.

Within a method clause, any of the class’s slots can be accessed via the fetch_slot/2 and
store_slot/2 predicates. These are the only way to access private and protected slots.
They may be used to define get and put methods for the class, which provide controlled
access to the protected slots. But, they can only be used within the method clauses for the
class, and they can only refer to slots of the current class and protected and public slots of
superclasses.

In the slot description, public, protected and private are used as prefix operators. The
obj_decl module redefines the prefix operator public, as follows:

Chapter 10: The Prolog Library 625

:- op(600, fy, [public]).

Unless you use the obsolete public/1 directive in your Prolog programs, this should cause
no problems.

Types

A slot’s type restricts the kinds of values it may contain. The slot is specified in the slot
description by one of the following Prolog terms with the corresponding meaning. Most of
these will be familiar, but the last four, address, term, Class and pointer(Type), require
some additional explanation:

integer signed integer, large enough to hold a pointer

integer_64 since release 4.3

64-bit signed integer

integer_32

32-bit signed integer

integer_16

16-bit signed integer

integer_8

8-bit signed integer

unsigned unsigned integer, large enough to hold a pointer

unsigned_64 since release 4.3

64-bit unsigned integer

unsigned_32

32-bit unsigned integer

unsigned_16

16-bit unsigned integer

unsigned_8

8-bit unsigned integer

float 64-bit floating point number

float_32 32-bit floating point number

atom Prolog atom

address Pointer. The address type is intended for use with foreign code. A slot of this
type might store an address returned from a foreign function. That address
might, in turn, be used in calling another foreign function. Hence, most Prolog
programmers can safely ignore this type.

term Prolog term. The term type is for general Prolog terms. Such a slot can hold
any of the other types. However, if you know a slot will be used to hold only
values of a particular type, then it is more efficient to specify that type in the
class definition.

626 SICStus Prolog

Storing a term containing free variables is similar to asserting a clause con-
taining free variables into the Prolog database. The free variables in the term
are replaced with new variables in the stored copy. And, when you fetch the
term from the slot, you are really fetching a copy of the term, again with new
variables.

Class where Class is the name of a defined class. The class type is for any object in
a class defined with SICStus Objects. Such a slot holds an object of its class
or one of that class’s descendants, or the null object.

pointer(Type)

where Type is an atom. The pointer type is intended for use with the Structs
Package. It is similar to the address type, except that access to this slot yields,
and update to this slot expects, a term of arity 1 whose functor is Type and
whose argument is the address. Again, most Prolog programmers can safely
ignore this type.

Initial Values

A slot description may optionally specify an initial value for the slot. The initial value is
the value of the slot in every instance of the class, when the object is first created. The
initial value must be a constant of the correct type for the slot.

If an initial value is not specified, then a slot is initialized to a value that depends on its
type. All numbers are initialized to 0, of the appropriate type. Atom and term slots are
initialized to the empty atom (''). Addresses and pointers are initialized to null pointers.
And, objects are initialized to the null object.

More complicated initialization—not the same constant for every instance of the class—
must be performed by create methods, which are described later.

The null object

The null object is a special object that is not an instance of any class, but that can be
stored in a slot intended for any class of object. This is very much like the NULL pointer in
C. This is useful when you do not yet have an object to store in a particular slot.

In Prolog, the null is represented by the atom null.

Note that because the null object is not really an object of any class, you cannot determine
its class with class_of/2. Unless noted otherwise, when we write of an object in this
document, we do not include the null object.

10.25.2.3 Methods

Some methods are defined by method clauses, between the class/1 directive and the end of
the class’s definition. Others are generated automatically. There are three kinds of messages
in SICStus Objects, distinguished by the message operator they occur with:

‘>>’ A get message, which is typically used to fetch values from an object’s slots.

‘<<’ A put message, which is typically used to store values in an object’s slots.

Chapter 10: The Prolog Library 627

‘<-’ A send message, which is used for other operations on or involving an object.

SICStus Objects automatically generates some get and put methods. And, it expects par-
ticular message names with the send operator for create and destroy methods. For the most
part, however, you are free to use any message operators and any message names that seem
appropriate.

A method clause has one of these message operators as the principal functor of its head. Its
first argument, written to the left of the message operator, is a variable. By convention, we
use the variable Self. Its second argument, written to the right of the message operator, is
a term whose functor is the name of the message and whose arguments are its arguments.

For example, in the class whose definition begins as follows, a 0-argument send message
named increment is defined. No parentheses are needed in the clause head, because the
precedence of the ‘<-’ message operator is lower than that of the ‘:-’ operator.

:- class counter = [public count:integer = 0].

Self <- increment :-

Self >> count (X0),

X1 is X0 + 1,

Self << count (X1).

Its definition uses the automatically generated get and put methods for the public slot
count.

It may look as though this technique is directly adding clauses to the >>/2, <</2 and <-/2

predicates, but the method clauses are transformed by term expansion, at compile time.
However, the method clauses have the effect of extending the definitions of those predicates.

Methods are defined by Prolog clauses, so it is possible for them to fail, like Prolog predi-
cates, and it is possible for them to be nondeterminate, producing multiple answers, upon
backtracking. The rest of this section describes different kinds of methods.

Get and Put Methods

Get and put methods are generated automatically for each of a class’s public slots. These
are 1-argument messages, named after the slots.

In the point class whose definition begins with

:- class point =

[public x:float=0,

public y:float=0].

the get and put methods are automatically generated for the x and y slots. If the class
defines a create/0 method, then the command

628 SICStus Prolog

| ?- create(point, PointObj),

PointObj >> x(OldX),

PointObj >> y(OldY),

PointObj << x(3.14159),

PointObj << y(2.71828).

creates a point object and binds both OldX and OldY to 0.0E+00, its initial slot values.
Then, it changes the values of the x and y slots to 3.14159 and 2.71828, respectively. The
variable PointObj is bound to the point object.

It is possible, and sometimes quite useful, to create get and put methods for slots that do
not exist. For example, it is possible to add a polar coordinate interface to the point class
by defining get and put methods for r and theta, even though there are no r and theta

slots. The get methods might be defined as follows:

Self >> r(R) :-

Self >> x(X),

Self >> y(Y),

R is sqrt(X*X + Y*Y).

Self >> theta(T) :-

Self >> x(X),

Self >> y(Y),

T is atan(Y/X).

The put methods are left as an exercise.

In the rational number class whose definition begins with:

:- class rational =

[public num:integer,

public denom:integer].

get and put methods are automatically generated for the num and denom slots. It might be
reasonable to add a get method for float, which would provide a floating point approxi-
mation to the rational in response to that get message. This is left as an exercise.

It is also possible to define get and put methods that take more than one argument. For
example, it would be useful to have a put method for the point class that sets both slots of
a point object. Such a method could be defined by

Self << point(X,Y) :-

Self << x(X),

Self << y(Y).

Similarly, a 2-argument get method for the rational number class might be defined as

Chapter 10: The Prolog Library 629

Self >> (N/D) :-

Self >> num(N),

Self >> denom(D).

Note that the name of the put message is (/)/2, and that the parentheses are needed
because of the relative precedences of the ‘>>’ and ‘/’ operators.

Put messages are used to store values in slots. Get messages, however, may be used either
to fetch a value from a slot or to test whether a particular value is in a slot. For instance,
the following command tests whether the do_something/2 predicate sets the point object’s
x and y slots to 3.14159 and 2.71828, respectively.

| ?- create(point, PointObj),

do_something(PointObj),

PointObj >> x(3.14159),

PointObj >> y(2.71828).

The fetch_slot/2 predicate can similarly be used to test the value of a slot.

The effects of a put message (indeed, of any message) are not undone upon backtracking.
For example, the following command fails:

| ?- create(point, PointObj),

PointObj << x(3.14159),

PointObj << y(2.71828),

fail.

But, it leaves behind a point object with x and y slots containing the values 3.14159 and
2.71828, respectively. In this, storing a value in an object’s slot resembles storing a term in
the Prolog database with assert/1.

Some care is required when storing Prolog terms containing unbound variables in term slots.
For example, given the class definition that begins with

:- class prolog_term = [public p_term:term].

Self <- create.

the following command would succeed:

| ?- create(prolog_term, TermObj),

TermObj << p_term(foo(X,Y)),

X = a,

Y = b,

TermObj >> p_term(foo(c,d)).

The reason is that the free variables in foo(X,Y) are renamed when the term is stored in
the prolog_term object’s p_term slot. This is similar to what happens when such a term
is asserted to the Prolog database:

630 SICStus Prolog

| ?- retractall(foo(_,_)),

assert(foo(X,Y)),

X = a,

Y = b,

foo(c,d).

However, this goal would fail, because c and d cannot be unified:

| ?- create(prolog_term, TermObj),

TermObj << p_term(foo(X,X)),

TermObj >> p_term(foo(c,d)).

Direct Slot Access

Get and put methods are not automatically generated for private and protected slots. Those
slots are accessed by the fetch_slot/2 and store_slot/2 predicates, which may only
appear in the body of a method clause and which always operate on the object to which the
message is sent. It is not possible to access the slots of another object with these predicates.

You may declare a slot to be private or protected in order to limit access to it. However, it
is still possible, and frequently useful, to define get and put methods for such a slot.

For example, if numerator and denominator slots of the rational number class were private
rather than public, then it would be possible to define put methods to ensure that the
denominator is never 0 and that the numerator and denominator are relatively prime. The
get methods merely fetch slot values, but they need to be defined explicitly, since the slots
are private. The new definition of the rational number class might start as follows:

:- class rational =

[num:integer=0,

denom:integer=1].

Self >> num(N) :-

fetch_slot(num, N).

Self >> denom(D) :-

fetch_slot(denom, D).

Self >> (N/D) :-

Self >> num(N),

Self >> denom(D).

One of the put methods for the class might be

Self << num(NO) :-

fetch_slot(denom, DO)

reduce(NO, DO, N, D),

store_slot(num, N),

store_slot(denom, D).

Chapter 10: The Prolog Library 631

where the reduce/4 predicate would be defined to divide NO and DO by their greatest
common divisor, producing N and D, respectively.

The definition of reduce/4 and the remaining put methods is left as an exercise. The put
methods should fail for any message that attempts to set the denominator to 0.

Send Methods

Messages that do something more than fetch or store slot values are usually defined as
send messages. While the choice of message operators is (usually) up to the programmer,
choosing them carefully enhances the readability of a program.

For example, print methods might be defined for the point and rational number classes,
respectively, as

Self <- print(Stream) :-

Self >> x(X),

Self >> y(Y),

format(Stream, "(~w,~w)", [X, Y]).

and

Self <- print(Stream) :-

fetch_slot(num, N),

fetch_slot(denom, D),

format(Stream, "~w/~w", [N, D]).

These methods are used to access slot values. But, the fact that the values are printed
to an output stream makes it more reasonable to define them as send messages than get
messages.

Frequently send methods modify slot values. For example, the point class might have
methods that flip points around the x and y axes, respectively:

Self <- flip_x :-

Self >> y(Y0),

Y1 is -1 * Y0,

Self << y(Y1).

Self <- flip_y :-

Self >> x(X0),

X1 is -1 * X0,

Self << x(X1).

And, the rational number class might have a method that swaps the numerator and denom-
inator of a rational number object. It fails if the numerator is 0.

632 SICStus Prolog

Self <- invert :-

fetch_slot(num, N)

N =\= 0,

fetch_slot(denom, D)

store_slot(num, D),

store_slot(denom, N).

These methods modify slot values, but they do not simply store values that are given in
the message. Hence, it is more reasonable to use the send operator.

It is possible for a method to produce more than one answer. For example, the class whose
definition begins with

:- class interval =

[public lower:integer,

public upper:integer].

might define a send method

Self <- in_interval(X) :-

Self >> lower(L),

Self >> upper(U),

between(L, U, X).

which uses the between/3 predicate from library(between). The in_interval message
will bind X to each integer, one at a time, between the lower and upper slots, inclusive. It
fails if asked for too many answers.

The rest of this section describes particular kinds of send messages.

Create and Destroy Methods

Objects are created with the create/2 predicate. When you define a class, you must specify
all the ways that instances of the class can be created. The simplest creation method is
defined as

Self <- create.

If this method were defined for Class, then the command

| ?- create(Class, Object).

would create an instance of Class and bind the variable Object to that instance. All slots
would receive their (possibly default) initial values.

More generally, if the definition for Class contains a create method

Self <- create(Arguments) :-

Body.

then the command

Chapter 10: The Prolog Library 633

| ?- create(Class(Arguments), Object).

will create an instance of Class and execute the Body of the create method, using the
specified Arguments. The variable Object is bound to the new instance.

If a simple class definition has no create methods, then it is impossible create instances of
the class. While the absence of create methods may be a programmer error, that is not
always the case. Abstract classes, which are classes that cannot have instances, are often
quite useful in defining a class hierarchy.

Create methods can be used to initialize slots in situations when specifying initial slot values
will not suffice. (Remember that initial values must be specified as constants at compile
time). The simplest case uses the arguments of the create message as initial slot values.
For example, the definition of the point class might contain the following create method.

Self <- create(X,Y) :-

Self << x(X),

Self << y(Y).

If used as follows

| ?- create(point(3.14159, 2.71828), PointObj),

PointObj >> x(X),

PointObj >> y(Y).

then it would give X and Y the values of 3.14159 and 2.71828, respectively.

In some cases, the create method might compute the initial values. The following (partial)
class definition uses the date/1 predicate from library(date) to initialize its year, month
and day slots.

:- class date_stamp =

[year:integer,

month:integer,

day:integer].

Self <- create :-

date(date(Year, Month, Day)),

store_slot(year, Year),

store_slot(month, Month),

store_slot(day, Day).

All three slots are private, so it will be necessary to define get methods in order to retrieve
the time information. If no put methods are defined, however, then the date cannot be
modified after the date_stamp object is created (unless some other method for this class
invokes store_slot/2 itself).

Create methods can do more than initialize slot values. Consider the named_point class,
whose definition begins as follows:

634 SICStus Prolog

:- class named_point =

[public name:atom,

public x:float=1,

public y:float=0].

Self <- create(Name, X, Y) :-

Self << name(Name),

Self << x(X),

Self << y(Y),

assert(name_point(Name, Self)).

Not only does the create/3 message initialize the slots of a new named_point object, but
it also adds a name_point/2 fact to the Prolog database, allowing each new object to be
found by its name. (This create method does not require the named_point object to have
a unique name. Defining a uniq_named_point class is left as an exercise.)

An object is destroyed with the destroy/1 command. Unlike create/2, destroy/1 does
not require that you define a destroy method for a class. However, destroy/1 will send
a destroy message (with no arguments) to an object before it is destroyed, if a destroy

method is defined for the object’s class.

If a named_point object is ever destroyed, then the address of the object stored in this name
point/2 fact is no longer valid. Hence, there should be a corresponding destroy method
that retracts it.

Self <- destroy :-

Self >> name(Name),

retract(name_point(Name, Self)).

Similar create and destroy methods can be defined for objects that allocate their own
separate memory or that announce their existence to foreign code.

Instance Methods

Instance methods allow each object in a class to have its own method for handling a specified
message. For example, in a push-button class it would be convenient for each instance (each
push-button) to have its own method for responding to being pressed.

The declaration

:- instance_method Name/Arity,

inside a class definition states that the message Name/Arity supports instance methods. If
the class definition defines a method for this message, then it will be treated as a default
method for the message.

The define_method/3 predicate installs a method for an object of the class, and the
undefine_method/3 predicate removes that method.

Chapter 10: The Prolog Library 635

Suppose that the date_stamp class, defined earlier, declared an instance method to print
the year of a date_stamp instance.

:- instance_method print_year/1.

Self <- print_year(Stream) :-

Self >> year(Y0),

Y1 is YO + 1970,

format(Stream, "~d", [Y1]).

The arithmetic is necessary because UNIX dates are based on January 1, 1970.

If a particular date_stamp object’s date were to be printed in Roman numerals, then it
could be given a different print_year method, using the define_method/3 predicate.

| ?- create(date_stamp, DateObj),

define_method(DateObj,

print_year(Stream),

print_roman_year(Stream, DateObj)).

If this date_stamp object is created in 1994, then a print_year message sent to it would
print the current year as

MCMXCIV

Defining the predicate print_roman_year/2 is left as an exercise. It must be able to access
the year slot of a date_stamp object. Because it is not defined by a method clause within
the class definition, print_roman_year/2 cannot use the get_slot/2 predicate.

None of instance_method/1, define_method/3, undefine_method/3 specify a message
operator. Instance methods can only be defined for send messages.

10.25.3 Inheritance

This section describes the additional features (and the additional complexity) of defining
classes with inheritance in SICStus Objects. Most of what was said about classes in the
previous section remains true in these examples.

10.25.3.1 Single Inheritance

The simplest case is when a new class inherits some properties (slots and methods) from a
single superclass. That superclass may, in turn, be defined in terms of its superclass, etc.
The new class, its superclass, its superclass’s superclass (if any) and so on are all ancestors
of the new class.

Class Definitions

The definition of a class with a single superclass begins with a class/1 directive of the form

:- class ClassName = [SlotDef, ...] + SuperClass.

636 SICStus Prolog

where the list of SlotDef descriptions may be empty. In that case, the definition can
simplified to

:- class ClassName = SuperClass.

The class SuperClass must be a defined class when this definition is given.

In SICStus Objects, a subclass inherits all the slots of its superclass. And, by default, it
inherits all the methods of its superclass. The remainder of this section describes what the
programmer can do to control this inheritance.

Slots

A class’s slots are a combination of those explicitly defined in its slot description list and
the slots it inherits from its superclass. In SICStus Objects, a class inherits all the slots of
its superclass. It follows that a class inherits all the slots of all its ancestors.

The programmer’s control over inheritance of slots is limited. It is not possible to rename
an inherited slot, nor is it possible to change its type, unless it is a class slot. It is possible
to change a slot’s initial value. And, it is possible to effectively change a slot’s visibility.

To change the initial value or the type (when allowed) of a slot, include a new SlotDef
in the list of slot descriptions for the class, with the same slot name and a new type or
initial value. The type of a class slot can only be changed to a subclass of the type of the
superclass’s slot. The new initial value must still be a constant of the appropriate type.

The named_point class, defined earlier, could have better been defined from the point class,
which began as follows:

:- class point =

[public x:float=0,

public y:float=0].

The definition of the named_point class would then begin with

:- class named_point =

[public name:atom,

public x:float=1.0] + point.

This named_point class has public slots named name, x and y, with the same types and
initial values as the earlier named_point definition, which did not use inheritance. This
named_point class also inherits all the methods of the point class, which saves us from
having to write them again (and maintain them).

A slot that was private or protected in a superclass may be defined as public. This will cause
get and put methods to be generated in the subclass. A slot that was public in a superclass
may be defined as protected or private, but this does not prevent it from inheriting the get
and put methods of the superclass. For that, the uninherit/1 directive, defined below, is
needed.

Chapter 10: The Prolog Library 637

Methods

In SICStus Objects, by default, a class inherits all the methods of its superclass. The
programmer has more control over the inheritance of methods than the inheritance of slots,
however. In particular, methods can be uninherited and they can be redefined.

To prevent a method from being inherited, use the uninherit/1 directive. For example,
suppose that the class point is defined as before. That is, its definition begins as follows:

:- class point =

[public x:float=0,

public y:float=0].

Because both slots are public, a put method is automatically generated for each, which
allows their values to be changed.

The definition of a new class fixed_point might begin as follows:

:- class fixed_point = point.

:- uninherit

point << (x/l),

point << (y/l).

Self <- create(X, Y) :-

store_slot(x, X),

store_slot(y, Y).

The parentheses are necessary because of the precedences of the ‘<<’ and ‘/’ operators.

Because the put methods from point are not inherited, no instance of the fixed_point

class can change its x and y values once created—unless the class definition contains another
method for doing so. The get methods are inherited from point, however.

To redefine a method, simply include method clauses for its message within a class’s defi-
nition. The new method clauses replace, or shadow, the inherited method clauses for this
class.

Another way to prevent the x and y slots of the fixed_point class from being modified
would be to shadow the put methods. For example, they might be redefined as

Self << x(_) :-

format(user_error, "cannot modify x slot value.~n.", []),

fail.

Self << y(_) :-

format(user_error, "cannot modify y slot value.~n", []),

fail.

638 SICStus Prolog

Now attempts to modify the x or y values of a fixed point object generate a specific error
message and fail. A more complicated version would raise an appropriate exception.

Send Super

Even when a superclass’s method is shadowed or uninherited, it is possible to use the
superclass’s method inside a method clause for the new class. This makes it possible to
define a “wrapper” for the superclass’s method, which invokes the superclass’s method
without having to duplicate its code. This technique works with all message types.

Sending a message to a superclass is done with a command of the form

super MessageOp Message

where MessageOp is one of the message operators (‘<<’, ‘>>’ or ‘<-’) and Message is a
message defined for the superclass. A generalization of this syntax may be used to specify
which superclass to send the message to. This is discussed in Section 10.25.3.2 [obj-inh-mih],
page 638.

Sending a message to a class’s superclass can only be done within a message clause.

10.25.3.2 Multiple Inheritance

It is possible for a class to be defined with more than one superclass. Because the class
inherits properties from multiple superclasses, this is referred to as multiple inheritance.

Multiple inheritance is a complex and controversial topic. What should be done about
conflicting slot or method definitions? (This is sometimes called a “name clash.”) What
should be done about slots that are inherited from two or more superclasses, but that
originate with a common ancestor class? (This is sometimes called “repeated inheritance”.)
Different systems take different approaches.

SICStus Objects supports multiple inheritance in a limited but still useful way. It does not
allow repeated inheritance, and it places all the responsibility for resolving name clashes
on the programmer. This section describes the multiple inheritance features of SICStus
Objects.

Class Definitions

The definition of a class with multiple superclasses begins with a class/1 directive of the
form

:- class ClassName = [SlotDef, ...] + SuperClass +

The list of slot descriptions and the superclasses to the right of the ‘=’ can appear in
any order, without changing the class being defined. In fact, the slot descriptions can be
partitioned into more than one list, without changing the class. However, it is best to adopt
a fairly simple style of writing class definition and use it consistently.

Just as the slot names in a list of slot descriptions must be distinct, superclass names should
not be repeated.

Chapter 10: The Prolog Library 639

Slots

In SICStus Objects, the programmer has no control over multiple inheritance of slots. All
slots from all superclasses are inherited. And, the superclasses should have no slot names
in common.

As a consequence, in SICStus Objects no superclasses of a class should have a common
ancestor. The only exception would be the unusual case where that common ancestor has
no slots.

Methods

By default, all methods are inherited from all superclasses. Any of the superclasses’ methods
can be uninherited, as described earlier, by using the uninherit/1 directive.

If the same message is defined for more than one superclass, however, then you must choose
at most one method to inherit for the message. You may choose none. You may do this by
defining a new method for the message (shadowing the superclasses’ methods), or by using
the uninherit/1 directive, or by using the inherit/1 directive.

The following is considered a classic example of multiple inheritance.

:- class toy. % no slots in this class

Self >> size(small).

Self >> rolls(false).

:- end_class toy.

:- class truck. % no slots in this class

Self >> size(large).

Self >> rolls(true).

:- end_class truck.

The idea expressed in these definitions is that most toys are small and do not roll. On the
other hand, most trucks are large, but they do roll. A toy truck shares one feature with
each class, but we can hardly expect a compiler to choose the correct one.

The definition of a new class, toy truck, might begin with

:- class toy_truck = toy + truck.

Rather than redefine the get methods for size and rolls, we can specify which to inherit
in two ways. One way is positive, stating which to inherit, and the other way is negative,
stating which not to inherit.

640 SICStus Prolog

The positive version would be

:- inherit

toy >> (size/1),

truck >> (rolls/1).

This is more convenient when a message is defined in several superclasses, because all but
the chosen method are uninherited. And, it is probably easier to understand.

The negative version would be

:- uninherit

toy >> (rolls/1),

truck >> (size/1).

The toy_truck class would exhibit the same behavior with either definition.

It is possible to define methods that access the shadowed or uninherited methods of the
superclasses, by sending the message to the superclasses. In the case of multiple inheritance,
however, it may be necessary to specify which superclass to send the message to.

The toy_truck class, for example, might define these methods:

Self >> uninherited_size(S) :-

super(truck) >> size(S).

Self >> uninherited_rolls(R) :-

super(toy) >> rolls(R).

They provide access to the unchosen methods from toy_truck’s superclasses.

While these examples with the toy truck class are clearly “toy” examples, the same tech-
niques can be used in more realistic cases.

Abstract and Mixin Classes

While SICStus Objects only supports a limited form of multiple inheritance, its facilities
are sufficient for working with so-called mixin classes.

The idea is to construct similar classes by first defining a class that contains the things the
desired classes have in common. Typically, this will be an abstract class, which will have
no instances itself. Then, provide the features that differentiate the desired classes with a
set of mixin classes

Mixin classes that have nothing in common can safely be mixed together, to build the
desired classes. The mixin classes will usually be abstract classes, also, because they are
too specialized for their instances to be useful on their own.

The date stamp class defined earlier would make a good mixin class. A similar time_stamp
class might be (partially) defined as follows:

Chapter 10: The Prolog Library 641

:- class time_stamp =

[hour:integer,

minute:integer,

second:integer].

Self <- create :-

time(time(Hour, Minute, Second)),

store_slot(hour, Hour),

store_slot(minute, Minute),

store_slot(second, Second).

Another mixin class might be used to “register” objects in the Prolog database.

:- class registry = [name:atom].

Self <- create(Name) :-

Self << name(Name),

assert(registered(Name, Self)).

Self <- destroy :-

Self >> name(Name),

retract(registered(Name, Self)).

The registry mixin class could have been used with the point class to define the named_
point class, which was an example from an earlier section.

The ability to send a message to an object’s superclass is useful when working with mixin
classes. Suppose the definition of a new class begins with

:- NewClass = OldClass + date + time + registry.

where OldClass is some previously defined class that lacks the features provided by the date,
time and registry classes. (In fact, they should not have any slot names in common.) Then
its create method can be defined by

Self <- create(Name) :-

super(OldClass) <- create,

super(date) <- create,

super(time) <- create,

super(registry) <- create(Name).

This avoids the need to duplicate the code in the create methods of OldClass and all three
mixin classes.

10.25.3.3 Asking About Classes and Objects

It is possible to determine, at run time, what classes are defined, how they are related by
inheritance, what class an object belongs to, etc. This section describes the predicates used
for those purposes. Most of the predicates involve the class hierarchy, so they are properly

642 SICStus Prolog

described in the section on inheritance. But, several can be useful even in programs that
use only simple classes.

Most of these predicates come in pairs, where one predicate involves one class or its di-
rect superclasses, and the other predicate involves all ancestors. For example, the class_

superclass/2 and class_ancestor/2 predicates connect a currently defined class to its
superclass(es) and to all its ancestors, respectively.

In all of these predicates, the ancestors of a class include not only superclasses and their
ancestors, but also the class itself. A class cannot be a superclass of itself, by the rules
of defining classes. However, it is convenient to consider every class an ancestor of itself,
because then we may say that every property of a class is defined in one of its ancestors,
without having to say “the class itself or a superclass or a superclass of a superclass, etc.”

Objects

The class_of/2 predicate is used to test whether an object is of a particular type or to
determine the type of an object. Similarly, the descendant_of/2 predicate relates an object
to all ancestors of its class. (Remember that the object’s class is, itself, an ancestor class
of the object.)

Both require the first argument (the object) to be instantiated. That is, the predicates
cannot be used to find objects of a given class. If you need to search among all the objects
of a class, then you must provide a way to do it. One way to do this is to assert a fact
connecting the class name to every object, when it is created. The named point example of
the previous section took that idea a step further by allowing each object to have a different
name.

The pointer_object/2 predicate relates an object’s address (a pointer) to the object.
Remember that an instance of Class is represented by a term of the form

Class(Address)

The pointer_object/2 predicate requires that one of its arguments be instantiated, but
it may be either one. Hence, just by knowing the address of an object (which possibly was
returned by a foreign function) it is possible to determine the object’s type.

Most Prolog programmers can safely ignore the pointer_object/2 predicate, unless they
are using SICStus Objects with foreign functions or with the Structs package.

Classes

The current_class/1 predicate is used to ask whether a class is currently defined or to
get the names of all currently defined classes.

The class_superclass/2 predicate is used to test whether one class is a superclass of
another, or to find a class’s superclasses, or to find a class’s subclasses, or to find all
subclass-superclass pairs. The class_ancestor/2 predicate is used in the same ways for
the ancestor relation between currently defined classes.

As an example, the following goal finds all the ancestors of each currently defined class.

Chapter 10: The Prolog Library 643

| ?- setof(C-As,

(current_class(C),

setof(A, class_ancestor(C,A), As)),

L).

It binds L to a list of terms of the form Class-AncestorList, with one term for each currently
defined class.

Arguably, this predicate violates the principle of information hiding, by letting you ask
about how a class is defined. Therefore, you should generally avoid it. It may be useful,
however, in debugging and in building programmer support tools.

Messages

The message/4 predicate is used to ask whether a message is defined for a class or to find
what messages are defined for a class, etc. It does not distinguish between messages whose
methods are defined in the class itself and those that are inherited from a superclass.

The direct_message/4 predicate is used to ask whether a message is not only defined for a
class, but whether the method for that message is defined in the class itself. It can also be
used to determine which methods are defined in a class. This ability to look inside a class
definition makes direct_message/4 an egregious violator of the principle of information
hiding. Thus it, like class_ancestor/2, should mainly be confined to use in programmer
support applications.

Both message/4 and direct_message/4 take the message operator as an argument, along
with the class, message name and arity. Hence it is possible to use these predicates to ask
about get, put or send messages.

It is not possible to ask about a class’s slots, nor should it be. However, it is possible (and
quite reasonable) to ask about the get and put messages that are defined for a class. For
example, the following goal finds all the 1-argument messages that are defined for both the
get and put message operators in the class Class.

| ?- setof(Message,

(message(Class, <<, Msg, 1),

message(Class, >>, Msg, 1)),

L).

There may or may not be slots corresponding to these messages; that detail is hidden in the
definition of Class. However, it should be possible to use Class as if the slots were there.

As an example, recall the polar coordinate interface to the point class, which defined get
and put methods for r and theta, even though data was represented inside an object by
rectangular coordinates x and y.

10.25.4 Term Classes

Sometimes it is convenient to be able to send messages to ordinary Prolog terms as if
they were objects. Prolog terms are easier to create than objects, and unlike objects, they

644 SICStus Prolog

are automatically garbage collected (see Section 10.25.5.2 [obj-tech-lim], page 648). Of
course, unlike objects, Prolog terms cannot be modified. However, when a particular class
of objects never needs to be dynamically modified, and does not need to be subclassed, it
may be appropriate to define it as a term class.

A term class is defined much like an ordinary class: it begins with a ‘:- class’ directive
defining the class and its slots, follows with clauses defining the methods for this class, and
ends with an ‘:- end_class’ directive, the end of the file, or another ‘:- class’ directive.
The only difference is in the form of the ‘:- class’ directive introducing a term class
definition.

10.25.4.1 Simple Term Classes

The simplest sort of term class declaration has the following form:

:- class ClassName = term(Term).

This declares that any term that unifies with Term is an instance of class ClassName. For
example, you might declare:

:- class rgb_color = term(color(_Red,_Green,_Blue)).

color(R,_G,_B) >> red(R).

color(_R,G,_B) >> green(G).

color(_R,_G,B) >> blue(B).

:- end_class rgb_color.

This would declare any term whose principal functor is color and arity is three to be an
object of class rgb_color. Given this declaration, entering the goal

color(0.5, 0.1, 0.6) >> blue(B)

would bind B to 0.6.

Note that you cannot use create/2 to create a term class instance. Since they are just
ordinary terms, you can create them the same way you would create any ordinary Prolog
term. Similarly, you cannot modify an existing term class instance.

You may specify a term class as the type of a slot of an ordinary class. This is effectively
the same as specifing the type to be term. In particular, fetching and storing term class
slots is not very efficient. Also, the default value for slots of term class type is ''; this is
because not enough is known about a simple term class to determine a better default. For
an explanation of how to avoid these pitfalls, see Section 10.25.4.3 [obj-tcl-tce], page 645.

10.25.4.2 Restricted Term Classes

The intention of the rgb_color class presented above is to represent a color as a triple of
floating point numbers between 0.0 and 1.0. But the above definition does not restrict the
arguments of the color term in any way: any color/3 term is considered to be an instance
of the rgb_color class.

Chapter 10: The Prolog Library 645

The second form of term class declaration allows you to specify constraints on instances of
a term class. The form of such a declaration is as follows:

:- class ClassName = term(Term, Constraint).

This declares that any term that unifies with Term and satisfies Constraint is an instance of
class ClassName. The Constraint term is an ordinary Prolog goal, which will usually share
variables with Term.

To extend our rgb_color class example so that only color/3 terms whose arguments are all
floats between 0.0 and 1.0 are instances of rgb_color, we would instead begin the definition
as follows:

:- class rgb_color =

term(color(Red,Green,Blue),

(float(Red), Red >= 0.0, Red =< 1.0,

float(Green), Green >= 0.0, Green =< 1.0,

float(Blue), Blue >= 0.0, Blue =< 1.0)).

Note the parentheses around the constraint in this example. Whenever the constraint
contains multiple goals separated by commas, you will need to surround the goal with
parentheses.

With this definition of the rgb_color class, only color/3 terms whose arguments are all
floating point numbers between 0 and 1 inclusive will be considered to be instances of
rgb_color.

10.25.4.3 Specifying a Term Class Essence

As mentioned above, it is possible to specify a term class as the type of a slot of some other
object. For example, we might declare

:- class colored_rectangle = [

public origin:point,

public size:size,

public color:rgb_color].

This will store an rgb_color object (i.e., a color/3 term) in the color slot of each colored_
rectangle object. Unfortunately, though, SICStus Objects cannot tell what is the best way
to store a term object, and therefore it stores it the same way it stores a slot declared to be
of term type: using the Prolog database. This has all the efficiency disadvantages of term
slots. In this case, however, we know that all that really needs to be saved in order to save
an rgb_color object is the three arguments. We also know that each of these arguments
is a floating point number, and because precision is not terribly critical in representating
colors, each of these numbers can be stored as a float, rather than a double. In effect, we
know that the essence of a rgb_color object is these three numbers; if we have them, then
we can easily construct the color/3 term. If we provide this information in the declaration
of the rgb_color class, then SICStus Objects can store instances of the rgb_color class as

646 SICStus Prolog

3 separate floats, rather than as a term, significantly improving the performance of creating
or destroying a colored_rectangle object, as well as accessing or modifying its color slot.

The essence of a term class is specified with the following form of class declaration:

:- class ClassName = term(Term, Constraint, Essence).

where Essence is of the form

[Name1:Type1=i[Variable1], Name2:Type2=i[Variable2], ...]

and each Name is a distinct atom naming a slot, each Type is a slot type as specified in
Section 10.25.2.2 [obj-scl-slt], page 624, and each Variable is an unbound variable appering
in Term. Providing a term essence not only makes storage of terms in ordinary object slots
more efficient, it also gives a name to each “essential” slot of the term class. This allows
you to use fetch_slot to fetch the slots of this class.

To extend our rgb_color example, we might introduce the rgb_color class with this
declaration:

:- class rgb_color =

term(color(Red,Green,Blue),

(float(Red), Red >= 0.0, Red =< 1.0,

float(Green), Green >= 0.0, Green =< 1.0,

float(Blue), Blue >= 0.0, Blue =< 1.0),

[red:float=Red, green:float=Green, blue:float=Blue]).

This declaration defines the rgb_color class exactly as the example declaration of the pre-
vious section: every color/3 term whose arguments are all floating point numbers between
0.0 and 1.0 inclusive are instances of rgb_color. The difference is that with this declara-
tion, ordinary classes that have slots of type rgb_color, such as the colored_rectangle

example above, will be stored more efficiently, and their rgb_color slots will be accessed
and modified much more efficiently. Also, it will be possible to use fetch_slot(red, Red)

in the methods of the rgb_color class to fetch to red component of the message recipient,
and similarly for green and blue.

10.25.5 Technical Details

This section will be expanded in future versions of SICStus Objects. For now, it provides
a BNF grammar for the syntax of class definitions and a short list of some limitations of
SICStus Objects.

10.25.5.1 Syntax of Class Definitions

The following BNF grammar gives a concise description of the syntax of class definitions.
It assumes an understanding of Prolog syntax for the following items: variable, atom,
compound term, and constant. Slot types, particularly the address, class and pointer

types, were discussed in an earlier section.

Chapter 10: The Prolog Library 647

class def ::= class begin { clause | method } class end

class begin ::= :- class class name opt class spec .

opt class spec ::= empty | = class spec

class spec ::= multi parent or slots | term class spec

clause ::= head opt body .

head ::= atom | compound term .

method ::= message head opt body .

message head ::= message goal

class end ::= :- end_class opt class name .

| empty /* if followed by class begin or eof */

message ::= atom | compound term

multi parent or slots ::= parent or slots { + parent or slots }

parent or slots ::= class name | [] | [slot def {, slot def }]

slot def ::= opt visibility slot name : slot type opt init value

opt visibility ::= empty | private | protected | public

opt init value ::= empty | = constant

term class spec ::= term(term opt goal essence)

opt goal essence ::= empty | , goal opt essence

opt essence ::= empty | , essence

essence ::= [variable : slot type { , variable : slot type }]

opt body ::= empty | :- body

body ::= message or goal { , message or goal }

message or goal ::= message goal | goal

message goal ::= variable message operator message

648 SICStus Prolog

message operator ::= << | >> | <-

opt class name ::= empty | class name

class name ::= atom

slot name ::= atom

slot type ::= integer

| short

| char

| unsigned_short

| unsigned_char

| float

| double

| atom

| address

| term

| class name
| pointer(atom)

10.25.5.2 Limitations

This section summarizes the current limitations of SICStus Objects.

Debugging

When you debug SICStus Objects programs that were compiled using the obj_declmodule,
you are tracing the translated version of your code. This includes all method clauses and
(some) message sending commands.

The source-linked debugger cannot connect compiled SICStus Objects code with the source
code.

Garbage Collection

There is no garbage collection of objects. It is the responsibility of the programmer to keep
track of unused objects. In particular, avoid doing the following:

| ?- create(Class, Object).

Unless the create message for Class made some provision for finding the new object again,
it is now lost. It cannot be used, and it cannot be destroyed.

Multiple Inheritance

The provisions for multiple inheritance in this version of SICStus Objects are limited. In
particular, there is no control over the inheritance of slots, which makes repeated inheritance
impossible. However, it does support the mixin style of multiple inheritance.

Chapter 10: The Prolog Library 649

Persistence

While objects are more persistent than Prolog variables, there is no automatic way to save
objects from one execution of your program to the next. Hence they are less persistent than
the clauses in the Prolog database.

If you need to save a set of objects from one Prolog session to another, then copy the objects
to the Prolog database as terms, and save them to a QOF file. Then, after you reload the
QOF file, rebuild the objects. Keep in mind that addresses are not valid from one session
to another.

In short, there is no way to avoid initializing objects at run time.

10.25.6 Exported Predicates

The following reference pages, alphabetically arranged, describe the exported SICStus Ob-
jects predicates. They can be imported by an embedded command:

:- use_module(library(objects)).

650 SICStus Prolog

10.25.6.1 <-/2

Synopsis

+Obj <- +Mesg

Arguments

Obj object

Mesg term

Description

Sends Mesg to Obj. A send message. The class of Obj must have a method defined for this
message.

A clause with <-/2 as the principal functor of its head is a method definition clause. Such
clauses only occur within the scope of a class definition. They are expanded at compile
time.

Exceptions

instantiation_error

either argument is unbound.

domain_error

Mesg is not callable or Obj is not a valid object.

existence_error

Mesg is not a defined message for Obj.

Caveat

For reasons of efficiency, an Existence Error will only be raised if the code that sends the
message is compiled with debugging enabled (see debug_message), or if the message is not
determined at compile-time. In other circumstances, the message will simply fail.

Calls to the <-/2 predicate will be compiled into more efficient code if the obj_decl module
is loaded at compile time.

See Also

<</2, >>/2, direct_message/4, message/4

Chapter 10: The Prolog Library 651

10.25.6.2 <</2

Synopsis

+Obj << +Att

Arguments

Obj object

Att term

Description

Sends a message to Obj to store the value of Att in the object. A put message. Att must
be an attribute that can be stored in objects of Obj’s class.

A clause with <</2 as the principal functor of its head is a method definition clause. Such
clauses only occur within the scope of a class definition. They are expanded at compile
time.

Put methods are automatically generated for public slots.

Exceptions

instantiation_error

either argument is unbound.

domain_error

Mesg is not callable or Obj is not a valid object.

existence_error

Mesg is not a defined message for Obj.

Caveat

For reasons of efficiency, an Existence Error exception will only be raised if the code that
sends the message is compiled with debugging enabled (see debug_message), or if the
message is not determined at compile-time. In other circumstances, the message will simply
fail.

Calls to the <</2 predicate will be compiled into more efficient code if the obj_decl module
is loaded at compile time.

See Also

<-/2, >>/2, direct_message/4, message/4, store_slot/2

652 SICStus Prolog

10.25.6.3 >>/2

Synopsis

+Obj >> +-Att

Arguments

Obj object

Att term

Description

Sends a message to Obj that fetches the value of Att from the object. A get message. Att
must be an attribute to fetch from Obj’s class.

A clause with >>/2 as the principal functor of its head is a method definition clause. Such
clauses only occur within the scope of a class definition. They are expanded at compile
time.

Get methods are automatically generated for public slots.

Exceptions

instantiation_error

either argument is unbound.

domain_error

Mesg is not callable or Obj is not a valid object.

existence_error

Mesg is not a defined message for Obj.

Caveat

For reasons of efficiency, an Existence Error exception will only be raised if the code that
sends the message is compiled with debugging enabled (see debug_message), or if the
message is not determined at compile-time. In other circumstances, the message will simply
fail.

Calls to the >>/2 predicate will be compiled into more efficient code if the obj_decl module
is loaded at compile time.

See Also

<-/2, <</2, direct_message/4, message/4, fetch_slot/2

Chapter 10: The Prolog Library 653

10.25.6.4 class/1 declaration

Synopsis

:- class ClassName.

:- class ClassName = [SlotDef, ...].

:- class ClassName = Super.

:- class ClassName = [SlotDef, ...] + Super +

:- class ClassName = term(Term).

:- class ClassName = term(Term, Goal).

:- class ClassName = term(Term, Goal, Essence).

Arguments

ClassName
atom

SlotDef term

Super atom

Description

The definition of class ClassName begins with this class/1 directive and ends with the next
class/1 directive, the next end_class/[0,1] directive, or the end of the file, whichever
comes first. All clauses that look like method definitions within the scope of the class
definition (that is, which have one of <-/2, <</2 or >>/2 as the principal functors of their
heads) are considered method definitions of the class.

You may provide as many slot definitions (SlotDef) and superclasses (Super) as you like.
All superclasses must be previously defined classes.

A slot definition (SlotDef) has the form

Visibility SlotName:Type = InitialValue

where Visibility and ‘= InitialValue’ are optional.

Visibility is either public, protected, or private. If it is omitted, then the slot is private.

SlotName must be an atom.

SlotType must be one of the following:

integer signed integer, large enough to hold a pointer

integer_64 since release 4.3

64-bit signed integer

654 SICStus Prolog

integer_32

32-bit signed integer

integer_16

16-bit signed integer

integer_8

8-bit signed integer

unsigned unsigned integer, large enough to hold a pointer

unsigned_64 since release 4.3

64-bit unsigned integer

unsigned_32

32-bit unsigned integer

unsigned_16

16-bit unsigned integer

unsigned_8

8-bit unsigned integer

float 64-bit floating point number

float_32 32-bit floating point number

atom Prolog atom

address pointer

term Prolog term

Class pointer to an instance of Class, which must be a previously defined class

pointer(Type)

like address, except that access to this slot yields, and update of this slot
expects, a unary term whose functor is Type

InitialValue may be any constant appropriate for the slot’s type.

Term, if specified, is any compound Prolog term. Class declarations of any of the last three
forms introduce a term class, which defines any term that unifies with Term as an instance
of the class being defined.

Goal, if specified, is any Prolog goal. This goal may be used to restrict which terms that
unify with Term will be considered to be instance of the class being defined. The default
Goal is true. Other than when it is true, Goal will usually share variables with Term.

Essence, if specified, is a list of terms of the form

Variable:Type

where Variable is a variable apprearing somewhere in Term and Type is one of the possible
Slottype types listed above. There should be a Variable:Type pair for every variable in
Term. By specifying an essence, you permit much more space- and time-efficient storage of
and access to term slots.

Chapter 10: The Prolog Library 655

Caveat

Note that every class for which you want to be able to create instances must define at least
one create method.

Examples

The following class definition is for a class named point, with two public slots, named x

and y. Both slots are of type integer and have initial values of 1 and 2, respectively.

:- class point =

[public x:integer=1,

public y:integer=2].

Self <- create.

:- end_class point.

Because the slots are public, they have get and put methods generated automatically. Be-
cause the class has a create method defined, it is possible to create an instance with the
command

| ?- create(point, PointObj).

which creates a point object and binds the variable PointObj to it.

Using the point class, we could create a class, named_point, which has an extra public
slot, name.

:- class named_point =

[public name:atom] + point.

Self <- create(Name, X, Y) :-

Self << name(Name),

Self << x(X),

Self << y(Y).

:- end_class named_point.

The only way to create a named_point object requires specifying values for all three slots.

See Also

end_class/[0,1]

Section 10.25.2 [obj-scl], page 623, Section 10.25.4 [obj-tcl], page 643.

656 SICStus Prolog

10.25.6.5 class_ancestor/2

Synopsis

class_ancestor(?Class, ?Anc)

Arguments

Class atom

Anc atom

Description

Anc is Class or an ancestor class of Class.

See Also

class_superclass/2

Chapter 10: The Prolog Library 657

10.25.6.6 class_method/1 declaration

Synopsis

:- class_method +Name/+Arity,

Arguments

Name atom

Arity integer

Description

Declares that a class’s method for send message Name/Arity is an ordinary method, not
an instance method.

Used when the class being defined inherits an instance method from a superclass, to allow
the class to define a non-instance method for the message. A descendent class may still
declare this to be an instance method, so the same message may be an instance method for
some classes and an ordinary class method for others.

Must occur within the scope of the class definition. Only applies to send messages.

See Also

instance_method/1

658 SICStus Prolog

10.25.6.7 class_superclass/2

Synopsis

class_superclass(?Class, ?Super)

Arguments

Class atom

Super atom

Description

Class is an immediate subclass of Super.

See Also

class_ancestor/2

Chapter 10: The Prolog Library 659

10.25.6.8 class_of/2

Synopsis

class_of(+Obj, -Class)

Arguments

Obj object

Class atom

Description

Class is the class of Obj.

Exceptions

instantiation_error

Obj is unbound.

type_error

Obj is not a valid object.

See Also

pointer_object/2

660 SICStus Prolog

10.25.6.9 create/2

Synopsis

create(+Descriptor,-Obj)

Arguments

Descriptor
term

Obj object

Description

Obj is a newly created and initialized object. Descriptor is a term describing the object
to create. After memory is allocated and any slot initializations are performed, a create
message is sent to the object.

The functor of Descriptor indicates the class to create. The arguments of the create message
are the arguments of Descriptor.

Exceptions

instantiation_error

Descriptor is unbound.

domain_error

Descriptor is not a valid create descriptor.

resource_error

unable to allocate enough memory for object.

Caveat

You must have a create/N method for every arity N you want to be able to use in creating
instances of a class. This includes arity 0. If no such method exists, then a domain error
will be raised.

Examples

Given the class definition

:- class point =

[public x:integer=1,

public y:integer=2].

Self <- create.

Self <- create(X, Y) :-

Self << x(X),

Self << y(Y).

:- end_class point.

the command

| ?- create(point, Point1).

Chapter 10: The Prolog Library 661

creates a point object, with the default slot values for x and y, and binds variable Point1
to the new object. The command

| ?- create(point(10,15), Point2).

creates a point object with values 10 and 15 for slots x and y, respectively, and binds
variable Point2 to the new object.

See Also

destroy/1

662 SICStus Prolog

10.25.6.10 current_class/1

Synopsis

current_class(*Class)

Arguments

Class atom

Description

Class is the name of a currently defined class.

Chapter 10: The Prolog Library 663

10.25.6.11 debug_message/0 declaration

Synopsis

:- debug_message.

Description

Prolog clauses following this directive will be compiled to send messages “carefully.”

That is, a message sent to an object that does not understand the message will raise an
exception, which describes both the message and the object receiving it. This also catches
attempts to send an unbound message, to send a message to an unbound object, and similar
errors.

See Also

nodebug_message/0

664 SICStus Prolog

10.25.6.12 define_method/3

Synopsis

define_method(+Obj, +Message, +Body)

Arguments

Obj object

Message term

Body callable

Description

Installs Body as the method for Message in the instance Obj. Following the execution of
this goal, sending Message to Obj will execute Body, rather than the default method or a
method previously defined with define_method/3.

Message must have been declared to be an instance method for the class of Obj.

Exceptions

instantiation_error

any argument is unbound.

type_error

Obj is not a compound term, or Message or Body is not callable.

domain_error

Message does not specify an instance method for the class of Obj, or Body
include a goal to fetch or store a non-existent slot.

See Also

instance_method/1, undefine_method/3

Chapter 10: The Prolog Library 665

10.25.6.13 descendant_of/2

Synopsis

descendant_of(+Obj, ?Class)

Arguments

Obj object

Class atom

Description

Obj is an instance of Class or of a descendant of Class.

Exceptions

instantiation_error

Obj is unbound.

type_error

Object is not a valid object.

See Also

class_ancestor/2, class_of/2, class_superclass/2

666 SICStus Prolog

10.25.6.14 destroy/1

Synopsis

destroy(+Obj)

Arguments

Obj object

Description

First, sends a destroy message to Obj, if such a message is defined for its class. A destroy

message takes no argument. Unlike create/2, it is possible to destroy instances of a class
even if it defines no destroy methods. Finally, disposes of Obj.

Exceptions

instantiation_error

Obj is unbound.

type_error

Object is not a valid object.

See Also

create/2

Chapter 10: The Prolog Library 667

10.25.6.15 direct_message/4

Synopsis

direct_message(?Class, ?Op, ?Name, ?Arity)

Arguments

Class atom

Op message operator

Name atom

Arity integer

Description

Name/Arity is an Op message directly understood (defined rather than inherited) by in-
stances of Class. This predicate is used to test whether a message is defined for a class.

Op is one of <-, >>, or <<, specifying the kind of message.

This predicate violates the principle of information hiding by telling whether the method
for a message is defined within a class or inherited. Hence its use in ordinary programs is
discouraged. It may be useful, however, during debugging or in developing programming
support tools.

See Also

<-/2, <</2, >>/2, message/4

668 SICStus Prolog

10.25.6.16 end_class/[0,1] declaration

Synopsis

:- end_class.

:- end_class +ClassName.

Arguments

ClassName
atom

Description

A class definition continues until the next end_class/[0,1] directive, the next class/1

directive, or the end of the file, whichever comes first.

It is not possible to nest one class definition within another.

All clauses that look like method definitions (that is, which have one of <-/2, <</2 or >>/2
as the principal functors of their heads) are considered to be method definitions for the
class.

Caveat

The argument to end_class/1, if specified, must match the class name of the preceding
class/1 directive.

See Also

class/1

Chapter 10: The Prolog Library 669

10.25.6.17 fetch_slot/2

Synopsis

fetch_slot(+SlotName, -Value)

Arguments

SlotName atom

Value term

Description

Fetches Value from the slot specified by SlotName.

This predicate may only appear in the body of a method clause, and it always operates on
the object to which that message is sent. It cannot be used to directly access the slots of
another object.

Exceptions

instantiation_error

Slot is unbound.

domain_error

Slot is not the name of a slot of the current class.

permission_error

Slot is a private slot of a superclass.

See Also

>>/2, store_slot/2

670 SICStus Prolog

10.25.6.18 inherit/1 declaration

Synopsis

:- inherit +ClassName +Op +Name/+Arity,

Arguments

ClassName
atom

Op message operator

Name atom

Arity integer

Description

ClassName names the class from which the message should be inherited, Op indicates which
kind of message it is, and Name and Arity indicate the name and arity of the message to
be inherited. You may include several inheritance specifications in one directive.

Caveat

Be careful of the precedences of the message operator and the / operator. You may need
to use parentheses.

Examples

Suppose classes toy and truck are defined as follows:

:-class toy.

Self <- create.

Self >> size(small).

Self >> rolls(false).

:- end_class toy.

:- class truck.

Self <- create.

Self >> size(small).

Self >> rolls(true).

:- end_class truck.

Then toy_truck inherits its size from toy and the fact that it rolls from truck:

:- class toy_truck = toy + truck.

:- inherit

toy <- (create/O),

toy <- (size/1),

truck <- (rolls/1).

:- end_class toy_truck.

Note that this is just a toy example.

Chapter 10: The Prolog Library 671

See Also

uninherit/1

672 SICStus Prolog

10.25.6.19 instance_method/1 declaration

Synopsis

:- instance_method +Name/+Arity.

Arguments

Name atom

Arity integer

Description

The message Name/Arity is declared to support instance methods in a class. This means
that instances of this class, and its descendants, may each define their own methods for this
message.

A method defined for this message by the class is considered the default method for the
message. An instance that does not define its own method uses the default. Defining a new
method overrides this default method; there is no need to explicitly remove it.

An instance method is installed in an instance of the class with the define_method/3

predicate. An instance method is removed from an instance of the class, reverting to the
default method, with the undefine_method/3 predicate.

Must occur within the scope of the class definition. Only applies to send messages.

See Also

class_method/1, define_method/3, undefine_method/3

Chapter 10: The Prolog Library 673

10.25.6.20 message/4

Synopsis

message(?Class, ?Op, ?Name, ?Arity)

Arguments

Class atom

Op message operator

Name atom

Arity integer

Description

Name/Arity is an Op message understood by instances of Class. This predicate is used to
test whether a message is either defined for or inherited by a class.

Op is one of <-, >>, or <<, specifying the kind of message.

See Also

<-/2, <</2, >>/2, direct_message/4

674 SICStus Prolog

10.25.6.21 nodebug_message/0 declaration

Synopsis

:- nodebug_message.

Description

Prolog clauses following this directive are no longer compiled to send messages "carefully."

See Also

debug_message/0

Chapter 10: The Prolog Library 675

10.25.6.22 pointer_object/2

Synopsis

pointer_object(+Addr,-Obj)

pointer_object(-Addr,+Obj)

Arguments

Addr integer

Obj object

Description

Addr is the address of object Obj. This can be used to get the address of an object or to
get an object given its address.

Please note: This is a low level operation, passing an invalid address may crash the system.

Exceptions

instantiation_error

both Obj and Addr are unbound.

type_error

Addr is not an integer.

676 SICStus Prolog

10.25.6.23 store_slot/2

Synopsis

store_slot(+SlotName, +NewValue)

Arguments

SlotName atom

NewValue term

Description

Stores NewValue in the slot specified by SlotName.

This predicate may only appear in the body of a method clause, and it always operates on
the object to which that message is sent. It cannot be used to directly modify the slots of
another object.

Exceptions

instantiation_error

either argument is unbound.

type_error

NewValue is not of the appropriate type for Slotname.

domain_error

Slotname is not the name of a slot of the current class.

permission_error

Slotname is a private slot of a superclass.

See Also

<</2, fetch_slot/2

Chapter 10: The Prolog Library 677

10.25.6.24 undefine_method/3

Synopsis

undefine_method(+Obj, +Name, +Arity)

Arguments

Obj object

Name atom

Arity integer

Description

Removes Obj’s current instance method for the Name/Arity message. After executing this
goal, sending this message to Obj executes the class’s default method for the message.

Name/Arity must have been declared to be an instance method for the class of Obj.

If Obj has no current instance method for the Name/Arity message, then the predicate has
no effect.

Exceptions

instantiation_error

any argument is unbound.

type_error

Obj is not a compound term, Name is not an atom, or Arity is not an integer.

domain_error

Message does not specify an instance method for the class of Obj.

See Also

define_method/3, instance_method/1

678 SICStus Prolog

10.25.6.25 uninherit/1 declaration

Synopsis

:- uninherit +Class +Op +Name/+Arity,

Arguments

Class atom

Op message operator

Name atom

Arity integer

Description

This prevents the class within whose scope this directive appears from inheriting the
Name/Arity method of type Op from ancestor Class.

If Class is unbound, then the specified message is uninherited from all ancestors that define
it.

Caveat

Note that if you define a message for your class, then you do not need to uninherit that
message from its superclasses: it will automatically be shadowed.

Be careful of the precedences of the message operator and the / operator. You may need
to use parentheses.

Examples

:- uninherit someclass << (foo/1),

someclass >> (foo/1).

This prevents the get and put methods for the slot foo from being inherited from any
ancestors of class someclass. In effect, it makes the foo slot a protected slot for this class.

See Also

inherit/1

10.25.7 Glossary

abstract class
A class that cannot have instances. Abstract classes are helpful in designing a
class hierarchy, to contain the common parts of several concrete classes.

ancestor One of a class’s superclasses, one of its superclasses’s superclasses, etc. Some-
times, for convenience, ancestor includes the class itself, along with its proper
ancestors.

child A synonym for subclass.

Chapter 10: The Prolog Library 679

class A class is defined by a description of the information its instances contain and
the messages they respond to. Every object is an instance of one and only one
class.

concrete class
A class that can have instances. Most classes are concrete.

create method
Specifies what actions should be taken when an instance of a class is created.
A create method frequently provides initial slot values or specifies an action to
be performed by the new object. A create message is sent to each new object
by the create/2 predicate. A create message is a kind of send message.

descendant
One of a class’s subclasses, one of its subclasses’s subclasses, etc. Sometimes
the word descendant includes the class itself, along with its proper descendants.

destroy method
Specifies what actions should be taken when an instance of a class is destroyed.
A destroy message is sent to an object by the destroy/1 predicate. A destroy
message is a kind of send message.

direct slot access
Fetching or storing a slot value without sending a message to the object. This
should be used with care!

SICStus Objects allows direct access to a class’s slots only within its method
definitions, via the fetch_slot/2 and store_slot/2 predicates.

get message
A message that inquires about some aspect of an object. Typically used to
fetch slot values. Get methods are automatically generated for public slots.
Get messages are written with the ‘>>’ operator.

inheritance
The process by which a class’s slots and methods are determined from an an-
cestor.

initial value
The value a slot is initialized to when an object is created. Every slot has a
default initial value, which depends upon its type. You may specify different
initial values in a class definition.

instance Another word for object. The word instance draws attention to the class of
which the object is an instance.

instance method
A method that may be defined differently for each instance of a class. The class
may have a default method for this message, which is overridden by installing
an instance method for a particular object.

message A command to an object to perform an operation or to modify itself, or an
inquiry into some aspect of the object. In SICStus Objects, a message is either

680 SICStus Prolog

a get message, a put message or a send message. The syntax for sending a
message to an object is

Object Operator Message

where Operator is one of the following:

>> get message

<< put message

<- send message

method A class’s implementation of a particular message. You send messages to an
object, but you define methods for a class.

method clause
A Prolog clause used to define a method for a class. A method clause has one of
<-/2, <</2 or >>/2 as the principal functor of its head, and it can only appear
within the scope of its class’s definition. A method’s definition may contain
more than one message clause.

mixin class
A class that is intended to be combined (mixed in) with other classes, via
multiple inheritance, to define new subclasses.

multiple inheritance
When a class names more than one superclass. Typically, it inherits slots
and methods from each. In SICStus Objects, two different superclasses should
not use the same slot name. And, if a message is defined by more than one
superclass, then the class definition must specify which method to inherit.

object A modifiable data item that holds information and responds to messages. An-
other word for instance.

parent class
A synonym for superclass.

private slot
A private slot is, by default, only accessible within methods of the class it-
self. Not even the descendants of the class may access its private slots, except
through the class’s methods. Get and put methods are not automatically gen-
erated for a private slot, so it is only accessed via the methods you define. If
the visibility of a slot is not specified, then it is private, rather than public or
protected.

protected slot
A protected slot is, by default, only accessible within methods of the class itself
and its descendants. Get and put methods are not automatically generated for a
protected slot, so it is only accessed via the methods you define. If the visibility
of a slot is not specified, then it is private, rather than public or protected.

SICStus Objects protected is similar to protected in C++.

Chapter 10: The Prolog Library 681

public slot A public slot is accessible via its own get and put methods, which are generated
for it automatically. If no visibility is specified, then a slot is private, rather
than public or protected.

put message
A message that modifies some aspect of an object. Typically used to store slot
values. Put methods are automatically generated for public slots. Put messages
are written with the ‘<<’ operator.

send message
The most common sort of message. Used for performing an operation on an
object or for performing an action that depends upon an object. Send messages
are written with the ‘<-’ operator.

send super
When a method for a class executes a shadowed superclass’s method. This
allows a class to put a “wrapper” around its superclass’s method, making it
unnecessary to duplicate the method just to make a small extension to it.

shadow When a class defines its own method for a message defined by one of its an-
cestors, the new method hides or “shadows” the ancestor’s method. The new
class’s descendants will inherit its method for that message, rather than its
ancestors. That is, a class always inherits the “closer” of two methods for a
message.

slot A part of an instance that holds an individual datum. Like a member of a C
struct or a field of a Pascal record.

subclass A class that is a more specific case of a particular class. This is the opposite of
superclass. A class does not name its subclasses; they are inferred.

superclass A class that is a more general case of a particular class. Each class lists its
superclasses.

term class A class whose instances are represented as ordinary Prolog terms. The functor
of these objects need not be the name of the class, and the arity need not be
one.

term slot A slot that can hold any Prolog term.

uninherit Specify that a method from a superclass should not be inherited. This is similar
to shadowing the superclass’s method, but does not specify a replacement for
it.

visibility A slot may be defined to be either public, protected, or private. By default,
if no visibility is specified, then a slot is private.

10.26 The ODBC Interface Library–library(odbc)

This library is an interface to an ODBC database driver. For an introduction to ODBC, see
http://msdn.microsoft.com/en-us/library/ms715408(VS.85).aspx ("Introduction to
ODBC"; Microsoft Web Page). ODBC 3.x is supported.

http://msdn.microsoft.com/en-us/library/ms715408(VS.85).aspx

682 SICStus Prolog

10.26.1 Overview

ODBC (Open Database Connectivity) is a standard API for using a DBMS (DataBase
Management System). By using ODBC you can access data from a multitude of DBMSs
without having to know the details of each DBMS.

library(odbc) is a layer on top of ODBC. It has predicates for opening the database,
starting and executing a query, and retrieving the results of a query. The ODBC client
application, i.e. this library, accesses all ODBC functionality via a service provided by the
operating system, the ODBC Driver Manager (DM).

Some operating systems (e.g. Mac OS X and MS Windows) usually come with an
ODBC Driver Manager preinstalled. For other, UNIX and UNIX-like, operating systems,
unixODBC (http://www.unixodbc.org) is the most common but Mac OS X use iODBC
(http://www.iodbc.org).

The ODBC Driver Manager does not, in itself, provide any database functionality. Instead
the DM loads a ODBC driver specific to the particular Database Management System
(DBMS) (when odbc_db_open/[3,4,5] is called).

How to install and configure an ODBC driver is beyond the scope of this document. Please
consult the documentation for the particular DBMS you intend to use. Some popular
DBMSs are MySQL and PostgreSQL which both provide ODBC drivers for many platforms.

10.26.2 Examples

A few examples will best illustrate how to use library(odbc).

10.26.2.1 Example 1

The first example just verifies that ODBC is working and that some ODBC drivers have
been configured in the ODBC Driver Manager.

:- use_module(library(odbc)).

example1 :-

odbc_env_open(EnvHandle),

odbc_list_DSN(EnvHandle, DSNs),

odbc_env_close(EnvHandle),

format('The known DSNs are: ~q~n', [DSNs]).

You begin by opening an environment. This is a handle which can be used for various calls
to the ODBC Driver Manager (DM). You then ask the DM about the data sources, i.e.
databases, it knows about. If this list is empty you need to install and configure the ODBC
drivers appropriate for the database management system that you intend to use.

10.26.2.2 Example 2

This example is a simple SQL query using a fixed SQL string.

http://www.unixodbc.org
http://www.iodbc.org

Chapter 10: The Prolog Library 683

:- use_module(library(odbc)).

example_select :-

odbc_env_open(EnvHandle),

odbc_db_open('MyDatabase', EnvHandle, ConnectionHandle),

odbc_query_open(ConnectionHandle, StatementHandle),

odbc_query_execute_sql(StatementHandle,

'SELECT cookie,soft FROM bakery order by soft',

ResultSet),

show_result(ResultSet),

odbc_query_close(ResultSet),

odbc_db_close(ConnectionHandle),

odbc_env_close(EnvHandle).

show_result(ResultSet) :-

odbc_sql_fetch(ResultSet, Row),

show_result1(Row, ResultSet).

show_result1([], _ResultSet) :- !.

show_result1(Row, ResultSet) :-

format('~w~n', [Row]),

flush_output,

odbc_sql_fetch(ResultSet, Row1),

show_result1(Row1, ResultSet).

As always, you begin by opening an environment. You then connect to the database with
odbc_db_open/3. The first argument is the identifier for the database in the DBMS. In
this scenario, connecting to the database does not require a username and a password. The
output from odbc_db_open/3 is an opaque handle on the database.

First, odbc_query_open/2 is used to create an SQL query, which is straightforward. Then,
odbc_query_execute_sql/3 is used to execute the SQL query. By executing an SQL query
a result set is created. Each consecutive call of odbc_sql_fetch/2 will retrieve one row
from the result set.

10.26.2.3 Example 3

This example shows the use of parameter binding. The positional markers (?) in
the SQL string are bound to the elements in the list in the third argument of
odbc query execute sql/5. The fourth argument is a list of datatypes corresponding to
the parameters.

684 SICStus Prolog

:- use_module(library(odbc)).

example2 :-

odbc_env_open('SQL_OV_ODBC3', EnvHandle),

odbc_db_open('MyDatabase', EnvHandle, ConnectionHandle),

odbc_query_open(ConnectionHandle, StatementHandle),

odbc_query_execute_sql(StatementHandle,

'INSERT INTO scratch (vehicle, wheels) VALUES (?, ?)',

["railwaycar", 8],

['SQL_VARCHAR', 'SQL_INTEGER'],

ResultSet),

odbc_query_close(ResultSet),

odbc_db_close(ConnectionHandle),

odbc_env_close(EnvHandle).

10.26.2.4 Example 4

This example is similar to the second, but this time we ask the database what the datatypes
of the columns of the table are with odbc list data types/3.

:- use_module(library(odbc)).

example3 :-

odbc_env_open(EnvHandle),

odbc_db_open('MyDatabase', EnvHandle, ConnectionHandle),

odbc_query_open(ConnectionHandle, StatementHandle),

odbc_list_data_types(StatementHandle,

scratch(vehicle, wheels),

DataTypes),

odbc_query_execute_sql(StatementHandle,

'INSERT INTO scratch (vehicle, wheels) VALUES (?, ?)',

["railwaycar", 8],

DataTypes,

ResultSet),

odbc_query_close(ResultSet),

odbc_db_close(ConnectionHandle),

odbc_env_close(EnvHandle).

10.26.3 Datatypes

10.26.3.1 Reading from the database

When reading data from the database the following datatypes are supported, with conver-
sion to the corresponding prolog datatypes.

SQL_CHAR, SQL_VARCHAR etc.
A list of character codes.

SQL_BIT The integer 0 for false, or 1 for true.

Chapter 10: The Prolog Library 685

SQL_INTEGER, SQL_TINYINT, SQL_SMALLINT, etc.
An integer.

SQL_REAL, SQL_DOUBLE, SQL_FLOAT
A floating point number.

SQL_DATE A term date(Year, Month, DayOfMonth), with one-based integer arguments.
E.g. date(2012,10,22) means October 22, 2012.

SQL_TIME A term time(Hour, Minute, Second) with one-based integer arguments. E.g.
time(22,11,5) means eleven minutes and five seconds past ten pm.

SQL_TIMESTAMP

A term timestamp(Year, Month, Day, Hour, Minute, Second, Fraction)

where the arguments have the same meaning as for SQL_TIME and SQL_

TIMESTAMP and Fraction means fractional nanoseconds past, as an integer.

the SQL null value
The atom null.

SQL_BINARY and other binary types
SQL_INTERVAL_HOUR and other interval types
SQL_UTCTIME and SQL_UTCDATETIME

Currently not supported.

Note that atoms with names that start with an upper case letter, like SQL_CHAR must be
quoted in Prolog, e.g. 'SQL_CHAR'.

10.26.3.2 Writing to the database

When writing data to the database the following SQL datatypes are supported.

SQL_CHAR, SQL_VARCHAR etc.
A list of character codes, or a list of atoms.

For backwards compatibility only, an atom is also accepted, but note that the
atoms null and [] have special meaning (as SQL null value and empty code
list, respectively) and more atoms with special meaning may be introduced in
the future. For compatibility with some ODBC drivers, the integer 0 and 1 are
allowed, meaning "0" and "1".

SQL_BIT The integer 0 for false, or 1 for true.

SQL_INTEGER, SQL_TINYINT, SQL_SMALLINT, etc.
An integer.

SQL_REAL, SQL_DOUBLE, SQL_FLOAT
A floating point number or a small integer.

SQL_DATE A term date(Year, Month, DayOfMonth), as above.

SQL_TIME A term time(Hour, Minute, Second), as above.

SQL_TIMESTAMP

A term timestamp(Year, Month, Day, Hour, Minute, Second, Fraction),
as above.

686 SICStus Prolog

the SQL null value
The atom null.

SQL_BINARY and other binary types
SQL_INTERVAL_HOUR and other interval types
SQL_UTCTIME and SQL_UTCDATETIME

Currently not supported.

if a value is out of range for the corresponding SQL type, e.g. a too large integer for SQL_

SMALLINT, the result is undefined. Note that atoms with names that start with an upper

case letter, like SQL_CHAR must be quoted in Prolog, e.g. 'SQL_CHAR'.

10.26.4 Exceptions

When an error in the ODBC layer occurs, predicates in library(odbc) throw error/2

exceptions. Both arguments of the error/2 exception are the same and has the following
form odbc_error(Detail, Goal), where Goal is some goal where the error occurred, and
Detail gives more information about the error. The Detail term can have the following
form:

data_conversion

Thrown in case of a error when converting to or from a SICStus data type from
or to an ODBC data type.

unsupported_datatype

Thrown when an SQL data type is unsupported when converting to or from a
SICStus data type from or to an ODBC data type.

unknown_datatype

Thrown when an unknown SQL data type is found when converting to or from
a SICStus data type from or to an ODBC data type.

type_error

Thrown when the Prolog data is of a type incompatible with the SQL data type
when converting from a SICStus data type to an ODBC data type.

native_code

Thrown in case of a error in the native code of library(odbc).

invalid_handle(handle_type, InvalidHandle, ReturnCode)

Thrown when an invalid handle type is specified.

invalid_handle('HandleType'-HandleType, 'Handle'-Handle)

Thrown when an invalid handle is specified.

invalid_handle(result_set, ResultSet)

Thrown when a Result Set handle is invalid.

unknown_connection_option(Options)

Thrown when an unknown option was given when calling odbc_db_

open/[3,4,5].

Chapter 10: The Prolog Library 687

internal_error

Thrown when an internal error occurs in library(odbc). Please report this to
SICStus Support.

diag(ReturnCode, Recs)

Thrown when an error occurs in the ODBC layer, e.g. a SQL syntax error.
Recs is bound to the diagnostic records reported from ODBC.

out_of_memory

Thrown when some operation runs out of memory.

there may be other Details and new Details may be added in the future.

10.26.5 Predicates

odbc_env_open(-EnvHandle)

Opens an ODBC environment. Throws an exception if the environment could
not be opened.

odbc_db_open(+Dbname,+EnvHandle,-ConnectionHandle)

Opens a database with the name Dbname. The database cannot require a
username and a password. ConnectionHandle is an opaque handle for accessing
the database.

odbc_db_open(+Dbname,+EnvHandle,+Options,-ConnectionHandle)

Opens a database with the name Dbname. Options should be a list of zero or
more of:

username(+Username)

The username for connecting to the database. The default is ''.

password(+Password)

The password for connection to the database. The default is ''.

login_timeout(+Timeout)

The number of seconds to wait for a login request to complete. If
0 is used, the login attempt will wait indefinitely. The default is
driver-dependent.

connection_timeout(+Timeout)

The number of seconds to wait for any request on the connection
to complete. If the Timeout value is 0 (the default), there is no
timeout.

raw(+ConnectionOptions)

ConnectionOptions should be a list of atoms. They are passed,
terminated by ;, as extra options when opening the database.

ConnectionHandle is an opaque handle for accessing the database.

odbc_db_open(+Dbname,+EnvHandle,+Options,-ConnectionHandle,-

ConnectionString)

Like odbc_db_open/4 but also returns the completed connection string returned
by the ODBC driver.

688 SICStus Prolog

odbc_query_open(+ConnectionHandle, -StatementHandle)

Creates a new database query. ConnectionHandle is a handle previously allo-
cated with odbc_db_open/[3,4,5].

odbc_list_DSN(+EnvHandle,-DSNs)

EnvHandle is an opaque database handle. DSNs is unified with a list of all
DSNs (Data Source Names). The list elements are X-Y where X is the DSN
and Y its description.

odbc_list_data_types(+StatementHandle, +TableDesc, -DataTypes)

Makes a list of the datatypes in a table. StatementHandle is a handle previ-
ously allocated with odbc_query_open/2. TableDesc is a description of the ta-
ble and its columns of the form tablename(columnname1, columnname2, ...,

columnnameN), or of the form [tablename, columnname1, columnname2, ...,

columnnameN] (the latter form is useful if the table has more than 255 columns).
DataTypes is unified with a list of the corresponding datatypes, i.e. on the form
[datatype1, datatype2, ... datatypeN].

odbc_current_table(+ConnectionHandle, ?TableName) since release 4.2

Enumerate the proper tables in the database, i.e. tables with attribute 'TABLE_
TYPE'("TABLE").

ConnectionHandle is a
handle previously allocated with odbc_db_open/[3,4,5]. TableName is the
name, as an atom, of the table.

Note that odbc_current_table/2 may exit nondeterminately even if all argu-
ments are instantiated when it is called.

odbc_current_table(+ConnectionHandle, ?TableName, ?Attribute) since release

4.2

Enumerate database tables and their attributes.

ConnectionHandle is a
handle previously allocated with odbc_db_open/[3,4,5]. TableName is the
name, as an atom, of the table. Attribute is an attribute of the table.

There are two kinds of attributes, derived attributes and raw attributes.

The derived attributes are translations of raw attributes and other information
and are in a format that is directly useful. There is currently only one derived
attribute,

arity(Value)

The number of columns in the table, as an integer.

This attribute is always present.

the set of derived attributes may be extended in the future.

The raw attributes correspond direcly to the (non-null) values returned from the
ODBC function SQLTables() and are returned as is, wrapped in a functor with
the same name as the attribute, e.g. 'TABLE_CAT'("foo") would be returned
for a table in the catalog "foo". Note that the names of the raw attributes are
in all uppercase so you need to surround them with single quotes to prevent
their name from being parsed as a variable. Some of the raw attributes are,

Chapter 10: The Prolog Library 689

'TABLE_CAT'(Value)

Catalog name, as a code list. This attribute corresponds to the
TABLE_CAT column, called TABLE_QUALIFIER in ODBC 2.0, as re-
turned from the ODBC function SQLTables().

'TABLE_TYPE'(Value)

Table type, as a code list. This attribute corresponds to the TABLE_
TYPE column, as returned from the ODBC function SQLTables().
The standard table types are "TABLE", "VIEW", "SYSTEM

TABLE", "GLOBAL TEMPORARY", "LOCAL TEMPORARY", "ALIAS", and
"SYNONYM", but there can be data-source-specific types as well.

This attribute is always present.

'REMARKS'(Value)

Table descriptive text, as a code list. This attribute corresponds
to the REMARKS column, as returned from the ODBC function
SQLTables().

see the ODBC documentation for SQLTables() for the full list of raw attributes
and their meaning.

Note that odbc_current_table/3 may exit nondeterminately even if one of
more arguments are instantiated when it is called.

odbc_table_column(+ConnectionHandle, ?TableName, ?ColumnName) since release

4.2

Enumerate database table columns.

ConnectionHandle is a
handle previously allocated with odbc_db_open/[3,4,5]. TableName is the
name, as an atom, of the table. ColumnName is the name, as an atom, of the
table.

odbc_table_column(+ConnectionHandle, ?TableName, ?ColumnName, ?Attribute)

since release 4.2

Enumerate database table columns and their attributes.

ConnectionHandle is a
handle previously allocated with odbc_db_open/[3,4,5]. TableName is the
name, as an atom, of the table. ColumnName is the name, as an atom, of the
table. Attribute is an attribute of the table.

There are two kinds of attributes, derived attributes and raw attributes.

The derived attributes are translations of raw attributes and other information
and are in a format that is directly useful. There is currently only one derived
attribute,

nullable(Value)

true if the column is definitely nullable, or false if the column
is definitely not nullable. The value is derived from the raw at-
tributes NULLABLE and IS_NULLABLE, see the documentation for
SQLColumns() for details.

This attribute is not present if it can not be determined whether
the column is nullable.

690 SICStus Prolog

the set of derived attributes may be extended in the future.

The raw attributes correspond direcly to the (non-null) values returned from the
ODBC function SQLColumns() and are returned as is, wrapped in a functor with
the same name as the attribute, e.g. 'TABLE_CAT'("foo") would be returned
for a column in a table in the catalog "foo". Note that the names of the
raw attributes are in all uppercase so you need to surround them with single
quotes to prevent their name from being parsed as a variable. Some of the raw
attributes are,

'REMARKS'(Value)

Column descriptive text, as a code list. This attribute corresponds
to the REMARKS column, as returned from the ODBC function
SQLColumns().

'ORDINAL_POSITION'(Value)

The ordinal position of the column in the table, starting at 1.
This attribute corresponds to the ORDINAL_POSITION column, as
returned from the ODBC function SQLColumns().

This attribute is always present.

See the ODBC documentation for SQLColumns() for the full list of raw at-
tributes and their meaning.

Note that odbc_table_column/4may exit nondeterminately even if one of more
arguments are instantiated when it is called.

odbc_query_execute_sql(+StatementHandle, +SQLString, +ParamData,

+ParamDataTypes, -ResultSet)

Executes an SQL query. StatementHandle is a handle previously allocated
with odbc_query_open/2. SQLString is the SQL statement to be executed.
The statement string may contain parameter markers. ParamData is a list of
data to be bound to the parameter markers. ParamDataTypes is a list of data
types corresponding to the ParamData list. ResultSet is bound to an opaque
data structure describing the result of the query.

odbc_query_execute_sql(+StatementHandle, +SQLString, -ResultSet)

StatementHandle is a handle previously allocated with odbc_query_open/2.
SQLString is the SQL statement to be executed. ResultSet is bound to an
opaque data structure describing the result of the query.

odbc_sql_fetch(+ResultSet, -Row)

Fetch the next row from the result set. ResultSet is the result set from odbc_

query_execute_sql/[3,5]. Row is unified with a non-empty list of data con-
stituting a row in the result set, or with [] when there are no more rows. The
elements in the Row are in the same order as in the corresponding query.

odbc_query_close(+Query)

Closes the query represented by Query, which can be either a result set, e.g.
as returned from odbc_query_execute_sql/[3,5], or it can be a statement
handle, as returned from odbc_query_open/2.

Chapter 10: The Prolog Library 691

odbc_db_close(+ConnectionHandle)

Closes the connection to the database.

odbc_env_close(+EnvHandle)

Frees the environment handle.

10.27 Ordered Set Operations—library(ordsets)

This library module provides operations on sets represented as ordered lists with no dupli-
cates. Thus {c,r,a,f,t} would be [a,c,f,r,t]. The ordering is defined by the @< family
of term comparison predicates, which is the ordering used by sort/2 and setof/3.

The benefit of the ordered representation is that the elementary set operations can be done
in time proportional to the sum of the argument sizes rather than their product. You should
use the operations defined here in preference to those in library(sets) unless there is a
compelling reason why you can’t. Some of the unordered set routines, such as member/2,
length/2 and select/3 can be used unchanged on ordered sets; feel free so to use them.

There is no ordset_to_list/2, as an ordered set is a list already. Exported predicates:

is_ordset(+List)

is true when List is a list of terms [T1,T2,...,Tn] and the terms are strictly
increasing: T1 @< T2 @< ... @< Tn. The output of sort/2 always satisfies this
test. Anything which satisfies this test can be given to the predicates in this
file, regardless of where you got it.

list_to_ord_set(+List, -Set)

is true when Set is the ordered representation of the set represented by the
unordered representation List. The only reason for giving it a name at all is
that you may not have realised that sort/2 could be used this way.

ord_add_element(+Set1, +Element, -Set2)

Equivalent to ord_union(Set1, [Element], Set2), but a bit faster.

ord_del_element(+Set1, +Element, -Set2)

Equivalent to ord_subtract(Set1, [Element], Set2), but a bit faster.

ord_disjoint(+Set1, +Set2)

is true when the two ordered sets have no element in common.

ord_intersect(+Set1, +Set2)

is true when the two ordered sets have at least one element in common.

ord_intersection(+Set1, +Set2, -Intersection)

is true when Intersection is the ordered representation of Set1 and Set2, pro-
vided that Set1 and Set2 are ordered sets.

ord_intersection(+Set1, +Set2, ?Intersection, ?Difference)

is true when Intersection is the intersection of Set1 and Set2, and Difference
is Set2 \ Set1 (like in ord union/4), provided that Set1 and Set2 are ordered
sets.

692 SICStus Prolog

ord_intersection(+ListOfSets, -Intersection)

is true when ListOfSets is a nonempty proper list of ordered sets and Intersec-
tion is their intersection.

ord_member(+Elt, +Set)

is true when Elt is a member of Set. Suggested by Mark Johnson.

ord_nonmember(+Item, +Set)

is true when the given Item is not an element of the given Set.

ord_seteq(+Set1, +Set2)

is true when the two arguments represent the same set. Since they are assumed
to be ordered representations, they must be identical.

ord_setproduct(+Set1, +Set2, -Product)

If Set1 and Set2 are ordered sets, Product will be an ordered set of x1-x2 pairs.
Note that we cannot solve for Set1 and Set2, because there are infinitely many
solutions when Product is empty, and may be a large number in other cases.
Could be defined as:

ord_setproduct(Set1, Set2, Product) :-

(foreach(H1,Set1),

param(Set2),

fromto(Product,P1,P3,[])

do (foreach(H2,Set2),

param(H1),

fromto(P1,[H1-H2|P2],P2,P3)

do true

)

).

ord_subset(+Set1, +Set2)

is true when every element of the ordered set Set1 appears in the ordered set
Set2.

ord_subtract(+Set1, +Set2, -Difference)

is true when Difference contains all and only the elements of Set1 which are
not also in Set2.

ord_symdiff(+Set1, +Set2, -Difference)

is true when Difference is the symmetric difference of Set1 and Set2.

ord_disjoint_union(+Set1, +Set2, -Union)

is true when Set1 and Set2 (given to be ordered sets) have no element in
common, and Union is their union. The meaning is the same as

ord_disjoint(Set1, Set2),

ord_union(Set1, Set2, Union)

but it is more efficient.

ord_union(+Set1, +Set2, -Union)

is true when Union is the union of Set1 and Set2. Note that when something
occurs in both sets, we want to retain only one copy.

Chapter 10: The Prolog Library 693

ord_union(+OldSet, +NewSet, -Union, -ReallyNew)

is true when Union is NewSet U OldSet and ReallyNew is NewSet \ OldSet.
This is useful when you have an iterative problem, and you’re adding some
possibly new elements (NewSet) to a set (OldSet), and as well as getting the
updated set (Union) you would like to know which if any of the "new" elements
didn’t already occur in the set (ReallyNew).

ord_union(+ListOfSets, -Union)

is true when ListOfSets is given as a proper list of ordered sets and Union is
their union. Letting K be the length of ListOfSets, and N the sum of the sizes
of its elements, the cost is O(N lg K).

ordset_order(+Xs, +Ys, -R)

is true when R is <, =, or > according as Xs is a subset of Ys, equal to Ys, or a
superset of Ys. Xs and Ys are ordered sets.

10.28 The PiLLoW Web Programming Library—
library(pillow)

The PiLLoW library (“Programming in Logic Languages on the Web”) is a free Inter-
net/WWW programming library for Logic Programming Systems that simplifies the process
of writing applications for such environment. The library provides facilities for generating
HTML or XML structured documents by handling them as Prolog terms, producing HTML
forms, writing form handlers, processing HTML templates, accessing and parsing WWW
documents (either HTML or XML), accessing code posted at HTTP addresses, etc.

PiLLoW is documented in its own reference manual, located in http://www.clip.dia.fi.

upm.es/Software/pillow/pillow_doc_html/pillow_doc_toc.html (HTML) or http://
www.clip.dia.fi.upm.es/Software/pillow/pillow_doc.ps (Postscript). The following
points are worth noting wrt. the PiLLoW reference manual:

• PiLLoW is automatically installed with the SICStus Prolog distribution. No extra
action needs to be taken.

• PilloW comes as a single library module, library(pillow).

This subsumes the various load_package/1 and use_module/1 queries mentioned in
the PiLLoW reference manual.

Further information can be found at the PiLLoW home page, http://clip.dia.fi.upm.
es/Software/pillow/pillow.html.

10.29 Plunit Interface—library(plunit)

10.29.1 Introduction

This library module provides a Prolog unit-test framework, initially developed by Jan Wiele-
maker for SWI-Prolog. The code and documentation was subsequently adapted for SICStus
Prolog by SICS. The module is a third-party product, and not part of SICStus Prolog proper.

http://www.clip.dia.fi.upm.es/Software/pillow/pillow_doc_html/pillow_doc_toc.html
http://www.clip.dia.fi.upm.es/Software/pillow/pillow_doc_html/pillow_doc_toc.html
http://www.clip.dia.fi.upm.es/Software/pillow/pillow_doc.ps
http://www.clip.dia.fi.upm.es/Software/pillow/pillow_doc.ps
http://clip.dia.fi.upm.es/Software/pillow/pillow.html
http://clip.dia.fi.upm.es/Software/pillow/pillow.html

694 SICStus Prolog

Automatic testing of software during development is probably the most important Qual-
ity Assurance measure. Tests can validate the final system, which is nice for your users.
However, most (Prolog) developers forget that it is not just a burden during development.

• Tests document how the code is supposed to be used.

• Tests can validate claims you make on the Prolog implementation. Writing a test makes
the claim explicit.

• Tests avoid big applications saying “no” after modifications. This saves time during
development, and it saves a lot of time if you must return to the application a few
years later or you must modify and debug someone else’s application.

10.29.2 A Unit Test Box

Tests are written in normal Prolog. A unit test is a named collection of individual tests,
enclosed within the directives:

:- begin_tests(Unit[,Options]).

and:

:- end_tests(Unit).

They can be embedded inside a normal source module, or be placed in a separate test-file
that loads the files to be tested. The individual tests are defined by rules of the form:

test(Name[,Options]) :- test-body.

where Name is a ground term and Options is a list describing additional properties of the
test. Here is a very simple example:

:- use_module(library(lists)).

:- begin_tests(lists).

test(reverse) :-

reverse([a,b], [b,a]).

:- end_tests(lists).

The optional second argument of the unit test declaration as well as of the individual test-
heads defines additional processing options. The following options are available:

blocked(Reason)

The test is currently disabled. Tests are flagged as blocked if they cannot be
run for some reason. E.g. they crash Prolog, they rely on some service that
is not available, they take too much resources, etc. Tests that fail but do not
crash, etc. should be flagged using fixme(Fixme). Reason should be an atom.

If this option appears more than once in a list of options, all but one of the
occurrences are silently ignored.

Chapter 10: The Prolog Library 695

fixme(Reason)

Similar to blocked(Fixme), but the test is executed anyway. A summary is
printed at the end of the test run. Reason should be an atom.

If this option appears more than once in a list of options, all but one of the
occurrences are silently ignored.

condition(Goal)

Precondition for running the test. If the condition fails, then the test is skipped.
The condition can be used as an alternative to the setup option. The only
difference is that failure of a condition skips the test and is considered an error
when using the setup option. Goal should be a callable.

If this option appears more than once in a list of options, the occurrences are
combined into a conjunction, in the order they appear.

nondet

Available for individual test rules only. Unless this keyword appears in the
option list, nondeterminate success of the test-body is considered an error.

It is an error to specify this more than once in a list of options.

forall(Generator)

Available for individual test rules only. Runs the same test for each solution
of Generator. Each run invokes the setup and cleanup handlers. This can be
used to run the same test with different inputs. If an error occurs, then the
test is reported as ‘name (forall bindings = vars)’, where vars indicates the
bindings of variables in Generator, which should be a callable.

It is an error to specify this more than once in a list of options.

setup(Goal)

Goal is run before the test-body. Typically used together with the cleanup

option to create and destroy the required execution environment. Goal should
be a callable.

If this option appears more than once in a list of options, the occurrences are
combined into a conjunction, in the order they appear.

cleanup(Goal)

Goal is always called after completion of the test-body, regardless of whether
it fails, succeeds or raises an exception. This option or call_cleanup/2 must
be used by tests that require side effects that must be reverted after the test
completes. Goal may share variables with a setup option and should be a
callable.

If this option appears more than once in a list of options, the occurrences are
combined into a conjunction, in the order they appear.

696 SICStus Prolog

:- use_module(library(file_systems)).

:- begin_tests(hello).

create_file(Tmp) :-

open(temp(plunit), write, Out, [if_exists(generate_unique_name)]),

current_stream(Tmp, write, Out),

portray_clause(Out, hello(_World)),

close(Out).

test(read, [setup(create_file(Tmp)), cleanup(delete_file(Tmp))]) :-

see(Tmp),

read(Term),

seen,

Term = hello(_).

:- end_tests(hello).

Please note: Do not place directives that load source code between :- begin_

tests(Unit[,Options]) and :- end_tests(Unit). Loading source files in this
context can cause spurious error messages.

The following options specify how to verify the result of the test-body, and are only available
for individual test rules. Unless stated otherwise, it is an error if more than one of them
appears in a list of options. In some cases there are additional restrictions on which options
can appear together.

true

true(Test)

The test-body as well as the goal Test must succeed. Test defaults to true and
should be a callable that typically shares variables with the test-body. This
is the same as inserting the test at the end of the conjunction, but makes the
test harness print a “wrong answer” message as opposed to a general failure
message.

If this option appears more than once in a list of options, the occurrences are
combined into a conjunction, in the order they appear.

test(badadd, [true(A =:= 4)]) :-

A is 1 + 2.

will yield the error message:

! /home/matsc/sicstus4/doc/foo.pl:11:

! test badadd: wrong answer (compared using =:=)

! Expected: 4

! Got: 3

Chapter 10: The Prolog Library 697

all(AnswerTerm Cmp Instances)

Similar to true(AnswerTerm Cmp Instances), but used if you want to collect
all solutions to a nondeterminate test. AnswerTerm should share variables with
the test-body. Let All be the list of instances of AnswerTerm for each solution.
Then the goal Cmp(All,Instances) must succeed. The tests in the example
below are equivalent.

It is an error to specify this together with nondet.

test(all1, all(X == [1,2])) :-

(X = 1 ; X = 2).

test(all2, true(Xs == [1,2])) :-

findall(X, (X = 1 ; X = 2), Xs).

set(AnswerTerm Cmp Instances)

Similar to all(AnswerTerm Cmp Instances), but sorts the AnswerTerm in-
stances before the comparison. The tests in the example below are equivalent.

It is an error to specify this together with nondet.

test(set1, set(X == [1,2])) :-

(X = 2 ; X = 1 ; X = 1).

test(set2, true(Ys == [1,2])) :-

findall(X, (X = 2 ; X = 1 ; X = 1), Xs),

sort(Xs, Ys).

fail

The test-body must fail.

It is an error to specify this together with nondet.

exception(Expected)

throws(Expected)

The test-body must raise an exception Raised that is checked wrt. Expected
using subsumes_term(Expected, Raised). I.e. the raised exception must be
more specific than the specified Expected.

It is an error to specify this together with nondet.

error(ISO)

error(ISO,Info)

A shorthand for exception(error(ISO,Info)). Info defaults to an anonymous
variable.

It is an error to specify this together with nondet.

10.29.3 Writing the Test-Body

The test-body is ordinary Prolog code. Without any options, the test-body must be designed
to succeed determinately. Any other result is considered a failure. One of the options fail,
true, exception, throws or error can be used to specify a different expected result. In
this subsection we illustrate typical test-scenarios by testing built-in and library predicates.

698 SICStus Prolog

10.29.3.1 Determinate Tests

Determinate tests are tests that must succeed exactly once, leaving no choicepoints behind.
The test-body supplies proper values for the input arguments and verifies the output ar-
guments. Verification can use test-options or be explicit in the test-body. The tests in the
example below are equivalent.

test(add1) :-

A is 1 + 2,

A =:= 3.

test(add2, [true(A =:= 3)]) :-

A is 1 + 2.

The test engine verifies that the test-body does not leave a choicepoint. We illustrate this
using the test below:

test(member1) :-

member(b, [a,b,c]).

Although this test succeeds, member/2 leaves a choicepoint behind, which is reported by
the test harness. To make the test silent, use one of the alternatives below.

test(member2) :-

memberchk(b, [a,b,c]).

test(member3) :-

member(b, [a,b,c]), !.

test(member4, [nondet]) :-

member(b, [a,b,c]).

10.29.3.2 Nondeterminate Tests

Nondeterminate tests succeed zero or more times. Their results can be tested using
findall/3 followed by a value-check. The following are equivalent tests:

test(member5) :-

findall(X, member(X, [a,b,c]), Xs),

Xs == [a,b,c].

test(member6, true(Xs == [a,b,c])) :-

findall(X, member(X, [a,b,c]), Xs).

10.29.3.3 Tests Expected to Fail

Tests that are expected to fail may be specified using the option fail or by negating the
test-body using \+.

Chapter 10: The Prolog Library 699

test(is_set) :-

\+ is_set([a,a]).

test(is_set, [fail]) :-

is_set([a,a]).

10.29.3.4 Tests Expected to Raise Exceptions

Tests that are expected to raise exceptions may be specified using the option
exception(Expected) or one of its equivalents, or by wrapping the test in on_exception/3

or catch/3. The following tests are equivalent:

test(div01) :-

on_exception(Excp, A is 1/0, true),

subsumes_term(error(evaluation_error(zero_divisor),_), Excp).

test(div02, [error(evaluation_error(zero_divisor))]) :-

A is 1/0.

test(div03, [error(evaluation_error(zero_divisor),_)]) :-

A is 1/0.

test(div04, [exception(error(evaluation_error(zero_divisor),_))]) :-

A is 1/0.

test(div05, [throws(error(evaluation_error(zero_divisor),_))]) :-

A is 1/0.

10.29.4 Running the Test-Suite

At any time, the tests can be executed by loading the program and running run_

tests/[0,1,2]:

run_tests

Run all individual tests of all test-units.

run_tests(Spec)

run_tests(Spec,Options)

Run only the specified tests. The following options are available:

quiet Suppresses informational messages.

verbose Prints informational messages, e.g. messages for each successful
test. This is the default.

passed(Count)

failed(Count)

skipped(Count)

Binds Count to the number of non-blocked tests that were success-
ful, failed or skipped, respectively. A test is skipped if one of its
conditions fails.

700 SICStus Prolog

The following will quetly run all tests, but print messages and fail
if any of the tests were unsuccessful.

| ?- run_tests(all, [failed(0), quiet]).

Spec should be one of:

• The atom all, to run all tests. This is the default i.e. what run_tests/0
does.

• a term Unit where Unit is the name of a test-unit, denotes all individual
tests of the test-unit Unit, or

• a term Unit:Test where Unit is the name of a test-unit and Test is one of
its individual tests, denotes the given test only, or

• a term Unit:List where Unit is the name of a test-unit and List is a list of
its individual tests, denotes the given list of tests, or

• finally, a list of terms of one of the above forms.

Running single tests is particularly useful for tracing a test, e.g.:

| ?- trace, run_tests(lists:reverse).

run_tests/[0,1,2] prints a report during execution. The quiet options suppresses infor-
mational messages; in its absence, messages are printed in full as follows.

First, each test-unit report begins with a header:

% PL-Unit: Unit

Then comes a message (success or failure) for all specified tests not marked as blocked

or fixme. Success messages are informational; others are error or warning messages. Any
errors encountered while executing options are also reported. To close the test-unit, a footer
is printed:

% done

After all test-units, a summary report is printed, stating:

• how many tests passed resp. failed and how may test were skipped

• which tests were blocked

• details for each test marked as fixme

10.29.5 Tests and Production Systems

Most applications do not want the test-suite to end up in the final application. There are
several ways to achieve this. One way is to place all tests in separate files and not to load
the tests when creating the production environment. Another way is to wrap each unit test
box in a pair of :- if(...), :- endif directives. For example, the test could be whether
the plunit module has been loaded:

Chapter 10: The Prolog Library 701

:- if(current_module(plunit)).

:- begin_tests(Unit[,Options]).

...

:- end_tests(Unit).

:- endif.

Alternatively, you can reserve a system property e.g. enable_unit_tests to control whether
unit tests should be enabled. The property is enabled if you run SICStus Prolog as:

% sicstus -Denable_unit_tests=true

Then your Prolog source file could have the structure:

:- use_module(library(system), [environ/2]).

...

:- if(environ(enable_unit_tests, true)).

:- use_module(library(plunit)).

:- begin_tests(Unit[,Options])

...

:- end_tests(Unit)

:- endif.

10.30 Process Utilities—library(process)

This package contains utilities for process creation.

A process is represented by a process reference, a ground compound term. Both SICStus
and the operating system maintain a state for each such process reference and they must
therefore be released, either explicitly with process_release/1 or implicitly by process_

wait/[2,3]. Process references are created with process_create/[2,3] if explicitly re-
quested with the process/1 option. Process references are required in order to obtain the
exit status of a process after process_create/[2,3] has returned.

Many of the predicates can accept a numeric operating system process id (“PID”) but since
process ids are subject to re-use by the OS this is less reliable and does not work if the
process has already exited.

10.30.1 Examples

The following illustrates some common tasks. The process library is portable and works on
all supported platforms, including UNIX, Linux and Windows. However, the examples are
by necessity platform dependent. Unless otherwise noted, the examples will work on UNIX
and similar systems only.

(If you are looking for something like the old SICStus 3 system:system/1 and
system:popen/3, See [unsafe system], page 705.)

1. Run the date command in the standard shell ‘sh’. The output of the command is sent

702 SICStus Prolog

to the terminal:

| ?- process_create(path(sh),

['-c', date]).

2. Run the date command in the standard shell ‘sh’. Wait for the command to terminate
before returning to Prolog. Fail if the process gets an error. The output of the command
is sent to the terminal:

| ?- process_create(path(sh),

['-c', date], [wait(exit(0))]).

Using wait/1 option in this way is a convenient way to ensure that the command has
finished before Prolog continues.

3. Run the date command in the standard shell ‘sh’. The output of the command is
received by Prolog:

| ?- process_create(path(sh),

['-c', date], [stdout(pipe(S))]),

read_line(S,L), close(S), atom_codes(Date,L).

...,

Date = 'Fri Jan 24 12:59:26 CET 2014' ?

4. Pipe the output of the date command to a file:

| ?- process_create(path(sh),

['-c', [date, '>', file('/tmp/foo.txt')]]).

5. Count the number of words in an atom, using the wc command:

| ?- process_create(path(wc), ['-w'],

[stdin(pipe(In)), stdout(pipe(Out))]),

write(In, 'a b c\n'), close(In),

read_line(Out, L), close(Out), number_codes(N, L).

...

N = 3

It may be preferable to let the input or output go via a file. This avoids deadlock in
case the stream buffers fill up.

6. Count the number of unique words in a file, piping the output of the uniq command
to the wc command:

| ?- process_create(path(sh),

['-c', ['uniq ', file('/tmp/foo.txt'), ' | wc -w']],

[stdout(pipe(Out))]),

read_line(Out, L), close(Out), number_codes(N, L).

...

N = 6

Note that quoting is a problem (and potential security issue), so never pass untrusted
data, like file names, to the shell using -c (see [Quoting and Security], page 705).

7. Run the make command with the -n (dry run) option, discarding output, fail if it does
not succeed:

| ?- process_create(path(make), ['-n'],

[stdout(null), wait(Exit)]),

Exit = exit(0).

Chapter 10: The Prolog Library 703

By using the wait/1 option, process_create/3 will not return until the subprocess
has exited and its exit status is available.

8. Run ls on a home directory in a subshell using the user’s preferred shell:

| ?- process_create('$SHELL', ['-c', [ls, ' ', file('~/')]]).

9. Run a command with output piped from a file and input provided by Prolog. This
is similar to popen('cat > ./myscript.sh',write,S) in SICStus 3. This example
also shows one way to create a shell script which is useful when more advanced shell
interaction is needed. (The created script outputs the most common line in its input.
It is used in the next example.)

| ?- process_create(path(sh),

['-c',

'cat > ./myscript.sh && chmod a+x ./myscript.sh'],

[stdin(pipe(S))]),

write(S, '#! /bin/sh\n'),

write(S, 'sort | uniq -c | sort -nr | head -n 1\n'),

close(S).

Please read [Quoting and Security], page 705, for problems with this approach.

10. Run a shell script with input piped from a file and output read by Prolog. This is
similar to popen('./myscript.sh < ./somefile.txt',read,S) in SICStus 3.

| ?- open('somefile.txt',write,OF),

write(OF,'hello\nworld\nhello\nhello\n'),close(OF),

process_create(path(sh),

['-c', './myscript.sh < ./somefile.txt'],

read_line(S, L), atom_codes(Line, L), close(S).

...,

Line = ' 3 hello' ?

Please read [Quoting and Security], page 705, for problems with this approach.

11. Run a goal in a SICStus subprocess (UNIX and Windows):

| ?- process_create(application(sicstus),

['-f', '--noinfo', '--nologo',

'--goal', 'read(X), call(X), halt.'],

[stdin(pipe(In)), stdout(pipe(Out))]),

format(In,'~q .~n', [(length([h,e,l,l,o], Len),

format('~q .~n', [Len]))]),

close(In), read(Out,Answer), close(Out).

...,

Answer = 5

12. Run notepad.exe on a file C:/foo.txt under Windows:

| ?- process_create('$SYSTEMROOT/notepad.exe',
[file('C:/foo.txt')]).

13. Open a command shell in a separate window under Windows:

| ?- process_create('$COMSPEC',[],[window(true)]).

704 SICStus Prolog

10.30.1.1 Microsoft Windows Shell

On Windows, it is not possible to pass multiple parameters to a subprocess. When a
subprocess is started, it receives exactly one argument and a quoting convention must be
used to encode the parameters as the single argument actually passed to the process.

Unfortunately, there is no such universal quoting convention, every program can interpret
its (single) argument in any way it sees fit.

Most programs use a convention established by the Microsoft C library. This is the conven-
tion used by process_create/[2,3] and it usually works well.

However, the command processor on Windows (cmd.exe) does not use the common con-
vention and, except for very simple cases, passing arguments to cmd.exe will not work
reliably.

Please note: Passing arguments to cmd.exe suffers from the same security vulnerabilities
as those described in [Quoting and Security], page 705, below.

If you want to run commands using cmd.exe, it is best to create a batch (‘.bat’) file with
your commands and then tell cmd.exe to run the batch file.

The following example illustrates how to create a Windows batch file that pipes some output
to a file (COMSPEC is an environment variable containing the path to cmd.exe):

| ?- BatFileName='test.bat',

open(BatFileName, write, S),

write(S, 'date /T > "result.txt"\n'), close(S),

process_create('$COMSPEC', ['/Q', '/C', file(BatFileName)],

[wait(exit(0))]),

open('result.txt', read, R),

read_line(R,L),close(R),atom_codes(Date,L).

...,

Date = '2014-01-27 ',

... ?

More recent versions of Windows come with a redesigned command line processor,
‘PowerShell’, which solves the problems associated with the traditional cmd.exe command
line processor. In particular, it has a very general way to encode command line arguments,
using ‘base-64’ encoding. Currently, there is no direct support for PowerShell in this li-
brary, but the following example shows how to get the current week day both using a plain
text command and with a base-64-encoded command

Chapter 10: The Prolog Library 705

| ?- Command = '(get-date).DayOfWeek',

process_create(path(powershell),

['-Command', Command],

[stdout(pipe(S))]),

read_line(S,L),atom_codes(Day,L).

...,

Day = 'Monday',

... ?

| ?- EncodedCommand =

'KABnAGUAdAAtAGQAYQB0AGUAKQAuAEQAYQB5AE8AZgBXAGUAZQBrAA==',

process_create(path(powershell),

['-encodedCommand', EncodedCommand],

[stdout(pipe(S))]),

read_line(S,L),atom_codes(Day,L).

...,

Day = 'Monday',

... ?

where the EncodedCommand
value was created by encoding the string '(get-date).DayOfWeek' using Base 64. See
the PowerShell documentation for details.

10.30.2 Quoting and Security

It easy to get undesired, and possibly harmful, effects if arbitrary data is passed without
proper quoting to a shell. For instance, accepting arbitrary file names and passing them
as part of a command line to a subshell can cause the shell to execute arbitrary, possibly
malicious, code.

The following, vulnerable, predicates suffer from this problem. They are similar to predi-
cates that existed in SICStus 3, and their fragility is one of the reasons process interaction
was redesigned in SICStus 4.

706 SICStus Prolog

% DO NOT USE. This code is vulnerable.

% Similar to system:system/1 in SICStus 3.

unsafe_system(Cmd) :-

% pass Cmd to shell, wait for exit, fail on error.

process_create(path(sh), ['-c', Cmd], [wait(exit(0))]).

% DO NOT USE. This code is vulnerable.

% Similar to system:popen/3 in SICStus 3.

unsafe_popen(Cmd, Direction, Pipe) :-

% pass Cmd to shell, do not wait for exit,

% connect to stdin or stdout of subprocess.

(Direction == read ->

process_create(path(sh), ['-c', Cmd], [stdout(pipe(Pipe))])

; Direction == write ->

process_create(path(sh), ['-c', Cmd], [stdin(pipe(Pipe))])

).

Now consider the task of passing the contents of some file File to a command mycommand.
You may think the following is a good idea (it is not!):

% DO NOT USE. This code is vulnerable.

unsafe_command(File, S) :-

atom_concat('./mycommand < ', File, Cmd),

unsafe_popen(Cmd, read, S).

That works as expected if the the File argument is a plain file with no characters that has
special meaning to the shell, e.g.

File = './somefile.txt',

unsafe_command(File, S), read_line(S,L),close(S).

However, assume that the file name was obtained from some untrusted source and consider
the following example:

File = '$(say bohoo)',

unsafe_command(File, S), read_line(S,L),close(S).

depending on the system this can have a quite scary effect, and illustrates how shell meta
characters in the constructed command line can lead to potentially dangerous results.

The safest way to interact with the shell is to create shell scripts and pass arguments to the
scripts as separate arguments to the shell. E.g.

% A safer version

safer_command(File, S) :-

% pass the file as the first argument to mycommand.

process_create(path(sh),

['-c', file('./mycommand'), file(File)],

[stdout(pipe(S))]).

Chapter 10: The Prolog Library 707

Exported predicates:

process_create(+File, +Args)

process_create(+File, +Args, :Options)

Start a new process running the program identified by File and the arguments
specified in Args. The standard streams of the new process can be redirected to
prolog streams. The exit status of the process can be obtained with process_

wait/[2,3].

File, is expanded as if by absolute_file_name/2 (with arguments
access(execute) and file_type(executable)) and is used to locate the file
to execute.

The predefined file search path path/1 (see Section 4.5 [ref-fdi], page 95) is
especially useful here since it makes it easy to look up the names of an executable
in the directories mentioned by the PATH environment variable. To run the
Windows command shell cmd you would simply specify path('cmd.exe') (or
path(cmd)), to start the UNIX Bash shell you would specify path(bash).

Args is a list of argument specifications. Each argument specification is either a
simple argument specification, see below, or a non-empty list of simple argument
specifications. The expanded value of each element of Args is concatenated to
produce a single argument to the new process. A simple argument specification
can be one of:

an atom The atom name is used as the expanded value. Some operating
systems only support 7-bit ASCII characters here. Even when some
larger subset of Unicode is used it may not work correctly with all
programs.

file(File)

File, an atom, is treated as a file name and subject to an operat-
ing system specific transformation to ensure file name syntax and
character set is appropriate for the new process. This is especially
important under Windows where it ensures that the full Windows
Unicode character set can be used.

Please note: The File part of file(File) is not subject to syntac-
tic rewriting, the argument specification file/1 only adjusts for
differences in file name syntax and character encoding between SIC-
Stus and the operating system. You must explicitly call absolute_
file_name/[2,3] if you want to expand file search paths etc.

Options is a list of options:

stdin(Spec)

stdout(Spec)

stderr(Spec)

Each Spec specifies how the corresponding standard stream of the
new process should be created. Spec can be one of:

std The new process shares the (OS level) standard stream
with the Prolog process. This is the default. Note that,

708 SICStus Prolog

especially under Windows, the Prolog process may not
have any OS level standard streams, or the OS streams
may not be connected to a console or terminal. In such
a case you need to use pipe/[1,2] spec, see below, and
explicitly read (write) data from (to) the process.

null The stream is redirected to a null stream, i.e. a stream
that discards written data and that is always at end of
file when read.

pipe(Stream) since release 4.0

pipe(Stream, StreamOptions) since release 4.3.2

A new Prolog stream is created and connected to the
corresponding stream of the new process. StreamOp-
tions is a list of options affecting the created stream.
The supported stream options are: type/1, eol/1, and
encoding/1, with the same meaning as for open/4 (see
Section 11.3.148 [mpg-ref-open], page 1092).

The default, if no stream options are specified, is to use
a text stream with the OS default character encoding.

This stream must be closed using close/[1,2], it is
not closed automatically when the new process exits.

wait(-ExitStatus) since release 4.3

The call will not return until the sub-process has terminated. Exit-
Status will be bound to the exit status of the process, as described
for process_wait/2.

process(Proc)

Proc will be bound to a process reference that can be used in calls
to process_wait/[2,3] etc.. This process reference must be re-
leased, either explicitly with process_release/1 or implicitly by
process_wait/[2,3]. It is often easier to use the wait/1 option
if you just want to wait for the process to terminate.

detached(Bool)

Bool is either true or false. Specifies whether the new process
should be “detached”, i.e. whether it should be notified of terminal
events such as ^C interrupts. By default a new process is created
detached if none of the standard streams are specified, explicitly or
implicitly, as std.

cwd(CWD)

CWD is expanded as if by absolute_file_name/2 and is used as
the working directory for the new process.

By default, the working directory is the same as the Prolog working
directory.

window(Bool)

Bool is either true or false (the default). Specifies whether the
process should open in its own window.

Chapter 10: The Prolog Library 709

Specifying window(true) may give unexpected results if the stan-
dard stream options stdin/1, stdout/1 and stderr/1 are specified
with anything but their default value std.

Currently only implemented on Windows.

environment(Env) since release 4.1

Env is a list of VAR=VALUE for extra environment variables to pass
to the sub-process in addition to the default process environment.
VAR should be an atom. VALUE should be an argument spec-
ification, as described above. The VALUE is typically an atom
but, especially on the Windows platform, it may be necessary to
wrap file names in file/1 to ensure file paths are converted to the
native format. See Section “System Properties and Environment
Variables” in the SICStus Prolog Manual, for more information.

process_wait(+Process, -ExitStatus)

process_wait(+Process, -ExitStatus, +Options)

Wait for a process to exit and obtain the exit status.

Process is either a process reference obtained from process_create/3 or an
OS process identifier. Specifying a process identifier is not reliable. The process
identifier may have been re-used by the operating system. Under Windows, it
is not possible to obtain the exit status using a process identifier if the process
has already exited.

ExitStatus is one of:

exit(ExitCode)

The process has exited with exit code ExitCode. By convention
processes use exit code zero to signify success and a (positive) non-
zero value to specify failure.

killed(SignalNumber)

UNIX only, the process was killed by signal SignalNumber (a pos-
itive integer).

timeout The timeout/1 option was specified and the process did not exit
within the specified interval. In this case the process reference is
not released, even if the release/1 option is specified.

Options is a list of options:

timeout(Seconds)

Specify a maximum time, in seconds, to wait for the process to
terminate. Seconds should be an integer or floating point number
or the atom infinite (the default) to specify infinite wait. If the
specified timeout interval passes before the process exits, process_
wait/3 exits with ExitStatus set to timeout and the process ref-
erence is not released.

Currently the UNIX implementation supports only timeout values
0 (zero) and infinite.

710 SICStus Prolog

release(Bool)

Bool is either true (the default) or false. Specifies whether the
process reference should be released when process_wait/3 exits
successfully.

process_id(-PID)

Obtain the process identifier of the current (i.e. Prolog) process.

process_id(+Process, -PID)

Obtain the process identifier of the process reference Process.

is_process(+Thing)

Returns true if Thing is a process reference that has not been released.

process_release(+Process)

Release a process reference Process that has previously been obtained from
process_create/3. This ensures that Prolog and the operating system can
reclaim any resources associated with the process reference.

Usually you would not call this. Either do not request the process reference
when calling process_create/3 or let process_wait/[2,3] reclaim the pro-
cess reference when the process terminates.

process_kill(+Process)

process_kill(+Process, +SignalSpec)

Send a signal to the process designated by Process. The signal can either be a
non-negative integer or a signal name as an (all uppercase) atom.

The following signal names are accepted under UNIX if the platform defines
them: SIGABRT, SIGALRM, SIGBUS, SIGCHLD, SIGCONT, SIGFPE, SIGHUP, SIGILL,
SIGINT, SIGKILL (the default), SIGPIPE, SIGPOLL, SIGPROF, SIGQUIT, SIGSEGV,
SIGSTOP, SIGSYS, SIGTERM, SIGTRAP, SIGTSTP, SIGTTIN, SIGTTOU, SIGURG,
SIGUSR1, SIGUSR2, SIGVTALRM, SIGXCPU and SIGXFSZ. However, many of these
do not make sense to send as signals.

Under Windows, which does not have the signal concept, the signal name
SIGKILL (the default) is treated specially and terminates the process with
TerminateProcess(Process, -1). Please note: Using process_kill/[2,3]

on Windows is not recommended. Also, on Windows, the call may throw an
error if the process has already exited.

10.31 PrologBeans Interface—library(prologbeans)

10.31.1 Introduction

PrologBeans is a package for integrating Prolog with applications written in other languages.
Currently Java and .NET are supported. PrologBeans is based on running Prolog as a
separate server process, and the other part of the application as a client process. This
makes PrologBeans automatically distributable since the server and the client can run on
different computers anywhere on the Internet.

PrologBeans is designed to be used when client applications need to send queries to a
Prolog server (and less intended for showing a GUI from a Prolog program). One typical

Chapter 10: The Prolog Library 711

application would be to connect a Java or .NET based web application to a Prolog server
(see examples later).

PrologBeans setup where the Prolog application serves several users accessing both via a web
application server and a .NET GUI.

The PrologBeans package consists of two parts. The Prolog server is a library module,
library(prologbeans). The client is a class library, prologbeans.jar for Java (installed
on all platforms), and prologbeans.dll for .NET (only installed on Microsoft Windows
platforms).

712 SICStus Prolog

10.31.2 Features

The current version of PrologBeans is designed to be used mainly as a connection from the
client (Java or .NET) to Prolog. Current features are:

• Socket based communication [Java and .NET]

• Allows the client application and Prolog server to run on different machines [Java and
.NET]

• Multiple client applications can connect to same Prolog server [Java and .NET]

• Client applications can make use of several Prolog servers [Java and .NET]

• Allows Java Applets to access Prolog server [Java]

• Platform independent (e.g. any platform where Prolog and Java or .NET exist) [Java
and .NET]

• Simplifies the use of Prolog in Java application servers (Tomcat, etc) [Java]

• Prohibits unwanted use of Prolog server by host control (only specified hosts can access
the Prolog server) [Java and .NET]

• Supports Java servlet sessions [Java]

• Supports JNDI lookup (Java Naming and Directory Interface) [Java]

• Supports .NET server pages (ASPX). [.NET]

10.31.3 A First Example

This section provides an example to illustrate how PrologBeans can be used. This applica-
tion has a simple Java GUI where the user can enter expressions that will be evaluated by
an expression evaluation server.

Chapter 10: The Prolog Library 713

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import se.sics.prologbeans.*;

public class EvaluateGUI implements ActionListener {

private JTextArea text = new JTextArea(20, 40);

private JTextField input = new JTextField(36);

private JButton evaluate = new JButton("Evaluate");

private PrologSession session = new PrologSession();

public EvaluateGUI() throws java.io.IOException

{

if ((Integer.getInteger("se.sics.prologbeans.debug", 0)).intValue() != 0) {

session.setTimeout(0);

}

JFrame frame = new JFrame("Prolog Evaluator");

Container panel = frame.getContentPane();

panel.add(new JScrollPane(text), BorderLayout.CENTER);

JPanel inputPanel = new JPanel(new BorderLayout());

inputPanel.add(input, BorderLayout.CENTER);

inputPanel.add(evaluate, BorderLayout.EAST);

panel.add(inputPanel, BorderLayout. SOUTH);

text.setEditable(false);

evaluate.addActionListener(this);

input.addActionListener(this);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.pack();

frame.setVisible(true);

session.connect();

}

public void actionPerformed(ActionEvent event) {

try {

Bindings bindings = new Bindings().bind("E",

input.getText() + '.');

QueryAnswer answer =

session.executeQuery("evaluate(E,R)", bindings);

PBTerm result = answer.getValue("R");

if (result != null) {

text.append(input.getText() + " = " + result + '\n');

input.setText("");

} else {

text.append("Error: " + answer.getError() + '\n');

}

} catch (Exception e) {

text.append("Error when querying Prolog Server: " +

e.getMessage() + '\n');

e.printStackTrace();

}

}

public static void main(String[] args) throws java.io.IOException

{

new EvaluateGUI();

}

}

714 SICStus Prolog

The Java code above first sets up the GUI with a text area for showing results, a text
field for entering expressions, and a button for requesting an evaluation (the constructor
EvaluateGUI()). It will also add itself as ActionListener on both the text field and
the button. The method actionPerformed(ActionEvent event) will be called whenever
the user has pressed RET or clicked on the button. actionPerformed first binds the vari-
able E to the value of the text field, and then sends the query to the Prolog server with
session.executeQuery("evaluate(E,R)", bindings);. If everything goes well, then the
Prolog server will return an answer (bound to R), which will be appended to the text area.

:- module(evaluate,[main/0,my_predicate/2]).

:- use_module(library(prologbeans)).

:- use_module(library(codesio), [read_from_codes/2]).

%% Register acceptable queries and start the server (using default port)

main:-

register_query(evaluate(C,P), my_predicate(C,P)),

start.

%% We have received a code list

%% which needs to be converted into an expression

my_predicate(Chars, P) :-

read_from_codes(Chars, X),

P is X.

The Prolog code above first defines the module and imports the needed modules. Then, in
the main/0 predicate, it configures the server to answer queries on the form evaluate(C,P)

and starts the server. The last few lines defines the predicate my_predicate(Chars, P),
which is the predicate that performs the evaluation. Note that, here, the expression to
evaluate is represented as a code list and must be converted into a term before evaluation.

In general, arbitrary Prolog terms can be passed to the client via this mechanism, including
terms containing unbound variables. However, any unbound variables with attributes or
blocked goals attached to them will be replaced by plain, brand new variables. This is
analogous to the way attributed variables are handled in terms that are written, copied,
asserted, gathered as solutions to findall/3 and friends, or raised as exceptions. If the
attributes must be passed to the client, then the Prolog code can obtain them by using
copy_term/3 (see Section 4.8.7 [ref-lte-cpt], page 129).

Please note: the environment variable SP_PATH as used here is meant to be a shorthand
(see Section 6.1 [CPL Notes], page 289), and does not need to be set explicitly.

To start the example, first start the Prolog server by
going to the %SP_PATH%\library\prologbeans\examples\evaluate (Windows), or $SP_
PATH/library/prologbeans/examples/evaluate (UNIX/Linux) directory and type:

% sicstus -l evaluate.pl --goal "main."

To start the GUI type (from the same directory as above):

Chapter 10: The Prolog Library 715

> java -classpath "%SP_PATH%\bin\prologbeans.jar;." EvaluateGUI (Win-
dows), or
% java -classpath "$SP_PATH/bin/prologbeans.jar:." EvaluateGUI (UNIX)

10.31.4 Prolog Server Interface

The Prolog interface is based on the idea of a Prolog server that provides its service by
answering queries from external applications (typically Java applications). The Prolog
interface in PrologBeans is defined in library(prologbeans), which implements the Prolog
server and exports the following predicates:

start

start(+Options)

starts the Prolog server using the options specified. Please note: start/[0,1]
will not return until a server shutdown occurs. Options should be a list of zero
or more of:

port(?Val)

an integer denoting the port number of the Prolog server. The
default port, if no port option is present, is 8066. In the case of
the default port being used, the Socket Reuse Adress bit will be
set in the underlying sockets layer. If Val is a variable, then some
unused port will be selected by the OS, the actual port number
can be obtained with get_server_property/1, typically from a
server_started event listener.

accepted_hosts(+Val)

a list of atoms denoting the hosts (in form of IP-addresses) that are
accepted by the Prolog server (default: ['127.0.0.1']).

session_timeout(+Val)

an integer denoting the duration of a session in seconds. The session
will be removed if it has been inactive more than this timeout when
the session garbage collect starts. If the session timeout is set to
zero, then there will be no garbage collection of sessions (default:
0).

session_gc_timeout(+Val)

an integer denoting the minimum time in seconds between two con-
secutive session garbage collections. If the timeout is set to zero,
then there will be no garbage collection of sessions (default: 0).

For example:

:- start([port(7500),

accepted_hosts(['127.0.0.1','99.8.7.6'])]).

shutdown

shutdown(+Mode)

shuts down the server and closes the sockets and the streams after processing
all available input. There are three modes:

now as soon as possible (default).

716 SICStus Prolog

no_sessions

after all sessions have ended (all sessions have either been explicitly
removed by request of the client application, or they have been
garbage collected). Please note: there can still be connections to
the Prolog server even when all sessions have ended.

no_connections

after all connections to the Prolog server are closed. Please note:
there can still be user sessions left when all connections have been
closed.

register_query(+Query, :PredicateToCall)

register_query(+Query, :PredicateToCall, +SessionVar)

registers a query and the corresponding goal. Before the registration, any previ-
ously registered query matching Query will be removed (as if by unregister_

query(Query)). The goal PredicateToCall will be called when a query matching
Query is received.

Typically, Query and PredicateToCall share variables that are instantiated by
the call, and the instantiated Query is passed back to the client. In general,
variable bindings can be arbitrary Prolog terms, including terms containing
unbound variables. However, any unbound variables with attributes or blocked
goals attached to them will be replaced by plain, brand new variables. This is
analogous to the way attributed variables are handled in terms that are written,
copied, asserted, gathered as solutions to findall/3 and friends, or raised as
exceptions. If the attributes must be passed to the client, then the Prolog
code can obtain them by using copy_term/3 (see Section 4.8.7 [ref-lte-cpt],
page 129).

The goal is called determinately, i.e. it is never backtracked into. If it fails, then
the term no is passed to the client instead of the instantiated Query. If it raises
an exception E, then the term error(E) is passed to the client instead of the
instantiated Query.

Before calling the query, the variable SessionVar, if given, is bound to the id of
the current session. Session ids are typically generated in web applications that
track users and mark all consecutive web-accesses with the same session id.

unregister_query(+Query)

unregisters all queries matching Query.

session_get(+SessionID, +ParameterName, +DefaultValue, -Value)

returns the value of a given parameter in a given session. If no value exists,
then it will return the default value. Arguments:

SessionID is the id of the session for which values have been stored

ParameterName
an atom, is the name of the parameter to retrieve

DefaultValue
is the value that will be used if no value is stored

Value is the stored value or the default value if nothing was stored

Chapter 10: The Prolog Library 717

session_put(+SessionID, +ParameterName, +Value)

stores the value of the given parameter. Please note: any pre-existing value
for this parameter will be overwritten. Note that session_put/3 will not be
undone when backtracking (the current implementation is based on assert).
Arguments:

SessionID is the id of the session for the values to store

ParameterName
an atom, is the name of the parameter to store

Value the value to be stored

register_event_listener(+Event, :PredicateToCall)

register_event_listener(+Event, :PredicateToCall, -Id)

Registers PredicateToCall to be called (as if by once(PredicateToCall))
when the event matching Event occurs (event matching is on principal functor
only). If the goal fails or raises an exception, then a warning is written to
user_error but the failure or exception is otherwise ignored. Arguments:

Event is the event template; see below.

PredicateToCall
an arbitrary goal.

Id becomes bound to a (ground) term that can be used with
unregister_event_listener/1 to remove this event listener.

The predefined events are as follows:

session_started(+SessionID)

called before the first call to a query for this session

session_ended(+SessionID)

called before the session is about to be garbage collected (removed)

server_started

called when the server is about to start (enter its main loop)

server_shutdown

called when the server is about to shut down

Attempt to register an event listener for other events than the predefined events
will throw an exception.

More than one listeners can be defined for the same event. They will be called
in some unspecified order when the event occurs.

unregister_event_listener(+Id)

Unregister a previously registered event listener. The Id is the value returned
by the corresponding call to register_event_listener/3. It is an error to
attempt to unregister an event listener more than once.

718 SICStus Prolog

10.31.5 Java Client Interface

The Java interface is centered around the class PrologSession, which represents a connec-
tion (or session) to a Prolog server. PrologSession contains static methods for looking
up named PrologSession instances using JNDI (Java Naming and Directory Interface) as
well as methods for querying the Prolog server. Other important classes are: QueryAnswer,
which contains the answer for a query sent to the Prolog server; PBTerm, which represents
a Prolog term; and Bindings, which supports stuffing of variable values used in queries.

General information about Java, Servlets and JNDI is available at the Java Technology site:
http://java.sun.com/

A brief description of the provided Java classes are presented below. More information
about the Java APIs is available in the JavaDoc files on the page https://sicstus.sics.
se/documentation.html.

PrologSession

The PrologSession object is the connection to the Prolog server. The con-
structor PrologSession() creates a PrologSession with the default settings
(host = localhost, port = 8066.

QueryAnswer

The QueryAnswer contains the answer (new bindings) for a query (or the error
that occurred during the query process).

PBTerm The PBTerm object is for representing parsed Prolog terms.

Bindings Bindings is used for binding variables to values in a query sent to the Prolog.
The values will be automatically stuffed before they are sent to the Prolog
server.

10.31.6 Java Examples

The PrologBeans examples for Java can be found in the directory corresponding to the file
search path pbexamples, defined as if by a clause:

user:file_search_path(pbexamples, library('prologbeans/examples')).

10.31.6.1 Embedding Prolog in Java Applications

If you have an advanced Prolog application that needs a GUI, then you can write a stand-
alone Java application that handles the GUI and set up the Prolog server to call the right
predicates in the Prolog application.

An example of how to do this can be found under the pbexamples(evaluate) directory
(see the example code in Section 10.31.3 [PB First Example], page 712).

Another example of this is pbexamples(pbtest), which illustrates several advanced features
like:

• registering several queries

• listening to server events (server_started)

http://java.sun.com/
https://sicstus.sics.se/documentation.html
https://sicstus.sics.se/documentation.html

Chapter 10: The Prolog Library 719

• shutting down the Prolog server from Java

• starting up the Prolog server from Java

• using dynamic (OS assigned) ports for the Java/Prolog communication

The example is run by executing the Java program PBTest:

> java -classpath "%SP_PATH%\bin\prologbeans.jar;." PBTest (Win-
dows), or
% java -classpath "$SP_PATH/bin/prologbeans.jar:." PBTest (UNIX)

10.31.6.2 Application Servers

If you want to get your Prolog application to be accessible from an intranet or the Internet,
then you can use this package to embed the Prolog programs into a Java application server
such as Tomcat, WebSphere, etc.

An example of how to do this is provided in pbexamples(sessionsum). This example uses
sessions to keep track of users so that the application can hold a state for a user session (as
in the example below, remember the sum of all expressions evaluated in the session).

720 SICStus Prolog

<%@ page import = "se.sics.prologbeans.*" %>

<html>

<head><title>Sum Calculator</title></head>

<body bgcolor="white">

Prolog Sum Calculator, enter expression to evaluate:

<form><input type=text name=query></form>

<%

PrologSession pSession =

PrologSession.getPrologSession("prolog/PrologSession", session);

pSession.connect();

String evQuery = request.getParameter("query");

String output = "";

if (evQuery != null) {

Bindings bindings = new Bindings().bind("E",evQuery + '.');

QueryAnswer answer =

pSession.executeQuery("sum(E,Sum,Average,Count)", bindings);

PBTerm average = answer.getValue("Average");

if (average != null) {

PBTerm sum = answer.getValue("Sum");

PBTerm count = answer.getValue("Count");

output = "<h4>Average =" + average + ", Sum = "

+ sum + " Count = " + count + "</h4>";

} else {

output = "<h4>Error: " + answer.getError() + "</h4>";

}

}

%>

<%= output %>

<p><hr>Powered by SICStus Prolog

</body></html>

The example shows the code of a JSP (Java Server Page). It makes use of the
method PrologSession.getPrologSession(String jndiName, HTTPSession session),
which uses JNDI to look up a registered PrologSession, which is connected to the Prolog
server. The variable session is in a JSP bound to the current HTTPSession, and the variable
request is bound to the current HTTPRequest. Since the HTTPSession object session is
specified all queries to the Prolog server will contain a session id. The rest of the example
shows how to send a query and output the answer.

Example usage of sessions (from the sessionsum example) is shown below, and is from
pbexamples('sessionsum/sessionsum.pl'):

Chapter 10: The Prolog Library 721

:- module(sessionsum,[main/0,sum/5]).

:- use_module(library(prologbeans)).

:- use_module(library(codesio), [read_from_codes/2]).

%% Register the acceptable queries (session based)

main:-

register_query(sum(C,Sum,Average,Count),

sum(C,Session,Sum,Average,Count),

Session),

start.

%% The sum predicate which gets the information from a session database,

%% makes some updates and then stores it back in to the session store

%% (and returns the information back to the application server)

sum(ExprChars, Session, Sum, Average, Count) :-

session_get(Session, sum, 0, OldSum),

session_get(Session, count, 0, OldCount),

read_from_codes(ExprChars, Expr),

Val is Expr,

Sum is OldSum + Val,

Count is OldCount + 1,

Average is Sum / Count,

session_put(Session, sum, Sum),

session_put(Session, count, Count).

In this example a query sum/4 is registered to call sum/5 where one of the variables, Session
will be bound to the session id associated to the query. The sum/5 predicate uses the
session_get/4 predicate to access stored information about the particular session, and
then it performs the evaluation of the expression. Finally, it updates and stores the values
for this session.

10.31.6.3 Configuring Tomcat for PrologBeans

This section will briefly describe how to set up a Tomcat server so that is it possible to test
the example JSPs. Some knowledge about how to run Tomcat and how to set up your own
web application is required. Detailed information about Tomcat is available at http://

jakarta.apache.org/tomcat/.

Assuming that the environment variable CATALINA HOME is set to the installation di-
rectory of Tomcat, do the following:

1. Create the directory $CATALINA_HOME/webapps/PB_example

2. Copy the
file pbexamples('sessionsum/sessionsum.jsp') to $CATALINA_HOME/webapps/PB_

example/sessionsum.jsp

3. Create the directory $CATALINA_HOME/webapps/PB_example/WEB-INF/lib

4. Copy the file $SP_PATH/bin/prologbeans.jar to $CATALINA_HOME/webapps/PB_

example/WEB-INF/lib/prologbeans.jar

http://jakarta.apache.org/tomcat/
http://jakarta.apache.org/tomcat/

722 SICStus Prolog

5. Create the directory $CATALINA_HOME/webapps/PB_example/META-INF

6. Create the file $CATALINA_HOME/webapps/PB_example/META-INF/context.xml with
the following content:

<Context docBase="PB_example">

<Resource name="prolog/PrologSession" auth="Container"

type="se.sics.prologbeans.PrologSession"

factory="org.apache.naming.factory.BeanFactory" />

</Context>

7. Create the file $CATALINA_HOME/webapps/PB_example/WEB-INF/web.xml with the fol-
lowing content:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<resource-env-ref>

<description>

Object factory for PrologSession instances.

</description>

<resource-env-ref-name>

prolog/PrologSession

</resource-env-ref-name>

<resource-env-ref-type>

se.sics.prologbeans.PrologSession

</resource-env-ref-type>

</resource-env-ref>

</web-app>

8. Start SICStus, load sessionsum.pl and run main.

9. Start the Tomcat server.

10. In a web browser, enter http://localhost:8080/PB_example/sessionsum.jsp

10.31.7 .NET Client Interface

The class PrologSession in the .NET interface represents a connection to a Prolog server.
PrologSession contains methods for establishing a connection and querying the Prolog
server. Other important classes are: QueryAnswer, which contains the answer for a query
sent to the Prolog server; PBTerm, which represents a Prolog term; and Bindings, which
supports stuffing of variable values used in queries.

The PrologSession object is the connection to the Prolog server. The constructor
PrologSession() creates a PrologSession with the default settings (host = localhost,

port = 8066.

http://localhost:8080/PB_example/sessionsum.jsp

Chapter 10: The Prolog Library 723

The interface is almost exactly as the Java version. See the C# source code
(library/prologbeans.NET/*.cs) or the JavaDoc, for details.

10.31.8 .NET Examples

The PrologBeans examples for .NET can be found in the directory corresponding to the file
search path pbnetexamples, defined as if by a clause:

user:file_search_path(pbnetexamples, library('prologbeans.NET/examples')).

10.31.8.1 C# Examples

.NET Embedding. If you have an advanced Prolog application that needs a GUI, then you
can write a stand-alone .NET application that handles the GUI and set up the Prolog server
to call the right predicates in the Prolog application.

An example of how to do this can be found under the pbnetexamples('evaluate.NET')

directory. This example is the C# version of the example shown in Section 10.31.3 [PB
First Example], page 712).

To start the example,
first start the Prolog server by going to the pbnetexamples('evaluate.NET') directory
and type:

> sicstus -l evaluate.pl --goal "main."

To start the GUI type (from the same directory as above):

> run.bat

Another example of this is pbnetexamples('pbtest.NET'), which illustrates several ad-
vanced features like:

• registering several queries

• listening to server events (server_started)

• shutting down the Prolog server from .NET

• starting up the Prolog server from .NET

• using dynamic (OS assigned) ports for the .NET/Prolog communication

The example is run by executing the C# program PBTest:

> PBTest

ASPX Servers Pages. If you want to get your Prolog application to be accessible from an
intranet or the Internet, then you can use this package to embed the Prolog programs into
a .NET ASP page which can be served by e.g. Internet Information Services.

An example of how to do this is
provided in pbnetexamples('prologasp.NET/eval.aspx'). Consult your IIS documen-
tation for how to configure it for an ASPX page. The ASPX example has a number of
security vulnerabilites and is for illustrative purposes only. Consult with an expert.

724 SICStus Prolog

10.31.8.2 Visual Basic Example

A Visual Basic .NET example can be found
in pbnetexamples('vb_examples.NET/calculator'). It is a simple calculator similar to
the first C# EvaluateGUI example in Section 10.31.3 [PB First Example], page 712. This
example is in the form of a Visual Studio project.

To run the example:

1. Open the project files in Visual Studio .NET

2. Add a reference in Visual Studio .NET to the installed prologbeans.dll

3. Start sicstus with the following command:

sicstus -l %SP_PATH%/library/prologbeans/examples/evaluate/evaluate --goal "main."

4. Build and run the example in Visual Studio .NET

10.32 Queue Operations —library(queues)

This module provides an implementation of queues, where you can

• create an empty queue

• add an element at either end of a queue

• add a list of elements at either end of a queue

• remove an element from the front of a queue

• remove a list of elements from the front of a queue

• determine the length of a queue

• enumerate the elements of a queue

• recognise a queue

• print a queue nicely

The representation was invented by Mark Johnson of the Center for the Study of Language
and Information. All operations are fast.

Exported predicates:

empty_queue(?Queue)

is true when Queue represents an empty queue. It can be used to test whether
an existing queue is empty or to make a new empty queue.

singleton_queue(?X, ?Queue)

is true when Queue is a queue with just one element X.

portray_queue(+Queue)

writes a queue out in a pretty form, as Queue[elements]. This form cannot be
read back in, it is just supposed to be readable. While it is meant to be called
only when is_queue(Queue) has been established, as by user:portray(Q) :-

is_queue(Q), !, portray_queue(Q). it is also meant to work however it is
called.

Chapter 10: The Prolog Library 725

is_queue(+Queue)

is true when Queue is a queue. The elements of Queue do not have to be
instantiated, and the Back of the Queue may or may not be. It can only
be used to recognise queues, not to generate them. To generate queues, use
queue_length(Queue, _).

queue_head(+Queue, -Head)

is true when Head is the first element of the given Queue. It does not remove
Head from Queue; Head is still there afterwards. It can only be used to find
Head, it cannot be used to make a Queue.

queue_tail(?Queue, ?Tail)

is true when Queue and Tail are both queues and Tail contains all the elements
of Queue except the first. Note that Queue and Tail share structure, so that
you can add elements at the back of only one of them. It can solve for either
argument given the other.

queue_cons(?Head, ?Tail, ?Queue)

is true when Head is the head of Queue and Tail is the tail of Queue, that is,
when Tail and Queue are both queues, and the elements of the Queue are Head
followed by the elements of Tail in order. It can be used in either direction, so

queue_cons(+Head, +Q0, -Q) adds Head to Q0 giving Q

queue_cons(-Head, -Q, +Q0) removes Head from Q0 giving Q

queue_last(?Last, ?Queue)

is true when Last is the last element currently in Queue. It does not remove
Last from Queue; it is still there. This can be used to generate a non-empty
Queue. The cost is O(|Queue|).

queue_last(+Fore, +Last, -Queue)

is true when Fore and Queue are both lists and the elements of Queue are
the elements of Fore in order followed by Last. This is the operation which
adds an element at the end of Fore giving Queue; it is not reversible, unlike
queue_cons/3, and it side-effects Fore, again unlike queue_cons/3.

append_queue(?List, ?Queue0, ?Queue)

is true when Queue is obtained by appending the elements of List in or-
der at the front of Queue0, e.g. append_queue([a,b,c], Queue[d,e],

Queue[a,b,c,d,e]). Use

append_queue([+X1,...,+Xn], +Q0, -Q) to add X1,...,Xn to Q0 giving Q

append_queue([-X1,...,-Xn], -Q, +Q0) to take X1...Xn from Q0 giving Q

The cost is O(n) and the operation is pure.

queue_append(+Queue0, +List, -Queue)

is true when Queue is obtained by appending the elements of List in or-
der at the rear end of Queue0, e.g. append_queue(Queue[a,b,c], [d,e],

Queue[a,b,c,d,e]). This is like queue_last/3; it side-effects Queue0.

list_queue(?List, ?Queue)

is true when Queue is a queue and List is a list and both have the same elements
in the same order. list_queue/2 and queue_list/2 are the same except for
argument order.

726 SICStus Prolog

queue_list(?Queue, ?List)

is true when Queue is a queue and List is a list and both have the same elements
in the same order. queue_list/2 and list_queue/2 are the same except for
argument order.

queue_length(?Queue, ?Length)

is true when Queue is a queue having Length elements. It may be used to
determine the Length of a Queue or to make a Queue of given Length.

queue_member(?Element, +Queue)

is true when Element is an element of Queue. It could be made to generate
queues, but that would be rather inefficient. It bears the name queue_member/2
because it is prepared to enumerate Elements.

queue_memberchk(+Element, +Queue)

is true when the given Element is an element of Queue. Once it finds a member
of Queue which unifies with Element, it commits to it. Use it to check a ground
Element.

map_queue(:Pred, +Queue[X1,...,Xn])

succeeds when Pred(Xi) succeeds for each element Xi of the Queue.

map_queue(:Pred, +Queue[X1,...,Xn], ?Queue[Y1,...,Yn])

succeeds when Pred(Xi,Yi) succeeds for each corresponding pair of elements Xi,
Yi of the two queues.

map_queue_list(:Pred, ?Queue[X1,...,Xn], ?[Y1,...,Yn])

succeeds when Pred(Xi, Yi) is true for each corresponding pair Xi,Yi of elements
of the Queue and the List. It may be used to generate either of the sequences
from the other.

map_list_queue(:Pred, ?[X1,...,Xn], ?Queue[Y1,...,Yn])

succeeds when Pred(Xi, Yi) is true for each corresponding pair Xi,Yi of elements
of the List and the Queue. It may be used to generate either of the sequences
from the other.

some_queue(:Pred, +Queue[X1,...,Xn])

succeeds when Pred(Xi) succeeds for some Xi in the Queue. It will try all ways
of proving Pred(Xi) for each Xi, and will try each Xi in the Queue. somechk_
queue/2 is to some_queue/2 as memberchk/2 is to member/2; you are more
likely to want somechk_queue/2. This acts on backtracking like member/2;
Queue should be proper.

some_queue(:Pred, +Queue[X1,...,Xn], ?Queue[Y1,...,Yn])

is true when Pred(Xi, Yi) is true for some i.

somechk_queue(:Pred, +Queue[X1,...,Xn])

is true when Pred(Xi) is true for some i, and it commits to the first solution it
finds (like memberchk/2).

somechk_queue(:Pred, +Queue[X1,...,Xn], ?Queue[Y1,...,Yn])

is true when Pred(Xi, Yi) is true for some i, and it commits to the first solution
it finds (like memberchk/2).

Chapter 10: The Prolog Library 727

10.33 Random Number Generator—library(random)

This library module provides a random number generator using algorithm AS 183 from the
Journal of Applied Statistics as the basic algorithm. This algorithm is not cryptographically
secure.

The state of the random number generator corresponds to a term random(X,Y,Z,B) where
X is an integer in the range [1,30268], Y is an integer in the range [1,30306], Z is an integer
in the range [1,30322], and B is a nonzero integer.

The random generator starts with the same default initial state on each run. See setrand/1
for a way to initialize the random number generator with a new state when a more unpre-
dictable initial state is desired.

Exported predicates:

getrand(-RandomState)

returns the random number generator’s current state

setrand(+RandomState)

sets the random number generator’s state to RandomState. RandomState can
either be a random state previously obtained with getrand/1, or an arbitrary
integer. The latter is useful when you want to initialize the random state to a
fresh value. If RandomState is not an integer or a valid random state, it raises
an error.

The initial state of the random number generatior is always the same. This
means that subsequent runs will generate the same sequence of random num-
bers. This gives reproducible results which is good for testing but not always
desirable. One way to get a new initial state is to set it based on the cur-
rent time, e.g. by calling something like the following predicate early in your
program:

:- use_module(library(system), [now/1]).

init_random_state :-

now(X),

setrand(X).

maybe

succeeds determinately with probability 1/2, fails with probability 1/2. We use
a separate "random bit" generator for this test to avoid doing much arithmetic.

maybe(+Probability)

succeeds determinately with probability Probability, fails with probability 1-
Probability. Arguments =< 0 always fail, >= 1 always succeed.

maybe(+P, +N)

succeeds determinately with probability P/N, where 0 =< P =< N and P and N
are integers. If this condition is not met, it fails. It is equivalent to random(0,

N, X), X < P, but is somewhat faster.

random(-Uniform)

unifies Uniform with a new random number in [0.0,1.0)

728 SICStus Prolog

random(+L, +U, -R)

unifies R with a random integer in [L,U) when L and U are integers (note that
U will never be generated), or to a random floating number in [L,U) otherwise.

random_member(-Elem, +List)

unifies Elem with a random element of List, which must be proper. Takes O(N)
time (average and best case).

random_select(?Elem, ?List, ?Rest)

unifies Elem with a random element of List and Rest with all the other elements
of List (in order). Either List or Rest should be proper, and List should/will
have one more element than Rest. Takes O(N) time (average and best case).

random_subseq(+List, -Sbsq, -Cmpl)

unifies Sbsq with a random sub-sequence of List, and Cmpl with its complement.
After this, subseq(List, Sbsq, Cmpl) will be true. Each of the 2**|List|
solutions is equally likely. Like its name-sake subseq/3, if you supply Sbsq and
Cmpl it will interleave them to find List. Takes O(N) time. List should be
proper.

random_permutation(?List, ?Perm)

unifies Perm with a random permutation of List. Either List or Perm should be
proper, and they should/will have the same length. Each of the N! permutations
is equally likely, where length(List, N). This takes O(N lg N) time and is
bidirectional.

random_perm2(A,B, X,Y)

unifies X,Y = A,B or X,Y = B,A, making the choice at random, each choice
being equally likely. It is equivalent to random_permutation([A,B], [X,Y]).

random_numlist(+P, +L, +U, -List)

where P is a probability (0..1) and L=<U are integers unifies List with a random
subsequence of the integers L..U, each integer being included with probability
P.

10.34 Rem’s Algorithm—library(rem)

This library module maintains equivalence classes using Rem’s algorithm. Exported predi-
cates:

rem_create(+Size, -REM)

creates an equivalence representation function REM which maps each of the
nodes 1..Size to itself.

rem_head(?Node, +REM, -Head)

is true when Head is the representative of the equivalence class that Node
belongs to in the given REM.

rem_equivalent(?Node1, ?Node2, +REM)

is true when Node1 and Node2 belong to the same equivalence class in the
given REM.

Chapter 10: The Prolog Library 729

rem_add_link(?Node1, ?Node2, +OldREM, -NewREM)

is true when adding the equivalence Node1===Node2 to the partition repre-
sented by OldREM yields a partition which is represented by NewREM. If
Node1 or Node2 is uninstantiated, it will backtrack over all the nodes. It’s not
clear how useful this is.

10.35 Generic Sorting—library(samsort)

This library module provides generic sorting. Exported predicates:

samsort(+RawList, -Sorted)

takes a proper list RawList and unifies Sorted with a list having exactly the
same elements as RawList but in ascending order according to the standard
order on terms.

merge(+List1, +List2, -Merged)

is true when Merged is the stable merge of the two given lists. If the two lists
are not ordered, the merge doesn’t mean a great deal. Merging is perfectly well
defined when the inputs contain duplicates, and all copies of an element are
preserved in the output, e.g. merge("122357", "34568", "12233455678").

samsort(:Order, +RawList, -SortedList)

takes a proper list RawList and a binary predicate Order and unifies SortedList
with a list having exactly the same elements as RawList but in ascending order
according to Order. This is only supposed to work when Order is transitive.

merge(:Order, +List1, +List2, -Merged)

is like merge/3 except that it takes an Order predicate as its first arguments,
like all the generalised ordering routines.

samkeysort(+RawList, -Sorted)

takes a proper list RawList of Key-Value pairs, and unifies Sorted with a list
having exactly the same elements as RawList but in ascending order according
to the standard order on the keys. samkeysort/2 is stable in the sense that
the relative position of elements with the same key is maintained.

keymerge(+List1, +List2, -Merged)

is like merge/3 except that it compares only the keys of its input lists.

10.36 Unordered Set Operations—library(sets)

This library module provides operations on sets represented as unordered lists with no
repeated elements.

Please note: You should probably not use this module. The ordered representation used in
library(ordsets) is much more efficient, but these routines were designed before sort/2
entered the language. Exported predicates:

730 SICStus Prolog

add_element(+Element, +Set1, -Set2)

is true when Set1 and Set2 are sets represented as unordered lists, and Set2 =
Set1 U {Element}. It may only be used to calculate Set2 given Element and
Set1.

del_element(+Element, +Set1, -Set2)

is true when Set1 and Set2 are sets represented as unordered lists, and Set2 =
Set1 \ {Element}. It may only be used to calculate Set2 given Element and
Set1. If Set1 does not contain Element, Set2 will be identical to Set1 (the old
version made a new copy of Set1). If Set1 is not an unordered set, but contains
more than one copy of Element, only the first will be removed. If you want to
delete all copies of a given element, use lists:delete/3. For a version which
fails if Element is not in Set1, use selectchk/3.

disjoint(+Set1, +Set2)

is true when the two given sets have no elements in common. It is the opposite
of intersect/2. If either of the arguments is improper, disjoint/2 will fail.

is_set(+List)

is true when List is a proper list that contains no repeated elements.

pairfrom(?Set, ?Element1, ?Element2, ?Residue)

is true when Set is a list, Element1 occurs in list, Element2 occurs in list after
Element1, and Residue is everything in Set bar the two Elements. The point
of this thing is to select pairs of elements from a set without selecting the same
pair twice in different orders.

intersect(+Set1, +Set2)

is true when the two sets have a member in common. It assumes that both sets
are known, and that you don’t care which element it is that they share.

subset(+Set1, +Set2)

is true when each member of Set1 occurs in Set2. It can only be used to test two
given sets; it cannot be used to generate subsets. There is no predicate for gen-
erating subsets as such, but the predicates subseq/3, subseq0/2, subseq1/2
in library(lists) may do what you want (they preserve the order of elements
within a list). Could be defined as:

subset(Set1, Set2) :-

(foreach(X,Set1),

param(Set2)

do memberchk(X,Set2)

).

set_order(+Xs, +Ys, -R)

is true when R is <, =, or > according as Xs is a subset of Ys, equivalent to Ys,
or a superset of Ys.

seteq(+Set1, +Set2)

is true when each Set is a subset of the other.

Chapter 10: The Prolog Library 731

list_to_set(+List, -Set)

is true when List and Set are lists, and Set has the same elements as List in
the same order, except that it contains no duplicates. The two are thus equal
considered as sets.

power_set(+Set, -PowerSet)

is true when Set is a list and PowerSet is a list of lists which represents the
power set of the set that Set represents.

intersection(+Set1, +Set2, -Intersection)

is true when all three arguments are lists representing sets, and Intersection
contains every element of Set1 which is also an element of Set2, the order
of elements in Intersection being the same as in Set1. That is, Intersection
represents the intersection of the sets represented by Set1 and Set2. Could be
defined as:

intersection(Set1, Set2, Intersection) :-

(foreach(X,Set1),

fromto(Intersection,S0,S,[]),

param(Set2)

do (member(X, Set2) -> S0 = [X|S] ; S0 = S)

).

intersection(+ListOfSets, -Intersection)

is true when Intersection is the intersection of all the sets in ListOfSets. The
order of elements in Intersection is taken from the first set in ListOfSets. This
has been turned inside out to minimise the storage turnover. Could be defined
as:

intersection([Set1|Sets], Intersection) :-

(foreach(X,Set1),

fromto(Intersection,S0,S,[]),

param(Sets)

do ((foreach(Set,Sets),

param(X)

do memberchk(X, Set)

) -> S0 = [X|S]

; S0 = S

)

).

subtract(+Set1, +Set2, -Difference)

is like intersect/3, but this time it is the elements of Set1 which are in Set2
that are deleted. Note that duplicated Elements of Set1 which are not in Set2
are retained in Difference. Could be defined as:

subtract(Set1, Set2, Difference) :-

(foreach(X,Set1),

fromto(Difference,S0,S,[]),

param(Set2)

do (member(X, Set2) -> S0 = S ; S0 = [X|S])

).

732 SICStus Prolog

symdiff(+Set1, +Set2, -Difference)

is true when Difference is the symmetric difference of Set1 and Set2, that is, if
each element of Difference occurs in one of Set1 and Set2 but not both. The
construction method is such that the answer will have no duplicates even if the
Sets do.

setproduct(+Set1, +Set2, -CartesianProduct)

is true when Set1 is a set (list) and Set2 is a set (list) and CartesianProduct is
a set of Elt1-Elt2 pairs, with a pair for for each element Elt1 of Set1 and Elt2
of Set2. Could be defined as:

setproduct(Set1, Set2, Product) :-

(foreach(H1,Set1),

param(Set2),

fromto(Product,P1,P3,[])

do (foreach(H2,Set2),

param(H1),

fromto(P1,[H1-H2|P2],P2,P3)

do true

)

).

disjoint_union(+Set1, +Set2, -Union)

is true when disjoint(Set1, Set2) and union(Set1, Set2, Union), that is,
Set1 and Set2 have no element in command and Union is their union. Could
be defined as:

disjoint_union(Set1, Set2, Union) :-

(foreach(X,Set1),

fromto(Union,[X|S],S,Set2),

param(Set2)

do nonmember(X, Set2)

).

union(+Set1, +Set2, -Union)

is true when subtract(Set1,Set2,Diff) and append(Diff,Set2,Union),
that is, when Union is the elements of Set1 that do not occur in Set2, followed
by all the elements of Set2. Could be defined as:

union(Set1, Set2, Union) :-

(foreach(X,Set1),

fromto(Union,S0,S,Set2),

param(Set2)

do (member(X, Set2) -> S0 = S ; S0 = [X|S])

).

union(+Set1, +Set2, -Union, -Difference)

is true when union(Set1, Set2, Union) and subtract(Set1, Set2,

Difference). Could be defined as:

Chapter 10: The Prolog Library 733

union(Set1, Set2, Union, Difference) :-

(foreach(X,Set1),

fromto(Union,S0,S,Set2),

fromto(Difference,T0,T,[]),

param(Set2)

do (member(X, Set2) -> S0 = S, T0 = T

; S0 = [X|S], T0 = [X|T]

)

).

union(+ListOfSets, -Union)

is true when Union is the union of all the sets in ListOfSets. It has been
arranged with storage turnover in mind. Could be defined as:

union(Sets, Union) :-

(foreach(Set,Sets),

param(Answer)

do (foreach(X,Set),

param(Answer)

do memberchk(X, Answer)

)

),

append(Answer, [], Answer), % cauterise it

!,

Union = Answer.

10.37 Socket I/O—library(sockets)

This library package defines a number of predicates for communicating over sockets.

To create a (bi-directional) stream connected to a remote server, use socket_client_

open/3.

To open a port for remote clients to connect to, use socket_server_open/[2,3] and to
open a stream to a connecting client, use socket_server_accept/4.

To be able to multiplex input and output from several streams (not necesessarily socket
streams) and incoming connections, use socket_select/7.

When opening a client or server socket a socket address needs to be specified. The address
specifies the address family and family-specific information. The following formats are
supported for socket addresses:

inet(Nodename,Servname)

Nodename:Servname

Servname This specifies the address for and ordinary internet socket (AF_INET or AF_

INET6). Nodename is the internet address of the remote host, as an atom,
something like 'sicstus.sics.se' or '193.10.64.51'. The empty node-
name '' (the default), has special meaning, see the documentation for socket_
client_open/3 and socket_server_open/[2,3]. Servname is either a port

734 SICStus Prolog

number as an atom of decimal digits or as an integer, e.g. '80', or 80; alter-
natively some well known port names can be used, e.g. 'http'. The set of
well known port names is OS specific, portable code should use integer port
numbers. Servname can also be a variable when opening a server socket with
socket_server_open/[2,3]. In this case a available port is assigned automat-
ically and Servname is bound to it.

unix(Path) since release 4.0.3

A Unix domain (AF_UNIX) socket is opened at the specified file system location.
This is only supported on Unix-like platforms. Path is a file-name and is passed
to absolute_file_name/2. There may be platform-specific restrictions on the
length of the resulting pathname and the file system containing it.

All streams below can be read from as well as written to. All I/O predicates operating on
streams can be used, for example get_code/2, get_byte/2, read/2, write/2, format/3,
current_stream/3, etc. The predicates that create streams take options similar to open/4,
e.g. to specify whether the stream is binary (the default) or text.

socket_client_open(+Addr, -Stream, +Options)

Creates a stream Stream connected to address Addr. See above for the allowed
address formats. If the nodename is empty ('') then a connection is made to
the local machine.

The stream is created using options from Options. Supported options include:

type(binary)

Create a binary stream (the default).

type(text)

Create a text stream. The default encoding is Latin 1.

eof_action(Action)

end of file action, as for open/4.

encoding(ENCODING) since release 4.1

As for open/4. Implies type(text).

eol(Eol) since release 4.1

As for open/4. Implies type(text).

To create a binary stream to some web server sicstus.sics.se, you would do
e.g.

| ?- socket_client_open('sicstus.sics.se':80, Stream, [type(binary)]).

or, to make a text (Latin 1) stream to a daytime service in Hong Kong you
could do:

| ?- socket_client_open('stdtime.gov.hk':daytime, S, [type(text)]),

read_line(S, L),

format('~s', [L]).

See the source code for library('linda/client') for a simple client.

Chapter 10: The Prolog Library 735

socket_server_open(?Addr, -ServerSocket, +Options) since release 4.0.3

Create a server socket ServerSocket that listens on address Addr. See above for
the allowed address formats. If the nodename is empty ('') then any remote
client machine is allowed to connect unless the option loopback(true) is also
specified. Addr can specify an internet address where the port is a variable in
which case a free port number is used and Port is bound to it. The common
case is that Addr is a numeric port number or a variable that becomes bound
to a free port number.

The created server socket should be closed with socket_server_close/1

eventually. Incoming connection can be accepted with socket_server_

accept/4 and waited for with socket_select/7. See the source code for
library('linda/server') for a simple server that uses this predicate.

Options is a list of options, currently

reuseaddr(Bool) since release 4.0.3

Bool is either true or false (the default). If true then allow reuse
of local addresses. For internet sockets this corresponds to the SO_
REUSEADDR socket option. For unix domain sockets this means that
the file will be deleted, if present, before opening.

numeric_nodename(Bool) since release 4.0.3

Bool is either true or false (the default). If true then the node-
name of an internet address will be treated as a numerical address
and no name lookup will be performed.

numeric_servname(Bool) since release 4.0.3

Bool is either true or false (the default). If true then the serv-
name of an internet address will be treated as a numerical port
number and no lookup of well known port names will be performed.

loopback(Bool) since release 4.0.3

Bool is either true or false (the default). If true then the node-
name will be ignored and the socket will only listen to connection
from the loopback device, i.e. the local machine.

socket_server_open(?Port, -ServerSocket)

The same as socket_server_open(Port, ServerSocket, []).

socket_server_accept(+ServerSocket, -Client, -Stream, +StreamOptions)

The first connection to socket ServerSocket is extracted, blocking if necessary.
The stream Stream is created on this connection using StreamOptions as for
socket_client_open/3. Client will be unified with an atom containing the nu-
merical Internet host address of the connecting client. Note that the stream will
be type(binary) unless type(text) is specified either explicitly or implicitly
with encoding/1 or other text-only options.

socket_server_close(+ServerSocket)

Close the server socket ServerSocket and stop listening on its port.

736 SICStus Prolog

socket_select(+ServerSockets,-SReady, +ReadStreams,-RReady,

+WriteStreams,-WReady, +Timeout)

Check for server sockets with incoming connections (i.e. ready for socket_

server_accept/4), streams on ReadStreams ready for input, and streams on
WriteStreams ready for output. The streams can be any kind of streams, they
need not be socket streams. The ready server sockets are returned (in the same
order) in SReady, the ready input streams in RReady, and the ready output
streams in WReady.

An input (output) stream is ready for input (output) when an item can be
read (written) without blocking. An item is a character for text streams and a
byte for binary streams. Note that a stream is considered ready for I/O if the
corresponding I/O operation will raise an error (such as if the stream is past
end of stream).

Each entry in the input lists ServerSockets, ReadStreams, and WriteStreams
can be either a server socket or stream respectively or a term Term-Entry where
Entry is the server socket or stream and Term is some arbitrary term used for
book-keeping. If an entry is associated with a term in this way then so will the
corresponding ready entry.

If TimeOut is instantiated to off, the predicate waits until something is avail-
able. If TimeOut is a nonzero number (integer or floating point), then the
predicate waits at most that number of seconds before returning. For backward
compatibility, if TimeOut is S:U the predicate waits at most S seconds and U
microseconds. If there is a timeout, all ready lists are unified with [].

See the source code for library('linda/server') for a simple server that uses
this predicate.

current_host(?HostName)

HostName is unified with the fully qualified name of the machine that the
process is executing on. The call will also succeed if HostName is instantiated
to the unqualified name of the machine in lower case. Please note: this predicate
will fail if there are errors, e.g. if no domain has been configured.

10.38 Statistics Functions—library(statistics)

This library module provides commonly used sample and population statistics functions. In
this module, a Sample is simply a proper list of numbers, normally floating-point; Weight
is a proper list of numbers and should be of the same length as Sample.

Please note: These functions are plain textbook algorithms and we make no claims about
numerical stability, avoiding loss of precision, etc.

Exported predicates:

min(+Sample, -Value)

is true when Value is the smallest element of Sample.

max(+Sample, -Value)

is true when Value is the largest element of Sample.

Chapter 10: The Prolog Library 737

min_max(+Sample, -Min, -Max)

is true when Min (Max) is the smallest (largest) element of Sample.

range(+Sample, -Value)

is true when Value is the difference between the largest and smallest elements
of Sample.

mode(+Sample, -Values)

is true when Values is the most frequently occurring value(s) in Sample. If
there is a unique value with maximum frequency, this value is returned as the
only element of Values. Otherwise, Values contains the maximum frequency
elements in increasing order. This predicate does not make much sense if the
sample is continuous.

mean(+Sample, -Value)

arithmetic_mean(+Sample, -Value)

is true when Value is the arithmetic mean of Sample.

weighted_mean(+Weight, +Sample, -Value)

is true when Value is the arithmetic mean of Sample weighted by Weight.

geometric_mean(+Sample, -Value)

is true when Value is the geometric mean of Sample.

harmonic_mean(+Sample, -Value)

is true when Value is the harmonic mean of Sample.

central_moment(K, +Sample, -Value)

is true when Value is the K-th central moment of Sample. Also known as the
K-th central moment about the mean. K should be positive integer.

skewness(+Sample, -Value)

is true when Value is the skewness of Sample. This is a measure of the asym-
metry of its distribution. A sample with negative skew is said to be left-skewed.
Most of its mass is on the right of the distribution, with the tail on the left.
Vice versa for positive skew. A sample’s skewness is undefined if its variance is
zero.

kurtosis(+Sample, -Value)

is true when Value is the excess kurtosis of Sample. This is a measure of
the peakedness of its distribution. A high kurtosis indicates that most of the
sample’s variance is due to infrequent severe deviations, rather than frequent
modest deviations. A sample’s excess kurtosis is undefined if its variance is
zero. In this implementation, the kurtosis of the normal distribution is 0.

ml_variance(+Sample, -Value)

population_variance(+Sample, -Value)

is true when Value is the maximum likelihood estimate of the variance of
Sample. Also known as the population variance, where the denominator is
the length of Sample.

738 SICStus Prolog

sample_variance(+Sample, -Value)

unbiased_variance(+Sample, -Value)

is true when Value is the unbiased estimate of the variance of Sample. Also
known as the sample variance, where the denominator is the length of Sample
minus one.

weighted_variance(+Weight, +Sample, -Value)

is true when Value is the weighted (biased) estimate of the variance of Sample.

ml_standard_deviation(+Sample, -Value)

population_standard_deviation(+Sample, -Value)

is true when Value is the maximum likelihood estimate of the standard devi-
ation of Sample. Also known as the population standard deviation, where the
denominator is the length of Sample. Equals the square root of the population
variance.

sample_standard_deviation(+Sample, -Value)

unbiased_standard_deviation(+Sample, -Value)

is true when Value is the unbiased estimate of the standard deviation of Sample.
Also known as the sample standard deviation, where the denominator is the
length of Sample minus one. Equals the square root of the sample variance.

weighted_standard_deviation(+Weight, +Sample, -Value)

is true when Value is the weighted (biased) estimate of the standard deviation
of Sample. Equals the square root of the weighted (biased) variance.

covariance(+Sample1, +Sample2, -Value)

is true when Value is the covariance of Sample1 and Sample2.

correlation(+Sample1, +Sample2, -Value)

is true when Value is the correlation of Sample1 and Sample2.

median(+Sample, -Value)

is true when Value is the median of Sample, that is, the value separating the
higher half of the sample from the lower half. If there are an even number of
observations, then the median is defined to be the smaller middle value. Same
as the 0.5-fractile of Sample.

fractile(P, +Sample, -Value)

is true when Value is the P-fractile of Sample, that is, the smallest value in
the sample such that the fraction P of the sample is less than or equal to that
value. P should be a number in (0.0,1.0].

normalize(+Sample, -Normalized)

is true when Normalized is the normalized Sample, so that Normalized has a
mean of 0 and a population standard deviation of 1.

10.39 The Structs Package—library(structs)

The structs package allows Prolog to hold pointers to C data structures, and to access and
store into fields in those data structures. Currently, the only representation for a pointer
supported by SICStus Prolog is an integer, so it is not possible to guarantee that Prolog

Chapter 10: The Prolog Library 739

cannot confuse a pointer with an ordinary Prolog term. What this package does is to
represent such a pointer as a term with the type of the structure or array as its functor and
the integer that is the address of the actual data as its only argument. We will refer such
terms as foreign terms.

The package consists of two modules, str_decl and structs. The str_decl module is
used at compile time to translate the structs-related constructs. Any file that defines or
accesses structs should include the command:

:- load_files(library(str_decl),

[when(compile_time), if(changed)]).

The structs module provides runtime support for structs. A file that accesses structs
should include the command:

:- use_module(library(structs)).

You will probably include both in most files that define and access structs.

Please note: A file that loads library(str_decl) currently cannot recursively load another
file that loads library(str_decl), because that would confuse the internal database being
used by the package.

Important caveats:

You should not count on future versions of the structs package to continue to
represent foreign terms as compound Prolog terms. In particular, you should
never explicitly take apart a foreign term using unification or functor/3 and
arg/3. You may use the predicate foreign_type/2 to find the type of a foreign
term, and cast/3 (casting a foreign term to address) to get the address part of
a foreign term. You may also use cast/3 to cast an address back to a foreign
term. You should use null_foreign_term/2 to check if a foreign term is null,
or to create a null foreign term of some type.

It should never be necessary to explicitly take apart foreign terms.

10.39.1 Foreign Types

There are two sorts of objects that Prolog may want to handle: atomic and compound.
Atomic objects include numbers and atoms, and compound objects include data structures
and arrays. To be more precise about it, an atomic type is defined by one of the following:

integer signed integer, large enough to hold a pointer.

integer_64 since release 4.3

64 bit signed integer.

integer_32

32 bit signed integer.

integer_16

16 bit signed integer.

740 SICStus Prolog

integer_8

8 bit signed integer.

unsigned unsigned integer, large enough to hold a pointer.

unsigned_64 since release 4.3

64 bit unsigned integer.

unsigned_32

32 bit unsigned integer.

unsigned_16

16 bit unsigned integer.

unsigned_8

8 bit unsigned integer.

float 64 bit floating-point number.

float_32 32 bit floating-point number.

atom 32 bit Prolog atom number. Unique for different atoms, but not consis-
tent across Prolog sessions. The atom is made non garbage collectable. See
Section 6.4.2 [Atoms in C], page 301.

string A pointer to an encoded string. Represented as an atom in Prolog. Please
note: This string must not be overwritten, as it constitutes the print name of
an atom. Also, the atom and string are made non garbage collectable. See
Section 6.4.2 [Atoms in C], page 301.

address An untyped pointer. Like pointer(_), but library(structs) does no type
checking for you. Represented as a Prolog integer.

opaque Unknown type. Cannot be represented in Prolog. A pointer to an opaque
object may be manipulated.

Compound types are defined by one of the following:

pointer(Type)

a pointer to a thing of type Type.

array(Num,Type)

A chunk of memory holding Num (an integer) things of type Type.

array(Type)

A chunk of memory holding some number of things of type Type. This type
does not allow bounds checking, so it should be used with great care. It is also
not possible to use this sort of array as an element in an array, or in a struct
or union.

struct(Fields)

A compound structure. Fields is a list of Field name:Type pairs. Each
Field name is an atom, and each Type is any valid type.

Chapter 10: The Prolog Library 741

union(Members)

A union as in C. Members is a list of Member name:Type pairs. Each Mem-
ber name is an atom, and each Type is any valid type. The space allocated for
one of these is the maximum of the spaces needed for each member. It is not
permitted to store into a union (you must get a member of the union to store
into, as in C).

C programmers will recognize that the kinds of data supported by this package were designed
for the C language. They should also work for other languages, but programmers must
determine the proper type declarations in those languages. The table above makes clear
the storage requirements and interpretation of each type.

Note that there is one important difference between the structs package and C: the
structs package permits declarations of pointers to arrays. A pointer to an array is dis-
tinguished from a pointer to a single element. For example

pointer(array(integer_8))

is probably a more appropriate declaration of a C string type than

pointer(integer_8)

which is the orthodox way to declare a string in C.

10.39.1.1 Declaring Types

Programmers may declare new named data structures with the following procedure:

:- foreign_type

Type_name = Type,

...,

Type_name = Type.

where Type name is an atom, and Type defines either an atomic or compound type, or is
a previously-defined type name.

In Prolog, atomic types are represented by the natural atomic term (integer, float, or atom).
Compound structures are represented by terms whose functor is the name of the type, and
whose only argument is the address of the data. So a term foo(123456) represents the
thing of type foo that exists at machine address 123456. And a term integer(123456)

represents the integer that lives in memeory at address 123456, not the number 123456.

For types that are not named, a type name is generated using the names of associated types
and the dollar sign character (‘$’), and possibly a number. Therefore, users should not use
‘$’ in their type names.

10.39.2 Checking Foreign Term Types

The type of a foreign term may determined by the goal

foreign_type(+Foreign_term, -Type_name)

742 SICStus Prolog

Note that foreign_type/2 will fail if Foreign term is not a foreign term.

10.39.3 Creating and Destroying Foreign Terms

Prolog can create or destroy foreign terms using

new(+Type, -Datum),

new(+Type, +Size, -Datum) and
dispose(+Datum)

where Type is an atom specifying what type of foreign term is to be allocated, and Datum
is the foreign term. Type should be an atomic type or a previously-defined type name.
The Datum returned by new/[2,3] is initialized to all zeroes. dispose/1 is a dangerous
operation, since once the memory is disposed, it may be used for something else later.
If Datum is later accessed, then the results will be unpredictable. new/3 is only used to
allocate arrays whose size is not known beforehand, as defined by array(Type), rather than
array(Num,Type).

10.39.4 Accessing and Modifying Foreign Term Contents

Prolog can get or modify the contents of a foreign term with the procedures

get_contents(+Datum, ?Part, ?Value)

put_contents(+Datum, +Part, +Value).

It can also get a pointer to a field or element of a foreign term with the procedure

get_address(+Datum, ?Part, ?Value).

For all three of these, Datum must be a foreign term, and Part specifies what part of Datum
Value is. If Datum is an array, then Part should be an integer index into the array, where
0 is the first element. For a pointer, Part should be the atom contents and Value will be
what the pointer points to. For a struct, Part should be a field name, and Value will be
the contents of that field. In the case of get_contents/3 and get_address/3, if Part is
unbound, then get_contents/3 will backtrack through all the valid parts of Datum, binding
both Part and Value. A C programmer might think of the following pairs as corresponding
to each other:

Prolog: get_contents(Foo, Bar, Baz)

C: Baz = Foo->Bar

Prolog: put_contents(Foo, Bar, Baz)

C: Foo->Bar = Baz

Prolog: get_address(Foo, Bar, Baz)

C: Baz = &Foo->Bar.

The hitch is that only atomic and pointer types can be got and put by get_contents/3

and put_contents/3. This is because Prolog can only hold pointers to C structures, not
the structures themselves. This is not quite as bad as it might seem, though, since usually

Chapter 10: The Prolog Library 743

structures contain pointers to other structures, anyway. When a structure directly contains
another structure, Prolog can get a pointer to it with get_address/3.

10.39.5 Casting

Prolog can “cast” one type of foreign term to another. This means that the foreign term is
treated just as if it where the other type. This is done with the following procedure:

cast(+Foreign0, +New_type, -Foreign)

where Foreign is the foreign term that is the same data as Foreign0, only is of foreign type
New type. Foreign0 is not affected. This is much like casting in C.

Casting a foreign term to address will get you the raw address of a foreign term. This is
not often necessary, but it is occasionally useful in order to obtain an indexable value to use
in the first argument of a dynamic predicate you are maintaining. An address may also be
casted to a proper foreign type.

This predicate should be used with great care, as it is quite easy to get into trouble with
this.

10.39.6 Null Foreign Terms

“NULL” foreign terms may be handled. The predicate

null_foreign_term(+Term, -Type)

null_foreign_term(-Term, +Type)

holds when Term is a foreign term of Type, but is NULL (the address is 0). At least one of
Term and Type must be bound. This can be used to generate NULL foreign terms, or to
check a foreign term to determine whether or not it is NULL.

10.39.7 Interfacing with Foreign Code

Foreign terms may be passed between Prolog and other languages through the foreign
interface.

To use this, all foreign types to be passed between Prolog and another language must be
declared with foreign_type/2 before the foreign/[2,3] clauses specifying the foreign
functions.

The structs package extends the foreign type specifications recognized by the foreign
interface. In addition to the types already recognized by the foreign interface, any atomic
type recognized by the structs package is understood, as well as a pointer to any named
structs type.

For example, if you have a function

char nth_char(char *string, int n)

{

return string[n];

}

744 SICStus Prolog

then you might use it from Prolog as follows:

:- foreign_type cstring = array(integer_8).

foreign(nth_char, c, nth_char(+pointer(cstring), +integer, [-integer_8])).

This allows the predicate nth_char/3 to be called from Prolog to determine the nth char-
acter of a C string.

Note that all existing foreign interface type specifications are unaffected, in particular
address/[0,1] continue to pass addresses to and from Prolog as plain integers.

If you use the foreign resource linker, splfr, on a Prolog file that uses the structs package,
then you must pass it the --structs option. This will make splfr understand foreign
type specifications and translate them into C declarations in the generated header file (see
Section 6.2.5 [The Foreign Resource Linker], page 296).

10.39.8 Examining Type Definitions at Runtime

The above described procedures should be sufficient for most needs. This module does,
however, provide a few procedures to allow programmers to access type definitions. These
may be a convenience for debugging, or in writing tools to manipulate type definitions.

The following procedures allow programmers to find the definition of a given type:

type_definition(?Type, ?Definition)

type_definition(?Type, ?Definition, ?Size)

where Type is an atom naming a type, Definition is the definition of that type, and Size is
the number of bytes occupied by a foreign term of this type. Size will be the atom unknown

if the size of an object of that type is not known. Such types may not be used as fields
in structs or unions, or in arrays. However, pointers to them may be created. If Type
is not bound at call time, then these procedures will backtrack through all current type
definitions.

A definition looks much like the definition given when the type was defined with type/1,
except that it has been simplified. Firstly, intermediate type names have been elided. For ex-
ample, if foo is defined as foo=integer, and bar as bar=foo, then type_definition(bar,

integer) would hold. Also, in the definition of a compound type, types of parts are always
defined by type names, rather than complex specifications. So if the type of a field in a
struct was defined as pointer(fred), then it will show up in the definition as '$fred'. Of
course, type_definition('$fred', pointer(fred)) would hold, also.

The following predicates allow the programmer to determine whether or not a given type
is atomic:

Chapter 10: The Prolog Library 745

atomic_type(?Type)

atomic_type(?Type, ?Primitive_type)

atomic_type(?Type, ?Primitive_type, ?Size)

where Type is an atomic type. See Section 10.39.1 [str-fty], page 739, for the definition
of an atomic type. Primitive type is the primitive type that Type is defined in terms of.
Size is the number of bytes occupied by an object of type Type, or the atom unknown, as
above. If Type is unbound at call time, then these predicates will backtrack through all the
currently defined atomic types.

10.39.9 Tips

1. Most important tip: do not subvert the structs type system by looking inside foreign
terms to get the address, or use functor/3 to get the type. This has two negative
effects: firstly, if the structs package should change its representation of foreign terms,
then your code will not work. But more importantly, you are more likely to get type
mismatches, and likely to get unwrapped terms or even doubly wrapped terms where
you expect wrapped ones.

2. Remember that a foreign term fred(123456) is not of type fred, but a pointer to
fred. Looked at another way, what resides in memory at address 123456 is of type
fred.

3. The wrapper put on a foreign term signifies the type of that foreign term. If you declare
a type to be pointer(opaque) because you want to view that pointer to be opaque,
when you get something of this type, then it will be printed as opaque(456123). This
is not very informative. It is better to declare

fred = opaque,

thing = struct([...,

part:pointer(fred),

...

]).

so that when you get the contents of the part member of a thing, it is wrapped as
fred(456123).

10.39.10 Example

The following example shows how to use library(structs) in a simple package for handling
integer arrays. We define a module minivec with exported predicates for creating and
disposing arrays, accessing its elements, and computing their sum. The summing operation
is implemented in C and the rest in Prolog. Arrays are created using the array(Type)

foreign type.

Note that the type declaration int32 does not have to be given in the C source code,
as it appears in the automatically generated header file minivec_glue.h. Note also how
the foreign type specification +pointer(int_array) corresponds to the C type declaration
int32 *.

746 SICStus Prolog

% minivec.pl

:- module(minivec, [

new_array/2,

get_array/3,

put_array/3,

dispose_array/1,

sum_array/2

]).

:- load_files(library(str_decl), [when(compile_time)]).

:- use_module(library(structs)).

:- foreign_type

int32 = integer_32,

int_array = array(int32).

foreign(c_sum_array, c_sum_array(+integer,

+pointer(int_array),

[-integer])).

foreign_resource(minivec, [c_sum_array]).

:- load_foreign_resource(minivec).

new_array(Size, array(Size,Mem)) :-

new(int_array, Size, Mem).

get_array(Index, array(_,Mem), Value) :-

get_contents(Mem, Index, Value).

put_array(Index, array(_,Mem), Value) :-

put_contents(Mem, Index, Value).

dispose_array(array(_,Mem)) :-

dispose(Mem).

sum_array(array(Size,Mem), Sum) :-

c_sum_array(Size, Mem, Sum).

Chapter 10: The Prolog Library 747

/* minivec.c */

#include "minivec_glue.h"

SP_integer c_sum_array(SP_integer cnt, int32 *mem)

{

int i;

SP_integer sum = 0;

for (i=0; i<cnt; i++)

sum += mem[i];

return sum;

}

session

% splfr --struct minivec.pl minivec.c

% sicstus -l minivec

% compiling /home/matsc/sicstus4/Suite/minivec.pl...

% [...]

% compiled /home/matsc/sicstus4/Suite/minivec.pl in mod-

ule minivec, 30 msec 68388 bytes

SICStus 4.6.0 ...

Licensed to SICS

| ?- new_array(4, A),

put_array(0,A,1),

put_array(1,A,10),

put_array(2,A,100),

put_array(3,A,1000),

sum_array(A,S),

dispose_array(A).

A = array(4,int_array(1264224)),

S = 1111

A fragment from the generated header file:

/* minivec_glue.h */

#include <sicstus/sicstus.h>

#include <stdlib.h>

typedef int int32;

typedef int32 *(int_array)/* really an unknown-size array */;

extern SP_integer c_sum_array(SP_integer, int32 *);

10.40 Operating System Utilities—library(system)

This package contains utilities for invoking services from the operating system that do not
fit elsewhere. This package contains utilities for invoking services from the operating system
that does not fit elsewhere.

Exported predicates:

748 SICStus Prolog

now(-When)

Unifies the current date and time as a UNIX timestamp with When.

datime(-Datime)

Unifies Datime with the current date and time as a datime/6 record of the
form datime(Year,Month,Day,Hour,Min,Sec). All fields are integers.

datime(+When,-Datime)

datime(-When,+Datime)

Convert a time stamp, as obtained by now/1, to a datime/6 record. Can be
used in both directions.

sleep(+Seconds)

Puts the SICStus Prolog process asleep for Second seconds, where Seconds
should be a non-negative number.

environ(?Var, ?Value)

Var is the name of a system property or an environment variable, and Value
is its value. Both are atoms. Can be used to enumerate all current system
properties and environment variables.

The same as environ(Var, Value, merged).

environ(?Var, ?Value, +Source) since release 4.1

Var is the name of an environment variable or system property, and Value is
its value. Both are atoms. Can be used to enumerate all current environment
variables and system properties.

Source is one of properties, in which case only system properties are enumer-
ated; environment, in which case only environment variables are enumerated;
and merged, in which case both environment variables and system properties
are enumerated. When Source is merged and an environment variable and a
system property have equivalent names, the value of the system property is
returned.

On UNIX-like platforms, two names are equivalent if and only if they are iden-
tical. On Windows-like platforms, a case insensitive comparison is used.

See Section 4.17.1 [System Properties and Environment Variables], page 224,
for more information.

10.41 Tcl/Tk Interface—library(tcltk)

10.41.1 Introduction

This is a basic tutorial for those SICStus Prolog users who would like to add Tcl/Tk user
interfaces to their Prolog applications. The tutorial assumes no prior knowledge of Tcl/Tk
but, of course, does assume the reader is proficient in Prolog.

Aware that the reader may not have heard of Tcl/Tk, we will start by answering three
questions: what is Tcl/Tk? what is it good for? what relationship does it have to Prolog?

10.41.1.1 What Is Tcl/Tk?

Tcl/Tk, as its title suggests, is actually two software packages: Tcl and Tk. Tcl, pronounced
tickle, stands for tool command language and is a scripting language that provides a pro-

Chapter 10: The Prolog Library 749

gramming environment and programming facilities such as variables, loops, and procedures.
It is designed to be easily extensible.

Tk, pronounced tee-kay, is just such an extension to Tcl, which is a toolkit for windowing
systems. In other words, Tk adds facilities to Tcl for creating and manipulating user
interfaces based on windows and widgets within those windows.

10.41.1.2 What Is Tcl/Tk Good For?

In combination the Tcl and Tk packages (we will call the combination simply Tcl/Tk) are
useful for creating graphical user interfaces (GUIs) to applications. The GUI is described
in terms of instances of Tk widgets, created through calls in Tcl, and Tcl scripts that form
the glue that binds together the GUI and the application. (If you are a little lost at this
point, then all will be clear in a moment with a simple example.)

There are lots of systems out there for adding GUIs to applications so why choose Tcl/Tk?
Tcl/Tk has several advantages that make it attractive for this kind of work. Firstly, it
is good for rapid prototyping of GUIs. Tcl is an interpreted scripting language. The
scripts can be modified and executed quickly, with no compilation phase, so speeding up
the development loop.

Secondly, it is easier to use a system based on a scripting language, such as Tcl/Tk, than
many of the conventional packages available. For example, getting to grips with the X
windows suite of C libraries is not an easy task. Tcl/Tk can produce the same thing using
simple scripting with much less to learn. The penalty for this is that programs written in an
interpreted scripting language will execute more slowly than those written using compiled
C library calls, but for many interfaces that do not need great speed Tcl/Tk is fast enough
and its ease of use more than outweighs the loss of speed. In any case, Tcl/Tk can easily
handle hundreds of events per mouse movement without the user noticing.

Thirdly, Tcl/Tk is good for making cross-platform GUIs. The Tk toolkit has been ported
to native look-and-feel widgets on Mac, PC (Windows), and UNIX (X windows) platforms.
You can write your scripts once and they will execute on any of these platforms.

Lastly, the software is distributed under a free software license and so is available in both
binary and source formats free of charge.

10.41.1.3 What Is Tcl/Tks Relationship to SICStus Prolog?

SICStus Prolog comes with a Prolog library for interfacing to Tcl/Tk. The purpose of the
library is to enable Prolog application developers to add GUIs to their applications rapidly
and easily.

10.41.1.4 A Quick Example of Tcl/Tk in Action

As a taster, we will show you two simple examples programs that use SICStus Prolog with
the Tcl/Tk extensions: the ubiquitous “hello world” example; and a very simple telephone
book look up example.

You are not expected to understand how these examples work at this stage. They are
something for you to quickly type in to see how easy it is to add GUIs to Prolog programs

750 SICStus Prolog

through Tcl/Tk. After reading through the rest of this tutorial you will fully understand
these examples and be able to write your own GUIs.

Here is the “Hello World” program; also in library('tcltk/examples/ex1.pl'):

:- use_module(library(tcltk)).

go :-

tk_new([name('Example 1')], Interp),

tcl_eval(Interp, 'button .fred -text "hello world"

-command { puts "hello world"}', _),

tcl_eval(Interp, 'pack .fred', _),

tk_main_loop.

SICStus+Tcl/Tk hello world program.

To run it just start up SICStus (under Windows use sicstus, not spwin), load the program,
and evaluate the Prolog goal go. The first line of the go clause calls tk_new/2, which creates
a Tcl/Tk interpreter and returns a handle Interp through which Prolog will interact with
the interpreter. Next a call to tcl_eval/3 is made, which creates a button displaying
the ‘hello world’ text. Next a call is made to tcl_eval/3 that causes the button to be
displayed in the main application window. Finally, a call is make to tk_main_loop/0 that
passes control to Tcl/Tk, making sure that window events are serviced.

See how simple it is with just a three line Prolog program to create an application window
and display a button in it. Click on the button and see what it does.

The reason you should use sicstus under Windows instead of spwin is that the latter does
not have the C standard streams (stdin,stdout,stderr) and the Tcl command puts will
give an error if there is no stdout.

The previous example showed us how to create a button and display some text in it. It
was basically pure Tcl/Tk generated from within Prolog but did not have any interaction
with Prolog. The following example demonstrates a simple callback mechanism. A name
is typed into a text entry box, a button is pressed, which looks up the telephone number
corresponding to the name in a Prolog database, and the telephone number is then displayed.

Here is the code; also in library('tcltk/examples/ex2.pl'):

Chapter 10: The Prolog Library 751

:- use_module(library(tcltk)).

telephone(fred, '123-456').

telephone(wilbert, '222-2222').

telephone(taxi, '200-0000').

telephone(mary, '00-36-1-666-6666').

go :-

tk_new([name('Example 2')], T),

tcl_eval(T, 'entry .name -textvariable name',_),

tcl_eval(T, 'button .search -text search -command {

prolog telephone($name,X);

set result $prolog_variables(X) }', _),

tcl_eval(T, 'label .result -relief raised -textvariable result', _),

tcl_eval(T, 'pack .name .search .result -side top -fill x', _),

tk_main_loop.

SICStus+Tcl/Tk telephone number lookup

Again, to run the example, start up SICStus Prolog, load the code, and run the goal go.

You will notice that three widgets will appear in a window: one is for entering the name
of the person or thing that you want to find the telephone number for, the button is for
initiating the search, and the text box at the bottom is for displaying the result.

Type fred into the entry box, hit the search button and you should see the phone number
displayed. You can then try the same thing but with wilbert, taxi or mary typed into the
text entry box.

What is happening is that when the button is pressed, the value in the entry box is re-
trieved, then the telephone/2 predicate is called in Prolog with the entry box value as first
argument, then the second argument of telephone is retrieved (by this time bound to the
number) and is displayed below the button.

This is a very crude example of what can be done with the Tcl/Tk module in Prolog.
For example, this program does not handle cases where there is no corresponding phone
number or where there is more than one corresponding phone number. The example is
just supposed to wet your appetite, but all these problems can be handled by Prolog +

752 SICStus Prolog

Tcl/Tk, although with a more sophisticated program. You will learn how to do this in the
subsequent chapters.

10.41.1.5 Outline of This Tutorial

Now we have motivated using Tcl/Tk as a means of creating GUIs for Prolog programs, this
document goes into the details of using Tcl/Tk as a means of building GUIs for SICStus
Prolog applications.

Firstly, Tcl is introduced and its syntax and core commands described. Then the Tk
extensions to Tcl are introduced. We show how with Tcl and Tk together the user can
build sophisticated GUIs easily and quickly. At the end of this Tcl/Tk part of the tutorial
an example of a pure Tcl/Tk program will be presented together with some tips on how to
design and code Tcl/Tk GUIs.

The second phase of this document describes the SICStus Prolog tcltk library. It provides
extensions to Prolog that allow Prolog applications to interact with Tcl/Tk: Prolog can
make calls to Tcl/Tk code and vice versa.

Having reached this point in the tutorial the user will know how to write a Tcl/Tk GUI
interface and how to get a Prolog program to interact with it, but arranging which process
(the Prolog process or the Tcl/Tk process) is the dominant partner is non-trivial and so
is described in a separate chapter on event handling. This will help the user choose the
most appropriate method of cooperation between Tcl/Tk and Prolog to suit their particular
application.

This section, the Tcl/Tk+Prolog section, will be rounded off with the presentation of some
example applications that make use of Tcl/Tk and Prolog.

Then there is a short discussion section on how to use other Tcl extension packages with
Tcl/Tk and Prolog. Many such extension packages have been written and when added to
Prolog enhanced with Tcl/Tk can offer further functionality to a Prolog application.

The appendices provide a full listing with description of the predicates available in the tcltk
SICStus Prolog library, and the extensions made to Tcl/Tk for interacting with Prolog.

Lastly, a section on resources gives pointers to where the reader can find more information
on Tcl/Tk.

10.41.2 Tcl

Tcl is an interpreted scripting language. In this chapter, first the syntax of Tcl is described
and then the core commands are described. It is not intended to give a comprehensive
description of the Tcl language here but an overview of the core commands, enough to get
the user motivated to start writing their own scripts.

For pointers to more information on Tcl; see Section 10.41.7 [Resources], page 840.

Chapter 10: The Prolog Library 753

10.41.2.1 Syntax

A Tcl script consists of a series of strings separated from each other by a newline character.
Each string contains a command or series of semi-colon separated commands. A command
is a series of words separated by spaces. The first word in a command is the name of the
command and subsequent words are its arguments.

An example is:

set a 1

set b 2

which is a Tcl script of two commands: the first command sets the value of variable a to 1,
and the second command sets the value of variable b to 2.

An example of two commands on the same line separated by a semi-colon is:

set a 1; set b 2

which is equivalent to the previous example but written entirely on one line.

A command is executed in two phases. In the first phase, the command is broken down
into its constituent words and various textual substitutions are performed on those words.
In the second phase, the procedure to call is identified from the first word in the command,
and the procedure is called with the remaining words as arguments.

There are special syntactic characters that control how the first phase, the substitution
phase, is carried out. The three major substitution types are variable substitution, command
substitution, and backslash substitution.

Variable substitution happens when a ‘$’ prefixed word is found in a command. There are
three types of variable substitution:

− $name

− where name is a scalar variable. name is simply substituted in the word for its
value. name can contain only letters, digits, or underscores.

− $name(index)

− where name is the name of an array variable and index is the index into it. This
is substituted by the value of the array element. name must contain only letters,
digits, or underscores. index has variable, command, and backslash substitution
performed on it too.

− ${name}

− where name can have any characters in it except closing curly bracket. This is
more or less the same as $name substitution except it is used to get around the
restrictions in the characters that can form name.

An example of variable substitution is:

754 SICStus Prolog

set a 1

set b $a

which sets the value of variable a to 1, and then sets the value of variable b to the value of
variable a.

Command substitution happens when a word contains an open square bracket, ‘[’. The
string between the open bracket and matching closing bracket are treated as a Tcl script.
The script is evaluated and its result is substituted in place of the original command sub-
stitution word.

A simple example of command substitution is:

set a 1

set b [set a]

which does the same as the previous example but using command substitution. The result
of a set a command is to return the value of a, which is then passed as an argument to set

b and so variable b acquires the value of variable a.

Backslash substitution is performed whenever the interpreter comes across a backslash.
The backslash is an escape character and when it is encountered is causes the interpreter
to handle the next characters specially. Commonly escaped characters are ‘\a’ for audible
bell, ‘\b’ for backspace, ‘\f’ for form feed, ‘\n’ for newline, ‘\r’ for carriage return, ‘\t’ for
horizontal tab, and ‘\v’ for vertical tab. Double-backslash, ‘\\’, is substituted with a single
backslash. Other special backslash substitutions have the following forms:

• \ooo

− the digits ooo give the octal value of the escaped character

• \xHH

− the x denotes that the following hexadecimal digits are the value of the escaped
character

Any other character that is backslash escaped is simply substituted by the character itself.
For example, \W is replaced by W.

A further syntactic construction is used to delay substitution. When the beginning of a
word starts with a curly bracket, ‘{’, it does not do any of the above substitutions between
the opening curly bracket and its matching closing curly bracket. The word ends with the
matching closing curly bracket. This construct is used to make the bodies of procedures in
which substitutions happen when the procedure is called, not when it is constructed. Or it
is used anywhere when the programmer does not want the normal substitutions to happen.
For example:

puts {I have $20}

will print the string ‘I have $20’ and will not try variable substitution on the ‘$20’ part.

Chapter 10: The Prolog Library 755

A word delineated by curly brackets is replaced with the characters within the brackets
without performing the usual substitutions.

A word can begin with a double-quote and end with the matching closing double-quote.
Substitutions as detailed above are done on the characters between the quotes, and the
result is then substituted for the original word. Typically double-quotes are used to group
sequences of characters that contain spaces into a single command word.

For example:

set name "Fred the Great"

puts "Hello my name is $name"

outputs ‘Hello my name is Fred the Great’. The first command sets the value of variable
name to the following double-quoted string "Fred the Great". The the next command
prints its argument, a single argument because it is a word delineated by double-quotes,
that has had variable substitution performed on it.

Here is the same example but using curly brackets instead of double-quotes:

set name {Fred the Great}

puts {Hello my name is $name}

gives the output ‘Hello my name is $name’ because substitutions are suppressed by the
curly bracket notation.

And again the same example but without either curly brackets or double-quotes:

set name Fred the Great

puts Hello my name is $name

simply fails because both set and puts expect a single argument but without the word
grouping effects of double-quotes or curly brackets they find that they have more than one
argument and throw an exception.

Being a simple scripting language, Tcl does not have any real idea of data types. The
interpreter simply manipulates strings. The Tcl interpreter is not concerned with whether
those strings contain representations of numbers or names or lists. It is up to the commands
themselves to interpret the strings that are passed to them as arguments in any manner
those choose.

10.41.2.2 Variables

This has been dealt with implicitly above. A variable has a name and a value. A name can
be any string whatsoever, as can its value.

For example,

set "Old King Cole" "merry soul"

756 SICStus Prolog

sets the value of the variable named Old King Cole to the value merry soul. Variable
names can also be numbers:

set 123 "one two three"

sets the variable with name 123 to the value one two three. In general, it is better to use
the usual conventions — start with a letter then follow with a combination of letters, digits,
and underscores — when giving variables names to avoid confusion.

Array variables are also available in Tcl. These are denoted by an array name followed by
an array index enclosed in round brackets. As an example:

set fred(one) 1

set fred(two) 2

will set the variable fred(one) to the value 1 and fred(two) to the value 2.

Tcl arrays are associative arrays in that both the array name and the array index can be
arbitrary strings. This also makes multidimensional arrays possible if the index contains a
comma:

set fred(one,two) 12

It is cheating in that the array is not stored as a multidimensional array with a pair of
indices, but as a linear array with a single index that happens to contain a comma.

10.41.2.3 Commands

Now that the Tcl syntax and variables have been been dealt with, we will now look at some
of the commands that are available.

Each command when executed returns a value. The return value will be described along
with the command.

A quick word about the notation used to describe Tcl commands. In general, a description
of a command is the name of the command followed by its arguments separated by spaces.
An example is:

set varName ?value?

which is a description of the Tcl set command, which takes a variable name varName and
an optional argument, a value.

Optional arguments are enclosed in question mark, ?, pairs, as in the example.

A series of three dots . . . represents repeated arguments. An example is a description of
the unset command:

unset varName ?varName varName ...?

Chapter 10: The Prolog Library 757

which shows that the unset command has at least one compulsory argument varName but
has any number of subsequent optional arguments.

The most used command over variables is the set command. It has the form

set varName ?value?

The value of value is determined, the variable varName is set to it, and the value is returned.
If there is no value argument, then the value of the variable is simply returned. It is thus
used to set and/or get the value of a variable.

The unset command is used to remove variables completely from the system:

unset varName ?varName varName ...?

which given a series of variable names deletes them. The empty string is always returned.

There is a special command for incrementing the value of a variable:

incr varName ?increment?

which, given the name of a variable thats value is an integer string, increments it by the
amount increment. If the increment part is left out, then it defaults to 1. The return value
is the new value of the variable.

Expressions are constructed from operands and operators and can then be evaluated. The
most general expression evaluator in Tcl is the expr command:

expr arg ?arg arg ... arg?

which evaluates its arguments as an expression and returns the value of the evaluation.

A simple example expression is

expr 2 * 2

which when executed returns the value 4.

There are different classes of operators: arithmetic, relational, logical, bitwise, and choice.
Here are some example expressions involving various operators:

arithmetic $x * 2

relational $x > 2

logical ($x == $y) || ($x == $z)

bitwise 8 & 2

choice ($a == 1) ? $x : $y

Basically the operators follow the syntax and meaning of their ANSI C counterparts.

758 SICStus Prolog

Expressions to the expr command can be contained in curly brackets in which case the
usual substitutions are not done before the expr command is evaluated, but the command
does its own round of substitutions. So evaluating a script such as:

set a 1

expr { ($a==1) : "yes" ? "no" }

will evaluate to yes.

Tcl also has a whole host of math functions that can be used in expressions. Their evaluation
is again the same as that for their ANSI C counterparts. For example:

expr { 2*log($x) }

will return 2 times the natural log of the value of variable x.

Tcl has a notion of lists, but as with everything it is implemented through strings. A list is
a string that contains words.

A simple list is just a space separated series of strings:

set a {one two three four five}

will set the variable a to the list containing the five strings shown. The empty list is denoted
by an open and close curly bracket pair with nothing in between: {}.

For the Prolog programmer, there is much confusion between a Prolog implementation of
lists and the Tcl implementation of lists. In Prolog we have a definite notion of the printed
representation of a list: a list is a sequence of terms enclosed in square brackets (we ignore
dot notation for now); a nested list is just another term.

In Tcl, however, a list is really just a string that conforms to a certain syntax: a string of
space separated words. But in Tcl there is more than one way of generating such a string.
For example,

set fred {a b c d}

sets fred to

"a b c d"

as does

set fred "a b c d"

because {a b c d} evaluates to the string a b c d, which has the correct syntax for a list.
But what about nested lists? Those are represented in the final list-string as being contained
in curly brackets. For example:

set fred {a b c {1 2 3} e f}

Chapter 10: The Prolog Library 759

results in fred having the value

"a b c {1 2 3} e f"

The outer curly brackets from the set command have disappeared, which causes confusion.
The curly brackets within a list denote a nested list, but there are no curly brackets at
the top level of the list. (We cannot help thinking that life would have been easier if the
creators of Tcl would have chosen a consistent representation for lists, as Prolog and LISP
do.)

So remember: a list is really a string with a certain syntax, space separated items or words;
a nested list is surrounded by curly brackets.

There are a dozen commands that operate on lists.

concat ?list list ...?

This makes a list out of a series of lists by concatenating its argument lists together. The
return result is the list resulting from the concatenation.

lindex list index

returns the index-th element of the list. The first element of a list has an index of 0.

linsert list index value ?value ...?

returns a new list in which the value arguments have been inserted in turn before the
index-th element of list.

list ?value value ...?

returns a list where each element is one of the value arguments.

llength list

returns the number of elements in list list.

lrange list first last

returns a slice of a list consisting of the elements of the list list from index first until index
last.

lreplace list first last ?value ... value?

returns a copy of list list but with the elements between indices first and last replaced with
a list formed from the value arguments.

lsearch ?-exact? ?-glob? ?-regexp? list pattern

760 SICStus Prolog

returns the index of the first element in the list that matches the given pattern. The type
of matching done depends on which of the switch is present -exact, -glob, -regexp, is
present. Default is -glob.

lsort ?-ascii? ?-integer? ?-real? ?-command com-

mand? ?-increasing? ?-decreasing{? list

returns a list, which is the original list list sorted by the chosen technique. If none of the
switches supplies the intended sorting technique, then the user can provide one through the
-command command switch.

There are also two useful commands for converting between lists and strings:

join list ?joinString?

which concatenates the elements of the list together, with the separator joinString between
them, and returns the resulting string. This can be used to construct filenames; for example:

set a {{} usr local bin}

set filename [join $a /]

results in the variable filename having the value /usr/local/bin.

The reverse of the join command is the split command:

split string ?splitChars?

which takes the string string and splits it into string on splitChars boundaries and returns
a list with the strings as elements. An example is splitting a filename into its constituent
parts:

set a [split /usr/local/src /]

gives a the value {{} usr local src}, a list.

Tcl has the four usual classes of control flow found in most other programming languages:

if...elseif...else, while, for, foreach, switch, and eval.

We go through each in turn.

The general form of an if command is the following:

if test1 body1 ?elseif test2 body2 elseif ...? ?else bodyn?

which when evaluated, evaluates expression test1, which if true causes body1 to be evalu-
ated, but if false, causes test2 to be evaluated, and so on. If there is a final else clause,
then its bodyn part is evaluated if all of the preceding tests failed. The return result of an
if statement is the result of the last body command evaluated, or the empty list if none of
the bodies are evaluated.

Chapter 10: The Prolog Library 761

Conditional looping is done through the while command:

while test body

which evaluates expression test, which if true then evaluates body. It continues to do that
until test evaluates to 0, and returns the empty string.

A simple example is:

set a 10

while {$a > 0} { puts $a; incr a -1 }

which initializes variable a with value ten and then loops printing out the value of a and
decrementing it until its value is 0, when the loop terminates.

The for loop has the following form:

for init test reinit body

which initializes the loop by executing init, then each time around the loop the expression
test is evaluated, which if true causes body to be executed and then executes reinit. The
loop spins around until test evaluates to 0. The return result of a for loop is the empty
string.

An example of a for loop:

for {set a 10} ($a>0) {incr a -1} {puts $a}

which initializes the variable a with value 10, then goes around the loop printing the value
of a and decrementing it as long as its value is greater than 0. Once it reaches 0 the loop
terminates.

The foreach command has the following form:

foreach varName list body

where varName is the name of a variable, list is an instance of a list, and body is a series
of commands to evaluate. A foreach then iterates over the elements of a list, setting the
variable varName to the current element, and executes body. The result of a foreach loop
is always the empty string.

An example of a foreach loop:

foreach friend {joe mary john wilbert} {puts "I like $friend"}

will produce the output:

I like joe

I like mary

I like john

I like wilbert

762 SICStus Prolog

There are also a couple of commands for controlling the flow of loops: continue and break.

continue stops the current evaluation of the body of a loop and goes on to the next one.

break terminates the loop altogether.

Tcl has a general switch statement, which has two forms:

switch ?options? string pattern body ?pattern body ... ?

switch ?options? string { pattern body ?pattern body ...? }

When executed, the switch command matches its string argument against each of the
pattern arguments, and the body of the first matching pattern is evaluated. The matching
algorithm depends on the options chosen, which can be one of

-exact use exact matching
-glob use glob-style matching
-regexp use regular expression matchinig

An example is:

set a rob

switch -glob $a {

a*z { puts "A to Z"}

r*b { puts "rob or rab"}

}

which will produce the output:

rob or rab

There are two forms of the switch command. The second form has the command arguments
surrounded in curly brackets. This is primarily so that multi-line switch commands can be
formed, but it also means that the arguments in brackets are not evaluated (curly brackets
suppress evaluation), whereas in the first type of switch statement the arguments are first
evaluated before the switch is evaluated. These effects should be borne in mind when
choosing which kind of switch statement to use.

The final form of control statement is eval:

eval arg ?arg ...?

which takes one or more arguments, concatenates them into a string, and executes the string
as a command. The return result is the normal return result of the execution of the string
as a command.

An example is

set a b

set b 0

eval set $a 10

Chapter 10: The Prolog Library 763

which results in the variable b being set to 10. In this case, the return result of the eval is
10, the result of executing the string "set b 10" as a command.

Tcl has several commands over strings. There are commands for searching for patterns
in strings, formatting and parsing strings (much the same as printf and scanf in the C
language), and general string manipulation commands.

Firstly we will deal with formatting and parsing of strings. The commands for this are
format and scan respectively.

format formatString ?value value ...?

which works in a similar to C’s printf; given a format string with placeholders for values
and a series of values, return the appropriate string.

Here is an example of printing out a table for base 10 logarithms for the numbers 1 to 10:

for {set n 1} {$n <= 10} {incr n} {

puts [format "log10(%d) = %.4f" $n [expr log10($n)]]

}

which produces the output

ln(1) = 0.0000

ln(2) = 0.3010

ln(3) = 0.4771

ln(4) = 0.6021

ln(5) = 0.6990

ln(6) = 0.7782

ln(7) = 0.8451

ln(8) = 0.9031

ln(9) = 0.9542

ln(10) = 1.0000

The reverse function of format is scan:

scan string formatString varName ?varName ...?

which parses the string according to the format string and assigns the appropriate values
to the variables. it returns the number of fields successfully parsed.

An example,

scan "qty 10, unit cost 1.5, total 15.0" \

"qty %d, unit cost %f, total %f" \

quantity cost_per_unit total

would assign the value 10 to the variable quantity, 1.5 to the variable cost_per_unit and
the value 15.0 to the variable total.

764 SICStus Prolog

There are commands for performing two kinds of pattern matching on strings: one for
matching using regular expressions, and one for matching using UNIX-style wildcard pattern
matching (globbing).

The command for regular expressions matching is as follows:

regexp ?-indices? ?-nocase? exp string ?matchVar? ?subVar subVar ...?

where exp is the regular expression and string is the string on which the matching is
performed. The regexp command returns 1 if the expression matches the string, 0 otherwise.
The optional -nocase switch does matching without regard to the case of letters in the
string. The optional matchVar and subVar variables, if present, are set to the values of
string matches. In the regular expression, a match that is to be saved into a variable is
enclosed in round braces. An example is

regexp {([0-9]+)} "I have 3 oranges" a

will assign the value 3 to the variable a.

If the optional switch -indices is present, then instead of storing the matching substrings
in the variables, the indices of the substrings are stored; that is a list with a pair of numbers
denoting the start and end position of the substring in the string. Using the same example:

regexp -indices {([0-9]+)} "I have 3 oranges" a

will assign the value "7 7", because the matched numeral 3 is in the eighth position in the
string, and indices count from 0.

String matching using the UNIX-style wildcard pattern matching technique is done through
the string match command:

string match pattern string

where pattern is a wildcard pattern and string is the string to match. If the match succeeds,
then the command returns 1; otherwise, it returns 0. An example is

string match {[a-z]*[0-9]} {a_$%^_3}

which matches because the command says match any string that starts with a lower case
letter and ends with a number, regardless of anything in between.

There is a command for performing string substitutions using regular expressions:

regsub ?-all? ?-nocase? exp string subSpec varName

where exp is the regular expression and string is the input string on which the substitution
is made, subSpec is the string that is substituted for the part of the string matched by the
regular expression, and varName is the variable on which the resulting string is copied into.
With the -nocase switch, the matching is done without regard to the case of letters in the

Chapter 10: The Prolog Library 765

input string. The -all switch causes repeated matching and substitution to happen on the
input string. The result of a regsub command is the number of substitutions made.

An example of string substitution is:

regsub {#name#} {My name is #name#} Rob result

which sets the variable result to the value "My name is Rob". An example of using the
-all switch:

regsub -all {#name#} {#name#'s name is #name#} Rob result

sets the variable result to the value "Rob’s name is Rob" and it returns the value 2 because
two substitutions were made.

The are a host of other ways to manipulate strings through variants of the string command.
Here we will go through them.

To select a character from a string given the character position, use the string index

command. An example is:

string index "Hello world" 6

which returns w, the 7th character of the string. (Strings are indexed from 0).

To select a substring of a string, given a range of indices use the string range command.
An example is:

string range "Hello world" 3 7

which returns the string "lo wo". There is a special index marker named end, which is used
to denote the the end of a string, so the code

string range "Hello world" 6 end

will return the string "world".

There are two ways to do simple search for a substring on a string, using the string first

and string last commands. An example of string first is:

string first "dog" "My dog is a big dog"

find the first position in string "My dog is a big dog" that matches "dog". It will return
the position in the string in which the substring was found, in this case 3. If the substring
cannot be found, then the value -1 is returned.

Similarly,

string last "dog" "My dog is a big dog"

766 SICStus Prolog

will return the value 16 because it returns the index of the last place in the string that the
substring matches. Again, if there is no match, then -1 is returned.

To find the length of a string use string length, which given a string simply returns its
length.

string length "123456"

returns the value 6.

To convert a string completely to upper case use string toupper:

string toupper "this is in upper case"

returns the string "THIS IS IN UPPER CASE".

Similarly,

string tolower "THIS IS IN LOWER CASE"

returns the string "this is in lower case".

There are commands for removing characters from strings: string trim, string

trimright, and string trimleft.

string trim string ?chars?

which removes the characters in the string chars from the string string and returns the
trimmed string. If chars is not present, then whitespace characters are removed. An
example is:

string string "The dog ate the exercise book" "doe"

which would return the string "Th g at th xrcis bk".

string trimleft is the same as string trim except only leading characters are removed.
Similarly string trimright removes only trailing characters. For example:

string trimright $my_input

would return a copy of the string contained in $my_input but with all the trailing whitespace
characters removed.

There is a comprehensive set of commands for file manipulation. We will cover only the
some of the more important ones here.

To open a file the open command is used:

open name ?access?

where name is a string containing the filename, and the option access parameter contains
a string of access flags, in the UNIX style. The return result is a handle to the open file.

Chapter 10: The Prolog Library 767

If access is not present, then the access permissions default to "r", which means open for
reading only. The command returns a file handle that can be used with other commands.
An example of the use of the open command is

set fid [open "myfile" "r+"]

which means open the file myfile for both reading and writing and set the variable fid to
the file handle returned.

To close a file simply use

close fileId

For example,

close $fid

will close the file that has the file handle stored in the variable fid.

To read from a file, the read command is used:

read fileId numBytes

which reads numBytes bytes from the file attached to file handle fileId, and returns the
bytes actually read.

To read a single line from a file use gets:

gets fileId ?varName?

which reads a line from the file attached to file handle fileId but chops off the trailing
newline. If variable varName is specified, then the string read in is stored there and the
number of bytes is returned by the command. If the variable is not specified, then the
command returns the string only.

To write to a file, use puts:

puts ?-nonewline? ?fileId? string

which outputs the string string. If the file handle fileId is present, then the string is output
to that file; otherwise, it is printed on stdout. If the switch -nonewline is present, then a
trailing newline is not output.

To check if the end of a file has been reached, use eof:

eof fileId

which, given a file handle fileId returns 1 if the end has been reached, and 0 otherwise.

The are a host of other commands over files and processes, which we will not go into here.

(For extra information on file I/O commands, refer to the Tcl manual pages.)

768 SICStus Prolog

Tcl provides a way of creating new commands, called procedures, that can be executed in
scripts. The arguments of a procedure can be call-by-value or call-by-reference, and there
is also a facility for creating new user defined control structures using procedures.

A procedure is declared using the proc command:

proc name argList body

where the name of the procedure is name, the arguments are contained in argList and the
body of the procedure is the script body. An example of a procedure is:

proc namePrint { first family } {

puts "My first name is $first"

puts "My family name is $family"

}

which can be called with

namePrint Tony Blair

to produce the output:

My first name is Tony

My family name is Blair

A procedure with no arguments is specified with an empty argument list. An example is a
procedure that just prints out a string:

proc stringThing {} {

puts "I just print this string"

}

Arguments can be given defaults by pairing them with a value in a list. An example here
is a counter procedure:

proc counter { value { inc 1 } } {

eval $value + $inc

}

which can be called with two arguments like this

set v 10

set v [counter $v 5]

which will set variable v to the value 15; or it can be called with one argument:

set v 10

set v [counter $v]

in which case v will have the value 11, because the default of the argument inc inside the
procedure is the value 1.

Chapter 10: The Prolog Library 769

There is a special argument for handling procedures with variable number of arguments,
the args argument. An example is a procedure that sums a list of numbers:

proc sum { args } {

set result 0;

foreach n $args {

set result [expr $result + $n]

}

return $result;

}

which can be called like this:

sum 1 2 3 4 5

which returns the value 15.

The restriction on using defaulted arguments is that all the arguments that come after the
defaulted ones must also be defaulted. If args are used, then it must be the last argument
in the argument list.

A procedure can return a value through the return command:

return ?options? ?value?

which terminates the procedure returning value value, if specified, or just causes the proce-
dure to return, if no value specified. (The ?options? part has to do with raising exceptions,
which we will will not cover here.)

The return result of a user defined procedure is the return result of the last command
executed by it.

So far we have seen the arguments of a procedure are passed using the call-by-value mech-
anism. They can be passed call by reference using the upvar command:

upvar ?level? otherVar1 myVar1 ?otherVar2 myVar2 ...?

which makes accessible variables somewhere in a calling context with the current context.
The optional argument level describes how many calling levels up to look for the variable.
This is best shown with an example:

set a 10

set b 20

proc add { first second } {

upvar $first f $second s

expr $f+$s

}

770 SICStus Prolog

which when called with

add a b

will produce the result 30. If you use call-by-value instead:

add $a $b

then the program will fail because when executing the procedure add it will take the first
argument 10 as the level argument, a bad level. (Also variable 20 does not exist at any
level.)

New control structures can be generated using the uplevel command:

uplevel ?level? arg ?arg arg ...?

which is like eval, but it evaluates its arguments in a context higher up the calling stack.
How far up the stack to go is given by the optional level argument.

proc do { loop condition } {

set nostop 1

while { $nostop } {

uplevel $loop

if {[uplevel "expr $condition"] == 0} {

set nostop 0

}

}

}

which when called with this

set x 5

do { puts $x; incr x -1 } { $x > 0 }

will print

5

4

3

2

1

(Please note: this does not quite work for all kinds of calls because of break, continue,
and return. It is possible to get around these problem, but that is outside the scope of this
tutorial.)

A word about the scope of variables. Variables used within procedures are normally created
only for the duration of that procedure and have local scope.

Chapter 10: The Prolog Library 771

It is possible to declare a variable as having global scope, through the global command:

global name1 ? name2 ...?

where name1, name2, . . . , are the names of global variables. Any references to those names
will be taken to denote global variables for the duration of the procedure call.

Global variables are those variables declared at the topmost calling context. It is possible to
run a global command at anytime in a procedure call. After such a command, the variable
name will refer to a global variable until the procedure exits.

An example:

set x 10

proc fred { } {

set y 20

global x

puts [expr $x + $y]

}

fred

will print the result 30 where 20 comes from the local variable y and 10 comes from the
global variable x.

Without the global x line, the call to fred will fail with an error because there is no
variable x defined locally in the procedure for the expr to evaluate over.

In common with other scripting languages, there is a command for evaluating the contents
of a file in the Tcl interpreter:

source fileName

where fileName is the filename of the file containing the Tcl source to be evaluated. Control
returns to the Tcl interpreter once the file has been evaluated.

10.41.2.4 What We Have Left Out

We have left out a number of Tcl commands as they are outside of the scope of this tutorial.
We list some of them here to show some of what Tcl can do. Please refer to the Tcl manual
for more information.

http implements the HTTP protocol for retrieving web pages

namespaces
a modules systems for Tcl

trace commands can be attached to variables that are triggered when the variable
changes value (amongst other things)

processes start, stop, and manage processes

772 SICStus Prolog

sockets UNIX and Internet style socket management

exception handling
3rd party extension packages

load extension packages into Tcl and use their facilities as native Tcl commands

10.41.3 Tk

Tk is an extension to Tcl. It provides Tcl with commands for easily creating and managing
graphical objects, or widgets, so providing a way to add graphical user interfaces (GUIs) to
Tcl applications.

In this section we will describe the main Tk widgets, the Tcl commands used to manipulate
them, how to give them behaviors, and generally how to arrange them into groups to create
a GUI.

10.41.3.1 Widgets

A widget is a “window object”. It is something that is displayed that has at least two parts:
a state and a behavior. An example of a widget is a button. Its state is things like what
color is it, what text is written it in, and how big it is. Its behavior is things like what it
does when you click on it, or what happens when the cursor is moved over or away from it.

In Tcl/Tk there are three parts to creating a useful widget. The first is creating an instance
of the widget with its initial state. The second is giving it a behavior by defining how
the widget behaves when certain events happen — event handling. The third is actually
displaying the widget possibly in a group of widgets or inside another widget — geometry
management. In fact, after creating all the widgets for a GUI, they are not displayed until
handled by a geometry manager, which has rules about how to calculate the size of the
widgets and how they will appear in relation to each other.

10.41.3.2 Types of Widget

In Tcl/Tk there are currently 15 types of widget. In alphabetical order they are (see also
library('tcltk/examples/widgets.tcl')):

button a simple press button

canvas is a container for displaying “drawn” objects such as lines, circles, and polygons.

checkbutton

a button that hold a state of either on or off

entry a text entry field

frame a widget that is a container for other widgets

label a simple label

listbox a box containing a list of options

menu a widget for creating menu bars

menubutton

a button, which when pressed offers a selection of choices

Chapter 10: The Prolog Library 773

message a multi-line text display widget

radiobutton

a button used to form groups of mutually interacting buttons (When one button
is pressed down, the others pop up.)

scale is like a slider on a music console. It consists of a trough scale and a slider.
Moving the slider to a position on the scale sets the overall value of the widget
to that value.

scollbar used to add scrollbars to windows or canvases. The scrollbar has a slider, which
when moved changes the value of the slider widget.

text a sophisticated multi-line text widget that can also display other widgets such
as buttons

toplevel for creating new standalone toplevel windows. (These windows are containers
for other widgets. They are not terminal windows.)

774 SICStus Prolog

Meet The Main Tk Widgets

10.41.3.3 Widgets Hierarchies

Before going further it is necessary to understand how instances of widgets are named.
Widgets are arranged in a hierarchy. The names of widget instances are formed from dot

Chapter 10: The Prolog Library 775

separated words. The root window is simply . on its own. So for, example, a button widget
that is displayed in the root window might have the name .b1. A button that is displayed
inside a frame that is displayed inside the root window may have the name .frame1.b1.
The frame would have the name .frame1.

Following this notation, it is clear that widgets are both formed in hierarchies, with the dot
notation giving the path to a widget, and in groups, all widgets with the same leading path
are notionaly in the same group.

(It is a similar to the way file systems are organized. A file has a path that shows where to
find it in the hierarchical file system. But also files with the same leading path are in the
same directory/folder and so are notionaly grouped together.)

An instance of a widget is created through the a Tcl command for that widget. The widget
command my have optional arguments set for specifying various attributes of the widget
that it will have when it is created. The result of a successful widget command is the name
of the new widget.

For example, a command to create a button widget named .mybutton that displays the
text “I am a button” would look like this:

button .mybutton -text "I am a button"

and this will return the name .mybutton.

A widget will only be created if all the windows/widgets in the leading path of the new
widget also exist, and also that the name of the new widget does not already exist.

For example, the following

button .mybutton -text "I am a button"

button .mybutton -text "and so am I"

will fail at the second command because there is also a widget named .mybutton from the
first command.

The following will also fail

button .frame.mybutton -text "I am a button"

if there is no existing widget with the name .frame to be the parent of .mybutton.

All this begs the question: why are widgets named and arranged in a hierarchy? Is not a
GUI just a bunch of widgets displayed in a window?

This is not generally how GUIs are arranged. For example, they often have a menubar over
the top of each window. The menubar contains pulldown menus. The pulldown menus may
have cascading menu items that may cascade down several levels. Under the menu bar is
the main part of the window that may also be split into several “frames”. A left hand frame
my have a set of buttons in it, for example. And so on. From this you can see that the

776 SICStus Prolog

widgets in GUIs are naturally arranged in a hierarchy. To achieve this in Tcl/Tk instances
of widgets are placed in a hierarchy, which is reflected in their names.

Now we will go through each of the widget commands in turn. Each widget command has
many options most of which will not be described here. Just enough will be touched on for
the reader to understand the basic operation of each widget. For a complete description of
each widget and its many options refer to the Tk manual.

10.41.3.4 Widget Creation

As has already been said, a widget is a window object that has state and behavior. In terms
of Tcl/Tk a widget is created by calling a widget creation command. There is a specific
widget creation for each type of widget.

The widget creation command is supplied with arguments. The first argument is always
the name you want to give to the resulting widget; the other arguments set the initial state
of the widget.

The immediate result of calling a widget creation command is that it returns the name of
the new widget. A side effect is that the instance of the widget is created and its name
is defined as in the Tcl interpreter as a procedure through which the widget state can be
accessed and manipulated.

This needs an example. We will use the widget creator command button to make a button
widget:

button .fred -text 'Fred' -background red

which creates an instance of a button widget named .fred that will display the text Fred
on the button and will have a red background color. Evaluating this command returns the
string .fred, the name of the newly created widget.

As a side effect, a Tcl procedure named .fred is created. A call to a widget instance has
the following form:

widgetName method methodArgs

where widgetName is the name of the widget to be manipulated, method is the action to
be performed on the widget, and methodArgs are the arguments passed to the method that
is performed on the widget.

The two standard methods for widgets are configure and cget. configure - is used to
change the state of a widget; for example:

.fred configure -background green -text 'Sid'

will change the background color of the widget .fred to green and the text displayed to
Sid.

cget is used to get part of the state of a widget; for example:

Chapter 10: The Prolog Library 777

.fred cget -text

will return Sid if the text on the button .fred is Sid.

In addition to these general methods, there are special methods for each widget type. For
example, with button widgets you have the flash and invoke methods.

For example,

.fred invoke

can be called somewhere in the Tcl code to invoke button .fred as though it had been
clicked on.

.fred flash

can be called somewhere in the Tcl code to cause the button to flash.

We will come across some of these special method when we discuss the widgets in detail. For
a comprehensive list of widget methods, refer to entry for the appropriate widget creation
command in the Tcl/Tk manual.

We now discuss the widget creation command for each widget type.

A label is a simple widget for displaying a single line of text. An example of creating an
instance of a label is

label .l -text "Hello world!"

which simply creates the label named .l with the text ‘Hello world!’ displayed in it.
Most widgets that display text can have a variable associated with them through the option
-textvariable. When the value of the variable is changed the text changes in the associated
label. For example,

label .l -text "Hello world!" -textvariable mytext

creates a text label called .l displaying the initial text ‘Hello world!’ and associated text
variable mytext; mytext will start with the value ‘Hello world!’. However, if the following
script is executed:

set mytext "Goodbye moon!"

then the text in the label will magically change to ‘Goodbye moon!’.

A message widget is similar to a label widget but for multi-line text. As its name suggests
it is mostly used for creating popup message information boxes.

An example of a message widget is

778 SICStus Prolog

message .msg -text "Your data is incorrect.\n\n \

Please correct it and try again." \

-justify center

which will create a message widget displaying the text shown, center justified. The width of
the message box can be given through the -width switch. Any lines that exceed the width
of the box are wrapped at word boundaries.

Calling the button command creates an instance of a button widget. An example is:

button .mybutton -text "hello" -command {puts "howdie!"}

which creates a button with name .mybutton that will display the text "hello" and will
execute the Tcl script puts "howdie!" (that is print howdie! to the terminal) when clicked
on.

Checkbuttons are buttons that have a fixed state that is either on or off. Clicking on the
button toggles the state. To store the state, a checkbutton is associated with a variable.
When the state of the checkbutton changes, so does that of the variable. An example is:

checkbutton .on_or_off -text "I like ice cream" -variable ice

which will create a checkbutton with name .on_or_off displaying the text ‘I like ice

cream’ and associated with the variable ice. If the checkbutton is checked, then ice will
have the value 1; if not checked, then it will have the value 0. The state of the checkbutton
can also be changed by changing the state of the variable. For example, executing

set ice 0

will set the state of .on_or_off to not checked.

Radiobuttons are buttons that are grouped together to select one value among many. Each
button has a value, but only one in the button group is active at any one time. In Tcl/Tk
this is achieved by creating a series of radiobutton that share an associated variable. Each
button has a value. When a radiobutton is clicked on, the variable has that value and all
the other buttons in the group are put into the off state. Similarly, setting the value of the
variable is reflected in the state of the button group. An example is:

radiobutton .first -value one -text one -variable count

radiobutton .second -value two -text two -variable count

radiobutton .third -value three -text three -variable count

which creates three radiobuttons that are linked through the variable count. If button
.second is active, for example, then the other two buttons are in the inactive state and
count has the value two. The following code sets the button group to make the button
.third active and the rest inactive regardless of the current state:

set count three

Chapter 10: The Prolog Library 779

If the value of count does not match any of the values of the radiobuttons, then they will
all be off. For example executing the script

set count four

will turn all the radiobuttons off.

An entry widget allows input of a one line string. An example of an entry widget:

label .l -text "Enter your name"

entry .e -width 40 -textvariable your_name

would display a label widget named .l showing the string ‘Enter your name’ and an entry
widget named .e of width 40 characters. The value of variable your_name will reflect the
string in the entry widget: as the entry widget string is updated, so is the value of the
variable. Similarly, changing the value of your_name in a Tcl script will change the string
displayed in the entry field.

A scale widget is for displaying an adjustable slider. As the slider is moved its value, which
is displayed next to the slider, changes. To specify a scale, it must have -from and -to

attributes, which is the range of the scale. It can have a -command option, which is set to
a script to evaluate when the value of the slider changes.

An example of a scale widget is:

scale .s -from 0 -to 100

which creates a scale widget with name .s that will slide over a range of integers from 0 to
100.

There are several other options that scales can have. For example it is possible to display
tick marks along the length of the scale through the -tickinterval attribute, and it is
possible to specify both vertically and horizontally displayed scales through the -orient

attribute.

A listbox is a widget that displays a list of single line strings. One or more of the strings
may be selected through using the mouse. Initializing and manipulating the contents of a
listbox is done through invoking methods on the instance of the listbox. As examples, the
insert method is used to insert a string into a listbox, delete to delete one, and get to
retrieve a particular entry. Also the currently selected list items can be retrieved through
the selection command.

Here is an example of a listbox that is filled with entries of the form entry N:

listbox .l

for { set i 0 } { $i<10 } { incr i } {

.l insert end "entry $i"

}

780 SICStus Prolog

A listbox may be given a height and/or width attribute, in which case it is likely that not
all of the strings in the list are visible at the same time. There are a number of methods
for affecting the display of such a listbox.

The see method causes the listbox display to change so that a particular list element is in
view. For example,

.l see 5

will make sure that the sixth list item is visible. (List elements are counted from element
0.)

A scrollbar widget is intended to be used with any widget that is likely to be able to display
only part of its contents at one time. Examples are listboxes, canvases, text widgets, and
frames, amongst others.

A scrollbar widget is displayed as a movable slider between two arrows. Clicking on either
arrow moves the slider in the direction of the arrow. The slider can be moved by dragging
it with the cursor.

The scollbar and the widget it scrolls are connected through Tcl script calls. A scrollable
widgets will have a scrollcommand attribute that is set to a Tcl script to call when the
widget changes its view. When the view changes the command is called, and the command
is usually set to change the state of its associated scrollbar.

Similarly, the scrollbar will have a command attribute that is another script that is called
when an action is performed on the scrollbar, like moving the slider or clicking on one of
its arrows. That action will be to update the display of the associated scrollable widget
(which redraws itself and then invokes its scrollcommand, which causes the scrollbar to be
redrawn).

How this is all done is best shown through an example:

listbox .l -yscrollcommand ".s set" -height 10

scrollbar .s -command ".l yview"

for { set i 0 } { $i < 50 } { incr i } {

.l insert end "entry $i"

}

creates a listbox named .l and a scrollbar named .s. Fifty strings of the form entry N are
inserted into the listbox. The clever part is the way the scrollbar and listbox are linked.
The listbox has its -yscrollcommand attribute set to the script ".s set". What happens
is that if the view of .l is changed, this script is called with 4 arguments attached: the
number of entries in the listbox, the size of the listbox window, the index of the first entry
currently visible, and the index of the last entry currently visible. This is exactly enough
information for the scrollbar to work out how to redisplay itself. For example, changing
the display of the above listbox could result in the following -yscrollcommand script being
called:

Chapter 10: The Prolog Library 781

.s set 50 10 5 15

which says that the listbox contains 50 elements, it can display 10 at one time, the first
element displayed has index 5 and the last one on display has index 15. This call invokes
the set method of the scrollbar widget .s, which causes it to redraw itself appropriately.

If, instead, the user interacts with the scrollbar, then the scrollbar will invoke its -command
script, which in this example is ".l yview". Before invoking the script, the scrollbar widget
calculates which element should the first displayed in its associated widget and appends its
index to the call. For example, if element with index 20 should be the first to be displayed,
then the following call will be made:

.l yview 20

which invokes the yview method of the listbox .l. This causes .l to be updated (which
then causes its -yscrollcommand to be called, which updates the scrollbar).

A frame widget does not do anything by itself except reserve an area of the display. Although
this does not seem to have much purpose, it is a very important widget. It is a container
widget; that is, it is used to group together collections of other widgets into logical groups.
For example, a row of buttons may be grouped into a frame, then as the frame is manipulated
so will the widgets displayed inside it. A frame widget can also be used to create large areas
of color inside another container widget (such as another frame widget or a toplevel widget).

An example of the use of a frame widget as a container:

canvas .c -background red

frame .f

button .b1 -text button1

button .b2 -text button2

button .b3 -text button3

button .b4 -text button4

button .b5 -text button5

pack .b1 .b2 .b3 .b4 .b5 -in .f -side left

pack .c -side top -fill both -expand 1

pack .f -side bottom

which specifies that there are two main widgets a canvas named .c and a frame named .f.
There are also 5 buttons, .b1 through .b5. The buttons are displayed inside the frame.
Then the canvas is displayed at the top of the main window and the frame is displayed at
the bottom. As the frame is displayed at the bottom, then so will the buttons because they
are displayed inside the frame.

(The pack command causes the widgets to be handled for display by the packer geometry
manager. The -fill and -expand 1 options to pack for .c tell the display manager that
if the window is resized, then the canvas is to expand to fill most of the window. You will
learn about geometry managers later in the Geometry Managers section.)

782 SICStus Prolog

A toplevel widget is a new toplevel window. It is a container widget inside which other
widgets are displayed. The root toplevel widget has path .— i.e. dot on its own. Subsequent
toplevel widgets must have a name that is lower down the path tree just like any other
widget.

An example of creating a toplevel widget is:

toplevel .t

All the widgets displayed inside .t must also have .t as the root of their path. For example,
to create a button widget for display inside the .t toplevel the following would work:

button .t.b -text "Inside 't'"

(Attributes, such as size and title, of toplevel widgets can be changed through the wm

command, which we will not cover in this tutorial. The reader is referred to the Tk manual.)

Yet another kind of container is a menu widget. It contains a list of widgets to display inside
itself, as a pulldown menu. A simple entry in a menu widget is a command widget, displayed
as an option in the menu widget, which if chosen executes a Tcl command. Other types of
widgets allowed inside a menu widget are radiobuttons and checkboxes. A special kind of
menu item is a separator that is used to group together menu items within a menu. (It
should be noted that the widgets inside a menu widget are special to that menu widget and
do not have an independent existence, and so do not have their own Tk name.)

A menu widget is built by first creating an instance of a menu widget (the container) and
then invoking the add method to make entries into the menu. An example of a menu widget
is as follows:

menu .m

.m add command -label "Open file" -command "open_file"

.m add command -label "Open directory" -command "open_directory"

.m add command -label "Save buffer" -command "save_buffer"

.m add command -label "Save buffer as..." -command "save_buffer_as"

.m add separator

.m add command -label "Make new frame" -command "new_frame"

.m add command -label "Open new display" -command "new_display"

.m add command -label "Delete frame" -command "delete_frame"

which creates a menu widget called .m, which contains eight menu items, the first four of
which are commands, then comes a separator widget, then the final three command entries.
(Some of you will notice that this menu is a small part of the Files menu from the menubar
of the Emacs text editor.)

An example of a checkbox and some radiobutton widget entries:

Chapter 10: The Prolog Library 783

.m add checkbox -label "Inverse video" -variable inv_vid

.m add radiobutton -label "black" -variable color

.m add radiobutton -label "blue" -variable color

.m add radiobutton -label "red" -variable color

which gives a checkbox displaying ‘Inverse video’, keeping its state in the variable inv_

vid, and three radiobuttons linked through the variable color.

Another menu item variant is the cascade variant, which is used to make cascadable menus,
i.e. menus that have submenus. An example of a cascade entry is the following:

.m add cascade -label "I cascade" -menu .m.c

which adds a cascade entry to the menu .m that displays the text ‘I cascade’. If the ‘I
cascade’ option is chosen from the .m menu, then the menu .m.c will be displayed.

The cascade option is also used to make menubars at the top of an application window. A
menu bar is simply a menu each element of which is a cascade entry, (for example). The
menubar menu is attached to the application window through a special configuration option
for toplevel widgets, the -menu option. Then a menu is defined for each of the cascade entry
in the menubar menu.

There are a large number of other variants to menu widgets: menu items can display bitmaps
instead of text; menus can be specified as tear-off menus; accelerator keys can be defined
for menu items; and so on.

A menubutton widget displays like a button, but when activated a menu pops up. The
menu of the menubutton is defined through the menu command and is attached to the
menubutton. An example of a menu button:

menubutton .mb -menu .mb.m -text "mymenu"

menu .mb.m

.mb.m add command -label hello

.mb.m add command -label goodbye

which crates a menubutton widget named .mb with attached menu .mb.m and displays the
text ‘mymenu’. Menu .mb.m is defined as two command options, one labelled hello and
the other labelled goodbye. When the menubutton .mb is clicked on, the menu .mb.m will
popup and its options can be chosen.

A canvas widget is a container widget that is used to manage the drawing of complex shapes;
for example, squares, circles, ovals, and polygons. (It can also handle bitmaps, text and
most of the Tk widgets too.) The shapes may have borders, filled in, be clicked on, moved
around, and manipulated.

We will not cover the working of the canvas widget here. It is enough to know that there is
a powerful widget in the Tk toolkit that can handle all manner of graphical objects. The
interested reader is referred to the Tk manual.

784 SICStus Prolog

A text widget is another powerful container widget that handles multi-line texts. The
textwidget can display texts with varying font styles, sizes, and colors in the same text, and
can also handle other Tk widgets embedded in the text.

The text widget is a rich and complicated widget and will not be covered here. The inter-
ested reader is referred to the Tk manual.

10.41.3.5 Geometry Managers

So far we have described each of the Tk widgets but have not mentioned how they are
arranged to be displayed. Tk separates the creating of widgets from the way they are
arranged for display. The “geometry” of the display is handled by a “geometry manager”.
A geometry manager is handed the set of widgets to display with instructions on their
layout. The layout instructions are particular to each geometry manager.

Tk comes with three distinct geometry managers: grid, place, and pack. As might be
expected the grid geometry manager is useful for creating tables of widgets, for example,
a table of buttons.

The place geometry manager simply gives each widget an X and Y coordinate and places
them at that coordinate in their particular parent window.

The pack geometry manager places widgets according to constraints, like “these three but-
ton widgets should be packed together from the left in their parent widget, and should
resize with the parent”.

(In practice the grid and pack geometry managers are the most useful because they can
easily handle events such as resizing of the toplevel window, automatically adjusting the
display in a sensible manner. place is not so useful for this.)

Each container widget (the master) has a geometry manager associated with it, which tells
the container how to display its sub-widgets (slaves) inside it. A single master has one and
only one kind of geometry manager associated with it, but each master can have a different
kind. For example, a frame widget can use the packer to pack other frames inside it. One of
the slave frames could use the grid manager to display buttons inside it itself, while another
slave frame could use the packer to pack labels inside it itself.

The problem is how to display widgets. For example, there is an empty frame widget inside
which a bunch of other widgets will be displayed. The pack geometry manager’s solution
to this problem is to successively pack widgets into the empty space left in the container
widget. The container widget is the master widget, and the widgets packed into it are its
slaves. The slaves are packed in a sequence: the packing order.

What the packer does is to take the next slave to be packed. It allocates an area for the
slave to be packed into from the remaining space in the master. Which part of the space
is allocated depends on instructions to the packer. When the size of the space has been
determined, this is sliced off the free space, and allocated to the widget that is displayed in
it. Then the remaining space is available to subsequent slaves.

Chapter 10: The Prolog Library 785

At any one time the space left for packing is a rectangle. If the widget is too small to use
up a whole slice from the length or breadth of the free rectangle, then still a whole slice is
allocated so that the free space is always rectangular.

It can be tricky to get the packing instructions right to get the desired finished effect, but
a large number of arrangements of widgets is possible using the packer.

Let us take a simple example: three buttons packed into the root window. First we create
the buttons; see also library('tcltk/examples/ex3.tcl'):

button .b1 -text b1

button .b2 -text b2

button .b3 -text b3

then we can pack them thus:

pack .b1 .b2 .b3

which produces a display of the three buttons, one on top of the other, button .b1 on the
top, and button .b3 on the bottom.

Three Plain Buttons

If we change the size of the text in button .b2 through the command:

.b2 config -text "hello world"

then we see that the window grows to fit the middle button, but the other two buttons stay
their original size.

786 SICStus Prolog

Middle Button Widens

The packer defaults to packing widgets in from the top of the master. Other directions can
be specified. For example, the command:

pack .b1 .b2 .b3 -side left

will pack starting at the left hand side of the window. The result of this is that the buttons
are formed in a horizontal row with the wider button, .b2, in the middle.

Packing From The Left

It is possible to leave space between widgets through the padding options to the packer:
-padx and -pady. What these do is to allocate space to the slave that is padded with the
padding distances. An example would be:

pack .b1 .b2 .b3 -side left -padx 10

External Padding

which adds 10 pixels of space to either side of the button widgets. This has the effect of
leaving 10 pixels at the left side of button .b1, 20 pixels between buttons .b1 and .b2, 20
pixels between buttons .b2 and .b3, and finally 10 pixels on the right side of button .b3.

That was external padding for spacing widgets. There is also internal padding for increasing
the size of widgets in the X and Y directions by a certain amount, through -ipadx and
-ipady options; i.e. internal padding. For example:

Chapter 10: The Prolog Library 787

pack .b1 .b2 .b3 -side left -ipadx 10 -ipady 10

Internal Padding

instead of spacing out the widgets, will increase their dimensions by 10 pixels in each
direction.

Remember that space is allocated to a widget from the currently available space left in the
master widget by cutting off a complete slice from that space. It is often the case that the
slice is bigger that the widget to be displayed in it.

There are further options for allowing a widget to fill the whole slice allocated to it. This
is done through the -fill option, which can have one of four values: none for no filling
(default), x to fill horizontally only, y to fill vertically only, and both to fill both horizontally
and vertically at the same time.

Filling is useful, for example, for creating buttons that are the same size even though they
display texts of differing lengths. To take our button example again, the following code
produces three buttons, one on top of each other, but of the same size:

button .b1 -text b1

button .b2 -text "hello world"

button .b3 -text b3

pack .b1 .b2 .b3 -fill x

Using fill For Evenly Sized Widgets

788 SICStus Prolog

How does this work? The width of the toplevel windows is dictated by button .b2 because
it has the widest text. Because the three buttons are packed from top to bottom, the slices
of space allocated to them are cut progressively straight along the top of the remaining
space. i.e. each widget gets a horizontal slice of space the same width cut from the top-level
widget. Only the wide button .b2 would normally fit the whole width of its slice. But by
allowing the other two widgets to fill horizontally, they will also take up the whole width of
their slices. The result: 3 buttons stacked on top of each other, each with the same width,
although the texts they display are not the same length.

A further common example is adding a scrollbar to a listbox. The trick is to get the scrollbar
to size itself to the listbox; see also library('tcltk/examples/ex9a.tcl'):

listbox .l

scrollbar .s

pack .l .s -side left

Scrollbar With Listbox, First Try

So far we have a listbox on the left and a tiny scrollbar on the right. To get the scrollbar
to fill up the vertical space around it add the following command:

pack .s -fill y

Now the display looks like a normal listbox with a scrollbar.

Chapter 10: The Prolog Library 789

Scrollbar With Listbox, Second Try

Why does this work? They are packed from the left, so first a large vertical slice of the
master is given to the listbox, then a thin vertical slice is given to the scrollbar. The
scrollbar has a small default width and height and so it does not fill the vertical space of its
slice. But filling in the vertical direction (through the pack .s -fill y command) allows
it to fill its space, and so it adjusts to the height of the listbox.

The fill packing option specifies whether the widget should fill space left over in its slice
of space. A further option to take into account is what happens when the space allocated
to the master widget is much greater than the that used by its slaves. This is not usually
a problem initially because the master container widget is sized to shrink-wrap around the
space used by its slaves. If the container is subsequently resized, however, to a much larger
size, then there is a question as to what should happen to the slave widgets. A common
example of resizing a container widget is the resizing of a top-level window widget.

The default behavior of the packer is not to change the size or arrangement of the slave
widgets. There is an option though through the expand option to cause the slices of space
allocated to slaves to expand to fill the newly available space in the master. expand can
have one of two values: 0 for no expansion, and 1 for expansion.

Take the listbox-scrollbar example; see also library('tcltk/examples/ex10.tcl'):

listbox .l

scrollbar .s

pack .l -side left

pack .s -side left -fill y

Initially this looks good, but now resize the window to a much bigger size. You will find
that the listbox stays the same size and that empty space appears at the top and bottom
of it, and that the scrollbar resizes in the vertical. It is now not so nice.

790 SICStus Prolog

Scrollbar And Listbox, Problems With Resizing

We can fix part of the problem by having the listbox expand to fill the extra space generated
by resizing the window.

pack .l -side left -expand 1

Chapter 10: The Prolog Library 791

Scrollbar And Listbox, Almost There

The problem now is that expand just expands the space allocated to the listbox, it does not
stretch the listbox itself. To achieve that we need to apply the fill option to the listbox
too.

pack .l -side left -expand 1 -fill both

792 SICStus Prolog

Scrollbar And Listbox, Problem Solved Using fill

Now whichever way the top-level window is resized, the listbox-scrollbar combination should
look good.

If more than one widget has the expansion bit set, then the space is allocated equally
to those widgets. This can be used, for example, to make a row of buttons of equal
size that resize to fill the widget of their container. Try the following code; see also
library('tcltk/examples/ex11.tcl'):

button .b1 -text "one"

button .b2 -text "two"

button .b3 -text "three"

pack .b1 .b2 .b3 -side left -fill x -expand 1

Chapter 10: The Prolog Library 793

Resizing Evenly Sized Widgets

Now resize the window. You will see that the buttons resize to fill the width of the window,
each taking an equal third of the width.

Please note: the best way to get the hang of the packer is to play with it.
Often the results are not what you expect, especially when it comes to fill and
expand options. When you have created a display that looks pleasing, always
try resizing the window to see if it still looks pleasing, or whether some of your
fill and expand options need revising.

There is an option to change how a slave is displayed if its allocated space is larger than
itself. Normally it will be displayed centered. That can be changed by anchoring it with
the -anchor option. The option takes a compass direction as its argument: n, s, e, w, nw,
ne, sw, se, or c (for center).

For example, the previous example with the resizing buttons displays the buttons in
the center of the window, the default anchoring point. If we wanted the buttons to be
displayed at the top of the window, then we would anchor them there thus; see also
library('tcltk/examples/ex12.tcl'):

button .b1 -text "one"

button .b2 -text "two"

button .b3 -text "three"

pack .b1 .b2 .b3 -side left -fill x -expand 1 -anchor n

Anchoring Widgets

794 SICStus Prolog

Each button is anchored at the top of its slice and so in this case is displayed at the top of
the window.

The packing order of widget can also be changed. For example,

pack .b3 -before .b2

will change the positions of .b2 and .b3 in our examples.

Changing The Packing Order Of Widgets

The grid geometry manager is useful for arranging widgets in grids or tables. A grid has
a number of rows and columns and a widget can occupy one of more adjacent rows and
columns.

A simple example of arranging three buttons; see also
library('tcltk/examples/ex14.tcl'):

button .b1 -text b1

button .b2 -text b2

button .b3 -text b3

grid .b1 -row 0 -column 0

grid .b2 -row 1 -column 0

grid .b3 -row 0 -column 1 -rowspan 2

this will display button .b1 above button .b2. Button .b3 will be displayed in the next
column and it will take up two rows.

Chapter 10: The Prolog Library 795

Using the grid Geometry Manager

However, .b3 will be displayed in the center of the space allocated to it. It is possible to
get it to expand to fill the two rows it has using the -sticky option. The -sticky option
says to which edges of its cells a widget “sticks” to, i.e. expands to reach. (This is like the
fill and expand options in the pack manager.) So to get .b3 to expand to fill its space we
could use the following:

grid .b3 -sticky ns

which says stick in the north and south directions (top and bottom). This results in .b3

taking up two rows and filling them.

grid Geometry Manager, Cells With Sticky Edges

There are plenty of other options to the grid geometry manager. For example, it is possible
to give some rows/columns more “weight” than others, which gives them more space in the
master. For example, if in the above example you wanted to allocate 1/3 of the width of
the master to column 0 and 2/3 of the width to column 1, then the following commands
would achieve that:

grid columnconfigure . 0 -weight 1

grid columnconfigure . 1 -weight 2

which says that the weight of column 0 for master . (the root window) is 1 and the weight
of column 1 is 2. Since column 1 has more weight than column 0 it gets proportionately
more space in the master.

It may not be apparent that this works until you resize the window. You can see even
more easily how much space is allocated to each button by making expanding them to
fill their space through the sticky option. The whole example looks like this; see also
library('tcltk/examples/ex16.tcl'):

796 SICStus Prolog

button .b1 -text b1

button .b2 -text b2

button .b3 -text b3

grid .b1 -row 0 -column 0 -sticky nsew

grid .b2 -row 1 -column 0 -sticky nsew

grid .b3 -row 0 -column 1 -rowspan 2 -sticky nsew

grid columnconfigure . 0 -weight 1

grid columnconfigure . 1 -weight 2

Now resize the window to various sizes and we will see that button .b3 has twice the width
of buttons .b1 and .b2.

Changing Row/Column Ratios

The same kind of thing can be specified for each row too via the grid rowconfigure

command.

For other options and a full explanation of the grid manager see the manual.

place simply places the slave widgets in the master at the given x and y coordi-
nates. It displays the widgets with the given width and height. For example (see also
library('tcltk/examples/ex17.tcl')):

Chapter 10: The Prolog Library 797

button .b1 -text b1

button .b2 -text b2

button .b3 -text b3

place .b1 -x 0 -y 0

place .b2 -x 100 -y 100

place .b3 -x 200 -y 200

Using The place Geometry Manager

will place the buttons .b1, .b2, and .b3 along a diagonal 100 pixels apart in both the x
and y directions. Heights and widths can be given in absolute sizes, or relative to the size of
the master in which case they are specified as a floating point proportion of the master; 0.0
being no size and 1.0 being the size of the master. x and y coordinates can also be specified
in a relative way, also as a floating point number. For example, a relative y coordinate of
0.0 refers to the top edge of the master, while 1.0 refers to the bottom edge. If both relative
and absolute x and y values are specified, then they are summed.

Through this system the placer allows widgets to be placed on a kind of rubber sheet. If
all the coordinates are specified in relative terms, as the master is resized, then so will the
slaves move to their new relative positions.

10.41.3.6 Event Handling

So far we have covered the widgets types, how instances of them are created, how their
attributes can be set and queried, and how they can be managed for display using geometry
managers. What we have not touched on is how to give each widget a behavior.

798 SICStus Prolog

This is done through event handlers. Each widget instance can be given a window event
handler for each kind of window event. A window event is something like the cursor moving
into or out of the widget, a key press happening while the widget is active (in focus), or the
widget being destroyed.

Event handlers are specified through the bind command:

bind widgetName eventSequence command

where widgetName is the name or class of the widget to which the event handler should be
attached, eventSqueuence is a description of the event that this event handler will handle,
and command is a script that is invoked when the event happens (i.e. it is the event handler).

Common event types are

Key

KeyPress when a key was pressed

KeyRelease

when a key was released

Button

ButtonPress

when a mouse button was pressed

ButtonRelease

when a mouse button was released

Enter when the cursor moves into a widget

Leave when the cursor moved our of a widget

Motion when the cursor moves within a widget

There are other event types. Please refer to the Tk documentation for a complete list.

The eventSequence part of a bind command is a list of one or more of these events, each
event surrounded by angled brackets. (Mostly, an event sequence consists of handling a
single event. Later we will show more complicated event sequences.)

An example is the following:

button .b -text "click me"

pack .b

bind .b <Enter> { puts "entering .b" }

makes a button .b displaying text ‘click me’ and displays it in the root window using the
packing geometry manager. The bind command specifies that when the cursor enters (i.e.
goes onto) the widget, then the text entering .b is printed at the terminal.

We can make the button change color as the cursor enters or leaves it like this:

Chapter 10: The Prolog Library 799

button .b -text "click me" -background red

pack .b

bind .b <Enter> { .b config -background blue }

bind .b <Leave> { .b config -background red }

which causes the background color of the button to change to blue when the cursor enters
it and to change back to red when the cursor leaves.

An action can be appended to an event handler by prefixing the action with a + sign. An
example is:

bind .b <Enter> {+puts "entering .b"}

which, when added to the example above, would not only change the color of the button to
red when the cursor enters it, but would also print entering .b to the terminal.

A binding can be revoked simply by binding the empty command to it:

bind .b <Enter> {}

A list of events that are bound can be found by querying the widget thus:

bind .b

which will return a list of bound events.

To get the current command(s) bound to an event on a widget, invoke bind with the widget
name and the event. An example is:

bind .b <Enter>

which will return a list of the commands bound to the event <Enter> on widget .b.

Binding can be generalized to sequences of events. For example, we can create an entry
widget that prints spells rob each time the key sequence ESC r o b happens:

entry .e

pack .e

bind .e <Escape>rob {puts "spells rob"}

(A letter on its own in an event sequence stands for that key being pressed when the
corresponding widget is in focus.)

Events can also be bound for entire classes of widgets. For example, if we wanted to perform
the same trick for ALL entry widgets, then we could use the following command:

bind entry <Escape>rob {puts "spells rob"}

In fact, we can bind events over all widgets using all as the widget class specifier.

800 SICStus Prolog

The event script can have substitutions specified in it. Certain textual substitutions are
then made at the time the event is processed. For example, %x in a script gets the x
coordinate of the mouse substituted for it. Similarly, %y becomes the y coordinate, %W the
dot path of the window on which the event happened, %K the keysym of the button that
was pressed, and so on. For a complete list, see the manual.

In this way it is possible to execute the event script in the context of the event.

A clever example of using the all widget specifier and text substitutions is given in John
Ousterhout’s book on Tcl/Tk (see Section 10.41.7 [Resources], page 840):

bind all <Enter> {puts "Entering %W at (%x, %y)"}

bind all <Leave> {puts "Leaving %W at (%x, %y)"}

bind all <Motion> {puts "Pointer at (%x, %y)"}

which implements a mouse tracker for all the widgets in a Tcl/Tk application. The widget’s
name and x and y coordinates are printed at the terminal when the mouse enters or leaves
any widget, and also the x and y coordinates are printed when the mouse moves within a
widget.

10.41.3.7 Miscellaneous

There are a couple of other Tk commands that we ought to mention: destroy and update.

The destroy command is used to destroy a widget, i.e. remove it from the Tk interpreter
entirely and so from the display. Any children that the widget may have are also destroy-
ed. Anything connected to the destroyed widget, such as bindings, are also cleaned up
automatically.

For example, to create a window containing a button that is destroyed when the button is
pressed:

button .b -text "Die!" -command { destroy . }

pack .b

creates a button .b displaying the text ‘Die!’, which runs the command destroy . when
it is pressed. Because the widget . is the main toplevel widget or window, running that
command will kill the entire application associated with that button.

The command update is used to process any pending Tk events. An event is not just such
things as moving the mouse but also updating the display for newly created and displayed
widgets. This may be necessary in that usually Tk draws widgets only when it is idle.
Using the update command forces Tk to stop and handle any outstanding events including
updating the display to its actually current state, i.e. flushing out the pending display of any
widgets. (This is analogous to the fflush command in C that flushes writes on a stream
to disk. In Tk displaying of widgets is “buffered”; calling the update command flushes the
buffer.)

Chapter 10: The Prolog Library 801

10.41.3.8 What We Have Left Out

There are a number of Tk features that we have not described but we list some of them
here in case the reader is interested. Refer to the Tk manual for more explanation.

photo creating full color images through the command

wm setting and getting window attributes

selection and focus commands
modal interaction

(not recommended)

send sending messages between Tk applications

10.41.3.9 Example pure Tcl/Tk program

To show some of what can be done with Tcl/Tk, we will show an example of part of a GUI
for an 8-queens program. Most people will be familiar with the 8-queens problem: how to
place 8 queens on a chess board such that they do not attack each other according to the
normal rules of chess.

Our example will not be a program to solve the 8-queens problem (that will come later in
the tutorial) but just the Tcl/Tk part for displaying a solution. The code can be found in
library('tcltk/examples/ex18.tcl').

The way an 8-queens solution is normally presented is as a list of numbers. The position
of a number in the list indicates the column the queens is placed at and the number itself
indicates the row. For example, the Prolog list [8, 7, 6, 5, 4, 3, 2, 1] would indicate 8
queens along the diagonal starting a column 1, row 8 and finishing at column 8 row 1.

The problem then becomes, given this list of numbers as a solution, how to display the
solution using Tcl/Tk. This can be divided into two parts: how to display the initial empty
chess board, and how to display a queen in one of the squares.

Here is our code for setting up the chess board:

802 SICStus Prolog

% ex18.pl

#! /usr/bin/wish

proc setup_board { } {

create container for the board

frame .queens

loop of rows and columns

for {set row 1} {$row <= 8} {incr row} {

for {set column 1} {$column <= 8} {incr column} {

create label with a queen displayed in it

label .queens.$column-$row -bitmap @bitmaps/q64s.bm -relief flat

choose a background color depending on the position of the

square; make the queen invisible by setting the foreground

to the same color as the background

if { [expr ($column + $row) % 2] } {

.queens.$column-$row config -background #ffff99

.queens.$column-$row config -foreground #ffff99

} else {

.queens.$column-$row config -background #66ff99

.queens.$column-$row config -foreground #66ff99

}

place the square in a chess board grid

grid .queens.$column-$row -row $row -column $column -padx 1 -pady 1

}

}

pack .queens

}

setup_board

The first thing that happens is that a frame widget is created to contain the board. Then
there are two nested loops that loop over the rows and columns of the chess board. Inside
the loop, the first thing that happens is that a label widget is created. It is named using
the row and column variables so that it can be easily referenced later. The label will not
be used to display text but to display an image, a bitmap of a queen. The label creation
command therefore has the special argument -bitmap @q64s.bm, which says that the label
will display the bitmap loaded from the file q64s.bm.

The label with the queen displayed in it has now been created. The next thing that happens
is that the background color of the label (square) is chosen. Depending on the position of the
square it becomes either a “black” or a “white” square. At the same time, the foreground
color is set to the background color. This is so that the queen (displayed in the foreground
color) will be invisible, at least when the board is first displayed.

Chapter 10: The Prolog Library 803

The final action in the loop is to place the label (square) in relation to all the other squares
for display. A chess board is a simple grid of squares, and so this is most easily done through
the grid geometry manager.

After the board has been set up square-by-square it still needs to be displayed, which is
done by pack-ing the outermost frame widget.

To create and display a chess board widget, all that is needed is to call the procedure

setup_board

which creates the chess board widget.

Once the chess board has been displayed, we need to be able to take a solution, a list of
rows ordered by column, and place queens in the positions indicated.

Taking a topdown approach, our procedure for taking a solution and displaying is as follows:

proc show_solution { solution } {

clear_board

set column 1

foreach row $solution {

place_queen $column $row

incr column

}

}

This takes a solution in solution, clears the board of all queens, and then places each
queen from the solution on the board.

Next we will handle clearing the board:

804 SICStus Prolog

proc clear_board { } {

for { set column 1 } {$column <= 8} {incr column} {

reset_column $column

}

}

proc reset_column { column } {

for {set row 1 } { $row <= 8 } {incr row} {

set_queens $column $row off

}

}

proc set_queens { column row state } {

if { $state == "on" } {

.queens.$column-$row config -foreground black

} else {

.queens.$column-$row config

-foreground [.queens.$column-$row cget -background]

}

}

The procedure clear_board clears the board of queens by calling the procedure reset_

column for each of the 8 columns on a board. reset_column goes through each square of
a column and sets the square to off through set_queens. In turn, set_queens sets the
foreground color of a square to black if the square is turned on, thus revealing the queen
bitmap, or sets the foreground color of a square to its background color, thus making the
queens invisible, if it is called with something other than on.

That handles clearing the board, clearing a column or turning a queen on or off on a
particular square.

The final part is place_queen:

proc place_queen { column row } {

reset_column $column

set_queens $column $row on

}

This resets a column so that all queens on it are invisible and then sets the square with
coordinates given in row and column to on.

A typical call would be:

show_solution "1 2 3 4 5 6 7 6 8"

Chapter 10: The Prolog Library 805

8-Queens Display In Tcl/Tk

which would display queens along a diagonal. (This is of course not a solution to the 8-
queens problem. This Tcl/Tk code only displays possible queens solutions; it does not check
if the solution is valid. Later we will combine this Tcl/Tk display code with Prolog code
for generating solutions to the 8-queens problem.)

10.41.4 The Tcl/Tk Prolog Library

Now we have covered the wonders of Tcl/Tk, we come to the real meat of the tutorial: how
to couple the power of Tcl/Tk with the power of SICStus Prolog.

Tcl/Tk is included in SICStus Prolog by loading a special library. The library provides a
bidirectional interface between Tcl/Tk and Prolog.

806 SICStus Prolog

10.41.4.1 How it Works - An Overview

Before describing the details of the Tcl/Tk library we will give an overview of how it works
with the Prolog system.

The Tcl/Tk library provides a loosely coupled integration of Prolog and Tcl/Tk. By this
we mean that the two systems, Prolog and Tcl/Tk, although joined through the library,
are mostly separate; Prolog variables have nothing to do with Tcl variables, Prolog and Tcl
program states are separate, and so on.

The Tcl/Tk library extends Prolog so that Prolog can create a number of independent Tcl
interpreters with which it can interact. Basically, there is a predicate, which when executed
creates a Tcl interpreter and returns a handle with which Prolog can interact with the
interpreter.

Prolog and a Tcl interpreter interact, and so communicate and cooperate, through two
ways:

1. One system evaluates a code fragment in the other system and retrieves the result.
For example, Prolog evaluates a Tcl code fragment in an attached Tcl interpreter and
gets the result of the evaluation in a Prolog variable. Similarly, a Tcl interpreter can
evaluate a Prolog goal and get the result back through a Tcl variable.

This is synchronous communication in that the caller waits until the callee has finished
their evaluation and reads the result.

2. One system passing a “message” to the other on an “event” queue.

This is asynchronous communication in that the receiver of the message can read the
message whenever it likes, and the sender can send the message without having to wait
for a reply.

The Tk part of Tcl/Tk comes in because an attached Tcl interpreter may be extended with
the Tk widget set and so be a Tcl/Tk interpreter. This makes it possible to add GUIs
to a Prolog application: the application loads the Tcl/Tk Prolog library, creates a Tcl/Tk
interpreter, and sends commands to the interpreter to create a Tk GUI. The user interacts
with the GUI and therefore with the underlying Prolog system.

There are two main ways to partition the Tcl/Tk library functions: by function, i.e. the task
they perform; or by package, i.e. whether they are Tcl, Tk, or Prolog functions. We will
describe the library in terms of the former because it fits in with the tutorial style better,
but at the end is a summary section that summarizes the library functions both ways.

Taking the functional approach, the library can be split into six function groups:

• basic functions

− loading the library

− creating and destroying Tcl and Tcl/Tk interpreters

• evaluation functions

− evaluating Tcl expressions from Prolog

− evaluating Prolog expressions from Tcl

Chapter 10: The Prolog Library 807

• Prolog event functions

− handling the Prolog/Tcl event queue

• Tk event handling

• passing control to Tk

• housekeeping functions

We go through each group in turn.

10.41.4.2 Basic Functions

The heart of the system is the ability to create an embedded Tcl interpreter with which
the Prolog system can interact. A Tcl interpreter is created within Prolog through a call
to tcl_new/1:

tcl_new(-TclInterpreter)

which creates a new interpreter, initializes it, and returns a reference to it in the variable
TclInterpreter. The reference can then be used in subsequent calls to manipulate the inter-
preter. More than one Tcl interpreter object can be active in the Prolog system at any one
time.

To start a Tcl interpreter extended with Tk, the tk_new/2 predicate is called from Prolog.
It has the following form:

tk_new(+Options, -TclInterpreter)

which returns through the variable TclInterpreter a handle to the underlying Tcl interpreter.
The usual Tcl/Tk window pops up after this call is made and it is with reference to that
window that subsequent widgets are created. As with the tcl_new/1 predicate, many
Tcl/Tk interpreters may be created from Prolog at the same time through calls to tk_

new/2.

The Options part of the call is a list of some (or none) of the following elements:

top_level_events

This allows Tk events to be handled while Prolog is waiting for terminal in-
put; for example, while the Prolog system is waiting for input at the top-
level prompt. Without this option, Tk events are not serviced while the Pro-
log system is waiting for terminal input. (For information on Tk events; see
Section 10.41.3.6 [Event Handling], page 797).

name(+ApplicationName)

This gives the main window a title ApplicationName. This name is also used for
communicating between Tcl/Tk applications via the Tcl send command. (send
is not covered in this document. Please refer to the Tcl/Tk documentation.)

display(+Display)

(This is X windows specific.) Gives the name of the screen on which to create
the main window. If this is not given, then the default display is determined
by the DISPLAY environment variable.

808 SICStus Prolog

An example of using tk_new/2:

| ?- tk_new([top_level_events, name('My SICStus/Tk App')], Tcl).

which creates a Tcl/Tk interpreter, returns a handle to it in the variable Tcl and Tk events
are serviced while Prolog is waiting at the top-level prompt. The window that pops up will
have the title My SICStus/Tk App.

The reference to a Tcl interpreter returned by a call to tk_new/2 is used in the same way
and in the same places as a reference returned by a call to tcl_new/1. They are both
references to Tcl interpreters.

To remove a Tcl interpreter from the system, use the tcl_delete/1 predicate:

tcl_delete(+TclInterpreter)

which given a reference to a Tcl interpreter, closes down the interpreter and removes it.
The reference can be for a plain Tcl interpreter or for a Tk enhanced one; tcl_delete/1
removes both kinds.

10.41.4.3 Evaluation Functions

There are two functions in this category: Prolog extended to be able to evaluate Tcl ex-
pressions in a Tcl interpreter; Tcl extended to be able to evaluate a Prolog expression in
the Prolog system.

There is a mechanism for describing Tcl commands in Prolog as Prolog terms. This is used
in two ways: firstly, to be able to represent Tcl commands in Prolog so that they can be
subsequently passed to Tcl for evaluation; and secondly for passing terms back from Tcl to
Prolog by doing the reverse transformation.

Why not represent a Tcl command as a simple atom or string? This can indeed be done,
but commands are often not static and each time they are called require slightly different
parameters. This means constructing different atoms or strings for each command in Prolog,
which are expensive operations. A better solution is to represent a Tcl command as a
Prolog term, something that can be quickly and efficiently constructed and stored by a
Prolog system. Variable parts to a Tcl command (for example command arguments) can
be passed in through Prolog variables.

In the special command format, a Tcl command is specified as follows.

Command ::= Name
| codes(code list)

| write(term)

| writeq(term)

| write_canonical(term)

| format(Fmt,Args)

| dq(Command)

| br(Command)

| sqb(Command)

Chapter 10: The Prolog Library 809

| min(Command)

| dot(ListOfNames)

| list(ListOfCommands)

| ListOfCommands
Fmt ::= atom
Name ::= atom { other than [] }

| number
ListOfCommands ::= []

| [Command | ListOfCommands]

ListOfNames ::= []

| [Name | ListOfNames]

Args ::= []

| [term | Args]

where

Atom
Number denote their printed representations

codes(PrologString)

denotes the string represented by PrologString (a code list)

write(Term)

writeq(Term)

write_canonical(Term)

denotes the string that is printed by the corresponding built-in predicate.

Please note: In general it is not possible to reconstruct Term from
the string printed by write/1. If Term will be passed back into
Prolog, then it therefore safest to use write_canonical(Term).

format(Fmt, Args)

denotes the string that is printed by the corresponding built-in predicate

dq(Command)

denotes the string specified by Command, enclosed in double quotes

br(Command)

denotes the string specified by Command, enclosed in curly brackets

sqb(Command)

denotes the string specified by Command, enclosed in square brackets

min(Command)

denotes the string specified by Command, immediately preceded by a hyphen

dot(ListOfName)

denotes the widget path specified by ListOfName, preceded by and separated
by dots

list(ListOfCommands)

denotes the TCL list with one element for each element in ListOfCommands.
This differs from just using ListOfCommands or br(ListOfCommands) when

810 SICStus Prolog

any of the elements contains spaces, braces or other characters treated specially
by TCL.

ListOfCommands
denotes the string denoted by each element, separated by spaces. In many cases
list(ListOfCommands) is a better choice.

Examples of command specifications and the resulting Tcl code:

[set, x, 32]

⇒ set x 32

[set, x, br([a, b, c])]

⇒ set x {a b c}

[dot([panel,value_info,name]), configure, min(text), br(write('$display'/1))]

⇒ .panel.value_info.name configure -text {$display/1

['foo bar',baz]

⇒foo bar baz

list(['foo bar',bar])

⇒ {foo bar} baz

list(['foo { bar'',bar])

⇒ foo\ \{ \bar baz

Prolog calls Tcl through the predicate tcl_eval/3, which has the following form:

tcl_eval(+TclInterpreter, +Command, -Result)

which causes the interpreter TclInterpreter to evaluate the Tcl command Command and
return the result Result. The result is a string (a code list) that is the usual return string
from evaluating a Tcl command. Command is not just a simple Tcl command string
(although that is a possibility) but a Tcl command represented as a Prolog term in the
special Command Format (see Section 10.41.4.3 [Evaluation Functions], page 808).

Through tcl_eval/3, Prolog has a method of synchronous communication with an embed-
ded Tcl interpreter and a way of manipulating the state of the interpreter.

An example:

| ?- tcl_new(Interp),

tcl_eval(Interp, 'set x 1', _),

tcl_eval(Interp, 'incr x', R).

which creates a Tcl interpreter the handle of which is stored in the variable Interp. Then
variable x is set to the value "1" and then variable x is incremented and the result returned
in R as a string. The result will be "2". By evaluating the Tcl commands in separate

Chapter 10: The Prolog Library 811

tcl_eval/3 calls, we show that we are manipulating the state of the Tcl interpreter and
that it remembers its state between manipulations.

It is worth mentioning here also that because of the possibility of the Tcl command causing
an error to occur in the Tcl interpreter, two new exceptions are added by the tcltk library:

tcl_error(Goal, Message)

tk_error(Goal, Message)

where Message is a code list detailing the reason for the exception. Also two new
user:portray_message/2 rules are provided so that any such uncaught exceptions are
displayed at the Prolog top level as

[TCL ERROR: Goal - Message]

[TK ERROR: Goal - Message]

respectively.

These exception conditions can be raised/caught/displayed in the usual way through the
built-in predicates raise_exception/3, on_exception/1, and portray_message/2.

As an example, the following Prolog code will raise such an exception:

| ?- tcl_new(X), tcl_eval(X, 'wilbert', R).

which causes a tcl_error/2 exception and prints the following:

{TCL ERROR: tcl_eval/3 - invalid command name "wilbert"}

assuming that there is no command or procedure defined in Tcl called wilbert.

The Tcl interpreters created through the SICStus Prolog Tcl/Tk library have been extended
to allow calls to the underlying Prolog system.

To evaluate a Prolog expression in the Prolog system from a Tcl interpreter, the new prolog

Tcl command is invoked. It has the following form:

prolog PrologGoal

where PrologGoal is the printed form of a Prolog goal. This causes the goal to be executed
in Prolog. It will be executed in the user module unless it is prefixed by a module name.
Execution is always determinate.

The return value of the command either of the following:

"1" if execution succeeded,

"0" if execution failed.

If succeeded (and "1" was returned), then any variable in PrologGoal that has become
bound to a Prolog term will be returned to Tcl in the Tcl array named prolog_variables

812 SICStus Prolog

with the variable name as index. The term is converted to Tcl using the same conversion
as used for Tcl commands (see Section 10.41.4.3 [Evaluation Functions], page 808). As a
special case the values of unbound variables and variables with names starting with ‘_’, are
not recorded and need not conform to the special command format, this is similar to the
threatment of such variables by the Prolog top level.

An example:

test_callback(Result) :-

tcl_new(Interp),

tcl_eval(Interp,

'if {[prolog "foo(X,Y,Z)"] == 1} \\

{list $prolog_variables(X) \\

$prolog_variables(Y) \\

$prolog_variables(Z)}',

Result),

tcl_delete(Interp).

foo(1, bar, [a, b, c]).

When called with the query:

| ?- test_callback(Result).

will succeed, binding the variable Result to:

"1 bar {a b c}"

This is because execution of the tcl_eval/3 predicate causes the execution of the prolog

command in Tcl, which executes foo(X, Y, Z) in Prolog making the following bindings:
X = 1, Y = bar, Z = [a, b, c]. The bindings are returned to Tcl in the associative array
prolog_variables where prolog_variables(X) is "1", prolog_variables(Y) is "bar",
and prolog_variables(Z) is "a b c". Then Tcl goes on to execute the list command as

list "1" "bar" "a b c"

which returns the result

"1 bar {a b c}"

(remember: nested lists magically get represented with curly brackets) which is the string
returned in the Result part of the Tcl call, and is ultimately returned in the Result variable
of the top-level call to test_callback(Result).

If an error occurs during execution of the prolog Tcl command, then a tcl_error/2

exception will be raised. The message part of the exception will be formed from the string
‘Exception during Prolog execution: ’ appended to the Prolog exception message. An
example is the following:

| ?- tcl_new(T), tcl_eval(T, 'prolog wilbert', R).

Chapter 10: The Prolog Library 813

which will print

{TCL ERROR: tcl_eval/3 - Exception during Prolog execution:

wilbert existence_error(wilbert,0,procedure,user:wilbert/0,0)}

at the Prolog top-level, assuming that the predicate wilbert/0 is not defined on the Prolog
side of the system. (This is a tcl_error exception containing information about the un-
derlying exception, an existence_error exception, which was caused by trying to execute
the non-existent predicate wilbert.)

10.41.4.4 Event Functions

Another way for Prolog to communicate with Tcl is through the predicate tcl_event/3:

tcl_event(+TclInterpreter, +Command, -Events)

This is similar to tcl_eval/3 in that the command Command is evaluated in the Tcl
interpreter TclInterpreter, but the call returns a list of events in Events rather than the
result of the Tcl evaluation. Command is again a Tcl command represented as a Prolog
term in the special Command Format described previously (see Section 10.41.4.3 [Evaluation
Functions], page 808).

This begs the questions what are these events and where does the event list come from? The
Tcl interpreters in the SICStus Prolog Tcl/Tk library have been extended with the notion
of a Prolog event queue. (This is not available in plain standalone Tcl interpreters.) The
Tcl interpreter can put events on the event queue by executing a prolog_event command.
Each event is a Prolog term. So a Tcl interpreter has a method of putting Prolog terms
onto a queue, which can later be picked up by Prolog as a list as the result of a call to
tcl_event/3. (It may be helpful to think of this as a way of passing messages as Prolog
terms from Tcl to Prolog.)

A call to tcl_event/3 blocks until there is something on the event queue.

A second way of getting Prolog events from a Prolog event queue is through the tk_next_
event/[2,3] predicates. These have the form:

tk_next_event(+TclInterpreter, -Event)

tk_next_event(+Options, +TclInterpreter, -Event)

where TclInterpreter reference to a Tcl interpreter and Event is the Prolog term at the
head of the associated Prolog event queue. (The Options feature will be described below
in the Housekeeping section when we talk about Tcl and Tk events; see Section 10.41.4.7
[Housekeeping], page 818.).

(We will meet tk_next_event/[2,3] again later when we discuss how it can be used to
service Tk events; see Section 10.41.4.5 [Servicing Tk Events], page 816).

If the interpreter has been deleted, then the empty list [] is returned.

814 SICStus Prolog

The Tcl interpreters under the SICStus Prolog library are extended with a command,
prolog_event, for adding events to a Prolog event queue.

The prolog_event command has the following form:

prolog_event Terms ...

where Terms are strings that contain the printed representation of Prolog terms. These are
stored in a queue and retrieved as Prolog terms by tcl_event/3 or tk_next_event/[2,3]
(described above).

An example of using the prolog_event command:

test_event(Event) :-

tcl_new(Interp),

tcl_event(Interp, [prolog_event, dq(write(zap(42)))], Event),

tcl_delete(Interp).

with the query:

| ?- test_event(Event).

will succeed, binding Event to the list [zap(42)].

This is because tcl_event converts its argument using the special Command Format conver-
sion (see Section 10.41.4.3 [Evaluation Functions], page 808), which yields the Tcl command
prolog_event "zap(42)". This command is evaluated in the Tcl interpreter referenced by
the variable Interp. The effect of the command is to take the string given as argument to
prolog_event (in this case "zap(42)") and to place it on the Tcl to Prolog event queue.
The final action of a tcl_event/3 call is to pick up any strings on the Prolog queue from
Tcl, add a trailing full stop and space to each string, and parse them as Prolog terms,
binding Event to the list of values, which in this case is the singleton list [zap(42)]. (The
queue is a list the elements of which are terms put there through calls to prolog_event).

If any of the Term-s in the list of arguments to prolog_event is not a valid representation
of a Prolog term, then an exception is raised in Prolog when it is converted from the Tcl
string to the Prolog term using read. To ensure that Prolog will be able to read the term
correctly it is better to always use write_canonical and to ensure that Tcl is not confused
by special characters in the printed representation of the Prolog term it is best to wrap the
list with list.

A safer variant that safely passes any term from Prolog via Tcl and back to Prolog is thus:

test_event(Term, Event) :-

tcl_new(Interp),

tcl_event(Interp, list([prolog_event, write_canonical(Term)]), Event),

tcl_delete(Interp).

Chapter 10: The Prolog Library 815

As an example of using the Prolog event system supplied by the tcltk library, we will
return to our 8-queens example but now approaching from the Prolog side rather than the
Tcl/Tk side:

:- use_module(library(tcltk)).

setup :-

tk_new([name('SICStus+Tcl/Tk - Queens')], Tcl),

tcl_eval(Tcl, 'source queens.tcl', _),

tk_next_event(Tcl, Event),

(Event = next -> go(Tcl),

; closedown(Tcl)

).

closedown(Tcl) :-

tcl_delete(Tcl).

go(Tcl) :-

tcl_eval(Tcl, 'clear_board', _),

queens(8, Qs),

show_solution(Qs, Tcl),

tk_next_event(Tcl, Event),

(Event = next -> fail

; closedown(Tcl)

).

go(Tcl) :-

tcl_eval(Tcl, 'disable_next', _),

tcl_eval(Tcl, 'clear_board', _),

tk_next_event(Tcl, _Event),

closedown(Tcl).

This is the top-level fragment of the Prolog side of the 8-queens example. It has three
predicates: setup/0, closedown/1, and go/1. setup/0 simply creates the Tcl interpreter,
loads the Tcl code into the interpreter using a call to tcl_eval/3 (which also initializes the
display) but then calls tk_next_event/2 to wait for a message from the Tk side.

The Tk part that sends prolog_event-s to Prolog looks like this:

button .next -text next -command {prolog_event next}

pack .next

button .stop -text stop -command {prolog_event stop}

pack .stop

that is two buttons, one that sends the atom next, the other that sends the atom stop.
They are used to get the next solution and to stop the program respectively.

816 SICStus Prolog

So if the user presses the next button in the Tk window, then the Prolog program will receive
a next atom via a prolog_event/tk_next_event pair, and the program can proceed to
execute go/1.

go/1 is a failure driven loop that generates 8-queens solutions and displays them. First it
generates a solution in Prolog and displays it through a tcl_eval/3 call. Then it waits
again for a Prolog events via tk_next_event/2. If the term received on the Prolog event
queue is next, then corresponding to the user pressing the “next solution” button, then fail
is executed and the next solution found, thus driving the loop.

If the stop button is pressed, then the program does some tidying up (clearing the display
and so on) and then executes closedown/1, which deletes the Tcl interpreter and the
corresponding Tk windows altoegther, and the program terminates.

This example fragment show how it is possible for a Prolog program and a Tcl/Tk program
to communicate via the Prolog event queue.

10.41.4.5 Servicing Tcl and Tk events

The notion of an event in the Prolog+Tcl/Tk system is overloaded. We have already come
across the following kinds of events:

• Tk widget events captured in Tcl/Tk through the bind command

• Prolog queue events controlled through the tcl_event/3, tk_next_event(2,3), and
prolog_event functions

It is further about to be overloaded with the notion of Tcl/Tk events. It is possible to
create event handlers in Tcl/Tk for reacting to other kinds of events. We will not cover
them here but describe them so that the library functions are understandable and in case
the user needs these features in an advanced application.

There are the following kinds of Tcl/Tk events:

idle events happen when the Tcl/Tk system is idle

file events happen when input arrives on a file handle that has a file event handler attached
to it

timer events
happen when a Tcl/Tk timer times out

window events
when something happens to a Tk window, such as being resized or destroyed

The problem is that in advanced Tcl/Tk applications it is possible to create event handlers
for each of these kinds of event, but they are not normally serviced while in Prolog code.
This can result in unresponsive behavior in the application; for example, if window events
are not serviced regularly, then if the user tries to resize a Tk window, then it will not resize
in a timely fashion.

Chapter 10: The Prolog Library 817

The solution to this is to introduce a Prolog predicate that passes control to Tk for a while
so that it can process its events, tk_do_one_event/[0,1]. If an application is unrespon-
sive because it is spending a lot of time in Prolog and is not servicing Tk events often
enough, then critical sections of the Prolog code can be sprinkled with calls to tk_do_one_

event/[0,1] to alleviate the problem.

tk_do_one_event/[0,1] has the following forms:

tk_do_one_event

tk_do_one_event(+Options)

which passes control to Tk to handle a single event before passing control back to Prolog.
The type of events handled is passed through the Options variable, a list of atoms that are
event types.

The Options list can contain the following atoms:

tk_dont_wait

do not wait for new events, process only those that are ready

tk_window_events

process window events

tk_file_events

process file events

tk_timer_events

process timer events

tk_idle_events

process Tcl_DoWhenIdle events

tk_all_events

process any event

Calling tk_do_one_event/0 is equivalent to a call to tk_do_one_event/1 with the tk_

all_events and tk_dont_wait flags.

A call to either of these predicates succeeds only if an event of the appropriate type happens
in the Tcl/Tk interpreter. If there are no such events, then tk_do_one_event/1 will fail if
the tk_dont_wait wait flag is present, as will tk_do_one_event/0, which has that flag set
implicitly.

If the tk_dont_wait flag is not set, then a call to tk_do_one_event/1 will block until an
appropriate Tk event happens (in which case it will succeed).

It is straight forward to define a predicate that handles all Tk events and then returns:

tk_do_all_events :-

tk_do_one_event, !,

tk_do_all_events.

tk_do_all_events.

818 SICStus Prolog

The predicate tk_next_event/[2,3] is similar to tk_do_one_event/[0,1] except that it
processes Tk events until at least one Prolog event happens. (We came across this predicate
before when discussing Prolog event queue predicates. This shows the overloading of the
notion event where we have a predicate that handles both Tcl/Tk events and Prolog queue
events.)

It has the following forms:

tk_next_event(+TclInterpreter, -Event)

tk_next_event(+Options, +TclInterpreter, -Event)

The Prolog event is returned in the variable Event and is the first term on the Prolog event
queue associated with the interpreter TclInterpreter. (Prolog events are initiated on the Tcl
side through the new Tcl command prolog_event, covered earlier; see Section 10.41.4.4
[Event Functions], page 813).

10.41.4.6 Passing Control to Tk

There is a predicate for passing control completely over to Tk, the tk_main_loop/0 com-
mand. This passes control to Tk until all windows in all the Tcl/Tk interpreters in the
Prolog have have been destroyed:

tk_main_loop

10.41.4.7 Housekeeping functions

Here we will described the functions that do not fit into any of the above categories and are
essentially housekeeping functions.

There is a predicate that returns a reference to the main window of a Tcl/Tk interpreter:

tk_main_window(+TclInterpreter, -TkWindow)

which given a reference to a Tcl interpreter Tclnterpreter, returns a reference to its main
window in TkWindow.

The window reference can then be used in tk_destroy_window/1:

tk_destroy_window(+TkWindow)

which destroys the window or widget referenced by TkWindow and all of its sub-widgets.

The predicate tk_make_window_exist/1 also takes a window reference:

tk_make_window_exist(+TkWindow)

which causes the window referenced by TkWindow in the Tcl interpreter TclInterpreter to
be immediately mapped to the display. This is useful because normally Tk delays displaying
new information for a long as possible (waiting until the machine is idle, for example), but
using this call causes Tk to display the window immediately.

Chapter 10: The Prolog Library 819

There is a predicate for determining how many main windows, and hence Tcl/Tk inter-
preters (excluding simple Tcl interpreters), are currently in use:

tk_num_main_windows(-NumberOfWindows)

which returns an integer in the variable NumberOfWindows.

10.41.4.8 Summary

The functions provided by the SICStus Prolog Tcl/Tk library can be grouped in two ways:
by function, and by package.

By function, we can group them like this:

• basic functions

tcl_new/1

create a Tcl interpreter

tcl_delete/1

remove a Tcl interpreter

tk_new/2 create a Tcl interpreter with Tk extensions

• evaluation functions

tcl_eval/3

evaluate a Tcl expression from Prolog

prolog evaluate a Prolog expression from Tcl

• Prolog event queue functions

tcl_event/3

evaluate a Tcl expression and return a Prolog queue event list

tk_next_event/[2,3]

pass control to Tk until a Prolog queue event happens and return the head
of the queue

prolog_event

place a Prolog term on the Prolog event queue from Tcl

• servicing Tcl and Tk events

tk_do_one_event/[0,1]

pass control to Tk until one Tk event is serviced

tk_next_event/[2,3]

also services Tk events but returns when a Prolog queue event happens
and returns the head of the queue

• passing control completely to Tk

tk_main_loop/0

control passed to Tk until all windows in all Tcl/Tk interpreters are gone

• housekeeping

tk_main_window/2

return reference to main in of a Tcl/Tk interpreter

820 SICStus Prolog

tk_destroy_window/1

destroy a window or widget

tk_make_window_exist/1

force display of a window or widget

tk_num_main_windows/1

return a count of the total number of Tk main windows existing in the
system

By package, we can group them like this:

• predicates for Prolog to interact with Tcl interpreters

tcl_new/1

create a Tcl interpreter

tcl_delete/1

remove a Tcl interpreter

tcl_eval/3

evaluate a Tcl expression from Prolog

tcl_event/3

evaluate a Tcl expression and return a Prolog event list

• predicates for Prolog to interact with Tcl interpreters with Tk extensions

tk_new/2 create a Tcl interpreter with Tk extensions

tk_do_one_event/[0,1]

pass control to Tk until one Tk event is serviced

tk_next_event/[2,3]

also services Tk events but returns when a Prolog queue event happens
and returns the head of the queue

tk_main_loop/0

control passed to Tk until all windows in all Tcl/Tk interpreters are gone

tk_main_window/2

return reference to main in of a Tcl/Tk interpreter

tk_destroy_window/1

destroy a window or widget

tk_make_window_exist/1

force display of a window or widget

tk_num_main_windows/1

return a count of the total number of Tk main windows existing in the
system

• commands for the Tcl interpreters to interact with the Prolog system

prolog evaluate a Prolog expression from Tcl

Chapter 10: The Prolog Library 821

prolog_event

place a Prolog term on the Prolog event queue from Tcl

In the next section we will discuss how to use the tcltk library to build graphical user
interfaces to Prolog applications. More specifically we will discuss the ways in which co-
operation between Prolog and Tcl/Tk can be arranged: how to achieve them, and their
benefits.

10.41.5 Putting It All Together

At this point we now know Tcl, the Tk extensions, and how they can be integrated into
SICStus Prolog through the tcltk library module. The next problem is how to get all this
to work together to produce a coherent application. Because Tcl can make Prolog calls and
Prolog can make Tcl calls it is easy to create programming spaghetti. In this section we
will discuss some general principles of organizing the Prolog and Tcl code to make writing
applications easier.

The first thing to do is to review the tools that we have. We have two programming systems:
Prolog and Tcl/Tk. They can interact in the following ways:

• Prolog evaluates a Tcl expression in a Tcl interpreter, using tcl_eval

• Tcl evaluates a Prolog expression in the Prolog interpreter, using prolog

• Prolog evaluates a Tcl expression in a Tcl interpreter and waits for a Prolog event,
using tcl_event

• Prolog waits for a Prolog event from a Tcl interpreter, using tk_next_event

• Tcl sends a Prolog predicate to Prolog on a Prolog event queue using prolog_event

With these interaction primitives there are three basic ways in which Prolog and Tcl/Tk
can be organized:

1. Tcl the master, Prolog the slave: program control is with Tcl, which makes occasional
calls to Prolog, through the prolog function.

2. Prolog the master, Tcl the slave: program control is with Prolog, which makes occa-
sional call to Tcl through the tcl_eval function

3. Prolog and Tcl share control: program control is shared with Tcl and Prolog interacting
via the Prolog event queue, through tcl_event, tk_next_event, and prolog_event.

These are three ways of organizing cooperation between Tcl/Tk and Prolog to produce an
application. In practice an application my use only one of these methods throughout, or
may use a combination of them where appropriate. We describe them here so that the
developer can see the different patterns of organization and can pick those relevant to their
application.

10.41.5.1 Tcl The Master, Prolog The Slave

This is the classical way that GUIs are bolted onto applications. The slave (in this case
Prolog) sits mostly idle while the user interacts with the GUI, for example filling in a form.
When some action happens in the GUI that requires information from the slave (a form

822 SICStus Prolog

submit, for example), the slave is called, performs a calculation, and the GUI retrieves the
result and updates its display accordingly.

In our Prolog+Tcl/Tk setting this involves the following steps:

• start Prolog and load the Tcl/Tk library

• load Prolog application code

• start a Tcl/Tk interpreter through tk_new/2

• set up the Tk GUI through calls to tcl_eval/3

• pass control to Tcl/Tk through tk_main_loop

Some of The Tk widgets in the GUI will have “callbacks” to Prolog, i.e. they will call the
prolog Tcl command. When the Prolog call returns, the values stored in the prolog_

variables array in the Tcl interpreter can then be used by Tcl to update the display.

Here is a simple example of a callback. The Prolog part is this:

:- use_module(library(tcltk)).

hello('world').

go :-

tk_new([], Tcl),

tcl_eval(Tcl, 'source simple.tcl', _),

tk_main_loop.

which just loads the library(tcltk), defines a hello/1 data clause, and go/0, which starts
a new Tcl/Tk interpreter, loads the code simple.tcl into it, and passes control to Tcl/Tk.

The Tcl part, simple.tcl, is this:

label .l -textvariable tvar

button .b -text "push me" -command { call_and_display }

pack .l .b -side top

proc call_and_display { } {

global tvar

prolog "hello(X)"

set tvar $prolog_variables(X)

}

which creates a label, with an associated text variable, and a button, that has a call back
procedure, call_and_display, attached to it. When the button is pressed, call_and_
display is executed, which simply evaluates the goal hello(X) in Prolog and the text
variable of the label .l to whatever X becomes bound to, which happens to be ‘world’. In
short, pressing the button causes the word ‘world’ to be displayed in the label.

Chapter 10: The Prolog Library 823

Having Tcl as the master and Prolog as the slave, although a simple model to understand
and implement, does have disadvantages. The Tcl command prolog is determinate, i.e. it
can return only one result with no backtracking. If more than one result is needed, then it
means either performing some kind of all-solutions search and returning a list of results for
Tcl to process, or asserting a clause into the Prolog clause store reflecting the state of the
computation.

Here is an example of how an all-solutions search can be done. It is a program that calculates
the outcome of certain ancestor relationships; i.e. enter the name of a person, click on a
button and it will tell you the mother, father, parents or ancestors of that person.

The Prolog portion looks like this (see also library('tcltk/examples/ancestors.pl')):

:- use_module(library(tcltk)).

go :- tk_new([name('ancestors')], X),

tcl_eval(X, 'source ancestors.tcl', _),

tk_main_loop,

tcl_delete(X).

father(ann, fred).

father(fred, jim).

mother(ann, lynn).

mother(fred, lucy).

father(jim, sam).

parent(X, Y) :- mother(X, Y).

parent(X, Y) :- father(X, Y).

ancestor(X, Y) :- parent(X, Y).

ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

all_ancestors(X, Z) :- findall(Y, ancestor(X, Y), Z).

all_parents(X, Z) :- findall(Y, parent(X, Y), Z).

This program consists of three parts. The first part is defined by go/0, the now familiar
way in which a Prolog program can create a Tcl/Tk interpreter, load a Tcl file into that
interpreter, and pass control over to the interpreter.

The second part is a small database of mother/father relationships between certain people
through the clauses mother/2 and father/2.

The third part is a set of “rules” for determining certain relationships between people:
parent/2, ancestor/2, all_ancestors/2 and all_parents/2.

The Tcl part looks like this (see also library('tcltk/examples/ancestors.tcl')):

824 SICStus Prolog

% ancestors.pl

#!/usr/bin/wish

set up the tk display

construct text filler labels

label .search_for -text "SEARCHING FOR THE" -anchor w

label .of -text "OF" -anchor w

label .gives -text "GIVES" -anchor w

construct frame to hold buttons

frame .button_frame

construct radio button group

radiobutton .mother -text mother -variable type -value mother

radiobutton .father -text father -variable type -value father

radiobutton .parents -text parents -variable type -value parents

radiobutton .ancestors -text ancestors -variable type -value ancestors

add behaviors to radio buttons

.mother config -command { one_solution mother $name}

.father config -command { one_solution father $name}

.parents config -command { all_solutions all_parents $name}

.ancestors config -command { all_solutions all_ancestors $name}

create entry box and result display widgets

entry .name -textvariable name

label .result -text ">>> result <<<" -relief sunken -anchor nw -justify left

pack buttons into button frame

pack .mother .father .parents .ancestors -fill x -side left -in .button_frame

pack everything together into the main window

pack .search_for .button_frame .of .name .gives .result -side top -fill x

now everything is set up

Chapter 10: The Prolog Library 825

% ancestors.pl

defined the callback procedures

called for one solution results

proc one_solution { type name } {

if [prolog "${type}('$name', R)"] {

display_result $prolog_variables(R)

} else {

display_result ""

}

}

called for all solution results

proc all_solutions { type name } {

prolog "${type}('$name', R)"

display_result $prolog_variables(R)

}

display the result of the search in the results box

proc display_result { result } {

if { $result != "" } {

create a multiline result

.result config -text $result

} else {

.result config -text "*** no result ***"

}

}

Ancestors Calculator

This program is in two parts. The first part sets up the Tk display, which consists of four
radiobuttons to choose the kind of relationship we want to calculate, an entry box to put

826 SICStus Prolog

the name of the person we want to calculate the relationship over, and a label in which to
display the result.

Each radio buttons has an associated callback. Clicking on the radio button will invoke the
appropriate callback, apply the appropriate relationship to the name entered in the text
entry box, and display the result in the results label.

The second part consists of the callback procedures themselves. There are actually just two
of them: one for a single solution calculation, and one for an all-solutions calculation. The
single solution callback is used when we want to know the mother or father as we know that
a person can have only one of each. The all-solutions callback is used when we want to know
the parents or ancestors as we know that these can return more than one results. (We could
have used the all-solutions callback for the single solutions cases too, but we would like to
illustrate the difference in the two approaches.) There is little difference between the two
approaches, except that in the single solution callback, it is possible that the call to Prolog
will fail, so we wrap it in an if . . . else construct to catch this case. An all-solutions
search, however, cannot fail, and so the if . . . else is not needed.

But there are some technical problems too with this approach. During a callback Tk events
are not serviced until the callback returns. For Prolog callbacks that take a very short time
to complete this is not a problem, but in other cases, for example during a long search call
when the callback takes a significant time to complete, this can cause problems. Imagine
that, in our example, we had a vast database describing the parent relationships of millions
of people. Performing an all-solutions ancestors search could take a long time. The classic
problem is that the GUI no longer reacts to the user until the callback completes.

The solution to this is to sprinkle tk_do_one_event/[0,1] calls throughout the critical
parts of the Prolog code, to keep various kinds of Tk events serviced.

If this method is used in its purest form, then it is recommended that after initialization
and passing of control to Tcl, Prolog do not make calls to Tcl through tcl_eval/3. This
is to avoid programming spaghetti. In the pure master/slave relationship it is a general
principle that the master only call the slave, and not the other way around.

10.41.5.2 Prolog The Master, Tk The Slave

The second approach is to have Prolog be the master and Tk the slave. This is suitable
when heavy processing is done in the Prolog code and Tk is used mostly to display the state
of the computation in some way rather than as a traditional GUI; i.e. during computation
Prolog often makes calls to Tk to show some state, but the user rarely interacts with the
application.

In our Prolog+Tcl/Tk setting this involves the following steps:

• start Prolog and load the Tcl/Tk library

• load Prolog application code

• start a Tcl/Tk interpreter through tk_new/2

• set up the Tk GUI through calls to tcl_eval/3

• Prolog calls tcl_eval to update the Tk display

Chapter 10: The Prolog Library 827

• values are passed to Prolog through the Result string of tcl_eval

Again it its purest form, Prolog makes calls to Tcl, but Tcl does not make calls to Prolog.
The result of a call to Tcl is either passed back through the Result variable of a tcl_eval/3
call.

A good example of this is the Tcl/Tk display for our 8-queens problem, that we saw earlier;
see Section 10.41.3.9 [Queens Display], page 801.

We will now fill out the example by presenting the Prolog master part. The Prolog program
calculates a solution to the 8-queens problem and then makes calls Tcl/Tk to display the
solution. In this way Tcl/Tk is the slave, just being used as a simple display.

We have already seen the Tcl/Tk part, but here is the Prolog part for generating a solution
and displaying it:

828 SICStus Prolog

:- use_module(library(tcltk)).

:- use_module(library(lists)).

go :-

tk_new([name('SICStus+Tcl/Tk - Queens')], Tcl),

tcl_eval(Tcl, 'source queens.tcl', _),

tk_next_event(Tcl, Event),

queens(8, Qs),

reverse(L, LR),

tcl_eval(Tcl, [show_solution, br(LR)], _),

fail.

go.

queens(N, Qs) :-

range(1, N, Ns),

queens(Ns, [], Qs).

queens(UnplacedQs, SafeQs, Qs) :-

select(Q, UnplacedQs, UnplacedQs1),

\+ attack(Q, SafeQs),

queens(UnplacedQs1, [Q|SafeQs], Qs).

queens([], Qs, Qs).

attack(X, Xs) :- attack(X, 1, Xs).

attack(X, N, [Y|_Ys]) :- X is Y + N.

attack(X, N, [Y|_Ys]) :- X is Y - N.

attack(X, N, [_Y|Ys]) :-

N1 is N + 1,

attack(X, N1, Ys).

range(M, N, [M|Ns]) :-

M < N,

M1 is M + 1,

range(M1, N, Ns).

range(N, N, [N]).

:- go.

All this simply does it to create a Tcl/Tk interpreter, load the Tcl code for displaying
queens into it, generate a solution to the 8-queens problem as a list of integers, and then
calls show_solution/2 in the Tcl interpreter to display the solution. At the end of first
clause for go/0 is a fail clause that turns go/0 into a failure driven loop. The result of this
is that the program will calculate all the solutions to the 8-queens problem, displaying them
rapidly one after the other, until there are none left.

Chapter 10: The Prolog Library 829

10.41.5.3 Prolog And Tcl Interact through Prolog Event Queue

In the previous two methods, one of the language systems was the master and the other
slave, the master called the slave to perform some action or calculation, the slave sits waiting
until the master calls it. We have seen that this has disadvantages when Prolog is the slave
in that the state of the Prolog call is lost. Each Prolog call starts from the beginning
unless we save the state using message database manipulation through calls to assert and
retract.

Using the Prolog event queue, however, it is possible to get a more balanced model where
the two language systems cooperate without either really being the master or the slave.

One way to do this is the following:

• Prolog is started

• load Tcl/Tk library

• load and set up the Tcl side of the program

• Prolog starts a processing loop

• it periodically checks for a Prolog event and processes it

• Prolog updates the Tcl display through tcl_eval calls

What can processing a Prolog event mean? Well, for example, a button press from Tk could
tell the Prolog program to finish or to start processing something else. The Tcl program
is not making an explicit call to the Prolog system but sending a message to Prolog. The
Prolog system can pick up the message and process it when it chooses, in the meantime
keeping its run state and variables intact.

To illustrate this, we return to the 8-queens example. If Tcl/Tk is the master and Prolog
the slave, then we have shown that using a callback to Prolog, we can imagine that we hit
a button, call Prolog to get a solution and then display it. But how do we get the next
solution? We could get all the solutions, and then use Tcl/Tk code to step through them,
but that does not seem satisfactory. If we use the Prolog is the master and Tcl/Tk is the
slave model, then we have shown how we can use Tcl/Tk to display the solutions generate
from the Prolog side: Prolog just make a call to the Tcl side when it has a solution. But
in this model Tcl/Tk widgets do not interact with the Prolog side; Tcl/Tk is mearly an
add-on display to Prolog.

But using the Prolog event queue we can get the best of both worlds: Prolog can generate
each solution in turn as Tcl/Tk asks for it.

Here is the code on the Prolog side that does this. (We have left out parts of the code
that have not changed from our previous example, see Section 10.41.3.9 [Queens Display],
page 801).

830 SICStus Prolog

:- use_module(library(tcltk)).

:- use_module(library(lists)).

setup :-

tk_new([name('SICStus+Tcl/Tk - Queens')], Tcl),

tcl_eval(Tcl, 'source queens2.tcl', _),

tk_next_event(Tcl, Event),

(Event = next -> go(Tcl)

; closedown(Tcl)

).

closedown(Tcl) :-

tcl_delete(Tcl).

go(Tcl) :-

tcl_eval(Tcl, 'clear_board', _),

queens(8, Qs),

show_solution(Qs),

tk_next_event(Tcl, Event),

(Event = next -> fail

; closedown(Tcl)

).

go(Tcl) :-

tcl_eval(Tcl, 'disable_next', _),

tcl_eval(Tcl, 'clear_board', _),

tk_next_event(Tcl, _Event),

closedown(Tcl).

show_solution(Tcl, L) :-

tcl(Tcl),

reverse(L, LR),

tcl_eval(Tcl, [show_solution, br(LR)], _),

tk_do_all_events.

Notice here that we have used tk_next_event/2 in several places. The code is executed by
calling setup/0. As usual, this loads in the Tcl part of the program, but then Prolog waits
for a message from the Tcl side. This message can either be next, indicating that we want
to show the next solution, or stop, indicating that we want to stop the program.

If next is received, then the program goes on to execute go/1. What this does it to
first calculate a solution to the 8-queens problem, displays the solution through show_

solution/2, and then waits for another message from Tcl/Tk. Again this can be either
next or stop. If next, then the program goes into the failure part of a failure driven loop
and generates and displays the next solution.

If at any time stop is received, then the program terminates gracefully, cleaning up the Tcl
interpreter.

Chapter 10: The Prolog Library 831

On the Tcl/Tk side all we need are a couple of buttons: one for sending the next message,
and the other for sending the stop message.

button .next -text next -command {prolog_event next}

pack .next

button .stop -text stop -command {prolog_event stop}

pack .stop

(We could get more sophisticated. We might want it so that when the button it is depressed
until Prolog has finished processing the last message, when the button is allowed to pop
back up. This would avoid the problem of the user pressing the button many times while
the program is still processing the last request. We leave this as an exercise for the reader.)

10.41.5.4 The Whole 8-Queens Example

To finish off, we our complete 8-queens program.

Here is the Prolog part, which we have covered in previous sections. The code is in
library('tcltk/examples/8-queens.pl'):

% 8-queens.pl

:- use_module(library(tcltk)).

:- use_module(library(lists)).

setup :-

tk_new([name('SICStus+Tcl/Tk - Queens')], Tcl),

tcl_eval(Tcl, 'source 8-queens.tcl', _),

tk_next_event(Tcl, Event),

(Event = next -> go(Tcl)

; closedown(Tcl)

).

closedown(Tcl) :-

tcl_delete(Tcl).

go(Tcl) :-

tcl_eval(Tcl, 'clear_board', _),

queens(8, Qs),

show_solution(Tcl,Qs),

tk_next_event(Tcl, Event),

(Event = next -> fail

; closedown(Tcl)

).

go(Tcl) :-

tcl_eval(Tcl, 'disable_next', _),

tcl_eval(Tcl, 'clear_board', _),

tk_next_event(Tcl, _Event),

closedown(Tcl).

832 SICStus Prolog

% 8-queens.pl

queens(N, Qs) :-

range(1, N, Ns),

queens(Ns, [], Qs).

queens(UnplacedQs, SafeQs, Qs) :-

select(Q, UnplacedQs, UnplacedQs1),

\+ attack(Q, SafeQs),

queens(UnplacedQs1, [Q|SafeQs], Qs).

queens([], Qs, Qs).

attack(X, Xs) :- attack(X, 1, Xs).

attack(X, N, [Y|_Ys]) :- X is Y + N.

attack(X, N, [Y|_Ys]) :- X is Y - N.

attack(X, N, [_Y|Ys]) :-

N1 is N + 1,

attack(X, N1, Ys).

range(M, N, [M|Ns]) :-

M < N,

M1 is M + 1,

range(M1, N, Ns).

range(N, N, [N]).

show_solution(Tcl, L) :-

reverse(L, LR),

tcl_eval(Tcl, [show_solution, br(LR)], _),

tk_do_all_events.

tk_do_all_events :-

tk_do_one_event, !,

tk_do_all_events.

tk_do_all_events.

:- setup.

And here is the Tcl/Tk part, which we have covered in bits and pieces but here is the whole
thing. We have added an enhancement where when the mouse is moved over one of the
queens, the squares that the queen attacks are highlighted. Move the mouse away and the
board reverts to normal. This is an illustration of how the Tcl/Tk bind feature can be
used. The code is in library('tcltk/examples/8-queens.tcl'):

Chapter 10: The Prolog Library 833

8-queens.tcl

#! /usr/bin/wish

create an 8x8 grid of labels

proc setup_display { } {

frame .queens -background black

pack .queens

for {set y 1} {$y <= 8} {incr y} {

for {set x 1} {$x <= 8} {incr x} {

create a label and display a queen in it

label .queens.$x-$y -bitmap @bitmaps/q64s.bm -relief flat

color alternate squares with different colors

to create the chessboard pattern

if { [expr ($x + $y) % 2] } {

.queens.$x-$y config -background #ffff99

} else {

.queens.$x-$y config -background #66ff99

}

set foreground to the background color to

make queen image invisible

.queens.$x-$y config -foreground [.queens.$x-$y cget -background]

bind the mouse to highlight the squares attacked by a

queen on this square

bind .queens.$x-$y <Enter> "highlight_attack on $x $y"

bind .queens.$x-$y <Leave> "highlight_attack off $x $y"

arrange the queens in a grid

grid .queens.$x-$y -row $y -column $x -padx 1 -pady 1

}

}

}

834 SICStus Prolog

8-queens.tcl

clear a whole column

proc reset_column { column } {

for {set y 1 } { $y <= 8 } {incr y} {

set_queens $column $y ""

}

}

place or unplace a queen

proc set_queens { x y v } {

if { $v == "Q" } {

.queens.$x-$y config -foreground black

} else {

.queens.$x-$y config -foreground [.queens.$x-$y cget -background]

}

}

place a queen on a column

proc place_queen { x y } {

reset_column $x

set_queens $x $y Q

}

clear the whole board by clearing each column in turn

proc clear_board { } {

for { set x 1 } {$x <= 8} {incr x} {

reset_column $x

}

}

given a solution as a list of queens in column positions

place each queen on the board

proc show_solution { solution } {

clear_board

set x 1

foreach y $solution {

place_queen $x $y

incr x

}

}

Chapter 10: The Prolog Library 835

8-queens.tcl

proc highlight_square { mode x y } {

check if the square we want to highlight is on the board

if { $x < 1 || $y < 1 || $x > 8 || $y > 8 } { return };

if turning the square on make it red,

otherwise determine what color it should be and set it to that

if { $mode == "on" } { set color red } else {

if { [expr ($x + $y) % 2] } { set color "#ffff99" } else {

set color "#66ff99" }

}

get the current settings

set bg [.queens.$x-$y cget -bg]

set fg [.queens.$x-$y cget -fg]

if the current foreground and background are the same

there is no queen there

if { $bg == $fg } {

no queens

.queens.$x-$y config -bg $color -fg $color

} else {

.queens.$x-$y config -bg $color

}

}

proc highlight_attack { mode x y } {

get current colors of square at x y

set bg [.queens.$x-$y cget -bg]

set fg [.queens.$x-$y cget -fg]

no queen there, give up

if { $bg == $fg } { return };

highlight the sqaure the queen is on

highlight_square $mode $x $y

highlight vertical and horizontal

for { set i 1 } {$i <= 8} {incr i} {

highlight_square $mode $x $i

highlight_square $mode $i $y

}

highlight diagonals

for { set i 1} { $i <= 8} {incr i} {

highlight_square $mode [expr $x+$i] [expr $y+$i]

highlight_square $mode [expr $x-$i] [expr $y-$i]

highlight_square $mode [expr $x+$i] [expr $y-$i]

highlight_square $mode [expr $x-$i] [expr $y+$i]

}

}

836 SICStus Prolog

8-queens.tcl

proc disable_next {} {

.next config -state disabled

}

setup_display

button for sending a 'next' message

button .next -text next -command {prolog_event next}

pack .next

button for sending a 'stop' message

button .stop -text stop -command {prolog_event stop}

pack .stop

Chapter 10: The Prolog Library 837

8-Queens Solution, Attacked Squares Highlighted

10.41.6 Quick Reference

10.41.6.1 Command Format Summary

Command ::= Name
| codes(code list)

| write(term)

| writeq(term)

| write_canonical(term)

| format(Fmt,Args)

| dq(Command)

838 SICStus Prolog

| br(Command)

| sqb(Command)

| min(Command)

| dot(ListOfNames)

| list(ListOfCommands)

| ListOfCommands
Fmt ::= atom
Name ::= atom { other than [] }

| number
ListOfCommands ::= []

| [Command | ListOfCommands]

ListOfNames ::= []

| [Name | ListOfNames]

Args ::= []

| [term | Args]

where

Atom
Number denote their printed representations

codes(PrologString)

denotes the string represented by PrologString (a code list)

write(Term)

writeq(Term)

write_canonical(Term)

denotes the string that is printed by the corresponding built-in predicate

format(Fmt, Args)

denotes the string that is printed by the corresponding built-in predicate

dq(Command)

denotes the string specified by Command, enclosed in double quotes

br(Command)

denotes the string specified by Command, enclosed in curly brackets

sqb(Command)

denotes the string specified by Command, enclosed in square brackets

min(Command)

denotes the string specified by Command, immediately preceded by a hyphen

dot(ListOfName)

denotes the widget path specified by ListOfName, preceded by and separated
by dots

list(ListOfCommands)

denotes the TCL list with one element for each element in ListOfCommands.

ListOfCommands
denotes the string denoted by each element, separated by spaces

Chapter 10: The Prolog Library 839

10.41.6.2 Predicates for Prolog to Interact with Tcl Interpreters

tcl_new(-TclInterpreter)

Create a Tcl interpreter and return a handle to it in the variable Interpreter.

tcl_delete(+TclInterpreter)

Given a handle to a Tcl interpreter in variable TclInterpreter, it deletes the
interpreter from the system.

tcl_eval(+TclInterp, +Command, -Result)

Evaluates the Tcl command term given in Command in the Tcl interpreter
handle provided in TclInterpreter. The result of the evaluation is returned as
a string in Result.

tcl_event(+TclInterp, +Command, -Events)

Evaluates the Tcl command term given in Command in the Tcl interpreter
handle provided in TclInterpreter. The first Prolog events arising from the
evaluation is returned as a list in Events. Blocks until there is something on
the event queue.

10.41.6.3 Predicates for Prolog to Interact with Tcl Interpreters
with Tk Extensions

tk_new(+Options, -Interp)

Create a Tcl interpreter with Tk extensions.

Options should be a list of options described following:

top_level_events

This allows Tk events to be handled while Prolog is waiting for
terminal input; for example, while the Prolog system is waiting for
input at the top-level prompt. Without this option, Tk events are
not serviced while the Prolog system is waiting for terminal input.

name(+ApplicationName)

This gives the main window a title ApplicationName. This name is
also used for communicating between Tcl/Tk applications via the
Tcl send command.

display(+Display)

(This is X windows specific.) Gives the name of the screen on which
to create the main window. If this is not given, then the default
display is determined by the DISPLAY environment variable.

tk_do_one_event

tk_do_one_event(+Options)

Passes control to Tk to handle a single event before passing control back to
Prolog. The type of events handled is passed through the Options variable, a
list of event types and options.

The Options list can contain the following atoms:

tk_dont_wait

do not wait for new events, process only those that are ready

840 SICStus Prolog

tk_window_events

process window events

tk_file_events

process file events

tk_timer_events

process timer events

tk_idle_events

process Tcl_DoWhenIdle events

tk_all_events

process any event

Calling tk_do_one_event/0 is equivalent to a call to tk_do_one_event/1 with
all flags set. If the tk_dont_wait flag is set and there is no event to handle,
then the call will fail.

tk_next_event(+Options, -Event)

tk_next_event(+Options, +TclInterpreter, -Event)

These predicates are similar to tk_do_one_event/[0,1] except that they pro-
cesses Tk events until is at least one Prolog event happens, when they succeed
binding Event to the first term on the Prolog event queue associated with the
interpreter TclInterpreter.

tk_main_loop

Pass control to Tk until all windows in all Tcl/Tk interpreters are gone.

tk_main_window(+TclInterpreter, -TkWindow)

Return in TkWindow a reference to the main window of a Tcl/Tk interpreter
with handle passed in TclInterpreter.

tk_destroy_window(+TkWindow)

Destroy a window or widget.

tk_make_window_exist(+TkWindow)

Force display of a window or widget.

tk_num_main_windows(-NumberOfWindows)

Return in NumberOfWindows the total number of Tk main windows existing
in the system.

10.41.6.4 Commands for Tcl Interpreters to Interact with The
Prolog System

prolog Evaluate a Prolog expression from Tcl.

prolog_event

Place a Prolog term on the Prolog event queue from inside Tcl.

10.41.7 Resources

We do not know of any resources out there specifically for helping with creating Prolog
applications with Tcl/Tk interfaces. Instead we list here some resources for Tcl/Tk, which
may help readers to build the Tcl/Tk side of the application.

Chapter 10: The Prolog Library 841

10.41.7.1 Web Sites

The home of Tcl/Tk is at:

http://tcl.sourceforge.net

The Tcl Developer Xchange site is at:

http://www.tcl.tk

10.41.7.2 Books

There are a surprising number of books on Tcl/Tk, extensions to Tcl/Tk, and Tk as an
extension to other languages. Here we mention just a few of the well-known books that will
get you started with building Tcl/Tk GUIs, which can then be interfaced to your Prolog
applications.

• Brent Welch, Practical Programming in Tcl and Tk. Prentice Hall, 1999. 3rd Edition
ISBN: 0-13-022028-0 http://www.beedub.com/book/

• John Ousterhout, Tcl and the Tk Toolkit. Addison-Wesley, 1994, ISBN 0-201-63337-X

• Paul Raines, Tcl/Tk Pocket Reference, 1st Ed., Oct. 1998, ISBN 1-56592-498-3

• Paul Raines & Jeff Tranter, Tcl/Tk in a Nutshell, 1st Ed., March 1999, 1-56592-433-9

Also visit the Tcl/Tk wiki:

http://wiki.tcl.tk/

10.41.7.3 Manual Pages

Complete manual pages in various formats and for various versions of the Tcl/Tk library
can be found at the Tcl/Tk web site:

http://www.tcl.tk/

10.42 Term Utilities—library(terms)

This library module provides miscellaneous operations on terms. Exported predicates:

subsumeschk(+General, +Specific)

is true when Specific is an instance of General. It does not bind any variables.

This predicate is identical to the built-in subsumes_term/2 and it is only present
for backwards compatibility.

subsumes(+General, +Specific)

is true when Specific is an instance of General. It will bind variables in General
(but not those in Specific, except when +General and +Specific share variables)
so that General becomes identical to Specific.

In many cases, binding variable is not really desirable, in which case subsumes_
term/2 should be used instead. If unification is in fact wanted, it may be better
to make this explicit in your code by using subsumes_term/2 followed by an
explicit unification, e.g. subsumes_term(G,S), G=S.

http://tcl.sourceforge.net
http://www.tcl.tk
http://www.beedub.com/book/
http://wiki.tcl.tk/
http://www.tcl.tk/

842 SICStus Prolog

variant(+Term, +Variant)

is true when Term and Variant are identical modulo renaming of variables,
provided Term and Variant have no variables in common.

term_subsumer(+Term1, +Term2, -Term)

binds Term to a most specific generalisation of Term1 and Term2. Using
Plotkin’s algorithm [Machine Intelligence 5, 1970], extended by Dan Sahlin
to handle cyclic structures.

term_hash(+Term, -Hash)

Equivalent to term_hash(Term, [], Hash).

term_hash(+Term, +Options, -Hash)

term_hash/[2,3,4] is provided primarily as a tool for the construction of so-
phisticated Prolog clause access schemes. Its intended use is to generate hash
values for terms that will be used with first argument clause indexing, yielding
compact and efficient multi-argument or deep argument indexing. Options is a
list of options,

algorithm(Algorithm)

Algorithm specifies which hash function to use. An atom, one of,

default

This is currently the same as jenkins. This is the
default. If we ever see a need to change the default
hash algorithm again then the algorithm denoted by
default may change but the algorithm denoted by the
other names, like 'sicstus-4.0.5', will not change.

jenkins

Based on the algorithm “lookup3” by Bob Jenkins, see
http://burtleburtle.net/bob/hash/doobs.html.

hsieh

Based on the algorithm “SuperFastHash” by Paul
Hsieh, see http://www.azillionmonkeys.com/qed/

hash.html. Despite the name neither this nor any
other choice of algorithm significantly affects the speed
of term_hash/3.

sdbm

Based on the well known algorithm “sdbm”.

'sicstus-4.0.4'

This is the algorithm used up to SICStus Prolog 4.0.4
(inclusive). It is only present to provide backwards
compatibility. It is not as good as any of the above
algorithms. Note that this atom needs to be quoted.

This algorithm produces hash values that may differ
between platforms.

http://burtleburtle.net/bob/hash/doobs.html
http://www.azillionmonkeys.com/qed/hash.html
http://www.azillionmonkeys.com/qed/hash.html

Chapter 10: The Prolog Library 843

'sicstus-4.0.5'

This is the same as jenkins. I.e. the default since
SICStus Prolog 4.0.5. Note that this atom needs to be
quoted.

there are some other (not as good) algorithms available for the
curious, see the source for detail.

Unless otherwise noted, the hash value will be identical across runs
and platforms.

range(Range)

The resulting hash value will be non-negative and less than the
upper bound specified by Range. Range should be either a positive
integer, or an atom, one of,

infinite

Do not constrain the hash value. Currently all hash
algorithms produce an unsigned 32-bit integer.

smallint

Ensure the resulting hash value is a small integer. This
is the same as specifying a range of 2^28 on 32-bit
platforms and 2^60 on 64-bit platforms.

smallint32

Ensure the resulting hash value is in the 32-bit platform
range of small integers, i.e. the same as a range of 2^28.

default

The same as smallint32. This is the default. This en-
sures that, by default, the same hash value is computed
for the same term on both 32-bit and 64-bit platforms.

depth(Depth)

Specifies how deep to descend into the term when calculating the
hash value. If Depth is a non-negative integer the subterms up to
depth Depth of Term are used in the computation. Alternatively,
if Depth is the atom infinite, all subterms of Term are relevant
in computing Hash. In the latter case Term must be acyclic. In
this context the depth of a term is defined as follows: the (principal
functor of) the term itself has depth 1, and an argument of a term
with depth i has depth i+1. Note that this is similar to, but not the
same as, the value computed by term_depth/2. For legacy reasons
a Depth of -1 is treated the same a infinite.

if_var(IfVar)

Specifies what to do if a variable is encountered in the term (i.e. to
the specified depth). IfVar should be an atom, one of,

error

An instantiation error is thrown.

844 SICStus Prolog

ignore

The variable is ignored and the hash algorithm contin-
ues with the other parts of the term.

value(Value)

The hash algorithm stops, the intermediate hash result
is discarded and Hash is bound to Value. There is no
restrictions on Value, it need not be an integer or even
be ground.

default This is the same as value(_), i.e. term_hash/3 just
succeeds without binding Hash. This is the default.
This is useful when the hash value us used for first-
argument indexing. This ensures that if the (possi-
bly variable-valued) hash values for Term1 and Term2
are Hash1 and Hash2, respectively, then if Term1 and
Term2 are unifiable (to the specified depth) then so are
Hash1 and Hash2. For other use cases it is probably
more appropriate to specify if_var(error).

term_hash(+Term, +Depth, +Range, -Hash)

Equivalent to term_hash(Term, [depth(Depth), range(Range)], Hash).

term_variables_set(+Term, -Variables) since release 4.3

True if Variables is the (ordered) set of variables occurring in Term.

This was called term_variables/2 prior to SICStus Prolog 4.3 but now term_

variables/2 is a built-in with different meaning, due to alignment with the
ISO Prolog standard.

term_variables_bag(+Term, -Variables)

True if Variables is the list of variables occurring in Term, in first occurrence
order.

This predicate has been superseeded by the built-in term_variables/2 and it
is only present for backwards compatibility.

The name is an historical accident, the result is not really a bag (i.e. multiset).

cyclic_term(+X)

True if X is infinite (cyclic). Runs in linear time.

term_order(+X, +Y, -R)

is true when X and Y are arbitrary terms, and R is <, =, or > according as X
@< Y, X == Y, or X @> Y. This is the same as compare/3, except for the
argument order.

contains_term(+Kernel, +Expression)

is true when the given Kernel occurs somewhere in the Expression. It can only
be used as a test; to generate sub-terms use sub_term/2.

free_of_term(+Kernel, +Expression)

is true when the given Kernel does not occur anywhere in the Expression. NB:
if the Expression contains an unbound variable, this must fail, as the Kernel

Chapter 10: The Prolog Library 845

might occur there. Since there are infinitely many Kernels not contained in any
Expression, and also infinitely many Expressions not containing any Kernel, it
doesn’t make sense to use this except as a test.

occurrences_of_term(+Kernel, +Expression, -Tally)

is true when the given Kernel occurs exactly Tally times in Expression. It
can only be used to calculate or test Tally ; to enumerate Kernels you’ll have
to use sub_term/2 and then test them with this routine. If you just want to
find out whether Kernel occurs in Expression or not, use contains_term/2 or
free_of_term/2.

contains_var(+Variable, +Term)

is true when the given Term contains at least one sub-term which is identical
to the given Variable. We use == to check for the variable (contains_term/2
uses =) so it can be used to check for arbitrary terms, not just variables.

free_of_var(+Variable, +Term)

is true when the given Term contains no sub-term identical to the given Variable
(which may actually be any term, not just a var). For variables, this is precisely
the "occurs check" which is needed for sound unification.

occurrences_of_var(+Variable, +Term, -Tally)

is true when the given Variable occurs exactly Tally times in Term. It can
only be used to calculate or test Tally ; to enumerate Variables you’ll have to
use sub_term/2 and then test them with this routine. If you just want to find
out whether Variable occurs in Term or not, use contains_var/2 or free_of_
var/2.

sub_term(?Kernel, +Term)

is true when Kernel is a sub-term of Term. It enumerates the sub-terms of
Term in an arbitrary order. Well, it is defined that a sub-term of Term will be
enumerated before its own sub-terms are (but of course some of those sub-terms
might be elsewhere in Term as well).

depth_bound(+Term, +Bound)

is true when the term depth of Term is no greater than Bound, that is, when
constructor functions are nested no more than Bound deep. Later variable
bindings may invalidate this bound. To find the (current) depth, use term_

depth/2.

length_bound(?List, +Bound)

is true when the length of List is no greater than Bound. It can be used to
enumerate Lists up to the bound.

size_bound(+Term, +Bound)

is true when the number of constant and function symbols in Term is (currently)
at most Bound. If Term is non-ground, later variable bindings may invalidate
this bound. To find the (current) size, use term_size/2.

term_depth(+Term, -Depth)

calculates the Depth of a Term, using the definition

term_depth(Var) = 0

846 SICStus Prolog

term_depth(Const) = 0

term_depth(F(T1,...,Tn)) = 1+max(term_depth(T1),...,term_depth(Tn))

Could be defined as:

term_depth(X, Depth) :-

simple(X), !, Depth = 0.

term_depth(X, Depth) :-

(foreacharg(A,X),

fromto(0,D0,D,Depth0)

do term_depth(A, D1),

D is max(D0,D1)

),

Depth is Depth0+1.

term_size(+Term, -Size)

calculates the Size of a Term, defined to be the number of constant and function
symbol occurrences in it. Could be defined as:

term_size(X, Size) :-

var(X), !, Size = 0.

term_size(X, Size) :-

simple(X), !, Size = 1.

term_size(X, Size) :-

(foreacharg(A,X),

fromto(1,S0,S,Size)

do term_size(A, S1),

S is S0+S1

).

same_functor(?T1, ?T2)

is true when T1 and T2 have the same principal functor. If one of the terms is
a variable, it will be instantiated to a new term with the same principal functor
as the other term (which should be instantiated) and with arguments being new
distinct variables. If both terms are variables, an error is reported.

same_functor(?T1, ?T2, ?N)

is true when T1 and T2 have the same principal functor, and their common
arity is N. Like same_functor/3, at least one of T1 and T2 must be bound,
or an error will be reported.

same_functor(?T1, ?T2, ?F, ?N)

is true when T1 and T2 have the same principal functor, and their common
functor is F/N. Given T1 (or T2) the remaining arguments can be computed.
Given F and N, the remaining arguments can be computed. If too many argu-
ments are unbound, an error is reported.

10.43 Meta-Call with Limit on Execution Time—
library(timeout)

This module contains utilities for computing a goal with limit on execution time.

Chapter 10: The Prolog Library 847

As of release 4.4, this library no longer uses a foreign resource, and it can be used by more
than one SICStus instance in the same process.

Exported predicates:

time_out(:Goal, +Time, -Result)

The Goal is executed as if by call/1. If computing any solution takes more
than Time milliseconds, the goal will be aborted, as if by throw/1, and Result
unified with the atom time_out. If the goal succeeds within the specified time,
Result is unified with the atom success. Time must be a positive integer, less
than 2147483647.

Currently, time is measured in runtime (as opposed to walltime), i.e. the time
does not increment while the program is waiting, e.g. during a blocking read.

Ideally, the measured runtime should be thread-specific, i.e. it should not be
affected by computations done in other threads in the process (of course, thread-
specific time is the same as process runtime for a single-threaded process).
Thread-specific runtime measurement is only implemented on Windows.

The precision of the timeout interval is usually not better than several tens
of milliseconds. This is due to limitations in the timing mechanisms used to
implement library(timeout).

10.44 Updatable Binary Trees—library(trees)

This libary module provides updatable binary trees with logarithmic access time. Exported
predicates:

gen_label(?Index, +Tree, ?Value)

assumes that Tree is a proper binary tree, and is true when Value is the Index-th
element in Tree. Can be used to enumerate all Values by ascending Index.

get_label(+Index, +Tree, -Label)

treats the tree as an array of N elements and returns the Index-th. If Index <

1 or > N it simply fails, there is no such element. As Tree need not be fully
instantiated, and is potentially unbounded, we cannot enumerate Indices.

list_to_tree(+List, -Tree)

takes a given proper List of N elements and constructs a binary Tree where
get_label(K, Tree, Lab) <=> Lab is the Kth element of List.

map_tree(:Pred, +OldTree, ?NewTree)

is true when OldTree and NewTree are binary trees of the same shape and
Pred(Old,New) is true for corresponding elements of the two trees.

put_label(+Index, +OldTree, -Label, -NewTree)

constructs a new tree the same shape as the old which moreover has the
same elements except that the Index-th one is Label. Unlike the "arrays"
of library(arrays), OldTree is not modified and you can hang on to it as
long as you please. Note that O(lg N) new space is needed.

848 SICStus Prolog

put_label(+Index, +OldTree, -OldLabel, -NewTree, +NewLabel)

is true when OldTree and NewTree are trees of the same shape having the
same elements except that the Index-th element of OldTree is OldLabel and
the Index-th element of NewTree is NewLabel. You can swap the <Tree,Label>
argument pairs if you like, it makes no difference.

tree_size(+Tree, -Size)

calculates the number of elements in the Tree. All trees made by list_to_

tree/2 that are the same size have the same shape.

tree_to_list(+Tree, -List)

is the converse operation to list_to_tree/2. Any mapping or checking oper-
ation can be done by converting the tree to a list, mapping or checking the list,
and converting the result, if any, back to a tree. It is also easier for a human
to read a list than a tree, as the order in the tree goes all over the place.

10.45 Type Checking—library(types)

This library module provides more and better type tests. For the purposes of this library,
we first define an abstract type typeterm, as follows:

typeterm ::= atom

| atomic

| boolean

| callable

| character

| character_code

| compound

| db_reference

| float

| float(rangeterm)

| ground

| integer

| integer(rangeterm)

| list

| list(Type)

| mutable

| nonvar

| number

| number(rangeterm)

| oneof(L)

| order

| pair

| pred_spec

| pred_spec_tree

| proper_list

| proper_list(Type)

| simple

| term

Chapter 10: The Prolog Library 849

| var

| var_or(Type)

rangeterm ::= between(L,U)

| >=(L)

| >(L)

| <(L)

| =<(L)

| =:=(L)

| =\=(L)

Culprit information:

These predicates takes arguments that are used when reporting the reason and location of
errors. The arguments are:

Goal must be a callable term, without (:)/2 module wrapping, with arity at least
ArgNo.

ArgNo must be a non-negative integer, where zero means no specific argument posti-
tion.

Culprit the term that has the offending value.

Exported predicates:

must_be(+Term, +Type, +Goal, +ArgNo)

checks whether the Term belongs to the indicated Type, which should be a
typeterm. If it doesn’t, several different error exceptions can be thrown: the
Termmay not be instantiated enough to tell yet (Instantiation Error); it may be
instantiated when an unbound variable was expected (Uninstantiation Error);
it may be definitely not of the right type (Type Error); it may be of the right
type but not representable (Representation Error); or it may be of the right
type but in the wrong domain (Domain Error). If an error exception is thrown,
it will include Goal and ArgNo and, if possible, the line of code in the scope of
which the error occurred. See Section 4.15.4 [ref-ere-err], page 200.

illarg(+ErrorTerm, +Goal, +ArgNo)

illarg(+ErrorTerm, +Goal, +ArgNo, +Culprit)

is the way to raise an error exception, if you would like the exception to pinpoint
the line of code in the scope of which the error occurs. This is especially useful
in the context of source-linked debugging. Culprit defaults to argument number
ArgNo of Goal. These three arguments are passed to the exception being raised,
if appropriate. ErrorTerm should be one of the following. See Section 4.15.4
[ref-ere-err], page 200.

var An Instantiation error is raised.

type(ErrorType)

Same as must_be(Culprit, ErrorType, Goal, ArgNo).

850 SICStus Prolog

domain(ErrorType,ErrorDomain)

First, the type is checked by must_be(Culprit, ErrorType,

Goal, ArgNo). If the type is valid, a Domain Error is raised with
the expected domain being ErrorDomain.

force_type(ExpType)

A Type Error is raised.

context(ContextType,CommandType)

A Context Error is raised.

existence(ObjType,Culprit,Message)

An Existence Error is raised.

permission(Operation,ObjType,Message)

A Permission Error is raised.

representation(ErrorType)

A Representation Error is raised.

evaluation(ErrorType)

An Evaluation Error is raised.

consistency(Culprit1,Culprit2,Message)

A Consistency Error is raised.

syntax(Pos,Msg,Tokens,AfterError)

A Syntax Error is raised.

resource(Resource)

A Resource Error is raised.

system(Message)

A System Error is raised.

10.46 Unweighted Graph Operations—library(ugraphs)

This library module provides operations on directed graphs. An unweighted directed graph
(ugraph) is represented as a list of (vertex-neighbors) pairs, where the pairs are in standard
order (as produced by keysort/2 with unique keys) and the neighbors of each vertex are
also in standard order (as produced by sort/2), and every neighbor appears as a vertex
even if it has no neighbors itself.

An undirected graph is represented as a directed graph where for each edge (U,V) there is
a symmetric edge (V,U).

An edge (U,V) is represented as the term U-V.

A vertex can be any term. Two vertices are distinct iff they are not identical (==).

A path is represented as a list of vertices. No vertex can appear twice in a path.

Exported predicates:

Chapter 10: The Prolog Library 851

vertices_edges_to_ugraph(+Vertices, +Edges, -Graph)

is true if Vertices is a proper list of vertices, Edges is a proper list of edges, and
Graph is a graph built from Vertices and Edges. Vertices and Edges may be
in any order. The vertices mentioned in Edges do not have to occur explicitly
in Vertices. Vertices may be used to specify vertices that are not connected to
any edges.

vertices(+Graph, -Vertices)

unifies Vertices with the vertices in Graph. Could be defined as:

vertices(Graph, Vertices) :-

(foreach(V-_,Graph),

foreach(V,Vertices)

do true

).

edges(+Graph, -Edges)

unifies Edges with the edges in Graph. Could be defined as:

edges(Graph, Edges) :-

(foreach(V1-Neibs,Graph),

fromto(Edges,S0,S,[])

do (foreach(V2,Neibs),

param(V1),

fromto(S0,[V1-V2|S1],S1,S)

do true

)

).

add_vertices(+Graph1, +Vertices, -Graph2)

is true if Graph2 is Graph1 with Vertices added to it.

del_vertices(+Graph1, +Vertices, -Graph2)

is true if Graph2 is Graph1 with Vertices and all edges to and from Vertices
removed from it.

add_edges(+Graph1, +Edges, -Graph2)

is true if Graph2 is Graph1 with Edges and their "to" and "from" vertices
added to it.

del_edges(+Graph1, +Edges, -Graph2)

is true if Graph2 is Graph1 with Edges removed from it.

transpose_ugraph(+Graph, -Transpose)

is true if Transpose is the graph computed by replacing each edge (u,v) in
Graph by its symmetric edge (v,u). It can only be used one way around. The
cost is O(N log N).

neighbors(+Vertex, +Graph, -Neighbors)

neighbours(+Vertex, +Graph, -Neighbors)

is true if Vertex is a vertex in Graph and Neighbors are its neighbors.

852 SICStus Prolog

complement(+Graph, -Complement)

Complement is the complement graph of Graph, i.e. the graph that has the
same vertices as Graph but only the edges that are not in Graph.

compose(+G1, +G2, -Composition)

computes Composition as the composition of two graphs, which need not have
the same set of vertices.

transitive_closure(+Graph, -Closure)

computes Closure as the transitive closure of Graph in O(N^3) time.

transitive_reduction(+Graph, -Reduction) since release 4.3.3

computes Reduction as the transitive reduction of Graph.

Aho et al. let GraphT be the transitive closure of Graph. Then an edge uv
belongs to the transitive reduction iff uv belongs to Graph but not to the
composition of Graph and GraphT. In this construction, the edges of the
composition represent pairs of vertices connected by paths of length two or
more.

symmetric_closure(+Graph, -Closure)

computes Closure as the symmetric closure of Graph, i.e. for each edge (u,v) in
Graph, add its symmetric edge (v,u). Approx. O(N log N) time. This is useful
for making a directed graph undirected. Could be defined as:

symmetric_closure(Graph, Closure) :-

transpose_ugraph(Graph, Transpose),

(foreach(V-Neibs1,Graph),

foreach(V-Neibs2,Transpose),

foreach(V-Neibs,Closure)

do ord_union(Neibs1, Neibs2, Neibs)

).

top_sort(+Graph, -Sorted)

finds a topological ordering of Graph and returns the ordering as a list of Sorted
vertices. Fails iff no ordering exists, i.e. iff the graph contains cycles. Approx.
O(N log N) time.

max_path(+V1, +V2, +Graph, -Path, -Cost)

is true if Path is a list of vertices constituting a longest path of cost Cost from
V1 to V2 in Graph, there being no cyclic paths from V1 to V2. Takes O(N^2)
time.

min_path(+V1, +V2, +Graph, -Path, -Length)

is true if Path is a list of vertices constituting a shortest path of length Length
from V1 to V2 in Graph. Takes O(N^2) time.

min_paths(+Vertex, +Graph, -Tree)

is true if Tree is a tree of all the shortest paths from Vertex to every other vertex
in Graph. This is the single-source shortest paths problem. The algorithm is
straightforward.

Chapter 10: The Prolog Library 853

path(+Vertex, +Graph, -Path)

is given a Graph and a Vertex of that Graph, and returns a maximal Path
rooted at Vertex, enumerating more Paths on backtracking.

reduce(+Graph, -Reduced)

is true if Reduced is the reduced graph for Graph. The vertices of the reduced
graph are the strongly connected components of Graph. There is an edge in
Reduced from u to v iff there is an edge in Graph from one of the vertices in u
to one of the vertices in v. A strongly connected component is a maximal set
of vertices where each vertex has a path to every other vertex. Algorithm from
"Algorithms" by Sedgewick, page 482, Tarjan’s algorithm.

reachable(+Vertex, +Graph, -Reachable)

is given a Graph and a Vertex of that Graph, and returns the set of vertices
that are Reachable from that Vertex. Takes O(N^2) time.

random_ugraph(+P, +N, -Graph)

where P is a probability, unifies Graph with a random graph of N vertices where
each possible edge is included with probability P.

min_tree(+Graph, -Tree, -Cost)

is true if Tree is a spanning tree of an undirected Graph with cost Cost, if it
exists. Using a version of Prim’s algorithm.

max_cliques(+Graph, -Cliques) since release 4.3.3

is true if Cliques is the set of the maximal cliques of the undirected graph Graph.
That is, all subsets of vertices such that (i) each pair of vertices in any listed
subset is connected by an edge, and (ii) no listed subset can have any additional
vertex added to it. Using a version of the Bron-Kerbosch algorithm.

10.47 An Inverse of numbervars/3—library(varnumbers)

The built-in predicate numbervars/3 makes a term ground by binding the variables in it to
subterms of the form '$VAR'(N) where N is an integer. Most of the calls to numbervars/3

look like

numbervars(Term, 0, _)

which can be abbreviated to

numbervars(Term)

if you use this package.

varnumbers/3 is a partial inverse to numbervars/3:

varnumbers(Term, N0, Copy)

unifies Copy with a copy of Term in which subterms of the form '$VAR'(N) where N
is an integer not less than N0 (that is, subterms which might have been introduced by
numbervars/3 with second argument N0) have been consistently replaced by new variables.
Since 0 is the usual second argument of numbervars/3, there is also

854 SICStus Prolog

varnumbers(Term, Copy)

This provides a facility whereby a Prolog-like data base can be kept as a term. For example,
we might represent append/3 thus:

Clauses = [

(append([], '$VAR'(0), '$VAR'(0)) :- true),

(append(['$VAR'(0)|'$VAR'(1), '$VAR'(2), ['$VAR'(0)|'$VAR(3)]) :-

append('$VAR'(1), '$VAR'(2), '$VAR'(3)))

]

and we might access clauses from it by doing

prove(Goal, Clauses) :-

member(Clause, Clauses),

varnumbers(Clause, (Goal:-Body)),

prove(Goal).

Exported predicates:

numbervars(+Term)

makes Term ground by binding variables to subterms '$VAR'(N) with values
of N ranging from 0 up.

varnumbers(+Term, -Copy)

xo succeeds when Term was a term producing by calling numbervars(Term)

and Copy is a copy of Term with such subterms replaced by variables.

varnumbers(+Term, +N0, -Copy)

succeeds when Term was a term produced by calling numbervars(Term, N0,

N) (so that all subterms '$VAR'(X) have integer(X), X >= N0) and Copy is a
copy of Term with such subterms replaced by variables.

10.48 Weighted Graph Operations—library(wgraphs)

This library module provides operations on weighted directed graphs. A weighted directed
graph (wgraph) is represented as a list of (vertex-edgelist) pairs, where the pairs are in
standard order (as produced by keysort/2 with unique keys), the edgelist is a list of
(neighbor-weight) pair also in standard order (as produced by keysort/2 with unique keys),
every weight is a nonnegative integer, and every neighbor appears as a vertex even if it has
no neighbors itself.

An undirected graph is represented as a directed graph where for each edge (U,V) there is
a symmetric edge (V,U).

An edge (U,V) is represented as the term U-V.

A vertex can be any term. Two vertices are distinct iff they are not identical (==).

A path is represented as a list of vertices. No vertex can appear twice in a path.

Chapter 10: The Prolog Library 855

Exported predicates:

vertices/2

edges/2

add_vertices/3

neighbors/3

neighbours/3

Re-exported from library(wgraphs).

wgraph_to_ugraph(+WeightedGraph, -Graph)

is true if Graph has the same vertices and edges as WeightedGraph, except the
edges of Graph are unweighted. Could be defined as:

wgraph_to_ugraph(WGraph, Graph) :-

(foreach(V-WNeibs,WGraph),

foreach(V-Neibs,Graph)

do (foreach(V1-_,WNeibs),

foreach(V1,Neibs)

do true

)

).

ugraph_to_wgraph(+Graph, -WeightedGraph)

is true if WeightedGraph has the same vertices and edges as Graph, except the
edges of WeightedGraph all have weight 1. Could be defined as:

ugraph_to_wgraph(Graph, WGraph) :-

(foreach(V-Neibs,Graph),

foreach(V-WNeibs,WGraph)

do (foreach(V1,Neibs),

foreach(V1-1,WNeibs)

do true

)

).

ugraph_to_wgraph(+SubGraph, +WeightedGraph, -WeightedSubGraph)

is true if WeightedSubGraph has the same vertices and edges as SubGraph and
the same weights as the corresponding edges in WeightedGraph.

vertices_edges_to_wgraph(+Vertices, +Edges, -WeightedGraph)

is true if Vertices is a proper list of vertices, Edges is a proper list of edges,
and WeightedGraph is a graph built from Vertices and Edges. Vertices and
Edges may be in any order. The vertices mentioned in Edges do not have to
occur explicitly in Vertices. Vertices may be used to specify vertices that are
not connected to any edges.

del_vertices(+WeightedGraph1, +Vertices, -WeightedGraph2)

is true if WeightedGraph2 is WeightedGraph1 with Vertices and all edges to
and from Vertices removed from it.

856 SICStus Prolog

add_edges(+WeightedGraph1, +Edges, -WeightedGraph2)

is true if WeightedGraph2 is WeightedGraph1 with Edges and their "to" and
"from" vertices added to it.

del_edges(+WeightedGraph1, +Edges, -WeightedGraph2)

is true if WeightedGraph2 is WeightedGraph1 with Edges removed from it.

transpose_wgraph(+WeightedGraph, -Transpose)

is true if Transpose is the graph computed by replacing each edge (u,v) in
WeightedGraph by its symmetric edge (v,u). It can only be used one way
around. The cost is O(N log N).

transitive_closure(+WeightedGraph, -Closure)

computes Closure as the transitive closure of WeightedGraph in O(N^3) time.
Uses Floyd’s algorithm and fragments of Barney Pell’s code.

symmetric_closure(+WeightedGraph, -Closure)

computes Closure as the symmetric closure of WeightedGraph, i.e. for each
edge (u,v) in WeightedGraph, add its symmetric edge (v,u). Approx O(N log
N) time. This is useful for making a directed graph undirected.

top_sort(+Graph, -Sorted)

finds a topological ordering of a Graph and returns the ordering as a list of
Sorted vertices. Fails iff no ordering exists, i.e. iff the graph contains cycles.
Takes O(N log N) time.

max_path(+V1, +V2, +WeightedGraph, -Path, -Cost)

is true if Path is a list of vertices constituting a longest path of cost Cost from
V1 to V2 in WeightedGraph, there being no cyclic paths from V1 to V2. Takes
O(N^2) time.

min_path(+V1, +V2, +WeightedGraph, -Path, -Cost)

is true if Path is a list of vertices constituting a shortest path with total cost
Cost from V1 to V2 in WeightedGraph. Takes O(N^2) time.

min_paths(+Vertex, +WeightedGraph, -Tree)

is true if Tree is a tree of all the shortest paths from Vertex to every other
vertex in WeightedGraph. This is the single-source shortest paths problem.
Using Dijkstra’s algorithm.

path(+Vertex, +WeightedGraph, -Path)

is given a WeightedGraph and a Vertex of that WeightedGraph, and returns a
maximal Path rooted at Vertex, enumerating more Paths on backtracking.

reduce(+WeightedGraph, -Reduced)

is true if Reduced is the reduced graph for WeightedGraph. The vertices of
the reduced graph are the strongly connected components of WeightedGraph.
There is an edge in Reduced from u to v iff there is an edge in WeightedGraph
from one of the vertices in u to one of the vertices in v. A strongly connected
component is a maximal set of vertices where each vertex has a path to every
other vertex. Algorithm from "Algorithms" by Sedgewick, page 482, Tarjan’s
algorithm.

Chapter 10: The Prolog Library 857

reachable(+Vertex, +WeightedGraph, -Reachable)

is given a WeightedGraph and a Vertex of that WeightedGraph, and returns
the set of vertices that are Reachable from that Vertex. Takes O(N^2) time.

random_wgraph(+P, +N, +W, -WeightedGraph)

where P is a probability, unifies WeightedGraph with a random graph with ver-
tices 1..N where each possible edge is included with probability P and random
weight in 1..W.

min_tree(+WeightedGraph, -Tree, -Cost)

is true if Tree is a minimum-Cost spanning tree of an undirected WeightedGraph
with cost Cost, if it exists. Using Kruskal’s algorithm.

10.49 Parsing and Generating XML—library(xml)

This is a package for parsing XML with Prolog, which provides Prolog applications with a
simple “Document Value Model” interface to XML documents. A description of the subset
of XML that it supports can be found at: http://www.binding-time.co.uk/xmlpl.html

The package, originally written by Binding Time Ltd., is in the public domain and unsup-
ported. To use the package, enter the query:

| ?- use_module(library(xml)).

The package represents XML documents by the abstract data type document, which is
defined by the following grammar:

document ::=
xml(attributes,content)

{ well-formed document }

|

malformed(attributes,content)

{ malformed document }

attributes ::= []

| [name=char-

data|attributes]

content ::= []

| [cterm|content]

cterm ::= pcdata(char-data) { text }
| comment(char-data) { an XML comment }
|

namespace(URI,prefix,element)

{ a Namespace }

|

element(tag,attributes,content)

{ <tag>..</tag> encloses content or <tag />
if empty }

|

instructions(name,char-

data)

{ A PI <? name char-data ?> }

| cdata(char-data) { <![CDATA[char-data]]> }
|

doctype(tag,doctype-

id)

{ DTD <!DOCTYPE .. > }

http://www.binding-time.co.uk/xmlpl.html

858 SICStus Prolog

| unparsed(char-data) { text that hasn’t been parsed }
| out_of_context(tag) { tag is not closed }

tag ::= atom { naming an element }
name ::= atom { not naming an element }
URI ::= atom { giving the URI of a namespace }
char-data ::= code list
doctype-id ::= public(char-

data,char-data)

| public(char-

data,dtd-literals)

| system(char-data)

| system(char-

data,dtd-literals)

| local

| local,dtd-literals

dtd-literals ::= []

| [dtd_literal(char-

data)|dtd-literals]

The following predicates are exported by the package:

xml_parse(?Chars, ?Document)

xml_parse(?Chars, ?Document, +Options)

Either parses Chars, a code list, to Document, a document. Chars is not
required to represent strictly well-formed XML. Or generates Chars, a code
list, from Document, a document. If Document is not a valid document term
representing well-formed XML, an exception is raised. In the second usage of
the predicate, the only option available is format/1.

Options is a list of zero or more of the following, where Boolean must be true
or false:

format(Boolean)

Indent the element content (default true).

extended_characters(Boolean)

Use the extended character entities for XHTML (default true).

remove_attribute_prefixes(Boolean)

Remove namespace prefixes from attributes when it’s the same as
the prefix of the parent element (default false).

xml_subterm(+Term, ?Subterm)

Unifies Subterm with a sub-term of Term, a document. This can be especially
useful when trying to test or retrieve a deeply-nested subterm from a document.

xml_pp(+Document)

“Pretty prints” Document, a document, on the current output stream.

Chapter 10: The Prolog Library 859

10.50 Zinc Interface—library(zinc)

MiniZinc is a free and open-source constraint modelling language, developed at Monash
University in collaboration with Data61 Decision Sciences and the University of Melbourne.
Models are compiled into FlatZinc, a solver input language that is understood by a wide
range of solvers, including SICStus Prolog. See http://www.minizinc.org for more
information.

This library provides an interpreter for FlatZinc programs (see Section 10.50.2 [FlatZinc],
page 859), and, via an external MiniZinc-to-FlatZinc translator, an interpreter also for
MiniZinc programs (see Section 10.50.3 [MiniZinc], page 868). The library interface was
inspired by the MiniZinc and FlatZinc libraries of The ECLiPSe Constraint Programming
System. It is compatible with MiniZinc 2.4.1 distribution.

10.50.1 Prerequisites

Let $MINIZINC_DIR denote the directory containing the MiniZinc distribution.

To add SICStus Prolog as a MiniZinc and FlatZinc solver, two additions to $MINIZINC_DIR

are required:

• Copy or symbolically link the SICStus specific global constraint definition direc-
tory $SP_LIBRARY_DIR/zinc/globals). The copy or symbolic link should be named
$MINIZINC_DIR/share/minizinc/sicstus).

• Copy or symbolically link
the configuration file $SP_LIBRARY_DIR/zinc/sicstus.msc). The copy or symbolic
link should be named $MINIZINC_DIR/share/minizinc/solvers/sicstus.msc).

Finally, make sure that $MINIZINC_DIR/bin is included in the environment variable PATH.

10.50.2 FlatZinc

The FlatZinc interpreter described here is based on “Specification of FlatZinc, version 1.6”,
available at http://www.minizinc.org/specifications.html.

A FlatZinc program can be run directly using fzn_run_file/[1,2] and fzn_run_

stream/[1,2], as well as with spfz, a simple command-line tool interface to fzn_run_

file/[1,2] (for details, see Section 13.3 [too-spfz], page 1369). For example, a program
for solving the 4 Queens problem, located in library('zinc/examples/queen4.fzn'), can
be run by the following goal:

| ?- fzn_run_file(library('zinc/examples/queen4')).

or command:

% spfz $SP_LIBRARY_DIR/zinc/examples/queen4

The following solution is then written on the current output stream:

q = array1d(1..4, [2, 4, 1, 3]);

http://www.minizinc.org
http://www.minizinc.org/specifications.html

860 SICStus Prolog

Note the ten consecutive dashes after the solution.

The following goal can be used to find all solutions:

| ?- fzn_run_file(library('zinc/examples/queen4'), [solutions(all)]).

or command:

% spfz $SP_LIBRARY_DIR/zinc/examples/queen4 -a

The following solutions are then written on the current output stream:

q = array1d(1..4, [2, 4, 1, 3]);

q = array1d(1..4, [3, 1, 4, 2]);

==========

Note the ten consecutive equal signs after all solutions have been found.

FlatZinc programs are not intended to be written (or read) by humans, but rather to
be automatically generated. One way to generate a FlatZinc program is by using a
MiniZinc-to-FlatZinc translator, such as mzn2fzn, bundles with the MiniZinc distribution.
One use of this translator is to first generate a FlatZinc program from a MiniZinc pro-
gram, e.g. by the following command line (queen.mzn and queen4.dzn can be found in
library('zinc/examples')):

mzn2fzn -G sicstus --data queen4.dzn --output-fzn-to-

file queen4.fzn queen.mzn

The resulting FlatZinc program queen4.fzn can then be run as described above. If a
generated FlatZinc program is not desired, then another use of mzn2fzn is to pipe its result
directly to a SICStus process, e.g. by the following command:

mzn2fzn -G sicstus --data queen4.dzn --output-fzn-to-

stdout queen.mzn | sicstus --

goal 'use_module(library(zinc)), fzn_run_stream(user_input), halt.'

or, simpler:

minizinc --solver sicstus --data queen4.dzn queen.mzn

or, even simpler:

minizinc --solver sicstus -D n=4 queen.mzn

or, simpler still:

mzn-sicstus -D n=4 queen.mzn

Chapter 10: The Prolog Library 861

It is also possible to just load a FlatZinc program into SICStus by fzn_load_file/2 and
fzn_load_stream/2. The loaded FlatZinc program can then be processed further from
within SICStus, e.g. by retrieving some FlatZinc variables using fzn_identifier/3 and
posting additional library(clpfd) constraints or applying a Prolog labeling predicate on
those variables.

Finally, it is also possible to load and run MiniZinc programs directly from within SICStus
by using the predicates described in Section 10.50.3 [MiniZinc], page 868. These predicates
all rely on the availability of an external MiniZinc-to-FlatZinc translator such as mzn2fzn,
as well as an external solution printer such as solns2out (see Section 10.50.3 [MiniZinc],
page 868).

10.50.2.1 Exported Predicates

The predicates described here operate on a data structure FznState representing a FlatZinc
program and consisting of the following members:

• A table that maps identifiers of the FlatZinc program to Prolog terms.

• A list containing all domain variables of the FlatZinc program, except those with a
is_defined_var annotation.

• A list containing all domain variables of the FlatZinc program that may be written on
the current output stream.

• A goal representing the constraint part of the FlatZinc program.

• A goal representing the solve part of the FlatZinc program.

• A counter denoting the number of solutions found by the FlatZinc program.

This data structure can be constructed from a FlatZinc program by the predicates fzn_

load_stream/2 and fzn_load_file/2 described next, or directly from a MiniZinc program
(see Section 10.50.3 [MiniZinc], page 868).

fzn_load_stream(+FznStream, -FznState)

FznStream is a FlatZinc input stream. FznState is a FlatZinc state that is
initialized with respect to FznStream.

Exceptions: Exceptions regarding errors in FznStream (see Section 10.50.4 [Zinc
Errors], page 873).

fzn_load_file(+FznFile, -FznState)

FznFile is a FlatZinc file (extension defaults to .fzn). FznState is a FlatZinc
state that is initialized with respect to FznFile. This predicate is just a wrapper
around fzn_load_stream/2 handling stream opening and closing.

Exceptions:

• Exceptions related to the opening of FznFile for reading.

• Exceptions regarding errors in FznFile (see Section 10.50.4 [Zinc Errors],
page 873).

Consider the following FlatZinc program for solving the 4 Queens problem located in
library('zinc/examples/queen4.fzn'). (Note that FlatZinc programs are not intended

862 SICStus Prolog

to be written (or read) by humans, but rather to be automatically generated. One method to
generate FlatZinc programs is described in Section 10.50.3 [MiniZinc], page 868.)

% queen4.fzn

int: n = 4;

array[1 .. 4] of var 1 .. 4: q::output_array([1 .. 4]);

constraint int_lin_ne([1, -1], [q[1], q[2]], 1);

constraint int_ne(q[1], q[2]);

constraint int_lin_ne([1, -1], [q[1], q[2]], -1);

constraint int_lin_ne([1, -1], [q[1], q[3]], 2);

constraint int_ne(q[1], q[3]);

constraint int_lin_ne([1, -1], [q[1], q[3]], -2);

constraint int_lin_ne([1, -1], [q[1], q[4]], 3);

constraint int_ne(q[1], q[4]);

constraint int_lin_ne([1, -1], [q[1], q[4]], -3);

constraint int_lin_ne([1, -1], [q[2], q[3]], 1);

constraint int_ne(q[2], q[3]);

constraint int_lin_ne([1, -1], [q[2], q[3]], -1);

constraint int_lin_ne([1, -1], [q[2], q[4]], 2);

constraint int_ne(q[2], q[4]);

constraint int_lin_ne([1, -1], [q[2], q[4]], -2);

constraint int_lin_ne([1, -1], [q[3], q[4]], 1);

constraint int_ne(q[3], q[4]);

constraint int_lin_ne([1, -1], [q[3], q[4]], -1);

solve satisfy;

A FlatZinc state Queen4State representing the program above can be constructed by typing:

Chapter 10: The Prolog Library 863

| ?- fzn_load_file(library('zinc/examples/queen4'), Queen4State).

The predicates presented next are used to query an already initialized FlatZinc state.

fzn_post(+FznState)

Posts the constraints of the FlatZinc program represented by FznState. May
fail if the constraints are inconsistent.

fzn_solve(+FznState)

Runs the solve and output parts of the FlatZinc program represented by Fzn-
State to find and display an (optimal) solution. Fails if the constraints of the
FlatZinc program are inconsistent. Generates the next solution upon back-
tracking.

fzn_output(+FznState)

Outputs the values of the variables in FznState that have been annotated with
output_var/0 or output_array/1.

Exceptions: An instatiation error if the output variables are not instantiated.

Consider again the FlatZinc program queen4.fzn described above and the following goal
at the Prolog top level:

| ?- fzn_load_file(library('zinc/examples/queen4'), Queen4State),

fzn_post(Queen4State),

fzn_solve(Queen4State).

The first line initializes Queen4State with respect to queen4.fzn. The second and third
line posts the constraints of queen4.fzn and runs the solve and output parts of queen4.fzn,
respectively. The following is written on the current output stream:

q = array1d(1..4, [2, 4, 1, 3]);

Upon backtracking the solve and output parts of Queen4State are rerun, which means that
the following is written on the current output stream:

q = array1d(1..4, [3, 1, 4, 2]);

fzn_identifier(+FznState, +Id, -Value)

FznState is a FlatZinc state initialized with respect to some FlatZinc program
and Id is an identifier of the FlatZinc program. Unifies the FlatZinc value of
Id with Value according to the following translation scheme:

• A bool is translated into a Prolog integer: false is translated into 0 and
true is translated into 1.

• An int is translated into a Prolog integer.

• A float is translated into a Prolog float.

• An integer range or an integer set is translated into a library(clpfd) FD
set term (see Section 10.10.9.3 [FD Set Operations], page 476).

864 SICStus Prolog

• A non-integer set is translated into a sorted Prolog list containing the
(translated) elements of the set.

• An array is translated into a Prolog list containing the (translated) elements
of the array. Ordering is preserved such that the nth element of the array
is the nth element of the list.

• A var int is translated into a library(clpfd) domain variable (see
Section 10.10.3 [CLPFD Interface], page 425).

• A var bool is translated into a library(clpfd) domain variable with the
domain 0..1 (see Section 10.10.3 [CLPFD Interface], page 425).

Exceptions: An existence error if Id is not an identifier of FznState.

fzn_objective(+FznState, -Objective)

FznState is a FlatZinc state initialized with respect to some FlatZinc program.
Unifies Objective with a domain variable representing the FlatZinc objective.

Exceptions: An existence error if there is no objective in FznState.

A possible use of fzn_identifier/3 is to post additional library(clpfd) constraints or
to apply a Prolog labeling predicate on the FlatZinc variables. For example, given the 4
Queens problem in queen4.fzn described above, the following goal labels the variables to
find all solutions:

| ?- use_module(library(clfpd)).

| ?- fzn_load_file(library('zinc/examples/queen4'), Queen4State),

fzn_post(Queen4State),

fzn_identifier(Queen4State, q, Q),

findall(_, (labeling([], Q), fzn_output(Queen4State)), _).

Given this goal, the following is written on the current output stream:

q = array1d(1..4, [2, 4, 1, 3]);

q = array1d(1..4, [3, 1, 4, 2]);

To avoid symmetric solutions where the chess board is rotated 180 degrees, the following
goal posts an additional symmetry breaking constraint on the first two queens:

| ?- fzn_load_file(library('zinc/examples/queen4'), Queen4State),

fzn_post(Queen4State),

fzn_identifier(Queen4State, q, Q),

Q = [Q1, Q2|_], Q1 #< Q2,

findall(_, (labeling([], Q), fzn_output(Queen4State)), _).

Given this goal, the following is written on the current output stream:

q = array1d(1..4, [2, 4, 1, 3]);

Chapter 10: The Prolog Library 865

Note that, now, only the first one of the previous two solutions is displayed.

The following two predicates can be used to run a FlatZinc program in one go. They both
take as optional argument a list Options, which can be used to change the default behavior
of the execution. This list may contain zero or more of the following:

search(Method) since release 4.3

where Method must be one of the atoms bab and restart. Tells the solver
which optimization algorithm to use: branch-and-bound (the default), or to
restart the search each time a new solution is found. The corresponding spfz

option is -search Method.

solutions(NumberOfSolutions)

where NumberOfSolutions must be an integer greater than zero or the atom
all. Describes the number of solutions to search for; the default is 1. The
corresponding spfz options are -n N and -a.

output(File)

where File must be the name of a writable file. Causes any output written
on the current output stream to be directed to File. The corresponding spfz

option is -o File.

ozn_file(File) since release 4.2.3

where File must be the name of an existing file, containing the MiniZinc output
commands that solns2out should use. If not given, then solns2out will not
be used, and the solutions will be printed unformatted.

statistics(Boolean)

where Booleanmust be true or false (default). The corresponding spfz option
is -s. If true, a block of statistics is written on the current output stream at
the end of execution. Each line of the block has the format:

%%%mzn-stat: name=value

The block is terminated by a line:

%%%mzn-stat-end

The name and its meaning is one of the following:

failures The number of times a failure was encountered during search.

variables

The number of domain variables created.

propagators

The number of propagators created.

propagations

The number of propagator invocations.

initTime Initialization time (in seconds).

solveTime

Solving time (in seconds).

866 SICStus Prolog

timeout(Time)

where Time should be an integer greater than zero. Stops the computation if
it has not finished before Time milliseconds has elapsed. In any event, the best
solution found so far is reported. The corresponding spfz option is -t Time.

fzn_run_stream(+FznStream)

fzn_run_stream(+FznStream, +Options)

FznStream is a FlatZinc input stream and Options is a list of options as de-
scribed above. Performs the following steps:

1. Loads the FlatZinc program (fzn_load_stream/2), initializing a FlatZinc
state.

2. Posts the constraints of the FlatZinc program (fzn_post/1).

3. Runs the solve part of the FlatZinc program (fzn_solve/1).

4. Outputs the values of the variables that have been annotated with output_

var/0 or output_array/1.

The two final steps are repeated until the number of solutions as specified in
Options have been found or until no more solutions can be found. At this point,
if the whole search space have been explored, then ten consecutive equal signs
are output on a separate line.

Exceptions:

• A type error if the number of solutions to search for is not greater than
zero nor the atom all.

• Exceptions regarding errors in FznStream (see Section 10.50.4 [Zinc Er-
rors], page 873).

fzn_run_file(+FznFile)

fzn_run_file(+FznFile, +Options)

FznFile is a FlatZinc program file (extension defaults to .fzn) and Options is
a list of options as described above. This predicate is just a wrapper around
fzn_run_stream/[1,2] handling stream opening and closing.

Exceptions:

• Exceptions related to the opening of FznFile for reading.

• A type error if the number of solutions to search for is not greater than
zero nor the atom all.

• Exceptions regarding errors in FznFile (see Section 10.50.4 [Zinc Errors],
page 873).

The next predicate can be used to write the constraints of a FlatZinc program to a file, in
the format of library(clpfd).

fzn_dump(+FznState, +File)

fzn_dump(+FznState, +Options, +File)

FznState is a FlatZinc state initialized with respect to some FlatZinc program
and File is a writable file (extension defaults to .pl). Writes the constraints of
FznState to File in the format of library(clpfd).

Chapter 10: The Prolog Library 867

Options is a list containing zero or more of the following (currently, this is the
only available option):

variables(ListOfVarDef)

where ListOfVarDef is a list of elements of the form Id=Var where
Id is a FlatZinc identifier and Var is a Prolog variable. Means
that Var is unified with the value of Id after the FlatZinc pro-
gram is loaded and that Id=Var is included in a list of argu-
ments to query/1 that is written to File. Default is ListOf-
VarDef=[vars=Vars], with the meaning that Vars is a list con-
taining all variables of the FlatZinc state, in the order they were
introduced.

Exceptions: Exceptions related to the opening of File for writing.

Consider again the FlatZinc program queen4.fzn described above and the following goal
at the Prolog top level:

| ?- fzn_load_file(library('zinc/examples/queen4'), Queen4State),

fzn_dump(Queen4State, [variables([q=Q])], queen4).

The file queen4.pl then contains the following:

queen4.pl

:- use_module(library(clpfd)).

query([q=[A,B,C,D]]) :-

domain([A,B,C,D], 1, 4),

C#\=D,

B#\=D,

B#\=C,

A#\=D,

A#\=C,

A#\=B,

scalar_product([1,-1], [C,D], #\=, 1),

scalar_product([1,-1], [C,D], #\=, -1),

scalar_product([1,-1], [B,D], #\=, 2),

scalar_product([1,-1], [B,D], #\=, -2),

scalar_product([1,-1], [B,C], #\=, 1),

scalar_product([1,-1], [B,C], #\=, -1),

scalar_product([1,-1], [A,D], #\=, 3),

scalar_product([1,-1], [A,D], #\=, -3),

scalar_product([1,-1], [A,C], #\=, 2),

scalar_product([1,-1], [A,C], #\=, -2),

scalar_product([1,-1], [A,B], #\=, 1),

scalar_product([1,-1], [A,B], #\=, -1).

868 SICStus Prolog

10.50.3 MiniZinc

The predicates described here make it possible to load and run MiniZinc programs di-
rectly from within SICStus and require an external MiniZinc-to-FlatZinc translator. In
this way, the predicates described here are essentially wrappers to the predicates described
in Section 10.50.2 [FlatZinc], page 859, handling the MiniZinc-to-FlatZinc translation and
providing a more high-level interface.

10.50.3.1 Exported Predicates

The following predicates all take as (optional) argument a list Options, which can be used
to change the default behavior of the execution. This list may contain zero or more of the
following:

data_file(MznDatFile)

where MznDatFile must be a MiniZinc data file. Means that MznDatFile is
passed to mzn2fzn through the --data option.

parameters(ListOfParDef)

where ListOfParDef is a list of elements of the form Id=Value where Id is a
MiniZinc identifier and Value is a MiniZinc value. Means that all elements are
written to a temporary file, which is passed to mzn2fzn through the --data

option.

post(Boolean)

where Boolean must be true or false. If true (the default), then the con-
straints of the MiniZinc program are posted directly and a separate call to
fzn_post/1 (see Section 10.50.2.1 [FlatZinc Exported Predicates], page 861) is
not necessary. (Only usable with mzn_load_file/3 and mzn_load_model/3.)

search(Method) since release 4.3

where Method must be one of the atoms bab and restart. Tells the solver
which optimization algorithm to use: branch-and-bound (the default), or to
restart the search each time a new solution is found. (Only usable with mzn_

run_file/2 and mzn_run_model/2.)

solutions(NumberOfSolutions)

where NumberOfSolutions must be an integer greater than zero or the atom
all. Describes the number of solutions to search for, default is 1. (Only usable
with mzn_run_file/2 and mzn_run_model/2.)

output(File)

where File must be the name of a writable file. Causes any output written on
the current output stream to be directed to File. (Only usable with mzn_run_

file/2 and mzn_run_model/2.)

fzn_file(File) since release 4.2.3

where File must be the name of a writable file. The translated FlatZinc program
will be written to the given file. Otherwise, a temporary file will be used and
erased afterwards.

Chapter 10: The Prolog Library 869

ozn_file(File) since release 4.2.3

where File must be the name of a writable file. The MiniZinc output commands
will be written to the given file. Otherwise, a temporary file will be used and
erased afterwards.

optimise(Boolean) since release 4.2.3

optimize(Boolean) since release 4.2.3

where Boolean must be true (the default) or false. If false, then --no-

optimize is passed to mzn2fzn.

option(Value) since release 4.5

Causes an extra option Value to be passed to the MiniZinc driver. (Only usable
with mzn_run_file/2 and mzn_run_model/2.)

statistics(Boolean)

where Boolean must be true or false (default). If true, then the fol-
lowing statistics are written on the current output stream (see the built-in
statistics/[0,2] and fd_statistics/[0,2] of library(clpfd) for more
detailed information on their meaning):

runtime Total running time (milliseconds), including parsing the FlatZinc
program.

solvetime

Running time (milliseconds) for posting the constraints and per-
forming the search.

solutions

The number of solutions found.

constraints

The number of constraints created.

backtracks

The number of times a contradiction was found by a domain being
wiped out, or by a global constraint signalling failure.

prunings The number of times a domain was pruned.

(Only usable with mzn_run_file/2 and mzn_run_model/2.)

timeout(Time)

where Time should be an integer greater than zero. Stops the computation if
it has not finished before Time milliseconds has elapsed. In any event, the best
solution found so far is reported. Measuring starts after the call to mzn2fzn

has finished. (Only usable with mzn_run_file/2 and mzn_run_model/2.)

variables(ListOfVarDef)

where ListOfVarDef is a list of elements of the form Id=Var where Id is a
MiniZinc identifier and Var is a Prolog variable. Means that Var is unified
with the value of Id after the MiniZinc program is loaded. (Only usable with
mzn_load_file/3 and mzn_load_model/3).

870 SICStus Prolog

The first two predicates can be used to run a MiniZinc program in one go.

mzn_run_file(+MznFile)

mzn_run_file(+MznFile, +Options)

MznFile is a MiniZinc program file and Options is a list of options as described
above. Runs the MiniZinc program on MznFile, and writes the result onto the
file given in the option/1 option if given, or onto the current output stream
otherwise. This is done by first calling mzn2fzn, and then interpreting its
output with fzn_run_stream/[1,2] (see Section 10.50.2.1 [FlatZinc Exported
Predicates], page 861). Fails if the constraints of the MiniZinc program are
inconsistent.

Exceptions:

• Exceptions related to the opening of MznFile for reading.

• A system error if mzn2fzn is unsuccessful. This error will include any
information produced by mzn2fzn on its standard error stream.

• A type error if the number of solutions to search for is not greater than
zero nor the atom all.

• Exceptions regarding errors in MznFile (see Section 10.50.4 [Zinc Errors],
page 873) although these are most probably already handled by mzn2fzn.

mzn_run_model(+MznModel)

mzn_run_model(+MznModel, +Options)

MznModel is a MiniZinc program specified by a list of strings as explained
below and Options is a list of options as described above. Runs the MiniZinc
program MznModel, and writes the result onto the file given in the option/1

option if given, or onto the current output stream otherwise. This is done by
first calling mzn2fzn and interpreting its output with fzn_run_stream/[1,2]

(see Section 10.50.2.1 [FlatZinc Exported Predicates], page 861). The MiniZinc
program specification MznModel must be a list of strings (list of character
codes) where each element must specify one line of the MiniZinc program. For
example, a MiniZinc program for the N Queens problem can be specified as
follows:

NQueens = ["int: n;",

"array [1..n] of var 1..n: q;",

"constraint forall (i in 1..n, j in i+1..n)",

"(q[i] != q[j] /\\",

"q[i] + i != q[j] + j /\\",

"q[i] - i != q[j] - j);",

"solve satisfy;",

"output [\"A solution to the \", show(n),",

"\" Queens problem: \", show(q), \"\\n\"];"]

Note that backslashes and double quotes must be escaped with an additional
backslash.

Exceptions:

• A system error if mzn2fzn is unsuccessful. This error will include any
information produced by mzn2fzn on its standard error stream.

Chapter 10: The Prolog Library 871

• A type error if the number of solutions to search for is not greater than
zero nor the atom all.

• Exceptions regarding errors inMznModel (see Section 10.50.4 [Zinc Errors],
page 873) although these are most probably already handled by mzn2fzn.

Consider the following MiniZinc program for solving the N Queens problem located in
library('zinc/examples/queen.mzn'):

queen.mzn

int: n;

array [1..n] of var 1..n: q;

constraint

forall (i in 1..n, j in i+1..n) (

q[i] != q[j] /\

q[i] + i != q[j] + j /\

q[i] - i != q[j] - j

);

solve satisfy;

output ["A solution to the ", show(n), " Queens problem: ", show(q), "\n"];

Consider now the following goal at the Prolog top level:

| ?- mzn_run_file(library('zinc/examples/queen'),

[data_file(library('zinc/examples/queen4.dzn'))]).

Since library('zinc/examples/queen4.dzn') contains the single line

n = 4;

the following is written on the current output stream:

A solution to the 4 Queens problem: [2, 4, 1, 3]

The initialization n = 4 can also be passed using the parameter/1 option. So the following
goal is equivalent to the one above:

| ?- mzn_run_file(library('zinc/examples/queen'), [parameters([n=4])]).

Finally, the following goal finds all solutions to the 4 Queens problem:

| ?- mzn_run_file(library('zinc/examples/queen'),

[parameters([n=4]), solutions(all)]).

Given this goal, the following is written on the current output stream:

872 SICStus Prolog

A solution to the 4 Queens problem: [2, 4, 1, 3]

A solution to the 4 Queens problem: [3, 1, 4, 2]

==========

The next two predicates can be used to construct a FlatZinc state (see Section 10.50.2.1
[FlatZinc Exported Predicates], page 861).

mzn_load_file(+MznFile, -FznState)

mzn_load_file(+MznFile, +Options, -FznState)

MznFile is a MiniZinc program file and Options is a list of options as described
above. Initializes a FlatZinc state FznState with respect to MznFile. May fail
if post(true) and the constraints are inconsistent.

Exceptions:

• Exceptions related to the opening of MznFile for reading.

• A system error if mzn2fzn is unsuccessful. This error will include any
information produced by mzn2fzn on its standard error stream.

• An existence error if an Id of the variables/1 option is not an identifier
of FznState.

• Exceptions regarding errors in MznFile (see Section 10.50.4 [Zinc Errors],
page 873) although these are most probably already handled by mzn2fzn.

mzn_load_model(+MznModel, -FznState)

mzn_load_model(+MznModel, +Options, -FznState)

MznModel is a MiniZinc program specified by a list of strings as explained
for mzn_run_model/[1,2] above and Options is a list of options as described
above. Initializes a FlatZinc state FznState with respect to MznModel. May
fail if post(true) and the constraints are inconsistent.

Exceptions:

• A system error if mzn2fzn is unsuccessful. This error will include any
information produced by mzn2fzn on its standard error stream.

• An existence error if an Id of the variables/1 option is not an identifier
of FznState.

• Exceptions regarding errors inMznModel (see Section 10.50.4 [Zinc Errors],
page 873) although these are most probably already handled by mzn2fzn.

The following Prolog goal constructs a FlatZinc state representing the 4 Queens problem:

| ?- mzn_load_file(library('zinc/examples/queen'),

[parameters([n=4])], Queen4State).

See Section 10.50.2.1 [FlatZinc Exported Predicates], page 861, for more information on
FlatZinc states and how they can be queried. A very useful option to mzn_load_file/3

and mzn_load_model/3 is the variables/1 option, which can be used to unify values of
MiniZinc identifiers with Prolog variables (this option can be used in place of several calls

Chapter 10: The Prolog Library 873

to fzn_identifier/3). For example, the following goal posts an additional symmetry
breaking constraint and labels the variables using a Prolog goal that finds all remaining
solutions to the 4 Queens problem:

| ?- mzn_load_file(library('zinc/examples/queen'),

[parameters([n=4]), variables([q=Q])],

Queen4State),

Q = [Q1, Q2|_], Q1 #< Q2,

findall(_, (labeling([], Q), fzn_output(Queen4State)), _).

Given this goal, the following is written on the current output stream:

q = array1d(1..4, [2, 4, 1, 3]);

The final predicate can be used to translate a MiniZinc file to a FlatZinc by a direct call to
mzn2fzn.

mzn_to_fzn(+MznFile, +FznFile)

mzn_to_fzn(+MznFile, +Options, +FznFile)

MznFile is a MiniZinc program file and Options is a list of options as described
above. Calls mzn2fzn, whose result is written to FznFile.

Exceptions:

• Exceptions related to the opening of MznFile for reading as well as the
opening of FznFile for writing.

• A system error if mzn2fzn is unsuccessful. This error will include any
information produced by mzn2fzn on its standard error stream.

• Exceptions regarding errors in MznFile (see Section 10.50.4 [Zinc Errors],
page 873) although these are most probably already handled by mzn2fzn.

10.50.4 Error Messages

The following is a list of exceptions that may be generated by the predicates described
in Section 10.50.2.1 [FlatZinc Exported Predicates], page 861, and in Section 10.50.3.1
[MiniZinc Exported Predicates], page 868, when there is an error in the FlatZinc or MiniZinc
input.

• A syntax error occurs when the parser cannot continue. For example, the FlatZinc
code:

array[1..2] of int a = [1, 2];

generates the following error (since there must be a colon between int and a):

! Item ending on line 1:

! Syntax error

! expected ‘:' but found ‘ident(a)'

The line number indicates the ending line of the item containing the error. Note that
this means that the error may be on a preceding line, if the item occupies several lines.

874 SICStus Prolog

• A consistency error occurs when the same identifier is used multiple times. For exam-
ple, the FlatZinc code:

bool : b = false;

bool : b = true;

generates the following error:

! Item ending on line 2:

! Consistency error: ‘b' is already defined

! previous definition of b was ‘bool : b = false'

! cannot redefine b to ‘bool : b = true'

• An existence error occurs when an identifier or a constraint is used without being
previously defined. For example, the FlatZinc code:

bool : b = a;

may generate the following error:

! Item ending on line 2:

! Existence error

! ‘a' is not defined

Another example, the FlatZinc code:

var int : a;

var int : b;

constraint distance(a, b, 1);

may generate the following error:

! Item ending on line 4:

! Existence error

! ‘distance/3' is not defined

• A type error occurs when a value is of the wrong type. For example, the FlatZinc code:

var float : f;

generates the following error (since only finite domain integer variables are supported):

! Item ending on line 2:

! Type error

! ‘f' must be a member of ‘int'

Another example, the FlatZinc code:

array[1..2] of float : a = [2.1, 3];

generates the following error (since an array of floats cannot contain integers):

! Item ending on line 2:

! Type error

! ‘3' must be a member of ‘float'

A type error also occurs when an array index is out of bounds. For example, the
FlatZinc code:

array[1..2] of int : a = [1, 2];

int : i = a[3];

generates the following error:

Chapter 10: The Prolog Library 875

! Item ending on line 3:

! Type error in array index

! index evaluates to 3 but must be in 1..2

10.50.5 Limitations

Domain variables
Only variables with finite integer domains are supported. This includes boolean
variables, which are considered finite integer domain variables with the domain
0..1. Domain variables declared to be of type var int are initially given the
finite integer domain inf..sup, and are given maximally wide bounded domains
before any search is performed on them, as well as before certain constraints
that demand bounded domains are posted on them.

Ground set values
Although set variables are not supported, ground set values are. For example,
the MiniZinc global constraint sum_pred/4 takes as second argument an array
of such ground set values.

Solve annotations
• The solve annotations currently recognized are bool_search, int_search,

and seq_search.

• The FlatZinc specification describes several exploration strategies. Cur-
rently, the only recognized exploration strategies are complete and fail.

• Variables not included in any solve or is_defined_var annotation are
labeled with a default first-fail domain splitting heuristic. This corresponds
to labeling/2 of library(clpfd) with the option list [ff,bisect].

• The choice method indomain_random as described in the FlatZinc specifi-
cation uses random_member/2 of library(random). The random genera-
tor of SICStus is initialized using the same seed on each start up, meaning
that the same sequence will be tried for indomain_random on each start
up. This behavior can be changed by setting a different random seed using
setrand/1 of library(random).

Constraint annotations
Constraint annotations of the form domain, bounds, and value are recognized in
relevant FlatZinc-to-library(clpfd) constraint translations. Any other con-
straint annotation is ignored.

Variable annotations
The following variable annotations are recognized. Any other variable annota-
tion is ignored:

output_var since release 4.2

the variable may be written on the current output stream.

output_array since release 4.2

the variable array may be written on the current output stream.

is_defined_var

the variable will not be considered in any default labeling (such as
when the search annotations do not include all variables)

877

11 Prolog Reference Pages

11.1 Reading the Reference Pages

11.1.1 Overview

The reference pages for SICStus Prolog built-in predicates conform to certain conventions
concerning

• mode annotations

• predicate annotations

• argument types

These are particularly important in utilizing the Synopsis and Arguments fields of each
reference page. The Synopsis field consists of the goal template(s) with mode annotations
and a brief description of the purpose of the predicate. For example, consider this excerpt
from the reference page for assert/[1,2]:

Synopsis

These predicates add a dynamic clause, Clause, to the Prolog database. They optionally
return a database reference in Ref :

assert(+Clause)

assert(+Clause, -Ref)

It is undefined whether Clause will precede or follow the clauses already in the database.

The Arguments field lists, for each meta-variable name in the template, its argument type,
(e.g. callable), a brief description (sometimes omitted), and an indication (‘:’) if it does
module name expansion. For example,

Arguments

:Clause callable A valid dynamic Prolog clause.

Ref db reference a database reference, which uniquely identifies the newly asserted
Clause.

11.1.2 Mode Annotations

The mode annotations are useful to tell whether an argument is input or output or both.
They also describe formally the instantiation pattern to the call that makes the call to the
built-ins determinate.

The mode annotations in the above example are ‘+’ and ‘-’. Following is a complete de-
scription of the mode annotations you will find in the reference pages:

‘+’ Input argument. This argument will be inspected by the predicate, and affects
the behavior of the predicate. An exception is raised if the argument is not of

878 SICStus Prolog

the expected type. Note that an input argument can be an unbound variable
in some cases.

‘-’ Output argument. This argument is unified with the output value of the predi-
cate. An output argument is only tested to be of the same type as the possible
output value if this is prescribed by the ISO standard, or if such testing is
deemed helpful to the user.

‘?’ An argument that could be either input or output. This mode annotation is
normally only used for predicates that behave as pure relations and do not type
test their arguments.

If the synopsis of a predicate has more than one mode declaration, then the first (the
topmost) that satisfies the types (of a goal instance) is the one to be applied (to that goal
instance).

All built-in predicates of arity zero are determinate (with the exception of repeat/0).

For input arguments, an exception will be raised if the argument is not of the specified
type.

For output arguments, an exception might be raised if the argument is nonvar, and not of
the specified type. The generated value of the argument will be of the specified type.

11.1.3 Predicate Annotation

This section describes the annotations of predicates and how they are indicated in the
reference pages for predicates of each given annotation. The annotations appear to the
right of the title of the reference page.

hookable The behavior of the predicate can be customized/redefined by defining one or
more hooks. The mode and type annotations of a hookable predicate might not
be absolute, since hooks added by the user can change the behavior.

hook The predicate is user defined, and is called by a hookable builtin. Typically, it
is undefined initially, belongs to the user module, and if defined by the user,
it is best defined as multifile, so that new clases can be added by different
software modules. For a hook, the mode and type annotations should be seen
as guidelines to the user who wants to add his own hook; they describe how the
predicate is used by the system.

declaration
You cannot call these directly but they can appear in files as ‘:- declaration’
and give information to the compiler. The goal template is preceded by ‘:-’ in
the Synopsis.

development
A predicate that is defined in the development system only, i.e. not in runtime
systems.

ISO A predicate that is part of the ISO Prolog Standard.

Chapter 11: Prolog Reference Pages 879

deprecated
A predicate that is not recommended in new code and that could be withdrawn
in a future release.

Meta-predicates and operators are recognizable by the implicit conventions described below.

• Meta-predicates are predicates that need to assume some module. The reference pages
of these predicates indicate which arguments are in a module expansion position by
prefixing such arguments by ‘:’ in the Arguments field. That is, the argument can be
preceded by a module prefix (an atom followed by a colon). For example:

assert(mod:a(1), Ref)

If no module prefix is supplied, then it will implicitly be set to the calling module. If
the module prefix is a variable, then an instantiation error will be raised. If it is not
an atom, then a type error will be raised. So in any meta-predicate reference page the
following exceptions are implicit:

Exceptions

instantiation_error

A module prefix is written as a variable.

type_error

A module prefix is not an atom.

• Whenever the name of a built-in predicate is defined as operator, the name is presented
in the Synopsis as an operator, for example

:- initialization +Goal (A)

+Term1 @> +Term2 (B)

It is thus always possible to see if a name is an operator or not. The predicate can,
of course, be written using the canonical representation, even when the name is an
operator. Thus (A) and (B) can be written as (C) and (D), respectively:

:- initialization(+Goal) (C)

@>(+Term1, +Term2) (D)

11.1.4 Argument Types

The argument section describes the type/domain of each argument of a solution to the
given predicate. That is, for a predicate to succeed, it must be possible to instantiate the
given argument to a term of the described type/domain.

If it is a ‘+’ argument, then the predicate always tests if the argument is of the right
type/domain. Usually, input arguments must also be instantiated to some extent. Such
details are documented for each input argument.

Many built-in and library predicates take an +Options argument, which must be given as a
proper list of terms specifying what the predicate should do, typically as the last argument.
As a general rule for such option lists, if the same option occurs more than once, then the
last occurrence overrides previous ones.

880 SICStus Prolog

11.1.4.1 Simple Types

The simple argument types are those for which type tests are provided. They are summa-
rized in Section 11.2.23 [mpg-top-typ], page 900.

If an output argument is given the type var, then it means that that argument is not used
by the predicate in the given instantiation pattern.

11.1.4.2 Extended Types

Following is a list of argument types that are defined in terms of the simple argument types.
This is a formal description of the types/domains used in the Arguments sections of the
reference pages for the built-ins. The rules are given in BNF (Backus-Naur form).

bbkey ::= atom | integer {where the integer is small}
stream object ::= term {as defined in Section 4.6.7.1 [ref-iou-sfh-sob], page 109,}
term ::= {any Prolog term}
list of Type ::= [] | [Type|list of Type]

var or Type ::= var | Type
one of [Element|Rest] ::= Element | one of Rest
arity ::= {an integer X in the range 0..255}
byte ::= {an integer X in the range 0..255}
char ::= {an atom consisting of a single character}
chars ::= list of char
code ::= {an integer X >= 0}
codes ::= list of code
order ::= {an atom, one of [<,=,>]}
pair ::= term-term

simple pred spec ::= atom/arity

pred spec ::= simple pred spec | atom:pred_spec

pred spec forest ::= [] | pred spec
| [pred_spec_forest|pred_spec_forest]

| pred_spec_forest,pred_spec_forest

pred spec tree ::= pred spec | list of pred spec
foreign spec ::= callable {all arguments being foreign arg}
foreign arg ::= +interf_arg_type | -interf_arg_type | [-interf_arg_

type]

interf arg type ::= integer | float | atom

| term | codes | string | address | address(atom)

{see the description in Section 6.2.3 [Conversions between Prolog
Arguments and C Types], page 293,}

file spec ::= atom | atom(file_spec)

expr ::= {everything that is accepted as second argument to is/2;
see the description of arithmetic expressions in Section 4.7.5 [ref-
ari-aex], page 120.}

Chapter 11: Prolog Reference Pages 881

11.1.5 Exceptions

The Exceptions field of the reference page consists of a list of exception type names, each
followed by a brief description of the situation that causes that type of exception to be
raised. The following example comes from the reference page for assert/[1,2]:

Exceptions

instantiation_error

If Head (in Clause) or M is uninstantiated.

type_error

If Head is not of type callable, or if M is not an atom, or if Body is not a valid
clause body.

For input arguments, an exception will be raised if the argument is not of the specified
type.

For output arguments, an exception might be raised if the argument is nonvar, and not of
the specified type. The generated value of the argument will be of the specified type.

11.1.6 Other Fields

The Backtracking field, if included, describes how the predicate behaves on backtracking.
If this field is omitted, then the predicate is determinate (succeeds at most once).

The See Also field contains cross references to related predicates and/or manual sections.

Reference pages may also include Comments, Examples, and Tips fields, when appropriate.

11.2 Topical List of Prolog Built-Ins

Following is a complete list of SICStus Prolog built-in predicates, arranged by topic. A
predicate may be included in more than one list.

11.2.1 All Solutions

?X ^ :P there exists an X such that P is provable (used in setof/3 and bagof/3)

bagof(?X,:P,-B) ISO

B is the bag of instances of X such that P is provable

findall(?T,:G,-L) ISO

findall(?T,:G,?L,?R)

L is the list of all solutions T for the goal G, concatenated with R or with the
empty list

setof(?X,:P,-S) ISO

S is the set of instances of X such that P is provable

11.2.2 Arithmetic

-Y is +X ISO

Y is the value of arithmetic expression X

882 SICStus Prolog

+X =:= +Y ISO

the results of evaluating terms X and Y as arithmetic expressions are equal.

+X =\= +Y ISO

the results of evaluating terms X and Y as arithmetic expressions are not equal.

+X < +Y ISO

the result of evaluating X as an arithmetic expression is less than the result of
evaluating Y as an arithmetic expression.

+X >= +Y ISO

the result of evaluating X as an arithmetic expression is not less than the result
of evaluating Y as an arithmetic expression.

+X > +Y ISO

the result of evaluating X as an arithmetic expression X is greater than the
result of evaluating Y as an arithmetic expression.

+X =< +Y ISO

the result of evaluating X as an arithmetic expression is not greater than the
result of evaluating Y as an arithmetic expression.

11.2.3 Character I/O

at_end_of_line

at_end_of_line(+S)

testing whether at end of line on input stream S

at_end_of_stream ISO

at_end_of_stream(+S) ISO

testing whether end of file is reached for the input stream S

flush_output ISO

flush_output(+S) ISO

flush the output buffer for stream S

get_byte(-C) ISO

get_byte(+S,-C) ISO

C is the next byte on binary input stream S

get_char(-C) ISO

get_char(+S,-C) ISO

C is the next character atom on text input stream S

get_code(-C) ISO

get_code(+S,-C) ISO

C is the next character code on text input stream S

nl ISO

nl(+S) ISO

send a newline to stream S

peek_byte(+C) ISO

peek_byte(+S,+C) ISO

looks ahead for next input byte on the binary input stream S

Chapter 11: Prolog Reference Pages 883

peek_char(+C) ISO

peek_char(+S,+C) ISO

looks ahead for next input character atom on the text input stream S

peek_code(+C) ISO

peek_code(+S,+C) ISO

looks ahead for next input character code on the text input stream S

put_byte(+C) ISO

put_byte(+S,+C) ISO

write byte C to binary stream S

put_char(+C) ISO

put_char(+S,+C) ISO

write character atom C to text stream S

put_code(+C) ISO

put_code(+S,+C) ISO

write character code C to text stream S

skip_byte(+C)

skip_byte(+S,+C)

skip input on binary stream S until after byte C

skip_char(+C)

skip_char(+S,+C)

skip input on text stream S until after char C

skip_code(+C)

skip_code(+S,+C)

skip input on text stream S until after code C

skip_line

skip_line(+S)

skip the rest input characters of the current line (record) on the input stream
S

11.2.4 Control

:P,:Q ISO

prove P and Q

:P;:Q ISO

prove P or Q

+M::P ISO

call P in module M

:P->:Q;:R ISO

if P succeeds, prove Q; if not, prove R

:P->:Q ISO

if P succeeds, prove Q; if not, fail

884 SICStus Prolog

! ISO

cut any choices taken in the current procedure

\+ :P ISO

goal P is not provable

?X ^ :P there exists an X such that P is provable (used in setof/3 and bagof/3)

block :P declaration

declaration that predicates specified by P should block until sufficiently instan-
tiated

call(:P) ISO

call(:P,...) ISO

execute P or P(...)

call_cleanup(:Goal,:Cleanup)

Executes the procedure call Goal. When Goal succeeds determinately, is cut,
fails, or raises an exception, Cleanup is executed.

call_residue_vars(:Goal,?Vars)

Executes the procedure call Goal. Vars is unified with the list of new vari-
ables created during the call that remain unbound and have blocked goals or
attributes attached to them.

+Iterators do :Body

executes Body iteratively according to Iterators

fail ISO

fail (start backtracking)

false ISO

same as fail

freeze(+Var,:Goal)

Blocks Goal until nonvar(Var) holds.

if(:P,:Q,:R)

for each solution of P that succeeds, prove Q; if none, prove R

once(:P) ISO

Find the first solution, if any, of goal P.

otherwise

same as true

repeat ISO

succeed repeatedly on backtracking

true ISO

succeed

when(+Cond,:Goal)

block Goal until Cond holds

Chapter 11: Prolog Reference Pages 885

11.2.5 Database

abolish(:F) ISO

abolish the predicate(s) specified by F

abolish(:F,+O)

abolish the predicate(s) specified by F with options O

assert(:C)

assert(:C,-R)

clause C is asserted; reference R is returned

asserta(:C) ISO

asserta(:C,-R)

clause C is asserted before existing clauses; reference R is returned

assertz(:C) ISO

assertz(:C,-R)

clause C is asserted after existing clauses; reference R is returned

bb_delete(:Key,-Term)

Delete from the blackboard Term stored under Key.

bb_get(:Key,-Term)

Get from the blackboard Term stored under Key.

bb_put(:Key,+Term)

Store Term under Key on the blackboard.

bb_update(:Key, -OldTerm, +NewTerm)

Replace OldTerm by NewTerm under Key on the blackboard.

clause(:P,?Q) ISO

clause(:P,?Q,?R)

there is a clause for a dynamic predicate with head P, body Q, and reference R

current_key(?N, ?K)

N is the name and K is the key of a recorded term

dynamic :P declaration,ISO

predicates specified by P are dynamic

erase(+R)

erase the clause or record with reference R

instance(+R,-T)

T is an instance of the clause or term referenced by R

recorda(+K,+T,-R)

make term T the first record under key K ; reference R is returned

recorded(?K,?T,?R)

term T is recorded under key K with reference R

recordz(+K,+T,-R)

make term T the last record under key K ; reference R is returned

886 SICStus Prolog

retract(:C) ISO

erase the first dynamic clause that matches C

retractall(:H) ISO

erase every clause whose head matches H

11.2.6 Debugging

add_breakpoint(+Conditions, -BID) development

Creates a breakpoint with Conditions and with identifier BID.

user:breakpoint_expansion(+Macro, -Body) hook,development

defines debugger condition macros

coverage_data(?Data) since release 4.2,development

Data is the coverage data accumulated so far

current_breakpoint(?Conditions, ?BID, ?Status, ?Kind, ?Type) development

There is a breakpoint with conditions Conditions, identifier BID, enabledness
Status, kind Kind, and type Type.

debug development

switch on debugging

user:debugger_command_hook(+DCommand,-Actions) hook,development

Allows the interactive debugger to be extended with user-defined commands.

debugging development

display debugging status information

disable_breakpoints(+BIDs) development

Disables the breakpoints specified by BIDs.

enable_breakpoints(+BIDs) development

Enables the breakpoints specified by BIDs.

user:error_exception(+Exception) hook

Exception is an exception that traps to the debugger if it is switched on.

execution_state(+Tests) development

Tests are satisfied in the current state of the execution.

execution_state(+FocusConditions, +Tests) development

Tests are satisfied in the state of the execution pointed to by FocusConditions.

leash(+M) development

set the debugger’s leashing mode to M

nodebug development

switch off debugging

nospy(:P) development

remove spypoints from the procedure(s) specified by P

nospyall development

remove all spypoints

Chapter 11: Prolog Reference Pages 887

notrace development

switch off debugging (same as nodebug/0)

nozip development

switch off debugging (same as nodebug/0)

print_coverage since release 4.2,development

print_coverage(?Data) since release 4.2,development

The coverage data Data is displayed in a hierarchical format. Data defaults to
the coverage data accumulated so far.

print_profile since release 4.2,development

print_profile(?Data) since release 4.2,development

The profiling data Data is displayed in a format similar to gprof(1). Data
defaults to the profiling data accumulated so far.

profile_data(?Data) since release 4.2,development

Data is the profiling data accumulated so far

profile_reset since release 4.2,development

All profiling data is reset.

remove_breakpoints(+BIDs) development

Removes the breakpoints specified by BIDs.

spy(:P) development

spy(:P,:C)

set spypoints on the procedure(s) specified by P with conditions C

trace development

switch on debugging and start tracing immediately

unknown(-O,+N) development

Changes action on undefined predicates from O to N.

user:unknown_predicate_handler(+G,+M,-N) hook

handle for unknown predicates.

zip development

switch on debugging in zip mode

11.2.7 Errors and Exceptions

abort abort execution of the program; return to current break level

break start a new break level to interpret commands from the user

catch(:P,?E,:H) ISO

specify a handler H for any exception E arising in the execution of the goal P

user:error_exception(+Exception) hook,development

Exception is an exception that traps to the debugger if it is switched on.

goal_source_info(+AGoal, -Goal, -SourceInfo)

Decomposes the annotated goal AGoal into a Goal proper and the SourceInfo
descriptor term, indicating the source position of the goal.

888 SICStus Prolog

halt ISO

halt(C) ISO

exit from Prolog with exit code C

on_exception(?E,:P,:H)

specify a handler H for any exception E arising in the execution of the goal P

raise_exception(+E)

raise exception E

throw(+E) ISO

raise exception E

unknown(?OldValue, ?NewValue) development

access the unknown Prolog flag and print a message

user:unknown_predicate_handler(+Goal, +Module, -NewGoal) hook

tell Prolog to call Module:NewGoal if Module:Goal is undefined

11.2.8 Filename Manipulation

absolute_file_name(+R,-A) hookable

absolute_file_name(+R,-A,+O) hookable

expand relative filename R to absolute file name A using options specified in O

user:file_search_path(+F,-D) hook

directory D is included in file search path F

user:library_directory(-D) hook

D is a library directory that will be searched

11.2.9 File and Stream Handling

byte_count(+S,-N)

N is the number of bytes read/written on binary stream S

character_count(+S,-N)

N is the number of characters read/written on text stream S

close(+F) ISO

close(+F,+O) ISO

close file or stream F with options O

current_input(-S) ISO

S is the current input stream

current_output(-S) ISO

S is the current output stream

current_stream(?F,?M,?S)

S is a stream open on file F in mode M

line_count(+S,-N)

N is the number of lines read/written on text stream S

Chapter 11: Prolog Reference Pages 889

line_position(+S,-N)

N is the number of characters read/written on the current line of text stream
S

open(+F,+M,-S) ISO

open(+F,+M,-S,+O) ISO

file F is opened in mode M, options O, returning stream S

open_null_stream(+S)

new output to text stream S goes nowhere

prompt(-O,+N)

queries or changes the prompt string of the current input stream

see(+F) make file F the current input stream

seeing(-N)

the current input stream is named N

seek(+S,+O,+M,+N)

seek to an arbitrary byte position on the stream S

seen close the current input stream

set_input(+S) ISO

select S as the current input stream

set_output(+S) ISO

select S as the current output stream

set_stream_position(+S,+P) ISO

P is the new position of stream S

stream_code(?S,?C)

Converts between Prolog and C representations of a stream

stream_position(+S,-P)

P is the current position of stream S

stream_position_data(?Field,?Position,?Data)

The Field field of the stream position term Position is Data.

stream_property(?Stream, ?Property) ISO

Stream Stream has property Property.

tell(+F) make file F the current output stream

telling(-N)

to file N

told close the current output stream

11.2.10 Foreign Interface

foreign(+F,-P) hook

foreign(+F,-L,-P) hook

function F in language L is attached to P

890 SICStus Prolog

foreign_resource(+R,-L) hook

resource R defines foreign functions in list L

load_foreign_resource(+R) hookable

load foreign resource R

stream_code(?S,?C)

Converts between Prolog and C representations of a stream

unload_foreign_resource(+R)

unload foreign resource R

11.2.11 Grammar Rules

:Head --> :Body

A possible form for Head is Body

expand_term(+T,-X) hookable

term T expands to term X using user:term_expansion/6 or grammar rule
expansion

phrase(:P, -L)

phrase(:P, ?L, ?R)

R or the empty list is what remains of list L after phrase P has been found

user:term_expansion(+Term1, +Layout1, +Tokens1, -Term2, -Layout2, -Tokens2)

hook

Overrides or complements the standard transformations to be done by expand_

term/2.

11.2.12 Hook Predicates

user:breakpoint_expansion(+Macro, -Body) hook,development

defines debugger condition macros

user:debugger_command_hook(+DCommand,-Actions) hook,development

Allows the interactive debugger to be extended with user-defined commands.

user:error_exception(=Exception) hook

Exception is an exception that traps to the debugger if it is switched on.

user:file_search_path(+F,-D) hook

directory D is included in file search path F

foreign(+F,-P)

foreign(+F,-L,-P)

Describes the interface between Prolog and the foreign Routine

foreign_resource(+R,-L)

resource R defines foreign functions in list L

user:generate_message_hook(+M,?S0,?S) hook

A way for the user to override the call to 'SU_messages':generate_message/3
in print_message/2.

Chapter 11: Prolog Reference Pages 891

goal_expansion(+Term1, +Layout1, +Module, -Term2, -Layout2) hook

Defines transformations on goals while clauses are being compiled or asserted,
and during meta-calls.

user:library_directory(-D) hook

D is a library directory that will be searched

user:message_hook(+S,+M,+L) hook

Overrides the call to print_message_lines/3 in print_message/2.

user:portray(+T)

A way for the user to override the default behavior of print/1.

user:portray_message(+S,+M) hook

Tells print_message/2 what to do.

user:query_hook(+QueryClass, +Query, +QueryLines, +Help, +HelpLines, -Answer)

hook

Called by ask_query/4 before processing the query. If this predicate succeeds,
then it is assumed that the query has been processed and nothing further is
done.

user:query_class_hook(+QueryClass, -Prompt, -InputMethod, -MapMethod,

-FailureMode) hook

Provides the user with a method of overriding the call to 'SU_

messages':query_class/5 in the preparation phase of query processing. This
way the default query class characteristics can be changed.

user:query_input_hook(+InputMethod, +Prompt, -RawInput) hook

Provides the user with a method of overriding the call to 'SU_

messages':query_input/3 in the input phase of query processing. This way
the implementation of the default input methods can be changed.

user:query_map_hook(+MapMethod, +RawInput, -Result, -Answer) hook

Provides the user with a method of overriding the call to 'SU_

messages':query_map/4 in the mapping phase of query processing. This way
the implementation of the default map methods can be changed.

user:runtime_entry(+M) hook

This predicate is called upon start-up and exit of stand alone applications.

user:term_expansion(+Term1, +Layout1, +Tokens1, -Term2, -Layout2, -Tokens2)

hook

Overrides or complements the standard transformations to be done by expand_

term/2.

user:unknown_predicate_handler(+G,+M,-N) hook

hook to trap calls to unknown predicates

11.2.13 List Processing

?T =.. ?L ISO

the functor and arguments of term T comprise the list L

892 SICStus Prolog

append(?A,?B,?C)

the list C is the concatenation of lists A and B

keysort(+L,-S) ISO

the list L sorted by key yields S

length(?L,?N)

the length of list L is N

member(?X,?L)

X is a member of L

memberchk(+X,+L)

X is a member of L

nonmember(+X,+L)

X is not a member of L

sort(+L,-S) ISO

sorting the list L into order yields S

11.2.14 Loading Programs

[]

[:F|+Fs] same as load_files([F|Fs])

block :P declaration

predicates specified by P should block until sufficiently instantiated

compile(:F)

load compiled clauses from files F

consult(:F)

reconsult(:F)

load interpreted clauses from files F

expand_term(+T,-X) hookable

term T expands to term X using user:term_expansion/6 or grammar rule
expansion

goal_expansion(+Term1, +Layout1, +Module, -Term2, -Layout2) hook

Defines transformations on goals while clauses are being compiled or asserted,
and during meta-calls.

discontiguous :P declaration, ISO

clauses of predicates P do not have to appear contiguously

dynamic :P declaration, ISO

predicates specified by P are dynamic

elif(:Goal) declaration

Provides an alternative branch in a sequence of conditional compilation direc-
tives.

else declaration

Provides an alternative branch in a sequence of conditional compilation direc-
tives.

Chapter 11: Prolog Reference Pages 893

endif declaration

Terminates a sequence of conditional compilation directives.

ensure_loaded(:F) ISO

load F if not already loaded

if(:Goal) declaration

Starts a sequence of conditional compilation directives for conditionally includ-
ing parts of a source file.

include(+F) declaration, ISO

include the source file(s) F verbatim

initialization :G declaration, ISO

declares G to be run when program is started

load_files(:F)

load_files(:F,+O)

load files according to options O

meta_predicate :P declaration

declares predicates P that are dependent on the module from which they are
called

mode :P declaration

NO-OP: document calling modes for predicates specified by P

module(+M,+L) declaration

module(+M,+L,+O) declaration

module M exports predicates in L, options O

multifile :P declaration, ISO

the clauses for P are in more than one file

public :P declaration

NO-OP: declare predicates specified by P public

restore(+F)

restore the state saved in file F

user:term_expansion(+Term1, +Layout1, +Tokens1, -Term2, -Layout2, -Tokens2)

hook

Overrides or complements the standard transformations to be done by expand_

term/2.

use_module(:F)

use_module(:F,+I)

import the procedure(s) I from the module file F

use_module(?M,:F,+I)

import I from module M, loading module file F if necessary

volatile :P declaration

predicates specified by P are not to be included in saves

894 SICStus Prolog

11.2.15 Memory

garbage_collect

force an immediate garbage collection

garbage_collect_atoms

garbage collect atom space

statistics

display various execution statistics

statistics(?K,?V)

the execution statistic with key K has value V

trimcore reduce free stack space to a minimum

11.2.16 Messages and Queries

ask_query(+QueryClass, +Query, +Help, -Answer) hookable

Prints the question Query, then reads and processes user input according to
QueryClass, and returns the result of the processing, the abstract answer term
Answer. The Help message is printed in case of invalid input.

user:message_hook(+M,+S,+L) hook

intercept the printing of a message

'SU_messages':generate_message(+M,?SO,?S) hook

determines the mapping from a message term into a sequence of lines of text
to be printed

user:generate_message_hook(+M,?S0,?S) hook

intercept message before it is given to 'SU_messages':generate_message/3

goal_source_info(+AGoal, -Goal, -SourceInfo)

Decomposes the annotated goal AGoal into a Goal proper and the SourceInfo
descriptor term, indicating the source position of the goal.

user:portray_message(+Severity,+Message) hook

Tells print_message/2 what to do.

print_message(+S,+M) hookable

print a message M of severity S

print_message_lines(+S,+P,+L)

print the message lines L to stream S with prefix P

'SU_messages':query_abbreviation(+T,-P) hook

specifies one letter abbreviations for responses to queries from the Prolog system

user:query_hook(+QueryClass, +Query, +QueryLines, +Help, +HelpLines, -Answer)

hook

Called by ask_query/4 before processing the query. If this predicate succeeds,
then it is assumed that the query has been processed and nothing further is
done.

Chapter 11: Prolog Reference Pages 895

'SU_messages':query_class(+QueryClass, -Prompt, -InputMethod, -MapMethod,

-FailureMode) hook

Access the parameters of a given QueryClass.

user:query_class_hook(+QueryClass, -Prompt, -InputMethod, -MapMethod,

-FailureMode) hook

Provides the user with a method of overriding the call to 'SU_

messages':query_class/5 in the preparation phase of query processing. This
way the default query class characteristics can be changed.

'SU_messages':query_input(+InputMethod, +Prompt, -RawInput) hook

Implements the input phase of query processing.

user:query_input_hook(+InputMethod, +Prompt, -RawInput) hook

Provides the user with a method of overriding the call to 'SU_

messages':query_input/3 in the input phase of query processing. This way
the implementation of the default input methods can be changed.

'SU_messages':query_map(+MapMethod, +RawInput, -Result, -Answer) hook

Implements the mapping phase of query processing.

user:query_map_hook(+MapMethod, +RawInput, -Result, -Answer) hook

Provides the user with a method of overriding the call to 'SU_

messages':query_map/4 in the mapping phase of query processing. This way
the implementation of the default map methods can be changed.

11.2.17 Modules

current_module(?M)

M is the name of a current module

current_module(?M,?F)

F is the name of the file in which M ’s module declaration appears

meta_predicate :P declaration

declares predicates P that are dependent on the module from which they are
called

module(+M,+L) declaration

module(+M,+L,+O) declaration

declaration that module M exports predicates in L, options O

save_modules(+L,+F)

save the modules specifed in L into file F

set_module(+M)

make M the type-in module

use_module(:F)

import the module file(s) F, loading them if necessary

use_module(:F,+I)

import the procedure(s) I from the module file F

use_module(?M,:F,+I)

import I from module M, loading module file F if necessary

896 SICStus Prolog

11.2.18 Program State

current_atom(?A)

backtrack through all atoms

current_module(?M)

M is the name of a current module

current_module(?M,?F)

F is the name of the file in which M ’s module declaration appears

current_predicate(:A/?N) ISO

current_predicate(?A,:P)

A is the name of a predicate with most general goal P and arity N

current_prolog_flag(?F,?V) ISO

V is the current value of Prolog flag F

listing list all dynamic procedures in the type-in module

listing(:P)

list the dynamic procedure(s) specified by P

predicate_property(:P,?Prop)

Prop is a property of the loaded predicate P

prolog_flag(?F,?V)

V is the current value of Prolog flag F

prolog_flag(+F,=O,+N)

O is the old value of Prolog flag F; N is the new value

prolog_load_context(?K,?V)

find out the context of the current load

set_module(+M)

make M the type-in module

set_prolog_flag(+F,+N) ISO

N is the new value of Prolog flag F

source_file(?F)

F is a source file that has been loaded into the database

source_file(:P,?F)

P is a predicate defined in the loaded file F

unknown(-O,+N) development

Changes action on undefined predicates from O to N.

11.2.19 Saving Programs

initialization :G declaration,ISO

declares G to be run when program is started

load_files(:F)

load_files(:F,+O)

load files according to options O

Chapter 11: Prolog Reference Pages 897

user:runtime_entry(+S) hook

entry point for a runtime system

save_files(+L,+F)

saves the modules, predicates, clauses and directives in the given files L into
file F

save_modules(+L,+F)

save the modules specifed in L into file F

save_predicates(:L,+F)

save the predicates specified in L into file F

save_program(+F)

save_program(+F,:G)

save all Prolog data into file F with startup goal G

volatile :P declaration

declares predicates specified by P to not be included in saves.

11.2.20 Term Comparison

compare(-C,+X,+Y) ISO

C is the result of comparing terms X and Y

+X == +Y ISO

terms X and Y are strictly identical

+X \== +Y ISO

terms X and Y are not strictly identical

+X @< +Y ISO

term X precedes term Y in standard order for terms

+X @>= +Y ISO

term X follows or is identical to term Y in standard order for terms

+X @> +Y ISO

term X follows term Y in standard order for terms

+X @=< +Y ISO

term X precedes or is identical to term Y in standard order for terms

11.2.21 Term Handling

?T =.. ?L ISO

the functor and arguments of term T comprise the list L.

?X = ?Y ISO

terms X and Y are unified.

+X \= +Y ISO

terms X and Y no not unify.

?=(+X,+Y)

X and Y are either strictly identical or do not unify.

898 SICStus Prolog

acyclic_term(+T) since release 4.3, ISO

term T is a finite (acyclic) term.

arg(+N,+T,-A) ISO

the Nth argument of term T is A.

atom_chars(?A,?L) ISO

A is the atom containing the character atoms in list L.

atom_codes(?A,?L) ISO

A is the atom containing the characters in code list L.

atom_concat(?Atom1,?Atom2,?Atom12) ISO

Atom Atom1 concatenated with Atom2 gives Atom12.

atom_length(+Atom,-Length) ISO

Length is the number of characters of the atom Atom.

char_code(?Char,?Code) ISO

Code is the character code of the one-char atom Char.

copy_term(+T,-C) ISO

C is a copy of T in which all variables have been replaced by new variables.

copy_term(+T,-C,-G)

C is a copy of T in which all variables have been replaced by new variables,
and G is a goal for reinstating any attributes in C.

create_mutable(+Datum,-Mutable)

Mutable is a new mutable term with current value Datum.

dif(+X,+Y)

X and Y are constrained to be different.

frozen(+Term,-Goal)

Goal is the conjunction of all goals blocked on some variable in Term.

functor(?T,?F,?N) ISO

the principal functor of term T has name F and arity N.

get_mutable(-Datum,+Mutable)

The current value of the mutable term Mutable is Datum.

name(?A,?L) deprecated

the code list of atom or number A is L.

number_chars(?N,?L) ISO

N is the numeric representation of list of character atoms L.

number_codes(?N,?L) ISO

N is the numeric representation of code list L.

numbervars(+T,+M,-N)

number the variables in term T from M to N -1.

sub_atom(+Atom,?Before,?Length,?After,?SubAtom) ISO

The characters of SubAtom form a sublist of the characters of Atom, such
that the number of characters preceding SubAtom is Before, the number of
characters after SubAtom is After, and the length of SubAtom is Length.

Chapter 11: Prolog Reference Pages 899

subsumes_term(General,Specific) since release 4.3, ISO

Specific is an instance of General.

term_variables(+Term,-Variables) since release 4.3, ISO

Variables is the set of variables that occur in Term, in first occurrence order.

unify_with_occurs_check(?X,?Y) ISO

True if X and Y unify to a finite (acyclic) term.

11.2.22 Term I/O

char_conversion(+InChar, +OutChar) ISO

The mapping of InChar to OutChar is added to the character-conversion map-
ping.

current_char_conversion(?InChar, ?OutChar) ISO

InChar is mapped to OutChar in the current character-conversion mapping.

current_op(?P,?T,?A) ISO

atom A is an operator of type T with precedence P

display(+T)

write term T to the user output stream in functional notation

format(+C,:A)

format(+S,+C,:A)

write arguments A on stream S according to control string C

op(+P,+T,+A) ISO

make atom A an operator of type T with precedence P

user:portray(+T) hook

tell print/[1,2] and write_term/[2,3] what to do

portray_clause(+C)

portray_clause(+S,+C)

write clause C to the stream S

print(+T) hookable

print(+S,+T) hookable

display the term T on stream S using user:portray/1 or write/2

read(-T) ISO

read(+S,-T) ISO

read term T from stream S

read_term(-T,+O) ISO

read_term(+S,-T,+O) ISO

read T from stream S according to options O

write(+T) ISO

write(+S,+T) ISO

write term T on stream S

write_canonical(+T) ISO

write_canonical(+S,+T) ISO

write term T on stream S so that it can be read back by read/[1,2]

900 SICStus Prolog

writeq(+T) ISO

writeq(+S,+T) ISO

write term T on stream S, quoting atoms where necessary

write_term(+T,+O) hookable,ISO

write_term(+S,+T,+O) hookable,ISO

writes T to S according to options O

11.2.23 Type Tests

atom(+T) ISO

term T is an atom

atomic(+T) ISO

term T is an atom or a number

callable(+T) ISO

T is an atom or a compound term

compound(+T) ISO

T is a compound term

db_reference(+X) since release 4.1

X is a db reference

float(+N) ISO

N is a floating-point number

ground(+T) ISO

term T is a nonvar, and all substructures are nonvar

integer(+T) ISO

term T is an integer

mutable(+X)

X is a mutable term

nonvar(+T) ISO

term T is one of atom, number, compound (that is, T is instantiated)

number(+N) ISO

N is an integer or a float

simple(+T)

T is not a compound term; it is either atomic or a var

var(+T) ISO

term T is a variable (that is, T is uninstantiated)

11.3 Built-In Predicates

The following reference pages, alphabetically arranged, describe the SICStus Prolog built-in
predicates.

For a functional grouping of these predicates including brief descriptions, see Section 11.2
[mpg-top], page 881.

Chapter 11: Prolog Reference Pages 901

In many cases, the heading of a reference page, as well as an entry in a list of built-in
predicates, will be annotated with keywords. These annotations are defined in Section 11.1.3
[mpg-ref-cat], page 878.

Further information about categories of predicates and arguments, mode annotations, and
the conventions observed in the reference pages is found in Section 11.1 [mpg-ref], page 877.

902 SICStus Prolog

11.3.1 abolish/[1,2] ISO

Synopsis

abolish(+Predicates)

abolish(+Predicates, +Options)

Removes procedures from the Prolog database.

Arguments

:Predicates
pred spec or pred spec tree

A predicate specification, or a list of such.

Note that the default is to only allow a single predicate specification, see tree/1
option below.

Options list of term, must be ground

A list of zero or more of the following:

force(Boolean)

Specifies whether SICStus Prolog is to abolish the predicate even
if it is static (true), or only if it is dynamic (false). The latter is
the default.

tree(Boolean)

Specifies whether the first argument should be a pred spec tree
(true), or a pred spec (false). The latter is the default.

Description

Removes all procedures specified. After this command is executed the current program
functions as if the named procedures had never existed. That is, in addition to removing all
the clauses for each specified procedure, abolish/[1,2] removes any properties that the
procedure might have had, such as being dynamic or multifile. You cannot abolish built-in
procedures.

It is important to note that retract/1, retractall/1, and erase/1 only remove clauses,
and only of dynamic procedures. They don’t remove the procedures themselves or their
properties properties (such as being dynamic or multifile). abolish/[1,2], on the other
hand, remove entire procedures along with any clauses and properties.

The procedures that are abolished do not become invisible to a currently running procedure.

Space occupied by abolished procedures is reclaimed. The space occupied by the procedures
is reclaimed.

Procedures must be defined in the source module before they can be abolished. An attempt
to abolish a procedure that is imported into the source module will cause a permission error.
Using a module prefix, ‘M:’, procedures in any module may be abolished.

Chapter 11: Prolog Reference Pages 903

Abolishing a foreign procedure destroys only the link between that Prolog procedure and
the associated foreign code. The foreign code that was loaded remains in memory. This is
necessary because Prolog cannot tell which subsequently-loaded foreign files may have links
to the foreign code. The Prolog part of the foreign procedure is destroyed and reclaimed.

Specifying an undefined procedure is not an error.

Exceptions

instantiation_error

if one of the arguments is not instantiated enough.

type_error

Predicates is not a valid tree of predicate specifications, or a Name is not an
atom or an Arity not an integer.

domain_error

if an Arity is specified as an integer outside the range 0-255.

permission_error

if a specified procedure is built-in, or imported into the source module, or static
when force(true) is not in effect.

Examples

| ?- [user].

% compiling user...

| foo(1,2).

| ^D

% compiled user in module user, 10 msec -80 bytes

yes

| ?- abolish(foo).

! Type error in argument 1 of abolish/1

! expected pred_spec, but found foo

! goal: abolish(user:foo)

| ?- abolish(foo,[tree(true)]).

! Permission error: cannot abolish static user:foo/2

! goal: abolish(user:foo,[tree(true)])

| ?- abolish(foo/2).

! Permission error: cannot abolish static user:foo/2

! goal: abolish(user:foo/2)

| ?- abolish(foo/2,[force(true)]).

yes

% source_info

Comments

abolish/1 is part of the ISO Prolog standard; abolish/2 is not.

See Also

dynamic/1, erase/1, retract/1, retractall/1.

904 SICStus Prolog

11.3.2 abort/0

Synopsis

abort

Abandons the current execution and returns to the beginning of the current break level or
terminates the enclosing query, whichever is closest.

Description

Fairly drastic predicate that is normally only used when some error condition has occurred
and there is no way of carrying on, or when debugging.

Often used via the debugging option a or the ^C interrupt option a.

abort/0 is implemented by raising a reserved exception, which has handler at the top level;
see Section 4.15.7 [ref-ere-int], page 211.

Tips

Does not close any files that you may have opened. When using see/1 and tell/1, (rather
than open/3, set_input/1, and set_output/1), close files yourself to avoid strange behav-
ior after your program is aborted and restarted.

Exceptions

Does not throw errors, but is implemented by throwing a reserved exception.

See Also

halt/[0,1], break/0, runtime_entry/1, Section 4.15.7 [ref-ere-int], page 211.

Chapter 11: Prolog Reference Pages 905

11.3.3 absolute_file_name/[2,3] hookable

Synopsis

absolute_file_name(+RelFileSpec, -AbsFileName)

absolute_file_name(+RelFileSpec, -AbsFileName, +Options)

Unifies AbsFileName with the absolute filename that corresponds to the relative file speci-
fication RelFileSpec.

Arguments

RelFileSpec
file spec, must be ground

A valid file specification. See below for details.

AbsFileName
atom

Corresponding absolute filename.

Options list of term, must be ground

A list of zero or more of the following. The default is the empty list:

extensions(Ext)

Has no effect if FileSpec contains a file extension. Ext is an atom
or a list of atoms, each atom representing an extension (e.g. '.pl')
that should be tried when constructing the absolute file name. The
extensions are tried in the order they appear in the list. Default
value is Ext = [”], i.e. only the given FileSpec is tried, no extension
is added. To specify extensions('') or extensions([]) is equal
to not giving any extensions option at all.

When case-normalization is applied to the FileSpec, e.g. on Win-
dows, each atom in Ext will also be case-normalized before use.
That is, on Windows, specifying extensions(['.pl']) will typi-
cally give the same result as extensions(['.PL']). Prior to re-
lease 4.3 the extensions/1 option was always case sensitive, also
on Windows.

file_type(Type)

Picks an adequate extension for the operating system currently
running, which means that programs using this option instead of
extensions(Ext) will be more portable between operating sys-
tems. This extension mechanism has no effect if FileSpec contains
a file extension. Type must be one of the following atoms:

text

file implies extensions(['']). FileSpec is a file without
any extension. (Default)

source implies extensions(['.pro','.pl','']). FileSpec
is a Prolog source file, maybe with a ‘.pro’ or ‘.pl’
extension.

906 SICStus Prolog

object implies extensions(['.po']). FileSpec is a Prolog
object file.

saved_state

implies extensions(['.sav','']). FileSpec is a
saved state, maybe with a ‘.sav’ extension.

foreign_resource

FileSpec is a foreign language shared object file, maybe
with a system dependent extension.

executable since release 4.0.2

FileSpec is an executable file, maybe with a system
dependent extension.

directory

implies extensions(['']). This option has two
effects. First, for an access option other than
access(none) the file must exist and be a directory.
Second, the returned file name will end in slash (/).

Only when this option is present can absolute_file_

name/3 return the name of an existing directory with an
access option other than access(none) without raising
an exception.

glob(Glob)

Match file names against a pattern. RelFileSpec will be expanded
to a directory and AbsFileName will be the absolute path to each
child that matches both the Glob pattern and any other filtering
option, like access/1, extensions/1, file_type/1, The spe-
cial children . and .. will never be returned.

The Glob should be an atom specifying a glob pattern consisting
of characters interpreted as follows:

• A ‘*’ matches any sequence of zero or more characters.

• A ‘?’ matches exactly one character.

• A ‘{’, ‘}’, ‘[’, ‘]’ currently matches themself but are reserved
for future expansion of the allowable patterns.

• Any other character matches itself.

With the options solutions(all) and file_errors(fail) this
can be used to enumerate the contents of a directory.

access(Mode)

Mode must be an atom or a list of atoms. If a list is given, then
AbsFileName must obey every specified option in the list. This
makes it possible to combine a read and write, or write and exist
check, into one call. If AbsFileName specifies a directory and an ac-
cess option other than access(none) is specified, then a permission
error is signaled unless file_type(directory) is also specified.

Chapter 11: Prolog Reference Pages 907

Each atom must be one of the following:

read AbsFileName must be readable and exist.

write

append If AbsFileName exists, then it must be writable. If it
doesn’t exist, then it must be possible to create.

exist The file represented by AbsFileName must exist.

execute

executable

The file represented by AbsFileName must be ex-
ecutable and exist. This is ignored if file_

type(directory) is also specified.

search

searchable

The directory represented by AbsFileName must be
searchable and exist. This is ignored unless file_

type(directory) is also specified.

none The file system is not accessed to determine existence
or access properties of AbsFileName. The first abso-
lute file name that is derived from FileSpec is returned.
Note that if this option is specified, then no existence
exceptions can be raised. (Default)

Please note: Most current file systems have complex access control
mechanisms, such as access control lists (ACLs). These mechanisms
makes it hard to determine the effective access permissions, short of
actually attempting the file operations in question. With networked
file systems it may in fact be impossible to determine the effective
access rights.

Therefore, a simplified access control model is used by absolute_

file_name/3 and elsewhere in SICStus.

On UNIX systems only the “classical” access control information
is used, i.e. the read/write/execute “bits” for owner/group/other.

Under Windows only the “FAT” access control information is used,
i.e. a file may be marked as read-only. A file is deemed executable if
its extension is one of .cmd, .bat or if it is classified as an executable
by the Win32 API GetBinaryType.

This may change to more faithfully reflect the effective permissions
in a future release.

file_errors(Val)

fileerrors(Val)

Val is one of the following, where the default is determined by the
current value of the fileerrors Prolog flag:

error Raise an exception if a file derived from FileSpec has
the wrong permissions, that is, can’t be accessed at all,

908 SICStus Prolog

or doesn’t satisfy the access modes specified with the
access option. This is the default if the Prolog flag
fileerrors is set to its default value, on.

fail Fail if a file derived from FileSpec has the wrong per-
missions. Normally an exception is raised, which might
not always be a desirable behavior, since files that do
obey the access options might be found later on in the
search. When this option is given, the search space is
guaranteed to be exhausted. This is the default if the
Prolog flag fileerrors is set to off.

solutions(Val)

Val is one of the following:

first As soon as a file derived from FileSpec is found, com-
mit to that file. Makes absolute_file_name/3 deter-
minate. (Default)

all Return each file derived from FileSpec that is found.
The files are returned through backtracking. This op-
tion is probably most useful in combination with the
option file_errors(fail).

relative_to(FileOrDirectory)

FileOrDirectory should be an atom, and controls how to resolve
relative filenames. If it is '', then file names will be treated as
relative to the current working directory. If a regular, existing file
is given, then file names will be treated as relative to the directory
containing FileOrDirectory. Otherwise, file names will be treated
as relative to FileOrDirectory.

If absolute_file_name/3 is called from a goal in a file being
loaded, then the default is the directory containing that file, acces-
sible from the load context (prolog_load_context/2). Otherwise,
the default is the current working directory.

You can use file_systems:current_directory/1 to obtain the
current working directory from a goal in a file being loaded.

if_user(Val) since release 4.3

controls how to resolve the special file name user. Val is one of the
following:

file Treat the name user like any other name, e.g. like
open/3 does. This is the default.

user Unifies AbsFileName with the atom user and ignores
the other options. This corresponds to the behavior
prior to SICStus Prolog 4.3.

error Treat the name user as a non-existing file, subject to
the file_errors/1 option.

Chapter 11: Prolog Reference Pages 909

Description

If FileSpec is user, and the option if_user(file) is not in effect, then special processing
takes place, see the description of the if_user/1 option, above. Otherwise (the default),
unifies AbsFileName with the first absolute file name that corresponds to the relative file
specification FileSpec and that satisfies the access modes given by Options.

The functionality of absolute_file_name/3 is most easily described as multi-phase process,
in which each phase gets an infile from the preceding phase, and constructs one or more
outfiles to be consumed by the succeeding phases. The phases are:

1. Syntactic rewriting

2. Pattern expansion

3. Extension expansion

4. Access checking

The first phase and each of the expansion phases modifies the infile and produces variants
that will be fed into the succeeding phases. The functionality of all phases but the first are
decided with the option list. The last phase checks if the generated file exists, and if not
asks for a new variant from the preceding phases. If the file exists, but doesn’t obey the
access mode option, then a permission exception is raised. If the file obeys the access mode
option, then absolute_file_name/3 commits to that solution, subject to the solutions

option, and unifies AbsFileName with the file name. For a thorough description, see below.

Note that the relative file specification FileSpec may also be of the form Path(FileSpec), in
which case the absolute file name of the file FileSpec in one of the directories designated by
Path is returned (see the description of each phase below).

Syntactic rewriting
This phase translates the relative file specification given by FileSpec into the
corresponding absolute file name. The rewrite is done wrt. the value of the
relative_to option. There can be more than one solution, in which case the
outfile becomes the solutions in the order they are generated. If the following
phases fails, and there are no more solutions, then an existence exception is
raised.

FileSpec can be a file search path, e.g. library('lists.pl'). It can also refer
to system properties, environment variables and the home directory of users.
See Section 4.5.2 [ref-fdi-syn], page 99, for a description of syntactic rewriting.

Pattern expansion
If the glob/1 option was specified all matching children of the directory will be
enumerated. See the glob option.

Extension expansion
See the extensions and file_type options.

Access checking
See the access option.

910 SICStus Prolog

Final stage
As a final stage, if file_type(directory) is specified, then the file is suffixed
with slash. Otherwise, trailing slash will be removed except for root directories,
such as ‘/’ under UNIX or ‘c:/’ under Windows.

Backtracking

Can find multiple solutions only if the solutions(all) option is used.

Exceptions

instantiation_error

Any of the Options arguments or RelFileSpec is not ground.

type_error

In Options or in RelFileSpec.

domain_error

Options contains an undefined option.

existence_error

RelFileSpec is syntactically valid but does not correspond to any file and an
access option other than access(none) was given.

permission_error

RelFileSpec names an existing file but the file does not obey the given access
mode.

Comments

If an option is specified more than once, then the rightmost option takes precedence. This
provides for a convenient way of adding default values by putting these defaults at the
front of the list of options. If absolute_file_name/3 succeeds, and the file access option
was one of {read, write, append}, then it is guaranteed1 that the file can be opened with
open/[3,4]. If the access option was exist, then the file does exist, but might be both
read and write protected.

If file_type(directory) is not given, then the file access option is other than none, and a
specified file refers to a directory, then absolute_file_name/3 signals a permission error.

absolute_file_name/[2,3] is sensitive to the fileerrors Prolog flag, which determines
whether the predicate should fail or raise permission errors when encountering files with
the wrong permission. Failing has the effect that the search space always is exhausted.

If RelFileSpec contains ‘..’ components, then these are resolved by removing directory
components from the pathname, not by acessing the file system. This can give unexpected
results, e.g. when soft links or mount points are involved.

This predicate is used for resolving file specification by built-in predicates that open files.

1 To the extent that the access permissions can be precisely determined. See the access/1 option above.

Chapter 11: Prolog Reference Pages 911

Examples

To check whether the file my_text exists in the home directory, with one of the extensions
‘.text’ or ‘.txt’, and is both writable and readable:

| ?- absolute_file_name('~/my_text', File,

[extensions(['.text','.txt']),

access([read,write])]).

To check whether the directory bin exists in the home directory:

| ?- absolute_file_name('~/bin', Dir,

[file_type(directory),

access(exist)]).

Here Dir would get a slash terminated value, such as /home/joe/.

To list all files in the current directory:

| ?- findall(File, absolute_file_name('.', File,

[glob('*'),

solutions(all), file_errors(fail)]), Files).

To list all directories in the parent of the current directory containing the string “sicstus”:

| ?- findall(File, absolute_file_name('..', File,

[glob('*sicstus*'),file_type(directory),

solutions(all), file_errors(fail)]), Files).

To find a file cmd.exe in any of the “usual places” where executables are found, i.e. by
looking through the PATH environment variable:

| ?- absolute_file_name(path('cmd.exe'), File,

[access(exist)]).

This uses the predefined file search path path/1, Section 4.5 [ref-fdi], page 95.

See Also

file_search_path/2, prolog_load_context/2, Section 4.5 [ref-fdi], page 95, Section 4.9.4
[ref-lps-flg], page 136.

912 SICStus Prolog

11.3.4 acyclic_term/1 ISO

Synopsis

acyclic_term(+Term) since release 4.3

Term is currently instantiated to a finite (acyclic) term.

Arguments

Term term

Description

True if X is finite (acyclic). Runs in linear time.

Examples

| ?- X = g(Y), acyclic_term(f(X,X)).

X = g(Y) ?

yes

| ?- X = g(X), acyclic_term(X).

no

| ?- X = g(X), acyclic_term(f(X)).

no

Exceptions

None.

See Also

Section 4.8.2 [ref-lte-act], page 127.

Chapter 11: Prolog Reference Pages 913

11.3.5 add_breakpoint/2 development

Synopsis

add_breakpoint(+Conditions, -BID)

Creates a breakpoint with Conditions and with identifier BID.

Arguments

:Conditions
term.

Breakpoint conditions.

BID integer

Breakpoint identifier.

Exceptions

instantiation_error

Conditions not instantiated enough.

type_error

Conditions not a proper list of callable term.

domain_error

Conditions not a proper list of valid breakpoint conditions

context_error

Attempt to put a breakpoint on true/0 or fail/0.

See Also

Section 5.6.1 [Creating Breakpoints], page 243, Section 5.7 [Breakpoint Predicates],
page 272.

914 SICStus Prolog

11.3.6 ,/2 ISO

Synopsis

+P , +Q

Arguments

:P callable, must be nonvar

:Q callable, must be nonvar

Description

This is not normally regarded as a built-in predicate, since it is part of the syntax of the
language. However, it is like a built-in predicate in that you can say call((P , Q)) to
execute P and then Q.

Backtracking

Depends on P and Q.

Exceptions

Call errors (see Section 4.2.6 [ref-sem-exc], page 77).

See Also

Section 4.2 [ref-sem], page 61.

Chapter 11: Prolog Reference Pages 915

11.3.7 append/3

Synopsis

append(?List1, ?List2, ?List3)

Arguments

List1 list of term

List2 list of term

List3 list of term

A list consisting of List1 followed by List2.

Description

Appends lists List1 and List2 to form List3:

| ?- append([a,b], [a,d], X).

X = [a,b,a,d]

| ?- append([a], [a], [a]).

no

| ?- append(2, [a], X).

no

Takes List3 apart:

| ?- append(X, [e], [b,e,e]).

X = [b,e]

| ?- append([b|X], [e,r], [b,o,r,e,r]).

X = [o,r]

| ?- append(X, Y, [h,i]).

X = [],

Y = [h,i] ;

X = [h],

Y = [i] ;

X = [h,i],

Y = [] ;

no

916 SICStus Prolog

Backtracking

Suppose L is bound to a proper list. That is, it has the form [T1,. . . ,Tn] for some n. In
that instance, the following things apply:

1. append(L, X, Y) has at most one solution, whatever X and Y are, and cannot back-
track at all.

2. append(X, Y, L) has at most n+1 solutions, whatever X and Y are, and though it can
backtrack over these it cannot run away without finding a solution.

3. append(X, L, Y), however, can backtrack indefinitely if X and Y are variables.

Examples

The following examples are perfectly ordinary uses of append/3:

To enumerate adjacent pairs of elements from a list:

next_to(X, Y, (*in*) List3) :-

append(_, [X,Y|_], List3).

To check whether Word1 and Word2 are the same except for a single transposition.
(append/5 in library(lists) would be better for this task.)

one_transposition(Word1, Word2) :-

append(Prefix, [X,Y|Suffix], Word1),

append(Prefix, [Y,X|Suffix], Word2).

| ?- one_transposition("fred", X).

X = "rfed" ;

X = "ferd" ;

X = "frde" ;

no

Given a list of words and commas, to backtrack through the phrases delimited by commas:

comma_phrase(List3, Phrase) :-

append(F, [','|Rest], List3),

!,

(Phrase = F

; comma_phrase(Rest, Phrase)

).

comma_phrase(List3, List3).

| ?- comma_phrase([this,is,',',um,',',an, example], X).

X = [this,is] ;

X = [um] ;

X = [an,example] ;

no

Chapter 11: Prolog Reference Pages 917

Exceptions

None.

See Also

Section 4.8.3 [ref-lte-acl], page 128, library(lists).

918 SICStus Prolog

11.3.8 arg/3 ISO

Synopsis

arg(+ArgNum, +Term, -Arg)

unifies Arg with the ArgNumth argument of term Term.

Arguments

ArgNum integer, must be nonvar and non-negative.

Term compound, must be nonvar

Arg term

Description

The arguments are numbered from 1 upwards.

Exceptions

instantiation_error

if ArgNum or Term is unbound.

type_error

if ArgNum is not an integer, or Term is not compound.

domain_error

if ArgNum is an integer less than zero.

Examples

| ?- arg(2, foo(a,b,c), X).

X = b

See Also

functor/3, =../2, Section 4.8.2 [ref-lte-act], page 127.

Chapter 11: Prolog Reference Pages 919

11.3.9 ask_query/4 hookable

Synopsis

ask_query(+QueryClass, +Query, +Help, -Answer)

Prints the questionQuery, then reads and processes user input according toQueryClass, and
returns the result of the processing, the abstract answer term Answer. The Help message
may be printed in case of invalid input.

Arguments

QueryClass
term, must be nonvar

Determines the allowed values for the atom Answer.

Query term

A message term.

Help term

A message term.

Answer term

See QueryClass

Description

All queries made by the system are handled by calling this predicate.

First ask_query/4 calls query_hook/6 with the same arguments plus the Query and Help
arguments converted to format-command lines. If this call succeeds, then it overrides all
further processing done by ask_query/4. Otherwise, the query is processed in the following
way:

• Preparation phase: The parameters of the query processing, defined by QueryClass
(Prompt, InputMethod, MapMethod and FailureMode) are retrieved using the four
step procedure described above. That is, the following alternatives are tried:

− user:query_class_hook/5;

− 'SU_messages':query_class/5;

− the built-in copy of query_class/5.

• Input phase: The user is prompted with Prompt, input is read according to
InputMethod, and the result is returned in RawInput.

The four step procedure is used for performing this phase, the predicates tried are the
following:

− user:query_input_hook/3;

− 'SU_messages':query_input/3;

− the built-in copy of query_input/3.

• Mapping phase: The RawInput returned by the input phase is mapped to the Answer
of the query. This mapping is defined by the MapMethod parameter, and the result of
the conversion is returned in Result, which can be:

920 SICStus Prolog

− success—the mapping was successful, Answer is valid;

− failure—the mapping was unsuccessful, the query has to be repeated;

− failure(Warning)—same as failure, but first the given warning message has to
be printed.

The four step procedure is used for performing this phase, the predicates tried are the
following:

− user:query_map_hook/4;

− 'SU_messages':query_map/4;

− the built-in copy of query_map/4.

If the mapping phase succeeds, then ask_query/4 returns with the Answer delivered
by this phase.

• If the mapping does not succeed, then the query has to be repeated. If the Result
returned by the mapping contains a warning message, then it is printed using print_

message/2. FailureMode specifies whether to print the help message and whether to
re-print the query text. Subsequently, the input and mapping phases are called again,
and this is repeated until the mapping is successful.

Exceptions

instantiation_error

QueryClass, Query, or Help uninstantiated.

type_error

QueryClass not an atom.

domain_error

QueryClass not a valid query class.

See Also

Section 4.16.3 [Query Processing], page 216.

Chapter 11: Prolog Reference Pages 921

11.3.10 assert/[1,2]

Synopsis

These predicates add a dynamic clause, Clause, to the Prolog database. They optionally
return a database reference in Ref :

assert(+Clause)

assert(+Clause, -Ref)

It is undefined whether Clause will precede or follow the clauses already in the database.

Arguments

:Clause callable, must be nonvar

A valid dynamic Prolog clause.

Ref db reference, must be var

A database reference, which uniquely identifies the newly asserted Clause.

Description

Clause must be of the form:

Head

or Head :- Body

or M:Clause

where Head is of type callable and Body is a valid clause body. If specified, then M must
be an atom.

assert(Head) means assert the unit-clause Head. The exact same effect can be achieved
by assert((Head :- true)).

If Body is uninstantiated, then it is taken to mean call(Body). For example, (A) is
equivalent to (B):

| ?- assert((p(X) :- X)). (A)

| ?- assert((p(X) :- call(X))). (B)

Ref should be uninstantiated; a range exception is signalled if Ref does not unify with its
return value. This exception is signalled after the assert has been completed.

The procedure for Clause must be dynamic or undefined. If it is undefined, then it is set
to be dynamic.

When an assert takes place, the new clause is immediately seen by any subsequent call to
the procedure. However, if there is a currently active call of the procedure at the time
the clause is asserted, then the new clause is not encountered on backtracking by that call.
See Section 4.12.1 [ref-mdb-bas], page 176, for further explanation of what happens when
currently running code is modified.

922 SICStus Prolog

Any uninstantiated variables in the Term will be replaced by brand new, unattributed
variables (see Section 4.2.4 [ref-sem-sec], page 74).

Exceptions

instantiation_error

Head (in Clause) or M is uninstantiated.

type_error

Head is not a callable, or M is not an atom, or Body is not a valid clause body.

permission_error

the procedure corresponding to Head is not dynamic

uninstantiation_error

Ref is not a variable

See Also

Section 4.12.4 [ref-mdb-acd], page 179.

Chapter 11: Prolog Reference Pages 923

11.3.11 asserta/[1,2] ISO

Synopsis

These predicates add a dynamic clause, Clause, to the Prolog database. They optionally
return a database reference in Ref :

asserta(+Clause)

asserta(+Clause, -Ref)

Clause will precede all existing clauses in the database.

Arguments

:Clause callable, must be nonvar

A valid dynamic Prolog clause.

Ref db reference, must be var

A database reference, which uniquely identifies the newly asserted Clause.

Description

Clause must be of the form:

Head

or Head :- Body

or M:Clause

where Head is of type callable and Body is a valid clause body. If specified, then M must
be an atom.

asserta(Head) means assert the unit-clause Head. The exact same effect can be achieved
by asserta((Head :- true)).

If Body is uninstantiated, then it is taken to mean call(Body). For example, (A) is
equivalent to (B):

| ?- asserta((p(X) :- X)). (A)

| ?- asserta((p(X) :- call(X))). (B)

Ref should be uninstantiated; a range exception is signalled if Ref does not unify with its
return value. This exception is signalled after the assert has been completed.

The procedure for Clause must be dynamic or undefined. If it is undefined, then it is set
to be dynamic.

When an assert takes place, the new clause is immediately seen by any subsequent call to
the procedure. However, if there is a currently active call of the procedure at the time
the clause is asserted, then the new clause is not encountered on backtracking by that call.
See Section 4.12.1 [ref-mdb-bas], page 176, for further explanation of what happens when
currently running code is modified.

924 SICStus Prolog

Any uninstantiated variables in the Term will be replaced by brand new, unattributed
variables (see Section 4.2.4 [ref-sem-sec], page 74).

Exceptions

instantiation_error

Head (in Clause) or M is uninstantiated.

type_error

Head is not a callable, or M is not an atom, or Body is not a valid clause body.

permission_error

the procedure corresponding to Head is not dynamic

uninstantiation_error

Ref is not a variable

See Also

Section 4.12.4 [ref-mdb-acd], page 179.

Chapter 11: Prolog Reference Pages 925

11.3.12 assertz/[1,2] ISO

Synopsis

These predicates add a dynamic clause, Clause, to the Prolog database. They optionally
return a database reference in Ref :

assertz(+Clause)

assertz(+Clause, -Ref)

Clause will follow all existing clauses in the database.

Arguments

:Clause callable, must be nonvar

A valid dynamic Prolog clause.

Ref db reference, must be var

A database reference, which uniquely identifies the newly asserted Clause.

Description

Clause must be of the form:

Head

or Head :- Body

or M:Clause

where Head is of type callable and Body is a valid clause body. If specified, then M must
be an atom.

assertz(Head) means assert the unit-clause Head. The exact same effect can be achieved
by assertz((Head :- true)).

If Body is uninstantiated, then it is taken to mean call(Body). For example, (A) is
equivalent to (B):

| ?- assertz((p(X) :- X)). (A)

| ?- assertz((p(X) :- call(X))). (B)

Ref should be uninstantiated; a range exception is signalled if Ref does not unify with its
return value. This exception is signalled after the assert has been completed.

The procedure for Clause must be dynamic or undefined. If it is undefined, then it is set
to be dynamic.

When an assert takes place, the new clause is immediately seen by any subsequent call to
the procedure. However, if there is a currently active call of the procedure at the time
the clause is asserted, then the new clause is not encountered on backtracking by that call.
See Section 4.12.1 [ref-mdb-bas], page 176, for further explanation of what happens when
currently running code is modified.

926 SICStus Prolog

Any uninstantiated variables in the Term will be replaced by brand new, unattributed
variables (see Section 4.2.4 [ref-sem-sec], page 74).

Exceptions

instantiation_error

Head (in Clause) or M is uninstantiated.

type_error

Head is not a callable, or M is not an atom, or Body is not a valid clause body.

permission_error

the procedure corresponding to Head is not dynamic

uninstantiation_error

Ref is not a variable

Examples

| ?- assertz(mammal(kangaroo)).

yes

| ?- assertz(mammal(whale), Ref).

Ref = '$ref'(1258504,210) ? RET

yes

| ?- listing(mammal).

mammal(kangaroo).

mammal(whale).

yes

See Also

Section 4.12.4 [ref-mdb-acd], page 179.

Chapter 11: Prolog Reference Pages 927

11.3.13 at_end_of_line/[0,1]

Synopsis

at_end_of_line

at_end_of_line(+Stream)

Test whether end of line (record) has been reached for the current input stream or for the
input stream Stream.

Arguments

Stream stream object, must be ground

A valid Prolog input stream, defaults to the current input stream.

Description

Succeeds when end of line (record) is reached for the specified input stream. An input
stream reaches end of line when all the characters except LFD of the current line have been
read.

Is also true whenever at_end_of_stream/[0,1] is true.

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109).

See Also

at_end_of_stream/[0,1], skip_line/[0,1], set_input/1.

928 SICStus Prolog

11.3.14 at_end_of_stream/[0,1] ISO

Synopsis

at_end_of_stream

at_end_of_stream(+Stream)

Tests whether the end has been reached for the current input stream or for the input stream
Stream.

Arguments

Stream stream object, must be ground

A valid Prolog input stream, defaults to the current input stream.

Description

Checks if the end has been reached for the specified input stream. An input stream reaches
the end when all items (characters or bytes) except ‘EOF’ (-1) of the stream have been read.
It remains at the end after ‘EOF’ has been read.

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109).

Comments

at_end_of_stream/[0,1] peeks ahead for next input item if there is no item available on
the buffer of the specified input stream.

Note that at_end_of_stream/[0,1] never blocks. If reading ahead would block, then at_

end_of_stream/[0,1] will fail, even if the stream is actually at its end. If you want to
ensure that end-of-stream condition is always properly detected, even if that entails blocking
until further input is possible, then you can use peek_code/[1,2] or peek_byte/[1,2].

Please note: The design of at_end_of_stream/[0,1] makes it inherently un-
reliable. It is present only for ISO standards compliance. It is better to read
or peek until one of the end of file indications is returned.

See Also

at_end_of_line/[0,1].

Chapter 11: Prolog Reference Pages 929

11.3.15 atom/1 ISO

Synopsis

atom(+Term)

Succeeds if Term is currently instantiated to an atom.

Arguments

Term term

Examples

| ?- atom(pastor).

yes

| ?- atom(Term).

no

| ?- atom(1).

no

| ?- atom('Time').

yes

Exceptions

None.

See Also

Section 4.8.1.1 [ref-lte-met-typ], page 126.

930 SICStus Prolog

11.3.16 atom_chars/2 ISO

Synopsis

atom_chars(+Atom, -Chars)

atom_chars(-Atom, +Chars)

Chars is the chars comprising the printed representation of Atom.

Arguments

Chars chars

The chars comprising the printed representation of Atom.

Atom atom

The atom containing exactly those characters, even if the characters look like
the printed representation of a number.

Description

Initially, either Atom must be instantiated to an atom, or Chars must be instantiated to a
proper chars.

Any atom that can be read or written by Prolog can be constructed or decomposed by
atom_chars/2.

Exceptions

instantiation_error

Atom is uninstantiated and Chars is not instantiated enough.

type_error

Atom is not an atom or Chars cannot be unified with a chars.

representation_error

Chars is a list corresponding to an atom that can’t be represented

The check of Chars when Atom is instantiated was added in release 4.3 for alignment with
the ISO Prolog standard. Previous releases simply failed in this case instead of reporting
an error for malformed Chars.

See Also

atom_codes/2.

Chapter 11: Prolog Reference Pages 931

11.3.17 atom_codes/2 ISO

Synopsis

atom_codes(+Atom, -Codes)

atom_codes(-Atom, +Codes)

Codes is the codes comprising the printed representation of Atom.

Arguments

Codes codes

The codes comprising the printed representation of Atom.

Atom atom

The atom containing exactly those characters, even if the characters look like
the printed representation of a number.

Description

Initially, either Atom must be instantiated to an atom, or Codes must be instantiated to a
proper codes.

Any atom that can be read or written by Prolog can be constructed or decomposed by
atom_codes/2.

Exceptions

instantiation_error

Atom is uninstantiated and Codes is not instantiated enough

type_error

Atom is not an atom or Codes cannot be unified with a list of integers

representation_error

An element of Codes is an invalid character code, or Codes is a list correspond-
ing to an atom that can’t be represented

The check of Codes when Atom is instantiated was added in release 4.3 for alignment with
the ISO Prolog standard. Previous releases simply failed in this case instead of reporting
an error for malformed Codes.

See Also

atom_chars/2.

932 SICStus Prolog

11.3.18 atom_concat/3 ISO

Synopsis

atom_concat(+Atom1,+Atom2,-Atom12)

atom_concat(-Atom1,-Atom2,+Atom12)

The characters of the atom Atom1 concatenated with those of Atom2 are the same as the
characters of atom Atom12.

Arguments

Atom1 atom

Atom2 atom

Atom12 atom

Description

Initially, either both Atom1 and Atom2, or Atom12, must be instantiated to atoms. If only
Atom12 is instantiated, then nondeterminately enumerates all possible atom-pairs that
concatenate to the given atom, e.g.:

| ?- atom_concat(A, B, 'ab').

A = '',

B = ab ? ;

A = a,

B = b ? ;

A = ab,

B = '' ;

no

Exceptions

instantiation_error

More than one argument uninstantiated.

type_error

An instantiated argument is not an atom.

representation_error

Atom12 is too long to be represented.

See Also

atom_length/2, sub_atom/5.

Chapter 11: Prolog Reference Pages 933

11.3.19 atom_length/2 ISO

Synopsis

atom_length(+Atom, -Length)

Length is the number of characters of the atom Atom.

Arguments

Atom atom, must be nonvar

Length integer

Exceptions

instantiation_error

Atom is uninstantiated

type_error

Atom is not an atom, or Length cannot be unified with an integer

domain_error

Length < 0

See Also

atom_length/2, atom_concat/3, sub_atom/5.

934 SICStus Prolog

11.3.20 atomic/1 ISO

Synopsis

atomic(+Term)

Succeeds if Term is currently instantiated to an atom or a number.

Arguments

Term term

Examples

| ?- atomic(9).

yes

| ?- atomic(a).

yes

| ?- atomic("a").

no

| ?- assert(foo(1), Ref), atomic(Ref).

no

Exceptions

None.

See Also

Section 4.8.1.1 [ref-lte-met-typ], page 126.

Chapter 11: Prolog Reference Pages 935

11.3.21 bagof/3 ISO

Synopsis

bagof(+Template, +Generator, -Set)

Like setof/3 except that the list (or alternative lists) returned will not be ordered, and
may contain duplicates. This relaxation saves time and space in execution.

Arguments

Template term

:Generator
callable, must be nonvar

A goal to be proved as if by call/1.

Set list of term, non-empty set

Exceptions

Call errors (see Section 4.2.6 [ref-sem-exc], page 77).

Examples

See findall/3 for examples that illustrate the differences among findall/3, setof/3, and
bagof/3.

See Also

findall/3, setof/3, ^/2, Section 4.13 [ref-all], page 186.

936 SICStus Prolog

11.3.22 bb_delete/2

Synopsis

bb_delete(:Key, -Term)

If a term is currently stored under Key, then the term is deleted, and a copy of it is unified
with Term. Otherwise, bb_delete/2 silently fails.

Arguments

:Key bbkey

Term term

Exceptions

instantiation_error

Key is not instantiated

type_error

Key is not an atom or a small integer.

See Also

Section 4.12.9 [ref-mdb-bbd], page 184.

Chapter 11: Prolog Reference Pages 937

11.3.23 bb_get/2

Synopsis

bb_get(:Key, -Term)

If a term is currently stored under Key, then a copy of it is unified with Term. Otherwise,
bb_get/2 silently fails.

Arguments

:Key bbkey

Term term

Exceptions

instantiation_error

Key is not instantiated

type_error

Key is not an atom or a small integer.

See Also

Section 4.12.9 [ref-mdb-bbd], page 184.

938 SICStus Prolog

11.3.24 bb_put/2

Synopsis

bb_put(:Key, +Term)

A copy of Term is stored under Key in the source module blackboard. Any previous term
stored under the same Key is simply deleted.

Arguments

:Key bbkey

Term term

Description

Any uninstantiated variables in the Term will be replaced by brand new, unattributed
variables (see Section 4.2.4 [ref-sem-sec], page 74).

Exceptions

instantiation_error

Key is not instantiated

type_error

Key is not an atom or a small integer.

See Also

Section 4.12.9 [ref-mdb-bbd], page 184.

Chapter 11: Prolog Reference Pages 939

11.3.25 bb_update/3

Synopsis

bb_update(:Key, -OldTerm, +NewTerm)

If a term is currently stored under Key and unifies with OldTerm, then the term is replaced
by a copy of NewTerm. Otherwise, bb_update/3 silently fails. This predicate provides an
atomic swap operation.

Arguments

:Key bbkey

OldTerm term

NewTerm term

Description

Any uninstantiated variables in the Term will be replaced by brand new, unattributed
variables (see Section 4.2.4 [ref-sem-sec], page 74).

Exceptions

instantiation_error

Key is not instantiated

type_error

Key is not an atom or a small integer.

See Also

Section 4.12.9 [ref-mdb-bbd], page 184.

940 SICStus Prolog

11.3.26 block/1 declaration

Synopsis

:- block +BlockSpec

Specifies conditions for blocking goals of the predicates referred to by BlockSpec.

Arguments

:BlockSpec
callable, must be ground

Goal template or list of goal templates, of the form f(Arg1, Arg2,...). Each
Argn is one of:

‘-’ part of a block condition

‘?’ otherwise

Description

When a goal for a block declared predicate is to be executed, the block specs are interpreted
as conditions for blocking the goal, and if at least one condition evaluates to true, then the
goal is blocked.

A block condition evaluates to true iff all arguments specified as ‘-’ are uninstantiated, in
which case the goal is blocked until at least one of those variables is instantiated. If several
conditions evaluate to true, then the implementation picks one of them and blocks the goal
accordingly.

The recommended style is to write the block declarations in front of the source code of the
predicate they refer to. Indeed, they are part of the source code of the predicate, and must
precede the first clause. For example, with the definition:

:- block merge(-,?,-), merge(?,-,-).

merge([], Y, Y).

merge(X, [], X).

merge([H|X], [E|Y], [H|Z]) :- H @< E, merge(X, [E|Y], Z).

merge([H|X], [E|Y], [E|Z]) :- H @>= E, merge([H|X], Y, Z).

calls to merge/3 having uninstantiated arguments in the first and third position or in the
second and third position will suspend.

The behavior of blocking goals for a given predicate on uninstantiated arguments cannot
be switched off, except by abolishing or redefining the predicate.

Exceptions

Exceptions in the context of loading code are printed as error messages.

instantiation_error

BlockSpec not ground.

Chapter 11: Prolog Reference Pages 941

type_error

BlockSpec not a valid specification.

context_error

Declaration appeared in a goal.

permission_error

Declaration appeared as a clause.

See Also

Section 4.3.4.5 [Block Declarations], page 84.

942 SICStus Prolog

11.3.27 break/0 development

Synopsis

break

causes the current execution to be interrupted; enters next break level.

Description

The first time break/0 is called, it displays the message

% Break level 1

% 1

| ?-

The system is then ready to accept input as though it were at top level. If another call to
break/0 is encountered, then it moves up to level 2, and so on. The break level is displayed
on a separate line before each top-level prompt.

To close a break level and resume the execution that was suspended, type ^D. break/0 then
succeeds, and execution of the interrupted program is resumed.

Changes can be made to a running program while in a break level. Any change made
to a procedure will take effect the next time that procedure is called. See Section 4.12.5
[ref-mdb-rcd], page 179, for details of what happens if a procedure that is currently being
executed is redefined. When a break level is entered, the debugger is turned off (although
leashing and spypoints are retained). When a break level is exited, the debugging state is
restored to what it was before the break level was entered.

Often used via the debugging option b.

Exceptions

Catches otherwise uncaught exceptions and issues an error message.

See Also

abort/0, halt/[0,1], Section 3.9 [Nested], page 27.

Chapter 11: Prolog Reference Pages 943

11.3.28 breakpoint_expansion/2 hook , development

Synopsis

:- multifile user:breakpoint_expansion/2.

user:breakpoint_expansion(+Macro, -Body)

Defines debugger condition macros.

Arguments

Macro term

Breakpoint test or action.

Body term

Expanded breakpoint test or action, may be composite.

Exceptions

Exceptions are treated as failures, except an error message is printed as well.

See Also

Section 5.9 [Breakpoint Conditions], page 277.

944 SICStus Prolog

11.3.29 byte_count/2

Synopsis

byte_count(+Stream, -Count)

Obtains the total number of bytes either input from or output to the open binary stream
Stream and unifies it with Count.

Arguments

Stream stream object, must be ground

A valid open binary stream.

Count integer

The resulting byte count of the stream.

Description

A freshly opened stream has a byte count of 0. When a byte is input from or output to a
Prolog stream, the byte count of the Prolog stream is increased by one.

The count is reset by set_stream_position/2.

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109).

See Also

byte_count/2, line_count/2, line_position/2, stream_position/2, set_stream_

position/2, Section 4.6.7 [ref-iou-sfh], page 109.

Chapter 11: Prolog Reference Pages 945

11.3.30 call/[1,2,...,255] ISO

Synopsis

call(+P)

Proves (executes) P.

call(+P,?Q,...)

Executes the goal obtained by augmenting P by the remaining arguments.

Arguments

:P callable, must be nonvar

Q term ...

Description

If P is instantiated to an atom or compound term, then the goal call(P) is executed exactly
as if that term appeared textually in its place, except that any cut (‘!’) occurring in P only
cuts alternatives in the execution of P. Only call/1..8 are required by ISO.

Backtracking

Depends on P.

Exceptions

Call errors (see Section 4.2.6 [ref-sem-exc], page 77).

Examples

maplist/2 in library(lists) is defined as:

maplist(Pred, Xs) :-

(foreach(X,Xs),

param(Pred)

do call(Pred, X)

).

See Also

Section 4.2.5 [ref-sem-cal], page 77.

946 SICStus Prolog

11.3.31 call_cleanup/2

call_cleanup(+Goal, +Cleanup)

Synopsis

Executes the procedure call Goal. When Goal succeeds determinately, is cut, fails, or raises
an exception, Cleanup is executed.

Arguments

:Goal callable, must be nonvar

:Cleanup callable, must be nonvar

Description

This construction can be used to ensure that Cleanup is executed as soon as Goal has
completed execution, no matter how it finishes. In more detail:

When call_cleanup/2 with a continuation C is called or backtracked into, first Goal is
called or backtracked into. Then there are four possibilities:

1. Goal succeeds determinately, possibly leaving some blocked subgoals. Cleanup is exe-
cuted with continuation C.

2. Goal succeeds with some alternatives outstanding. Execution proceeds to C. If a cut
that removes the outstanding alternatives is encountered, then Cleanup is executed
with continuation to proceed after the cut. Also, if an exception E that will be caught
by an ancestor of the call_cleanup/2 Goal is raised, then Cleanup is executed with
continuation raise_exception(E).

3. Goal fails. Cleanup is executed with continuation fail.

4. Goal raises an exception E. Cleanup is executed with continuation raise_

exception(E).

In a typical use of call_cleanup/2, Cleanup succeeds determinately after performing some
side effect; otherwise, unexpected behavior may result.

Note that the Prolog top-level operates as a read-execute-fail loop, which backtracks into
or cuts the query when the user types ; or RET respectively. Also, some predicates, such
as halt/[0,1] and abort/0, are implemented in terms of exceptions. All of these circum-
stances can trigger the execution of Cleanup.

Backtracking

Depends on the arguments.

Exceptions

Call errors (see Section 4.2.6 [ref-sem-exc], page 77).

See Also

Section 4.2 [ref-sem], page 61.

Chapter 11: Prolog Reference Pages 947

11.3.32 call_residue_vars/2

call_residue_vars(+Goal, -Vars)

Synopsis

Executes the procedure call Goal, unifying Vars with the list of residual variables that have
blocked goals or attributes attached to them.

Arguments

:Goal callable, must be nonvar

Vars list of var

Description

Goal is executed as if by call/1. Vars is unified with the list of new variables created during
the call that remain unbound and have blocked goals or attributes attached to them. For
example:

| ?- call_residue_vars((dif(X,f(Y)), X=f(Z)), Vars).

X = f(Z),

Vars = [Z,Y],

prolog:dif(f(Z),f(Y)) ?

Backtracking

Depends on Goal.

Exceptions

Call errors (see Section 4.2.6 [ref-sem-exc], page 77).

See Also

Section 4.2.4 [ref-sem-sec], page 74.

948 SICStus Prolog

11.3.33 callable/1 ISO

Synopsis

callable(+Term)

Succeeds if Term is currently instantiated to an atom or a compound term.

Arguments

Term term

Examples

| ?- callable(a).

yes

| ?- callable(a(1,2,3)).

yes

| ?- callable([1,2,3]).

yes

| ?- callable(1.1).

no

Exceptions

None.

See Also

Section 4.8.1.1 [ref-lte-met-typ], page 126.

Chapter 11: Prolog Reference Pages 949

11.3.34 catch/3 ISO

Synopsis

catch(+ProtectedGoal, -Exception, +Handler)

Specify an exception handler for ProtectedGoal, and call ProtectedGoal, as described in
Section 4.15 [ref-ere], page 197.

Arguments

:ProtectedGoal
callable, must be nonvar

Exception term

:Handler callable, must be nonvar

Examples

Fail on exception:

:- meta_predicate fail_on_exception(0).

fail_on_exception(C):-

catch(C, E, print_exception_then_fail(C, E)).

print_exception_then_fail(C, E) :-

format(user_error, 'Exception occured while calling ~q:~n', [C]),

print_message(warning, E),

fail.

Backtracking

Depends on ProtectedGoal and Handler.

Exceptions

None.

See Also

Section 4.15 [ref-ere], page 197.

950 SICStus Prolog

11.3.35 char_code/2 ISO

Synopsis

char_code(+Char, -Code)

char_code(-Char, +Code)

Code is the character code comprising the printed representation of Char.

Arguments

Char char

The char whose code is Code.

Code code

The code corresponding to Char.

Description

Initially, at least one argument must be instantiated.

Exceptions

instantiation_error

Char and Code are both uninstantiated

type_error

Char is not a char or Code is not an integer.

representation_error

Code is not a code.

See Also

atom_codes/2, number_codes/2.

Chapter 11: Prolog Reference Pages 951

11.3.36 char_conversion/2 ISO

Synopsis

char_conversion(+InChar, +OutChar)

The mapping of InChar to OutChar is added to the character-conversion mapping.

Arguments

InChar char, must be nonvar

OutChar char, must be nonvar

Description

The mapping of InChar to OutChar is added to the character-conversion mapping. This
means that in all subsequent term and program input operations any unquoted occurrence
of InChar will be replaced by OutChar. The rationale for providing this facility is that in
some extended character sets (such as Japanese JIS character sets) the same character can
appear several times and thus have several codes, which the users normally expect to be
equivalent. It is advisable to always quote the arguments of char_conversion/2.

Any previous mapping of InChar is replaced by the new one.

Please note: the mapping is global, as opposed to being local to the current module, Prolog
text, or otherwise.

Exceptions

instantiation_error

An argument is uninstantiated

type_error

An argument is not a char

See Also

Chapter 2 [Glossary], page 7.

952 SICStus Prolog

11.3.37 character_count/2

Synopsis

character_count(+Stream, -Count)

Obtains the total number of characters either input from or output to the open text stream
Stream and unifies it with Count.

Arguments

Stream stream object, must be ground

A valid open text stream

Count integer

The resulting character count of the stream

Description

A freshly opened text stream has a character count of 0. When a character is input from
or output to a non-interactive Prolog stream, the character count of the Prolog stream is
increased by one. Character count for an interactive stream reflects the total character
input from or output to any interactive stream, i.e. all interactive streams share the same
counter.

A nl/[0,1] operation also increases the character count of a stream by one.

The count is reset by set_stream_position/2.

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109).

See Also

byte_count/2, line_count/2, line_position/2, stream_position/2, set_stream_

position/2, Section 4.6.7 [ref-iou-sfh], page 109.

Chapter 11: Prolog Reference Pages 953

11.3.38 clause/[2,3] ISO

Synopsis

clause(+Head, -Body)

clause(+Head, -Body, -Ref)

clause(-Head, -Body, +Ref)

Searches the database for a clause whose head matches Head and whose body matches
Body.

Arguments

:Head callable

A term whose functor names a dynamic procedure.

Body callable

Ref db reference

Description

Initially, at least one of Head and Ref must be instantiated.

In the case of unit-clauses, Body is unified with true.

If a procedure consists entirely of unit-clauses, then there is no point in calling clause/2

on it. It is simpler and faster to call the procedure.

In clause/3, either Head or Ref must be instantiated. If Ref is instantiated, then (Head

:- Body) is unified with the clause identified by Ref. (If this clause is a unit-clause, then
Body is unified with true.)

If the predicate did not previously exist, then it is created as a dynamic predicate and
clause/2 fails. If Ref is not instantiated, then clause/3 behaves exactly like clause/2

except that the database reference is returned.

By default, clauses are accessed with respect to the source module.

Backtracking

Can be used to backtrack through all the clauses matching a given Head and Body. It fails
when there are no (or no further) matching clauses in the database.

Exceptions

instantiation_error

Neither Head nor Ref is instantiated.

type_error

Head is not a callable, or Ref is not a well-formed db reference

permission_error

Procedure is not dynamic.

954 SICStus Prolog

existence_error

Ref is a well-formed db reference but does not correspond to an existing clause
or record.

Comments

If clause/[2,3] is called on an undefined procedure, then it fails, but before failing it
makes the procedure dynamic. This can be useful if you wish to prevent unknown procedure
catching from happening on a call to that procedure.

It is not a limitation that Head is required to be instantiated in clause(Head, Body),
because if you want to backtrack through all clauses for all dynamic procedures, then this
can be achieved by:

| ?- predicate_property(P,dynamic), clause(P,B).

If there are clauses with a given name and arity in several different modules, or if the
module for some clauses is not known, then the clauses can be accessed by first finding the
module(s) by means of current_predicate/2. For example, if the procedure is f/1:

| ?- current_predicate(_,M:f(_)), clause(M:f(X),B).

clause/3 will only access clauses that are defined in, or imported into, the source module,
except that the source module can be overridden by explicitly naming the appropriate
module. For example:

| ?- assert(foo:bar,R).

R = '$ref'(771292,1)

| ?- clause(H,B,'$ref'(771292,1)).

no

| ?- clause(foo:H,B,'$ref'(771292,1)).

H = bar,

B = true

Accessing a clause using clause/2 uses first argument indexing when possible, in just the
same way that calling a procedure uses first argument indexing. See Section 9.5 [Indexing],
page 358.

clause/2 is part of the ISO Prolog standard; clause/3 is not.

See Also

instance/2, assert/[1,2], dynamic/1, retract/1, Section 4.12.6 [ref-mdb-acl], page 181.

Chapter 11: Prolog Reference Pages 955

11.3.39 close/[1,2] ISO

Synopsis

close(+Stream)

close(+Stream, +Options)

closes the stream corresponding to Stream.

Arguments

Stream stream object, must be ground

Stream or file specification.

Options list of term, must be ground

A list of zero or more of the following:

force(Boolean)

Specifies whether SICStus Prolog is to close the stream forcefully,
even in the presence of errors (true), or not (false). The latter is
the default. Currently this option has no effect.

direction(+Direction)

Direction is an atom specifying the direction or directions to close.

One of:

input Close only the input direction, if open.

output Close only the output direction, if open.

all Close all directions. This is the default.

if stream is not open in the specified direction then the call to
open/4 does nothing.

Closing a single direction is mainly useful when dealing with bidi-
rectional streams, such as sockets.

Description

If Stream is a stream object, then if the corresponding stream is open, then it will be closed
in the specified directions; otherwise, an error exception is raised.

If Stream is a file specification, then the corresponding stream will be closed in the specified
directions, provided that the file was opened by see/1 or tell/1.

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

instantiation_error

Options is not instantiated enough.

type_error

Options is not a proper list.

956 SICStus Prolog

domain_error

Options contains an invalid option.

permission_error

File not opened by see/1 or tell/1.

domain_error

Stream is neither a filename nor a stream.

Examples

In this example, foo will be closed:

see(foo),

...

close(foo)

However, in this example, a permission error will be raised and foo will not be closed:

open(foo, read, S),

...

close(foo)

Here, close(S) should have been used.

See Also

see/1, tell/1, open/[3,4], Section 4.6.7 [ref-iou-sfh], page 109, Section 10.37 [lib-sockets],
page 733.

Chapter 11: Prolog Reference Pages 957

11.3.40 compare/3 ISO

Synopsis

compare(-Order, +Term1, +Term2)

succeeds if the result of comparing terms Term1 and Term2 is Order

Arguments

Order order

= if Term1 is identical to Term2,

< if Term1 is before Term2 in the standard order,

> if Term1 is after Term2 in the standard order.

Term1 term

Term2 term

Description

The standard order is described in Section 4.8.8 [ref-lte-cte], page 130. Note that the
standard order is not, in general, well defined for cyclic terms.

The goal (A) is equivalent to (B):

| ?- compare(=, Term1, Term2). (A)

|?- (Term1 == Term2). (B)

The following query succeeds, binding R to <, because 1 comes before 2 in the standard
order.

| ?- compare(R, 1, 2).

R = <

If Order is supplied, and is not one of <, >, or =, then an error is thrown, as follows.

Exceptions

type_error(atom, Order)

if Order is neither a variable nor an atom.

domain_error(order, Order)

if Order is an atom but not <, =, or >.

These errors were added in SICStus Prolog 4.3 for alignment with the ISO Prolog standard.
Previous versions of SICStus Prolog simply failed instead of reporting an error.

See Also

@</2, @=</2, @>/2, @>=/2, SP_compare(), Section 4.8.8 [ref-lte-cte], page 130.

958 SICStus Prolog

11.3.41 compile/1

Synopsis

compile(+Files)

Compiles the specified Prolog source file(s) into memory.

Arguments

:Files file spec or list of file spec, must be ground

A file specification or a list of file specifications; extensions optional.

Description

This predicate is defined as if by:

compile(Files) :-

load_files(Files, [load_type(source),compilation_mode(compile)]).

Exceptions

See load_files/[2,3].

See Also

Section 4.3.2 [ref-lod-lod], page 80.

Chapter 11: Prolog Reference Pages 959

11.3.42 compound/1 ISO

Synopsis

compound(+Term)

Term is currently instantiated to a compound term.

Arguments

Term term

Examples

| ?- compound(9).

no

| ?- compound(a(1,2,3)).

yes

| ?- compound("a").

yes

| ?- compound([1,2]).

yes

Exceptions

None.

See Also

Section 4.8.1.1 [ref-lte-met-typ], page 126.

960 SICStus Prolog

11.3.43 consult/1

Synopsis

consult(+Files)

Consults the specified Prolog source file(s) into memory.

Arguments

:Files file spec or list of file spec, must be ground

A file specification or a list of file specifications; extensions optional.

Description

This predicate is defined as if by:

consult(Files) :-

load_files(Files, [load_type(source),compilation_mode(consult)]).

Exceptions

See load_files/[2,3].

See Also

Section 4.3.2 [ref-lod-lod], page 80.

Chapter 11: Prolog Reference Pages 961

11.3.44 copy_term/[2,3] ISO

Synopsis

copy_term(+Term, -Copy)

Unifies Copy with a copy of Term in which all variables have been replaced by brand new
variables, and all mutables by brand new mutables.

copy_term(+Term, -Copy, -Body)

Furthermore, if Term contains variables with goals blocked on them, or variables with
attributes that can be interpreted as a goal (see Section 10.3 [lib-atts], page 388), then
Body is unified with the conjunction of such goals. If no such goals are present, then Body
is unified with the atom true. The idea is that executing Body will reinstate blocked goals
and attributes on the variables in Copy equivalent to those on the variables in Term.

Arguments

Term term

Copy term

Body callable

Description

Independent copies are substituted for any mutable terms in term. It behaves as if defined
by:

copy_term(X, Y) :-

assert('copy of'(X)),

retract('copy of'(Y)).

The implementation of copy_term/2 endeavors to conserve space by not copying ground
subterms.

When you call clause/[2,3] or instance/2, you get a new copy of the term stored in the
database, in precisely the same sense that copy_term/2 gives you a new copy.

Examples

• A naive way to attempt to find out whether one term is a copy of another:

identical_but_for_variables(X, Y) :-

\+ \+ (

numbervars(X, 0, N),

numbervars(Y, 0, N),

X = Y

).

This solution is sometimes sufficient, but will not work if the two terms have any
variables in common.

• If you want the test to succeed even when the two terms do have some variables in
common, then you need to copy one of them; for example,

962 SICStus Prolog

identical_but_for_variables(X, Y) :-

\+ \+ (

copy_term(X, Z),

numbervars(Z, 0, N),

numbervars(Y, 0, N),

Z = Y

).

• An example of copy_term/3. Suppose that you want to make copy_term/3 aware of
the attribute tfs/1 in some module. Then with the module file:

:- module(foo, []).

:- use_module(library(atts)).

:- attribute tfs/1.

attribute_goal(X, put_atts(X,tfs(Y))) :-

get_atts(X, tfs(Y)).

the following query works:

| ?- foo:put_atts(X, tfs(ind)), copy_term(f(X), Copy, Body).

Body = foo:put_atts(_A,tfs(ind)),

Copy = f(_A),

put_atts(X,tfs(ind)) ? RET

yes

Comments

copy_term/2 is part of the ISO Prolog standard; copy_term/3 is not.

Exceptions

None.

See Also

Section 4.8.7 [ref-lte-cpt], page 129.

Chapter 11: Prolog Reference Pages 963

11.3.45 coverage_data/1 development

Synopsis

coverage_data(-Data) since release 4.2

Data is the coverage data accumulated so far.

Arguments

Data list of coverage pair

where:

coverage pair ::= counter(filename,pred_spec,clauseno,lineno)-tagged_

hits

filename ::= atom {file containing coverage site}
clauseno ::= integer {file relative clause number containing coverage site}
lineno ::= integer {line of code containing coverage site}
tagged hits ::= det(hits) {no nondet calls made from site}

| nondet(hits) {some nondet calls made from site}
hits ::= integer {number of times that coverage site was hit}

Description

The coverage data accumulated so far is collected into a term of type list of coverage pair
and unified with Data.

Please note: A given line of code can contain more than one coverage site.

Exceptions

None.

See Also

Section 9.3 [Coverage Analysis], page 354.

964 SICStus Prolog

11.3.46 create_mutable/2

Synopsis

create_mutable(+Datum, -Mutable)

Mutable is a new mutable term with initial value Datum.

Arguments

Datum term, must be nonvar

Mutable mutable

Exceptions

instantiation_error

Datum is uninstantiated

See Also

Section 4.8.9 [ref-lte-mut], page 131.

Chapter 11: Prolog Reference Pages 965

11.3.47 current_atom/1

Synopsis

current_atom(?Atom)

Atom is a currently existing atom.

Arguments

Atom atom

Backtracking

If Atom is uninstantiated, then current_atom/1 can be used to enumerate all known atoms.
The order in which atoms are bound to Atom on backtracking corresponds to the times of
their creation.

Comments

Note that the predicate atom/1 is recommended for determining whether a term is an atom,
as current_atom/1 will succeed if Atom is uninstantiated as well.

Exceptions

None.

See Also

Section 4.12.8 [ref-mdb-idb], page 183.

966 SICStus Prolog

11.3.48 current_breakpoint/5 development

Synopsis

current_breakpoint(-Conditions, -BID, -Status, -Kind, -Type)

There is a breakpoint with conditions Conditions, identifier BID, enabledness Status, kind
Kind, and type Type.

Arguments

:Conditions
term

Breakpoint conditions.

BID integer

Breakpoint identifier.

Status one of [on,off]

on for enabled breakpoints and off for disabled ones

Kind one of [plain(MFunc),conditional(MFunc),generic]

MFunc is the module qualified functor of the specific breakpoint.

Type one of [debugger,advice]

Exceptions

instantiation_error

Conditions not instantiated enough.

type_error

Conditions not a proper list of callable term.

domain_error

Conditions not a proper list of valid breakpoint conditions

See Also

Section 5.6.7 [Built-in Predicates for Breakpoint Handling], page 260, Section 5.7 [Break-
point Predicates], page 272.

Chapter 11: Prolog Reference Pages 967

11.3.49 current_char_conversion/2 ISO

Synopsis

current_char_conversion(?InChar, ?OutChar)

InChar is currently mapped to OutChar in the character-conversion mapping, where the
two are distinct.

Arguments

InChar char

OutChar char

Exceptions

type_error

An argument is instantiated not to a char.

See Also

Chapter 2 [Glossary], page 7.

968 SICStus Prolog

11.3.50 current_input/1 ISO

Synopsis

current_input(-Stream)

unifies Stream with the current input stream.

Arguments

Stream stream object

Description

Stream is the current input stream. The current input stream is also accessed by the C
variable SP_curin.

Exceptions

domain_error

Stream is instantiated not to a valid stream.

See Also

open/[3,4], Section 4.6.7 [ref-iou-sfh], page 109.

Chapter 11: Prolog Reference Pages 969

11.3.51 current_key/2

Synopsis

current_key(?KeyName, ?KeyTerm)

Succeeds when KeyName is the name of KeyTerm, and KeyTerm is a recorded key.

Arguments

KeyName atomic

One of:

• KeyTerm, if KeyTerm is atomic; or

• the principal functor of KeyTerm, if KeyTerm is a compound term.

KeyTerm term

The most general form of the key for a currently recorded term.

Description

This predicate can be used to enumerate in undefined order all keys for currently recorded
terms through backtracking.

Backtracking

Enumerates all keys through backtracking.

Exceptions

None.

See Also

Section 4.12.8 [ref-mdb-idb], page 183.

970 SICStus Prolog

11.3.52 current_module/[1,2]

Synopsis

current_module(?ModuleName)

Queries whether a module is “current” or backtracks through all of the current modules.

current_module(?ModuleName, ?AbsFile)

Associates modules with their module files.

Arguments

ModuleName
atom

AbsFile atom

Absolute filename in which the module is defined.

Description

A loaded module becomes “current” as soon as some predicate is defined in it, and a module
can never lose the property of being current.

It is possible for a current module to have no associated file, in which case current_

module/1 will succeed on it but current_module/2 will fail. This arises for the special
module user and for dynamically-created modules (see Section 4.11 [ref-mod], page 161).

If its arguments are not correct, or if Module has no associated file, then current_module/2

simply fails.

Backtracking

current_module/1 backtracks through all of the current modules. The following command
will print out all current modules:

| ?- current_module(Module), writeq(Module), nl, fail.

current_module/2 backtracks through all of the current modules and their associated files.

Exceptions

type_error

Examples

| ?- findall(M,current_module(M),Ms).

Ms = [chr,user,prolog,'SU_messages',clpfd] ? RET

yes

| ?- findall(M-F,current_module(M,F),MFs).

MFs = ['SU_messages'-'/src/sicstus/matsc/sicstus4/Utils/x86-linux-

glibc2.3/bin/sp-4.1.0/sicstus-4.1.0/library/SU_messages.pl'] ?

yes

Chapter 11: Prolog Reference Pages 971

See Also

Section 4.11.13 [ref-mod-ilm], page 169.

972 SICStus Prolog

11.3.53 current_op/3 ISO

Synopsis

current_op(?Precedence, ?Type, ?Name)

Succeeds when the atom Name is currently an operator of type Type and precedence
Precedence.

Arguments

Precedence
integer, in the range 1-1200

Type one of [xfx, xfy, yfx, fx, xf, yf]

Name atom

Description

None of the arguments need be instantiated at the time of the call; that is, this predicate can
be used to find the precedence or type of an operator or to backtrack through all operators.

To add or remove an operator, use op/3.

Exceptions

type_error

Name not an atom or Type not an atom or Precedence not an integer.

domain_error

Precedence not between 1-1200, or Type not one of listed atoms.

Examples

See Also

op/3, Section 4.1.5 [ref-syn-ops], page 47.

Chapter 11: Prolog Reference Pages 973

11.3.54 current_output/1 ISO

Synopsis

current_output(-Stream)

unifies Stream with the current output stream.

Arguments

Stream stream object

Description

Stream is the current output stream. The current output stream is also accessed by the C
variable SP_curout.

Exceptions

domain_error

Stream is instantiated not to a valid stream.

See Also

open/[3,4], Section 4.6.7 [ref-iou-sfh], page 109.

974 SICStus Prolog

11.3.55 current_predicate/[1,2] ISO

Synopsis

current_predicate(?PredSpec)

Unifies PredSpec with a predicate specifications of the form Name/Arity.

current_predicate(?Name, ?Term)

Unifies Name with the name of a user-defined predicate, and Term with the most general
term corresponding to that predicate.

Arguments

:PredSpec pred spec

Name atom

:Term callable

Description

If you have loaded the predicates foo/1 and foo/3 into Prolog, then current_predicate/2

would return the following:

| ?- current_predicate(foo, T).

T = foo(_A) ;

T = foo(_A,_B,_C) ;

no

Examples

• The following goals can be used to backtrack through every predicate in your program.

| ?- current_predicate(Name, Module:Term).

| ?- current_predicate(Module:PredSpec).

• If a module is specified, then current_predicate/[1,2] only succeeds for those pred-
icates that are defined in the module. It fails for those predicates that are imported
into a module.

| ?- current_predicate(m:P).

will backtrack through all predicates P that are defined in module m. To back-
track through all predicates imported by a module use predicate_property/2 (see
Section 4.9.1 [ref-lps-ove], page 135).

To find out whether a predicate is built-in, use predicate_property/2.

Chapter 11: Prolog Reference Pages 975

% Is there a callable predicate named gc?

| ?- current_predicate(gc, Term).

no

| ?- predicate_property(gc, Prop)

Prop = built_in

Exceptions

instantiation_error

type_error

in PredSpec

Comments

current_predicate/1 is part of the ISO Prolog standard; current_predicate/2 is not.

See Also

predicate_property/2, Section 4.9.1 [ref-lps-ove], page 135.

976 SICStus Prolog

11.3.56 current_prolog_flag/2 ISO

Synopsis

current_prolog_flag(?FlagName, ?Value)

same as prolog_flag(FlagName, Value), except that current_prolog_flag(FlagName,
Value) type checks FlagName.

Arguments

FlagName atom

Value term

Exceptions

type_error

FlagName is not an atom.

domain_error

FlagName is not a valid flag name.

See Also

prolog_flag/[2,3], set_prolog_flag/2, Section 4.9.4 [ref-lps-flg], page 136.

Chapter 11: Prolog Reference Pages 977

11.3.57 current_stream/3

Synopsis

current_stream(?AbsFile, ?Mode, ?Stream)

Stream is a stream, which is currently open on file AbsFile in mode Mode.

Arguments

AbsFile atom

Absolute filename.

Mode for streams opened with open/[3,4] this is one of [read, write, append].
For other streams Mode may have other values.

Stream stream object

Description

• None of the arguments need be initially instantiated.

•
Ignores certain pre-defined streams, e.g. the streams initially associated with user_

input, user_output and user_error will not be recognized or generated by current_

stream/3.

This is unlike stream_property/2, which can backtrack over all streams, including the
pre-defined ones.

Backtracking

Can be used to backtrack through all open streams.

Exceptions

None.

See Also

open/[3,4], Section 4.6.7 [ref-iou-sfh], page 109.

978 SICStus Prolog

11.3.58 !/0 ISO

Synopsis

!

Cut.

Description

When first encountered as a goal, cut succeeds immediately. If backtracking should later
return to the cut, then the parent goal will fail (the parent goal is the one that matched
the head of the clause containing the cut).

Exceptions

None.

See Also

Section 4.2.3.1 [ref-sem-ctr-cut], page 64.

Chapter 11: Prolog Reference Pages 979

11.3.59 db_reference/1

Synopsis

db_reference(+Term) since release 4.1

Term is currently instantiated to a compound term with principal functor '$ref'/2 denot-
ing a unique reference to a dynamic clause.

Arguments

Term term

Examples

| ?- db_reference(9).

no

| ?- db_reference(_X).

no

| ?- assertz(foo(a), R), db_reference(R).

R = '$ref'(1816730,128)

Exceptions

None.

See Also

Section 4.8.1.1 [ref-lte-met-typ], page 126.

980 SICStus Prolog

11.3.60 debug/0 development

Synopsis

debug

Turns on the debugger in debug mode.

Description

debug/0 turns the debugger on and sets it to debug mode. Turning the debugger on in debug
mode means that it will stop at the next spypoint encountered in the current execution.

The effect of this predicate can also be achieved by typing the letter d after a ^C interrupt
(see Section 3.7 [Execution], page 26).

Exceptions

None.

See Also

Section 5.2 [Basic Debug], page 233.

Chapter 11: Prolog Reference Pages 981

11.3.61 debugger_command_hook/2 hook , development

Synopsis

:- multifile user:debugger_command_hook/2.

user:debugger_command_hook(+DCommand, -Actions)

Allows the interactive debugger to be extended with user-defined commands. See Section 5.5
[Debug Commands], page 237.

Arguments

DCommand
term

Actions term

Exceptions

All error handling is done by the predicates extended by this hook.

See Also

Section 5.7 [Breakpoint Predicates], page 272.

982 SICStus Prolog

11.3.62 debugging/0 development

Synopsis

debugging

Prints out current debugging state

Description

debugging/0 displays information on the terminal about the current debugging state. It
shows

• The top-level state of the debugger, which is one of

debug The debugger is on but will not show anything or stop for user interaction
until a spypoint is reached.

trace The debugger is on and will show everything. As soon as you type a goal,
you will start seeing a debugging trace. After printing each trace message,
the debugger may or may not stop for user interaction: this depends on
the type of leashing in force (see below).

zip The debugger is on but will not show anything or stop for user interaction
until a spypoint is reached. The debugger does not even keep any infor-
mation of the execution of the goal till the spypoint is reached and hence
you will not be able to see the ancestors of the goal when you reach the
spypoint.

off The debugger is off.

The top-level state can be controlled by the predicates debug/0, nodebug/0, trace/0,
notrace/0 zip/0, nozip/0, and prolog_flag/3.

• The type of leashing in force. When the debugger prints a message saying that it
is passing through a particular port (one of Call, Exit, Redo, Fail, or Exception) of
a particular procedure, it stops for user interaction only if that port is leashed. The
predicate leash/1 can be used to select which of the seven ports you want to be leashed.

• All the current spypoints. Spypoints are controlled by the predicates spy/[1,2],
nospy/1, nospyall/0, add_breakpoint/2, disable_breakpoints/1, enable_

breakpoints/1, and remove_breakpoints/1.

Exceptions

None.

See Also

Section 5.2 [Basic Debug], page 233.

Chapter 11: Prolog Reference Pages 983

11.3.63 dif/2

Synopsis

dif(+X,+Y)

Constrains X and Y to represent different terms i.e. to be non-unifiable.

Arguments

X term

Y term

Description

Calls to dif/2 either succeed, fail, or are blocked depending on whether X and Y are
sufficiently instantiated. It is defined as if by:

dif(X, Y) :- when(?=(X,Y), X\==Y).

Exceptions

None.

See Also

Section 4.2.4 [ref-sem-sec], page 74.

984 SICStus Prolog

11.3.64 disable_breakpoints/1 development

Synopsis

disable_breakpoints(+BIDs)

Disables the breakpoints specified by BIDs.

Arguments

BIDs list of integer, must be ground

Breakpoint identifiers.

Exceptions

instantiation_error

type_error

in BIDs

See Also

Section 5.6.7 [Built-in Predicates for Breakpoint Handling], page 260, Section 5.7 [Break-
point Predicates], page 272.

Chapter 11: Prolog Reference Pages 985

11.3.65 discontiguous/1 declaration , ISO

Synopsis

:- discontiguous +PredSpecs

Declares the clauses of the predicates defined by PredSpecs to be discontiguous in the source
file (suppresses compile-time warnings).

Arguments

:PredSpecs
pred spec forest, must be ground

A predicate specification, or a list of such, or a sequence of such separated by
commas.

Comments

discontiguous is not an ISO predefined prefix operator.

Exceptions

Exceptions in the context of loading code are printed as error messages.

instantiation_error

PredSpecs not ground.

type_error

PredSpecs not a valid pred spec forest.

domain_error

Some arity is an integer < 0.

representation_error

Some arity is an integer > 255.

context_error

Declaration appeared in a goal.

permission_error

Declaration appeared as a clause.

See Also

Section 4.3.4.4 [Discontiguous Declarations], page 84.

986 SICStus Prolog

11.3.66 display/1

Synopsis

display(+Term)

Writes Term on the standard output stream, without quoting atoms, in functional notation,
without treating '$VAR'/1 terms specially.

Since quoting is never used, even when needed for reading the term back in, the standard
predicate write_canonical/1 is often preferable.

Arguments

Term term

Description

display(Term) is equivalent to:

write_term(Term, [ignore_ops(true)])

Examples

| ?- display(a+b).

+(a,b)

yes

| ?- read(X), display(X), nl.

|: a + b * c.

+(a,*(b,c))

X = a+b*c

| ?-

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109).

See Also

Section 4.6.4 [ref-iou-tou], page 104.

Chapter 11: Prolog Reference Pages 987

11.3.67 do/2

Synopsis

(+Iterator do +Body)

Arguments

+Iterator iterator, must be nonvar

:Body callable, must be nonvar

Description

This control structure reduces the need to write auxiliary predicates performing simple
iterations. It iterates Body until Iterator’s termination condition is true.

A iterator is a term of one of the following forms:

fromto(First,In,Out,Last)

In the first iteration, In=First. In the n:th iteration, In is the value that Out
had at the end of the (n-1):th iteration. In and Out are local variables in Body.
The termination condition is Out=Last.

foreach(X,List)

Iterate Body with X ranging over all elements of List. X is a local variable in
Body. Can also be used for constructing a list. The termination condition is
Tail = [], where Tail is the suffix of List that follows the elements that have
been iterated over.

foreacharg(X,Struct)

foreacharg(X,Struct,I)

Iterate Body with X ranging over all arguments of Struct and I ranging over
the argument number, 1-based. X and I are local variables in Body. Cannot
be used for constructing a term. So the termination condition is true iff all
arguments have been iterated over.

count(I,MinExpr,Max)

This is normally used for counting the number of iterations. Let Min take the
value integer(MinExpr). Iterate Body with I ranging over integers from Min.
I is a local variable in Body. The termination condition is I = Max, i.e. Max
can be and typically is a variable.

for(I,MinExpr,MaxExpr)

This is used when the number of iterations is known. Let Min take the value
integer(MinExpr), let Max take the value integer(MaxExpr), and let Past
take the value max(Min,Max+1). Iterate Body with I ranging over integers from
Min to max(Min,Max) inclusive. I is a local variable in Body. The termination
condition is I = Past.

param(X) For declaring variables in Body global, i.e. shared with the context. X can be
a single variable, or a list of them. The termination condition is true. Please
note: By default, variables in Body have local scope.

988 SICStus Prolog

iterator,iterator

The iterators are iterated synchronously; that is, they all take their first value
for the first execution of Body, their second value for the second execution of
Body, etc. The order in which they are written does not matter, and the set of
local variables in Body is the union of those of the iterators. The termination
condition is the conjunction of those of the iterators.

Exceptions

Call errors (see Section 4.2.6 [ref-sem-exc], page 77).

See Also

Section 4.2.3.5 [ref-sem-ctr-dol], page 68.

Chapter 11: Prolog Reference Pages 989

11.3.68 dynamic/1 declaration , ISO

Synopsis

:- dynamic +PredSpecs

Declares the clauses of the predicates defined by PredSpecs to be dynamic.

Arguments

:PredSpecs
pred spec forest, must be ground

A predicate specification, or a list of such, or a sequence of such separated by
commas.

Comments

dynamic is not an ISO predefined prefix operator.

To declare a grammar rule gram/n dynamic, the arity of PredSpecs must be n+2.

Exceptions in the context of loading code are printed as error messages.

Exceptions

Exceptions in the context of loading code are printed as error messages.

instantiation_error

PredSpecs not ground.

type_error

PredSpecs not a valid pred spec forest.

domain_error

Some arity is an integer < 0.

representation_error

Some arity is an integer > 255.

context_error

Declaration appeared in a goal.

permission_error

Declaration appeared as a clause.

See Also

Section 4.3.4.2 [Dynamic Declarations], page 84.

990 SICStus Prolog

11.3.69 enable_breakpoints/1 development

Synopsis

enable_breakpoints(+BIDs)

Enables the breakpoints specified by BIDs.

Arguments

BIDs list of integer, must be ground

Breakpoint identifiers.

Exceptions

instantiation_error

type_error

in BIDs

See Also

Section 5.6.7 [Built-in Predicates for Breakpoint Handling], page 260, Section 5.7 [Break-
point Predicates], page 272.

Chapter 11: Prolog Reference Pages 991

11.3.70 ensure_loaded/1 ISO

Synopsis

ensure_loaded(+Files)

Loads the specified Prolog source and/or object file(s) into memory, if not already loaded
and up to date.

Arguments

:Files file spec or list of file spec, must be ground

A file specification or a list of file specifications; extension optional.

Description

The recommended style is to use this predicate for non-module files only, but if any module
files are encountered, then their public predicates are imported.

This predicate is defined as if by:

ensure_loaded(Files) :-

load_files(Files, [if(changed)]).

Exceptions

See load_files/[2,3].

See Also

Section 4.3.2 [ref-lod-lod], page 80.

992 SICStus Prolog

11.3.71 =:=/2 ISO

Synopsis

+Expr1 =:= +Expr2

Succeeds if the results of evaluating Expr1 and Expr2 are equal.

Arguments

Expr1 expr, must be ground

Expr2 expr, must be ground

Description

Evaluates Expr1 and Expr2 as arithmetic expressions and compares the results.

Exceptions

Arithmetic errors (see Section 4.7.3 [ref-ari-exc], page 119).

Examples

| ?- 1.0 + 1.0 =:= 2.

yes

| ?- "a" =:= 97.

yes

See Also

Section 4.7 [ref-ari], page 119,

Chapter 11: Prolog Reference Pages 993

11.3.72 erase/1

Synopsis

erase(+Ref)

Erases from the database the dynamic clause or recorded term referenced by Ref.

Arguments

Ref db reference, must be nonvar

Description

Erases from the database the dynamic clause or recorded term referenced by Ref.

Ref must be a database reference to an existing clause or recorded term.

erase/1 is not sensitive to the source module; that is, it can erase a clause even if that
clause is neither defined in nor imported into the source module.

Exceptions

instantiation_error

If Ref is not instantiated.

type_error

If Ref is not a database reference.

existence_error

if Ref is not a database reference to an existing clause or recorded term.

Examples

See Also

Section 4.12.5 [ref-mdb-rcd], page 179.

994 SICStus Prolog

11.3.73 error_exception/1 hook , development

Synopsis

:- multifile user:error_exception/1.

user:error_exception(+Exception)

Tells the debugger to enter trace mode on exceptions matching Exception.

Arguments

Exception term

Exceptions

None.

See Also

Section 5.11 [Exceptions Debug], page 285.

Chapter 11: Prolog Reference Pages 995

11.3.74 execution_state/[1,2] development

Synopsis

execution_state(+Tests)

Tests are satisfied in the current state of the execution.

execution_state(+FocusConditions, +Tests)

Tests are satisfied in the state of the execution pointed to by FocusConditions.

Arguments

FocusConditions
term

:Tests term

Exceptions

instantiation_error

An argument not instantiated enough.

type_error

An argument not a proper list of callable term.

domain_error

An argument not a proper list of valid conditions and tests.

See Also

Section 5.6.7 [Built-in Predicates for Breakpoint Handling], page 260, Section 5.7 [Break-
point Predicates], page 272.

996 SICStus Prolog

11.3.75 ^/2

Synopsis

+X ^ +P

Equivalent to “there exists an X such that P is true”, thus X is normally an unbound
variable. The use of the explicit existential quantifier outside setof/3 and bagof/3 is
superfluous.

Arguments

X term

:P callable, must be nonvar

Description

Equivalent to simply calling P.

Backtracking

Depends on P.

Exceptions

Call errors (see Section 4.2.6 [ref-sem-exc], page 77).

Examples

Using bagof/3 without and with the existential quantifier:

| ?- bagof(X, foo(X,Y), L).

X = _3342,

Y = 2,

L = [1,1] ;

X = _3342,

Y = 3,

L = [2] ;

no

| ?- bagof(X, Y^foo(X,Y), L).

X = _3342,

Y = _3361,

L = [1,1,2] ;

no

See Also

setof/3, bagof/3, Section 4.13 [ref-all], page 186.

Chapter 11: Prolog Reference Pages 997

11.3.76 expand_term/2 hookable

Synopsis

expand_term(+Term1, -Term2)

Transforms source file terms into Prolog clauses before they are compiled. Normally called
by the compiler, but can be called directly. The transform can be customized by defining
user:term_expansion/6.

When a source file is loaded, except by :- include, expand_term/2 is called with the
virtual clauses beginning_of_file before and end_of_file after the real Prolog clauses,
to give user:term_expansion/6 an opportunity to perform some action at the beginning
and end of a source file. Please note: the virtual clause beginning_of_file is “seen” before
any module declaration, i.e. before the source module has been updated.

Arguments

Term1 term

Term2 term

Description

Usually called by the built-in predicates that read code and not directly by user programs.

in particular used to translate grammar rules, written with -->/2, into ordinary Prolog
clauses, written with :-/2. If Term1 is a grammar rule, then Term2 is the corresponding
clause. Otherwise Term2 is simply Term1 unchanged.

Calls user:term_expansion/6.

Exceptions

Prints messages for exceptions raised by user:term_expansion/6.

See Also

phrase/[2,3], -->/2, Section 4.3.5 [ref-lod-exp], page 87.

998 SICStus Prolog

11.3.77 fail/0 ISO

Synopsis

fail

Always fails.

Exceptions

None.

See Also

Section 4.2 [ref-sem], page 61.

Chapter 11: Prolog Reference Pages 999

11.3.78 false/0 ISO

Synopsis

false

Always fails (same as fail/0).

Exceptions

None.

See Also

Section 4.2 [ref-sem], page 61.

1000 SICStus Prolog

11.3.79 file_search_path/2 hook

Synopsis

:- multifile user:file_search_path/2.

user:file_search_path(+PathAlias, +DirSpec)

Defines a symbolic name for a directory or a path. Used by predicates taking file spec as
input argument.

Arguments

PathAlias atom

An atom that represents the path given by DirSpec.

DirSpec file spec

Either an atom giving the path to a file or directory, or PathAlias(DirSpec),
where PathAlias is defined by another file_search_path/2 rule.

Description

The file_search_path mechanism provides an extensible way of specifying a sequence of
directories to search to locate a file. For instance, if a filename is given as a structure term,
library(between). The principle functor of the term, library, is taken to be another
file_search_path/2 definition of the form

file_search_path(library, LibPath)

and file between is assumed to be relative to the path given by LibPath. LibPath may
also be another structure term, in which case another file_search_path/2 fact gives its
definition. The search continues until the path is resolved to an atom.

There may also be several definitions for the same PathAlias. Certain predicates, such as
load_files/[1,2] and absolute_file_name/[2,3], search all these definitions until the
path resolves to an existing file.

There are several predefined search paths, such as application, runtime, library, system.
These are tried before the user-defined ones.

The predicate is undefined at startup, but behaves as if it were a multifile predicate with
the following clauses. The system properties SP_APP_DIR and SP_RT_DIR expand respec-
tively to the absolute path of the directory that contains the executable and the directory
that contains the SICStus runtime (see Section 4.17.1 [System Properties and Environment
Variables], page 224), SP_TEMP_DIR expand to a directory suitable for storing temporary
files.

Chapter 11: Prolog Reference Pages 1001

file_search_path(library, Path) :-

library_directory(Path).

file_search_path(system, Platform) :-

prolog_flag(host_type, Platform).

file_search_path(application, '$SP_APP_DIR').

file_search_path(runtime, '$SP_RT_DIR').

file_search_path(temp, '$SP_TEMP_DIR').

file_search_path(path, Dir) :-

... backtracks through the $PATH environment variable ...

Examples

| ?- [user].

% compiling user...

| :- multifile user:file_search_path/2.

| user:file_search_path(home, '/usr/joe_bob').

| user:file_search_path(review, home('movie/review')).

| end_of_file.

% compiled user in module user, 0 msec 768 bytes

yes

| ?- compile(review(blob)).

% compiling /usr/joe_bob/movie/review/blob.pl

Exceptions

All error handling is done by the predicates extended by this hook.

See Also

absolute_file_name/[2,3], library_directory/1, load_files/[1,2], Section 4.5 [ref-
fdi], page 95, Section 4.9.4 [ref-lps-flg], page 136, Section 4.17.1 [System Properties and
Environment Variables], page 224.

1002 SICStus Prolog

11.3.80 findall/[3,4] ISO

Synopsis

findall(+Template, +Generator, -List)

findall(+Template, +Generator, -List, +Remainder)

List is the list of all the instances of Template for which the goal Generator succeeds,
appended to Remainder. Remainder defaults to the empty list.

Arguments

Template term

:Generator
callable, must be nonvar

A goal to be proved as if by call/1.

List list of term

Remainder
list of term

Description

A special case of bagof/3, where all free variables in the generator are taken to be existen-
tially quantified, as if by means of the ‘^’ operator. Contrary to bagof/3 and setof/3, if
there are no instances of Template such that Generator succeeds, then List = Remainder.

Because findall/[3,4] avoids the relatively expensive variable analysis done by bagof/3,
using findall/[3,4] where appropriate rather than bagof/3 can be considerably more
efficient.

Please note: If the instances being gathered contain attributed variables (see Section 10.3
[lib-atts], page 388) or suspended goals (see Section 4.2.4 [ref-sem-sec], page 74), then those
variables are replaced by brand new variables, without attributes, in List. To retain the
attributes, you can use copy_term/3 (see Section 4.8.7 [ref-lte-cpt], page 129).

Backtracking

bagof/3 can succeed nondeterminately, generating alternative values for Set corresponding
to different instantiations of the free variables of Generator.

Exceptions

Call errors (see Section 4.2.6 [ref-sem-exc], page 77).

Examples

To illustrate the differences among findall/3, setof/3, and bagof/3:

Chapter 11: Prolog Reference Pages 1003

| ?- [user].

| foo(1,2).

| foo(1,2).

| foo(2,3).

|

% user compiled in module user, 0.100 sec 352 bytes

yes

| ?- bagof(X, foo(X,Y), L).

Y = 2,

L = [1,1] ? ;

Y = 3,

L = [2] ? ;

no

| ?- bagof(X, Y^foo(X,Y), L).

L = [1,1,2] ? ;

no

| ?- findall(X, foo(X,Y), L).

L = [1,1,2] ? ;

no

| ?- findall(X, foo(X,Y), L, S).

L = [1,1,2|S] ? ;

no

| ?- setof(X, foo(X,Y), L).

X = _3342,

Y = 2,

L = [1] ;

X = _3342,

Y = 3,

L = [2] ;

no

1004 SICStus Prolog

Comments

findall/3 is part of the ISO Prolog standard; findall/4 is not.

See Also

bagof/3, setof/3, ^/2, Section 4.13 [ref-all], page 186.

Chapter 11: Prolog Reference Pages 1005

11.3.81 float/1 ISO

Synopsis

float(+Term)

Term is currently instantiated to a float.

Arguments

Term term

Examples

| ?- float(Term1).

no

| ?- float(5.2).

yes

Exceptions

None.

See Also

Section 4.8.1.1 [ref-lte-met-typ], page 126.

1006 SICStus Prolog

11.3.82 flush_output/[0,1] ISO

Synopsis

flush_output

flush_output(+Stream)

Forces the buffered output of the stream Stream (defaults to the current output stream) to
be sent to the associated device.

Arguments

Stream stream object, must be ground

A valid Prolog stream, defaults to the current output stream.

Description

Sends the current buffered output of an output stream Stream to the actual output device,
which is usually a disk or a tty device.

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

permission_error

An error occurred in flushing out the buffered output.

Examples

See Also

Section 4.6.7 [ref-iou-sfh], page 109.

Chapter 11: Prolog Reference Pages 1007

11.3.83 foreign/[2,3] hook

Synopsis

:- discontiguous foreign/2, foreign/3.

foreign(+Routine, +ForeignSpec)

foreign(+Routine, +Language, +ForeignSpec)

Describes the interface between Prolog and the foreign Routine. Used by load_foreign_

resource/1.

Arguments

Routine atom, must be nonvar

An atom that names a foreign code Routine.

Language atom, must be nonvar

An atom that names the Language in which Routine is written. Can only be
c.

ForeignSpec
foreign spec, must be ground

A ground term of the form PredName(Argspec, . . . , Argspec) as described in
Section 6.2.3 [Conversions between Prolog Arguments and C Types], page 293.
Each Argspec should be a foreign arg.

Description

The user has to define a foreign/[2,3] fact for every foreign function that is to be called
from Prolog. Note that Routine does not have to be the same as PredicateName. Arguments
are passed to the foreign function as specified in ForeignSpec.

+type specifies that an argument is to be passed to the foreign function.

-type specifies that an argument is to be received from the foreign function.

[-type] argument is used to obtain the return value of a foreign function call. At most
one “return value” argument can be specified.

The foreign/[2,3] facts are used only in the context of a load_foreign_resource/1

command and can be removed once the foreign files are loaded.

Contrary to most hook predicates which reside in the user module, foreign/[2,3] facts
will only be looked up in the source module of the loading command.

Exceptions

Error handling is performed by load_foreign_resource/1.

See Also

load_foreign_resource/1, Section 6.2 [Calling C from Prolog], page 290.

1008 SICStus Prolog

11.3.84 foreign_resource/2 hook

Synopsis

:- discontiguous foreign_resource/2.

foreign_resource(+ResourceName, +ForeignFunctions)

Describes the foreign functions in ResourceName to interface to.

Arguments

ResourceName
atom, must be nonvar

ForeignFunctions
list of atom, must be ground

A list of foreign function symbols that will be obtained from ResourceName.

Description

The user has to define a foreign_resource/2 fact for every foreign resource that is to be
loaded into Prolog. The ForeignFunctions gives the list of foreign symbols that are to be
found in the given foreign resource. When a foreign resource is loaded using load_foreign_
resource/1, Prolog looks for a foreign_resource/2 fact for that foreign resource and
finds the address of each symbol listed in that fact. Prolog also expects a foreign/[2,3]

definition for each symbol in the second argument of that fact.

The foreign_resource/2 facts are used only in the context of a load_foreign_

resource/1 command and can be removed once the foreign resource has been loaded.

Contrary to most hook predicates which reside in the user module, load_foreign_

resource/1 will look for foreign_resource/2 facts defined in its source module.

Exceptions

Error handling is performed by load_foreign_resource/1.

See Also

load_foreign_resource/1, foreign/[2,3], Section 6.2 [Calling C from Prolog], page 290.

Chapter 11: Prolog Reference Pages 1009

11.3.85 format/[2,3]

Synopsis

format(+Control, +Arguments)

format(+Stream, +Control, +Arguments)

Interprets the Arguments according to the Control string and prints the result on Stream.

Arguments

Stream stream object, must be ground

Defaults to the current output stream.

Control chars or codes or atom, must be ground

A string, which can contain control sequences of the form ‘~N<c>’:

<c> a format control option

N optional; if given, must be ‘*’ or an integer.

Any characters that are not part of a control sequence are written to the spec-
ified output stream.

:Arguments
list of term, must be proper list

List of arguments, which will be interpreted and possibly printed by format
control options.

Description

If a parameter N can be specified, then it can be either an integer, specified as an optional
minus sign followed by a sequence of decimal digits, or the character ‘*’.

If the parameter is specified as ‘*’, then the value used will be the truncated integer value
of the next element from Arguments interpreted as a numerical expression.

The following control options cause formatted printing of the next element from Arguments
to the current output stream.

‘~a’ The argument is an atom. The atom is printed without quoting.

‘~Nc’ (Print character.) The argument is a number that will be interpreted as a
code. N defaults to one and is interpreted as the number of times to print the
character. If N is zero, or negative, then the character is not printed.

‘~Ne’
‘~NE’ (Print float in exponential notation.) The argument is a float, which will be

printed in exponential notation with one digit before the decimal point and
N digits after it. If N is zero, or negative, then one digit appears after the
decimal point. A sign and at least two digits appear in the exponent, which is
introduced by the letter used in the control sequence. N defaults to 6.

The magnitude of N must be less than 100000, but useful values are much
smaller than that.

1010 SICStus Prolog

‘~Nf’
‘~NF’ (Print float in fixed-point notation.) The argument is a float, which will be

printed in fixed-point notation with N digits after the decimal point. N may be
zero, or negative, in which case a single zero appears after the decimal point.
At least one digit appears before the decimal point and at least one after it. N
defaults to 6.

The magnitude of N must be less than 100000, but useful values are much
smaller than that.

‘~Ng’
‘~NG’ (Print float in generic notation.) The argument is a float, which will be printed

in ‘f’ or ‘e’ (or ‘E’ if ‘G’ is used) notation with N significant digits. If N is zero,
then one significant digit is printed. ‘E’ notation is used if the exponent from its
conversion is less than -4 or greater than or equal to N, otherwise ‘f’ notation.
Trailing zeroes are removed from the fractional part of the result. A decimal
point and at least one digit after it always appear. N defaults to 6.

The magnitude of N must be less than 100000, but useful values are much
smaller than that.

‘~Nh’
‘~NH’ (Print float precisely.) The argument is a float, which will be printed in ‘f’ or ‘e’

(or ‘E’ if ‘H’ is used) notation with d significant digits, where d is the smallest
number of digits that will yield the same float when read in. ‘E’ notation is
used if N<0 or if the exponent is less than -N-1 or greater than or equal to N+d,
otherwise ‘f’ notation. N defaults to 3.

The intuition is that for numbers like 123000000.0, at most N consecutive zeroes
before the decimal point are allowed in ‘f’ notation. Similarly for numbers like
0.000000123.

‘E’ notation is forced by using ‘~-1H’. ‘F’ is forced by using ‘~999H’.

The magnitude of N must be less than 100000, but useful values are much
smaller than that.

‘~Nd’ (Print decimal.) The argument is an integer. N is interpreted as the number
of digits after the decimal point. If N is 0 or missing, then no decimal point
will be printed.

N must be non-negative.

‘~ND’ (Print decimal.) The argument is an integer. Identical to ‘~Nd’ except that ‘,’
will separate groups of three digits to the left of the decimal point.

‘~Nr’ (Print radix.) The argument is an integer. N is interpreted as a radix, 2 ≤
N ≤ 36. If N is missing, then the radix defaults to 8. The letters ‘a-z’ will
denote digits larger than 9.

‘~NR’ (Print radix.) The argument is an integer. Identical to ‘~Nr’ except that the
letters ‘A-Z’ will denote digits larger than 9.

‘~Ns’ (Print string.) The argument is a code list. If N is zero, or negative, then no
characters are output.

Chapter 11: Prolog Reference Pages 1011

If N is positive, then the first N characters of the code list will be written, and
if the code list is exhausted, then extra SPC characters will be written, for a
total of N characters output.

‘~i’ (Ignore.) The argument, which may be of any type, is ignored.

‘~k’ (Print canonical.) The argument may be of any type. The argument will be
passed to write_canonical/1 (see Section 4.6.4 [ref-iou-tou], page 104).

‘~p’ (Print.) The argument may be of any type. The argument will be passed to
print/1 (see Section 4.6.4 [ref-iou-tou], page 104).

‘~q’ (Print quoted.) The argument may be of any type. The argument will be
passed to writeq/1 (see Section 4.6.4 [ref-iou-tou], page 104).

‘~w’ (Write.) The argument may be of any type. The argument will be passed to
write/1 (see Section 4.6.4 [ref-iou-tou], page 104).

‘~@’ (Call.) The argument Arg is a goal, which will be called as if by \+ \+ Arg and
is expected to print on the current output stream. If the goal performs other
side effects, then the behavior is undefined.

‘~~’ (Print tilde.) Takes no argument. Prints ‘~’.

‘~Nn’ (Print newline.) Takes no argument. Prints N newlines. N defaults to 1.

If N is negative or zero, then no newlines are output.

‘~N’ (Print Newline.) Prints a newline if not at the beginning of a line.

The following control sequences set column boundaries and specify padding. A column is
defined as the available space between two consecutive column boundaries on the same line.
A boundary is initially assumed at line position 0. The specifications only apply to the line
currently being written.

When a column boundary is set (‘~|’ or ‘~+’) and there are fewer characters written in the
column than its specified width, the remaining space is divided equally amongst the pad
sequences (‘~t’) in the column. If there are no pad sequences, then the column is space
padded at the end.

If ‘~|’ or ‘~+’ specifies a position preceding the current position, then the boundary is set
at the current position.

‘~N|’ Set a column boundary at line position N. N defaults to the current position.

The control sequence ‘~N|’ (with explicit N) will not work correctly on bi-
directional streams1, e.g. those created by library(sockets). A workaround
for bi-directional streams may be to use ‘~|’ (without explicit N) and ‘~N+’, see
below.

‘~N+’ Set a column boundary at N positions past the previous column boundary. N
defaults to 8.

1 This is because streams only have one counter for line position, and for bidirectional streams that counter
tracks the input direction (see Section 12.3.40 [cpg-ref-SP get stream counts], page 1286).

1012 SICStus Prolog

‘~Nt’ Specify padding in a column. N is the fill character code. N may also be
specified as ‘C where C is the fill character. The default fill character is SPC.
Any (‘~t’) after the last column boundary on a line is ignored.

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

consistency_error

Wrong number of Arguments.

type_error

domain_error

Argument of the wrong type or domain.

Examples

| ?- Pi=3.14159265, format('~e ~2E ~0E\n', [Pi,Pi,Pi]).

3.141593e+00 3.14E+00 3.0E+00

| ?- Pi=3.14159265, format('~f, ~2F, ~0F\n', [Pi,Pi,Pi]).

3.141593, 3.14, 3.0

| ?- format('~g ~2G ~0G\n', [1.23456789e+10, 3.14159265, 0.0123]).

1.23457e+10 3.1 0.01

| ?- F = 123000.0, G = 0.000123,

format('~h ~h ~2h ~2H ~-1H\n', [F,G,F,G,3.14]).

123000.0 0.000123 1.23e+05 1.23E-04 3.14E+00

| ?- format('Hello ~1d world!\n', [42]).

Hello 4.2 world!

| ?- format('Hello ~d world!\n', [42]).

Hello 42 world!

| ?- format('Hello ~1D world!\n', [12345]).

Hello 1,234.5 world!

| ?- format('Hello ~2r world!\n', [15]).

Hello 1111 world!

| ?- format('Hello ~16r world!\n', [15]).

Hello f world!

| ?- format('Hello ~16R world!\n', [15]).

Hello F world!

Chapter 11: Prolog Reference Pages 1013

| ?- format('Hello ~4s ~4s!\n', ["new","world"]).

Hello new worl!

| ?- format('Hello ~s world!\n', ["new"]).

Hello new world!

| ?- format('Hello ~i~s world!\n', ["old","new"]).

Hello new world!

| ?- format('Hello ~k world!\n', [[a,b,c]]).

Hello '.'(a,'.'(b,'.'(c,[]))) world!

| ?- assert((portray([X|Y]) :- print(cons(X,Y)))).

| ?- format('Hello ~p world!\n', [[a,b,c]]).

Hello cons(a,cons(b,cons(c,[]))) world!

| ?- format('Hello ~q world!\n', [['A','B']]).

Hello ['A','B'] world!

| ?- format('Hello ~w world!\n', [['A','B']]).

Hello [A,B] world!

| ?- format('Hello ~@ world!\n', [write(new)]).

Hello new world!

| ?- format('Hello ~~ world!\n', []).

Hello ~ world!

| ?- format('Hello ~n world!\n', []).

Hello

world!

| ?- format('~‘*t NICE TABLE ~‘*t~61|~n', []),

format('*~t*~61|~n', []),

format('*~t~a~20|~t~a~t~20+~a~t~20+~t*~61|~n',

['Right aligned','Centered','Left aligned']),

format('*~t~d~20|~t~d~t~20+~d~t~20+~t*~61|~n',

[123,45,678]),

format('*~t~d~20|~t~d~t~20+~d~t~20+~t*~61|~n',

[1,2345,6789]),

format('~‘*t~61|~n', []).

************************ NICE TABLE *************************

* *

* Right aligned Centered Left aligned *

* 123 45 678 *

* 1 2345 6789 *

1014 SICStus Prolog

| ?-

format('Table of Contents ~t ~a~72|~*n', [i,3]),

format('~tTable of Contents~t~72|~*n', 2),

format("1. Documentation supple-

ment for ~s~1f ~‘.t ~d~72|~*n", ["Quintus Prolog Release ",1.5,2,2]),

format("~t~*+~w Defini-

tion of the term \"loaded\" ~‘.t ~d~72|~n", [3,1-1,2]),

format("~t~*+~w Finding all solutions ~‘.t ~d~72|~n", [3,1-2,3]),

format("~t~*+~w Searching for a file in a li-

brary ~‘.t ~d~72|~n", [3,1-3,4]),

format("~t~*+~w New Built-in Predicates ~‘.t ~d~72|~n", [3,1-

4,5]),

format("~t~*+~w write_canonical (?Term) ~‘.t ~d~72|~n", [7,1-4-

1,5]),

format("~*+.~n~*+.~n~*+.~n", [20,20,20]),

format("~t~*+~w File Specifications ~‘.t ~d~72|~n", [3,1-7,17]),

format("~t~*+~w multifile(+PredSpec) ~‘.t ~d~72|~n", [7,1-7-

1,18]).

Table of Contents

1. Documentation supplement for Quintus Prolog Re-

lease 1.5 2

1-1 Defini-

tion of the term "loaded" 2

1-2 Finding all solu-

tions ... 3

1-3 Searching for a file in a li-

brary 4

1-4 New Built-in Predi-

cates 5

1-4-

1 write_canonical (?Term) 5

.

.

.

1-7 File Specifica-

tions .. 17

1-7-1 multi-

file(+PredSpec) 18

See Also

Section 4.6.4 [ref-iou-tou], page 104.

Chapter 11: Prolog Reference Pages 1015

11.3.86 freeze/2

Synopsis

freeze(+Flag, +Goal)

Blocks Goal until Flag is bound.

Arguments

Flag term

:Goal callable, must be nonvar

Description

Defined as if by:

freeze(X, Goal) :- when(nonvar(X), Goal).

or

:- block freeze(-, ?).

freeze(_, Goal) :- Goal.

Backtracking

Depends on Goal.

Exceptions

Call errors (see Section 4.2.6 [ref-sem-exc], page 77).

See Also

Section 4.2.4 [ref-sem-sec], page 74.

1016 SICStus Prolog

11.3.87 frozen/2

Synopsis

frozen(+Term,-Goal)

Goal is unified with the conjunction of all goals blocked on some variable that occurs in
Term.

Arguments

Term term

Goal callable

Description

If no variable in Term blocks any goal or has attributes that can be interpreted as a goal
(see Section 10.3 [lib-atts], page 388), then Goal is unified with the atom true. Otherwise,
Goal is unified with the conjunction of all such goals.

Exceptions

None.

See Also

Section 4.2.4 [ref-sem-sec], page 74.

Chapter 11: Prolog Reference Pages 1017

11.3.88 functor/3 ISO

Synopsis

functor(+Term, -Name, -Arity)

functor(-Term, +Name, +Arity)

Succeeds if the principal functor of term Term has name Name and arity Arity.

Arguments

Term term

Name atom

Arity arity

Description

There are two ways of using this predicate:

1. If Term is initially instantiated, then

• if Term is a compound term, then Name and Arity are unified with the name and
arity of its principal functor.

• otherwise, Name is unified with Term, and Arity is unified with 0.

2. If Term is initially uninstantiated, then Name and Arity must both be instantiated,
and

• if Arity is an integer in the range 1..255, then Name must be an atom, and Term
becomes instantiated to the most general term having the specified Name and
Arity ; that is, a term with distinct variables for all of its arguments.

• if Arity is 0, then Name must be atomic, and it is unified with Term.

Exceptions

instantiation_error

Term and either Name or Arity are uninstantiated.

type_error

Name is not atomic, or Arity is not an integer, or Name is not an atom when
Arity > 0.

domain_error

Arity is an integer < 0.

representation_error

Term is uninstantiated and Arity > 255.

1018 SICStus Prolog

Examples

| ?- functor(foo(a,b), N, A).

N = foo,

A = 2

| ?- functor(X, foo, 2).

X = foo(_A,_B)

| ?- functor(X, 2, 0).

X = 2

See Also

arg/3, name/2, =../2, Section 4.8.2 [ref-lte-act], page 127.

Chapter 11: Prolog Reference Pages 1019

11.3.89 garbage_collect/0

Synopsis

garbage_collect

Invokes the garbage collector.

Description

This predicate invokes the garbage collector to reclaim data structures on the Prolog stack
that are no longer accessible to the computation.

Examples

In the code fragment:

cycle(X) :- big_goal(X, X1), cycle(X1).

if cycle/1 is to run for a long time, and if big_goal/2 generates a lot of garbage, then
rewrite the code like this:

cycle(X) :- big_goal(X, X1), !, garbage_collect, cycle(X1).

Tips

Use of the ‘!, garbage_collect’ idiom is only desirable when you notice that your code
does frequent garbage collections. It will allow the garbage collector to collect garbage more
effectively, and the cycle will run without demanding increasing amounts of memory.

Exceptions

None.

See Also

Section 4.10 [ref-mgc], page 144.

1020 SICStus Prolog

11.3.90 garbage_collect_atoms/0

Synopsis

garbage_collect_atoms

Invokes the atom garbage collector.

Description

This predicate invokes the atom garbage collector to discard atoms that are no longer
accessible to the computation, reclaiming their space.

Tips

A program can use the atoms keyword to statistics/2 to determine if a call to garbage_

collect_atoms/0 would be appropriate.

Exceptions

None.

See Also

Section 4.10 [ref-mgc], page 144.

Chapter 11: Prolog Reference Pages 1021

11.3.91 generate_message/3 hook

Synopsis

:- multifile 'SU_messages':generate_message/3.

'SU_messages':generate_message(+MessageTerm, -S0, -S)

For a given MessageTerm, generates a list composed of Control-Arg pairs and the atom nl.
This can be translated into a nested list of Control-Arg pairs, which can be used as input
to print_message_lines/3.

Arguments

MessageTerm
term

May be any term.

S0 list of pair

The resulting list of Control-Args pairs.

S list of pair

The remaining list.

Description

Clauses for 'SU_messages':generate_message/3 underly all messages from Prolog. They
may be examined and altered. They are found in library('SU_messages').

The purpose of this predicate is to allow you to redefine the displayal of Prolog’s messages.
For example, to translate all the messages from English into some other language.

This predicate should not be modified if all you want to do is modify or add a few messages:
user:generate_message_hook/3 is provided for that purpose.

The Prolog system uses the built-in predicate print_message/2 to print all its messages.
When print_message/2 is called, it calls user:generate_message_hook(Message,L,[])
to generate the message. If
that fails, then 'SU_messages':generate_message(Message,L,[]) is called instead. If
that succeeds, then L is assumed to have been bound to a list whose elements are either
Control-Args pairs or the atom nl. Each Control-Arg pair should be such that the call

format(user_error, Control, Args)

is valid. The atom nl is used for breaking the message into lines. Using the format
specification ‘~n’ (new-line) is discouraged, since the routine that actually prints the message
(see user:message_hook/3 and print_message_lines/3) may need to have control over
newlines.

'SU_messages':generate_message/3 is not included by default in runtime systems, since
end-users of application programs should probably not be seeing any messages from the
Prolog system.

1022 SICStus Prolog

If there is a call to print_message/2 when when 'SU_messages':generate_message/3

does not succeed for some reason, then the message term itself is printed, for example:

| ?- print_message(error,unexpected_error(37)).

! unexpected_error(37)

'SU_messages':generate_message/3 failed because the message term was not recognized.
In the following example print_message/2 is being called by the default exception handler:

| ?- write(A,B).

! Instantiation error in argument 1 of write/2

! goal: write(_2107,_2108)

Examples

:- multifile user:generate_message_hook/3.

user:generate_message_hook(hello_world) -->

['hello world'-[],nl].

Note that the terminating nl is required.

Exceptions

print_message/2 checks that the generated list is a valid parse.

See Also

Section 4.16 [ref-msg], page 212.

Chapter 11: Prolog Reference Pages 1023

11.3.92 generate_message_hook/3 hook

Synopsis

:- multifile user:generate_message_hook/3.

user:generate_message_hook(+MessageTerm, -S0, -S)

A way for the user to override the call to 'SU_messages':generate_message/3 in print_

message/2.

Arguments

MessageTerm
term

May be any term.

S0 list of pair

The resulting list of Control-Args pairs.

S list of pair

The remaining list.

Description

For a given MessageTerm, generates the list of Control-Args pairs required for print_

message_lines/3 to format the message for display.

This is the same as 'SU_messages':generate_message/3 except that it is a hook. It is
intended to be used when you want to override particular messages from the Prolog system,
or when you want to add some messages. If you are using your own exception classes (see
raise_exception/1), then it may be useful to provide generate message hook clauses for
those exceptions so that the print_message/2 (and thus the default exception handler that
calls print_message/2) can print them out nicely.

The Prolog system uses the built-in predicate print_message/2 to print all its messages.
When print_message/2 is called, it calls user:generate_message_hook(Message,L,[])
to generate the message. If
that fails, then 'SU_messages':generate_message(Message,L,[]) is called instead. If
that succeeds, then L is assumed to have been bound to a list whose elements are either
Control-Args pairs or the atom nl. Each Control-Arg pair should be such that the call

format(user_error, Control, Args)

is valid. The atom nl is used for breaking the message into lines. Using the format
specification ‘~n’ (new-line) is discouraged, since the routine that actually prints the message
(see user:message_hook/3 and print_message_lines/3) may need to have control over
newlines.

1024 SICStus Prolog

Examples

:- multifile user:generate_message_hook/3.

user:generate_message_hook(hello_world) -->

['hello world'-[],nl].

Note that the terminating nl is required.

Exceptions

All error handling is done by the predicates extended by this hook.

See Also

Section 4.16 [ref-msg], page 212.

Chapter 11: Prolog Reference Pages 1025

11.3.93 get_byte/[1,2] ISO

Synopsis

get_byte(-Byte)

get_byte(+Stream, -Byte)

Unifies Byte with the next byte from Stream or with -1 if there are no more bytes.

Arguments

Stream stream object, must be ground

valid input binary stream, defaults to the current input stream.

Byte byte or -1

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

type_error

Byte is an invalid byte.

permission_error

Trying to read beyond end of Stream

See Also

Section 4.6.5 [ref-iou-cin], page 107.

1026 SICStus Prolog

11.3.94 get_char/[1,2] ISO

Synopsis

get_char(-Char)

get_char(+Stream, -Char)

Unifies Char with the next char from Stream or with end_of_file if there are no more
characters.

Arguments

Stream stream object, must be ground.

Valid input text stream, defaults to the current input stream.

Char char or one of [end_of_file]

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

permission_error

Trying to read beyond end of Stream

See Also

Section 4.6.5 [ref-iou-cin], page 107.

Chapter 11: Prolog Reference Pages 1027

11.3.95 get_code/[1,2] ISO

Synopsis

get_code(-Code)

get_code(+Stream, -Code)

Unifies Code with the next code from Stream or with -1 if there are no more characters.

Arguments

Stream stream object, must be ground

Valid input text stream, defaults to the current input stream.

Code code or -1

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

permission_error

Trying to read beyond end of Stream

See Also

Section 4.6.5 [ref-iou-cin], page 107.

1028 SICStus Prolog

11.3.96 get_mutable/2

Synopsis

get_mutable(-Datum, +Mutable)

Datum is the current value of the mutable term Mutable.

Arguments

Datum term, must be nonvar

Mutable mutable, must be nonvar

Exceptions

instantiation_error

Mutable is uninstantiated.

type_error

Mutable is not a mutable.

See Also

Section 4.8.9 [ref-lte-mut], page 131.

Chapter 11: Prolog Reference Pages 1029

11.3.97 goal_expansion/5 hook

Synopsis

M:goal_expansion(+Goal1, +Layout1, +Module, -Goal2, -Layout2)

Defines transformations on goals while clauses are being compiled or asserted, and during
meta-calls at runtime.

Arguments

Goal1 callable

Goal to transform.

Layout1 term

Layout of goal to transform.

Module atom

Source module of goal to transform.

Goal2 callable

Transformed goal.

Layout2 term

Layout of transformed goal.

Description

Defines transformations on goals while clauses are being consulted, compiled or asserted,
after any processing by user:term_expansion/6 of the terms being read in. It is called for
every simple Goal1, defined in M, in the source module Module found while traversing the
clause bodies. Typically, Module has imported the predicate Goal1 from module M but it
happens also if Module uses an explicit module prefix, i.e. M:Goal1.

If it succeeds, then Goal1 is replaced by Goal2; otherwise, Goal1 = Goal2. Goal2 may be an
arbitrarily complex goal, and M:goal_expansion/5 is recursively applied to the expansion
and its subgoals.

Please note: the arguments of meta-predicates such as call/1, setof/3 and
on_exception/3 are not subject to such compile-time processing. Instead the
expansion is performed at runtime, see below.

The above description holds even if Goal1 is exported but not defined in the module M, i.e.
it is possible to define a goal expansion for an exported, but otherwise undefined, predicate.
However, in general, it is better to provide an ordinary predicate definition as a fallback,
e.g. to be able to handle meta calls if the goal expansion is not defined at runtime.

This predicate is also used to resolve any meta-calls to Goal1 at runtime via the same
mechanism. If the transformation succeeds, then Goal2 is simply called instead of Goal1.
Otherwise, if Goal1 is a goal of an existing predicate, then that predicate is invoked. Oth-
erwise, error recovery is attempted by user:unknown_predicate_handler/3.

1030 SICStus Prolog

M:goal_expansion/5 can be regarded as a macro expansion facility. It is used for this pur-
pose to support the interface to attributed variables in library(atts), which defines the
predicates M:get_atts/2 and M:put_atts/2 to access module-specific variable attributes.
These “predicates” are actually implemented via the M:goal_expansion/5 mechanism.
This has the effect that calls to the interface predicates are expanded at compile time
to efficient code.

For accessing aspects of the load context, e.g. the name of the file being compiled, the pred-
icate prolog_load_context/2 (see Section 4.9.5 [ref-lps-lco], page 143) can be used. Note
that prolog_load_context/2 only gives meaningful results during compile (or consult)
time. This means that when a meta call is goal expanded, at runtime, the load context will
not be available, and there is no reliable way for a goal expansion to distinguish between
these cases.

The goal expansion may happen both at compile time (the normal case) at runtime (for
meta calls). In some cases the compiler may try to avoid meta calls by calling goal expansion
also for meta calls. This all means that the code implementing goal expansion should be
present at both compile time and runtime. It also implies that goal expansion should not
misbehave if it is called more times than expected.

Layout1 and Layout2 are for supporting source-linked debugging in the context of goal
expansion. The predicate should construct a suitable Layout2 compatible with Term2 that
contains the line number information from Layout1. If source-linked debugging of Term2 is
not important, then Layout2 should be []. The recording of source info is affected by the
source_info prolog flag (see Section 4.9.4 [ref-lps-flg], page 136).

Exceptions

Exceptions are treated as failures, except an error message is printed as well.

See Also

Section 4.3.5 [ref-lod-exp], page 87, Chapter 2 [Glossary], page 7.

Chapter 11: Prolog Reference Pages 1031

11.3.98 goal_source_info/3

Synopsis

goal_source_info(+AGoal, -Goal, -SourceInfo)

Decompose the AGoal annotated goal into a Goal proper and the SourceInfo descriptor
term, indicating the source position of the goal.

Arguments

AGoal callable, must be nonvar

Goal callable

SourceInfo
term

Description

Annotated goals occur in most of error message terms, and carry information on the Goal
causing the error and its source position. The SourceInfo term, retrieved by goal_source_

info/3 will be one of the following:

[] The goal has no source information associated with it.

fileref(File,Line)

The goal occurs in file File, line Line.

clauseref(File,MFunc,ClauseNo,CallNo,Line)

The goal occurs in file File, within predicate MFunc, clause number ClauseNo,
call number CallNo and virtual line number Line. Here, MFunc is of form
Module:Name/Arity, calls are numbered textually and the virtual line number
shows the position of the goal within the listing of the predicate MFunc, as pro-
duced by listing/1. Such a term is returned for goals occurring in interpreted
predicates, which do not have “real” line number information, e.g. because they
were entered from the terminal, or created dynamically.

Exceptions

instantiation_error

Goal is uninstantiated

type_error

Goal is not a callable

See Also

Section 4.16 [ref-msg], page 212.

1032 SICStus Prolog

11.3.99 >/2 ISO

Synopsis

+Expr1 > +Expr2

Succeeds if the result of evaluating Expr1 is strictly greater than the result of evaluating
Expr2.

Arguments

Expr1 expr, must be ground

Expr2 expr, must be ground

Description

Evaluates Expr1 and Expr2 as arithmetic expressions and compares the results.

Exceptions

Arithmetic errors (see Section 4.7.3 [ref-ari-exc], page 119).

Examples

| ?- "g" > "g".

no

| ?- 4*2 > 15/2.

yes

See Also

Section 4.7 [ref-ari], page 119,

Chapter 11: Prolog Reference Pages 1033

11.3.100 ground/1 ISO

Synopsis

ground(+Term)

Term is currently instantiated to a ground term.

Arguments

Term term

Description

Tests whether X is completely instantiated, i.e. free of unbound variables. In this context,
mutable terms are treated as nonground, so as to make ground/1 a monotone predicate.

Examples

| ?- ground(9).

yes

| ?- ground(major(tom)).

yes

| ?- ground(a(1,Term,3)).

no

| ?- ground("a").

yes

| ?- ground([1,foo(Term)]).

no

Exceptions

None.

See Also

Section 4.8.1.1 [ref-lte-met-typ], page 126.

1034 SICStus Prolog

11.3.101 halt/[0,1] ISO

Synopsis

halt

halt(+ExitCode)

Causes an exit from the running process.

Arguments

ExitCode integer, must be nonvar

Exit status code. Only the lower 8 bits of this value is used.

Description

Causes an exit from the running process with exit code ExitCode. ExitCode defaults to
zero which, by convention, signifies a successful exit from the process.

halt/[0,1] is implemented by raising a reserved exception, which is handled at the top
level; see Section 4.15.7 [ref-ere-int], page 211.

Exceptions

instantiation_error

ExitCode is uninstantiated.

type_error

ExitCode is not an integer.

See Also

abort/0, break/0, runtime_entry/1, Section 4.15.7 [ref-ere-int], page 211.

Chapter 11: Prolog Reference Pages 1035

11.3.102 if/3

Synopsis

if(+P,+Q,+R)

If P then Q else R, for all solution of P.

Arguments

:P callable, must be nonvar

:Q callable, must be nonvar

:R callable, must be nonvar

Description

Analogous to

if P then Q else R

but differs from P -> Q ; R in that if(P, Q, R) explores all solutions to the goal P. There
is a small time penalty for this—if P is known to have only one solution of interest, then
the form P -> Q ; R should be preferred.

This is normally regarded as part of the syntax of the language, but it is like a built-in
predicate in that you can write call(if(P,Q,R)).

Cuts in P do not make sense, but are allowed, their scope being the goal P. The scope of
cuts in Q and R extends to the containing clause.

Backtracking

Depends on the arguments.

Exceptions

Call errors (see Section 4.2.6 [ref-sem-exc], page 77).

See Also

Section 4.2 [ref-sem], page 61.

1036 SICStus Prolog

11.3.103 ->/2 ISO

Synopsis

+P -> +Q

When occurring other than as the first argument of a disjunction operator (;/2), this is
equivalent to:

P -> Q ; fail.

Arguments

:P callable, must be nonvar

:Q callable, must be nonvar

Description

This is not normally regarded as a built-in predicate, since it is part of the syntax of the
language. However, it is like a built-in predicate in that you can say call((P -> Q)).

‘->’ cuts away any choice points in the execution of P

Note that the operator precedence of ‘->’ is greater than 1000, so it dominates commas.
Thus, in:

f :- p, q -> r, s.

f.

‘->’ cuts away any choices in p or in q, but unlike cut (!) it does not cut away the alternative
choice for f.

Cuts in P do not make sense, but are allowed, their scope being the goal P. The scope of
cuts in Q extends to the containing clause.

Backtracking

Depends on Q.

Exceptions

Call errors (see Section 4.2.6 [ref-sem-exc], page 77).

See Also

Section 4.2 [ref-sem], page 61.

Chapter 11: Prolog Reference Pages 1037

11.3.104 include/1 declaration , ISO

Synopsis

:- include +Files

Literally embed the Prolog clauses and directives in Files into the file being loaded. The
file or files will be opened with default options.

Arguments

:Files file spec or list of file spec, must be ground

A file specification or a list of file specifications; extension optional.

Description

The effect is such as if the declaration itself was replaced by the text in the Files. Including
some files is thus different from loading them in several respects:

• The embedding file counts as the source file of the predicates loaded, e.g. with respect
to the built-in predicate source_file/2; see Section 4.9.3 [ref-lps-apf], page 136.

• Some clauses of a predicate can come from the embedding file, and some from included
files.

• When including a file twice, all the clauses in it will be entered twice into the program
(although this is not very meaningful).

Comments

include is not an ISO predefined prefix operator.

Exceptions

Exceptions in the context of loading code are printed as error messages. See also load_

files/[2,3].

context_error

Declaration appeared in a goal.

permission_error

Declaration appeared as a clause.

See Also

Section 4.3.4.11 [Include Declarations], page 86.

1038 SICStus Prolog

11.3.105 initialization/1 declaration , ISO

Synopsis

:- initialization +Goal

Declares that Goal is to be run when the file in which the declaration appears is loaded
into a running system, or when a stand-alone program or runtime system that contains the
file is started up.

Arguments

:Goal callable, must be nonvar

Description

Callable at any point during loading of a file. That is, it can be used as a directive, or as
part of a goal called at load time. The initialization goal will be run as soon as the loading
of the file is completed. That is at the end of the load, and notably after all other directives
appearing in the file have been run.

save_program/[1,2] saves initialization goals in the saved state, so that they will run
when the saved state is restored. When they run, they have access to the load context
(prolog_load_context/2), just like other goals appearing in directives.

Goal is associated with the file loaded and a module. When a file, or module, is going to
be reloaded, all goals earlier installed by that file or in that module, are removed. This is
done before the actual load, thus allowing a new initialization Goal to be specified, without
creating duplicates.

Comments

initialization is not an ISO predefined prefix operator.

Exceptions

instantiation_error

The argument Goal is not instantiated.

context_error

Initialization appeared in a goal.

permission_error

Initialization appeared as a clause.

See Also

Section 4.3.4.12 [Initializations], page 87.

Chapter 11: Prolog Reference Pages 1039

11.3.106 instance/2

Synopsis

instance(+Ref, -Term)

Unifies Term with the most general instance of the dynamic clause or recorded term indi-
cated by the database reference Ref.

Arguments

Ref db reference, must be nonvar

Term term

Description

Ref must be instantiated to a database reference to an existing clause or recorded term.
instance/2 is not sensitive to the source module and can be used to access any clause,
regardless of its module.

Exceptions

instantiation_error

if Ref is not instantiated

type_error

if Ref is not a syntactically valid database reference

existence_error

if Ref is a syntactically valid database reference but does not refer to an existing
clause or recorded term.

Examples

| ?- assert(foo:bar,R).

R = '$ref'(771292,1)

| ?- instance('$ref'(771292,1),T).

T = (bar:-true)

| ?- clause(H,B,'$ref'(771292,1)).

no

| ?- clause(foo:H,B,'$ref'(771292,1)).

H = bar,

B = true

See Also

Section 4.12.6 [ref-mdb-acl], page 181.

1040 SICStus Prolog

11.3.107 integer/1 ISO

Synopsis

integer(+Term)

Term is currently instantiated to an integer.

Arguments

Term term

Examples

| ?- integer(5).

yes

| ?- integer(5.0).

no

Exceptions

None.

See Also

Section 4.8.1.1 [ref-lte-met-typ], page 126.

Chapter 11: Prolog Reference Pages 1041

11.3.108 is/2 ISO

Synopsis

-Term is +Expression

Evaluates Expression as an arithmetic expression, and unifies the resulting number with
Term.

Arguments

Expression
expr, must be ground.

An expression made up of:

• functors representing arithmetic operations

• numbers

• variables bound to numbers or arithmetic expressions

Term number

Exceptions

Arithmetic errors (see Section 4.7.3 [ref-ari-exc], page 119).

Examples

| ?- X is 2 * 3 + 4.

X = 10

| ?- Y = 32.1, X is Y * Y.

X = 1030.41

Y = 32.1

| ?- Arity is 3 * 8, X is 4 + Arity + (3 * Arity * Arity).

Arity = 24

X = 1756

| ?- X is 6/0.

! Domain error in argument 2 of is/2

! expected an integer not equal to 0, but found 0

! goal: _98 is 6/0

1042 SICStus Prolog

| ?- X is "a".

X = 97

| ?- X is 4 * 5, Y is X * 4.

X = 20,

Y = 80

Comments

If a variable in an arithmetic expression is bound to another arithmetic expression (as
opposed to a number) at runtime, then the cost of evaluating that expression is much
greater. It is approximately equal to the cost of call/1 of an arithmetic goal.

See Also

Section 4.7 [ref-ari], page 119.

Chapter 11: Prolog Reference Pages 1043

11.3.109 keysort/2 ISO

Synopsis

keysort(+Pairs, -Sorted)

Sorts the elements of the list Pairs into ascending standard order (see Section 4.8.8.2 [ref-
lte-cte-sot], page 130) with respect to the key of the pair structure.

Arguments

Pairs list of pair, must be a proper list of proper pairs

Sorted list of pair

Description

The list Pairs must consist of terms of the form Key-Value. Multiple occurrences of pairs
with the same key are not removed.

(The time taken to do this is at worst order (N log N) where N is the length of the list.)

Note that the elements of Pairs are sorted only according to the value of Key, not according
to the value of Value.

keysort/2 is stable in the sense that the relative position of elements with the same key is
maintained.

Sorted is type checked since release 4.3 for alignment with the ISO Prolog standard. Pre-
vious releases simply failed instead of reporting an error for malformed Sorted.

Exceptions

instantiation_error

If Pairs is not properly instantiated

type_error

If Pairs is not a proper list of pair.

type_error

If Sorted cannot be unified with a list of pair.

Examples

| ?- keysort([3-a,1-b,2-c,1-a,1-b], X).

X = [1-b,1-a,1-b,2-c,3-a]

|?- keysort([2-1, 1-2], [1-2, 2-1]).

yes

See Also

Section 4.8.8.3 [ref-lte-cte-sor], page 131.

1044 SICStus Prolog

11.3.110 leash/1 development

Synopsis

leash(+Mode)

Starts leashing on the ports given by Mode.

Arguments

Mode

list
of one of [call,exit,redo,fail,exception,all,half,loose,tight,off],
must be ground

A list of the ports to be leashed. A single keyword can be given without
enclosing it in a list.

Description

Some of the keywords denote a set of ports:

all Stands for all five port.

half Stands for the Exception, Call and Redo ports.

loose Stands for the Exception and Call ports.

tight Stands for all ports but Exit.

off Stands for no ports.

The leashing mode only applies to procedures that do not have spypoints on them, and
it determines which ports of such procedures are leashed. By default, all five ports are
leashed. On arrival at a leashed port, the debugger will stop to allow you to look at the
execution state and decide what to do next. At unleashed ports, the goal is displayed but
program execution does not stop to allow user interaction.

Exceptions

instantiation_error

Mode is not ground

domain_error

Mode is not a valid leash specification

Examples

| ?- leash(off).

turns off all leashing; now when you creep you will get an exhaustive trace but no oppor-
tunity to interact with the debugger. You can get back to the debugger to interact with it
by pressing ^c t.

| ?- leash([call,redo]).

Chapter 11: Prolog Reference Pages 1045

leashes on the Call and Redo ports. When creeping, the debugger will now stop at every
Call and Redo port to allow you to interact.

See Also

Section 5.2 [Basic Debug], page 233.

1046 SICStus Prolog

11.3.111 length/2

Synopsis

length(?List, ?Integer)

Integer is the length of List. If List is instantiated to a proper list of term, or Integer to an
integer, then the predicate is determinate.

Arguments

List list of term

Integer integer, non-negative

Description

If List is a list of indefinite length (that is, either a variable or of the form [...|X], where
X is a variable) and if Integer is bound to an integer, then List is made to be a list of length
Integer with unique variables used to “pad” the list. If List cannot be made into a list of
length Integer, then the call fails.

| ?- List = [a,b|X], length(List, 4).

List = [a,b,_A,_B],

X = [_A,_B] ;

| ?-

If List is bound, and is not a list, then length/2 simply fails.

If List is a cyclic list, and Integer is bound to a non-negative integer, then length/2 simply
fails.

If List is a cyclic list, and Integer is a variable, then the behavior is unspecified and may
change in the some future version.

Backtracking

If Integer is unbound, then it is unified with all possible lengths for the list List.

Exceptions

type_error

Integer is not an integer

domain_error

Integer < 0

Chapter 11: Prolog Reference Pages 1047

Examples

| ?- length([1,2], 2).

yes

| ?- length([1,2], 0).

no

| ?- length([1,2], X).

X = 2 ;

no

See Also

Section 4.8.3 [ref-lte-acl], page 128, library(lists).

1048 SICStus Prolog

11.3.112 </2 ISO

Synopsis

+Expr1 < +Expr2

Evaluates Expr1 and Expr2 as arithmetic expressions. The goal succeeds if the result of
evaluating Expr1 is strictly less than the result of evaluating Expr2.

Arguments

Expr1 expr, must be ground

Expr2 expr, must be ground

Description

Evaluates Expr1 and Expr2 as arithmetic expressions and compares the results.

Exceptions

Arithmetic errors (see Section 4.7.3 [ref-ari-exc], page 119).

Examples

| ?- 23 + 2.2 < 23 - 2.2.

yes

| ?- X = 31, Y = 25, X + Y < X - Y

no

See Also

Section 4.7 [ref-ari], page 119,

Chapter 11: Prolog Reference Pages 1049

11.3.113 library_directory/1 hook

Synopsis

:- multifile user:library_directory/1.

user:library_directory(+DirSpec)

Defines a library directory. Used by predicates taking file spec as input argument.

Arguments

DirSpec file spec

Either an atom giving the path to a file or directory, or PathAlias(DirSpec),
where PathAlias is defined by a file_search_path/2 rule.

Description

These facts define directories to search when a file specification library(File) is expanded
to the full path, in addition to the predefined library path, which is tried first.

The file_search_path mechanism is an extension of the library_directory scheme and
is preferred.

Examples

| ?- [user].

% compiling user...

| :- multifile user:library_directory/1.

| library_directory('/usr/joe_bob/prolog/libs').

| end_of_file.

% compiled user in module user, 0 msec 384 bytes

yes

| ?- ensure_loaded(library(flying)).

% loading file /usr/joe_bob/prolog/libs/flying.qof

...

Exceptions

All error handling is done by the predicates extended by this hook.

See Also

absolute_file_name/[2,3], file_search_path/2, load_files/[1,2],

1050 SICStus Prolog

11.3.114 line_count/2

Synopsis

line_count(+Stream, -Count)

Obtains the total number of lines either input from or output to the open text stream
Stream and unifies it with Count.

Arguments

Stream stream object, must be ground

A valid open text stream.

Count integer

The resulting line count of the stream.

Description

A freshly opened stream has a line count of 0, i.e. this predicate counts the number of
newlines seen. When a line is input from or output to a non-interactive Prolog stream, the
line count of the Prolog stream is increased by one. Line count for an interactive stream
reflects the total line input from or output to any interactive stream, i.e. all interactive
streams share the same counter.

The count is reset by set_stream_position/2.

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109).

See Also

byte_count/2, character_count/2, line_position/2, stream_position/2, set_

stream_position/2, Section 4.6.7 [ref-iou-sfh], page 109.

Chapter 11: Prolog Reference Pages 1051

11.3.115 line_position/2

Synopsis

line_position(+Stream, -Count)

Obtains the total number of characters either input from or output to the current line of
the open text stream Stream and unifies it with Count.

Arguments

Stream stream object, must be ground

A valid open text stream.

Count integer

The resulting line count of the stream.

Description

A fresh line has a line position of 0, i.e. this predicate counts the length of the current
line. Line count for an interactive stream reflects the total line input from or output to any
interactive stream, i.e. all interactive streams share the same counter.

The count is reset by set_stream_position/2.

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109).

See Also

byte_count/2, character_count/2, line_count/2, stream_position/2, set_stream_

position/2, Section 4.6.7 [ref-iou-sfh], page 109.

1052 SICStus Prolog

11.3.116 listing/[0,1]

Synopsis

listing

listing(+PredSpecs)

Prints the clauses of all the interpreted procedures currently in the type-in module of the
Prolog database, or of PredSpecs, to the current output stream, using portray_clause/1.

Arguments

:PredSpecs
pred spec tree

A predicate specification, or a list of such.

Exceptions

type_error

PredSpecs of the wrong type.

Examples

You could list the entire program to a file using the command

| ?- tell(file), listing, told.

Note that listing/[0,1] does not work on compiled procedures.

listing/1 is dependent on the source module. As a special case,

| ?- listing(mod:_).

will list all the dynamic predicates in module mod. However, listing/0 is not dependent
on the source module; it refers instead to the type-in module.

Variables may be included in predicate specifications given to listing/1. For example, you
can list clauses for f in any current module with:

| ?- listing(_:f).

See Also

Section 4.11 [ref-mod], page 161.

Chapter 11: Prolog Reference Pages 1053

11.3.117 load_files/[1,2]

Synopsis

load_files(+Files)

load_files(+Files, +Options)

[+Files]

Loads the specified Prolog source and/or object file(s) into memory. Subsumes all other
load predicates.

Arguments

:Files file spec or list of file spec, must be ground

A file specification or a list of file specifications; extensions optional.

Options list of term, must be ground

A list of zero or more options of the form:

if(X) true (the default) to always load, or changed to load only if the file
has not yet been loaded or if it has been modified since it was last
loaded. A non-module file is not considered to have been previously
loaded if it was loaded into a different module. The file specification
user is never considered to have been previously loaded.

when(When)

always (the default) to always load, or compile_time to load only if
the goal is not in the scope of another load_files/[1,2] directive
occurring in a PO file.

The latter is intended for use when the file only defines predicates
that are needed for proper term or goal expansion during compila-
tion of other files.

load_type(LoadType)

source to load source files only, object to load object (PO) files
only, or latest (the default) to load any type of file, whichever is
newest. If the file specification is user, then source is forced.

imports(Imports)

all (the default) to import all exported predicates if the file is a
module file, or a list of predicates to import.

compilation_mode(Mode)

compile to translate into compiled code, consult to translate into
static, interpreted code, or assert_all to translate into dynamic,
interpreted code.

The default is the compilation mode of any ancestor load_

files/[1,2] goal, or compile otherwise. Note that Mode has
no effect when a PO file is loaded, and that it is recommended to

1054 SICStus Prolog

use assert_all in conjunction with load_type(source), to en-
sure that the source file will be loaded even in the presence of a PO
file.

In addition the open/4 options encoding/1, encoding_signature/1 and eol/1
can be specified. These will be used if the Prolog code is loaded from a source
file. See Section 11.3.148 [mpg-ref-open], page 1092, for details.

Description

load_files/[1,2] reads Prolog clauses, in source or precompiled form, and adds them to
the Prolog database, after first deleting any previous versions of the predicates they define.
Clauses for a single predicate must all be in the same file unless that predicate is declared
to be multifile.

If a source file contains directives, that is, terms with principal functor :-/1 or ?-/1,
then these are executed as they are encountered. Initialization goals specified with
initialization/1 are executed after the load.

A non-module source file can be loaded into any module by load_files/[1,2], but the
module of the predicates in a precompiled file is fixed at the time it is created.

Exceptions

instantiation_error

Files or Options is not ground.

type_error

In Files or Options.

domain_error

Illegal option in Options.

existence_error

A specified file does not exist. If the fileerrors flag is off, then the predicate
fails instead of raising this exception.

permission_error

A specified file not readable. If the fileerrors flag is off, then the predicate
fails instead of raising this exception.

While loading clauses from a PO file, clauses for an existing multifile predicate
were encountered, but were compiled in a way different from the existing clauses.
In this case, the existing clauses remain untouched, the multifile clauses from
the PO file are simply ignored, the load continues, and an exception is raised
at the end.

Examples

Several of the other built-in predicates of this category could be defined in terms of load_
files/2:

Chapter 11: Prolog Reference Pages 1055

[File|Files] :-

load_files([File|Files]).

consult(Files) :-

load_files(Files, [load_type(source),compilation_mode(consult)]).

ensure_loaded(Files) :-

load_files(Files, [if(changed)]).

use_module(File) :-

load_files(File, [if(changed)]).

use_module(File, Imports) :-

load_files(File, [if(changed),imports(Imports)]).

Code that is only needed at compile-time, e.g. for operator declarations or compile-time
expansion, is conveniently loaded with the following idiom:

:- load_files(library(obj_decl), [when(compile_time), if(changed)]).

See Also

Section 4.3.2 [ref-lod-lod], page 80.

1056 SICStus Prolog

11.3.118 load_foreign_resource/1 hookable

Synopsis

load_foreign_resource(:Resource)

Load the foreign resource Resource into Prolog. Relies on the hook predicates foreign_

resource/2 and foreign/[2,3].

Arguments

:Resource file spec, must be ground

The foreign resource to be loaded. The file extension can be omitted.

Description

load_foreign_resource/1 takes a foreign resource and loads it into Prolog.

The extension can be omitted from the filename given in the Resource argument.

Uses the foreign/[2,3] and foreign_resource/2 facts defined by the user to make the
connection between a Prolog procedure and the foreign function. In this context, the
resource name is derived from Resource name by deleting any leading path and extension
from the absolute file name of Resource.

When loading the foreign resource, it looks for a foreign_resource/2 fact for the resource
name. For each symbol in that fact, it looks for a foreign/[2,3] fact that gives the name
of the Prolog procedure associated with the foreign symbol and the argument specification.

Contrary to most hook predicates which reside in the user module, load_foreign_

resource/1 will look for foreign_resource/2 and foreign/[2,3] facts defined in its
source module.

Foreign resources are created with the splfr tool (see Section 6.2.5 [The Foreign Resource
Linker], page 296).

Exceptions

Errors in the specification of foreign/[2,3] and foreign_resource/2 will all be reported
when load_foreign_resource/1 is called.

instantiation_error

Resource not ground.

type_error

Resource not an atom, or argument of a declared fact of the wrong type.

domain_error

Invalid argument of foreign/[2,3] fact.

existence_error

Resource does not exist as a foreign resource, or Resource does not have a
foreign_resource/2 fact, or declared function does not exist, or declared func-
tion does not have a foreign/[2,3] fact.

Chapter 11: Prolog Reference Pages 1057

domain_error

Invalid option to foreign_resource/2.

consistency_error

Function declared twice with clashing declarations.

permission_error

Attempt to redefine built-in predicate.

Examples

library(codesio) contains a foreign resource consisting of three foreign functions, one
init function, and one deinit function. The Prolog source file contains the following lines of
code:

:- dynamic foreign/2, foreign_resource/2.

foreign(codes_to_stream, '$codes_to_stream'(+codes,-address('SP_stream'))).

foreign(open_buf_stream, '$open_buf_stream'(-address('SP_stream'))).

foreign(stream_to_codes, '$stream_to_codes'(+address('SP_stream'),-term,-term)).

foreign_resource(codesio, [

init(codesio_init),

deinit(codesio_deinit),

codes_to_stream,

open_buf_stream,

stream_to_codes

]).

:- load_foreign_resource(library(system(codesio))).

Comments

Note that the foreign declarations are needed by other operations as well and should not
be abolished after loading the foreign resource.

See Also

unload_foreign_resource/1, foreign_resource/2, foreign/[2,3], Section 6.2.1 [For-
eign Resources], page 291, Section 6.2 [Calling C from Prolog], page 290.

1058 SICStus Prolog

11.3.119 member/2

Synopsis

member(?Element, ?List)

is true if Element occurs in the List. It may be used to test for an element or to enumerate
all the elements by backtracking. Indeed, it may be used to generate the List!

Arguments

Element term

List list of term

Description

In the context of this predicate, a term occurs in a list if it can be unified with an element
of the list.

Backtracking

On backtracking, an attempt is made to unify Element with successive elements of List.
If List is not a proper list, then on backtracking it is unified with lists of ever increasing
length.

Examples

| ?- member(foo(X), [foo(1), bar(2), foo(3)]).

X = 1 ? ;

X = 3 ? ;

no

Exceptions

None.

See Also

Section 4.8.3 [ref-lte-acl], page 128, library(lists).

Chapter 11: Prolog Reference Pages 1059

11.3.120 memberchk/2

Synopsis

memberchk(?Element, ?List)

is true if the given Element occurs in the given List. Its purpose is to test for membership.
Normally, the two arguments are ground.

Arguments

Element term

List list of term

Description

In the context of this predicate, a term occurs in a list if it can be unified with an element
of the list.

Backtracking

The predicate is determinate and commits to the first successful unification, if any.

Examples

| ?- memberchk(bar, [foo,bar,baz]).

yes

Exceptions

None.

See Also

Section 4.8.3 [ref-lte-acl], page 128, library(lists).

1060 SICStus Prolog

11.3.121 message_hook/3 hook

Synopsis

:- multifile user:message_hook/3.

user:message_hook(+Severity, +MessageTerm, +Lines)

Overrides the call to print_message_lines/3 in print_message/2. A way for the user
to intercept the Message of type Severity, whose translations is Lines, before it is actually
printed.

Arguments

Severity one of [informational,warning,error,help,silent]

MessageTerm
term

Lines list of list of pair

Is of the form [Line1, Line2, ...], where each Linei is of the form [Control_

1-Args_1,Control_2-Args_2, ...].

Description

After a message is parsed, but before the message is written, print_message/2 calls

user:message_hook(+Severity,+MsgTerm,+Lines)

If the call to user:message_hook/3 succeeds, then print_message/2 succeeds without
further processing. Otherwise the built-in message portrayal is used. It is often useful
to have a message hook that performs some action and then fails, allowing other message
hooks to run, and eventually allowing the message to be printed as usual.

Exceptions

An exception raised by this predicate causes an error message to be printed and then the
original message is printed using the default message text and formatting.

See Also

Section 4.16 [ref-msg], page 212.

Chapter 11: Prolog Reference Pages 1061

11.3.122 meta_predicate/1 declaration

Synopsis

:- meta_predicate +MetaSpec

Provides for module name expansion of arguments in calls to the predicate given by
MetaSpec. All meta_predicate/1 declarations should be at the beginning of a module.

Arguments

:MetaSpec callable, must be ground

Goal template or list of goal templates, of the form functor(Arg1, Arg2,...).
Each Argn is one of:

‘:’ requires module name expansion

If the argument will be treated as a goal, then it is better to ex-
plicitly indicate this using an integer, see the next item.

nsuppressed
a non-negative integer.

This is a special case of ‘:’ that means that the argument can be
made into a goal by adding nsuppressed additional arguments. E.g.,
if the argument will be passed to call/1, then 0 (zero) should be
used.

As another example, the meta predicate declaration for the built-in
call/3 would be :- meta_predicate call(2,?,?), since call/3

will add two arguments to its first argument in order to to construct
the goal to invoke.

An integer is treated the same as ‘:’ above by the SICStus run-
time. Other tools, such as the cross referencer (see Section 9.12
[The Cross-Referencer], page 377) and the SICStus Prolog IDE (see
Section 3.11 [SPIDER], page 29), will use this information to better
follow predicate references in analyzed source code.

‘*’
‘+’
‘-’
‘?’ ignored

Exceptions

Exceptions in the context of loading code are printed as error messages.

instantiation_error

MetaSpec not ground.

type_error

MetaSpec not a valid specification.

context_error

Declaration appeared in a goal.

1062 SICStus Prolog

permission_error

Declaration appeared as a clause.

Examples

Consider a sort routine, mysort/3, to which the name of the comparison predicate is passed
as an argument:

mysort(LessThanOrEqual, InputList, OutputList) :-

...

%% LessThanOrEqual is called exactly like the built-in @=</2

(call(LessThanOrEqual, Term1, Term2) -> ... ; ...),

...

An appropriate meta_predicate declaration for mysort/3 is:

:- meta_predicate mysort(2, +, -).

since the first argument, LessThanOrEqual, will have two additional arguments added to it
(by call/3) when invoked.

This means that whenever a goal mysort(A, B, C) appears in a clause, it will be transformed
at load time into mysort(M:A, B, C), where M is the source module. The transformation
will happen unless:

1. A has an explicit module prefix, or

2. A is a variable and the same variable appears in the head of the clause in a module-
name-expansion position.

See Also

Section 4.3.4.6 [Meta-Predicate Declarations], page 85, Section 4.11.15 [ref-mod-mne],
page 171.

Chapter 11: Prolog Reference Pages 1063

11.3.123 mode/1 declaration

Synopsis

:- mode +Mode

Currently a dummy declaration.

Arguments

:Mode term

Exceptions

Exceptions in the context of loading code are printed as error messages.

context_error

Declaration appeared in a goal.

permission_error

Declaration appeared as a clause.

See Also

Section 4.3.4.9 [Mode Declarations], page 86.

1064 SICStus Prolog

11.3.124 module/[2,3] declaration

Synopsis

:- module(+ModuleName, +PublicPred).

:- module(+ModuleName, +PublicPred, +Options).

Declares the file in which the declaration appears to be a module file named ModuleName,
with public predicates PublicPred. Must appear as the first term in the file.

Arguments

ModuleName
atom, must be nonvar

PublicPred
list of simple pred spec, must be ground

List of predicate specifications of the form Name/Arity.

Options list of term, must be ground

A list of zero or more options of the form:

hidden(Boolean)

Boolean is false (the default) or true. In the latter case, tracing
of the predicates of the module is disabled (although spypoints can
be set), and no source information is generated at compile time.

Description

The definition of a module is not limited to a single file, because a module file may contain
commands to load other files. If myfile, a module file for ModuleName, contains an em-
bedded command to load yourfile and if yourfile is not itself a module file, then all the
predicates in yourfile are loaded into module ModuleName.

Exceptions

Exceptions in the context of loading code are printed as error messages.

instantiation_error

Declaration not ground.

type_error

An argument has the wrong type.

domain_error

Some arity is an integer < 0, or invalid option given.

representation_error

Some arity is an integer > 255.

context_error

Declaration appeared in a goal, or not first in the file being loaded.

permission_error

Declaration appeared as a clause.

Chapter 11: Prolog Reference Pages 1065

Examples

A module declaration from the Prolog library:

:- module(varnumbers, [

numbervars/1,

varnumbers/2,

varnumbers/3

],[

hidden(true)

]).

See Also

Section 4.3.4.7 [Module Declarations], page 85, Section 4.11 [ref-mod], page 161.

1066 SICStus Prolog

11.3.125 multifile/1 declaration , ISO

Synopsis

:- multifile +PredSpecs

Declares the clauses of the predicates defined by PredSpecs to be multifile in the source file
(suppresses compile-time warnings).

Arguments

:PredSpecs
pred spec forest, must be ground

A predicate specification, or a list of such, or a sequence of such separated by
commas.

Description

By default, all clauses for a predicate are expected to come from just one file. This assists
with reloading and debugging of code. Declaring a predicate multifile means that its
clauses can be spread across several different files. This is independent of whether or not
the predicate is declared dynamic.

Should precede all the clauses for the specified predicates in the file.

There should be a multifile declaration for a predicate P in every file that contains clauses
for P. If a multifile predicate is dynamic, then there should be a dynamic declaration in
every file containing clauses for the predicate.

When a file containing clauses for a multifile predicate (P) is reloaded, the clauses for P
that previously came from that file are removed. Then the new clauses for P (which may be
the same as the old ones) are added to the end of the definition of the multifile predicate.

If a multifile declaration is found for a predicate that has already been defined in another
file (without a multifile declaration), then this is considered to be a redefinition of that
predicate. Normally this will result in a multiple-definition style-check warning (see style_
check/1).

The predicate source_file/2 can be used to find all the files containing clauses for a
multifile predicate.

Comments

multifile is not an ISO predefined prefix operator.

Exceptions

Exceptions in the context of loading code are printed as error messages.

instantiation_error

PredSpecs not ground.

type_error

PredSpecs not a valid pred spec forest.

Chapter 11: Prolog Reference Pages 1067

domain_error

Some arity is an integer < 0.

representation_error

Some arity is an integer > 255.

context_error

Declaration appeared in a goal.

permission_error

Declaration appeared as a clause.

See Also

Section 4.3.4.1 [Multifile Declarations], page 83.

1068 SICStus Prolog

11.3.126 mutable/1

Synopsis

mutable(+Term)

Succeeds if Term is currently instantiated to a mutable term.

Arguments

Term term

Exceptions

None.

See Also

Section 4.8.1.1 [ref-lte-met-typ], page 126, Section 4.8.9 [ref-lte-mut], page 131.

Chapter 11: Prolog Reference Pages 1069

11.3.127 name/2 deprecated

Synopsis

name(+Constant, -Codes)

name(-Constant, +Codes)

Codes is the list consisting of the codes comprising the printed representation of Constant.

Arguments

Constant atomic

Codes codes

Description

Initially, either Constant must be instantiated to a number or an atom, or Codes must be
instantiated to a proper codes.

If Codes is instantiated to a proper codes that corresponds to the correct syntax of a
number, then Constant will be unified with that number.

Else if Codes is instantiated to a proper codes, then Constant will be unified with the atom
containing exactly those characters.

Else, Constant should be instantiated to a number or atom, and Codes will be unified with
the codes that make up its printed representation.

There are atoms for which name(Constant,Codes) is true, but which will not be constructed
if name/2 is called with Constant uninstantiated. One such atom is the atom '1976'.
It is recommended that new programs use atom_codes/2 or number_codes/2, as these
predicates do not have this ambiguity.

Exceptions

instantiation_error

Constant is uninstantiated and Codes is not instantiated enough

type_error

If Constant is a compound term

representation_error

An element of Codes is an invalid character code, or Codes is a list correspond-
ing to a number or atom that can’t be represented

Examples

| ?- name(foo, L).

L = [102,111,111]

| ?- name('Foo', L).

L = [70,111,111]

1070 SICStus Prolog

| ?- name(431, L).

L = [52,51,49]

| ?- name(X, [102,111,111]).

X = foo

| ?- name(X, [52,51,49]).

X = 431

| ?- name(X, "15.0e+12").

X = 1.5E+13

See Also

Section 4.8.4 [ref-lte-c2t], page 128.

Chapter 11: Prolog Reference Pages 1071

11.3.128 nl/[0,1] ISO

Synopsis

nl

nl(+Stream)

Terminates the current output record on the current output stream or on Stream.

Arguments

Stream stream object, must be ground

A valid output text stream, defaults to the current output stream.

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109).

See Also

Section 4.6.6 [ref-iou-cou], page 108.

1072 SICStus Prolog

11.3.129 nodebug/0 development

Synopsis

nodebug

Turns the debugger off.

Exceptions

None.

See Also

Section 5.2 [Basic Debug], page 233.

Chapter 11: Prolog Reference Pages 1073

11.3.130 nonmember/2

Synopsis

nonmember(?Element, ?List)

is true if the given Element does not occur in the given List. Its purpose is to test for
membership. Normally, the two arguments are ground.

Arguments

Element term

List list of term

Description

In the context of this predicate, a term occurs in a list if it can be unified with an element
of the list.

Backtracking

The predicate is determinate and either succeeds or fails. It never binds variables.

Examples

| ?- nonmember(bar, [foo,bar,baz]).

no

Exceptions

None.

See Also

Section 4.8.3 [ref-lte-acl], page 128, library(lists).

1074 SICStus Prolog

11.3.131 nonvar/1 ISO

Synopsis

nonvar(+Term)

Term is currently instantiated.

Arguments

Term term

Examples

| ?- nonvar(foo(X,Y)).

true ;

no

| ?- nonvar([X,Y]).

true ;

no

| ?- nonvar(X).

no

| ?- Term = foo(X,Y), nonvar(Term).

true ;

no

Exceptions

None.

See Also

Section 4.8.1.1 [ref-lte-met-typ], page 126.

Chapter 11: Prolog Reference Pages 1075

11.3.132 nospy/1 development

Synopsis

nospy +PredSpecs

Any spypoints (plain and conditional) on the predicates represented by PredSpecs are re-
moved.

Arguments

:PredSpecs
pred spec tree

A predicate specification, or a list of such.

Exceptions

instantiation_error

type_error

domain_error

if a PredSpec is not a valid procedure specification

See Also

Section 5.2 [Basic Debug], page 233, Section 5.3 [Plain Spypoint], page 235.

1076 SICStus Prolog

11.3.133 nospyall/0 development

Synopsis

nospyall

Removes all the spypoints (including the generic ones) that have been set.

Exceptions

None.

See Also

Section 5.2 [Basic Debug], page 233.

Chapter 11: Prolog Reference Pages 1077

11.3.134 =\=/2 ISO

Synopsis

+Expr1 =\= +Expr2

Succeeds if the results of evaluating Expr1 and Expr2 are not equal.

Arguments

Expr1 expr, must be ground

Expr2 expr, must be ground

Description

Evaluates Expr1 and Expr2 as arithmetic expressions and compares the results.

Exceptions

Arithmetic errors (see Section 4.7.3 [ref-ari-exc], page 119).

Examples

| ?- 7 =\= 14/2.

no

| ?- 7 =\= 15/2.

yes

See Also

Section 4.7 [ref-ari], page 119,

1078 SICStus Prolog

11.3.135 =</2 ISO

Synopsis

+Expr1 =< +Expr2

Succeeds if the result of evaluating Expr1 is less than or equal to the result of evaluating
Expr2.

Arguments

Expr1 expr, must be ground

Expr2 expr, must be ground

Description

Evaluates Expr1 and Expr2 as arithmetic expressions and compares the results.

Exceptions

Arithmetic errors (see Section 4.7.3 [ref-ari-exc], page 119).

Examples

| ?- 42 =< 42.

yes

| ?- "b" =< "a".

no

Comments

Note that the symbol ‘=<’ is used here rather than ‘<=’, which is used in some other lan-
guages. One way to remember this is that the inequality symbols in Prolog are the ones
that cannot be thought of as looking like arrows. The ‘<’ or ‘>’ always points at the ‘=’.

See Also

Section 4.7 [ref-ari], page 119,

Chapter 11: Prolog Reference Pages 1079

11.3.136 >=/2 ISO

Synopsis

+Expr1 >= +Expr2

Succeeds if the results of evaluating Expr1 and Expr2 are equal.

Arguments

Expr1 expr, must be ground

Expr2 expr, must be ground

Description

Succeeds if the result of evaluating Expr1 is greater than or equal to the result of evaluating
Expr2.

Exceptions

Arithmetic errors (see Section 4.7.3 [ref-ari-exc], page 119).

Examples

| ?- 42 >= 42.

yes

| ?- "b" >= "a".

yes

See Also

Section 4.7 [ref-ari], page 119,

1080 SICStus Prolog

11.3.137 \+/1 ISO

Synopsis

\+ +P

Fails if the goal P has a solution, and succeeds otherwise. Equivalent to:

call(P) -> fail ; true.

except that the use of call/1 often can be avoided.

Arguments

:P callable, must be nonvar

Description

This is not normally regarded as a built-in predicate, since it is part of the syntax of the
language. However, it is like a built-in predicate in that you can say call((\+ P)).

Cuts in P do not make sense, but are allowed, their scope being the goal P.

Comments

Remember that with prefix operators such as this one it is necessary to be careful about
spaces if the argument starts with a ‘(’. For example:

| ?- \+ (P,Q).

is this operator applied to the conjunction of P and Q, but

| ?- \+(P,Q).

would require a predicate \+ /2 for its solution. The prefix operator can however be written
as a functor of one argument; thus

| ?- \+((P,Q)).

is also correct.

Exceptions

Call errors (see Section 4.2.6 [ref-sem-exc], page 77).

See Also

Section 4.2 [ref-sem], page 61.

Chapter 11: Prolog Reference Pages 1081

11.3.138 \=/2 ISO

Synopsis

+Term1 \= +Term2

Term1 and Term2 do not unify.

Arguments

Term1 term

Term2 term

Description

The same as \+ X = Y; i.e. X and Y are not unifiable.

Exceptions

None.

See Also

Chapter 2 [Glossary], page 7.

1082 SICStus Prolog

11.3.139 notrace/0 development

Synopsis

notrace

Turns the debugger off.

Exceptions

None.

See Also

Section 5.2 [Basic Debug], page 233.

Chapter 11: Prolog Reference Pages 1083

11.3.140 nozip/0 development

Synopsis

nozip

Turns the debugger off.

Exceptions

None.

See Also

Section 5.2 [Basic Debug], page 233.

1084 SICStus Prolog

11.3.141 number/1 ISO

Synopsis

number(+Term)

Term is currently instantiated to a number.

Arguments

Term term

Examples

| ?- number(5.2).

yes

| ?- number(5).

yes

Exceptions

None.

See Also

Section 4.8.1.1 [ref-lte-met-typ], page 126.

Chapter 11: Prolog Reference Pages 1085

11.3.142 number_chars/2 ISO

Synopsis

number_chars(+Number, -Chars)

number_chars(-Number, +Chars)

Chars is the chars comprising the printed representation of Number.

Arguments

Number number

Chars chars

Description

Initially, either Number must be instantiated to a number, or Chars must be instantiated
to a proper chars.

If Chars is instantiated to a chars that corresponds to the correct syntax of a number, then
Number will be unified with that number.

Else, Number should be instantiated to a number, and Chars will be unified with the chars
that make up its printed representation.

Exceptions

instantiation_error

Number is uninstantiated and Chars is not instantiated enough

type_error

Number is not a number or Chars cannot be unified with a chars

representation_error

Chars is a list corresponding to a number that can’t be represented

syntax_error

Chars does not correspond to a syntactically valid number

The check of Chars when Number is instantiated was added in release 4.3 for alignment with
the ISO Prolog standard. Previous releases simply failed in this case instead of reporting
an error for malformed Chars.

See Also

number_codes/2.

1086 SICStus Prolog

11.3.143 number_codes/2 ISO

Synopsis

number_codes(+Number, -Codes)

number_codes(-Number, +Codes)

Codes is the codes comprising the printed representation of Number.

Arguments

Number number

Codes codes

Description

Initially, either Number must be instantiated to a number, or Codes must be instantiated
to a proper codes.

If Codes is instantiated to a codes that corresponds to the correct syntax of a number, then
Number will be unified with that number.

Else, Number should be instantiated to a number, and Codes will be unified with the codes
that make up its printed representation.

Exceptions

instantiation_error

Number is uninstantiated and Chars is not instantiated enough

type_error

Number is not a number or Codes cannot be unified with a list of integers

representation_error

An element of Codes is an invalid character code, or Codes is a list correspond-
ing to a number that can’t be represented

syntax_error

Codes does not correspond to a syntactically valid number

The check of Codes when Number is instantiated was added in release 4.3 for alignment with
the ISO Prolog standard. Previous releases simply failed in this case instead of reporting
an error for malformed Codes.

Examples

| ?- number_codes(foo, L).

! Type error in argument 1 of number_codes/2

! expected a number, but found foo

! goal: number_codes(foo,_104)

Chapter 11: Prolog Reference Pages 1087

| ?- number_codes(431, L).

L = [52,51,49]

| ?- number_codes(X, [102,111,111]).

! Syntax error in number_codes/2

! number syntax

! in line 0

| ?- number_codes(X, [52,51,49]).

X = 431

| ?- number_codes(X, "15.0e+12").

X = 1.5E+13

See Also

number_chars/2.

1088 SICStus Prolog

11.3.144 numbervars/3

Synopsis

numbervars(+Term, +FirstVar, -LastVar)

instantiates each of the variables in Term to a term of the form '$VAR'(N).

Arguments

Term term

FirstVar integer, must be nonvar

LastVar integer

Description

FirstVar is used as the value of N for the first variable in Term (starting from the left).
The second distinct variable in Term is given a value of N satisfying “N is FirstVar+1”; the
third distinct variable gets the value FirstVar+2, and so on. The last variable in Term has
the value LastVar-1.

Notice that in the example below, write_canonical/1 is used rather than writeq/1. This
is because writeq/1 treats terms of the form '$VAR'(N) specially; it writes ‘A’ if N=0, ‘B’
if N=1, . . . ‘Z’ if N=25, ‘A1’ if N=26, etc. That is why, if you type the goal in the example
below, then the variable bindings will also be printed out as follows:

Term = foo(W,W,X),

A = W,

B = X

Exceptions

instantiation_error

FirstVar is uninstantiated

type_error

FirstVar is not an integer

Examples

| ?- Term = foo(A, A, B), number-

vars(Term, 22, _), write_canonical(Term).

foo('$VAR'(22),'$VAR'(22),'$VAR'(23))

See Also

Section 4.8.6 [ref-lte-anv], page 129, write_term/[2,3].

Chapter 11: Prolog Reference Pages 1089

11.3.145 on_exception/3

Synopsis

on_exception(-Exception, +ProtectedGoal, +Handler)

same as:

catch(ProtectedGoal, Exception, Handler)

Specify an exception handler for ProtectedGoal, and call ProtectedGoal, as described in
Section 4.15 [ref-ere], page 197.

Arguments

Exception term

:ProtectedGoal
callable, must be nonvar

:Handler callable, must be nonvar

Examples

Fail on exception:

:- meta_predicate fail_on_exception(0).

fail_on_exception(C):-

on_exception(E, C, print_exception_then_fail(C, E)).

print_exception_then_fail(C, E):-

format(user_error, 'Exception occured while calling ~q:~n', [C]),

print_message(warning, E),

fail.

Backtracking

Depends on ProtectedGoal and Handler.

Exceptions

None.

See Also

Section 4.15 [ref-ere], page 197.

1090 SICStus Prolog

11.3.146 once/1 ISO

Synopsis

once(+P)

Equivalent to:

call(P) -> true ; fail.

except that the use of call/1 often can be avoided.

Arguments

:P callable, must be nonvar

Cuts in P do not make sense, but are allowed, their scope being the goal P.

Exceptions

Call errors (see Section 4.2.6 [ref-sem-exc], page 77).

See Also

Section 4.2 [ref-sem], page 61.

Chapter 11: Prolog Reference Pages 1091

11.3.147 op/3 ISO

Synopsis

op(+Precedence, +Type, +Name)

declares Name to be an operator of the stated Type and Precedence.

Arguments

Precedence
integer, must be nonvar and in the range 1-1200

Type one of [xfx,xfy,yfx,fx,fy,xf,yf], must be nonvar

Name atom or list of atom, must be ground

Description

Operators are a notational convenience to read and write Prolog terms. You can define new
operators using op/3.

The Precedence of an operator is used to disambiguate the way terms are parsed. The
general rule is that the operator with the highest precedence is the principal functor.

The Type of an operator decides the position of an operator and its associativity. In the
atom that represents the type the character ‘f’ represents the position of the operator. For
example, a type ‘fx’ says that the operator is a prefix operator. The character ‘y’ indicates
that the operator is associative in that direction. For example, an operator of type ‘xfy’ is
a right-associative, infix operator.

To cancel the operator properties of Name (if any) set Precedence to 0.

Please note: operators are global, as opposed to being local to the current module, Prolog
text, or otherwise.

Exceptions

instantiation_error

An argument is not ground

type_error

Precedence is not an integer or Type is not an integer or an operator is not an
atom

domain_error

Precedence is not in the range 1-1200, or Type is invalid,

permission_error

Attempt to redefine the operator ','

See Also

current_op/3, Section 4.1.5 [ref-syn-ops], page 47.

1092 SICStus Prolog

11.3.148 open/[3,4] ISO

Synopsis

open(+FileSpec, +Mode, -Stream)

open(+FileSpec, +Mode, -Stream, +Options)

Creates a Prolog stream by opening the file FileSpec in mode Mode with options Options.

Arguments

FileSpec file spec, must be ground

A file specification.

Mode one of [read,write,append], must be nonvar

An atom specifying the open mode of the target file. One of:

read open FileSpec for input.

write open FileSpec for output. A new file is created if FileSpec does
not exist. If the file already exists, then it is set to empty and its
previous contents are lost.

append opens FileSpec for output. If FileSpec already exists, then it adds
output to the end of it. If not, then a new file is created, as for the
write mode.

Options list of term, must be ground

A list of zero or more of the following.

type(+T) Specifies whether the stream is a text or binary stream. Default
is text.

reposition(+Boolean)

Specifies whether repositioning is required for the stream (true),
or not (false). The latter is the default.

For text streams reposition(true) affects the default eol/1 and
encoding_signature/1 options, see below. Also, not all encodings
supports this option (see Section 4.6.7.5 [ref-iou-sfh-enc], page 111).

alias(+A)

Specifies that the atom A is to be an alias for the stream.

eof_action(+Action)

Specifies what action is to be taken when the end of stream has
already been reported (by returning -1 or end_of_file), and a
further attempt to input is made. Action can have the following
values:

error An exception is raised. This is the default.

eof_code An end of stream indicator (-1 or end_of_file) is re-
turned again.

Chapter 11: Prolog Reference Pages 1093

reset The stream is considered not to be past end of stream
and another attempt is made to input from it.

encoding(Encoding)

Specifies the encoding to use if the stream is opened in text mode,
as an atom. The default is 'ISO-8859-1', the 8 bit subset of
Unicode, i.e. “ISO-8859-1” (Latin 1) (see Section 4.6.7.5 [ref-iou-
sfh-enc], page 111).

Overridden by the encoding_signature/1 option, see below.

encoding_signature(+Boolean)

Specifies whether an encoding signature should be used (true), or
not (false). An encoding signature is a special byte sequence that
identifies the encoding used in the file. The most common case
is one of the Unicode signatures, often called “byte order mark”
(BOM).

A Unicode signature is a special byte sequence that can be used to
distinguish between several UTF encoding variants, such as “UTF-
8”, “UTF-16-BE” and “UTF-16-LE”.

If reposition(true) is specified, then encoding_signature/1 de-
faults to false for both streams opened in write mode and streams
opened in read mode.

If reposition(true) is not specified, and if the file is opened in
mode read, then encoding_signature/1 defaults to true.

When encoding_signature/1 option is true additional heuristics
will be used if no Unicode signature is detected. Only if neither a
Unicode signature nor these heuristics specifies a character encod-
ing will the encoding/1 option, if any, be used.

The method used for selecting character encoding when a text file
is opened in mode read is the first applicable item in the following
list:

1. If the encoding_signature/1 option is true: If a byte or-
der mark is detected, then it will be used to select between
the encodings “UTF-8”, “UTF-16” or “UTF-32” with suitable
endianess.

2. If the encoding_signature/1 option is true: If an Emacs
style ‘-*- coding: coding-system-*-’ is present on the first
non-empty line of the file, then it will be used.

3. If an option encoding(ENCODING) Is supplied, then the speci-
fied encoding will be used.

4. As a final fallback, “ISO-8859-1” (Latin 1) will be used.

the character encoding selected in this way will be used if it is
recognized, otherwise an error exception is raised.

If reposition(true) is not specified, and if the file is opened in
mode write, then it depends on the character encoding whether

1094 SICStus Prolog

an encoding signature will be output by default or not. If
you want to force an encoding signature to be output for those
encodings that supports it, then you can specify encoding_

signature(true). Conversely, if you want to prevent an encod-
ing signature from being output, then you can explicitly specify
encoding_signature(false).

All UTF encodings supports an encoding signature in the form of a
BOM. “UTF-8” does not write a BOM unless you explicitly specify
encoding_signature(true), the 16 and 32 bit UTF encodings,
e.g. “UTF-16 BE”, “UTF-32 LE” writes a BOM unless explicitly
requested not to with encoding_signature(false).

If the file is opened in mode append, then encoding_signature/1

defaults to false.

eol(Eol) Specifies how line endings in the file should be handled if the stream
is opened in text mode.

In Prolog code, end of line is always represented by the character
'\n', which has character code 10, i.e. the same as ASCII Line Feed
(LFD). The representation in the file may be different, however.

Eol can have the following values:

lf Line Feed (LF, character code 10) is used to specify a
end of line. This can be used for both read mode and
write mode streams.

crlf A two character sequence Carriage Return (CR, charac-
ter code 13) followed by Line Feed (LF, character code
10) is used to specify a end of line. This can be used
for both read mode and write mode streams.

auto Translate both the two character sequence CR LF and
single CR or LF into an end of line character. This can
be used only for read mode streams.

default Use a default end of line convention. This is the default.

If reposition(true) is specified, then this uses lf for
both streams opened in write mode and streams opened
in read mode, on all platforms.

If reposition(true) is not specified, then under
UNIX, this uses lf for streams opened in write mode
and auto for streams opened in read mode. Under
Windows, this uses crlf for streams opened in write
mode and auto for streams opened in read mode.
This can be used for both read mode and write mode
streams.

if_exists(+Action)

Specifies what should happen if the file already exists. Only valid
if Mode is write or append. Action can have the following values:

Chapter 11: Prolog Reference Pages 1095

default The file is overwritten or appended to, according to the
Mode argument. This is the default.

error An exception is raised.

generate_unique_name

If a file named FileSpec already exists, then FileSpec
is rewritten so that it refers to a non-existing file. File-
Spec is rewritten by adding digits at the end of the
file name (but before any extension). The generated
name, RealName can be obtained by using stream_

property(Stream, file_name(RealName)) on the re-
sulting stream. See the example below.

With this option open/4 will never open an existing
file but it may still fail to find a unique name. open/4
may fail to find a unique name if there are thousands of
files with similar names. In that case open/4 behaves
as if if_exists(error) had been passed.

Description

If FileSpec is a valid file specification, then the file that it denotes is opened in mode Mode.

The resulting stream is unified with Stream.

Stream is used as an argument to Prolog input and output predicates.

Stream can also be converted to the corresponding foreign representation through stream_

code/2 and used in foreign code to perform input/output operations.

On Windows, where file names are usually subject to case-normalization, the file will be cre-
ated with the same case as in FileSpec. As an example, open('HelloWorld.txt', write,

S), stream_property(S,file_name(Name)),close(S). will create a file with the mixed
case name HelloWorld.txt whereas the stream property will reflect the case-normalized
name .../helloworld.txt. Prior to release 4.3 the file would have been created in the file
system with the case-normalized name helloworld.txt.

Exceptions

instantiation_error

FileSpec or Mode is not instantiated. Options argument is not instantiated
enough.

type_error

FileSpec or Mode is not an atom type. Options is not a list type or an element
in Options is not a correct type for open options or

domain_error

Mode is not one of read, write or append. Options has an undefined option
or an element in Options is out of the domain of the option.

uninstantiation_error

Stream is not a variable

1096 SICStus Prolog

existence_error

The specified FileSpec does not exist.

permission_error

Cannot open FileSpec with specified Mode and Options.

system_error

Unexpected error detected by the operating system

Examples

The following example creates two log files, both based on the base name my.log. The files
will be written to a directory suitable for temporary files (see Section 4.5.1.3 [ref-fdi-fsp-pre],
page 98).

| ?- open(temp('my.log'), write, S1, [if_exists(generate_unique_name)]),

open(temp('my.log'), write, S2, [if_exists(generate_unique_name)]),

stream_property(S1, file_name(N1)),

stream_property(S2, file_name(N2)),

format('Logging to ~a and ~a~n', [N1, N2]),

...

Under UNIX this would produce something like:

Logging to /tmp/my.log and /tmp/my1886415233.log

See Also

Section 4.6.7 [ref-iou-sfh], page 109.

Chapter 11: Prolog Reference Pages 1097

11.3.149 open_null_stream/1

Synopsis

open_null_stream(-Stream)

opens an output text stream that is not connected to any file and unifies its stream object
with Stream.

Arguments

Stream stream object

Description

Characters or terms that are sent to this stream are thrown away. This predicate is useful
because various pieces of local state are kept for null streams: the predicates character_
count/2, line_count/2, and line_position/2 can be used on these streams.

Exceptions

uninstantiation_error

Stream is not a variable

system_error

Unexpected error detected by the operating system

See Also

Section 4.6.7 [ref-iou-sfh], page 109.

1098 SICStus Prolog

11.3.150 ;/2 ISO

Synopsis

+P ; +Q

Disjunction: Succeeds if P succeeds or Q succeeds.

+P -> +Q ; +R

If P then Q else R, using first solution of P only.

Arguments

:P callable, must be nonvar

:Q callable, must be nonvar

:R callable, must be nonvar

Description

These are normally regarded as part of the syntax of the language, but they are like a
built-in predicate in that you can write call((P ; Q)) or call((P -> Q ; R)).

By default, the character ‘|’ (vertical bar) can be used as an alternative to the infix operator
‘;’. This equivalence does not hold when ‘|’ has been declared as an operator.

Using ‘|’ as an alternative to the infix operator ‘;’ is not recommended. A future version
of the ISO Prolog standard is likely to define ‘|’ as an operator and with such an operator
definition the ‘|’ will no longer be equivalent to ‘;’.

The operator precedences of the ‘;’ and ‘->’ are both greater than 1000, so that they
dominate commas.

Cuts in P do not make sense, but are allowed, their scope being the goal P. The scope of
cuts in Q and R extends to the containing clause.

Backtracking

For the if-then-else construct: if P succeeds and Q then fails, then backtracking into P does
not occur. A cut in P does not make sense. ‘->’ acts like a cut except that its range is
restricted to within the disjunction: it cuts away R and any choice points within P. ‘->’
may be thought of as a “local cut”.

Exceptions

Call errors (see Section 4.2.6 [ref-sem-exc], page 77).

See Also

Section 4.2 [ref-sem], page 61.

Chapter 11: Prolog Reference Pages 1099

11.3.151 otherwise/0

Synopsis

otherwise

Always succeeds (same as true/0).

Tips

Useful for laying out conditionals in a readable way.

Exceptions

None.

See Also

Section 4.2 [ref-sem], page 61.

1100 SICStus Prolog

11.3.152 peek_byte/[1,2] ISO

Synopsis

peek_byte(-Byte)

peek_byte(+Stream, -Byte)

looks ahead for next input byte on the input stream Stream.

Arguments

Stream stream object, must be ground

A valid input binary stream, defaults to the current input stream.

Byte byte or -1

The resulting next input byte available on the stream.

Description

peek_byte/[1,2] looks ahead of the next input byte of the specified input stream and
unifies the byte with Byte. The peeked byte is still available for subsequent input on the
stream.

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

type_error

Byte is an invalid byte.

permission_error

Trying to read beyond end of Stream

See Also

Section 4.6.5 [ref-iou-cin], page 107.

Chapter 11: Prolog Reference Pages 1101

11.3.153 peek_char/[1,2] ISO

Synopsis

peek_char(-Char)

peek_char(+Stream, -Char)

looks ahead for next input character on the current input stream or on the input stream
Stream.

Arguments

Stream stream object, must be ground

A valid input text stream.

Char char or one of [end_of_file]

The resulting next input character available on the stream.

Description

peek_char/[1,2] looks ahead of the next input character of the specified input stream and
unifies the character with Char. The peeked character is still available for subsequent input
on the stream.

Comments

It is safe to call peek_char/[1,2] several times without actually inputting any character.
For example:

| ?- peek_char(X), peek_char(X), get_char(X).

|: a

X = a

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

permission_error

Trying to read beyond end of Stream

See Also

Section 4.6.5 [ref-iou-cin], page 107.

1102 SICStus Prolog

11.3.154 peek_code/[1,2] ISO

Synopsis

peek_code(-Code)

peek_code(+Stream, -Code)

looks ahead for next input character on the input stream Stream.

Arguments

Stream stream object, must be ground

A valid input text stream, defaults to the current input stream.

Code code or -1

The resulting next input character available on the stream.

Description

peek_code/[1,2] looks ahead of the next input character of the specified input stream and
unifies the character with Code. The peeked character is still available for subsequent input
on the stream.

Comments

Comments

It is safe to call peek_code/[1,2] several times without actually inputting any character.
For example:

| ?- peek_code(X), peek_code(X), get_code(X).

|: a

X = 97

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

permission_error

Trying to read beyond end of Stream

See Also

Section 4.6.5 [ref-iou-cin], page 107.

Chapter 11: Prolog Reference Pages 1103

11.3.155 phrase/[2,3]

Synopsis

phrase(+PhraseType, +List)

phrase(+PhraseType, +List, -Rest)

Used in conjunction with a grammar to parse or generate strings.

Arguments

:PhraseType
callable, must be nonvar

Name of a phrase type.

List list of term

A list of symbols — tokens or codes.

Rest list of term

A suffix of List; what remains of List after PhraseType has been found. Defaults
to [].

Description

This predicate is a convenient way to start execution of grammar rules. Runs through the
grammar rules checking whether there is a path by which PhraseType can be rewritten as
List.

If List is bound, then this goal corresponds to using the grammar for parsing. If List is
unbound, then this goal corresponds to using the grammar for generation.

phrase/[2,3] succeeds when the portion of List between the start of List and the start
of Rest is a phrase of type PhraseType (according to the current grammar rules), where
PhraseType is either a non-terminal or, more generally, a grammar rule body.

phrase/[2,3] allows variables to occur as non-terminals in grammar rule bodies, just as
call/1 allows variables to occur as goals in clause bodies.

Backtracking

Depends on PhraseType.

Exceptions

Call errors (see Section 4.2.6 [ref-sem-exc], page 77).

Examples

Here is a simple grammar that parses an arithmetic expression (made up of digits and
operators) and computes its value. Create a file containing the following rules:

1104 SICStus Prolog

grammar.pl

expr(Z) --> term(X), "+", expr(Y), {Z is X + Y}.

expr(Z) --> term(X), "-", expr(Y), {Z is X - Y}.

expr(X) --> term(X).

term(Z) --> number(X), "*", term(Y), {Z is X * Y}.

term(Z) --> number(X), "/", term(Y), {Z is X / Y}.

term(Z) --> number(Z).

number(C) --> "+", number(C).

number(C) --> "-", number(X), {C is -X}.

number(X) --> [C], {"0"=<C, C=<"9", X is C - "0"}.

In the last rule, C is the character code of a decimal digit.

This grammar can now be used to parse and evaluate an expression:

| ?- [grammar].

| ?- phrase(expr(Z), "-2+3*5+1").

Z = 14

| ?- phrase(expr(Z), "-2+3*5", Rest).

Z = 13,

Rest = [] ;

Z = 1,

Rest = "*5" ;

Z = -2,

Rest = "+3*5" ;

no

See Also

Section 4.3.5 [ref-lod-exp], page 87, Section 4.14 [ref-gru], page 189.

Chapter 11: Prolog Reference Pages 1105

11.3.156 portray/1 hook

Synopsis

:- multifile user:portray/1.

user:portray(+Term)

A way for the user to over-ride the default behavior of print/1.

Arguments

Term term

Description

If user:portray/1 is defined, then the predicates listed below performing term output will
call it on the term itself and on every non-variable subterm T. If user:portray/1 succeeds,
then it is assumed to have written T. If it fails, then the calling predicate will write the
principal functor of T and treat the arguments of T recursively.

Note that on lists ([_|_]), user:portray/1 will be called on the whole list to
user:portray/1 and, if that call fails, on each list element, but not on every suffix of
the list.

Note that a variable written from within user:portray/1 may be written with a different
name than that used by the surrounding write predicate.

The affected predicates are:

print/[1,2]

write_term/[2,3]

when used with the option portrayed(true)

goals during debugging
controlled by the debugger_print_options Prolog flag, whose value by default
includes portrayed(true)

top-level variable bindings
controlled by the toplevel_print_options Prolog flag, whose value by default
includes portrayed(true)

Exceptions

Exceptions are treated as failures, except an error message is also printed.

See Also

Section 4.6.4 [ref-iou-tou], page 104, Section 4.9.4 [ref-lps-flg], page 136.

1106 SICStus Prolog

11.3.157 portray_clause/[1,2]

Synopsis

portray_clause(+Clause)

portray_clause(+Stream, +Clause)

Writes Clause to the current output stream. Used by listing/[0,1].

Arguments

Stream stream object, must be ground

A valid open Prolog stream, defaults to the current output stream.

Clause term

Description

The operation used by listing/[0,1]. Clause is written to Stream, in exactly the format
in which listing/[0,1] would have written it, including a terminating full stop.

If you want to print a clause, then this is almost certainly the command you want. By
design, none of the other term output commands puts a full stop after the written term.
If you are writing a file of facts to be loaded by the Load Predicates, then use portray_

clause/[1,2], which attempts to ensure that the clauses it writes out can be read in again
as clauses.

The output format used by portray_clause/[1,2] and listing/[0,1] has been carefully
designed to be clear. We recommend that you use a similar style. In particular, never put
a semicolon (disjunction symbol) at the end of a line in Prolog.

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109).

Examples

| ?- portray_clause((X:- a -> b ; c)).

_ :-

(a ->

b

; c

).

Chapter 11: Prolog Reference Pages 1107

| ?- portray_clause((X:- a -> (b -> c ; d ; e); f)).

_ :-

(a ->

(b ->

c

; d

; e

)

; f

).

| ?- portray_clause((a:-b)).

a :-

b.

| ?- portray_clause((a:-b,c)).

a :-

b,

c.

| ?- portray_clause((a:-(b,!,c))).

a :-

b, !,

c.

See Also

listing/[0,1], Section 4.6.4 [ref-iou-tou], page 104.

1108 SICStus Prolog

11.3.158 portray_message/2 hook

Synopsis

:- multifile user:portray_message/2.

user:portray_message(+Severity, +MessageTerm)

Called by print_message/2 before processing the message. If this succeeds, then it is
assumed that the message has been processed and nothing further is done.

Arguments

Severity one of [informational,warning,error,help,silent]

MessageTerm
term

Exceptions

An exception raised by this predicate causes an error message to be printed and then the
original message is printed using the default message text and formatting.

See Also

Section 4.16 [ref-msg], page 212.

Chapter 11: Prolog Reference Pages 1109

11.3.159 predicate_property/2

Synopsis

predicate_property(?Callable, ?PredProperty)

Unifies PredProperty with a predicate property of an existing predicate, and Callable with
the most general term that corresponds to that predicate.

Arguments

:Callable callable

The skeletal specification of a loaded predicate.

PredProperty
term

The various properties associated with Callable. Each loaded predicate will
have one or more of the properties:

• one of the atoms built_in (for built-in predicates) or compiled or
interpreted (for user defined predicates) or fd_constraint for FD pred-
icates see Section 10.10.10 [Defining Primitive Constraints], page 479.

• the atom dynamic for predicates that have been declared dynamic (see
Section 4.3.4.2 [Dynamic Declarations], page 84),

• the atom multifile for predicates that have been declared multifile (see
Section 4.3.4.1 [Multifile Declarations], page 83),

• the atom volatile for predicates that have been declared volatile (see
Section 4.3.4.3 [Volatile Declarations], page 84),

• the atom jittable for predicates that are amenable to JIT compilation,

• the atom jitted for predicates that have been JIT compiled,

• one or more terms (block Term) for predicates that have block declarations
(see Section 4.3.4.5 [Block Declarations], page 84),

• the atom exported or terms imported_from(ModuleFrom) for predicates
exported or imported from modules (see Section 4.11 [ref-mod], page 161),

• the term (meta_predicate Term) for predicates that have meta-predicate
declarations (see Section 4.11.16 [ref-mod-met], page 171).

Description

If Callable is instantiated, then predicate_property/2 successively unifies PredProperty
with the various properties associated with Callable.

If PredProperty is bound to a valid predicate property, then predicate_property/2 suc-
cessively unifies Callable with the skeletal specifications of all loaded predicates having
PredProperty.

If Callable is not a loaded predicate or PredProperty is not a valid predicate property, then
the call fails.

If both arguments are unbound, then predicate_property/2 can be used to backtrack
through all currently defined predicates and their corresponding properties.

1110 SICStus Prolog

Examples

• Predicates acquire properties when they are defined:

| ?- [user].

| :- dynamic p/1.

| p(a).

| end_of_file.

% user compiled 0.117 sec 296 bytes

yes

| ?- predicate_property(p(_), Property).

Property = dynamic ;

Property = interpreted ;

• To backtrack through all the predicates P imported into module m from any module:

| ?- predicate_property(m:P, imported_from(_)).

• To backtrack through all the predicates P imported into module m1 from module m2:

| ?- predicate_property(m1:P, imported_from(m2)).

• To backtrack through all the predicates P exported by module m:

| ?- predicate_property(m:P, exported).

• A variable can also be used in place of a module atom to find the names of modules
having a predicate and property association:

| ?- predicate_property(M:f, imported_from(m1)).

will return all modules M that import f/0 from m1.

Exceptions

None.

See Also

Section 4.9.1 [ref-lps-ove], page 135.

Chapter 11: Prolog Reference Pages 1111

11.3.160 print/[1,2] hookable

Synopsis

print(+Stream, +Term)

print(+Term)

Writes Term on the standard output stream, without quoting atoms, calling
user:portray/1 on subterms.

Arguments

Stream stream object, must be ground

A valid open Prolog stream, defaults to the current output stream.

Term term

Description

print(Term) is equivalent to:

write_term(Term, [portrayed(true),numbervars(true)])

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109).

See Also

Section 4.6.4 [ref-iou-tou], page 104, user:portray/1.

1112 SICStus Prolog

11.3.161 print_coverage/[0,1] development

Synopsis

print_coverage since release 4.2

Prints the coverage data accumulated so far, to the current output stream, in a hierarchical
format.

print_coverage(+Data) since release 4.2

Prints the coverage data Data, to the current output stream, in a hierarchical format. Data
should be of type list of coverage pair; see coverage_data/1.

Arguments

Data list of coverage pair

Description

The output is formatted hierarchically into blocks of lines, one block per source file. A
typical block looks like:

/home/matsc/tmp/primes.pl

user:integers/3

clause 1

5: 100

8: 99

clause 2

9: 1

user:primes/2

clause 1

1: 1

2: 1

3: *1

user:remove/3

clause 1

16: 436

clause 2

17: 411

20: *337

clause 3

21: 74

22: *74

user:sift/2

clause 1

11: 1

clause 2

12: 25

13: *25

14: *25

Chapter 11: Prolog Reference Pages 1113

This block lists all the coverage sites for the given file. They are distributed over 4 predicates,
8 clauses, and 16 active lines of code. The coverage site on line 8 was hit 99 times. The
coverage site on line 20 was hit 337 times, making at least one nondet call. And so on.

The variant print_coverage/1 is useful e.g. if you want to somehow filter the execution
coverage computed by coverage_data/1 before printing it.

Exceptions

None.

See Also

Section 9.3 [Coverage Analysis], page 354. The collected coverage information can be pre-
sented by the SICStus Prolog IDE, SPIDER (see Section 3.11 [SPIDER], page 29). The
Emacs interface also has commands for code coverage highlighting of the current buffer (C-c
C-o, or use the Prolog menu; see Section 3.12.3 [Usage], page 34).

1114 SICStus Prolog

11.3.162 print_message/2 hookable

Synopsis

print_message(+Severity, +MessageTerm)

Print a Message of a given Severity. The behavior can be customized using the hooks
user:portray_message/2, user:generate_message_hook/3 and user:message_hook/3.

Arguments

Severity atom, must be nonvar

Unless the default system portrayal is overidden with user:message_hook/3,
Severity must be one of:

Value Prefix

informational

‘% ’

warning ‘* ’

error ‘! ’

help

query

silent no prefix

MessageTerm
term

Description

First print_message/2 calls user:portray_message/2 with the same arguments. If this
does not succeed, then the message is processed in the following phases:

• Message generation phase: the abstract message term Message is formatted, i.e. con-
verted to a format-command list. First the hook predicate user:generate_message_

hook/3 is tried, then if it does not succeed, then 'SU_messages':generate_message/3

is called. The latter predicate is defined in terms of definite clause grammars in
library('SU_messages'). If that also does not succeed, then the built-in default
conversion is used, which gives the following result:

['~q'-[Message],nl]

• Line splitting transformation: the format-command list is converted to format-
command lines—the list is broken up into a list of lists, each list containing format-
commands for one line.

• Message printing phase: The text of the message (format-command lines generated
in the previous stage) is printed. First the hook predicate user:message_hook/3 is
tried, then, if it does not succeed, then the built-in predicate print_message_lines/3
is called for the user_error stream.

An unhandled exception message E calls print_message(error, E) before returning to the
top level. The convention is that an error message is the result of an unhandled exception.

Chapter 11: Prolog Reference Pages 1115

Thus, an error message should only be printed if raise_exception/1 does not find a handler
and unwinds to the top level.

All messages from the system are printed using this predicate. Means of intercepting these
messages before they are printed are provided.

print_message/2 always prints to user_error. Messages can be redirected to other
streams using user:message_hook/3 and print_message_lines/3

Silent messages do not get translated or printed, but they can be intercepted with
user:portray_message/2 and user:message_hook/3.

Exceptions

instantiation_error

type_error

domain_error

in Severity

See Also

Section 4.16 [ref-msg], page 212.

1116 SICStus Prolog

11.3.163 print_message_lines/3

Synopsis

print_message_lines(+Stream, +Severity, +Lines)

Print the Lines to Stream, preceding each line with a prefix corresponding to Severity.

Arguments

Stream stream object, must be ground

Any valid output stream.

Severity one of [query,help,informational,warning,error,silent,term]

Lines list of list of pair

Must be of the form [Line1, Line2, ...], where each Linei must be of the
form [Control_1-Args_1,Control_2-Args_2, ...].

Description

If Severity is a valid severity, then the prefix will be as described for print_message/2,
otherwise Severity itself will be used as the prefix. If Severity is query, then no newline is
written after the last line (otherwise, a newline is written).

This predicate is intended to be used in conjunction with user:message_hook/3. After
a message is intercepted using user:message_hook/3, this command is used to print the
lines. If the hook has not been defined, then the arguments are those provided by the
system.

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

instantiation_error

type_error

in Lines.

Examples

Suppose you want to intercept messages and force them to go to a different stream:

user:message_hook(Severity, Message, Lines):-

my_stream(MyStream),

print_message_lines(MyStream, Severity, Lines).

See Also

Section 4.16 [ref-msg], page 212.

Chapter 11: Prolog Reference Pages 1117

11.3.164 print_profile/[0,1] development

Synopsis

print_profile since release 4.2

Prints the profiling data accumulated so far, to the current output stream, in a format
similar to gprof(1).

print_profile(+Data) since release 4.2

Prints the profiling dataData, to the current output stream, in a format similar to gprof(1).
Data should be of type list of profile pair; see profile_data/1.

Arguments

Data list of profile pair

Description

The output is formatted into blocks of lines. There is one block per predicate with profiling
data. A typical block looks like:

--

6667/11582 user:extract_index_2/5

4915/11582 user:safe_insns/5

174446 21862 11582 user:safe_insns/5

*10280/37221 user:safe_insn/1

4915/11582 user:safe_insns/5

--

This block concerns user:safe_insns/5. We are told that 174446 virtual instructions
were executed and 21862 choicepoints were accessed, and that it was called 11582 times.
There are two callers: user:extract_index_2/5 and user:safe_insns/5 itself, which
called user:safe_insns/5 6667 and 4915 times respectively. Finally user:safe_insns/5

accounts for 10280 out of the 37221 calls to user:safe_insn/1 and, as we already know,
for 4915 out of the 11582 calls to itself. The ‘*’ in front of 10280 tells us that for at
least one of the 10280 calls, user:safe_insn/1 left a choicepoint behind, which could be
a case of unwanted nondeterminacy; see Section 9.7 [The Determinacy Checker], page 361.
If user:safe_insn/1 had been declared nondet (see Section 10.19 [lib-is directives],
page 559), ‘%’ would have been used instead of ‘*’. If it had been declared det or semidet,
‘!’ would have been used.

The variant print_profile/1 is useful e.g. if you want to somehow filter the execution
profile computed by profile_data/1 before printing it.

Exceptions

None.

See Also

Section 9.2 [Execution Profiling], page 353.

1118 SICStus Prolog

11.3.165 profile_data/1 development

Synopsis

profile_data(-Data) since release 4.2

Data is the profiling data accumulated so far.

Arguments

Data list of profile pair

where:

profile pair ::= caller-profile_info

profile info ::= counter(list of callee_pair,insns,chpts,tagged_

calls)

insns ::= integer {virtual instructions executed}
chpts ::= integer {choicepoints accessed}
callee pair ::= callee-tagged_calls

tagged calls ::= det(calls) {all calls were determinate}
| nondet(calls) {not all calls were determinate}

calls ::= integer {number of calls}
caller ::= pred spec
callee ::= pred spec

Description

The profiling data accumulated so far is collected into a term of type list of profile pair and
unified with Data.

Please note: The number of instructions and choicepoints are not counted for interpreted
code, so insns and chpts will be 0 for such predicates.

Please note: In a list of callee pair, callee is not necessarily unique. This happens if the
given caller code contains more than one call to callee.

Please note: The calls of a profile info can be greater than the total calls of its list of
callee pair. This happens e.g. if caller occurred in a metacall context.

Exceptions

None.

See Also

Section 9.2 [Execution Profiling], page 353.

Chapter 11: Prolog Reference Pages 1119

11.3.166 profile_reset/0 development

Synopsis

profile_reset since release 4.2

Resets all profiling data.

Exceptions

None.

See Also

Section 9.2 [Execution Profiling], page 353.

1120 SICStus Prolog

11.3.167 prolog_flag/[2,3]

Synopsis

prolog_flag(?FlagName, ?Value)

FlagName is a flag, which currently is set to Value.

prolog_flag(+FlagName, -OldValue, +NewValue)

Unifies the current value of FlagName with OldValue and then sets the value of the flag to
NewValue. The available Prolog flags are listed in Section 4.9.4 [ref-lps-flg], page 136.

Arguments

FlagName atom, must be nonvar and a legal flag in prolog_flag/3

Value term

OldValue term

NewValue term, must be nonvar and belong to proper type/domain

Description

To inspect the value of a flag without changing it, use prolog_flag/2 or the following
idiom, where FlagName is bound to one of the valid flags above.

| ?- prolog_flag(FlagName, Value, Value).

Use prolog_flag/2 to query and set_prolog_flag/2 or prolog_flag/3 to set values.

prolog_flag/3 can be used to save flag values so that one can return a flag to its previous
state. For example:

...

prolog_flag(debugging,Old,on), % Save in Old and set

...

prolog_flag(debugging,_,Old), % Restore from Old

...

Backtracking

prolog_flag/2 enumerates all valid flagnames of a given current value, or all pairs of flags
and their current values.

Exceptions

instantiation_error

In prolog_flag/3, FlagName unbound, or NewValue unbound and not iden-
tical to OldValue.

type_error

FlagName is not an atom.

Chapter 11: Prolog Reference Pages 1121

domain_error

In prolog_flag/3, FlagName bound to an atom that does not represent a
supported flag, or NewValue bound to a term that does not represent a valid
value for FlagName.

permission_error

In prolog_flag/3, NewValue not identical to OldValue for a read-only flag.

Examples

| ?- prolog_flag(X,Y).

X = bounded,

Y = false ? RET

yes

| ?- prolog_flag(X,Y,Y).

! Instantiation error in argument 1 of prolog_flag/3

! goal: prolog_flag(_94,_95,_95)

| ?- prolog_flag(source_info,X,X).

X = on ? RET

yes

See Also

current_prolog_flag/2, set_prolog_flag/2, Section 4.9.4 [ref-lps-flg], page 136.

1122 SICStus Prolog

11.3.168 prolog_load_context/2

Synopsis

prolog_load_context(?Key, ?Value)

Finds out the context of the current load. The available context keys are described in
Section 4.9.5 [ref-lps-lco], page 143.

Arguments

Key atom

Value term

Description

You can call prolog_load_context/2 from an embedded command or from term_

expansion/6 to find out the context of the current load. If called outside the context
of a load, then it simply fails.

Backtracking

Can be used to backtrack through all keys and values.

Exceptions

None.

See Also

load_files/[2,3], Section 4.9.5 [ref-lps-lco], page 143.

Chapter 11: Prolog Reference Pages 1123

11.3.169 prompt/2

Synopsis

prompt(-OldPrompt, +NewPrompt)

Queries or changes the prompt string of the current input stream or an input stream Stream.

Arguments

OldPrompt
atom

The old prompt atom.

NewPrompt
atom, must be nonvar

The new prompt atom.

Description

A prompt atom is a sequence of characters that indicates the Prolog system is waiting
for input when a “Read” or “Get” predicate is called. If an input stream connected to a
terminal is waiting for input at the beginning of a line (at line position 0), then the prompt
atom will be printed through an output stream associated with the same terminal.

Prolog sets the prompt to ‘|: ’ for every new top-level query. This is the prompt that can
be changed by invoking prompt/2.

Unlike state changes such as those implemented as prolog flags, the scope of a prompt
change is a goal typed at the toplevel. Therefore, the change is in force only until returning
to the toplevel (prompt = ‘| ?- ’).

To query the current prompt atom, OldPrompt and NewPrompt should be the same un-
bound variable.

To set the prompt, NewPrompt should be an instantiated atom.

The “Load” predicates change the prompt during the time operations are performed: If a
built-in loading predicate is performed on user (such as compile(user), etc.), then the
prompt is set to ‘| ’. This prompt is not affected by prompt/2.

Exceptions

instantiation_error

type_error

NewPrompt is not an atom

See Also

Section 4.6.3.2 [ref-iou-tin-cpr], page 104.

1124 SICStus Prolog

11.3.170 public/1 declaration

Synopsis

:- public +Term

Currently a dummy declaration.

Arguments

:Term term

Exceptions

Exceptions in the context of loading code are printed as error messages.

context_error

Declaration appeared in a goal.

permission_error

Declaration appeared as a clause.

See Also

Section 4.3.4.8 [Public Declarations], page 86.

Chapter 11: Prolog Reference Pages 1125

11.3.171 put_byte/[1,2] ISO

Synopsis

put_byte(+Byte)

put_byte(+Stream, +Byte)

Writes the byte Byte to Stream.

Arguments

Stream stream object, must be ground

A valid output binary stream, defaults to the current output stream.

Byte byte, must be nonvar

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

instantiation_error

type_error

Byte is not a byte.

permission_error

There is an error in the bottom layer of write function of the stream.

type_error

Byte is not a byte

See Also

Section 4.6.6 [ref-iou-cou], page 108.

1126 SICStus Prolog

11.3.172 put_char/[1,2] ISO

Synopsis

put_char(+Char)

put_char(+Stream, +Char)

The char Char is written to Stream.

Arguments

Stream stream object, must be ground

A valid output text stream, defaults to the current output stream.

Char char, must be nonvar

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

type_error

Char is not a char

permission_error

There is an error in the bottom layer of write function of the stream.

See Also

Section 4.6.6 [ref-iou-cou], page 108.

Chapter 11: Prolog Reference Pages 1127

11.3.173 put_code/[1,2] ISO

Synopsis

put_code(+Code)

put_code(+Stream, +Code)

The code Code is written to the stream Stream.

Arguments

Stream stream object, must be ground

A valid output text stream, defaults to the current output stream.

Code code, must be nonvar

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

instantiation_error

type_error

Code is not an integer

permission_error

There is an error in the bottom layer of write function of the stream.

representation_error

Code is not a code

See Also

Section 4.6.6 [ref-iou-cou], page 108.

1128 SICStus Prolog

11.3.174 query_abbreviation/3 hook

Synopsis

:- multifile 'SU_messages':query_abbreviation/3.

'SU_messages':query_abbreviation(+QueryClass, -Prompt, -Pairs)

A way to specify one letter abbreviations for responses to queries from the Prolog System.

Arguments

QueryClass
atom

The query class being defined.

Prompt atom

The prompt to be used, typically indicating appropriate abbreviations.

Pairs list of pair

A list of word-abbreviation pairs, defining the characters accepted and the
corresponding abstract answers.

Description

This predicate defines a query class with the given prompt, the line input method, the
char(Pairs) map method and help_query failure mode. The predicate is actually imple-
mented by the first clause of 'SU_messages':query_class/5:

query_class(QueryClass, Prompt, line, char(Pairs), help_query) :-

query_abbreviation(QueryClass, Prompt, Pairs), !.

Prolog only asks for keyboard input in a few different ways. These are enumerated in the
clauses for 'SU_messages':query_abbreviation/3. These clauses specify valid abbrevia-
tions for a given key word. For example,

query_abbreviation(yes_or_no, ' (y or n) ', [yes-[-1,0'y,0'Y], no-"nN"]) :- !.

a French translator might decide that the letters ‘O’ and ‘o’ are reasonable abreviations for
‘oui’ (yes), and therefore write

query_abbreviation(yes_or_no, ' (y or n) ', [yes-[-1,0'o,0'O], no-"nN"]) :- !.

Exceptions

ask_query/4 checks the output arguments.

See Also

Section 4.16.3 [Query Processing], page 216.

Chapter 11: Prolog Reference Pages 1129

11.3.175 query_class/5 hook

Synopsis

:- multifile 'SU_messages':query_class/5.

'SU_messages':query_class(+QueryClass, -Prompt, -InputMethod, -MapMethod,

-FailureMode)

Access the parameters of a given QueryClass.

Arguments

QueryClass
term

Determines the allowed values for the atom Answer.

Prompt atom

The prompt to display at the terminal.

InputMethod
term

A ground term, which specifies how to obtain input from the user

MapMethod
term

A ground term, which specifies how to process the input to get the abstract
answer to the query.

FailureMode
term

An atom determining what to print in case of an input error, before re-querying
the user. Possible values are:

− help_query - print the help message and print the query text again;

− help - only print the help message;

− query - only print the query text;

− none - do not print anything.

Description

For the list of default input- and map methods, see the “Default Input Methods” and
“Default Map Methods” subsections in Section 4.16.3 [Query Processing], page 216.

Exceptions

ask_query/4 checks the output arguments.

See Also

Section 4.16.3 [Query Processing], page 216.

1130 SICStus Prolog

11.3.176 query_class_hook/5 hook

Synopsis

:- multifile user:query_class_hook/5.

user:query_class_hook(+QueryClass, -Prompt, -InputMethod, -MapMethod,

-FailureMode)

Provides the user with a method of overriding the call to 'SU_messages':query_class/5 in
the preparation phase of query processing. This way the default query class characteristics
can be changed.

Arguments

QueryClass
term

Determines the allowed values for the atom Answer.

Prompt atom

The prompt to display at the terminal.

InputMethod
term

The input method to use.

MapMethod
term

The map method to use.

FailureMode
term

The failure mode to use.

Exceptions

All error handling is done by the predicates extended by this hook.

See Also

Section 4.16.3 [Query Processing], page 216.

Chapter 11: Prolog Reference Pages 1131

11.3.177 query_hook/6 hook

Synopsis

:- multifile 'SU_messages':query_hook/6.

'SU_messages':query_hook(+QueryClass, +Prompt, +PromptLines, +Help,

+HelpLines, -Answer)

Provides a method of overriding Prolog’s default keyboard based input requests.

Arguments

QueryClass
term

Determines the allowed values for the atom Answer.

Prompt term

A message term.

PromptLines
list of pair

The message generated from the Prompt message term.

Help term

A message term.

HelpLines list of pair

The message generated from the Help message term.

Answer term

See QueryClass

Description

This provides a way of overriding Prolog’s default method of interaction. If this predicate
fails, then Prolog’s default method of interaction is invoked.

The default method first prints out the prompt, then if the response from the user is not
one of the allowed values, then the help message is printed.

It is useful to compare this predicate to user:message_hook/3, since this explains how you
might use the Prompt, PromptLines, Help, HelpLines.

Exceptions

An exception raised by this predicate causes an error message to be printed and then the
default method of interation is invoked. In other words, exceptions are treated as failures.

See Also

Section 4.16.3 [Query Processing], page 216.

1132 SICStus Prolog

11.3.178 query_input/3 hook

Synopsis

:- multifile 'SU_messages':query_input/3.

'SU_messages':query_input(+InputMethod, +Prompt, -RawInput)

Implements the input phase of query processing. The user is prompted with Prompt, input
is read according to InputMethod, and the result is returned in RawInput.

Arguments

InputMethod
term

The input method to use.

Prompt atom

The prompt to display at the terminal.

RawInput term

Exceptions

ask_query/4 checks the output arguments.

See Also

Section 4.16.3 [Query Processing], page 216.

Chapter 11: Prolog Reference Pages 1133

11.3.179 query_input_hook/3 hook

Synopsis

:- multifile user:query_input_hook/3.

user:query_input_hook(+InputMethod, +Prompt, -RawInput)

Provides the user with a method of overriding the call to 'SU_messages':query_input/3

in the input phase of query processing. This way the implementation of the default input
methods can be changed.

Arguments

InputMethod
term

The input method to use.

Prompt atom

The prompt to display at the terminal.

RawInput term

Exceptions

All error handling is done by the predicates extended by this hook.

See Also

Section 4.16.3 [Query Processing], page 216.

1134 SICStus Prolog

11.3.180 query_map/4 hook

Synopsis

:- multifile 'SU_messages':query_map/4.

'SU_messages':query_map(+MapMethod, +RawInput, -Result, -Answer)

Implements the mapping phase of query processing. The RawInput, received from query_

input/3, is mapped to the abstract answer term Answer.

Arguments

MapMethod
term

The map method to use.

RawInput atom

As received from query_input/3.

Result one of [success,failure,failure(Warning)]

Result of conversion.

Answer one of [success,failure,failure(Warning)]

Abstract answer term.

Exceptions

ask_query/4 checks the output arguments.

See Also

Section 4.16.3 [Query Processing], page 216.

Chapter 11: Prolog Reference Pages 1135

11.3.181 query_map_hook/4 hook

Synopsis

:- multifile user:query_map_hook/4.

user:query_map_hook(+MapMethod, +RawInput, -Result, -Answer)

Provides the user with a method of overriding the call to 'SU_messages':query_map/4

in the map phase of query processing. This way the implementation of the default map
methods can be changed.

Arguments

MapMethod
term

The map method to use.

RawInput atom

As received from query_input/3.

Result one of [success,failure,failure(Warning)]

Result of conversion.

Answer one of [success,failure,failure(Warning)]

Abstract answer term.

Exceptions

All error handling is done by the predicates extended by this hook.

See Also

Section 4.16.3 [Query Processing], page 216.

1136 SICStus Prolog

11.3.182 raise_exception/1

Synopsis

raise_exception(+Exception)

If Exception matches one of the SICStus error terms listed in Section 4.15.4 [ref-ere-err],
page 200, then the corresponding error term error(ISO_Error, SICStus_Error) is thrown.
Otherwise, Exception is thrown as is.

New code should prefer the ISO-standard conformant throw/1.

Please note: For backward compatibility reasons, some Exception terms are automati-
cally transformed into their corresponding ISO error/2 terms. The standard conformant
throw/1 does not perform any such transformation, and is generally preferable.

Arguments

Exception term, must be nonvar

Exceptions

instantiation_error

Exception is unbound.

See Also

Section 4.15 [ref-ere], page 197, throw/1.

Chapter 11: Prolog Reference Pages 1137

11.3.183 read/[1,2] ISO

Synopsis

read(-Term)

read(+Stream, -Term)

Reads the next term from Stream and unifies it with Term. Same as:

read_term(Term, [])

read_term(Stream, Term, [])

Arguments

Stream stream object, must be ground

A valid Prolog input stream.

Term term

The term to be read.

Description

Term must be followed by a full stop. The full stop is removed from the input stream and
is not a part of the term that is read. The term is read with respect to current operator
declarations.

Does not finish until the full stop is encountered. Thus, if you type at top level

| ?- read(X)

then you will keep getting prompts (first ‘|: ’, and five spaces thereafter) every time you
type RET, but nothing else will happen, whatever you type, until you type a full stop.

If a syntax error is encountered, then the action taken depends on the current value of the
syntax_errors Prolog flag.

If the end of the current input stream has been reached, then Term will be unified with
the atom end_of_file. Further calls to read/[1,2] for the same stream will then raise an
exception, unless the stream is connected to the terminal. The characters read are subject
to character-conversion.

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

syntax_error

A syntax error was found.

Examples

1138 SICStus Prolog

See Also

read_term/[2,3], char_conversion/2, Section 4.6.3.1 [ref-iou-tin-trm], page 103,
Section 4.9.4 [ref-lps-flg], page 136.

Chapter 11: Prolog Reference Pages 1139

11.3.184 read_line/[1,2]

Synopsis

read_line(-Line)

read_line(+Stream, -Line)

Reads one line of input from Stream, and unifies the codes with Line. On end of file, Line
is unified with end_of_file.

Arguments

Stream stream object, must be ground

A valid input text stream, defaults to the current input stream.

Line codes or one of [end_of_file]

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

permission_error

Trying to read beyond end of Stream

See Also

at_end_of_line/[0,1], Section 4.6.5 [ref-iou-cin], page 107.

1140 SICStus Prolog

11.3.185 read_term/[2,3] ISO

Synopsis

read_term(-Term, +Options)

read_term(+Stream, -Term, +Options)

Read a term from Stream, optionally returning extra information about the term.

Arguments

Stream stream object, must be ground

A valid Prolog input stream, defaults to the current input stream.

Term term

The term that is read.

Options list of term, must be ground, except Vars, Names, and Layout as described
below.

A list of zero or more of the following:

syntax_errors(Val)

Controls what action to take on syntax errors. Val must be one of
the values allowed for the syntax_errors Prolog flag. The default
is set by that flag. See Section 4.9.4 [ref-lps-flg], page 136.

variables(Vars)

Vars is bound to the list of variables in the term input, in left-to-
right traversal order.

variable_names(Names)

Names is bound to a list of Name=Var pairs, where each Name is
an atom indicating the name of a non-anonymous variable in the
term, and Var is the corresponding variable. The elements of the
list are in the same order as in Term, i.e. in left-to-right traversal
order.

singletons(Names)

Names is bound to a list of Name=Var pairs, one for each non-
anonymous variable appearing only once in the term. The elements
of the list are in the same order as in Term, i.e. in left-to-right
traversal order.

cycles(Boolean)

Boolean must be true or false. If selected, then any occurrences
of @/2 in the term read in are replaced by the potentially cyclic
terms they denote as described below. Otherwise (the default),
Term is just unified with the term read in.

The notation
used when this option is selected is @(Template,Substitution)

where Substitution is a list of Var=Term pairs where the Var oc-
curs in Template or in one of the Terms. This notation stands for

Chapter 11: Prolog Reference Pages 1141

the instance of Template obtained by binding each Var to its corre-
sponding Term. The purpose of this notation is to provide a finite
printed representation of cyclic terms. This notation is not used by
default, and @/2 has no special meaning except in this context.

Terms can be written in this notation using write_term/[2,3] (see
Section 11.3.253 [mpg-ref-write term], page 1226).

layout(Layout)

Layout is bound to a layout term corresponding to Term (see
Chapter 2 [Glossary], page 7).

consume_layout(Boolean)

Boolean must be true or false. If this option is true, then read_

term/[2,3] will consume the layout-text-item that follows the ter-
minating ‘.’ (this layout-text-item can either be a layout-char or
a comment starting with a ‘%’). If the option is false, then the
layout-text-item will remain in the input stream, so that subse-
quent character input predicates will see it. The default of the
consume_layout option is false.

Description

The characters read are subject to character-conversion.

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

syntax_error

A syntax error was found.

instantiation_error

type_error

domain_error

An illegal option was specified.

Examples

| ?- read_term(T, [variable_names(L)]).

|: append([U|X],Y,[U|Z]) :- append(X,Y,Z).

L = ['U'=_A,'X'=_B,'Y'=_C,'Z'=_D],

T = (append([_A|_B],_C,[_A|_D]):-append(_B,_C,_D))

1142 SICStus Prolog

| ?- read_term(T, [layout(L), variable_names(Va), singletons(S)]).

|: [

foo(X),

X = Y

].

L = [35,[36,36],[36,[37,37,37],38]],

S = ['Y'=_A],

T = [foo(_B),_B=_A],

Va = ['X'=_B,'Y'=_A]

| ?- read_term(T, [consume_layout(false)]), get_code(C).

|: 1.

C = 10,

T = 1

| ?- read_term(T, [consume_layout(true)]), get_code(C).

|: 1.

|: a

C = 97,

T = 1

See Also

read/[1,2], char_conversion/2, Section 4.6.3.1 [ref-iou-tin-trm], page 103, Section 4.9.4
[ref-lps-flg], page 136.

Chapter 11: Prolog Reference Pages 1143

11.3.186 reconsult/1

Synopsis

reconsult(+Files)

same as:

consult(Files)

Arguments

:Files file spec or list of file spec, must be ground

A file specification or a list of file specifications; extensions optional.

Exceptions

See load_files/[2,3].

See Also

Section 4.3.2 [ref-lod-lod], page 80.

1144 SICStus Prolog

11.3.187 recorda/3

Synopsis

recorda(+Key, +Term, -Ref)

records the Term in the internal database as the first item for the principal functor of Key ;
a database reference to the newly-recorded term is returned in Ref.

Arguments

Key term, must be nonvar

Term term

Ref db reference, must be var

Description

If Key is a compound term, then only its principal functor is significant. That is, foo(1)
represents the same key as foo(n).

Any uninstantiated variables in the Term will be replaced by brand new, unattributed
variables (see Section 4.2.4 [ref-sem-sec], page 74).

Exceptions

instantiation_error

Key is not instantiated

uninstantiation_error

Ref is not a variable

Examples

See Also

Section 4.12.8 [ref-mdb-idb], page 183.

Chapter 11: Prolog Reference Pages 1145

11.3.188 recorded/3

Synopsis

recorded(-Key, -Term, +Ref)

recorded(?Key, ?Term, ?Ref)

Searches the internal database for a term recorded under the principal functor of Key that
unifies with Term, and whose database reference unifies with Ref.

Arguments

Key term

Term term

Ref db reference

Description

If Ref is instantiated, then Key and Term are unified with the key and term associated with
Ref. Otherwise, If Key is a compound term, then only its principal functor is significant.
That is, foo(1) represents the same key as foo(n).

Backtracking

Can be used to backtrack through all the matching terms recorded under the specified key.

Exceptions

type_error

Ref is not a database reference

Examples

See Also

Section 4.12.8 [ref-mdb-idb], page 183.

1146 SICStus Prolog

11.3.189 recordz/3

Synopsis

recordz(+Key, +Term, -Ref)

records the Term in the internal database as the last item for the principal functor of Key ;
a database reference to the newly-recorded term is returned in Ref.

Arguments

Key term, must be nonvar

Term term

Ref db reference, must be var

Description

If Key is a compound term, then only its principal functor is significant. That is, foo(1)
represents the same key as foo(n).

Any uninstantiated variables in the Term will be replaced by brand new, unattributed
variables (see Section 4.2.4 [ref-sem-sec], page 74).

Exceptions

instantiation_error

Key is not instantiated

uninstantiation_error

Ref is not a variable

Examples

See Also

Section 4.12.8 [ref-mdb-idb], page 183.

Chapter 11: Prolog Reference Pages 1147

11.3.190 remove_breakpoints/1 development

Synopsis

remove_breakpoints(+BIDs)

Removes the breakpoints specified by BIDs.

Arguments

BIDs list of integer, must be ground

Breakpoint identifiers.

Exceptions

instantiation_error

type_error

in BIDs

See Also

Section 5.6.7 [Built-in Predicates for Breakpoint Handling], page 260, Section 5.7 [Break-
point Predicates], page 272.

1148 SICStus Prolog

11.3.191 repeat/0 ISO

Synopsis

repeat

Succeeds immediately when called and whenever reentered by backtracking.

Description

Generally used to simulate the looping constructs found in traditional procedural languages.

Generates an infinite sequence of backtracking choices. In sensible code, repeat/0 is hardly
ever used except in repeat loops. A repeat loop has the structure

Head :-

...

save_state(OldState),

repeat,

generate(Datum),

action(Datum),

test(Datum),

!,

restore_state(OldState),

...

The purpose is to repeatedly perform some action on elements that are somehow generated,
e.g. by reading them from a stream, until some test becomes true. Usually, generate, action,
and test are all determinate. Repeat loops cannot contribute to the logic of the program.
They are only meaningful if the action involves side effects.

The easiest way to understand the effect of repeat/0 is to think of failures as “bouncing”
back off them causing re-execution of the later goals.

Repeat loops are not often needed; usually recursive procedure calls will lead to code that is
easier to understand as well as more efficient. There are certain circumstances, however, in
which repeat/0 will lead to greater efficiency. An important property of SICStus Prolog is
that all runtime data is stored in stacks so that any storage that has been allocated during
a proof of a goal is recovered immediately on backtracking through that goal. Thus, in
the above example, any space allocated by any of the actions is very efficiently reclaimed.
When an iterative construct is implemented using recursion, storage reclamation will only
be done by the garbage collector.

Tips

In the most common use of repeat loops, each of the calls succeeds determinately. It can be
confusing if calls sometimes fail, so that backtracking starts before the test is reached, or if
calls are nondeterminate, so that backtracking does not always go right back to repeat/0.

Note that the repeat loop can only be useful if one or more of the actions involves a side effect
— either a change to the data base (such as an assertion) or an I/O operation. Otherwise
you would do the same thing each time around the loop (which would never terminate).

Chapter 11: Prolog Reference Pages 1149

Backtracking

Succeeds repeatedly until backtracking is terminated by a cut or an exception.

Exceptions

None.

See Also

Section 4.2 [ref-sem], page 61.

1150 SICStus Prolog

11.3.192 restore/1

Synopsis

restore(+FileSpec)

Restores a saved state.

Arguments

FileSpec file spec, must be ground

The name of a saved state, ‘.sav’ extension optional.

Description

The system is returned to the program state previously saved to the file denoted by FileSpec
with start-up goal Goal. restore/1 may succeed, fail or raise an exception depending on
Goal.

Exceptions

instantiation_error

type_error

In FileSpec.

existence_error

The specified file does not exist. If the fileerrors Prolog flag is off, then the
predicate fails instead of raising this exception.

permission_error

A specified file is not readable. If the fileerrors Prolog flag is off, then the
predicate fails instead of raising this exception.

Examples

| ?- save_program(state, format('Restored!\n',[])).

% /home/matsc/sicstus4/Bips/state.sav created in 0 msec

yes

| ?- restore(state).

% restoring /home/matsc/sicstus4/Bips/state.sav...

% /home/matsc/sicstus4/Bips/state.sav restored in 10 msec 16 bytes

Restored!

yes

See Also

save_program/[1,2], Section 3.10 [Saving], page 28, Section 4.4 [ref-sls], page 92,
Section 4.4.2 [ref-sls-sst], page 93, Section 4.9.4 [ref-lps-flg], page 136.

Chapter 11: Prolog Reference Pages 1151

11.3.193 retract/1 ISO

Synopsis

retract(+Clause)

Removes the first occurrence of dynamic clause Clause from module M.

Arguments

:Clause callable, must be nonvar

A valid Prolog clause.

Description

retract/1 erases the first clause in the database that matches Clause. Clause is retracted
in module M if specified. Otherwise, Clause is retracted in the source module.

retract/1 is nondeterminate. If control backtracks into the call to retract/1, then suc-
cessive clauses matching Clause are erased. If and when no clauses match, then the call to
retract/1 fails.

If the predicate did not previously exist, then it is created as a dynamic predicate and
retract/1 fails.

Clause must be of one of the forms:

• Head

• Head :- Body

• Module:Clause

where Head is of type callable and the principal functor of Head is the name of a dynamic
procedure. If specified, then Module must be an atom.

retract(Head) means retract the unit-clause Head. The exact same effect can be achieved
by retract((Head :- true)).

Body may be uninstantiated, in which case it will match any body. In the case of a unit-
clause it will be bound to true. Thus, for example,

| ?- retract((foo(X) :- Body)), fail.

is guaranteed to retract all the clauses for foo/1, including any unit-clauses, providing of
course that foo/1 is dynamic.

Backtracking

Can be used to retract all matching clauses through backtracking.

Exceptions

instantiation_error

Head (in Clause) or M is uninstantiated.

1152 SICStus Prolog

type_error

Head is not a callable, or M is not an atom, or Body is not a valid clause body.

permission_error

the procedure corresponding to Head is not dynamic

See Also

retractall/1, Section 4.12.5 [ref-mdb-rcd], page 179.

Chapter 11: Prolog Reference Pages 1153

11.3.194 retractall/1 ISO

Synopsis

retractall(+Head)

Removes every clause in module M whose head matches Head.

Arguments

:Head callable, must be nonvar

Head of a Prolog clause.

Description

Head must be instantiated to a term that looks like a call to a dynamic procedure. For
example, to retract all the clauses of foo/3, you would write

| ?- retractall(foo(_,_,_)).

Head may be preceded by a M : prefix, in which case the clauses are retracted from module
M instead of the calling module.

retractall/1 is useful for erasing all the clauses of a dynamic procedure without forget-
ting that it is dynamic; abolish/1 will not only erase all the clauses, but will also forget
absolutely everything about the procedure. retractall/1 only erases the clauses. This is
important if the procedure is called later on.

Since retractall/1 erases all the dynamic clauses whose heads match Head, it has no
choices to make, and is determinate. If there are no such clauses, then it succeeds trivially.
None of the variables in Head will be instantiated by this command.

If the predicate did not previously exist, then it is created as a dynamic predicate and
retractall/1 succeeds.

Exceptions

instantiation_error

Head or Module is uninstantiated.

type_error

Head is not a callable.

permission_error

the procedure corresponding to Head is not dynamic.

See Also

retract/1, Section 4.12.5 [ref-mdb-rcd], page 179.

1154 SICStus Prolog

11.3.195 save_files/2

Synopsis

save_files(+SourceFiles, +File)

Any code loaded from SourceFiles, as well as from any file included by them, is saved into
File in PO format.

Arguments

SourceFiles
file spec or list of file spec, must be ground

A file specification or a list of file specifications; extensions optional.

File file spec, must be ground

A file specification, ‘.po’ extension optional.

Description

Any module declarations, predicates, multifile clauses, or directives encountered in
SourceFiles, as well as from any file included by them, are saved in object format into
the file denoted by File. Source file information as provided by source_file/[1,2] for the
relevant predicates and modules is also saved.

File can later be loaded by load_files/[1,2], at which time any saved directives will be
re-executed. If any of the SourceFiles declares a module, then FileSpec too will behave as
a module file and export the predicates listed in the first module declaration encountered
in SourceFiles. See Section 4.4 [ref-sls], page 92.

Exceptions

instantiation_error

SourceFiles or File is not bound.

type_error

SourceFiles or File is not a valid file specification.

permission_error

File is not writable.

See Also

load_files/[1,2], Section 3.10 [Saving], page 28, Section 4.4 [ref-sls], page 92,
Section 4.4.3 [ref-sls-ssl], page 94.

Chapter 11: Prolog Reference Pages 1155

11.3.196 save_modules/2

Synopsis

save_modules(+Modules, +File)

Saves all predicates in Modules in PO format to File.

Arguments

Modules atom or list of atom, must be ground

An atom representing a current module, or a list of such atoms representing a
list of modules.

File file spec, must be ground

A file specification, ‘.po’ extension optional.

Description

The module declarations, predicates, multifile clauses and initializations belonging to Mod-
ules are saved in object format into the file denoted by File. Source file information and
embedded directives (except initializations) are not saved.

The PO file produced can be loaded using load_files/[1,2]. When multiple modules are
saved into a file, loading that file will import only the first of those modules into the module
in which the load occurred.

Exceptions

instantiation_error

Modules or File is not bound.

type_error

Modules is not a valid list of module names, or a single module name, or File
is not a valid file specification.

permission_error

File is not writable.

existence_error

A given module is not a current module.

See Also

load_files/[1,2], Section 3.10 [Saving], page 28, Section 4.4 [ref-sls], page 92,
Section 4.4.3 [ref-sls-ssl], page 94.

1156 SICStus Prolog

11.3.197 save_predicates/2

Synopsis

save_predicates(+PredSpecs, +File)

Saves all predicates in PredSpecs in PO format to File.

Arguments

:PredSpecs
pred spec tree

A predicate specification, or a list of such.

File file spec, must be ground

A file specification, ‘.po’ extension optional.

Description

save_predicates/2 saves the current definitions of all the predicates specified by the list
of predicate specifications in PO format into a file. The module of the predicates saved
in the PO file is fixed, so it is not possible to save a predicate from any module foo, and
reload it into module bar. Source file information and embedded directives are not saved.
A typical use of this would be to take a snapshot of a table of dynamic facts.

The PO file that is written out can be loaded using load_files/[1,2].

Please note: if PredSpecs contains specifications for which no matching predicate can be
found, then a warning is issued, and the file is written anyway. Also, no built-in predicates
are saved.

Exceptions

instantiation_error

PredSpecs is not instantiated enough, or File is not bound.

type_error

PredSpecs is not a valid tree of predicate specifications, or File is not a valid
file specification, or a Name is not an atom or an Arity is not an integer.

domain_error

if an Arity is specified as an integer outside the range 0-255.

permission_error

File is not writable.

See Also

load_files/[1,2], Section 3.10 [Saving], page 28, Section 4.4 [ref-sls], page 92,
Section 4.4.3 [ref-sls-ssl], page 94.

Chapter 11: Prolog Reference Pages 1157

11.3.198 save_program/[1,2]

Synopsis

save_program(+File)

save_program(+File, +Goal)

Saves the state of the current execution in object format to File. A goal, Goal, to be called
upon execution/restoring of the saved state, may be specified.

Arguments

File file spec, must be ground

A file specification, ‘.sav’ extension optional.

:Goal callable, must be nonvar

A goal, defaults to true.

Description

save_program/[1,2] creates a binary representation of all predicates in all modules ex-
isting in the system. However, it does not save the user’s pre-linked code. It also saves
such states of the system as operator definitions, Prolog flags, debugging and advice state,
initializations, and dependencies on foreign resources.

The resulting file can be restored using restore/1.

Any unbound variables in Goal with attributes or blocked goals attached to them will be
replaced by plain, brand new variables. This is analogous to the way attributed variables
are handled in terms that are written, copied, asserted, gathered as solutions to findall/3

and friends, or raised as exceptions. To retain the attributes, you can use copy_term/3 (see
Section 4.8.7 [ref-lte-cpt], page 129).

Exceptions

instantiation_error

File or Goal is not bound.

type_error

File is not a valid file specification, or Goal is not a callable.

permission_error

File is not writable.

1158 SICStus Prolog

Examples

| ?- save_program(state, format('Restored!\n',[])).

% /home/matsc/sicstus4/Bips/state.sav created in 0 msec

yes

| ?- restore(state).

% restoring /home/matsc/sicstus4/Bips/state.sav...

% /home/matsc/sicstus4/Bips/state.sav restored in 10 msec 16 bytes

Restored!

yes

See Also

restore/1, Section 3.10 [Saving], page 28, Section 4.4 [ref-sls], page 92, Section 4.4.2 [ref-
sls-sst], page 93.

Chapter 11: Prolog Reference Pages 1159

11.3.199 see/1

Synopsis

see(+FileOrStream) Makes file FileOrStream the current input stream.

Arguments

FileOrStream
file spec or stream object, must be ground

Description

If there is an open input stream associated with FileOrStream, and that stream was opened
by see/1, then it is made the current input stream. Otherwise, the specified file is opened
for input in text mode with default options and made the current input stream.

Different file names (that is, names that do not unify) represent different streams (even if
they correspond to the same file). Therefore, assuming food and ./food represent the same
file, the following sequence will open two streams, both connected to the same file.

see(food)

...

see('./food')

It is important to remember to close streams when you have finished with them. Use seen/0
or close/[1,2].

Exceptions

instantiation_error

FileOrStream is not instantiated enough.

existence_error

FileOrStream specifies a nonexisting file, and the fileerrors Prolog flag is on.

permission_error

FileOrStream is a stream not currently open for input, or FileOrStream specifies
a file with insufficient access permission, and the fileerrors Prolog flag is on.

domain_error

FileOrStream is neither a file spec nor a stream object.

See Also

seen/0, open/[3,4], current_input/1, Section 4.6.7 [ref-iou-sfh], page 109, Section 4.9.4
[ref-lps-flg], page 136.

1160 SICStus Prolog

11.3.200 seeing/1

Synopsis

seeing(-FileOrStream)

Unifies FileOrStream with the current input stream or file.

Arguments

FileOrStream
file spec or stream object

Description

Exactly the same as current_input(FileOrStream), except that FileOrStream will be
unified with a filename if the current input stream was opened by see/1 (Section 4.6.7
[ref-iou-sfh], page 109).

Can be used to verify that FileNameOrStream is still the current input stream as follows:

% nonvar(FileNameOrStream),

see(FileNameOrStream),

...

seeing(FileNameOrStream)

If the current input stream has not been changed (or if changed, then restored), then the
above sequence will succeed for all file names and all stream objects opened by open/[3,4].
However, it will fail for all stream objects opened by see/1 (since only filename access to
streams opened by see/1 is supported). This includes the stream object user_input (since
the standard input stream is assumed to be opened by see/1, and so seeing/1 would return
user in this case).

If FileOrStream is instantiated to a value that is not the identifier of the current input
stream, then seeing(FileOrStream) simply fails.

Can be followed by see/1 to ensure that a section of code leaves the current input un-
changed:

% var(OldFileNameOrStream),

seeing(OldFileNameOrStream),

...

see(OldFileNameOrStream)

The above is analogous to its stream-object-based counterpart,

% var(OldStream),

current_input(OldStream),

...

set_input(OldStream)

Chapter 11: Prolog Reference Pages 1161

Both of these sequences will always succeed regardless of whether the current input stream
was opened by see/1 or open/[3,4].

Exceptions

None.

See Also

see/1, open/[3,4], current_input/1, Section 4.6.7 [ref-iou-sfh], page 109.

1162 SICStus Prolog

11.3.201 seek/4

Synopsis

seek(+Stream, +Offset, +Method, -NewLocation)

Seeks to an arbitrary position in Stream.

Arguments

Stream stream object, must be ground

A valid Prolog stream.

Offset integer, must be nonvar

The offset, in items, to seek relative to the specified Method. Items are bytes
for binary streams, characters for text streams.

Method one of [bof,current,eof], must be nonvar

Where start seeking, one of the following:

bof Seek from beginning of the file stream.

current Seek from current position of the file stream.

eof Seek from end of the file stream.

NewLocation
integer

The offset from beginning of the file after seeking operation.

Description

Sets the current position of the file stream Stream to a new position according to Offset
and Method. If Method is:

bof then the new position is set to Offset items from beginning of the file stream.

current then the new position is Offset plus the current position of Stream.

eof then the new position is Offset, plus the current size of the stream.

Avoid using this Method. Determining the size of the stream may be expensive
or unsupported for some streams.

Positions and offsets are measured in items, bytes for binary streams and characters for
text streams. Note that there may not be any simple relationship between the number of
characters read and the byte offset of a text file.

After applying this operation on a text stream, the line counts and line position aspects of
the stream position of Stream will be undefined.

The term “file” above is used even though the stream may be connected to other seekable
objects that are not files, e.g. an in-memory buffer.

Chapter 11: Prolog Reference Pages 1163

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

instantiation_error

Offset or Method is not instantiated.

type_error

Stream is not a stream object, or Offset is not an integer, or Method is not an
atom.

domain_error

Method is not one of bof, current or eof, or the resulting position would refer
to an unsupported location. Some streams supports setting the position past
the current end of the stream, in this case the stream is padded with zero bytes
or characters as soon as an item is written to the new location.

permission_error

Seeking was not possible. Common reasons include: the stream has not been
opened with reposition(true), the stream is a text stream that does not
implement seeking, or an I/O error happened during seek.

See Also

stream_position/2, set_stream_position/2, open/[3,4], byte_count/2, character_
count/2, line_count/2, line_position/2, Section 4.6.7 [ref-iou-sfh], page 109.

1164 SICStus Prolog

11.3.202 seen/0

Synopsis

seen

Closes the current input stream.

Description

Current input stream is set to be user_input; that is, the user’s terminal.

Always succeeds

Exceptions

None.

Examples

See Also

see/1, close/[1,2], current_input/1, Section 4.6.7 [ref-iou-sfh], page 109.

Chapter 11: Prolog Reference Pages 1165

11.3.203 set_input/1 ISO

Synopsis

set_input(+Stream)

makes Stream the current input stream.

Arguments

Stream stream object, must be ground

A valid input stream.

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109).

See Also

see/1, Section 4.6.7 [ref-iou-sfh], page 109.

1166 SICStus Prolog

11.3.204 set_module/1

Synopsis

set_module(+ModuleName)

Changes the type-in module (see Section 4.11.8 [ref-mod-tyi], page 166) to ModuleName.
Thus subsequent top-level goals use ModuleName as their source module.

Arguments

ModuleName
atom, must be nonvar

The name of a module.

Description

If ModuleName is not a current module, then a warning message is issued, but the type-in
module is changed nonetheless.

Calling set_module/1 from a command embedded in a file that is being loaded does not
affect the loading of clauses from that file. It only affects subsequent goals that are typed
at top level.

Exceptions

instantiation_error

type_error

Examples

See Also

Section 4.11 [ref-mod], page 161, Section 4.11.8 [ref-mod-tyi], page 166.

Chapter 11: Prolog Reference Pages 1167

11.3.205 set_output/1 ISO

Synopsis

set_output(+Stream)

makes Stream the current output stream.

Arguments

Stream stream object, must be ground

A valid output stream.

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109).

See Also

tell/1, Section 4.6.7 [ref-iou-sfh], page 109.

1168 SICStus Prolog

11.3.206 set_prolog_flag/2 ISO

Synopsis

set_prolog_flag(+FlagName, +Value)

same as:

prolog_flag(FlagName, _, Value)

Arguments

FlagName atom, must be nonvar

Value term, must be nonvar and belong to proper type/domain

Exceptions

instantiation_error

An argument is unbound.

type_error

FlagName is not an atom, or Value has the wrong type.

domain_error

FlagName is not a valid flag name, or Value is not a valid value for it.

permission_error

The flag is read-only.

See Also

current_prolog_flag/2, prolog_flag/[2,3], Section 4.9.4 [ref-lps-flg], page 136.

Chapter 11: Prolog Reference Pages 1169

11.3.207 set_stream_position/2 ISO

Synopsis

set_stream_position(+Stream, +Position)

Sets the current position of Stream to Position.

Arguments

Stream stream object, must be ground

An open stream.

Position term

Stream position object representing the current position of Stream.

Description

set_stream_position/2 repositions the stream pointer, and also the other counts, such
as byte, character, and line counts and line position. It may only be used on streams that
have been opened with the open/4 option reposition(true).

Please note: A stream position object is represented by a special Prolog term. The only
safe way of obtaining such an object is via stream_position/2 or stream_property/2.
You should not try to construct, change, or rely on the form of this object. It may change
in subsequent releases.

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

instantiation_error

domain_error

Position is not a valid stream position object.

See Also

stream_position/2, stream_property/2, Section 4.6.7 [ref-iou-sfh], page 109.

1170 SICStus Prolog

11.3.208 setof/3 ISO

Synopsis

setof(+Template, +Generator, -Set)

Returns the non-empty set Set of all instances of Template such that Generator is provable.

Arguments

Template term

:Generator
callable, must be nonvar

A goal to be proved as if by call/1.

Set list of term

Description

Set is a non-empty set of terms represented as a list of those terms, without duplicates,
in the standard order for terms (see Section 4.8.8 [ref-lte-cte], page 130). If there are no
instances of Template such that Generator is satisfied, then setof/3 simply fails.

Obviously, the set to be enumerated should be finite, and should be enumerable by Prolog
in finite time. It is possible for the provable instances to contain variables, but in this case
Set will only provide an imperfect representation of what is in reality an infinite set.

If Generator is instantiated, but contains uninstantiated variables that do not also appear
in Template, then setof/3 can succeed nondeterminately, generating alternative values for
Set corresponding to different instantiations of the free variables of Generator. (It is to
allow for such usage that Set is constrained to be non-empty.)

If Generator is of the form A^B, then all the variables in A are treated as being existentially
quantified.

Please note: If the instances being gathered contain attributed variables (see Section 10.3
[lib-atts], page 388) or suspended goals (see Section 4.2.4 [ref-sem-sec], page 74), then those
variables are replaced by brand new variables, without attributes, in the Set. To retain the
attributes, you can use copy_term/3 (see Section 4.8.7 [ref-lte-cpt], page 129).

Backtracking

setof/3 can succeed nondeterminately, generating alternative values for Set corresponding
to different instantiations of the free variables of Generator.

Exceptions

Call errors (see Section 4.2.6 [ref-sem-exc], page 77).

Examples

See findall/3 for examples that illustrate the differences among findall/3, setof/3, and
bagof/3.

Chapter 11: Prolog Reference Pages 1171

See Also

findall/3, bagof/3, ^/2, Section 4.13 [ref-all], page 186.

1172 SICStus Prolog

11.3.209 simple/1

Synopsis

simple(+Term)

Term is currently not instantiated to a compound term.

Arguments

Term term

Examples

| ?- simple(9).

yes

| ?- simple(_X).

yes

| ?- simple("a").

no

Exceptions

None.

See Also

Section 4.8.1.1 [ref-lte-met-typ], page 126.

Chapter 11: Prolog Reference Pages 1173

11.3.210 skip_byte/[1,2]

Synopsis

skip_byte(+Byte)

skip_byte(+Stream, +Byte)

read up to and including the first occurrence of Byte on the current input stream or on the
input stream Stream.

Arguments

Stream stream object, must be ground

A valid input binary stream, defaults to the current input stream.

Byte byte

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

type_error

Byte is an invalid byte.

permission_error

Trying to read beyond end of Stream

type_error

Byte is not a byte

See Also

Section 4.6.5 [ref-iou-cin], page 107.

1174 SICStus Prolog

11.3.211 skip_char/[1,2]

Synopsis

skip_char(+Char)

skip_char(+Stream, +Char)

Read up to and including the first occurrence of Char on the current input stream or on
the input stream Stream.

Arguments

Stream stream object, must be ground

A valid input text stream.

Char char

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

permission_error

Trying to read beyond end of Stream

type_error

Char is not a char

See Also

Section 4.6.5 [ref-iou-cin], page 107.

Chapter 11: Prolog Reference Pages 1175

11.3.212 skip_code/[1,2]

Synopsis

skip_code(+Code)

skip_code(+Stream, +Code)

read up to and including the first occurrence of Code on the current input stream or on the
input stream Stream.

Arguments

Stream stream object, must be ground

A valid input text stream, defaults to the current input stream.

Code code

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

permission_error

Trying to read beyond end of Stream

representation_error

Code is not a code

See Also

Section 4.6.5 [ref-iou-cin], page 107.

1176 SICStus Prolog

11.3.213 skip_line/[0,1]

Synopsis

skip_line

skip_line(+Stream)

Skip the remaining input characters on the current line on Stream.

Arguments

Stream stream object, must be ground

A valid input text stream, defaults to the current input stream.

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

permission_error

Trying to read beyond end of Stream

See Also

at_end_of_line/[0,1], Section 4.6.5 [ref-iou-cin], page 107.

Chapter 11: Prolog Reference Pages 1177

11.3.214 sort/2 ISO

Synopsis

sort(+List, -Sorted)

Sorts the elements of the list List into the ascending standard order, and removes any
multiple occurrences of an element. The resulting sorted list is unified with the list Sorted.

Arguments

List list of term, must be a proper list

Sorted list of term

Sorted is type checked since release 4.3 for alignment with the ISO Prolog standard. Pre-
vious releases simply failed instead of reporting an error for malformed Sorted.

Exceptions

instatiation_error

type_error

List is not a proper list

type_error

Sorted cannot be unified with a proper list

Examples

| ?- sort([a,X,1,a(x),a,a(X)], L).

L = [X,1,a,a(X),a(x)]

(The time taken to do this is at worst order (N log N) where N is the length of the list.)

See Also

Section 4.8.8.3 [ref-lte-cte-sor], page 131.

1178 SICStus Prolog

11.3.215 source_file/[1,2]

Synopsis

source_file(?AbsFile)

source_file(?Pred, ?AbsFile)

AbsFile is the absolute name of a loaded file, and Pred is a predicate with clauses in that
file. AbsFile will be user if the special file specification user was loaded, and Pred is a
predicate with clauses from user.

Arguments

:Pred callable

Selected predicate specification.

AbsFile atom

Absolute filename.

Description

Loaded files include compiled, consulted, restored, PO loaded and pre-linked files.

If AbsFile is bound and not the name of a loaded file, or if Pred is bound and not the name
of a loaded predicate, then source_file(AbsFile) simply fails.

To find any predicates defined in a given file, use the form:

source_file(M:P, File)

Examples

Suppose that the startup file ~/.sicstusrc defines a predicate user:cd/1. Then upon
startup:

| ?- source_file(F).

F = '/src/sicstus/matsc/sicstus4/Utils/x86-linux-glibc2.3/bin/sp-

4.1.0/sicstus-4.1.0/library/SU_messages.pl' ? ;

F = '/home/matsc/.sicstusrc' ? ;

no

| ?- source_file(P,F).

F = '/home/matsc/.sicstusrc',

P = cd(_A) ? ;

no

| ?- source_file('SU_messages':P,F).

F = '/src/sicstus/matsc/sicstus4/Utils/x86-linux-glibc2.3/bin/sp-

4.1.0/sicstus-4.1.0/library/SU_messages.pl',

P = query_class(_A,_B,_C,_D,_E) ? RET

yes

Chapter 11: Prolog Reference Pages 1179

Exceptions

None.

See Also

Section 4.9.3 [ref-lps-apf], page 136.

1180 SICStus Prolog

11.3.216 spy/[1,2] development

Synopsis

spy +PredSpecs

Sets plain spypoints on all the predicates represented by PredSpecs.

spy(+PredSpecs, +Conditions)

Sets conditional spypoints on all the predicates represented by PredSpecs.

Arguments

:PredSpecs
pred spec tree

A predicate specification, or a list of such.

:Conditions
term, must be ground

Spypoint conditions.

Description

Turns debugger on in debug mode, so that it will stop as soon as it reaches a spypoint.
Turning off the debugger does not remove spypoints. Use nospy/1 or nospyall/0) to
explicitly remove them.

If you use the predicate specification form Name but there are no clauses for Name (of any
arity), then a warning message will be displayed and no spypoint will be set.

| ?- spy test.

* spy user:test - no matching predicate

Exceptions

instantiation_error

type_error

domain_error

if a PredSpec is not a valid procedure specification

See Also

Section 5.2 [Basic Debug], page 233, Section 5.3 [Plain Spypoint], page 235, Section 5.7
[Breakpoint Predicates], page 272.

Chapter 11: Prolog Reference Pages 1181

11.3.217 statistics/[0,2]

Synopsis

statistics

Displays statistics relating to memory usage and execution time.

statistics(?Keyword, ?List)

Obtains individual statistics.

Arguments

Keyword atom

Statistics key (see Section 4.10.1.2 [ref-mgc-ove-sta], page 146).

List list of integer

List of statistics.

Description

statistics/0 displays various statistics relating to memory usage, runtime and garbage
collection, including information about which areas of memory have overflowed and how
much time has been spent expanding them. The printing is handled by print_message/2.

Garbage collection statistics are initialized to zero when a Prolog session starts. The statis-
tics increase until the session is over.

statistics/2 is usually used with Keyword instantiated to a keyword such as runtime and
List unbound. The predicate then binds List to a list of statistics related to the keyword.
It can be used in programs that depend on current runtime statistical information for their
control strategy, and in programs that choose to format and write out their own statistical
summaries.

Exceptions

type_error

domain_error

Invalid keyword.

Examples

To report information on the runtime of a predicate p/0, add the following to your program:

:- statistics(runtime, [T0|_]),

p,

statistics(runtime, [T1|_]),

T is T1 - T0,

format('p/0 took ~3d sec.~n', [T]).

See Also

Section 4.10.1.2 [ref-mgc-ove-sta], page 146, Section 4.16 [ref-msg], page 212.

1182 SICStus Prolog

11.3.218 stream_code/2

Synopsis

stream_code(-Stream, +CStream)

stream_code(+Stream, -CStream)

Converts between Prolog representation, Stream, and C representation, CStream, of a
stream.

Arguments

Stream stream object

A valid Prolog stream.

CStream integer

Representing an SP_stream * pointer.

Description

At least one argument must be ground. stream_code/2 is used when there are input/output
related operations performed on the same stream in both Prolog code and foreign code. The
CStream value can be used as the stream argument to any of the SP * functions taking a
stream argument.

Exceptions

instantiation_error

Both Stream and CStream unbound.

type_error

Stream or CStream is not a stream type or CStream is not an integer type.

existence_error

Stream is syntactically valid but does not name an open stream or CStream is
of integer type but does not name a pointer to a stream.

See Also

Section 6.6.1 [Prolog Streams], page 310.

Chapter 11: Prolog Reference Pages 1183

11.3.219 stream_position/2

Synopsis

stream_position(+Stream, -Position)

True when Position represents the current position of Stream.

Arguments

Stream stream object, must be ground

An open stream.

Position term

Stream position object representing the current position of Stream.

Description

Byte, character, and line counts and line position determine the position of the pointer
in the stream. Such information is found by using byte_count/2, character_count/2,
line_count/2 and line_position/2. A stream position object packages this information
as a single Prolog terms. You can retrieve this information from a stream position object
using stream_position_data/3. Do not rely on the form of this object in any other way.

Standard term comparison of two stream position objects for the same stream will work as
one expects. When SP1 and SP2 refer to positions in the same stream, SP1 @< SP2 if and
only if SP1 is before SP2 in the stream.

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109).

Examples

See Also

Section 4.6.7 [ref-iou-sfh], page 109.

1184 SICStus Prolog

11.3.220 stream_position_data/3

Synopsis

stream position data(?Field, ?Position, ?Value)

Value is the value of the Field field of stream position object Position.

Arguments

Field one of [byte_count,line_count,character_count,line_position]

Note that byte_count is meaningful only for binary streams and that the other
values are meaningful only for text streams.

Position term

Stream position object representing the current position of Stream.

Value integer

Backtracking

Can be used to backtrack over the fields.

Exceptions

None.

See Also

Section 4.6.7 [ref-iou-sfh], page 109.

Chapter 11: Prolog Reference Pages 1185

11.3.221 stream_property/2 ISO

Synopsis

stream property(?Stream, ?Property)

Stream Stream has stream property Property.

Arguments

Stream stream object

Property term

A stream property, one of the following:

file_name(F)

F is the file name associated with the Stream.

mode(M) Stream has been opened in mode M.

id(ID) since release 4.2

Stream has the unique identity ID. The identity of a stream is
a positive integer that is never re-used during the life-time of the
SICStus process. This is unlike the compound term Stream which
is likely to be re-used for some new stream after the original stream
denoted by Stream has been closed.

input Stream is an input stream. Note that both input and output

stream properties are set for bidirectional streams.

output Stream is an output stream. Note that both input and output

stream properties are set for bidirectional streams.

alias(A) Stream has an alias A.

position(P)

P is a term representing the current stream position of Stream.
Only guaranteed to be available if the stream has been opened
with the open/4 option reposition(true).

Same as stream_position(Stream, P) except that the latter
can be called on any stream, regardless of the value of the
reposition/1 open/4 option.

end_of_stream(E)

E describes the position of the input stream Stream, with respect
to the end of stream. If not all characters have been read, or if
peeking ahead to determine this fact would block, then E is unified
with not; otherwise, (all characters read) but no end of stream
indicator (-1 or end_of_file) was reported yet, then E is unified
with at; otherwise, E is unified with past.

eof_action(A)

A is the end-of-file action applicable to Stream, cf. the eof_action
option of open/4.

1186 SICStus Prolog

type(T) Stream is of type T, one of text, binary, cf. the type option of
open/4.

input_encoding(CS) since release 4.3

output_encoding(CS) since release 4.3

Stream is a text stream with encoding CS in the input direction, cf.
the encoding option of open/4. Note that the encoding used may
be different from the encoding option passed to open/4 if a byte
order mark or other information was used to determine the real
encoding of the file, cf. the encoding_signature option of open/4.

encoding(CS)

Stream is a text stream open in direction input, with input encoding
CS or Stream is a text stream open in direction output but not in
direction input, with output encoding CS.

Note that, for bi-directional streams, the encoding/1 property re-
flects the input_encoding/1.

eol(EOL) Stream is a text stream with end of line convention EOL, cf. the
eol option of open/4.

encoding_signature(ES)

If Stream is a text stream, then ES is determined as follows:

If the file contents was used to determine the character encoding,
then ES will be true. Typically this is the result of opening, in mode
read, a text file that contains a byte order mark or some other
information that lets open/[3,4] determine a suitable encoding,
cf. the encoding_signature option of open/4.

Otherwise, if the stream is open in direction output, then ES will
be as specified when the file was opened.

reposition(REPOSITION)

REPOSITION is true if it is possible to set the position of the
stream with set_stream_position/2, cf. the reposition option
of open/4.

interactive since release 4.1

Stream is an interactive stream.

Most streams have only a subset of these properties set.

More properties may be added in the future.

Backtracking

Can be used to backtrack over all currently open streams, including the standard in-
put/output/error streams, and all their properties. See Section 4.6.7.8 [ref-iou-sfh-bos],
page 113.

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

Chapter 11: Prolog Reference Pages 1187

domain_error

Stream is not a valid stream object, or Property is not a valid stream property.

See Also

Section 4.6.7 [ref-iou-sfh], page 109.

1188 SICStus Prolog

11.3.222 sub_atom/5 ISO

Synopsis

sub_atom(+Atom,-Before,-Length,-After,-SubAtom)

The characters of SubAtom form a sublist of the characters of Atom, such that the number
of characters preceding SubAtom is Before, the number of characters after SubAtom is
After, and the length of SubAtom is Length.

Arguments

Atom atom, must be nonvar

The atom from which a part is selected.

Before integer

The number of characters preceding SubAtom.

Length integer

The number of characters of SubAtom.

After integer

The number of characters following SubAtom.

SubAtom atom

The selected part of Atom.

Description

Capable of nondeterminately enumerating all sub-atoms and their all possible placements,
e.g.:

| ?- sub_atom(abrakadabra, Before, _, After, ab).

After = 9,

Before = 0 ? ;

After = 2,

Before = 7 ? ;

no

Exceptions

instantiation_error

Atom is uninstantiated.

type_error

Atom is not an atom. Before, Length, or After, if instantiated, is not an integer.
SubAtom, if instantiated, is not an atom.

domain_error

Before, Length, or After, if instantiated, is negative.

Chapter 11: Prolog Reference Pages 1189

See Also

atom_length/2, atom_concat/3.

1190 SICStus Prolog

11.3.223 subsumes_term/2 ISO

Synopsis

subsumes_term(+General, +Specific)

is true when Specific is an instance of General. It does not bind any variables.

Arguments

General any term.

Specific any term.

Description

True iff there is a substitution that makes General identical to Specific and that does not
affect Specific.

The predicate is determinate and either succeeds or fails. It never binds variables.

The predicate does not take any constraints, variable attributes, or blocked goals into

account when determining whether a substitution exists. This can be seen in the last two

examples.

Examples

Chapter 11: Prolog Reference Pages 1191

| ?- subsumes_term(a, a).

yes

| ?- subsumes_term(f(X,Y), f(Z,Z)).

yes

| ?- subsumes_term(f(Z,Z), f(X,Y)).

no

| ?- subsumes_term(g(X), g(f(X))).

no

| ?- subsumes_term(X, f(X)).

no

| ?- subsumes_term(X, Y), subsumes_term(Y, f(X)).

yes

| ?- when(nonvar(X), X=a), subsumes_term(X, b), X = a.

X = a ?

yes

| ?- when(nonvar(X), X=a), subsumes_term(X, b), X = b.

no

Exceptions

None.

See Also

Section 4.8.1.2 [ref-lte-met-usu], page 126.

1192 SICStus Prolog

11.3.224 tell/1

Synopsis

tell(+FileOrStream)

Makes file FileOrStream the current output stream.

Arguments

FileOrStream
file spec or stream object, must be ground

Description

If there is an open output stream associated with FileOrStream, and that stream was opened
by tell/1, then it is made the current output stream. Otherwise, the specified file is opened
for output in text mode with default options and made the current output stream.

Different file names (that is, names that do not unify) represent different streams (even if
they correspond to the same file). Therefore, assuming food and ./food represent the same
file, the following sequence will open two streams, both connected to the same file.

tell(food)

...

tell('./food')

It is important to remember to close streams when you have finished with them. Use told/0
or close/[1,2].

Exceptions

instantiation_error

FileOrStream is not instantiated enough.

existence_error

FileOrStream specifies a nonexisting file, and the fileerrors Prolog flag is on.

permission_error

FileOrStream is a stream not currently open for output, or FileOrStream spec-
ifies a file with insufficient access permission, and the fileerrors Prolog flag
is on.

domain_error

FileOrStream is neither a file spec nor a stream object.

See Also

told/0, open/[3,4], current_output/1, Section 4.6.7 [ref-iou-sfh], page 109, Section 4.9.4
[ref-lps-flg], page 136.

Chapter 11: Prolog Reference Pages 1193

11.3.225 telling/1

Synopsis

telling(-FileOrStream)

Unifies FileOrStream with the current output stream or file.

Arguments

FileOrStream
file spec or stream object

Description

Exactly the same as current_output(FileOrStream), except that FileOrStream will be
unified with a filename if the current output stream was opened by tell/1 (Section 4.6.7
[ref-iou-sfh], page 109).

Can be used to verify that FileNameOrStream is still the current output stream as follows:

% nonvar(FileNameOrStream),

tell(FileNameOrStream),

...

telling(FileNameOrStream)

If the current output stream has not been changed (or if changed, then restored), then the
above sequence will succeed for all file names and all stream objects opened by open/[3,4].
However, it will fail for all stream objects opened by tell/1 (since only filename access to
streams opened by tell/1 is supported). This includes the stream object user_output

(since the standard output stream is assumed to be opened by tell/1, and so telling/1

would return user in this case).

If FileOrStream is instantiated to a value that is not the identifier of the current output
stream, then telling(FileOrStream) simply fails.

Can be followed by tell/1 to ensure that a section of code leaves the current output
unchanged:

% var(OldFileNameOrStream),

telling(OldFileNameOrStream),

...

tell(OldFileNameOrStream)

The above is analogous to its stream-object-based counterpart,

% var(OldStream),

current_output(OldStream),

...

set_output(OldStream)

1194 SICStus Prolog

Both of these sequences will always succeed regardless of whether the current output stream
was opened by tell/1 or open/[3,4].

Exceptions

None.

See Also

tell/1, open/[3,4], current_input/1, Section 4.6.7 [ref-iou-sfh], page 109.

Chapter 11: Prolog Reference Pages 1195

11.3.226 ==/2 ISO

Synopsis

+Term1 == +Term2

Succeeds if Term1 and Term2 are identical terms.

Arguments

Term1 term

Term2 term

Examples

For example, the query

| ?- X == Y.

fails (answers ‘no’) because X and Y are distinct uninstantiated variables. However, the
query

| ?- X = Y, X == Y.

succeeds because the first goal unifies the two. variables

Exceptions

None.

See Also

Section 4.8.8 [ref-lte-cte], page 130.

1196 SICStus Prolog

11.3.227 term_expansion/6 hook

Synopsis

:- multifile user:term_expansion/6.

user:term_expansion(+Term1, +Layout1, +Tokens1, -Term2, -Layout2, -Tokens2)

Overrides or complements the standard transformations to be done by expand_term/2.

Arguments

Term1 term

Term to transform.

Layout1 term

Layout term of Term1.

Tokens1 list of atom

Term2 term

Transformed term.

Layout2 term

Layout term of Term2.

Tokens2 list of atom

Description

expand_term/2 calls this hook predicate first; if it succeeds, then the standard grammar
rule expansion is not tried.

Tokens1 is a list of atoms, each atom uniquely identifying an expansion. It is used to look
up what expansions have already been applied to the clause or goal. The tokens are defined
by the user, and should simply be added to the input list, before expansions recursively
are applied. This token list can for instance be used to avoid cyclic expansions. The
token dcg is reserved and denotes grammar rule expansion. Tokens2 should be unified with
[Token|Tokens1].

Layout1 and Layout2 are for supporting source-linked debugging in the context of clause
expansion. The predicate should construct a suitable Layout2 compatible with Term2 that
contains the line number information from Layout1. If source-linked debugging of Term2 is
not important, then Layout2 should be []. The recording of source info is affected by the
source_info prolog flag (see Section 4.9.4 [ref-lps-flg], page 136).

A clause of this predicate should conform to the following template, where convert(Term1,
Layout1, Expansion, Layout) should be a goal that performs the actual transformation.
Token should be the atom uniquely identifying this particular transformation rule. Tokens2
should be unified with [Token|Tokens1].

Chapter 11: Prolog Reference Pages 1197

user:term_expansion(Term1, Layout1, Tokens1, Term2, Layout2, Tokens2) :-

nonmember(Token, Tokens1),

convert(Term1, Layout1, Expansion, Layout),

!, % commit to this expansion

Term2 = Expansion,

Layout2 = Layout,

Tokens2 = [Token|Tokens1].

This hook predicate may return a list of terms rather than a single term. Each of the terms
in the list is then treated as a separate clause (or directive).

This hook predicate may also be used to transform queries entered at the terminal in
response to the ‘| ?- ’ prompt. In this case, it will be called with Term1 = ?-(Query)

and should succeed with Term2 = ?-(ExpandedQuery).

For accessing aspects of the load context, e.g. the name of the file being compiled, the
predicate prolog_load_context/2 (see Section 4.9.5 [ref-lps-lco], page 143) can be used.

Exceptions

Exceptions are treated as failures, except an error message is printed also.

See Also

Section 4.3.5 [ref-lod-exp], page 87, Chapter 2 [Glossary], page 7.

1198 SICStus Prolog

11.3.228 @>/2 ISO

Synopsis

+Term1 @> +Term2

Succeeds if Term1 is after Term2 in the standard order.

Arguments

Term1 term

Term2 term

Exceptions

None.

See Also

Section 4.8.8 [ref-lte-cte], page 130.

Chapter 11: Prolog Reference Pages 1199

11.3.229 @</2 ISO

Synopsis

+Term1 @< +Term2

Succeeds if Term1 is before Term2 in the standard order.

Arguments

Term1 term

Term2 term

Exceptions

None.

See Also

Section 4.8.8 [ref-lte-cte], page 130.

1200 SICStus Prolog

11.3.230 \==/2 ISO

Synopsis

+Term1 \== +Term2

Succeeds if Term1 and Term2 are non-identical terms.

Arguments

Term1 term

Term2 term

Exceptions

None.

See Also

Section 4.8.8 [ref-lte-cte], page 130.

Chapter 11: Prolog Reference Pages 1201

11.3.231 @=</2 ISO

Synopsis

+Term1 @=< +Term2

Succeeds if Term1 is not after Term2 in the standard order.

Arguments

Term1 term

Term2 term

Exceptions

None.

See Also

Section 4.8.8 [ref-lte-cte], page 130.

1202 SICStus Prolog

11.3.232 @>=/2 ISO

Synopsis

+Term1 @>= +Term2

Succeeds if Term1 is not before Term2 in the standard order.

Arguments

Term1 term

Term2 term

Exceptions

None.

See Also

Section 4.8.8 [ref-lte-cte], page 130.

Chapter 11: Prolog Reference Pages 1203

11.3.233 ?=/2

Synopsis

?=(+Term1,+Term2)

Succeeds if Term1 and Term2 are identical terms, or if they are syntactically non-unifiable.

Arguments

Term1 term

Term2 term

Comments

Succeeds if and only if dif(Term1,Term2) does not block.

Exceptions

None.

See Also

Section 4.8.1.2 [ref-lte-met-usu], page 126.

1204 SICStus Prolog

11.3.234 term_variables/2 ISO

Synopsis

term_variables(+Term, -Variables) since release 4.3 True if Variables is the list of
variables occurring in Term, without duplicates, in first occurrence order.

Arguments

Term Any term, a cyclic term is also accepted.

-Variables The variables in the term. Must be a variable or a list.

Exceptions

type_error

Variables is not a variable or a list.

Examples

| ?- term_variables(f(A, B, A), Vs).

Vs = [A,B] ?

yes

| ?- term_variables(f(a, b, a), Vs).

Vs = [] ?

yes

| ?- T=[A,B|T], term_variables(f(C,T), Vs).

T = [A,B,A,B,A,B,A,B,A,B|...],

Vs = [C,A,B] ?

yes

See Also

Section 4.8.2 [ref-lte-act], page 127.

Chapter 11: Prolog Reference Pages 1205

11.3.235 throw/1 ISO

Synopsis

throw(+Exception)

Exception is thrown as an exception.

Arguments

Exception term, must be nonvar

Exceptions

instantiation_error

Exception is unbound.

See Also

Section 4.15 [ref-ere], page 197, on_exception/1.

1206 SICStus Prolog

11.3.236 told/0

Synopsis

told

Closes the current output stream.

Description

Current output stream is set to be user_output; that is, the user’s terminal.

Always succeeds

Exceptions

None.

Examples

See Also

tell/1, close/[1,2], current_output/1, Section 4.6.7 [ref-iou-sfh], page 109.

Chapter 11: Prolog Reference Pages 1207

11.3.237 trace/0 development

Synopsis

trace

Turns on the debugger in trace mode.

Description

The debugger will start showing goals as soon as the first call is reached, and it will stop
to allow you to interact as soon as it reaches a leashed port (see leash/1). Setting the
debugger to trace mode means that every time you type a query, the debugger will start by
creeping.

The effect of this predicate can also be achieved by typing the letter t after a ^C interrupt
(see Section 3.7 [Execution], page 26).

Exceptions

None.

See Also

Section 5.2 [Basic Debug], page 233.

1208 SICStus Prolog

11.3.238 trimcore/0

Synopsis

trimcore

Force reclamation of memory in all of Prolog’s data areas.

Description

Trims the stacks, reclaims any dead clauses and predicates, defragmentizes Prolog’s free
memory, and endeavors to return any unused memory to the operating system.

The system property PROLOGKEEPSIZE can be used to define a lower bound on the amount of
memory to be retained. Also, the system property PROLOGINITSIZE can be used to request
that an initial amount of memory be allocated. This initially allocated memory will not be
touched by trimcore/0.

When trimming a given stacks, trimcore/0 will retain at least the amount of space initially
allocated for that stack.

trimcore/0 is called each time Prolog returns to the top level or the top of a break level,
except it does not trim the stacks then.

Exceptions

None.

See Also

Section 4.10.1.1 [ref-mgc-ove-rsp], page 146, Section 4.17.1 [System Properties and Envi-
ronment Variables], page 224.

Chapter 11: Prolog Reference Pages 1209

11.3.239 true/0 ISO

Synopsis

true

Always succeeds.

Exceptions

None.

See Also

Section 4.2 [ref-sem], page 61.

1210 SICStus Prolog

11.3.240 =/2 ISO

Synopsis

+Term1 = +Term2

unifies Term1 and Term2.

Arguments

Term1 term

Term2 term

Description

This is defined as if by the clause ‘Z = Z.’.

If =/2 is not able to unify Term1 and Term2, then it will simply fail.

Exceptions

None.

See Also

Chapter 2 [Glossary], page 7, Section 4.2.7 [ref-sem-occ], page 78.

Chapter 11: Prolog Reference Pages 1211

11.3.241 unify_with_occurs_check/2 ISO

Synopsis

unify_with_occurs_check(+Term1, +Term2)

Term1 and Term2 unify to a finite (acyclic) term.

Arguments

Term1 term

Term2 term

Description

Runs in almost linear time.

Exceptions

None.

See Also

Chapter 2 [Glossary], page 7.

1212 SICStus Prolog

11.3.242 =../2 ISO

Synopsis

+Term =.. -List

-Term =.. +List

Unifies List with a list whose head is the atomic term corresponding to the principal functor
of Term and whose tail is a list of the arguments of Term.

Arguments

Term term any term

List list of term and not empty

Description

If Term is uninstantiated, then List must be instantiated either to a proper list whose head
is an atom, or to a list of length 1 whose head is a number.

This predicate is not strictly necessary, since its functionality can be provided by arg/3

and functor/3, and using the latter two is usually more efficient.

Examples

| ?- product(0, n, n-1) =.. L.

L = [product,0,n,n-1]

| ?- n-1 =.. L.

L = [-,n,1]

| ?- product =.. L.

L = [product]

Exceptions

instantiation_error

Term is unbound and List is not instantiated enough.

type_error

List is not a proper list, or the head of List is not atomic, or the head of List
is a number and the tail of List is not empty.

domain_error

List is the empty list.

representation_error

Term is uninstantiated and List is longer than 256.

Chapter 11: Prolog Reference Pages 1213

See Also

functor/3, arg/3, Section 4.8.2 [ref-lte-act], page 127.

1214 SICStus Prolog

11.3.243 unknown/2 development

Synopsis

unknown(-OldAction, +NewAction)

Unifies OldAction with the current action on unknown procedures, i.e. the current value of
the unknown Prolog flag, sets the current action to NewAction, and prints a message about
the change.

Arguments

OldAction one of [error,fail,trace,warning]

NewAction
one of [error,fail,trace,warning], must be nonvar

Description

This is merely a front-end to the unknown Prolog flag, which see.

Note that:

| ?- unknown(Action, Action).

just returns Action without changing it.

Procedures that are known to be dynamic just fail when there are no clauses for them.

Exceptions

instantiation_error

type_error

domain_error

Invalid NewAction.

See Also

Section 3.6 [Undefined Predicates], page 26, Section 4.15 [ref-ere], page 197, Section 4.9.4
[ref-lps-flg], page 136.

Chapter 11: Prolog Reference Pages 1215

11.3.244 unknown_predicate_handler/3 hook

Synopsis

:- multifile user:unknown_predicate_handler/3.

user:unknown_predicate_handler(+Goal, +Module, -NewGoal)

User definable hook to trap calls to unknown predicates.

Arguments

Goal callable

The goal to trap.

Module atom

Any atom that is a current module

NewGoal callable

The goal to call instead.

Description

When Prolog comes across a call to an unknown predicate, Prolog makes a call to
user:unknown_predicate_handler/3 with the first two arguments bound. Goal is bound
to the call to the undefined predicate and Module is the module in which that predicate
is supposed to be defined. If the call to user:unknown_predicate_handler/3 succeeds,
then Prolog replaces the call to the undefined predicate with the call to Module:NewGoal.
Otherwise, the action taken is governed by the unknown Prolog flag.

Exceptions

Exceptions are treated as failures, except an error message is printed.

Examples

The following clause gives the same behavior as setting unknown(_,fail):

unknown_predicate_handler(_, _, fail).

The following clause causes calls to undefined predicates whose names begin with ‘xyz_’ in
module m to be trapped to my_handler/1 in module n. Predicates with names not beginning
with this character sequence are not affected.

unknown_predicate_handler(G, m, n:my_handler(G)) :-

functor(G,N,_),

atom_concat(xyz_, _, N).

See Also

Section 3.6 [Undefined Predicates], page 26, Section 4.15 [ref-ere], page 197, Section 4.9.4
[ref-lps-flg], page 136.

1216 SICStus Prolog

11.3.245 unload_foreign_resource/1 hookable

Synopsis

unload_foreign_resource(:Resource)

Unload the foreign resource Resource from Prolog. Relies on the hook predicates foreign_
resource/2 and foreign/[2,3].

Arguments

:Resource file spec, must be ground

The foreign resource to be unloaded. The file extension can be omitted.

Exceptions

instantiation_error

Resource not ground.

type_error

Resource not an atom.

existence_error

Resource does not exist as a foreign resource.

See Also

load_foreign_resource/1, foreign_resource/2, foreign/[2,3], Section 6.2.1 [Foreign
Resources], page 291, Section 6.2 [Calling C from Prolog], page 290.

Chapter 11: Prolog Reference Pages 1217

11.3.246 update_mutable/2

Synopsis

update_mutable(+Datum, +Mutable)

Updates the current value of the mutable term Mutable to become Datum.

Arguments

Datum term, must be nonvar

Mutable mutable, must be nonvar

Exceptions

instantiation_error

Datum or Mutable is uninstantiated.

type_error

Mutable is not a mutable.

See Also

Section 4.8.9 [ref-lte-mut], page 131.

1218 SICStus Prolog

11.3.247 use_module/[1,2,3]

Synopsis

use_module(+File)

Loads the module file(s) File, if not already loaded and up-to-date imports all exported
predicates.

use_module(+File, +Imports)

Loads module file File, if not already loaded and up-to-date imports according to Imports.

use_module(+Module, -File, +Imports)

Module is already loaded and up-to-date. Imports according to Imports.

use_module(-Module, +File, +Imports)

Module has not been loaded, or is out-of-date. Loads Module from File and imports
according to Imports.

Arguments

:File file spec or list of file spec, must be ground Any legal file specification. Only
use_module/1 accepts a list of file specifications, file extensions optional.

Imports list of simple pred spec or one of [all], must be ground Either a list of pred-
icate specifications in the Name/Arity form to import into the calling module,
or the atom all, meaning all predicates exported by the module are to be
imported.

Module atom The module name in File, or a variable, in which case the module name
is returned.

Description

Loads each specified file except the previously loaded files that have not been changed since
last loaded. All files should be module files; if they are not, then warnings are issued. All
the exported predicates of the modules are imported into the calling module (or module M
if specified).

use_module/2 imports only the predicates in Imports when loading File. If an attempt is
made to import a predicate that is not public, then a warning is issued. If File is not a
module file, then nothing is imported.

use_module/3 allows Module to be imported into another module without requiring that
its source file (File) be known, as long as the Module already exists in the system.

Generally, use_module/3 is similar to use_module/[1,2], except that if Module is already
in the system, then Module, or predicates from Module, are simply imported into the calling
module, and File is not loaded again. If Module does not already exist in the system, then
File is loaded, and use_module/3 behaves like use_module/2, except thatModule is unified,

Chapter 11: Prolog Reference Pages 1219

after the file has been loaded, with the actual name of the module in File. If Module is a
variable, then File must exist, and the module name in File is returned.

use_module/1 is similar to ensure_loaded/1 except that all files should be module files; if
they are not, then warnings are issued.

An attempt to import a predicate may fail or require intervention by the user because a
predicate with the same name and arity has already been defined in, or imported into, the
loading module (or module M if specified). Details of what happens in the event of such a
name clash are given in Section 4.11.2 [ref-mod-bas], page 162.

After loading the module file, the source module will attempt to import all the predicates in
Imports. Imports must be a list of predicate specifications in Name/Arity form. If the file
is not a module file, then nothing is imported. If any of the predicates in Imports are not
public predicates, then a warning is issued, but the predicates are imported nonetheless.
This lack of strictness is for convenience; if you forget to declare a predicate to be public,
then you can supply the necessary declaration and reload its module, without having to
reload the module that has imported the predicate.

While use_module/1 may be more convenient at the top level, use_module/2 is recom-
mended in files because it helps document the interface between modules by making the list
of imported predicates explicit.

For consistency, use_module/2 has also been extended so that the Imports may be specified
as the term all, in which case it behaves the same as use_module/1, importing the entire
module into the caller.

Exceptions

See also load_files/[2,3].

instantiation_error

File or Imports is not ground.

type_error

In File or Imports.

Examples

use_module/[1,2] could be defined as:

use_module(Files) :-

load_files(Files, [if(changed)]).

use_module(File, Imports) :-

load_files([File], [if(changed),imports(Imports)]).

use_module/3 can be used to access the (primary) module name of a module file:

1220 SICStus Prolog

| ?- use_module(Module, library(clpfd), all).

% loading /src/sicstus/matsc/sicstus4/Utils/x86-linux-glibc2.3/bin/sp-

4.1.0/sicstus-4.1.0/library/clpfd.po...

[...]

% loaded /src/sicstus/matsc/sicstus4/Utils/x86-linux-glibc2.3/bin/sp-

4.1.0/sicstus-4.1.0/library/clpfd.po in mod-

ule clpfd, 830 msec 496796 bytes

Module = clpfd ?

yes

See Also

Section 4.3.2 [ref-lod-lod], page 80.

Chapter 11: Prolog Reference Pages 1221

11.3.248 var/1 ISO

Synopsis

var(+Term)

Term is currently uninstantiated.

Arguments

Term term

Examples

| ?- var(foo(X,Y)).

no

| ?- var([X,Y]).

no

| ?- var(X).

true ;

no

| ?- Term = foo(X,Y), var(Term).

no

Exceptions

None.

See Also

Section 4.8.1.1 [ref-lte-met-typ], page 126.

1222 SICStus Prolog

11.3.249 volatile/1 declaration

Synopsis

:- volatile +PredSpecs

Declares PredSpecs to be volatile. Clauses of volatile predicates are not saved by the
‘save_*’ predicates.

Arguments

:PredSpecs
pred spec forest, must be ground

A predicate specification, or a list of such, or a sequence of such separated by
commas.

Exceptions

Exceptions in the context of loading code are printed as error messages.

instantiation_error

PredSpecs not ground.

type_error

PredSpecs not a valid pred spec forest.

domain_error

Some arity is an integer < 0.

representation_error

Some arity is an integer > 255.

context_error

Declaration appeared in a goal.

permission_error

Declaration appeared as a clause.

See Also

Section 4.3.4.3 [Volatile Declarations], page 84.

Chapter 11: Prolog Reference Pages 1223

11.3.250 when/2

Synopsis

when(+Condition,+Goal)

Blocks Goal until the Condition is true.

Arguments

Condition callable, must be nonvar and one of:

nonvar(X)

False until X is nonvar.

ground(X)

False until X is ground.

?=(X,Y) False while dif(X,Y) would block.

Condition,Condition

True if both conditions are true.

Condition;Condition

True if at least one condition is true.

:Goal callable, must be nonvar

Backtracking

Depends on Goal.

Examples

| ?- when(((nonvar(X);?=(X,Y)),ground(T)), process(X,Y,T)).

Exceptions

Call errors (see Section 4.2.6 [ref-sem-exc], page 77).

See Also

Section 4.2.4 [ref-sem-sec], page 74.

1224 SICStus Prolog

11.3.251 write/[1,2] ISO

Synopsis

write(+Stream, +Term)

write(+Term)

Writes Term on the standard output stream, without quoting atoms.

Arguments

Stream stream object, must be ground

A valid open Prolog stream, defaults to the current output stream.

Term term

Description

write(Term) is equivalent to:

write_term(Term, [numbervars(true)])

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109).

See Also

Section 4.6.4 [ref-iou-tou], page 104.

Chapter 11: Prolog Reference Pages 1225

11.3.252 write_canonical/[1,2] ISO

Synopsis

write_canonical(+Stream, +Term)

write_canonical(+Term)

Writes Term on the standard output stream, quoting atoms, in functional notation, without
treating '$VAR'/1 terms specially.

Arguments

Stream stream object, must be ground

A valid open Prolog stream, defaults to the current output stream.

Term term

Description

This predicate is provided so that Term, if written to a file, can be read back by read/[1,2]

regardless of special characters in Term or prevailing operator declarations.

write_canonical(Term) is equivalent to:

write_term(Term, [quoted(true),ignore_ops(true),quoted_charset(portable)])

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109).

Examples

To contrast write/[1,2] and write_canonical/[1,2]:

| ?- write({'A' + '$VAR'(0) + [a]}).

{A+A+[a]}

| ?- write_canonical({'A' + '$VAR'(0) + [a]}).

{}(+(+('A','$VAR'(0)),.(a,[])))

See Also

Section 4.6.4 [ref-iou-tou], page 104.

1226 SICStus Prolog

11.3.253 write_term/[2,3] hookable, ISO

Synopsis

write_term(+Stream, +Term, +Options)

write_term(+Term, +Options)

Writes Term on the standard output stream, subject to +Options.

Arguments

Stream stream object, must be ground

A valid open Prolog stream, defaults to the current output stream.

Term term

Options list of term.

A list of zero or more of the following, where Boolean must be true or false
(false is the default).

quoted(Boolean)

If selected, then atoms and functors are quoted where neces-
sary to make the result acceptable as input to read/1. write_

canonical/1, writeq/1, and portray_clause/1 select this.

Any output produced by write_term/2 with the option
quoted(true) will be in Normal Form C, as defined by Unicode.
See Section 4.1.7.5 [ref-syn-syn-tok], page 56, for further details.

ignore_ops(Boolean)

If selected, then Term is written in standard functional notation
instead of using operators. write_canonical/1 and display/1

select this.

portrayed(Boolean)

If selected, then user:portray/1 is called for each non-variable
subterm. print/1 selects this.

variable_names(Names) since release 4.3

Names should be a list of Name=Var pairs, where each Name is an
atom indicating the name to be used if Var is a variable occurring
in the written term.

This argument has the same form as the corresponding read_

term/[2,3] option and provides a convenient and safe way to pre-
serve variable names when writing a previously read term.

numbervars(Boolean)

If selected, then terms of the form '$VAR'(N) where N is an integer
>= 0 are treated specially (see numbervars/3). print/1, write/1,
writeq/1, and portray_clause/1 select this.

Chapter 11: Prolog Reference Pages 1227

legacy_numbervars(Boolean) since release 4.3

If selected, then terms of the form '$VAR'(N) where N is an inte-
ger >= 0, an atom, or a code list, are treated specially, in a way
consistent with versions prior to release 4.3, as follows.

If N is an integer >= 0, then the behavior is as for the numbervars/1
option. Otherwise the characters of the atom or code list are written
instead of the term.

The preferred way to specify variable names is with the variable_
names/1 option.

cycles(Boolean)

If selected, then the potentially cyclic term is printed in finite @/2

notation, as discussed for read_term/[2,3] (see Section 11.3.185
[mpg-ref-read term], page 1140).

indented(Boolean)

If selected, then the term is printed with the same indentation as
is used by portray_clause/1 and listing/[0,1].

max_depth(Depth)

Depth limit on printing. Depth is an integer. 0 (the default) means
no limit.

quoted_charset(Charset)

Only relevant if quoted(true) holds. Charset should be a legal
value of the quoted_charset Prolog flag, where it takes its default
value from. write_canonical/1 selects the value portable. See
Section 4.9.4 [ref-lps-flg], page 136.

float_format(Spec)

How to print floats. Spec should be an atom of the form ‘~NC’, like
one of the format/[2,3] character sequences for printing floats.
The default is ‘~H’.

priority(Prio)

The term is printed as if in the context of an associative operator
of precedence Prio, where Prio is an integer. The default is 1200.
See Section 4.1.5 [ref-syn-ops], page 47.

Description

This predicate subsumes the predicates that output terms except portray_clause/[1,2],
which additionally prints a period and a newline, and removes module prefixes that are
redundant wrt. the current type-in module.

During debugging, goals are written out by this predicate with options given by the
debugger_print_options Prolog flag.

Top-level variable bindings are written out by this predicate with options given by the
toplevel_print_options Prolog flag.

1228 SICStus Prolog

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109), plus:

instantiation_error

type_error

domain_error

in Options.

Examples

How certain options affect the output of write_term/2:

| ?- write_term('a b', [quoted(true)]).

'a b'

| ?- write_term(a+b, [ignore_ops(true)]).

+(a,b)

| ?- write_term(f('$VAR'(2)),
[numbervars(true)].)

f(C)

| ?- write_term(A+B,

[variable_names(['Hello'=A, 'World'=B])]).

Hello+World

If your intention is to name variables such as that generated by read_term/2 with the
variable_names option, then this can be done by simply passing on the variable_names

option to write_term/2:

| ?- read_term(T, [variable_names(Names)]),

write_term(T, [variable_names(Names),quoted(true)]),

nl,

fail.

|: a(X, Y).

a(X, Y)

no

There is, currently, no documented way to write single-occurrence variables as _, e.g. as
done by portray_clause/1 (see Section 11.3.157 [mpg-ref-portray clause], page 1106).

See Also

Section 4.6.4 [ref-iou-tou], page 104, Section 4.9.4 [ref-lps-flg], page 136, user:portray/1.

Chapter 11: Prolog Reference Pages 1229

11.3.254 writeq/[1,2] ISO

Synopsis

writeq(+Stream, +Term)

writeq(+Term)

Writes Term on the standard output stream, quoting atoms.

Arguments

Stream stream object, must be ground

A valid open Prolog stream, defaults to the current output stream.

Term term

Description

writeq(Term) is equivalent to:

write_term(Term, [quoted(true),numbervars(true)])

Exceptions

Stream errors (see Section 4.6.7.2 [ref-iou-sfh-est], page 109).

See Also

Section 4.6.4 [ref-iou-tou], page 104.

1230 SICStus Prolog

11.3.255 zip/0 development

Synopsis

zip

Turns on the debugger in zip mode.

Description

zip/0 turns the debugger on and sets it to zip mode. Turning the debugger on in zip mode
means that it will stop at the next spypoint encountered in the current execution. Until
the spypoint is reached, it does not keep any information of the execution of the goal, and
hence you will not be able to see the ancestors of the goal when you reach the spypoint.

The effect of this predicate can also be achieved by typing the letter z after a ^C interrupt
(see Section 3.7 [Execution], page 26).

Exceptions

None.

See Also

Section 5.2 [Basic Debug], page 233.

1231

12 C Reference Pages

12.1 Return Values and Errors

Many, but not all, C functions return one of the codes SP_SUCCESS for success, SP_FAILURE
for failure, SP_ERROR if an error condition occurred, or if an uncaught exception was raised
during a call from C to Prolog. If the value is SP_ERROR, then the macro SP_errno will
return a value (an integer) describing the error condition.

The function SP_error_message() returns a pointer to the diagnostic message correspond-
ing to a specified error number.

See Section 11.1.1 [mpg-ref-ove], page 877, for a description of the conventions observed in
the Reference Pages for Prolog predicates. C function Reference Pages differ primarily in
the synopsis. Also, the Reference Page for each C function documents its return values.

The following function annotations are used in the Reference Pages:

hook The function is user defined and is called in some specific context.

macro The function is defined as a C macro.

preinit It is only meaningful to call the function before initializing the Prolog engine

12.2 Topical List of C Functions

12.2.1 C Errors

SP_error_message()

gets the corresponding error message from an error number obtained from SP_

error

12.2.2 I/O

SP_get_byte()

gets a byte from a Prolog binary input stream

SP_get_code()

gets a character code from a Prolog input text stream

SP_unget_byte()

SP_unget_code()

Ungets a byte or character, respectively.

SP_fprintf()

SP_printf()

prints formatted output on a Prolog output text stream

SP_put_byte()

SP_put_bytes()

Writes one or more bytes to a Prolog output binary stream.

1232 SICStus Prolog

SP_put_code()

SP_put_codes()

SP_put_encoded_string()

Writes one or more characters to a Prolog output text stream.

12.2.3 Exceptions

SP_exception_term()

fetches the Prolog term representing the most recently raised exception

SP_fail()

propagates failure to Prolog

SP_on_fault() macro

provide a scope for faults

SP_raise_exception()

propagates an exception to Prolog

SP_raise_fault()

raise a fault

12.2.4 Files and Streams

SP_fopen()

opens a file as a Prolog stream

SP_fclose()

closes a Prolog stream

SP_flush_output()

flushes output on a Prolog output stream

SP_load()

same as load_files/1

SP_create_stream()

makes a new Prolog stream

SP_restore()

same as restore/1

SP_set_user_stream_hook() preinit

SP_set_user_stream_post_hook() preinit

provide hooks for setting up standard streams

12.2.5 Foreign Interface

SP_atom_from_string()

returns the encoded string representing a Prolog atom

SP_atom_length()

returns the length of the encoded string representing a Prolog atom

SP_close_query()

closes a Prolog query opened from C by SP_open_query()

Chapter 12: C Reference Pages 1233

SP_cons_functor()

SP_cons_functor_array()

creates a Prolog compound term from C

SP_cons_list()

creates a Prolog list from C

SP_cut_query()

commits to the current solution of a Prolog query opened from C by SP_open_

query()

SP_define_c_predicate()

defines a Prolog predicate linked to a C function

SP_exception_term()

returns the Prolog term to C corresponding to the most recent Prolog error

SP_get_address()

fetches an integer representing a pointer in an SP term ref

SP_get_arg()

fetches a specified argument of a compound term in an SP term ref

SP_get_atom()

fetches an atom from an SP term ref

SP_get_current_dir()

obtain name of current working directory

SP_get_float()

fetches a floating point number from an SP term ref

SP_get_functor()

fetches the name and arity of a term in an SP term ref

SP_get_integer()

fetches an integer in an SP term ref

SP_get_integer_bytes()

fetches an arbitrarily sized integer in an SP term ref

SP_get_list()

fetches the head and tail of a list in an SP term ref

SP_get_list_codes()

fetches a code list in an SP term ref

SP_get_list_n_codes()

fetches the first part of a code list in an SP term ref

SP_get_list_n_bytes()

fetches the first part of a byte list in an SP term ref

SP_get_number_codes()

fetches a number encoded as a code list in an SP term ref

SP_get_string()

fetches the encoded string representing a Prolog atom in an SP term ref

1234 SICStus Prolog

SP_next_solution()

gets the next solution, if any, to an open Prolog query

SP_open_query()

opens a Prolog query from C

SP_pred()

fetches an identifier for a Prolog predicate

SP_predicate()

fetches an identifier a Prolog predicate

SP_put_address()

assigns a pointer to an SP term ref

SP_put_atom()

assigns an atom to an SP term ref

SP_put_float()

assigns a floating point number to an SP term ref

SP_put_functor()

assigns a new compound term to an SP term ref

SP_put_integer()

assigns an integer to an SP term ref

SP_put_integer_bytes()

assigns an arbitrarily sized integer to an SP term ref

SP_put_list()

assigns a new list to an SP term ref

SP_put_list_codes()

assigns a code list to an SP term ref

SP_put_list_n_codes()

assigns the first part of a code list to an SP term ref

SP_put_list_n_bytes()

assigns the first part of a byte list to an SP term ref

SP_put_number_codes()

assigns a number encoded as a code list to an SP term ref

SP_put_string()

assigns the atom represented by an encoded string to an SP term ref

SP_put_term()

assigns the value of an SP term ref to another SP term ref

SP_put_variable()

assigns a Prolog variable to an SP term ref

SP_query()

makes a determinate query to a Prolog predicate, committing to the solution

Chapter 12: C Reference Pages 1235

SP_query_cut_fail()

makes a determinate query to a Prolog predicate for side effects only

SP_read_from_string()

assigns a Prolog term read from a string to an SP term ref

SP_set_current_dir()

set name of current working directory

SP_string_from_atom()

returns a null-terminated string corresponding to a Prolog atom

12.2.6 Initialization

SP_deinitialize()

shuts down the Prolog engine

SP_force_interactive() preinit

consider standard streams to be interactive streams, even if they appear not to
be TTY streams

SP_initialize() macro

initializes the Prolog engine

SP_set_argv()

sets the argv Prolog flag.

SP_set_user_stream_hook() preinit

SP_set_user_stream_post_hook() preinit

provide hooks for setting up standard streams

SU_initialize() hook

called before initializing the Prolog engine in applications built with
--userhook

12.2.7 Memory Management

SP_calloc()

Allocates memory for an array of elements, and clears the allocated memory.

SP_foreign_stash() macro

provide a memory location unique to the current foreign resource instance

SP_free()

Deallocates a piece of memory.

SP_malloc()

Allocates a piece of memory.

SP_mutex_lock()

Locks a mutex.

SP_mutex_unlock()

Unlocks a mutex.

SP_realloc()

Changes the size of an allocated piece of memory.

1236 SICStus Prolog

SP_register_atom()

prevents an atom from being discarded by atom garbage collection even if not
referenced by Prolog code

SP_strdup()

Makes a copy of a string in allocated memory.

SP_unregister_atom()

enables an atom to be discarded during atom garbage collection if not referenced
by Prolog code

12.2.8 Signal Handling

SP_signal()

install a signal handler

SP_event()

Schedules a function for execution in the main thread in contexts where queries
cannot be issued.

12.2.9 Terms in C

SP_compare()

compares two terms using Prolog’s standard term order

SP_new_term_ref()

returns an SP term ref, which can be used to hold a Prolog term in C

SP_unify()

unifies two Prolog terms

12.2.10 Type Tests

SP_is_atom()

tests whether an SP term ref contains an atom

SP_is_atomic()

tests whether an SP term ref contains an atomic term

SP_is_compound()

tests whether an SP term ref contains a compound term

SP_is_float()

tests whether an SP term ref contains a floating point number

SP_is_integer()

tests whether an SP term ref contains a Prolog integer

SP_is_list()

tests whether an SP term ref contains a list cell

SP_is_number()

tests whether an SP term ref contains an integer or a floating point number

SP_is_variable()

tests whether an SP term ref contains a Prolog variable

Chapter 12: C Reference Pages 1237

SP_term_type()

returns the type of the term in an SP term ref

12.3 API Functions

The following reference pages, alphabetically arranged, describe the SICStus Prolog API
functions.

1238 SICStus Prolog

12.3.1 SP_atom_from_string()

Synopsis

#include <sicstus/sicstus.h>

SP_atom

SP_atom_from_string(char const *str);

Finds the Prolog atom whose characters are encoded by str.

Arguments

str The characters comprising the atom.

Return Value

The SP atom, if str is a valid internal character encoding, and 0 otherwise.

See Also

Section 6.4.1 [Creating and Manipulating SP term refs], page 300.

Chapter 12: C Reference Pages 1239

12.3.2 SP_atom_length()

Synopsis

#include <sicstus/sicstus.h>

size_t

SP_atom_length(SP_atom atom);

Obtains the length of the encoded string representing a Prolog atom.

Arguments

atom The atom to inspect.

Return Value

The length if atom is valid, and 0 otherwise.

Description

Same as strlen(SP_string_from_atom(a), but runs in O(1) time.

See Also

Section 6.4.1 [Creating and Manipulating SP term refs], page 300.

1240 SICStus Prolog

12.3.3 SP_calloc()

Synopsis

#include <sicstus/sicstus.h>

void *

SP_calloc(size_t nmemb,

size_t size);

Allocates a block of at least size * nemb. The first size * nmemb bytes are set to zero.

Arguments

nmemb How many items to allocate.

size Size of each item.

Return Value

The pointer, if allocation was successful, otherwise NULL.

See Also

Section 6.4.7.1 [OS Memory Management], page 304.

Chapter 12: C Reference Pages 1241

12.3.4 SP_close_query()

Synopsis

#include <sicstus/sicstus.h>

int

SP_close_query(SP_qid query);

Discard the current solution to the given query, and close it.

Arguments

query The query, created by SP_open_query().

Return Value

SP_SUCCESS for success, SP_ERROR if an error condition occurred.

Description

This will discard the choices created since the corresponding SP_open_query(), and then
backtrack into the query, throwing away any current solution, like the goal !, fail. The
given argument does not have to be the innermost open query; any open queries in its scope
will also be closed.

See Also

Section 6.5.2 [Finding Multiple Solutions of a Call], page 306.

1242 SICStus Prolog

12.3.5 SP_compare()

Synopsis

#include <sicstus/sicstus.h>

int

SP_compare(SP_term_ref x,

SP_term_ref y)

Compares two terms.

Arguments

x The one term to compare

y The other term to compare

Return Value

-1 if x @< y, 0 if x == y, and 1 if x @> y.

See Also

Section 4.8.8 [ref-lte-cte], page 130, Section 6.4.6 [Unifying and Comparing Terms], page 304.

Chapter 12: C Reference Pages 1243

12.3.6 SP_cons_functor()

Synopsis

#include <sicstus/sicstus.h>

int

SP_cons_functor(SP_term_ref term,

SP_atom name,

int arity,

SP_term_ref arg, ...);

Assigns to term a reference to a compound term whose arguments are the values of arg. . . .
If arity is 0, assigns the Prolog atom whose canonical representation is name. This is
similar to calling =../2 with the first argument unbound and the second argument bound.

Arguments

term The SP term ref to be assigned

name The name of the functor

arity The arity of the functor

arg . . . The arguments

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.3 [Creating Prolog Terms], page 302.

1244 SICStus Prolog

12.3.7 SP_cons_functor_array()

Synopsis

#include <sicstus/sicstus.h>

int

SP_cons_functor_array(SP_term_ref term,

SP_atom name,

int arity,

SP_term_ref *arg);

Assigns to term a reference to a compound term whose arguments are the elements of arg.
If arity is 0, assigns the Prolog atom whose canonical representation is name. This is
similar to calling =../2 with the first argument unbound and the second argument bound.

Arguments

term The SP term ref to be assigned

name The name of the functor

arity The arity of the functor

arg The argument array

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.3 [Creating Prolog Terms], page 302.

Chapter 12: C Reference Pages 1245

12.3.8 SP_cons_list()

Synopsis

#include <sicstus/sicstus.h>

int

SP_cons_list(SP_term_ref term,

SP_term_ref head,

SP_term_ref tail);

Assigns to term a reference to a Prolog list whose head and tail are the values of head and
tail.

Arguments

term The SP term ref to be assigned

head The head of the new list

tail The tail of the new list

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.3 [Creating Prolog Terms], page 302.

1246 SICStus Prolog

12.3.9 SP_create_stream()

Synopsis

#include <sicstus/sicstus.h>

spio_t_error_code

SP_create_stream(

void *user_data,

void const *user_class,

spio_t_simple_device_read *user_read,

spio_t_simple_device_write *user_write,

spio_t_simple_device_flush_output *user_flush_output,

spio_t_simple_device_seek *user_seek,

spio_t_simple_device_close *user_close,

spio_t_simple_device_interrupt *user_interrupt,

spio_t_simple_device_ioctl *user_ioctl,

spio_t_bits create_stream_options,

SP_stream **pstream);

Create a Prolog stream that will call user defined functions to perform stream operations.

Arguments

user data This is a pointer to arbitrary user specified data. It is passed to all user defined
stream methods. It must not be NULL.

user class Arbitrary pointer. This is used with SP_get_stream_user_data(), which see.

user read If non-NULL then this is an input stream. See Section 12.3.107 [cpg-ref-
user read], page 1361, for details.

user write If non-NULL then this is an output stream. See Section 12.3.108 [cpg-ref-
user write], page 1363, for details.

Note that both user_read and user_write can be specified, signifying a bidi-
rectional stream.

user flush output
Will be called to flush output on the stream. Ignored if user_write is NULL.
Can be NULL if the stream need not be flushed, e.g. if user_write always ensures
that any output reaches its destination immediately. See Section 12.3.106 [cpg-
ref-user flush output], page 1359, for details.

user seek Reserved, should be NULL.

user close Closes the stream. See Section 12.3.105 [cpg-ref-user close], page 1357, for
details.

user interrupt
Reserved, should be NULL.

user ioctl Reserved, should be NULL.

args Reserved, should be NULL.

Chapter 12: C Reference Pages 1247

create stream options
The following bits can be set:

SP_CREATE_STREAM_OPTION_BINARY

This is a binary stream. The user_read and user_write methods
transfer bytes.

SP_CREATE_STREAM_OPTION_TEXT

This is a TEXT stream. The user_read and user_write methods
transfer wide characters.

SP_CREATE_STREAM_OPTION_AUTOFLUSH

After writing to this stream prolog predicates will do a flush_

output/1. In essence this ensures that the stream behaves as if it
were unbuffered.

SP_CREATE_STREAM_OPTION_INTERACTIVE

Treat this stream as an interactive stream. Implies SP_CREATE_

STREAM_OPTION_AUTOFLUSH.

SP_CREATE_STREAM_OPTION_EOF_ON_EOF

SP_CREATE_STREAM_OPTION_RESET_ON_EOF

These correspond to the open/4 options eof_action(eof) and
eof_action(reset) respectively. The default is to give an error if
reading after reaching end of file.

Exactly one of SP_CREATE_STREAM_OPTION_BINARY and SP_CREATE_STREAM_

OPTION_TEXT must be set.

pstream This is assigned to the created SICStus stream on success. It should be closed
with SP_fclose() or close/[1,2].

Return Value

On success, *pstream is assigned, and SPIO_S_NOERR or some other success code is returned.
You should use the SPIO_FAILED() macro to determine if the return value signifies failure
or success.

See Also

Section 6.6.2 [Defining a New Stream], page 312.

1248 SICStus Prolog

12.3.10 SP_cut_query()

Synopsis

#include <sicstus/sicstus.h>

int

SP_cut_query(SP_qid query);

Commit to the current solution to the given query, and close it.

Arguments

query The query, created by SP_open_query().

Return Value

SP_SUCCESS for success, SP_FAILURE for failure, SP_ERROR if an error condition occurred.

Description

This will discard the choices created since the corresponding SP_open_query(), like the goal
!. The current solution is retained in the arguments until backtracking into any enclosing
query. The given argument does not have to be the innermost open query; any open queries
in its scope will also be cut.

See Also

Section 6.5.2 [Finding Multiple Solutions of a Call], page 306.

Chapter 12: C Reference Pages 1249

12.3.11 SP_define_c_predicate()

Synopsis

#include <sicstus/sicstus.h>

typedef int

SP_CPredFun(SP_term_ref goal,

void *stash);

int

SP_define_c_predicate(char *name,

int arity,

char *module,

SP_CPredFun *proc,

void *stash);

Defines a Prolog predicate such that when the Prolog predicate is called it will call a C
function with a term corresponding to the Prolog goal.

Arguments

name The predicate name.

arity The predicate arity.

module The predicate module name.

proc The function.

stash See below.

Return Value

Nonzero on success, and 0 otherwise.

Description

The Prolog predicate module:name/arity will be defined (the module module must already
exist). The stash argument can be anything and is simply passed as the second argument
to the C function proc.

The C function should return SP_SUCCESS for success and SP_FAILURE for failure. The C
function may also call SP_fail() or SP_raise_exception() in which case the return value
will be ignored.

Examples

Here is an end-to-end example of the above:

% square.pl

foreign_resource(square, [init(square_init)]).

:- load_foreign_resource(square).

1250 SICStus Prolog

// square.c

#include <sicstus/sicstus.h>

static int square_it(SP_term_ref goal, void *stash)

{

SP_integer arg1;

SP_term_ref tmp = SP_new_term_ref();

SP_term_ref square_term = SP_new_term_ref();

// goal will be a term like square(42,X)

SP_get_arg(1,goal,tmp); // extract first arg

if (!SP_get_integer(tmp,&arg1))

return SP_FAILURE; // type check first arg

SP_put_integer(square_term, arg1*arg1);

SP_get_arg(2,goal,tmp); // extract second arg

// Unify output argument.

// SP_put_integer(tmp,...) would *not* work!

return (SP_unify(tmp, square_term) ? SP_SUCCESS : SP_FAILURE);

}

void square_init(int when)

{

(void)when; // unused

// Install square_it as user:square/2

SP_define_c_predicate("square", 2, "user", square_it, NULL);

}

terminal

% splfr square.pl square.c

% sicstus -f -l square

% compiling /home/matsc/tmp/square.pl...

% loading foreign resource /home/matsc/tmp/square.so in module user

% compiled /home/matsc/tmp/square.pl in module user, 0 msec 816 bytes

SICStus 4.6.0 ...

Licensed to SICS

| ?- square(4711, X).

X = 22193521 ?

yes

| ?- square(not_an_int, X).

no

See Also

See Section 6.2 [Calling C from Prolog], page 290.

Chapter 12: C Reference Pages 1251

12.3.12 SP_deinitialize()

Synopsis

#include <sicstus/sicstus.h>

void

SP_deinitialize(void);

Shuts down the Prolog engine.

Description

SP_deinitialize() will make a best effort to restore the system to the state it was in at
the time of calling SP_initialize(). This involves unloading foreign resources, shutting
down the emulator, and deallocating memory used by Prolog.

SP_deinitialize() is idempotent i.e. it is a no-op unless SICStus has actually been ini-
tialized.

See Also

Section 6.7.4.1 [Initializing the Prolog Engine], page 329.

1252 SICStus Prolog

12.3.13 SP_error_message()

Synopsis

#include <sicstus/sicstus.h>

char const *

SP_error_message(int errnum);

Obtains a pointer to the diagnostic message corresponding to a specified error number.

Arguments

errnum The error number.

Return Value

A pointer to the diagnostic message.

See Also

Section 6.1 [CPL Notes], page 289.

Chapter 12: C Reference Pages 1253

12.3.14 SP_event()

Synopsis

#include <sicstus/sicstus.h>

int

SP_event(int (*func)(void*), void *arg)

Schedules a function for execution in the main thread in contexts where queries cannot be
issued.

Arguments

func The function to schedule for execution.

arg Its argument.

Return Value

Nonzero on success, and 0 otherwise.

Description

If you wish to call Prolog back from a signal handler that has been installed with SP_signal

or a thread other than the thread that called SP_initialize(), that is, the main thread,
you cannot use SP_query() etc. directly. The call to Prolog has to be delayed until such
time that the Prolog execution can accept an interrupt and the call has to be performed
from the main thread (the Prolog execution thread). This function serves this purpose, and
installs func to be called from Prolog (in the main thread) when the execution can accept
a callback.

A queue of functions, with corresponding arguments, is maintained; that is, if several calls
to SP_event() occur before Prolog can accept an interrupt, the functions are queued and
executed in turn at the next possible opportunity. A func installed with SP_event() will
not be called until SICStus is actually running. One way of ensuring that all pending
functions installed with SP_event() are run is to call, from the main thread, some dummy
goal, such as,

SP_query_cut_fail(SP_predicate("true",0,"user"));

While SP_event() is safe to call from any thread, it is not safe to call from arbitrary signal
handlers. If you want to call SP_event() when a signal is delivered, you need to install
your signal handler with SP_signal().

Note that SP_event() is one of the very few functions in the SICStus API that can safely
be called from another thread than the main thread.

Depending on the value returned from func, the interrupted Prolog execution will just
continue (SP_SUCCESS) or backtrack (SP_FAILURE or SP_ERROR). An exception raised by
func, using SP_raise_exception(), will be processed in the interrupted Prolog execution.
If func calls SP_fail() or SP_raise_exception() the return value from func is ignored

1254 SICStus Prolog

and handled as if func returned SP_FAILURE or SP_ERROR, respectively. In case of failure
or exception, the event queue is flushed.

It is generally not robust to let func raise an exception or (even worse) fail. The reason is
that not all Prolog code is written such that it gracefully handles being interrupted. If you
want to interrupt some long-running Prolog code, it is better to let the event handler set a
flag (in C) and let your Prolog code test the flag (using a foreign predicate) in some part
of your code that is executed repeatedly.

Examples

How to install the predicate user:event_pred/1 as the signal handler for SIGUSR1 and
SIGUSR2 signals.

The function signal_init() installs the function signal_handler() as the primary signal
handler for the signals SIGUSR1 and SIGUSR2. That function invokes the predicate as the
actual signal handler, passing the signal number as an argument to the predicate.

SP_pred_ref event_pred;

static int signal_event(void *handle)

{

int signal_no = (int) handle;

SP_term_ref x=SP_new_term_ref();

int rc;

SP_put_integer(x, signal_no); // Should not give an error

rc = SP_query_cut_fail(event_pred, x);

if (rc == SP_ERROR && SP_exception_term(x))

SP_raise_exception(x); // Propagate any raised exception

return rc;

}

static void signal_handler(int signal_no)

{

SP_event(signal_event, (void *)signal_no);

}

void signal_init(void)

{

event_pred = SP_predicate("prolog_handler",1,"user");

SP_signal(SIGUSR1, signal_handler);

SP_signal(SIGUSR2, signal_handler);

}

Chapter 12: C Reference Pages 1255

See Also

Section 6.5.4 [Calling Prolog Asynchronously], page 308, SP_signal(), SP_fail(), SP_
raise_exception().

1256 SICStus Prolog

12.3.15 SP_exception_term()

Synopsis

#include <sicstus/sicstus.h>

int

SP_exception_term(SP_term_ref term);

Retracts the current pending exception term, if it exists, and assigns it to term.

Arguments

term The SP term ref to assign.

Return Value

1 if an exception term was retracted and assigned, and 0 otherwise.

See Also

Section 6.5.5 [Exception Handling in C], page 309.

Chapter 12: C Reference Pages 1257

12.3.16 SP_expand_file_name()

Synopsis

#include <sicstus/sicstus.h>

spio_t_error_code

SP_expand_file_name(

char const *relpath,

char const *cwd,

spio_t_bits options,

char **pabspath);

Expand a file name into an absolute path.

Arguments

relpath

The relative path to expand. It should be an encoded string. The path is
subject to syntactic rewriting, as if by absolute_file_name/2.

cwd If the relpath is a relative path, it is expanded relative to cwd, unless cwd is
NULL. If cwd is NULL, a relative relpath is expanded relative to the SICStus
working directory (as returned by SP_get_current_dir()).

options

The following option bits can be set:

SP_EXPAND_FILE_NAME_OPTION_DIR

The relpath is expanded as a directory, i.e. *pabspath will be
slash terminated.

SP_EXPAND_FILE_NAME_OPTION_NO_CWD

An error is returned if the relpath is not an absolute path after
syntactic rewriting.

SP_EXPAND_FILE_NAME_OPTION_NO_ENV

Do not expand system properties and environment variables during
syntactic rewriting.

SP_EXPAND_FILE_NAME_OPTION_NO_HOME

Do not expand ‘~’ and ‘~user’ during syntactic rewriting.

SP_EXPAND_FILE_NAME_OPTION_ROOT_SLASH

If the expanded value would refer to the root directory, return
a slash terminated absolute path, as if SP_EXPAND_FILE_NAME_

OPTION_DIR had been set. By default, an error is returned if the
expanded absolute path would refer to a root directory and SP_

EXPAND_FILE_NAME_OPTION_DIR is not set.

SP_EXPAND_FILE_NAME_OPTION_ROOT_DOT

If the expanded value would refer to the root directory, return an
absolute path terminated with ‘/.’. By default, an error is returned

1258 SICStus Prolog

if the expanded absolute path would refer to a root directory and
SP_EXPAND_FILE_NAME_OPTION_DIR is not set.

pabspath On success, *pabspath is set to the expanded path. This value is allocated
with SP_malloc() and should be freed with SP_free().

Return Value

On success, *pabspath is set to the expanded path and SPIO_S_NOERR or some other success
code is returned.

On failure, an error code is returned.

See Also

Section 12.3.29 [cpg-ref-SP get current dir], page 1274. See Section 4.5.2 [ref-fdi-syn],
page 99, for a description of syntactic rewriting. Section 6.4.7.2 [OS File System], page 305.

Chapter 12: C Reference Pages 1259

12.3.17 SP_fail()

Synopsis

#include <sicstus/sicstus.h>

void

SP_fail(SP_term_ref term);

Fails in the scope of Prolog calling C.

Arguments

term The SP term ref whose value will be the exception term.

Description

This function is normally used in the context of a call from Prolog to C, and will cause
Prolog to backtrack on return from the call.

Please note: this should only be called right before returning to Prolog.

See Also

Section 6.5.5 [Exception Handling in C], page 309.

1260 SICStus Prolog

12.3.18 SP_fclose()

Synopsis

#include <sicstus/sicstus.h>

spio_t_error_code

SP_fclose(

SP_stream *stream,

spio_t_bits close_options);

Close the stream.

Arguments

stream The stream to close unless the SP_FCLOSE_OPTION_USER_STREAMS is set, see
below.

close options
The following bits can be set:

SP_FCLOSE_OPTION_READ

SP_FCLOSE_OPTION_WRITE

Close the specified directions. If neither of these options is specified,
the stream is closed in all opened directions, i.e. as if both options
were specified. If the stream is not opened in a direction specified
by an option, that option is ignored.

Note that it is possible to close only one direction of a bidirectional
stream. The return value will tell whether the stream is still open;
see below.

SP_FCLOSE_OPTION_FORCE

Close the specified direction forcibly, i.e. without flushing buffers
etc. This also ensures that the close finishes quickly, i.e. does not
block.

SP_FCLOSE_OPTION_NO_FSYNC

Do not use OS fclose() or similar when closing a stream in write
direction, i.e. do not wait for written data to reach the disk.

By default, closing a stream will try to ensure that all written
data have been stored on disk before the call returns. This makes
stream handling more robust, e.g. if the process crashes shortly
after closing the stream. However, waiting for data to reach the
disk is sometimes very slow (e.g. on some Linux configurations), in
which case this flag can be used to speed things up, at the cost of
somewhat reduced robustness.

SP_FCLOSE_OPTION_NONBLOCKING

You should avoid using this option.

Pass non-blocking option to lower level routines, including the call
to SP_flush_output() that is issued when non-forcibly closing
write direction.

Chapter 12: C Reference Pages 1261

One possible use for this option is to perform a best effort close,
which falls back to using SP_FCLOSE_OPTION_FORCE only if ordinary
close would block.

SP_FCLOSE_OPTION_USER_STREAMS

In this case the stream should not be a stream but instead
be the user_class of a user defined stream. When this op-
tion is passed, all currently opened streams of that class is
closed, using the remaining option flags. E.g. to close all
user defined streams of class my class in the read direction
only do: SP_fclose((SP_stream*)my_class,SP_FCLOSE_OPTION_
USER_STREAMS|SP_FCLOSE_OPTION_READ).

Return Value

On success, all specified directions has been closed. Since some direction may still be open,
there are two possible return values on success:

SPIO_S_NOERR

The stream is still valid, some direction is still not closed.

SPIO_S_DEALLOCATED

The stream has been deallocated and cannot be used further. All directions
have been closed.

On failure, returns a SPIO error code. Error codes with special meaning for SP_fclose()
are the same as for SP_flush_output(), which see. Other error codes may also be returned.

See Also

Section 12.3.19 [cpg-ref-SP flush output], page 1262. Section 6.6.1 [Prolog Streams],
page 310.

1262 SICStus Prolog

12.3.19 SP_flush_output()

Synopsis

#include <sicstus/sicstus.h>

spio_t_error_code

SP_flush_output(

SP_stream *stream,

spio_t_bits flush_options);

Ensure that all buffered data reaches its destination.

Arguments

stream The stream to flush. This stream should be open for writing.

flush options
The following bits can be set:

SP_FLUSH_OUTPUT_OPTION_NO_FSYNC

If this is set, flush will not wait for data to reach the disk. See the
SP_fclose() option SP_FCLOSE_OPTION_NO_FSYNC for more infor-
mation.

SP_FLUSH_OUTPUT_OPTION_NONBLOCKING

If this is set, the function should return quickly or with a SPIO_E_

WOULD_BLOCK code.

Can return SPIO_E_NOT_SUPPORTED if the stream cannot support
non-blocking flush.

SP_FLUSH_OUTPUT_OPTION_AUTOFLUSH

Only flush stream if it has AUTOFLUSH enabled.

Return Value

On success, all buffered data should have been written and SPIO_S_NOERR or some other
success code returned.

On failure, returns a SPIO error code. Error codes with special meaning for SP_flush_

output():

SPIO_E_END_OF_FILE

Returned if it is not possible to write more data onto the stream, e.g. some
underlying device has been closed.

SPIO_E_WOULD_BLOCK

SP_FLUSH_OUTPUT_OPTION_NONBLOCKING was set but the operation would
block.

SPIO_E_NOT_SUPPORTED

Some unsupported option, e.g. SP_FLUSH_OUTPUT_OPTION_NONBLOCKING, was
passed.

Chapter 12: C Reference Pages 1263

Other error codes may also be returned.

See Also

Section 6.6.1 [Prolog Streams], page 310.

1264 SICStus Prolog

12.3.20 SP_fopen()

Synopsis

#include <sicstus/sicstus.h>

spio_t_error_code

SP_fopen(

char const *pathname,

void *reserved,

spio_t_bits options,

SP_stream **pstream);

Opens a file and creates a SICStus stream reading and/or writing to it.

Arguments

pathname The path to the file as an encoded string. It is expanded by SP_expand_file_

name() unless the option SP_FOPEN_OPTION_NOEXPAND is specified, in which
case the path must already have been expanded by SP_expand_file_name().

reserved Reserved, should be NULL.

read options
The following bits can be set:

SP_FOPEN_OPTION_READ

Open the file for reading. The file must exist.

SP_FOPEN_OPTION_WRITE

Open the file for writing. The file is overwritten if it exists. The
file is created if it does not exist.

SP_FOPEN_OPTION_APPEND

Open the file for writing but start writing at the end of the file if
it exists. The file is created if it does not exist.

SP_FOPEN_OPTION_BINARY

Open the file as a binary (byte) stream.

SP_FOPEN_OPTION_TEXT

Open the file as a text stream. The default character encoding is
Latin 1 (i.e. the 8 bit subset of Unicode). The default end of line
convention is OS specific.

SP_FOPEN_OPTION_AUTOFLUSH

After writing to this stream, Prolog predicates will do a flush_

output/1. In essence this ensures that the stream behaves as if it
were unbuffered.

SP_FOPEN_OPTION_INTERACTIVE

Treat this stream as an interactive stream. Implies
SP CREATE STREAM OPTION AUTOFLUSH.

Chapter 12: C Reference Pages 1265

SP_FOPEN_OPTION_NO_FSYNC

If this is set, flush and close of the stream will not wait for data to
reach the disk. See the SP_fclose() option SP_FCLOSE_OPTION_

NO_FSYNC for more information.

SP_FOPEN_OPTION_NOEXPAND

The pathname has already been expanded with SP_expand_file_

name() or something similar. This implies that pathname is an
absolute path. If this option is not specified, pathname is expanded
with SP_expand_file_name() before use.

pstream On successful return, *pstream will be set to the created stream.

Return Value

On success, *pstream will be set to the created stream and SPIO_S_NOERR or some other
success code returned.

On failure, some SPIO failure code will be returned. Error codes with special meaning for
SP_fopen():

SPIO_E_FILE_NOT_FOUND

The file does not exist.

SPIO_E_FILE_ACCESS

Insufficient permissions to open or create the file.

SPIO_E_OPEN_ERROR

Generic error during open.

Other error codes may also be returned.

See Also

Section 6.6.1 [Prolog Streams], page 310.

1266 SICStus Prolog

12.3.21 SP_foreign_stash() macro

Synopsis

#include <sicstus/sicstus.h>

void *

SP_foreign_stash();

Obtains a storage location that is unique to the calling foreign resource.

Return Value

The location, initially set to NULL.

Description

A dynamic foreign resource that is used by multiple SICStus runtimes in the same process
may need to maintain a global state that is kept separate for each SICStus runtime. Each
SICStus runtime maintains a location (containing a void*) for each foreign resource. A
foreign resource can then access this location to store any data that is specific to the calling
SICStus runtime.

You can use SP_foreign_stash() to get access to a location, where the foreign resource
can store a void*. Typically this would be a pointer to a C struct that holds all information
that need to be stored in global variables. This struct can be allocated and initialized by
the foreign resource init function, it should be deallocated by the foreign resource deinit
function.

SP_foreign_stash() is only available for use in dynamic foreign resources.

Examples

The value returned by SP_foreign_stash() is only valid until the next SICStus API call.
The correct way to initialize the location pointed at by SP_foreign_stash() is therefore:

struct my_state {...};

init_my_foreign_resource(...)

{

struct my_state *p = SP_malloc(sizeof(struct my_state));

(*SP_foreign_stash()) = (void*)p;

}

The following example is incorrect; SP_malloc() may be called between the time SP_

foreign_stash() is called and the time its return value is used:

// WRONG

(*SP_foreign_stash()) = SP_malloc(sizeof(struct my_state));

See Also

Section 6.4.7.3 [OS Threads], page 305.

Chapter 12: C Reference Pages 1267

12.3.22 SP_fprintf()

Synopsis

#include <sicstus/sicstus.h>

spio_t_error_code

SP_fprintf(

SP_stream *stream,

char const *fmt, ...);

Formatted output on the Prolog stream stream.

Arguments

stream The stream. Must be a text stream open for output.

fmt The format string. This uses the same syntax as the C library printf functions.

. . . The data to format.

Return Value

On success, all data has been written and SPIO_S_NOERR or some other success code re-
turned.

On failure, returns an error code without transferring any data. Error codes with special
meaning for SP_fprintf():

SPIO_E_PARAMETER_ERROR

The underlying C library function reported an error while formatting the string.

Other error codes may also be returned.

Description

First the formatting operation will be performed. The resulting string will be assumed
to be in internal encoding, and will then be output using the SP_put_encoded_string()

function. This means e.g. that the ‘%c’ printf conversion specification can only be used for
ASCII characters, and the strings included using a ‘%s’ specification should also be encoded
strings.

See Also

Section 6.6.1 [Prolog Streams], page 310.

1268 SICStus Prolog

12.3.23 SP_free()

Synopsis

#include <sicstus/sicstus.h>

void

SP_free(void *ptr);

Disposees of the block referenced by ptr, which must have been obtained by a call to SP_

malloc() or SP_realloc(), and must not have been released by a call to SP_free() or
SP_realloc().

Arguments

ptr Block to dispose of.

See Also

See Section 6.4.7.1 [OS Memory Management], page 304.

Chapter 12: C Reference Pages 1269

12.3.24 SP_get_address()

Synopsis

#include <sicstus/sicstus.h>

int

SP_get_address(SP_term_ref term,

void **p);

Assigns to *p the pointer that corresponds to a Prolog integer

Arguments

term The SP term ref holding the value

p The location to assign

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.4 [Accessing Prolog Terms], page 303.

1270 SICStus Prolog

12.3.25 SP_get_arg()

Synopsis

#include <sicstus/sicstus.h>

int

SP_get_arg(int i,

SP_term_ref term,

SP_term_ref arg);

Assigns to arg the i:th argument of a compound term. This is similar to calling arg/3.

Arguments

i The (one-based) argument number

term The SP term ref holding the compound term

arg The SP term ref to be assigned

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.4 [Accessing Prolog Terms], page 303.

Chapter 12: C Reference Pages 1271

12.3.26 SP_get_atom()

Synopsis

#include <sicstus/sicstus.h>

int

SP_get_atom(SP_term_ref term,

SP_atom *a);

Assigns to *a the canonical representation of a Prolog atom

Arguments

term The SP term ref holding the value

a The location to assign

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.4 [Accessing Prolog Terms], page 303.

1272 SICStus Prolog

12.3.27 SP_get_byte()

Synopsis

#include <sicstus/sicstus.h>

spio_t_error_code

SP_get_byte(

SP_stream *stream);

Read a byte from a binary stream.

Arguments

stream The stream. Must be a binary stream open for input.

Return Value

On success, the byte just read will be returned, cast to a spio_t_error_code. The value
returned on successful return will never be negative.

On failure, returns an error code, recognizable with SPIO_FAILED(). Error codes are always
negative.

Description

Note that SP_get_byte() is implemented as a macro and may evaluate the stream argu-
ment more than once.

See Also

Section 12.3.28 [cpg-ref-SP get code], page 1273. Section 6.6.1 [Prolog Streams], page 310.

Chapter 12: C Reference Pages 1273

12.3.28 SP_get_code()

Synopsis

#include <sicstus/sicstus.h>

spio_t_error_code

SP_get_code(

SP_stream *stream);

Read a character code from a text stream.

Arguments

stream The stream. Must be a text stream open for input.

Return Value

On success, the character just read will be returned, cast to a spio_t_error_code. The
value returned on successful return will never be negative.

On failure, returns an error code, recognizable with SPIO_FAILED(). Error codes are always
negative.

Description

Note that SP_get_code() is implemented as a macro and may evaluate the stream argu-
ment more than once.

See Also

Section 12.3.27 [cpg-ref-SP get byte], page 1272. Section 6.6.1 [Prolog Streams], page 310.

1274 SICStus Prolog

12.3.29 SP_get_current_dir()

Synopsis

#include <sicstus/sicstus.h>

char *

SP_get_current_dir(void);

Obtains an encoded string containing the absolute, slash (/) terminated, path to the current
working directory. The return value is allocated with SP_malloc and should be freed with
SP_free.

Return Value

The string on success and NULL on error.

See Also

Section 12.3.92 [cpg-ref-SP set current dir], page 1343. Section 6.4.7.2 [OS File System],
page 305.

Chapter 12: C Reference Pages 1275

12.3.30 SP_get_dispatch()

Synopsis

#include <sicstus/sicstus.h>

SICSTUS_API_STRUCT_TYPE *

SP_get_dispatch(void *reserved);

Arguments

reserved Reserved, should be NULL.

Return Value

Returns the dispatch vector of the SICStus runtime.

Description

This function can be called from any thread.

This function is special in that it is not accessed through the dispatch vector; instead, it
is exported in the ordinary manner from the SICStus runtime dynamic library (sprt4-6-
0.dll under Windows and, typically, libsprt4-6-0.so under UNIX).

The address of this function is typically obtained by linking to the SICStus runtime library
or, when using multiple SICStus runtimes, by a call to SP_load_sicstus_run_time().

See Also

Chapter 8 [Multiple SICStus Runtimes], page 347.

1276 SICStus Prolog

12.3.31 SP_get_float()

Synopsis

#include <sicstus/sicstus.h>

int

SP_get_float(SP_term_ref term,

double *f);

Assigns to *f the float that corresponds to a Prolog number.

If the term is an integer that does not fit in a double, then the call will fail.

Arguments

term The SP term ref holding the value

f The location to assign

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.4 [Accessing Prolog Terms], page 303.

Chapter 12: C Reference Pages 1277

12.3.32 SP_get_functor()

Synopsis

#include <sicstus/sicstus.h>

int

SP_get_functor(SP_term_ref term,

SP_atom *name,

int *arity);

Assigns to *name and *arity the canonical representation and arity of the principal functor
of a Prolog compound term. If the value of term is an atom, then that atom is assigned
to *name and 0 is assigned to *arity. This is similar to calling functor/3 with the first
argument bound to a compound term or an atom and the second and third arguments
unbound.

Arguments

term The SP term ref holding the value

name The location to assign to the functor name

arity The location to assign to the functor arity

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.4 [Accessing Prolog Terms], page 303.

1278 SICStus Prolog

12.3.33 SP_get_integer()

Synopsis

#include <sicstus/sicstus.h>

int

SP_get_integer(SP_term_ref term,

SP_integer *i);

Assigns to *i the integer that corresponds to a Prolog number. The value must fit in *i

for the operation to succeed.

Arguments

term The SP term ref holding the value

i The location to assign

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.4 [Accessing Prolog Terms], page 303.

Chapter 12: C Reference Pages 1279

12.3.34 SP_get_integer_bytes()

Synopsis

#include <sicstus/sicstus.h>

int

SP_get_integer_bytes(SP_term_ref term,

void *buf,

size_t *pbuf_size,

int native);

Extracts from term an an arbitrarily sized integer.

Arguments

term The SP term ref holding the integer

buf The buffer receiving the integer

pbuf size Should point at the size of buf

native See the description below

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

Description

In the following, assume that the integer referred to by term requires a minimum of size
bytes to store (in twos-complement representation).

1. If term does not refer to a Prolog integer, zero is returned and the other arguments are
ignored.

2. If *pbuf_size is less than size, then *pbuf_size is updated to size and zero is returned.
The fact that *pbuf_size has changed can be used to distinguish insufficient buffer
size from other possible errors. By calling SP_get_integer_bytes() with *pbuf_size

set to zero, you can determine the buffer size needed; in this case, buf is ignored.

3. *pbuf_size is set to size.

4. If native is zero, buf is filled with the twos complement representation of the integer,
with the least significant bytes stored at lower indices in buf. Note that all of buf is
filled, even though only size bytes was needed.

5. If native is non-zero, buf is assumed to point at a native *pbuf_size byte integral
type. On most platforms, native integer sizes of two (16-bit), four (32 bit) and eight
(64 bytes) bytes are supported. Note that *pbuf_size == 1, which would correspond
to signed char, is not supported with native.

6. If an unsupported size is used with native, zero is returned.

Examples

The following example gets a Prolog integer into a (presumably 64 bit) long long C integer.

1280 SICStus Prolog

{

long long x; // C99, GCC supports this

size_t sz = sizeof x;

if (!SP_get_integer_bytes(tr, &x, &sz, 1)) // 1 for native

.. error handling ..

.. use x .. // sz may have decreased

}

See Also

Section 6.4.4 [Accessing Prolog Terms], page 303.

Chapter 12: C Reference Pages 1281

12.3.35 SP_get_list()

Synopsis

#include <sicstus/sicstus.h>

int

SP_get_list(SP_term_ref term,

SP_term_ref head,

SP_term_ref tail);

Assigns to head and tail the head and tail of a Prolog list.

Arguments

term The SP term ref holding the list

head The SP term ref to be assigned the head

tail The SP term ref to be assigned the tail

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.4 [Accessing Prolog Terms], page 303.

1282 SICStus Prolog

12.3.36 SP_get_list_codes()

Synopsis

#include <sicstus/sicstus.h>

int

SP_get_list_codes(SP_term_ref term,

char const **s);

Assigns to *s a zero-terminated array containing an encoded string that corresponds to the
given Prolog code list. The array is subject to reuse by other support functions, so if the
value is going to be used on a more than temporary basis, it must be moved elsewhere.

Arguments

term The SP term ref holding the code list

s The location to assign

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.4 [Accessing Prolog Terms], page 303.

Chapter 12: C Reference Pages 1283

12.3.37 SP_get_list_n_bytes()

Synopsis

#include <sicstus/sicstus.h>

int

SP_get_list_n_bytes(SP_term_ref term,

SP_term_ref tail,

size_t n,

size_t *w,

unsigned char *s);

Copies into the byte array s the initial elements of term, which should hold a list of integers
in the range [0,255], so that at most n bytes are used. The number of bytes actually written
is assigned to *w. tail is set to the remainder of the list. The array s must have room for
at least n bytes.

Arguments

term The SP term ref holding the list

tail The SP term ref to be assigned the remainder of the list

n Max number of bytes to use

w Location to assign to number of bytes actually used

s The location to assign to the encoded string

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.4 [Accessing Prolog Terms], page 303.

1284 SICStus Prolog

12.3.38 SP_get_list_n_codes()

Synopsis

#include <sicstus/sicstus.h>

int

SP_get_list_n_codes(SP_term_ref term,

SP_term_ref tail,

size_t n,

size_t *w,

char *s);

Copies into s the encoded string representing the character codes in the initial elements of
list term, so that at most n bytes are used. The number of bytes actually written is assigned
to *w. tail is set to the remainder of the list. The array s must have room for at least n
bytes.

Please note: The array s is never NUL-terminated. Any zero character codes in the list term
will be converted to the overlong UTF-8 sequence 0xC0 0x80.

Arguments

term The SP term ref holding the code list

tail The SP term ref to be assigned the remainder of the list

n Max number of bytes to use

w Location to assign to number of bytes actually used

s The location to assign to the encoded string

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.4 [Accessing Prolog Terms], page 303.

Chapter 12: C Reference Pages 1285

12.3.39 SP_get_number_codes()

Synopsis

#include <sicstus/sicstus.h>

int

SP_get_number_codes(SP_term_ref term,

char const **s);

Assigns to *s a zero-terminated array of characters corresponding to the printed represen-
tation of a Prolog number. The array is subject to reuse by other support functions, so if
the value is going to be used on a more than temporary basis, it must be moved elsewhere.

Arguments

term The SP term ref holding the number

s The location to assign to the array

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.4 [Accessing Prolog Terms], page 303.

1286 SICStus Prolog

12.3.40 SP_get_stream_counts()

Synopsis

#include <sicstus/sicstus.h>

spio_t_error_code

SP_get_stream_counts(

SP_stream *stream,

spio_t_offset *pitem_count,

spio_t_offset *pnewline_count,

spio_t_offset *pline_length,

spio_t_bits options);

Obtain the stream counters.

Arguments

stream The stream.

item count
If pitem_count is NULL it is not used, otherwise it is used as follows.

On success, *pitem_count is assigned to the number of items read from an
input-only or bidirectional stream or with the number of items written to a
output-only stream.

For binary streams, an item is a byte, for text streams it is a character.

pnewline count
If pnewline_count is NULL it is not used, otherwise it is used as follows.

On success *pnewline_count is assigned to the number of newlines read from an
input-only or bidirectional text stream or with the number of newlines written
to a output-only text stream.

For binary streams, *pnewline_count is set to zero.

pline length
If pline_length is NULL it is not used, otherwise it is used as follows.

On success, *pline_length is assigned to the number of characters read on
the current line from an input-only or bidirectional text stream or with the
characters written on the current line to a output-only text stream.

For binary streams, *pline_length is set to zero.

options The following bits can be set:

SP_GET_STREAM_COUNTS_OPTION_READ

Return the real input counts of a read-only or bidirectional stream.

SP_GET_STREAM_COUNTS_OPTION_WRITE

Return the real output counts of a write-only stream.

Currently, the call will fail with SPIO_E_NOT_SUPPORTED if the
stream is bidirectional and SP_GET_STREAM_COUNTS_OPTION_WRITE

is specified. This is because there is only one set of counters for

Chapter 12: C Reference Pages 1287

each stream and these are used to count in the input direction of
bidirectional streams. This may be changed in a future release.

At most one of SP_GET_STREAM_COUNTS_OPTION_READ and SP_GET_STREAM_

COUNTS_OPTION_WRITE can be specified. If neither is specified then default
behavior is as follows

• If stream is interactive, a common set of counts shared by all interactive
streams is returned.

• If stream is write-only, the output counts are returned.

• Otherwise, the stream is read-only or bidirectional and the input counts
are returned.

Return Value

On success, SPIO_S_NOERR or some other success code is returned.

On failure, returns a SPIO error code. Error codes with special meaning for SP_get_

stream_counts():

SPIO_E_NOT_READ

SP_GET_STREAM_COUNTS_OPTION_READ was specified but stream is not an input
stream.

SPIO_E_NOT_WRITE

SP_GET_STREAM_COUNTS_OPTION_WRITE was specified but stream is not an out-
put stream.

SPIO_E_NOT_SUPPORTED

SP_GET_STREAM_COUNTS_OPTION_WRITE was specified but stream is a bidirec-
tional stream.

Description

There is only one set of counters for each stream. For a bidirectional stream, these counters
only count in the input direction and the output direction does not affect the counts.

There is a common set of stream counters for all interactive streams. By default, these
will be returned if stream is interactive instead of the real counts. This behavior can be
changed with the options argument, see above.

See Also

Section 6.6.1 [Prolog Streams], page 310.

1288 SICStus Prolog

12.3.41 SP_get_stream_user_data()

Synopsis

#include <sicstus/sicstus.h>

spio_t_error_code

SP_get_stream_user_data(

SP_stream *stream,

void const *user_class,

void **puser_data);

Get the user data of a user defined stream of a particular class.

Arguments

stream An arbitrary stream. It is legal, and often useful, to call SP_get_stream_user_
data() on a stream even if it is not known whether the stream is in fact a user
defined stream of a particular class.

puser data
On success, *puser_data will be set to the user_data value used when the
stream was created.

Return Value

On success, *puser_data is assigned and SPIO_S_NOERR or some other success code is
returned.

On failure, e.g. if the stream was not created with this user_class, an error code is returned.

Description

This function is used in order to recognize streams of a particular type (or class). At the
same time as it verifies the type of stream it also returns the user_data which gives the
caller a handle to the internal state of the user defined stream.

The following sample illustrates how all streams of a particular class can be found and
closed. This function mimics the behavior of the SP_FCLOSE_OPTION_USER_STREAMS option
to SP_fclose, see Section 12.3.18 [cpg-ref-SP fclose], page 1260.

Chapter 12: C Reference Pages 1289

spio_t_error_code close_streams(void const *user_class, int force)

{

spio_t_error_code ecode = SPIO_E_ERROR;

SP_stream *stream;

SP_stream *next_stream;

void *user_data;

spio_t_bits fclose_options = 0;

if (force) fclose_options |= SP_FCLOSE_OPTION_FORCE;

stream = NULL; /* means start of list of stream */

do

{

/* Note: We need to do this before closing stream */

ecode = SP_next_stream(stream, &next_stream);

if (SPIO_FAILED(ecode)) goto barf;

if (stream != NULL)

{

if (SPIO_SUCCEEDED(SP_get_stream_user_data(stream, user_class, &user_data)))

{

/* This is the right class of stream, close it */

ecode = SP_fclose(stream, fclose_options);

if (SPIO_FAILED(ecode))

{

if (!force) goto barf; /* ignore error if force */

}

}

}

stream = next_stream;

}

while (stream != NULL);

return SPIO_S_NOERR;

barf:

return ecode;

}

See Also

Section 12.3.9 [cpg-ref-SP create stream], page 1246. Section 6.6.2 [Defining a New Stream],
page 312.

1290 SICStus Prolog

12.3.42 SP_get_string()

Synopsis

#include <sicstus/sicstus.h>

int

SP_get_string(SP_term_ref term,

char const **s);

Assigns to *s a pointer to the encoded string representing the name of a Prolog atom. This
string must not be modified by the calling function.

Arguments

term The SP term ref holding the value

s The location to assign

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.4 [Accessing Prolog Terms], page 303.

Chapter 12: C Reference Pages 1291

12.3.43 SP_getenv()

Synopsis

#include <sicstus/sicstus.h>

void *

SP_getenv(const char *name);

Retrieves the value of the system property, or if no such system property exists the envi-
ronment variable, with the given name.

The memory for the returned value is managed by Prolog and should be freed with SP_

free().

Arguments

name The name of the system property or environment variable.

Return Value

The value of the system property or environment variable, if set. NULL if neither a system
property nor an environment variable of that name exists, or if an error occurs.

See Also

Section 4.17.1 [System Properties and Environment Variables], page 224.

1292 SICStus Prolog

12.3.44 SP_initialize() macro

Synopsis

#include <sicstus/sicstus.h>

int

SP_initialize(int argc,

char **argv,

SP_options *options);

Initializes the Prolog engine.

Arguments

argc The number of elements of the argv vector.

argv A vector of strings that can be accessed by prolog_flag(argv,X). This argu-
ment is copied by SP_initialize() so it can be discarded by the caller. May
be passed as NULL if argc is zero.

Each entry should be an encoded string, i.e. encoded using ‘UTF-8’. This may
not be the encoding used by the operating system when invoking main(). A
better alternative is to pass zero for argc, NULL for argv and use SP_set_

argv() to pass the argv entries.

options A pointer to an option block. In most cases it suffice to pass NULL.

An option block can be initialized with SP_OPTIONS_STATIC_INITIALIZER and
its options field set to point to a SP_option array. Each SP_option is a
typed value. Currently the only type is SP_option_type_system_property,
for setting initial system properties (see Section 4.17.1 [System Properties and
Environment Variables], page 224).

To pass the system properties foo and bar, with values true and hello, re-
spectively, you would do something like this

Chapter 12: C Reference Pages 1293

...

int res;

SP_options opts = SP_OPTIONS_STATIC_INITIALIZER;

SP_option props[2];

opts.noptions = 0;

opts.options = &props;

props[opts.noptions].type = SP_option_type_system_property;

props[opts.noptions].u.prop.key = "foo";

props[opts.noptions].u.prop.value = "true";

opts.noptions++;

props[opts.noptions].type = SP_option_type_system_property;

props[opts.noptions].u.prop.key = "bar";

props[opts.noptions].u.prop.value = "hello";

opts.noptions++;

res = SP_initialize(argv, argc, &opts);

if (res != SP_SUCCESS) {

... /* error handling */

}

...

Return Value

SP_SUCCESS if initialization was successful. If initialization was successful, further calls to
SP_initialize() will be no-ops (and return SP_SUCCESS).

Description

This must be done before any interface functions are called, except those annotated as
[preinit]. The function will allocate data areas used by Prolog, initialize command line
arguments so that they can be accessed by the argv Prolog flag, and load the Runtime
Library.

See Also

Section 6.7.4.1 [Initializing the Prolog Engine], page 329.

1294 SICStus Prolog

12.3.45 SP_is_atom()

Synopsis

#include <sicstus/sicstus.h>

int

SP_is_atom(SP_term_ref term);

Determines whether the value of term is a Prolog atom.

Arguments

term The SP term ref to be inspected

Return Value

1 if it is a atom and 0 otherwise.

See Also

Section 6.4.5 [Testing Prolog Terms], page 303.

Chapter 12: C Reference Pages 1295

12.3.46 SP_is_atomic()

Synopsis

#include <sicstus/sicstus.h>

int

SP_is_atomic(SP_term_ref term);

Determines whether the value of term is a Prolog atomic term.

Arguments

term The SP term ref to be inspected

Return Value

1 if it is an atomic term and 0 otherwise.

See Also

Section 6.4.5 [Testing Prolog Terms], page 303.

1296 SICStus Prolog

12.3.47 SP_is_compound()

Synopsis

#include <sicstus/sicstus.h>

int

SP_is_compound(SP_term_ref term);

Determines whether the value of term is a Prolog compound term.

Arguments

term The SP term ref to be inspected

Return Value

1 if it is a compound term and 0 otherwise.

See Also

Section 6.4.5 [Testing Prolog Terms], page 303.

Chapter 12: C Reference Pages 1297

12.3.48 SP_is_float()

Synopsis

#include <sicstus/sicstus.h>

int

SP_is_float(SP_term_ref term);

Determines whether the value of term is a Prolog float.

Arguments

term The SP term ref to be inspected

Return Value

1 if it is a float and 0 otherwise.

See Also

Section 6.4.5 [Testing Prolog Terms], page 303.

1298 SICStus Prolog

12.3.49 SP_is_integer()

Synopsis

#include <sicstus/sicstus.h>

int

SP_is_integer(SP_term_ref term);

Determines whether the value of term is a Prolog integer.

Arguments

term The SP term ref to be inspected

Return Value

1 if it is a integer and 0 otherwise.

Please note: SP_is_integer() will return true also for integers that are too large to be
passed to SP_get_integer(). In this case you will need to use SP_get_integer_bytes()

to obtain the value.

See Also

Section 6.4.5 [Testing Prolog Terms], page 303.

Chapter 12: C Reference Pages 1299

12.3.50 SP_is_list()

Synopsis

#include <sicstus/sicstus.h>

int

SP_is_list(SP_term_ref term);

Determines whether the value of term is a Prolog list cell, i.e. a compound term with functor
./2.

Arguments

term The SP term ref to be inspected

Return Value

1 if the argument is a list cell and 0 otherwise.

See Also

Section 6.4.5 [Testing Prolog Terms], page 303.

1300 SICStus Prolog

12.3.51 SP_is_number()

Synopsis

#include <sicstus/sicstus.h>

int

SP_is_number(SP_term_ref term);

Determines whether the value of term is a Prolog number.

Arguments

term The SP term ref to be inspected

Return Value

1 if it is a number and 0 otherwise.

See Also

Section 6.4.5 [Testing Prolog Terms], page 303.

Chapter 12: C Reference Pages 1301

12.3.52 SP_is_variable()

Synopsis

#include <sicstus/sicstus.h>

int

SP_is_variable(SP_term_ref term);

Determines whether the value of term is a Prolog variable.

Arguments

term The SP term ref to be inspected

Return Value

1 if it is a variable and 0 otherwise.

See Also

Section 6.4.5 [Testing Prolog Terms], page 303.

1302 SICStus Prolog

12.3.53 SP_load()

Synopsis

#include <sicstus/sicstus.h>

int

SP_load(char const *filename);

Calls load_files/1.

Arguments

filename The file name, which is treated as a Prolog atom.

Return Value

See SP_query_cut_fail().

See Also

Section 6.7.4.2 [Loading Prolog Code], page 329.

Chapter 12: C Reference Pages 1303

12.3.54 SP_load_sicstus_run_time()

Synopsis

since release 4.0.3

#include <sicstus/sicstus.h>

int

SP_load_sicstus_run_time(SP_get_dispatch_type **pfuncp,

void *reserved);

Arguments

pfuncp On success the address of the SP_get_dispatch() function of the newly loaded
SICStus runtime is stored at this address.

reserved Reserved, should be NULL.

Return Value

Positive if a new runtime could be loaded, non-positive on error. Please note: The return
value was incorrectly described prior to SICStus Prolog 4.0.5. Also note that, for historical
reasons, the meaning of the return value is different from the convention used by most of
the SICStus Prolog C API.

Description

SP_load_sicstus_run_time() loads a new SICStus runtime.

As a special case, if SP_load_sicstus_run_time() is called from a SICStus runtime that
has not been initialized (with SP_initialize()) and that has not previously been loaded
as the result of calling SP_load_sicstus_run_time(), no new runtime is loaded. Instead,
the SP_get_dispatch() of the runtime itself is returned. In particular, the first time SP_

load_sicstus_run_time() is called on the initial SICStus runtime, and if this happens
before the initial SICStus runtime is initialized, no new runtime is loaded.

Calling SP_load_sicstus_run_time() from a particular runtime can be done from any
thread.

An application that links statically with the SICStus runtime should not call SP_load_
sicstus_run_time().

You should not use pre-linked foreign resources when using multiple SICStus runtimes in
the same process.

For an example of loading and using multiple SICStus run-
times, see library/jasper/spnative.c that implements this functionality for the Java
interface Jasper.

See Also

Chapter 8 [Multiple SICStus Runtimes], page 347.

1304 SICStus Prolog

12.3.55 SP_malloc()

Synopsis

#include <sicstus/sicstus.h>

void *

SP_malloc(size_t size);

Allocates a block of at least size bytes.

Arguments

size Requested number of bytes.

Return Value

NULL on failure, the pointer otherwise.

See Also

See Section 6.4.7.1 [OS Memory Management], page 304.

Chapter 12: C Reference Pages 1305

12.3.56 SP_mutex_lock()

Synopsis

#include <sicstus/sicstus.h>

static SP_mutex volatile mutex = SP_MUTEX_INITIALIZER;

int

SP_mutex_lock(SP_mutex *pmx);

Locks the mutex.

Return Value

Zero on error, non-zero on success.

Examples

static SP_mutex volatile my_mutex = SP_MUTEX_INITIALIZER;

// only access this counter with my_mutex locked

int volatile protected_counter = 0;

// returns the new value of protected_counter

int increment_the_counter(void)

{

int new_value;

if(SP_mutex_lock(&my_mutex) == 0) goto error_handling;

// No other thread can update protected_counter here

new_value = protected_counter+1;

protected_counter = new_value;

if (SP_mutex_unlock(&my_mutex) == 0) goto error_handling;

return new_value;

error_handling:

...

}

See Also

Section 6.4.7.3 [OS Threads], page 305.

1306 SICStus Prolog

12.3.57 SP_mutex_unlock()

Synopsis

#include <sicstus/sicstus.h>

static SP_mutex volatile mutex = SP_MUTEX_INITIALIZER;

int

SP_mutex_unlock(SP_mutex *pmx);

Unlocks the mutex.

Return Value

Zero on error, non-zero on success.

Description

The number of unlocks must match the number of locks and only the thread that performed
the lock can unlock the mutex.

Examples

See the example of SP_mutex_lock().

See Also

Section 6.4.7.3 [OS Threads], page 305.

Chapter 12: C Reference Pages 1307

12.3.58 SP_new_term_ref()

Synopsis

#include <sicstus/sicstus.h>

SP_term_ref

SP_new_term_ref(void);

Creates a new SP term ref, initialized to the empty list [].

Return Value

The new SP term ref.

See Also

Section 6.4.1 [Creating and Manipulating SP term refs], page 300.

1308 SICStus Prolog

12.3.59 SP_next_solution()

Synopsis

#include <sicstus/sicstus.h>

int

SP_next_solution(SP_qid query);

Look for the next solution to the given query.

Arguments

query The query, created by SP_open_query().

Return Value

SP_SUCCESS for success, SP_FAILURE for failure, SP_ERROR if an error condition occurred.

Description

This will cause the Prolog engine to backtrack over any current solution of an open query
and look for a new one. The given argument must be the innermost query that is still open,
i.e. it must not have been terminated explicitly by SP_close_query() or SP_cut_query().
Only when the return value is SP_SUCCESS are the values in the query arguments valid, and
will remain so until backtracking into this query or an enclosing one.

See Also

Section 6.5.2 [Finding Multiple Solutions of a Call], page 306.

Chapter 12: C Reference Pages 1309

12.3.60 SP_next_stream()

Synopsis

#include <sicstus/sicstus.h>

spio_t_error_code

SP_next_stream(SP_stream *stream, SP_stream **pnext);

Iterate through all Prolog streams.

Arguments

stream If this is NULL then *pnext is set to the first stream in the list of streams. If this
is non-NULL then the stream following stream in the list of streams is returned
in *pnext.

pnext The returned stream is returned in *pnext.

Return Value

On success, *pnext is assigned, and SPIO_S_NOERR or some other success code is returned.
You should use the SPIO_FAILED() macro to determine if the return value signifies failure
or success.

When stream is the last stream *pnext is set to NULL.

This function can be used to iterate over all Prolog streams. One way to use this is to-
gether with SP_get_stream_user_data to find all currently open user defined streams of a
particular type.

See Also

Section 6.6 [SICStus Streams], page 310.

1310 SICStus Prolog

12.3.61 SP_open_query()

Synopsis

#include <sicstus/sicstus.h>

SP_qid

SP_open_query(SP_pred_ref predicate,

SP_term_ref arg1,

...);

Sets up a query for use by SP_next_solution(), SP_close_query(), SP_cut_query().

Arguments

predicate The predicate to call.

arg1... The arguments to pass.

Return Value

The query identifier if successful, otherwise 0,

Description

Note that if a new query is opened while another is already open, the new query must be
terminated before exploring the solutions of the old one. That is, queries must be strictly
nested.

See Also

Section 6.5.2 [Finding Multiple Solutions of a Call], page 306.

Chapter 12: C Reference Pages 1311

12.3.62 SP_pred()

Synopsis

#include <sicstus/sicstus.h>

SP_pred_ref

SP_pred(SP_atom name_atom,

SP_integer arity,

SP_atom module_atom);

Returns a pointer to the predicate definition.

Arguments

name atom
Predicate name.

arity Arity.

module atom
Module name.

Return Value

The reference if the predicate is found, NULL otherwise with error code PRED_NOT_FOUND.

Description

Faster than SP_predicate().

See Also

Section 6.5 [Calling Prolog from C], page 305.

1312 SICStus Prolog

12.3.63 SP_predicate()

Synopsis

#include <sicstus/sicstus.h>

SP_pred_ref

SP_predicate(char *name_string,

SP_integer arity,

char *module_string);

Returns a pointer to the predicate definition.

Arguments

name string
Predicate name.

arity Arity.

module string
Module name, optional. NULL and "" (the empty string) both denote the type-in
module (see Section 4.11.8 [ref-mod-tyi], page 166).

Return Value

The reference if the predicate is found, NULL otherwise with error code PRED_NOT_FOUND or,
if one of the string arguments are malformed, INV_STRING.

Description

Slower than SP_pred().

See Also

Section 6.5 [Calling Prolog from C], page 305.

Chapter 12: C Reference Pages 1313

12.3.64 SP_printf()

Synopsis

#include <sicstus/sicstus.h>

spio_t_error_code

SP_printf(

char const *fmt,

...);

Same as SP_fprintf(SP_stdout, fmt, ...).

See Also

Section 12.3.22 [cpg-ref-SP fprintf], page 1267.

1314 SICStus Prolog

12.3.65 SP_put_address()

Synopsis

#include <sicstus/sicstus.h>

int

SP_put_address(SP_term_ref term,

void *pointer);

Assigns to term a reference to a Prolog integer representing a pointer.

Arguments

term The SP term ref to be assigned

pointer The pointer

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.3 [Creating Prolog Terms], page 302.

Chapter 12: C Reference Pages 1315

12.3.66 SP_put_atom()

Synopsis

#include <sicstus/sicstus.h>

int

SP_put_atom(SP_term_ref term,

SP_atom atom);

Assigns to term a reference to a Prolog atom.

Arguments

term The SP term ref to be assigned

atom The atom

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.3 [Creating Prolog Terms], page 302.

1316 SICStus Prolog

12.3.67 SP_put_byte()

Synopsis

#include <sicstus/sicstus.h>

spio_t_error_code

SP_put_byte(

SP_stream *stream,

int item);

Write a byte to a binary stream.

Arguments

stream The stream. Must be a binary stream open for output.

Return Value

On success, the written byte will be returned, cast to a spio_t_error_code. The value
returned on successful return will never be negative.

On failure, returns an error code, recognizable with SPIO_FAILED(). Error codes are always
negative.

Description

Note that SP_put_byte() is implemented as a macro and may evaluate the arguments more
than once. For the same reason, no error checking is performed on the arguments.

See Also

Section 12.3.69 [cpg-ref-SP put code], page 1318. Section 6.6.1 [Prolog Streams], page 310.

Chapter 12: C Reference Pages 1317

12.3.68 SP_put_bytes()

Synopsis

#include <sicstus/sicstus.h>

spio_t_error_code

SP_put_bytes(

SP_stream *stream,

spio_t_uint8 const *bytes,

size_t byte_count,

spio_t_bits options);

Write several bytes to a binary stream.

Arguments

stream The stream. Must be a binary stream open for output.

bytes A pointer to the data to write.

byte count
The number of bytes to write.

options The following bits can be set:

SP_PUT_BYTES_OPTION_NONBLOCKING

Write the bytes without blocking.

Return Value

On success, all data has been written and SPIO_S_NOERR or some other success code re-
turned.

On failure, returns an error code without transferring any data. Error codes with special
meaning for SP_put_bytes():

SPIO_E_WOULD_BLOCK

SP_PUT_BYTES_OPTION_NONBLOCKING was set but the operation would block.

Other error codes may also be returned.

See Also

Section 12.3.67 [cpg-ref-SP put byte], page 1316. Section 6.6.1 [Prolog Streams], page 310.

1318 SICStus Prolog

12.3.69 SP_put_code()

Synopsis

#include <sicstus/sicstus.h>

spio_t_error_code

SP_put_code(

SP_stream *stream,

int item);

Write a character code to a text stream.

Arguments

stream The stream. Must be a text stream open for output.

Return Value

On success, the written character will be returned, cast to a spio_t_error_code. The
value returned on successful return will never be negative.

On failure, returns an error code, recognizable with SPIO_FAILED(). Error codes are always
negative.

Description

Note that SP_put_code() is implemented as a macro and may evaluate the arguments more
than once. For the same reason, no error checking is performed on the arguments.

See Also

Section 12.3.67 [cpg-ref-SP put byte], page 1316. Section 6.6.1 [Prolog Streams], page 310.

Chapter 12: C Reference Pages 1319

12.3.70 SP_put_codes()

Synopsis

#include <sicstus/sicstus.h>

spio_t_error_code

SP_put_codes(

SP_stream *stream,

spio_t_wchar const *codes,

size_t code_count,

spio_t_bits options);

Write several codes to a text stream.

Arguments

stream The stream. Must be a text stream open for output.

codes A pointer to the data to write.

code count
The number of character codes to write. Note that this is the number of char-
acter codes, not the number of bytes.

options The following bits can be set:

SP_PUT_CODES_OPTION_NONBLOCKING

Write the codes without blocking.

Return Value

On success, all data has been written and SPIO_S_NOERR or some other success code re-
turned.

On failure, returns an error code without transferring any data. Error codes with special
meaning for SP_put_codes():

SPIO_E_WOULD_BLOCK

SP_PUT_CODES_OPTION_NONBLOCKING was set but the operation would block.

Other error codes may also be returned.

See Also

Section 12.3.69 [cpg-ref-SP put code], page 1318. Section 6.6.1 [Prolog Streams], page 310.

1320 SICStus Prolog

12.3.71 SP_put_encoded_string()

Synopsis

#include <sicstus/sicstus.h>

spio_t_error_code

SP_put_encoded_string(

SP_stream *stream,

spio_t_wchar const *encoded_string,

spio_t_bits options);

Write an encoded string to a text stream.

Arguments

stream The stream. Must be a text stream open for output.

encoded string
An encoded string to write.

options The following bits can be set:

SP_PUT_ENCODED_STRING_OPTION_NONBLOCKING

Write the string without blocking.

Return Value

On success, all data has been written and SPIO_S_NOERR or some other success code re-
turned.

On failure, returns an error code without transferring any data. Error codes with special
meaning for SP_put_encoded_string():

SPIO_E_WOULD_BLOCK

SP_PUT_ENCODED_STRING_OPTION_NONBLOCKING was set but the operation
would block.

Other error codes may also be returned.

See Also

Section 12.3.70 [cpg-ref-SP put codes], page 1319. Section 6.6.1 [Prolog Streams], page 310.

Chapter 12: C Reference Pages 1321

12.3.72 SP_put_float()

Synopsis

#include <sicstus/sicstus.h>

int

SP_put_float(SP_term_ref term,

double f);

Assigns to term a reference to a float.

Arguments

term The SP term ref to be assigned

f The float (must be finite)

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.3 [Creating Prolog Terms], page 302.

1322 SICStus Prolog

12.3.73 SP_put_functor()

Synopsis

#include <sicstus/sicstus.h>

int

SP_put_functor(SP_term_ref term,

SP_atom name,

int arity);

Assigns to term a reference to a compound term with all the arguments unbound variables.
If arity is 0, assigns the Prolog atom whose canonical representation is name. This is
similar to calling functor/3 with the first argument unbound and the second and third
arguments bound to an atom and an integer, respectively.

Arguments

term The SP term ref to be assigned

name The name of the functor

arity The arity of the functor

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.3 [Creating Prolog Terms], page 302.

Chapter 12: C Reference Pages 1323

12.3.74 SP_put_integer()

Synopsis

#include <sicstus/sicstus.h>

int

SP_put_integer(SP_term_ref term,

SP_integer i);

Assigns to term a reference to an integer.

Arguments

term The SP term ref to be assigned

i The integer

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.3 [Creating Prolog Terms], page 302.

1324 SICStus Prolog

12.3.75 SP_put_integer_bytes()

Synopsis

#include <sicstus/sicstus.h>

int

SP_put_integer_bytes(SP_term_ref term,

void *buf,

size_t buf_size,

int native);

Assigns to term a reference to an arbitrarily sized integer.

Arguments

term The SP term ref to be assigned

buf

• If native is zero, buf consists of the buf_size bytes of the twos com-
plement representation of the integer. Less significant bytes are at lower
indices.

• If native is nonzero, buf is a pointer to the native buf_size bytes integer
type.

buf size The size of buf

native See above. Supported native sizes typically include two, four and eight (64bit)
bytes.

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.3 [Creating Prolog Terms], page 302.

Chapter 12: C Reference Pages 1325

12.3.76 SP_put_list()

Synopsis

#include <sicstus/sicstus.h>

int

SP_put_list(SP_term_ref term);

Assigns to term a reference to a Prolog list whose head and tail are both unbound variables.

Arguments

term The SP term ref to be assigned

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.3 [Creating Prolog Terms], page 302.

1326 SICStus Prolog

12.3.77 SP_put_list_codes()

Synopsis

#include <sicstus/sicstus.h>

int

SP_put_list_codes(SP_term_ref term,

SP_term_ref tail,

char const *s);

Assigns to term a Prolog code list represented by the encoded string s, prepended to the
value of tail.

Arguments

term The SP term ref to be assigned

tail The tail of the code list

s The string to convert

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.3 [Creating Prolog Terms], page 302.

Chapter 12: C Reference Pages 1327

12.3.78 SP_put_list_n_bytes()

Synopsis

#include <sicstus/sicstus.h>

int

SP_put_list_n_bytes(SP_term_ref term,

SP_term_ref tail,

size_t n,

unsigned char const *s);

Assigns to term a list of integers represented by the first n elements of the byte array s,
prepended to the value of tail.

Arguments

term The SP term ref to be assigned

tail The tail of the list

n The number of bytes of s to convert

s The byte array to convert

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.3 [Creating Prolog Terms], page 302.

1328 SICStus Prolog

12.3.79 SP_put_list_n_codes()

Synopsis

#include <sicstus/sicstus.h>

int

SP_put_list_n_codes(SP_term_ref term,

SP_term_ref tail,

size_t n,

char const *s);

Assigns to term a Prolog code list represented by the first n bytes of the encoded string s,
prepended to the value of tail.

Please note: Some characters may be encoded using more than one byte so the number of
characters may be less than n.

Arguments

term The SP term ref to be assigned

tail The tail of the code list

n The number of character codes of s to convert

s The string to convert

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.3 [Creating Prolog Terms], page 302.

Chapter 12: C Reference Pages 1329

12.3.80 SP_put_number_codes()

Synopsis

#include <sicstus/sicstus.h>

int

SP_put_number_codes(SP_term_ref term,

char const *s);

Assigns to term a reference to a Prolog number obtained by parsing s as if by number_

codes/2.

Arguments

term The SP term ref to be assigned

s The string to parse

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.3 [Creating Prolog Terms], page 302.

1330 SICStus Prolog

12.3.81 SP_put_string()

Synopsis

#include <sicstus/sicstus.h>

int

SP_put_string(SP_term_ref term,

char const *string);

Assigns to term a reference to a Prolog atom.

Arguments

term The SP term ref to be assigned

string The string corresponding to the atom

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.3 [Creating Prolog Terms], page 302.

Chapter 12: C Reference Pages 1331

12.3.82 SP_put_term()

Synopsis

#include <sicstus/sicstus.h>

int

SP_put_term(SP_term_ref to,

SP_term_ref from);

Assigns to to the value of from.

Arguments

to The SP term ref to be assigned

from The SP term ref whose value is accessed

Return Value

Zero if the conversion fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.3 [Creating Prolog Terms], page 302.

1332 SICStus Prolog

12.3.83 SP_put_variable()

Synopsis

#include <sicstus/sicstus.h>

int

SP_put_variable(SP_term_ref term);

Assigns to term a reference to a new unbound Prolog variable.

Arguments

term The SP term ref to be assigned

Return Value

Zero if the call fails (as far as failure can be detected), and a nonzero value otherwise.

See Also

Section 6.4.3 [Creating Prolog Terms], page 302.

Chapter 12: C Reference Pages 1333

12.3.84 SP_query()

Synopsis

#include <sicstus/sicstus.h>

int

SP_query(SP_pred_ref predicate,

SP_term_ref arg1,

...);

Calls a predicate, committing to its first solution.

Arguments

predicate The predicate to call.

arg1... The arguments to pass.

Return Value

SP_SUCCESS if the goal succeeded, SP_FAILURE if it failed, and SP_ERROR if an error condition
occurred.

Description

Use this if you are only interested in the first solution. It will create a goal from the
predicate definition and the arguments, call it, and commit to the first solution found, if
any. If it returns SP_SUCCESS, values in the query arguments valid, and will remain so until
backtracking into any enclosing query.

See Also

Section 6.5.1 [Finding One Solution of a Call], page 306.

1334 SICStus Prolog

12.3.85 SP_query_cut_fail()

Synopsis

#include <sicstus/sicstus.h>

int

SP_query_cut_fail(SP_pred_ref predicate,

SP_term_ref arg1,

...);

Calls a predicate for side effects, reclaiming any storage used.

Arguments

predicate The predicate to call.

arg1... The arguments to pass.

Return Value

SP_SUCCESS if the goal succeeded, SP_FAILURE if it failed, and SP_ERROR if an error condition
occurred.

Description

Call this is you are only interested in the side effects of a predicate. It will try to prove the
predicate, cut away the rest of the solutions, and finally fail. This will reclaim the storage
used after the call, and throw away any solution found.

See Also

Section 6.5.1 [Finding One Solution of a Call], page 306.

Chapter 12: C Reference Pages 1335

12.3.86 SP_raise_exception()

Synopsis

#include <sicstus/sicstus.h>

void

SP_raise_exception(SP_term_ref term);

Raises an exception in the scope of Prolog calling C.

Arguments

term The SP term ref whose value will be the exception term.

Description

The exception will be stored as pending. This function is normally used in the context of
a call from Prolog to C, and will cause the exception to be propagated to Prolog on return
from the call. The effect is as if raise_exception/1 was called with the term as argument.

Please note: this should only be called right before returning to Prolog.

See Also

Section 6.5.5 [Exception Handling in C], page 309.

1336 SICStus Prolog

12.3.87 SP_read_from_string()

Synopsis

#include <sicstus/sicstus.h>

int

SP_read_from_string(SP_term_ref t,

const char *string,

SP_term_ref values[])

Assigns to tt the result of reading a term from the its textual representation string.
Variables that occur in the term are bound to the corresponding term in val.

Arguments

term The SP term ref to assign.

string The string to read from.

values The SP term refs to bind variables to. The vector is terminated by 0 (zero).
values may be NULL, which is treated as an empty vector.

Return Value

Nonzero on success, and 0 otherwise.

Description

The variables in the term are ordered according to their first occurence during a depth first
traversal in increasing argument order. That is, the same order as used by terms:term_

variables_bag/2 (see Section 10.42 [lib-terms], page 841). Variables that do not have
a corresponding entry in vals are ignored. Entries in vals that do not correspond to a
variable in the term are ignored.

The string should be encoded using the SICStus Prolog internal encoding.

Examples

This example creates the term foo(X,42,42,X) (without error checking):

Chapter 12: C Reference Pages 1337

SP_term_ref x = SP_new_term_ref();

SP_term_ref y = SP_new_term_ref();

SP_term_ref term = SP_new_term_ref();

SP_term_ref vals[] = {x,y,x,0}; // zero-terminated

SP_put_variable(x);

SP_put_integer(y,42);

SP_read_from_string(term, "foo(A,B,B,C).", vals);

#if 0

A corresponds to vals[0] (x),

B to vals[1] (y),

C to vals[2] (x).

A and C therefore both are bound to

the variable referred to by x.

B is bound to the term referred to by y (42).

So term refers to a term foo(X,42,42,X).

#endif

See Section 6.5.6 [Reading a goal from a string], page 310, for an example of using SP_read_
from_string() to call an arbitrary goal.

See Also

Section 6.4.3 [Creating Prolog Terms], page 302.

1338 SICStus Prolog

12.3.88 SP_realloc()

Synopsis

#include <sicstus/sicstus.h>

void *

SP_realloc(void *ptr,

size_t size);

Changes the size of the block referenced by ptr to size bytes and returns a pointer to the
(possibly moved) block. The contents will be unchanged up to the lesser of the new and old
sizes. The block referenced by ptr must have been obtained by a call to SP_malloc() or
SP_realloc(), and must not have been released by a call to SP_free() or SP_realloc().

Arguments

ptr The current block.

size Requested number of bytes of the new block.

Return Value

NULL on failure, the pointer otherwise.

See Also

See Section 6.4.7.1 [OS Memory Management], page 304.

Chapter 12: C Reference Pages 1339

12.3.89 SP_register_atom()

Synopsis

#include <sicstus/sicstus.h>

int

SP_register_atom(SP_atom atom);

Registers the atom atom with the Prolog memory manager by incrementing its reference
counter.

Arguments

atom The atom to register

Return Value

1 if atom is valid, and 0 otherwise.

See Also

Section 6.4.1 [Creating and Manipulating SP term refs], page 300.

1340 SICStus Prolog

12.3.90 SP_restore()

Synopsis

#include <sicstus/sicstus.h>

int

SP_restore(char const *filename);

Calls restore/1.

Arguments

filename The file name, which is treated as a Prolog atom.

Return Value

See SP_query_cut_fail().

See Also

Section 6.7.4.2 [Loading Prolog Code], page 329.

Chapter 12: C Reference Pages 1341

12.3.91 SP_set_argv()

Synopsis

since release 4.0.3

#include <sicstus/sicstus.h>

int

SP_set_argv(int argc,

char **argv,

spio_t_bits options);

Initializes the argv prolog flag.

Arguments

argc The number of elements of the argv vector.

argv A vector of strings that can be accessed by prolog_flag(argv,X). This argu-
ment is copied by SP_set_argv() so it can be discarded by the caller. May be
passed as NULL if argc is zero.

The encoding used when converting the entries to atoms is determined by the
options argument.

options

If options is zero then each entry in argv is assumed to be an encoded string,
i.e. encoded using ‘UTF-8’. This is the same as passing argc and argv to SP_

initialize() except that SP_initialize() will not report failure even if the
argv entries are not suitable as atom names. Note that UTF-8 may not be the
encoding used by the operating system when invoking main().

If options is SP_SET_ARGV_OPTION_SYSTEM_ENCODING then each entry in argv

is assumed to be encoded using some system encoding. This is only useful on
Unix-like systems since it is preferable, and trivial, to obtain and pass a UTF-8
argv vector on Windows.

The system encoding used by SP_set_argv() will be the first character encod-
ing specified by the following environment variables:

SP_CTYPE

LC_ALL (only on Unix)

LC_CTYPE (only on Unix)

LANG (only on Unix)

if none of these are set then the operating system will be queried in some
platform specific way.

Please note: For best results on Unix-like platforms you should use a locale
based on UTF-8.

Return Value

Zero if the argument entries cannot be converted to atoms, and a nonzero value otherwise.

1342 SICStus Prolog

Description

See Also

Section 6.7.4.1 [Initializing the Prolog Engine], page 329.

Chapter 12: C Reference Pages 1343

12.3.92 SP_set_current_dir()

Synopsis

#include <sicstus/sicstus.h>

spio_t_error_code

SP_set_current_dir(char const *dir);

Makes a directory pointed to by dir to become the current working directory. path should
be an encoded string.

Arguments

dir Name of the directory to become current.

Return Value

On success, SPIO_S_NOERR or some other success code is returned.

On failure, an error code is returned and the working directory is not changed.

See Also

Section 12.3.29 [cpg-ref-SP get current dir], page 1274. Section 6.4.7.2 [OS File System],
page 305.

1344 SICStus Prolog

12.3.93 SP_set_memalloc_hooks() deprecated , preinit

This functionality was deprecated in SICStus Prolog 4.5. It is no longer documented.

Chapter 12: C Reference Pages 1345

12.3.94 SP_set_user_stream_hook() preinit

Synopsis

#include <sicstus/sicstus.h>

typedef SP_stream *

SP_UserStreamHook(void *user_data, int which);

SP_UserStreamHook *

SP_set_user_stream_hook(SP_UserStreamHook *hook, void *user_data);

Sets the user-stream hook to hook. Must be called before SP_initialize().

Arguments

hook It is called three times, one for each stream. The which argument indicates
which stream it is called for. The value of which is one of:

SP_STREAMHOOK_STDIN

Create stream for standard input.

SP_STREAMHOOK_STDOUT

Create stream for standard output.

SP_STREAMHOOK_STDERR

Create stream for standard error.

The hook should return a standard SICStus text I/O stream, as described in
Section 6.6.2 [Defining a New Stream], page 312.

user data An arbitrary pointer that will be passed to the hook.

See Also

Section 6.6.3 [Hookable Standard Streams], page 316.

1346 SICStus Prolog

12.3.95 SP_set_user_stream_post_hook() preinit

Synopsis

#include <sicstus/sicstus.h>

typedef SP_stream *

SP_UserStreamPostHook(void *user_data, int which, SP_stream *str);

SP_UserStreamPostHook *

SP_set_user_stream_post_hook(SP_UserStreamPostHook *hook, void *user_data);

Sets the user-stream post-hook to hook. Must be called before SP_initialize().

Arguments

hook The user-stream post-hook is, if defined, called after all the streams have been
defined, once for each of the three standard streams. It has a slightly different
prototype:

void user_stream_post_hook(void *user_data, int which, SP_stream *str)

where user_data is the value passed to SP_set_user_stream_post_hook and
where str is a pointer to the corresponding SP_stream structure. There are
no requirements as to what this hook must do; the default behavior is to do
nothing at all.

The post-hook is intended to be used to do things that may require that all
streams have been created.

user data An arbitrary pointer that will be passed to the hook.

See Also

Section 6.6.3 [Hookable Standard Streams], page 316.

Chapter 12: C Reference Pages 1347

12.3.96 SP_signal()

Synopsis

#include <sicstus/sicstus.h>

typedef void

SP_SigFun (int sig, void *user_data);

SP_SigFun

SP_signal(int sig,

SP_SigFun fun, void *user_data);

Installs a function fun as a handler for the signal sig. It will be called with sig and
user_data as arguments.

Arguments

sig The signal

fun The function

user data An extra, user defined value passed to the function.

Return Value

SP_SIG_ERR if an error occurs error. On success, some value different from SP_SIG_ERR.

Description

When the OS delivers a signal sig for which SP_signal(sig,func,...) has been called,
SICStus will not call func immediately. Instead the call to func will be delayed until it is
safe for Prolog to do so, in much the same way that functions installed by SP_event() are
handled.

Since the signal handling function func will not be called immediately upon delivery of the
signal to the process it only makes sense to use SP_signal() to handle certain asynchronous
signals such as SIGINT, SIGUSR1, SIGUSR2. Other asynchronous signals handled specially
by the OS, such as SIGCHLD are not suitable for handling via SP_signal(). Note that the
development system installs a handler for ‘SIGINT’, and, under Windows, ‘SIGBREAK’, to
catch keyboard interrupts. As of release 4.4, library(timeout) no longer uses any signals.

When func is called it may only call other (non SICStus) C code and SP_event(). Note
that func will be called in the main thread.

If fun is one of the special constants SP_SIG_IGN or SP_SIG_DFL, then one of two things
happens:

1. If a signal handler for sig has already been installed with SP_signal(), then the
SICStus OS-level signal handler is removed and replaced with, respectively, SIG_IGN
or SIG_DFL.

2. If a signal handler has not been installed with SP_signal(), then SP_signal() does
nothing and returns SP_SIG_ERR.

1348 SICStus Prolog

A signal handler installed by a foreign resource should be uninstalled in the deinit function
for the foreign resource. This is to prevent the handler in the foreign resource from being
called after the code of the foreign resource has been unloaded (e.g. by unload_foreign_

resource/1).

Note that SP_signal() is not suitable for installing signal handlers for synchronous signals
like SIGSEGV.

See Also

SP_event(), Section 6.5.4.1 [Signal Handling], page 309.

Chapter 12: C Reference Pages 1349

12.3.97 SP_strdup()

Synopsis

#include <sicstus/sicstus.h>

void *

SP_strdup(const char *str);

Allocates a string, which is a duplicates of the given string. The memory for the new string
is managed by Prolog.

Arguments

str The given string.

Return Value

The pointer, if allocation was successful, otherwise NULL.

See Also

Section 6.4.7.1 [OS Memory Management], page 304.

1350 SICStus Prolog

12.3.98 SP_string_from_atom()

Synopsis

#include <sicstus/sicstus.h>

char const *

SP_string_from_atom(SP_atom atom);

Obtains the encoded string holding the characters of a Prolog atom. This string must not
be modified by the calling function.

Arguments

atom The atom to inspect.

Return Value

The encoded string if atom is valid, and 0 otherwise.

See Also

Section 6.4.1 [Creating and Manipulating SP term refs], page 300.

Chapter 12: C Reference Pages 1351

12.3.99 SP_term_type()

Synopsis

#include <sicstus/sicstus.h>

int

SP_term_type(SP_term_ref term);

Determines the type of the value of term.

Arguments

term The SP term ref to be inspected

Return Value

One of:

SP_TYPE_VARIABLE

a variable

SP_TYPE_INTEGER

an integer

SP_TYPE_FLOAT

a float

SP_TYPE_ATOM

an atom

SP_TYPE_COMPOUND

a compound term

SP_TYPE_ERROR

an error occurred.

See Also

Section 6.4.5 [Testing Prolog Terms], page 303.

1352 SICStus Prolog

12.3.100 SP_unget_byte()

Synopsis

#include <sicstus/sicstus.h>

spio_t_error_code

SP_unget_byte(

SP_stream *stream,

int item);

Push back a byte so it can be read again by subsequent read operations.

Arguments

stream The stream. Must be a binary stream open for input.

item The byte to push back. This must be the byte that was most recently read
from stream, e.g. with SP_get_byte(). As a special case, -1 can be put back
if the last read operation returned end of file, i.e., SPIO_E_END_OF_FILE.

Return Value

On success, the byte has been pushed back and will be read by the next read operation.
SPIO_S_NOERR or some other success code is returned.

On failure, an error code is returned.

See Also

Section 12.3.27 [cpg-ref-SP get byte], page 1272. Section 6.6.1 [Prolog Streams], page 310.

Chapter 12: C Reference Pages 1353

12.3.101 SP_unget_code()

Synopsis

#include <sicstus/sicstus.h>

spio_t_error_code

SP_unget_code(

SP_stream *stream,

int item);

Push back a character so it can be read again by subsequent read operations.

Arguments

stream The stream. Must be a text stream open for input.

item The character to push back. This must be the same character that was most
recently read from stream, e.g. with SP_get_code(). As a special case, -1 can
be put back if the last read operation returned end of file, i.e., SPIO_E_END_
OF_FILE.

Return Value

On success, the character has been pushed back and will be read by the next read operation.
SPIO_S_NOERR or some other success code is returned.

On failure, returns an error code.

See Also

Section 12.3.28 [cpg-ref-SP get code], page 1273. Section 6.6.1 [Prolog Streams], page 310.

1354 SICStus Prolog

12.3.102 SP_unify()

Synopsis

#include <sicstus/sicstus.h>

int

SP_unify(SP_term_ref x,

SP_term_ref y)

Unifies two terms.

Arguments

x The one term to unify

y The other term to unify

Return Value

1 if they unify, and 0 otherwise.

Description

Bear in mind that the unification may unblock some goals. such goals are not run in the
scope of SP_unify(); they remain pending until the next Prolog goal is run.

See Also

Section 6.4.6 [Unifying and Comparing Terms], page 304.

Chapter 12: C Reference Pages 1355

12.3.103 SP_unregister_atom()

Synopsis

#include <sicstus/sicstus.h>

int

SP_unregister_atom(SP_atom atom);

Unregisters the atom atom with the Prolog memory manager by incrementing its reference
counter.

Arguments

atom The atom to unregister

Return Value

1 if atom is valid, and 0 otherwise.

See Also

Section 6.4.1 [Creating and Manipulating SP term refs], page 300.

1356 SICStus Prolog

12.3.104 SU_initialize() hook

Synopsis

int

SU_initialize(int argc, char *argv[])

In applications built with --userhook, SU_initialize() is called by the main program
before SP_initialize(). Its purpose is to call interface functions, which must be called
before SP_initialize(). It is not meaningful to specify this option if --main=user or
--main=none is given.

Arguments

argc Number of command-line arguments.

argv The command-line arguments, should not be modified.

Return Value

Zero on success, and nonzero otherwise. If a non-zero value is returned, the application
system exits with the return value as error code.

See Also

Section 6.7.3 [The Application Builder], page 322.

Chapter 12: C Reference Pages 1357

12.3.105 user_close()

Synopsis

spio_t_error_code

user_close(

void **puser_data,

spio_t_bits close_options

);

This is the prototype for one of the methods of user defined streams. It is used when
SICStus wants to close one or both directions of a user defined stream.

Arguments

puser data
A pointer to the same value as was passed to SP_create_stream(). On suc-
cessful return, if the stream has been closed and any resources freed, then
*puser_data should be set to NULL.

If user_close fails, it can still set *puser_data to NULL to signify that the
stream is no longer usable.

close options
The following bits can be set:

SPIO_DEVICE_CLOSE_OPTION_READ

The read direction should be closed. Only set if the device was
created as an input or bidirectional device.

SPIO_DEVICE_CLOSE_OPTION_WRITE

The write direction should be closed. Only set if the device was
created as an output or bidirectional device.

SPIO_DEVICE_CLOSE_OPTION_FORCE

The specified directions should be closed without attempting to
flush any data. Among other things this option may be passed if a
previous call to user_close returned an error.

Note that a bidirectional stream should only close the directions specified by
the close_options. Also note that user_close for a bidirectional stream may
be called several times and that the same direction flag, e.g. SPIO_DEVICE_
CLOSE_OPTION_READ may be specified more than once, even if that direction
has already been closed successfully.

Once a call to user_close has set *puser_data to NULL, none of the device
methods will be called again. Note that a *puser_data may be set to NULL even
when a failure code is returned. This is useful if the failure is unrecoverable.

There is no option to specify non-blocking close, it is expected that user_

close will finish quickly. To make this more likely, user_flush_output is
called before non-forcibly closing an output stream.

1358 SICStus Prolog

Return Value

On success, return SPIO_S_NOERR or some other success code and set *puser_data if and
only if the user data and any other resources have been freed.

On failure, return a SPIO error code. Error codes with special meaning for user_close:

SPIO_E_END_OF_FILE

Returned if there were buffered data and it is not possible to write more data
onto the stream, e.g. some underlying device has been closed.

Other error codes may also be returned.

Description

Should close one or all directions depending on the close_options. If all directions have
been closed, the user data should be deallocated and *puser_data set to NULL.

See Also

Section 12.3.9 [cpg-ref-SP create stream], page 1246. Section 6.6.2 [Defining a New Stream],
page 312.

Chapter 12: C Reference Pages 1359

12.3.106 user_flush_output()

Synopsis

spio_t_error_code

user_flush_output(

void *user_data,

spio_t_bits flush_options

);

This is the prototype for one of the methods of user defined streams. It is used when
SICStus wants to write data to the user defined stream.

Arguments

user data The same value as was passed to SP_create_stream().

flush options
The following bits can be set:

SPIO_DEVICE_FLUSH_OPTION_NONBLOCKING

If this is set, the function should return quickly or with a SPIO_E_

WOULD_BLOCK code.

If your user_flush_output will never block, you can ignore this
value.

You should return SPIO_E_NOT_SUPPORTED if user_flush_output
cannot support non-blocking flush.

Return Value

On success, all buffered data should have been written and SPIO_S_NOERR or some other
success code returned.

On failure, return a SPIO error code. Error codes with special meaning for user_flush_
output:

SPIO_E_END_OF_FILE

Returned if it is not possible to write more data onto the stream, e.g. some
underlying device has been closed.

SPIO_E_WOULD_BLOCK

SPIO_DEVICE_FLUSH_OPTION_NONBLOCKING was set but the operation would
block.

SPIO_E_NOT_SUPPORTED

Some unsupported option, e.g. SPIO_DEVICE_FLUSH_OPTION_NONBLOCKING, was
passed.

Other error codes may also be returned.

Description

Should ensure that any buffered data is transmitted to its destination. Can be passed as
NULL.

1360 SICStus Prolog

See Also

Section 12.3.9 [cpg-ref-SP create stream], page 1246. Section 6.6.2 [Defining a New Stream],
page 312.

Chapter 12: C Reference Pages 1361

12.3.107 user_read()

Synopsis

spio_t_error_code

user_read(

void *user_data,

void *buf,

size_t *pbuf_size,

spio_t_bits read_options

);

This is the prototype for one of the methods of user defined streams. It is used when
SICStus need to obtain more data from the user defined stream.

Arguments

user data The same value as was passed to SP_create_stream().

buf Points to a buffer allocated by the caller.

pbuf size Points to the size of the buffer. The buffer is always large enough to hold at
least one byte (for binary streams) or one character (for text streams). When
this function returns successfully, *pbuf_size should be set to the number of
bytes stored in the buffer, which should always be positive for successful return.

Note that buffer size is measured in bytes also for text streams.

read options
The following bits can be set:

SPIO_DEVICE_READ_OPTION_BINARY

This is always specified if the device was created as a binary device.
The buffer should be filled with up to *pbuf_size bytes.

SPIO_DEVICE_READ_OPTION_TEXT

This is always specified if the device was created as a text device.
The buffer should be filled with wide characters, i.e. spio_t_wchar.
Note that *buf_size is size in bytes, not in characters.

SPIO_DEVICE_READ_OPTION_NONBLOCKING

If this is set then the function should return quickly, either with
some data read or with a SPIO_E_WOULD_BLOCK code.

If your user_read will never block, you can ignore this value.

You should return SPIO_E_NOT_SUPPORTED if user_read cannot
support non-blocking read.

Return Value

On success, *pbuf_size should be assigned and SPIO_S_NOERR or some other success code
returned.

On failure, return a SPIO error code. Error codes with special meaning for user_read:

1362 SICStus Prolog

SPIO_E_END_OF_FILE

Return this when there are no more data to read.

SPIO_E_WOULD_BLOCK

SPIO_DEVICE_READ_OPTION_NONBLOCKING was set but the operation would
block.

SPIO_E_NOT_SUPPORTED

Some unsupported option, e.g. SPIO_DEVICE_READ_OPTION_NONBLOCKING, was
passed.

Other error codes may also be returned.

Description

Should fill buf with up to *buf_size bytes of data. Data should be either bytes, for a
binary device, or spio_t_wchar (32 bit) wide characters, for a text device.

See Also

Section 12.3.9 [cpg-ref-SP create stream], page 1246. Section 6.6.2 [Defining a New Stream],
page 312.

Chapter 12: C Reference Pages 1363

12.3.108 user_write()

Synopsis

spio_t_error_code

user_write(

void *user_data,

void const *buf,

size_t *pbuf_size,

spio_t_bits write_options

);

This is the prototype for one of the methods of user defined streams. It is used when
SICStus wants to write data to the user defined stream.

Arguments

user data The same value as was passed to SP_create_stream().

buf Points to a buffer allocated by the caller containing the data to be written.

pbuf size Points to the size of the buffer, always positive. When this function returns
successfully, *pbuf_size should be set to the number of bytes actually written,
which should always be positive for successful return.

Note that buffer size is measured in bytes also for text streams.

write options
The following bits can be set:

SPIO_DEVICE_WRITE_OPTION_BINARY

This is always specified if the device was created as a binary device.
The buffer contains *pbuf_size bytes.

SPIO_DEVICE_WRITE_OPTION_TEXT

This is always specified if the device was created as a text device.
The buffer contains wide characters, i.e. spio_t_wchar. Note that
*buf_size is size in bytes, not in characters.

SPIO_DEVICE_WRITE_OPTION_NONBLOCKING

If this is set, the function should return quickly, either with some
data written or with a SPIO_E_WOULD_BLOCK code.

If your user_write will never block, you can ignore this value.

You should return SPIO_E_NOT_SUPPORTED if user_write cannot
support non-blocking write.

Return Value

On success, *pbuf_size should be assigned to with the number of bytes written and SPIO_

S_NOERR or some other success code returned. On success, something must have been
written, e.g. *pbuf_size must be set to a positive value.

On failure, return a SPIO error code. Error codes with special meaning for user_write:

1364 SICStus Prolog

SPIO_E_END_OF_FILE

Returned if it is not possible to write more data onto the stream, e.g. some
underlying device has been closed.

SPIO_E_WOULD_BLOCK

SPIO_DEVICE_WRITE_OPTION_NONBLOCKING was set but the operation would
block.

SPIO_E_NOT_SUPPORTED

Some unsupported option, e.g. SPIO_DEVICE_WRITE_OPTION_NONBLOCKING, was
passed.

Other error codes may also be returned.

Description

Should write up to *buf_size bytes of data from buf. Data could be either bytes, for a
binary device, or wide characters, for a text device.

See Also

Section 12.3.9 [cpg-ref-SP create stream], page 1246. Section 6.6.2 [Defining a New Stream],
page 312.

1365

13 Command Reference Pages

The reference pages for the SICStus Prolog command line tools follow.

sicstus(1)

SICStus Prolog Development System

mzn-sicstus(1) since release 4.3

Shortcut for MiniZinc with SICStus back-end

spfz(1) since release 4.3

FlatZinc Interpreter

spdet(1) Determinacy Checker

spld(1) SICStus Prolog Application Builder

splfr(1) SICStus Prolog Foreign Resource Linker

splm(1) SICStus Prolog License Manager

spxref(1)

Cross Referencer

1366 SICStus Prolog

13.1 sicstus — SICStus Prolog Development System

Synopsis

% sicstus [options] [-- argument...]

Description

The prompt ‘| ?-’ indicates that the execution is in top-level mode. In this mode, Prolog
queries may be issued and executed interactively. To exit from the top level and return to
the shell, either type ^D at the top level, or call the built-in predicate halt/0, or use the e
(exit) command following a ^C interruption.

Under Windows, sicstus.exe is a console-based program that can run in a command
prompt window, whereas spwin.exe runs in its own window and directs the Prolog standard
streams to that window. spwin.exe is a “windowed” executable.

Options

-f Fast start. Do Not read any initialization file on startup. If the option is
omitted and the initialization file exists, then SICStus Prolog will consult it on
startup after running any initializations and printing the version banners. The
initialization file is .sicstusrc or sicstus.ini in the users home directory,
i.e. ~/.sicstusrc or ~/sicstus.ini. See Section 4.5.2 [ref-fdi-syn], page 99,
for an explanation of how a file specification starting with ‘~/’ is interpreted.

-i Forced interactive. Prompt for user input, even if the standard input stream
does not appear to be a terminal.

-m Use malloc() et al. for memory allocations.

--noinfo Start with the informational Prolog flag set to off initially, suppressing in-
formational messages. The flag is set before any prolog-file or initialization file
is loaded or any saved state is restored.

--nologo Start without the initial version message.

-l prolog-file

Ensure that the file prolog-file is loaded on startup. This is done before any
initialization file is loaded. The -l option can be specified more than once, and
all files will be loaded in the order specified.

-r saved state

Restore the saved state saved state on startup. This is done before any prolog-
file or initialization file is loaded. Only one -r option is allowed.

--goal Goal

Read a term from the text Goal and pass the resulting term to call/1 after all
files have been loaded. As usual Goal should be terminated by a full stop (‘.’).
Only one --goal option is allowed.

-Dvar=value

Sets the system property var to value value. Most system properties take their
default value from the environment but often it is convenient to pass a system

Chapter 13: Command Reference Pages 1367

property directly instead of setting the corresponding environment variable.
See Section 4.17.1 [System Properties and Environment Variables], page 224,
for details.

--locale name

Sets the process locale to the given locale name. The process locale primarily
affects the character encoding used for the standard streams.

The default, also available by specifying ‘default’ as the name, is to inherit
the locale from the environment.

This option is not supported on Windows.

--no-locale

Do not inherit the process locale from the environment.

This is, in effect, the default on Windows.

-Xrs Reduce use of OS-signals.

On UNIX-like platforms, several OS signals are handled specially in a devel-
opment system. The option -Xrs, prevents this and keeps the OS default
behavior.

On both UNIX-like platforms and Windows, the development system will install
handlers for the signal SIGINT (corresponding to a C-c keyboard interrupt). On
Windows, a signal handler will also be added for SIGBREAK (signalled when the
console window is closed). The handling of SIGINT and SIGBREAK is not affected
by -Xrs.

--help Display a help message and exit.

-- argument... since release 4.0.3

-a argument...

where the arguments can be retrieved from Prolog by prolog_flag(argv,

Args), which will unify Args with argument. . . represented as a list of atoms.

Files

file.pl

file.pro Prolog source file

file.po Prolog object file

file.sav Prolog saved state file

.sicstusrc

sicstus.ini

SICStus Prolog initialization file, looked up in the home directory

See Also

Section 3.1 [Start], page 21, Section 4.17.1 [System Properties and Environment Variables],
page 224.

1368 SICStus Prolog

13.2 mzn-sicstus — Shortcut for MiniZinc with SICStus
back-end

Synopsis

% mzn-sicstus [options] mznfile

Description

This tool is a shortcut for invoking minizinc(1) with SICStus as the FlatZinc interpreter
and with the appropriate global constraint definitions.

Options

See minizinc(1).

See Also

Section 10.50 [lib-zinc], page 859.

Chapter 13: Command Reference Pages 1369

13.3 spfz — FlatZinc Interpreter

Synopsis

% spfz [-help | --help | -?] [--version] [-a] [-f] [-n N] [-

o ofile] [-p P] [-r R] [-s] [-t T] [-time T] [-search S] [-s] fznfile

Description

This tool interprets the FlatZinc (‘.fzn’) file fznfile with options taken from the command
line.

Options

-help, --help, -?

print help message

--version

print version

-a return all solutions (equal to -n 0)

-f solver is free to ignore search strategy (does nothing)

-n N number of solutions (0 = all) (default: 1)

-o ofile file to send output to (default: standard output stream)

-p P number of cores available (does nothing)

-r R random seed

-s emit statistics

-t, -time T

time (in ms) cutoff (default: no cutoff)

-search S optimization method is S, one of bab (the default) and restart

See Also

Section 10.50 [lib-zinc], page 859.

1370 SICStus Prolog

13.4 spdet — Determinacy Checker

Synopsis

% spdet [-r] [-d] [-D] [-i ifile] fspec...

Description

The determinacy checker can help you spot unwanted nondeterminacy in your programs.
This tool examines your program source code and points out places where nondeterminacy
may arise.

Options

-r Process files recursively, fully checking the specified files and all the files they
load.

-d Print out declarations that should be added.

-D Print out all needed declarations.

-i ifile An initialization file, which is loaded before processing begins.

See Also

Section 9.7 [The Determinacy Checker], page 361.

Chapter 13: Command Reference Pages 1371

13.5 spld — SICStus Prolog Application Builder

Synopsis

% spld [Option | InputFile] ...

Description

The application builder, spld, is used for creating stand-alone executables. See Section 6.7.3
[The Application Builder], page 322, for an overview.

spld takes the files specified on the command line and combines them into an executable
file, much like the UNIX ld or the Windows link commands.

Note that no pathnames passed to spld should contain spaces. Under Windows, this can
be avoided by using the short version of pathnames as necessary.

Options

The input to spld can be divided into Options and Files, which can be arbitrarily mixed
on the command line. Anything not interpreted as an option will be interpreted as an input
file. Do not use spaces in any file or option passed to spld. Under Windows you can use
the short file name for files with space in their name. The following options are available:

-?

--help Prints out a summary of all options. This may document more options than
those described in this manual.

-v

--verbose

Print detailed information about each step in the compilation/linking sequence.
Multiple occurrences increase verbosity.

-vv Same as -v -v.

--version

Prints out the version number of spld and exits successfully.

-o

--output=filename

Specify output file name. The default depends on the linker (e.g. a.out on
UNIX systems).

-E

--extended-rt

Create an extended runtime system. In addition to the normal set of built-
in runtime system predicates, extended runtime systems include the compiler.
Extended runtime systems require the extended runtime library, available from
SICS as an add-on product. Extended runtime systems need access to license
information; see Section 6.7.3.4 [Extended Runtime Systems], page 326.

-D

--development

Create a development system (with top level, debugger, compiler, etc.). The
default is to create a runtime system. Implies --main=prolog.

1372 SICStus Prolog

--main=type

Specify what the executable should do upon startup. The possible values are:

prolog Implies -D. The executable will start the Prolog top level. This is
the default if -D is specified and no ‘.sav’, ‘.pl’, or ‘.po’ files are
specified.

user The user supplies his/her own main program by including C-code
(object file or source), which defines a function user_main(). This
option is not compatible with -D. See Section 6.7.4 [User-defined
Main Programs], page 328.

restore The executable will restore a saved state created by save_

program/[1,2]. This is the default if a ‘.sav’ file is found among
Files. It is only meaningful to specify one ‘.sav’ file. If it was cre-
ated by save_program/2, then the given startup goal is run. Then
the executable will any Prolog code specified on the command line.
Finally, the goal user:runtime_entry(start) is run. The exe-
cutable exits with 0 upon normal temination and with 1 on failure
or exception. Not compatible with -D.

load The executable will load any Prolog code specified on the com-
mand line, i.e. files with extension ‘.pl’ or ‘.po’. This is the de-
fault if there are ‘.pl’ or ‘.po’ but no ‘.sav’ files among Files.
Finally, the goal user:runtime_entry(start) is run. The exe-
cutable exits with 0 upon normal temination and with 1 on failure
or exception. Not compatible with -D. Note that this is almost
like --main==restore except that no saved state will be restored
before loading the other files.

none No main function is generated. The main function must be supplied
in one of the user supplied files. Not compatible with -D.

--window

Win32 only. Create a windowed executable. A console window will be opened
and connected to the Prolog standard streams. If --main=user is specified,
then user_main() should not set the user-stream hooks. C/C++ source code
files specified on the command line will be compiled with -DSP_WIN=1 if this
option is given.

--moveable

--no-moveable

Controls whether to hardcode certain paths into the executable in order for it
to find the SICStus libraries and bootfiles etc.

Under UNIX, if --no-moveable is specified, then paths are hardcoded into
executables in order for them to find the SICStus libraries and bootfiles. Two
paths are normally hardcoded; the value of SP_PATH and, where possible, the
runtime library search path using the -R linker option (or equivalent). If the
linker does not support the -R option (or an equivalent), then a wrapper script
is generated instead, which sets LD_LIBRARY_PATH (or equivalent).

Chapter 13: Command Reference Pages 1373

The --moveable option turns off this behavior, so the executable is not de-
pendent on SICStus being installed in a specific place. On most platforms the
executable can figure out where it is located and so can locate any files it need,
e.g. using SP_APP_DIR and SP_RT_DIR. On some UNIX platforms, however, this
is not possible. In these cases, --moveable is in effect, the executable will rely
on the system properties and enviroment variables (SP_PATH (see Section 4.17.1
[System Properties and Environment Variables], page 224) and LD_LIBRARY_

PATH etc.) to find all relevant files.

Under Windows, --moveable is always on, since Windows applications do not
need to hardcode paths in order for them to find out where they are installed.
On UNIX platforms, --moveable is the default (as of release 4.2) but can be
turned off with --no-moveable. See Section 6.7.2 [Runtime Systems on Target
Machines], page 318, for more information on how SICStus locates its libraries
and bootfiles.

-S

--static Link statically with SICStus runtime and foreign resources. When --static is
specified, a static version of the SICStus runtime will be used and any SICStus
foreign resources specified with --resources will be statically linked with the
executable. In addition, --static implies --embed-rt-sav, --embed-sav-

file and --resources-from-sav.

Even with --static, spld will go with the linker’s default, which is usually
dynamic. If you are in a situation where you would want spld to use a static
library instead of a dynamic one, then you will have to hack into spld’s config-
uration file spconfig-version (normally located in <installdir>/bin). We
recommend that you make a copy of the configuration file and specify the new
configuration file using --config=<file>. A typical modification of the con-
figuration file for this purpose may look like:

[...]

TCLLIB=-Bstatic -L/usr/local/lib -ltk8.0 -ltcl8.0 -Bdynamic

[...]

Use the new configuration file by typing

% spld [...] -S --config=/home/joe/hacked_spldconfig [...]

The SICStus runtime depends on certain OS support that is only available in
dynamically linked executables. For this reason it will probably not work to try
to tell the linker to build a completely static executable, i.e. an executable that
links statically also with the C library and that cannot load shared objects.

--shared Create a shared library runtime system instead of an ordinary executable. Im-
plies --main=none.

Can be combined with --static to create a all-in-one shared library runtime
system.

--resources=ResourceList

ResourceList is a comma-separated list of resource names, describing which
resources should be prelinked with the executable. Names can be either simple

1374 SICStus Prolog

resource names, for example tcltk, or they can be complete paths to a foreign
resource (with or without extensions). Example

% spld [...] --resources=tcltk,clpfd,/home/joe/foobar.so

This will cause library(tcltk), library(clpfd), and /home/joe/foobar.so

to be prelinked with the executable. See also the option --respath below.

It is also possible to embed a data resource, that is, the contents of an arbitrary
data file that can be accessed at runtime.

It is possible to embed any kind of data, but, currently, only restore/1 knows
about data resources. For this reason it only makes sense to embed ‘.sav’ files.

The primary reason to embed files within the executable is to create an all-in-
one executable, that is, an executable file that does not depend on any other
files and that therefore is easy to run on machines without SICStus installed.
See Section 6.7.3.2 [All-in-one Executables], page 322, for more information.

--resources-from-sav

--no-resources-from-sav

When embedding a saved state as a data resource (with --resources or
--embed-sav-file), this option extracts information from the embedded saved
state about the names of the foreign resources that were loaded when the saved
state was created. This is the default for static executables when no other
resource is specified except the embedded saved state. This option is only sup-
ported when a saved state is embedded as a data resource. See Section 6.7.3.2
[All-in-one Executables], page 322, for more information.

Use --no-resources-from-sav to ensure that this feature is not enabled.

--respath=Path

Specify additional paths used for searching for resources. Path is a list of search-
paths, colon separated under UNIX, semicolon separated under Windows. spld
will always search the default library directory as a last resort, so if this option
is not specified, then only the default resources will be found. See also the
--resources option above.

--config=ConfigFile

Specify another configuration file. This option is not intended for normal use.
The file name may not contain spaces.

--conf VAR=VALUE since release 4.0.3

Override values from the configuration file. Can occur multiple times. For
instance, ‘--conf CC=/usr/bin/gcc’ would override the default C compiler.

--cflag=CFlag

CFlag is an option to pass to the C-compiler. This option can occur multiple
times.

The current behavior is that if CFlag contains commas, then each comma-
separated part is treated as a separate compiler option. This may change in
the future, so instead you should use multiple occurences of --cflag. To turn
off splitting at commas and treat CFlag as a single option even it contains
a comma, you can pass the option --conf SPLIT_OPT_CFLAG=0. This can be
useful with certain options to the gcc compiler.

Chapter 13: Command Reference Pages 1375

-- since release 4.0.3

--LD since release 4.0.3

-LD Do not process the rest of the command line, but send it directly to the linker
step. Note that linking is often performed by the compiler.

--sicstus=Executable

spld relies on using SICStus during some stages of its execution. The default
is the development system installed with the distribution. Executable can be
used to override this, in case the user wants to use another development system.

--interactive

-i Only applicable with --main=load or --main=restore. Calls SP_force_

interactive() (see Section 6.7.4.1 [Initializing the Prolog Engine], page 329)
before initializing SICStus.

--userhook

This option allows you to define your own version of the SU_initialize()

function. SU_initialize() is called by the main program before SP_

initialize(). Its purpose is to call interface functions that must be called be-
fore SP_initialize(), such as SP_set_user_stream_hook(). It is not mean-
ingful to specify this option if --main=user or --main=none is given.

--memhook

This option allows you to specify which memory manager to use. One of
default or malloc. If specified as malloc, then the C library malloc() will
be used for all allocations instead of SICStus default allocator.

--locale=LOCALE since release 4.3

--no-locale

By default, on UNIX platforms, the executable created by spld sets the process
locale from the environment.

Setting the process locale from the environment can suppressed by passing the
--no-locale option to spld. This corresponds to the behavior prior to release
4.3.

An explicit locale that the process should set on inititialization, can be passed
with the --locale option to spld.

The valid locale names depends on the operating system. Typically you can
use the locale utility, with the -a option, to list all valid locale names.

--with_jdk=DIR

--with_tcltk=DIR

--with_tcl=DIR

--with_tk=DIR

--with_bdb=DIR

Specify the installation path for third-party software for foreign resources, such
as jasper, that have special dependencies. This is mostly useful under Win-
dows. Under UNIX, the installation script manages this automatically.

--keep Keep temporary files and interface code and rename them to human-readable
names. Not intended for the casual user, but useful if you want to know exactly
what code is generated.

1376 SICStus Prolog

--nocompile

Do Not compile, just generate code. This may be useful in Makefiles, for ex-
ample to generate the header file in a separate step. Implies --keep.

--namebase=namebase

Use namebase to construct the name of generated files. This defaults to
spldgen_ or, if --static is specified, spldgen_s_.

--embed-rt-sav

--no-embed-rt-sav

--embed-rt-sav will embed the SICStus runtime ‘.sav’ file into the executable.
This is off by default unless --static is specified. It can be forced on (off) by
specifying --embed-rt-sav (--no-embed-rt-sav).

--embed-sav-file

--no-embed-sav-file

--embed-sav-file will embed any ‘.sav’ file passed to spld into the exe-
cutable. This is just a shorthand for avoiding the ugly data resource syntax of
the --resources option. This is the default when --static is specified. It can
be forced on (off) by specifying --embed-sav-file (--no-embed-sav-file).
A file ./foo/bar.sav will be added with the data resource name ‘/bar.sav’,
i.e. as if --resources=./foo/bar.sav=/bar.sav had been specified.

--license-file=LicenseFile

Specify the path to the license information needed by extended runtime systems.
Only relevant with --extended-rt. See Section 6.7.3.4 [Extended Runtime
Systems], page 326, for details.

--embed-license

--no-embed-license

Controls whether to embed the license information in the executable. --no-

embed-license is the default. Only relevant with --extended-rt. See
Section 6.7.3.4 [Extended Runtime Systems], page 326, for details.

--multi-sp-aware

Compile the application with support for using more than one SICStus run-
time in the same process. Not compatible with --static or prelinked foreign
resources. See Section 8.2 [Multiple SICStus Runtimes in C], page 347, for
details.

There may be additional, undocumented, options, some of which may be described with
the --help option.

Files

Arguments to spld not recognized as options are assumed to be input files and are handled
as follows:

‘*.pro’
‘*.pl’
‘*.po’ These are interpreted as names of files containing Prolog code and will be passed

to SP_load() at runtime (if --main is load or restore). Please note: If the

Chapter 13: Command Reference Pages 1377

intention is to make an executable that works independently of the working
directory at run time, then avoid relative file names, for they will be resolved
at run time, not at spld time. Use absolute file names instead, SP_APP_DIR,
SP_LIBRARY_DIR, or embed a ‘.sav’ file as a data resource, using --resource.

‘*.sav’ These are interpreted as names of files containing saved states and will be
passed to SP_restore() at runtime if --main=restore is specified, subject to
the above caveat about relative file names.

It is not meaningful to give more than one ‘.sav’ argument.

‘*.so’
‘*.sl’
‘*.s.o’
‘*.o’
‘*.obj’
‘*.dll’
‘*.lib’
‘*.dylib’ These files are assumed to be input files to the linker and will be passed on

unmodified.

‘*.c’
‘*.cc’
‘*.C’
‘*.cpp’
‘*.c++’ These files are assumed to be C/C++ source code and will be compiled by the

C/C++-compiler before being passed to the linker.

If an argument is still not recognized, then it will be passed unmodified to the linker.

See Also

See Section 6.7.3 [The Application Builder], page 322.

1378 SICStus Prolog

13.6 splfr — SICStus Prolog Foreign Resource Linker

Synopsis

% splfr [Option | InputFile] ...

Description

The foreign resource linker, splfr, is used for creating foreign resources (see Section 6.2.1
[Foreign Resources], page 291). splfr reads terms from a Prolog file, applying op dec-
larations and extracting any foreign_resource/2 fact with first argument matching the
resource name and all foreign/[2,3] facts. Based on this information, it generates the
necessary glue code, and combines it with any additional C or object files provided by the
user into a linked foreign resource. The output file name will be the resource name with a
suitable extension.

Options

The input to splfr can be divided into Options and InputFiles and they can be arbitrarily
mixed on the command line. Anything not interpreted as an option will be interpreted as
an input file. Exactly one of the input files should be a Prolog file. The following options
are available:

-?

--help Prints out a summary of all options.

-v

--verbose

Print detailed information about each step in the compilation/linking sequence.
Multiple occurrences increase verbosity.

-vv Same as -v -v.

--version

Prints out the version number of spld and exits successfully.

--config=ConfigFile

Specify another configuration file. This option is not intended for normal use.
The file name may not contain spaces.

--conf VAR=VALUE since release 4.0.3

Override values from the configuration file. Can occur multiple times. For
instance, ‘--conf CC=/usr/bin/gcc’ would override the default C compiler.

--cflag=CFlag

CFlag is an option to pass to the C-compiler. This option can occur multiple
times.

The current behavior is that if CFlag contains commas, then each comma-
separated part is treated as a separate compiler option. This may change in
the future, so instead you should use multiple occurences of --cflag. To turn
off splitting at commas and treat CFlag as a single option even it contains
a comma, you can pass the option --conf SPLIT_OPT_CFLAG=0. This can be
useful with certain options to the gcc compiler.

Chapter 13: Command Reference Pages 1379

-- since release 4.0.3

--LD since release 4.0.3

-LD Do not process the rest of the command line, but send it directly to the com-
piler/linker. Note that linking is often performed by the compiler.

--sicstus=Executable

splfr relies on using SICStus during some stages of its execution. The default
is the development system installed with the distribution. Executable can be
used to override this, in case the user wants to use another development system.

--keep Keep temporary files and interface code and rename them to human-readable
names. Not intended for the casual user, but useful if you want to know exactly
what code is generated.

--resource=ResourceName

Specify the resource’s name. This defaults to the basename of the Prolog source
file found on the command line.

-o, --output=OutputFileName

Specify output file name. This defaults to the name of the resource, suffixed
with the platform’s standard shared object suffix (i.e. ‘.so’ on most UNIX
dialects, ‘.dll’ under Windows). The use of this option is discouraged, except
to change the output directory.

-S

--static Create a statically linked foreign resource instead of a dynamically linked one,
which is the default. A statically linked foreign resource is a single object
file, which can be prelinked into a Prolog system. See also the spld tool,
Section 6.7.3 [The Application Builder], page 322.

--no-rpath

Under UNIX, the default is to embed into the shared object all linker library
directories for use by the dynamic linker. For most UNIX linkers this corre-
sponds to adding a -Rpath for each -Lpath. The --no-rpath option inihibits
this.

--nocompile

Do Not compile, just generate code. This may be useful in Makefiles, for ex-
ample to generate the header file in a separate step. Implies --keep.

--namebase=namebase

namebase will be used as part of the name of generated files. The default name
base is the resource name (e.g. as specified with --resource). If --static is
specified, then the default namebase is the resource name followed by ‘_s’.

--header=headername

Specify the name of the generated header file. The default is namebase_glue.h.
All C files that define foreign functions or that call SICStus API functions should
include this file. Among other things the generated header file includes proto-
types corresponding to the foreign/[2,3] declarations in the Prolog code.

1380 SICStus Prolog

--multi-sp-aware

Create a (dynamic) foreign resource that can be loaded by several SICStus run-
times in the same process, at the same time. See Section 8.3 [Foreign Resources
and Multiple SICStus Runtimes], page 349, for details.

--moveable

Do Not embed paths into the foreign resource.

On platforms that support it, i.e. some versions of UNIX, the default behavior
of splfr is to add each directory dir specified with -Ldir to the search path
used by the runtime loader (using the SysV ld -R option or similar). The option
--moveable turns off this behavior. For additional details, see the correspond-
ing option to spld (see Section 6.7.3 [The Application Builder], page 322).

--structs

The Prolog source file uses library(structs). This option makes splfr un-
derstand foreign type specifications and translate them into C declarations in
the generated header file. See See Section 10.39 [lib-structs], page 738.

--objects since release 4.3

The Prolog source file uses library(objects). This option makes splfr un-
derstand that library’s syntax extensions. See See Section 10.25 [lib-objects],
page 619.

there may be additional, undocumented, options, some of which may be described with the
--help option.

Files

Arguments to spld not recognized as options are assumed to be input files and are handled
as follows:

‘*.pro’
‘*.pl’ The Prolog file containing the relevant declarations. Exactly one such argument

should be given.

‘*.so’
‘*.sl’
‘*.s.o’
‘*.o’
‘*.obj’
‘*.dll’
‘*.lib’
‘*.dylib’ These files are assumed to be input files to the linker and will be passed on

unmodified.

‘*.c’
‘*.cc’
‘*.C’
‘*.cpp’
‘*.c++’ These files are assumed to be C/C++ source code and will be compiled by the

C/C++-compiler before being passed to the linker.

Chapter 13: Command Reference Pages 1381

See Also

Section 6.2.5 [The Foreign Resource Linker], page 296.

1382 SICStus Prolog

13.7 splm — SICStus Prolog License Manager

Synopsis

% splm -i Site

% splm -a LicensedProduct ExpirationDate Code

Description

SICStus Prolog requires a license code to run. You should have received from SICS your
site name, the expiration date and the code. This information is normally entered during
installation, but it can also be entered later on by means of this command-line tool.

Under Windows, splm must be run by a user with Administrative rights. The windowed
version of SICStus (spwin.exe) has a menu item for license entry, making splm unnecessary
under Windows.

Please note: when using spwin.exe for changing the license information, it too must be run
with Administrative rights. This is especially important under Windows Vista and later.

Files

library/license.pl

See Also

Section 3.1 [Start], page 21.

Chapter 13: Command Reference Pages 1383

13.8 spxref — Cross Referencer

Synopsis

% spxref [-R] [-v] [-c] [-i ifile] [-w wfile] [-x xfile] [-

u ufile] fspec ...

Description

The main purpose is to find undefined predicates and unreachable code. To this end,
it begins by looking for initializations, hooks and public directives to start tracing the
reachable code from. If an entire application is being checked, then it also traces from
user:runtime_entry/1. If individual module files are being checked, then it also traces
from their export lists.

Options

File arguments should be given as atoms or as -, denoting the standard output stream.

-R Check an application, i.e. follow user:runtime_entry/1, as opposed to module
declarations.

-c Generate standard compiler style error messages.

-v Verbose output. This echoes the names of the files being read.

-i ifile An initialization file, which is loaded before processing begins.

-w wfile Warning file. Warnings are written to the standard error stream by default.

-x xfile Generate a cross-reference file. This is not generated by default.

-m mfile Generate a file indicating which predicates are imported and which are exported
for each file. This is not generated by default.

-u ufile Generate a file listing all the undefined predicates. This is not generated by
default.

See Also

Section 9.12 [The Cross-Referencer], page 377.

1385

References

[Aggoun & Beldiceanu 90]
A. Aggoun and N. Beldiceanu, Time Stamps Techniques for the Trailed Data in
Constraint Logic Programming Systems, Actes du séminaires Programmation
en Logique, Trégastel, France, May 1990.

[Aggoun & Beldiceanu 93]
A. Aggoun and N. Beldiceanu, Extending CHIP in order to Solve Complex
Scheduling and Placement Problems, Mathl. Comput. Modelling, vol. 17, no.
7, pp. 57–73, Pergamon Press Ltd., 1993.

[Beldiceanu, Carlsson, Flener & Pearson 10]
N. Beldiceanu, M. Carlsson, P. Flener, J. Pearson, On Matrices, Automata, and
Double Counting, Constraints 18(1): 108-140, 2013.

[Beldiceanu, Carlsson & Petit 04]
N. Beldiceanu, M. Carlsson, T. Petit, Deriving Filtering Algorithms from Con-
straint Checkers, CP, LNCS 3258, Springer, 2004.

[Beldiceanu, Carlsson & Rampon 05]
N. Beldiceanu, M. Carlsson, J.-X. Rampon, Global Constraint Catalog, SICS
Technical Report T2005-08, 2005.

[Beldiceanu & Contejean 94]
N. Beldiceanu and E. Contejean, Introducing Global Constraints in CHIP,
Mathl. Comput. Modelling, vol. 20, no. 12, pp. 97–123, Pergamon Press Ltd.,
1994.

[Bryant 86]
R.E. Bryant, Graph-Based Algorithms for Boolean Function Manipulation,
IEEE Trans. on Computers, August, 1986.

[CHIP 03] CHIP Finite domain constraints Reference Manual, Release 5.5, pp. 36–38,
2003.

[Carlsson 90]
M. Carlsson, Design and Implementation of an OR-Parallel Prolog Engine, SICS
Dissertation Series 02, 1990.

[Carlsson & Beldiceanu 02]
M. Carlsson, N. Beldiceanu, Arc-Consistency for a Chain of Lexicographic Or-
dering Constraints, SICS Technical Report T2002-18, 2002.

[Carlsson, Beldiceanu & Martin 08]
M. Carlsson, N. Beldiceanu, J. Martin, A Geometric Constraint over k-
Dimensional Objects and Shapes Subject to Business Rules, SICS Technical
Report T2008-04, 2008.

[Carreiro & Gelernter 89a]
N. Carreiro and D. Gelernter, Linda in Context, CACM, 32(4) 1989.

[Carreiro & Gelernter 89b]
N. Carreiro and D. Gelernter, How to Write Parallel Programs: A Guide to the
Perplexed, ACM Computing Surveys, September 1989.

1386 SICStus Prolog

[Clocksin & Mellish 81]
W.F. Clocksin and C.S. Mellish, Programming in Prolog, Springer, 1981.

[Colmerauer 90]
Colmerauer A.: An Introduction to Prolog III, CACM, 33(7), 69-90, 1990.

[Diaz & Codognet 93]
D. Diaz and P. Codognet, A Minimal Extension of the WAM for clp(FD), ICLP,
MIT Press, 1993.

[Fruehwirth 98]
Th. Fruehwirth, Theory and Practice of Constraint Handling Rules, Special
Issue on Constraint Logic Programming (P. Stuckey and K. Marriot, Eds.),
Journal of Logic Programming, Vol 37(1-3), pp. 95-138, October 1998.

[Gorlick & Kesselman 87]
M.M. Gorlick and C.F. Kesselman, Timing Prolog Programs Without Clocks,
Symposium on Logic Programming, pp. 426–432, IEEE Computer Society,
1987.

[Hanak et al. 04]
D. Hanák, T. Szeredi, P. Szeredi: FDBG, the CLPFD Debugger Library of
SICStus Prolog. International Workshop on Logic Programming Environments
(WLPE’04), 2004.

[Heintze et al. 87]
N. Heintze, J. Jaffar, S. Michaylov, P. Stuckey, R. Yap, The CLP(R) Program-
mers Manual, Monash University, Clayton, Victoria, Australia, Department of
Computer Science, 1987.

[Holzbaur 92a]
C. Holzbaur, A High-Level Approach to the Realization of CLP Languages,
JICSLP92 Post-Conference Workshop on Constraint Logic Programming Sys-
tems, Washington D.C., 1992.

[Holzbaur 94]
C. Holzbaur, A Specialized, Incremental Solved Form Algorithm for Systems
of Linear Inequalities, Austrian Research Institute for Artificial Intelligence,
Vienna, TR-94-07, 1994.

[Jaffar & Michaylov 87]
J. Jaffar, S. Michaylov, Methodology and Implementation of a CLP System,
ICLP, MIT Press, Cambridge, MA, 1987.

[Kowalski 74]
R.A. Kowalski, Logic for Problem Solving, DCL Memo 75, Dept of Artificial
Intelligence, University of Edinburgh, March, 1974.

[Kowalski 79]
R.A. Kowalski, Artificial Intelligence: Logic for Problem Solving. North Hol-
land, 1979.

[Letort, Beldiceanu & Carlsson 14]
A. Letort, N. Beldiceanu, M. Carlsson, Synchronized sweep algorithms for scal-
able scheduling constraints, Constraints, DOI 10.1007/s10601-014-9172-8, 2014.

References 1387

[Lopez-Ortiz 03]
A Lopez-Ortiz, CG Quimper, J Tromp, P van Beek, A fast and simple algorithm
for bounds consistency of the alldifferent constraint, IJCAI 2003.

[Mehlhorn 00]
K. Mehlhorn and Sven Thiel, Faster algorithms for bound-consistency of the
sortedness and the alldifferent constraint, CP, LNCS 1894, Springer, 2000.

[O’Keefe 90]
R.A. O’Keefe, The Craft of Prolog, MIT Press, 1990.

[Ousterhout 94]
John K. Ousterhout, Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[Regin 94] J.-C. Regin, A filtering algorithm for constraints of difference in CSPs, AAAI,
pp. 362–367, 1994

[Regin 96] J.-C. Regin, Generalized Arc Consistency for Global Cardinality Constraint,
AAAI, 1996.

[Regin 99] J.-C. Regin, Arc Consistency for Global Cardinality with Costs, CP, LNCS
1713, pp. 390-404, 1999.

[Schrijvers & Demoen 04]
T. Schrijvers and B. Demoen, The K.U.Leuven CHR System: Implementation
and Application, First Workshop on Constraint Handling Rules: Selected Con-
tributions (T. Fruehwirth and M. Meister, eds.), pp. 1–5, 2004.

[Sellmann 02]
M. Sellmann, An Arc Consistency Algorithm for the Minimum Weight All Dif-
ferent Constraint, CP, LNCS 2470, Springer, 2002.

[Razakarison, Carlsson, Beldiceanu & Simonis 13]
N. Razakarison, M. Carlsson, N. Beldiceanu and H. Simonis, GAC for a lin-
ear inequality and an atleast constraint with an application to learning simple
polynomials, Sixth Annual Symposium on Combinatorial Search, 2013.

[Robinson 65]
J.A. Robinson, A Machine-Oriented Logic Based on the Resolution Principle,
JACM 12:23-44, January 1965.

[Roussel 75]
P. Roussel, Prolog : Manuel de Reference et d’Utilisation, Groupe d’Intelligence
Artificielle, Marseille-Luminy, 1975.

[Schimpf 2002]
J. Schimpf, Logical Loops. ICLP, pp. 224-238, MIT Press, 2002.

[Sterling & Shapiro 86]
L. Sterling and E. Shapiro, The Art of Prolog. The MIT Press, Cambridge MA,
1986.

[Van Hentenryck 89]
P. Van Hentenryck, Constraint Satisfaction in Logic Programming, Logic Pro-
gramming Series, The MIT Press, 1989.

1388 SICStus Prolog

[Van Hentenryck et al. 95]
P. Van Hentenryck, V. Saraswat and Y. Deville, Design, implementation and
evaluation of the constraint language cc(FD). In A. Podelski, ed., Constraints:
Basics and Trends, LNCS 910. Springer, 1995.

[Warren 83]
D.H.D. Warren, An Abstract Prolog Instruction Set, Technical Note 309, SRI
International, 1983.

1389

Predicate Index

!
!/0 (built-in, ref page) . 978
!/0, cut . 64

#
#/\ /2 (clpfd) . 433
#< /2 (clpfd) . 430
#<= /2 (clpfd) . 433
#<=> /2 (clpfd) . 430, 433
#= /2 (clpfd) . 430
#=< /2 (clpfd) . 430
#=> /2 (clpfd) . 433
#> /2 (clpfd) . 430
#>= /2 (clpfd) . 430
#\ /1 (clpfd) . 433
#\ /2 (clpfd) . 433
#\/ /2 (clpfd) . 433
#\= /2 (clpfd) . 430

’
'SU_messages':generate_message/3 215
'SU_messages':query_abbreviation/3 222
'SU_messages':query_class/5 222
'SU_messages':query_input/3 222
'SU_messages':query_map/4 222

,
,/2 (built-in, ref page) . 914
,/2, conjunction . 63

–
-> /2 ;/2, if then else . 67
-> /2, if then . 67
->/2 (built-in, ref page) 1036

:
: /2, module qualifier . 74
:- /1, directive . 24

;
;/2 (built-in, ref page) 1098
;/2, disjunction . 66

<
<-/2 (objects) . 650
</2 (built-in, ref page) 1048
<</2 (objects) . 651

=
=../2 (built-in) . 127
=../2 (built-in, ref page) 1212
=/2 (built-in) . 126
=/2 (built-in, ref page) 1210
=:=/2 (built-in, ref page) 992
=</2 (built-in, ref page) 1078
==/2 (built-in) . 131
==/2 (built-in, ref page) 1195
=\=/2 (built-in, ref page) 1077

>
>/2 (built-in, ref page) 1032
>=/2 (built-in, ref page) 1079
>>/2 (objects) . 652

?
?- /1, query . 23
?=/2 (built-in) . 127
?=/2 (built-in, ref page) 1203

@
@</2 (built-in) . 131
@</2 (built-in, ref page) 1199
@=</2 (built-in) . 131
@=</2 (built-in, ref page) 1201
@>/2 (built-in) . 131
@>/2 (built-in, ref page) 1198
@>=/2 (built-in) . 131
@>=/2 (built-in, ref page) 1202

^
^ /2, existential quantifier 74
^/2 (built-in) . 188
^/2 (built-in, ref page) . 996

1390 SICStus Prolog

\
\+ /1, not provable . 68
\+/1 (built-in, ref page) 1080
\= /2 (built-in) . 127
\=/2 (built-in, ref page) 1081
\==/2 (built-in) . 131
\==/2 (built-in, ref page) 1200

{
{}/1 (clpqr) . 495

A
abolish/[1,2] (built-in) 179
abolish/[1,2] (built-in, ref page) 902
abort/0 (built-in) . 211
abort/0 (built-in, ref page) 904

absolute_file_name/[2,3]

(built-in, ref page) . 905
acyclic_term/1 (built-in, ref page) 912
acyclic_term/2 (built-in) 127
add_breakpoint/2 (built-in) 273
add_breakpoint/2 (built-in, ref page) 913
add_edges/3 (ugraphs) . 851
add_edges/3 (wgraphs) . 856
add_element/3 (sets) . 730
add_vertices/3 (ugraphs) 851
add_vertices/3 (wgraphs) 855
aggregate/3 (aggregate) . 385
aggregate/4 (aggregate) . 385
aggregate_all/3 (aggregate) 385
aggregate_all/4 (aggregate) 385
all/1 (plunit option) . 697
all_different/[1,2] (clpfd) 435
all_different_except_0/1 (clpfd) 436
all_distinct/[1,2] (clpfd) 435
all_distinct_except_0/1 (clpfd) 436
append/[2,5] (lists) . 603
append/3 (built-in) . 128
append/3 (built-in, ref page) 915
append_length/[3,4] (lists) 608
append_queue/3 (queues) . 725
arg/3 (built-in) . 127
arg/3 (built-in, ref page) 918
arithmetic_mean/2 (statistics) 737
ask_query/4 (built-in) . 222
ask_query/4 (built-in, ref page) 919
assert/[1,2] (built-in) . 179
assert/[1,2] (built-in, ref page) 921
asserta/[1,2] (built-in) 179
asserta/[1,2] (built-in, ref page) 923
assertz/[1,2] (built-in) 179
assertz/[1,2] (built-in, ref page) 925
assignment/[2,3] (clpfd) 436
assoc_to_list/2 (assoc) . 386
at_end_of_line/[0,1] (built-in) 108

at_end_of_line/[0,1]

(built-in, ref page) . 927

at_end_of_stream/[0,1] (built-in) 108

at_end_of_stream/[0,1]

(built-in, ref page) . 928

atom/1 (built-in, ref page) 929

atom_chars/2 (built-in) . 128

atom_chars/2 (built-in, ref page) 930

atom_codes/2 (built-in) . 128

atom_codes/2 (built-in, ref page) 931

atom_concat/3 (built-in) 129

atom_concat/3 (built-in, ref page) 932

atom_length/2 (built-in) 129

atom_length/2 (built-in, ref page) 933

atomic/1 (built-in, ref page) 934

atomic_type/[1,2,3] (structs) 744

attribute/1 (declaration) 388

attribute_goal/2 (Module) 390

automaton/[3,8,9] (clpfd) 458

avl_change/5 (avl) . 396

avl_del_max/4 (avl) . 397

avl_del_min/4 (avl) . 397

avl_delete/4 (avl) . 397

avl_domain/2 (avl) . 395

avl_fetch/2 (avl) . 396

avl_fetch/3 (avl) . 396

avl_height/2 (avl) . 395

avl_incr/4 (avl) . 397

avl_map/2 (avl) . 397

avl_map/3 (avl) . 398

avl_max/2 (avl) . 395

avl_max/3 (avl) . 395

avl_member/2 (avl) . 396

avl_member/3 (avl) . 396

avl_min/2 (avl) . 395

avl_min/3 (avl) . 395

avl_next/3 (avl) . 396

avl_next/4 (avl) . 396

avl_prev/3 (avl) . 396

avl_prev/4 (avl) . 396

avl_range/2 (avl) . 395

avl_size/2 (avl) . 396

avl_store/4 (avl) . 397
avl_to_list/2 (avl) . 395

Predicate Index 1391

B
bag_add_element/4 (bags) 401
bag_del_element/4 (bags) 401
bag_intersect/2 (bags) . 401
bag_intersection/2 (bags) 401
bag_max/2 (bags) . 400
bag_max/3 (bags) . 400
bag_min/2 (bags) . 400
bag_subtract/3 (bags) . 401
bag_to_list/2 (bags) . 399
bag_to_ord_set/2 (bags) . 399
bag_to_ord_set/3 (bags) . 399
bag_to_set/2 (bags) . 399
bag_to_set/3 (bags) . 400
bag_union/2 (bags) . 401
bag_union/3 (bags) . 401
bagof/3 (built-in) . 188
bagof/3 (built-in, ref page) 935
bagof_rd_noblock/3 (linda_client) 602
bb_delete/2 (built-in) . 184
bb_delete/2 (built-in, ref page) 936
bb_get/2 (built-in) . 184
bb_get/2 (built-in, ref page) 937
bb_inf/[3,5] (clpqr) . 497
bb_put/2 (built-in) . 184
bb_put/2 (built-in, ref page) 938
bb_update/3 (built-in) . 184
bb_update/3 (built-in, ref page) 939
begin_tests/[1,2] (plunit declaration) . . . 694
between/3 (between) . 409
bin_packing/2 (clpfd) . 450
block/1 (built-in, ref page) 940
block/1 (declaration) . 84
blocked/1 (plunit option) 694
bool_and/2 (clpfd) . 439
bool_channel/4 (clpfd) . 439
bool_or/2 (clpfd) . 439
bool_xor/2 (clpfd) . 439
break/0 (built-in) 27, 82, 211
break/0 (built-in, ref page) 942
breakpoint_expansion/2 (hook, ref page) . . . 943
breakpoint_expansion/2 (user, hook) . . 267, 282
byte_count/2 (built-in) 111, 114
byte_count/2 (built-in, ref page) 944

C
call/[1,2,...,255] (built-in, ref page) . . . 945
call_cleanup/2 (built-in, ref page) 946

call_residue_vars/2

(built-in, ref page) . 947
callable/1 (built-in, ref page) 948
case/[3,4] (clpfd) . 440
cast/1 (structs) . 743
catch/3 (built-in) . 198
catch/3 (built-in, ref page) 949
central_moment/3 (statistics) 737
char_code/2 (built-in) . 128

char_code/2 (built-in, ref page) 950
char_conversion/2 (built-in, ref page) 951
character_count/2 (built-in) 111, 114
character_count/2 (built-in, ref page) 952
checkbag/2 (bags) . 399
chr_constraint/1 (CHR declaration) 414
chr_flag/3 (chr) . 417
chr_leash/1 (chr) . 417
chr_notrace/0 (chr) . 417
chr_option/2 (CHR declaration) 413
chr_show_store/1 (chr) . 417
chr_trace/0 (chr) . 417
chr_type/1 (CHR declaration) 414
circuit/[1,2] (clpfd) . 445
class/1 (objects) . 653
class_ancestor/2 (objects) 656
class_method/1 (objects) 657
class_of/2 (objects) . 659
class_superclass/2 (objects) 658
clause/[2,3] (built-in) . 181
clause/[2,3] (built-in, ref page) 953
cleanup/1 (plunit option) 695
close/[1,2] (built-in, ref page) 955
close/1 (built-in) . 114
close_all_streams/0 (file_systems) 552
close_client/0 (linda_client) 601
clpfd:dispatch_global/4 . 473
clpfd:full_answer/0 . 472
clumped/2 (lists) . 618
clumps/2 (lists) . 618

comclient_clsid_from_

progid/2 (comclient) . 523
comclient_create_instance/2 (comclient) . . 523
comclient_equal/2 (comclient) 523
comclient_exception_code/2 (comclient) . . . 524

comclient_exception_

culprit/2 (comclient) . 524

comclient_exception_

description/2 (comclient) 524
comclient_garbage_collect/0 (comclient) . . 522

comclient_get_active_

object/2 (comclient) . 523
comclient_iid_from_name/2 (comclient) 523

comclient_invoke_method_

fun/3 (comclient) . 523

comclient_invoke_method_

proc/2 (comclient) . 523
comclient_invoke_put/3 (comclient) 523
comclient_is_exception/1 (comclient) 524
comclient_is_object/1 (comclient) 522
comclient_name_from_iid/2 (comclient) 523

comclient_progid_from_

clsid/2 (comclient) . 523
comclient_release/1 (comclient) 524
comclient_valid_object/1 (comclient) 523
compare/3 (built-in, ref page) 957
compile/1 (built-in) . 163
compile/1 (built-in, ref page) 958

1392 SICStus Prolog

complement/2 (ugraphs) . 852
compose/3 (ugraphs) . 852
compound/1 (built-in, ref page) 959
condition/1 (plunit option) 695
cons/3 (lists) . 609
consult/1 (built-in, ref page) 960
contains_term/2 (terms) . 844
contains_var/2 (terms) . 845
convlist/3 (lists) . 614
copy_term/[2,3] (built-in) 129
copy_term/[2,3] (built-in, ref page) 961
correlation/3 (statistics) 738
correspond/4 (lists) . 603
count/4 (clpfd) . 434
covariance/3 (statistics) 738
coverage_data/1 (built-in) 355
coverage_data/1 (built-in, ref page) 963
create/2 (objects) . 660
create_mutable/2 (built-in) 132
create_mutable/2 (built-in, ref page) 964
cumlist/[4,5,6] (lists) . 610
cumulative/[1,2] (clpfd) 446
cumulatives/[2,3] (clpfd) 446
current_atom/1 (built-in, ref page) 965
current_breakpoint/5 (built-in) 261, 273

current_breakpoint/5

(built-in, ref page) . 966

current_char_conversion/2

(built-in, ref page) . 967
current_class/1 (objects) 662
current_directory/[1,2] (file_systems) . . . 555
current_host/1 (sockets) 736
current_input/1 (built-in) 112
current_input/1 (built-in, ref page) 968
current_key/2 (built-in) 184
current_key/2 (built-in, ref page) 969
current_module/[1,2] (built-in) 169

current_module/[1,2]

(built-in, ref page) . 970
current_op/3 (built-in) . 50
current_op/3 (built-in, ref page) 972
current_output/1 (built-in) 113
current_output/1 (built-in, ref page) 973

current_predicate/[1,2]

(built-in, ref page) . 974
current_predicate/2 (built-in) 169

current_prolog_flag/2

(built-in, ref page) . 976
current_stream/3 (built-in) 113
current_stream/3 (built-in, ref page) 977
cyclic_term/1 (terms) . 844

D
datime/[1,2] (system) . 748
db_close/1 (bdb) . 405
db_close_env/1 (bdb) . 404
db_compress/[2,3] (bdb) . 406
db_current/5 (bdb) . 405
db_current_env/2 (bdb) . 405
db_current_iterator/3 (bdb) 407
db_enumerate/3 (bdb) . 406
db_erase/[2,3] (bdb) . 406
db_export/[2,3] (bdb) . 407
db_fetch/3 (bdb) . 405
db_findall/3 (bdb) . 406
db_import/[2,3] (bdb) . 407
db_iterator_done/1 (bdb) 407
db_iterator_next/3 (bdb) 407
db_make_iterator/[2,3] (bdb) 407
db_open/[4,5] (bdb) . 405
db_open_env/[2,3] (bdb) . 404
db_reference/1 (built-in, ref page) 979
db_store/3 (bdb) . 405
db_sync/1 (bdb) . 406
debug/0 (built-in) . 233
debug/0 (built-in, ref page) 980
debug_message/0 (objects) 663

debugger_command_hook/2

(hook, ref page) . 981

debugger_command_hook/2

(user, hook) . 268, 274
debugging/0 (built-in) 26, 235
debugging/0 (built-in, ref page) 982
decreasing_prefix/[3,4] (lists) 618
define_method/3 (objects) 664
del_edges/3 (ugraphs) . 851
del_edges/3 (wgraphs) . 856
del_element/3 (sets) . 730
del_vertices/3 (ugraphs) 851
del_vertices/3 (wgraphs) 855
delete/[3,4] (lists) . 604
delete_directory/[1,2] (file_systems) 551
delete_file/1 (file_systems) 551
depth_bound/2 (terms) . 845
descendant_of/2 (objects) 665
destroy/1 (objects) . 666
dif/2 (built-in) . 127
dif/2 (built-in, ref page) 983
diffn/[1,2] (clpfd) . 450
direct_message/4 (objects) 667
directory_exists/1 (file_systems) 551
directory_exists/2 (file_systems) 551

directory_member_of_directory/2

(file_systems) . 552

directory_member_of_directory/3

(file_systems) . 552

directory_member_of_directory/4

(file_systems) . 552

directory_members_of_

directory/[1,2,3] (file_systems) 552

Predicate Index 1393

directory_must_exist/1 (file_systems) 551
directory_must_exist/2 (file_systems) 551
directory_property/[2,3] (file_systems) . . 553
disable_breakpoints/1 (built-in) 274

disable_breakpoints/1

(built-in, ref page) . 984
discontiguous/1 (built-in, ref page) 985
discontiguous/1 (declaration) 84
disjoint/2 (sets) . 730
disjoint_union/3 (sets) . 732
disjoint1/[1,2] (clpfd) . 448
disjoint2/[1,2] (clpfd) . 449
dispatch_global/4 (clpfd) 473
display/1 (built-in) . 106
display/1 (built-in, ref page) 986
dispose/1 (structs) . 742
do/2 (built-in, ref page) 987
do/2, do loop . 68
domain/3 (clpfd) . 432
dump/3 (clpqr) . 498
dynamic/1 (built-in, ref page) 989
dynamic/1 (declaration) . 84

E
edges/2 (ugraphs) . 851
edges/2 (wgraphs) . 855
element/3 (clpfd) . 439
elif/1 (conditional directive) 88
else/0 (conditional directive) 88
empty_assoc/1 (assoc) . 386
empty_avl/1 (avl) . 395
empty_bag/1 (bags) . 400
empty_fdset/1 (clpfd) . 476
empty_interval/2 (clpfd) 476
empty_queue/1 (queues) . 724
enable_breakpoints/1 (built-in) 274

enable_breakpoints/1

(built-in, ref page) . 990
end_class/[0,1] (objects) 668
end_tests/1 (plunit declaration) 694
endif/0 (conditional directive) 88
ensure_loaded/1 (built-in) 163
ensure_loaded/1 (built-in, ref page) 991
entailed/1 (clpqr) . 496
environ/[2,3] (system) . 748
erase/1 (built-in) . 179
erase/1 (built-in, ref page) 993
error/1 (plunit option) . 697
error/2 (plunit option) . 697
error_exception/1 (hook, ref page) 994
error_exception/1 (user, hook) 198, 285
exception/1 (plunit option) 697
exclude/[3,4,5] (lists) . 614

execution_state/[1,2] (built-in) 260, 262,
274

execution_state/[1,2]

(built-in, ref page) . 995

expand_term/2 (built-in) . 88
expand_term/2 (built-in, ref page) 997

F
fail/0 (built-in, ref page) 998
fail/0 (plunit option) . 697
false/0 (built-in, ref page) 999
fd_batch/1 (clpfd) . 428
fd_closure/2 (clpfd) . 476
fd_degree/2 (clpfd) . 475
fd_dom/2 (clpfd) . 475
fd_flag/3 (clpfd) . 475
fd_global/[3,4] (clpfd) . 474
fd_max/2 (clpfd) . 475
fd_min/2 (clpfd) . 475
fd_neighbors/2 (clpfd) . 476
fd_purge/1 (clpfd) . 428
fd_set/2 (clpfd) . 475
fd_size/2 (clpfd) . 475
fd_statistics/[0,2] (clpfd) 471
fd_var/1 (clpfd) . 475
fdbg_annotate/[3,4] (fdbg) 539
fdbg_assign_name/2 (fdbg) 530
fdbg_current_name/2 (fdbg) 530
fdbg_get_name/2 (fdbg) . 531
fdbg_guard/3 (fdbg) . 545
fdbg_label_show/3 (fdbg) 531
fdbg_labeling_step/2 (fdbg) 533
fdbg_legend/[1,2] (fdbg) 539
fdbg_off/0 (fdbg) . 529
fdbg_on/[0,1] (fdbg) . 529
fdbg_show/2 (fdbg) . 531
fdbg_start_labeling/1 (fdbg) 533
fdbg_transform_actions/3 (fdbg) 539
fdset_add_element/3 (clpfd) 477
fdset_complement/2 (clpfd) 477
fdset_del_element/3 (clpfd) 477
fdset_disjoint/2 (clpfd) 477
fdset_eq/2 (clpfd) . 477
fdset_intersect/2 (clpfd) 477
fdset_intersection/[2,3] (clpfd) 477
fdset_interval/3 (clpfd) 476
fdset_max/2 (clpfd) . 476
fdset_member/2 (clpfd) . 477
fdset_min/2 (clpfd) . 476
fdset_parts/4 (clpfd) . 476
fdset_singleton/2 (clpfd) 476
fdset_size/2 (clpfd) . 477
fdset_subset/2 (clpfd) . 477
fdset_subtract/3 (clpfd) 477
fdset_to_list/2 (clpfd) . 477
fdset_to_range/2 (clpfd) 477
fdset_union/[2,3] (clpfd) 477
fdvar_portray/3 (fdbg, hook) 537
fetch_slot/2 (objects) . 669
file_exists/1 (file_systems) 551
file_exists/2 (file_systems) 551

1394 SICStus Prolog

file_member_of_directory/[2,3,4]

(file_systems) . 552

file_members_of_directory/[1,2,3]

(file_systems) . 553
file_must_exist/1 (file_systems) 551
file_must_exist/2 (file_systems) 551
file_property/[2,3] (file_systems) 554
file_search_path/2 (hook, ref page) 1000
file_search_path/2 (user, hook) 96
find_chr_constraint/1 (chr) 417
findall/[3,4] (built-in) 188
findall/[3,4] (built-in, ref page) 1002
first_bound/2 (clpfd) 465, 467
fixme/1 (plunit option) . 695
float/1 (built-in, ref page) 1005

flush_output/[0,1]

(built-in, ref page) . 1006
flush_output/1 (built-in) 114
forall/1 (plunit option) 695
forall/2 (aggregate) . 384
foreach/2 (aggregate) . 384
foreign/[2,3] (hook, ref page) 1007
foreign/[2,3] (Module, hook) 292
foreign_resource/2 (hook, ref page) 1008
foreign_resource/2 (Module, hook) 292
foreign_type/2 (structs) 741
format/[2,3] (built-in) . 108
format/[2,3] (built-in, ref page) 1009
format_to_codes/[3,4] (codesio) 518
fractile/3 (statistics) . 738
free_of_term/2 (terms) . 844
free_of_var/2 (terms) . 845
free_variables/4 (aggregate) 385
freeze/2 (built-in, ref page) 1015
frozen/2 (built-in, ref page) 1016
full_answer/0 (clpfd) . 472
functor/3 (built-in) . 127
functor/3 (built-in, ref page) 1017
fzn_dump/[2,3] (zinc) . 866
fzn_identifier/3 (zinc) . 863
fzn_load_file/2 (zinc) . 861
fzn_load_stream/2 (zinc) 861
fzn_objective/2 (zinc) . 864
fzn_output/1 (zinc) . 863
fzn_post/1 (zinc) . 863
fzn_run_file/[1,2] (zinc) 866
fzn_run_stream/[1,2] (zinc) 866
fzn_solve/1 (zinc) . 863

G
garbage_collect/0 (built-in) 156
garbage_collect/0 (built-in, ref page) . . . 1019
garbage_collect_atoms/0 (built-in) 157

garbage_collect_atoms/0

(built-in, ref page) . 1020
gen_assoc/3 (assoc) . 386
gen_int/1 (between) . 410

gen_label/3 (trees) . 847
gen_nat/1 (between) . 409
generate_message/3 (hook, ref page) 1021
generate_message/3 (SU_messages) 215

generate_message_hook/3

(hook, ref page) . 1023
generate_message_hook/3 (user, hook) 215
geometric_mean/2 (statistics) 737
geost/[2,3,4] (clpfd) . 451
get_address/3 (structs) . 742
get_assoc/3 (assoc) . 386
get_atts/2 (Module) . 388
get_byte/[1,2] (built-in) 107
get_byte/[1,2] (built-in, ref page) 1025
get_char/[1,2] (built-in) 107
get_char/[1,2] (built-in, ref page) 1026
get_code/[1,2] (built-in) 107
get_code/[1,2] (built-in, ref page) 1027
get_contents/3 (structs) 742
get_label/3 (trees) . 847
get_mutable/2 (built-in) 132
get_mutable/2 (built-in, ref page) 1028
get_next_assoc/4 (assoc) 386
get_prev_assoc/4 . 386
getrand/1 (random) . 727
global_cardinality/[2,3] (clpfd) 434
goal_expansion/5 (hook, ref page) 1029
goal_expansion/5 (Module, hook) 88
goal_source_info/3 (built-in) 201, 216

goal_source_info/3

(built-in, ref page) . 1031
ground/1 (built-in, ref page) 1033
group/[3,4,5] (lists) . 615

H
halt/[0,1] (built-in) . 211
halt/[0,1] (built-in, ref page) 1034
harmonic_mean/2 (statistics) 737
head/2 (lists) . 609

I
if/1 (conditional directive) 88
if/3 (built-in, ref page) 1035
if/3, soft cut . 68
illarg/[3,4] (types) . 849
in/1 (linda_client) . 602
in/2 (clpfd) . 432
in/2 (linda_client) . 602
in_noblock/1 (linda_client) 602
in_set/2 (clpfd) . 432
include/[3,4,5] (lists) . 615
include/1 (built-in, ref page) 1037
include/1 (declaration) . 86
increasing_prefix/[3,4] (lists) 617
indomain/1 (clpfd) . 465
inf/[2,4] (clpqr) . 496

Predicate Index 1395

inherit/1 (objects) . 670
initialization/1 (built-in, ref page) 1038
initialization/1 (declaration) 87
instance/2 (built-in) . 181
instance/2 (built-in, ref page) 1039
instance_method/1 (objects) 672
integer/1 (built-in, ref page) 1040
intersect/2 (sets) . 730
intersection/[2,3] (sets) 731
is/2 (built-in) . 119
is/2 (built-in, ref page) 1041
is/2 (declaration) . 86
is_assoc/1 (assoc) . 387
is_avl/1 (avl) . 395
is_bag/1 (bags) . 398
is_fdset/1 (clpfd) . 476
is_json_term/[1,2] (json) 598
is_list/1 (lists) . 604
is_ordset/1 (ordsets) . 691
is_process/1 (process) . 710
is_queue/1 (queues) . 725
is_set/1 (sets) . 730

J
jasper_call/4 (jasper) . 585
jasper_create_global_ref/3 (jasper) 586
jasper_create_local_ref/3 (jasper) 586
jasper_deinitialize/1 (jasper) 585
jasper_delete_global_ref/2 (jasper) 586
jasper_delete_local_ref/2 (jasper) 586
jasper_initialize/[1,2] (jasper) 584
jasper_is_instance_of/3 (jasper) 587
jasper_is_jvm/1 (jasper) 586
jasper_is_object/[1,2] (jasper) 587
jasper_is_same_object/3 (jasper) 587
jasper_new_object/5 (jasper) 585, 594
jasper_null/2 (jasper) . 587
jasper_object_class_name/3 (jasper) 587
json_read/[2,3] (json) . 598
json_write/[2,3] (json) . 598

K
keyclumped/2 (lists) . 618
keyclumps/2 (lists) . 618
keymerge/3 (samsort) . 729
keys_and_values/3 (lists) 604
keysort/2 (built-in) . 131
keysort/2 (built-in, ref page) 1043
keysorting/[2,3] (clpfd) 437
kurtosis/2 (statistics) . 737

L
labeling/1 (clpb) . 420
labeling/2 (clpfd) . 465
last/2 (lists) . 604
last/3 (lists) . 609
later_bound/2 (clpfd) 465, 467
leash/1 (built-in) . 234
leash/1 (built-in, ref page) 1044
legend_portray/3 (fdbg, hook) 537
length/2 (built-in) . 128
length/2 (built-in, ref page) 1046
length/3 (bags) . 401
length_bound/2 (terms) . 845
lex_chain/[1,2] (clpfd) . 438
library_directory/1 (hook, ref page) 1049
linda/[0,1] (linda) . 600
linda_client/1 (linda_client) 601
linda_timeout/2 (linda_client) 602
line_count/2 (built-in) 111, 114
line_count/2 (built-in, ref page) 1050
line_position/2 (built-in) 111, 115
line_position/2 (built-in, ref page) 1051
list_queue/2 (queues) . 725
list_to_assoc/2 (assoc) . 387
list_to_avl/2 (avl) . 397
list_to_bag/2 (bags) . 399
list_to_fdset/2 (clpfd) . 477
list_to_ord_set/2 (ordsets) 691
list_to_set/2 (sets) . 731
list_to_tree/2 (trees) . 847
listing/[0,1] (built-in) 26, 171
listing/[0,1] (built-in, ref page) 1052
load_files/[1,2] (built-in) 94
load_files/[1,2] (built-in, ref page) 1053
load_foreign_resource/1 (built-in) 295

load_foreign_resource/1

(built-in, ref page) . 1056

M
make_directory/1 (file_systems) 551
make_sub_bag/2 (bags) . 401
map_assoc/2 (assoc) . 387
map_assoc/3 (assoc) . 387
map_list_queue/3 (queues) 726
map_product/5 (lists) . 612
map_queue/[2,3] (queues) 726
map_queue_list/3 (queues) 726
map_tree/3 (trees) . 847
mapbag/2 (bags) . 399
mapbag/3 (bags) . 399
maplist/[2,3,4] (lists) . 611
max/2 (statistics) . 736
max_assoc/3 (assoc) . 387
max_cliques/2 (ugraphs) . 853
max_member/[2,3] (lists) 616
max_path/5 (ugraphs) . 852
max_path/5 (wgraphs) . 856

1396 SICStus Prolog

maximize/[2,3] (clpfd) . 465
maximize/1 (clpqr) . 497
maximum/2 (clpfd) . 432
maximum_arg/2 (clpfd) . 432
maybe/[0,1,2] (random) . 727
mean/2 (statistics) . 737
median/2 (statistics) . 738
member/2 (built-in) . 128
member/2 (built-in, ref page) 1058
member/3 (bags) . 400
memberchk/2 (built-in) . 128
memberchk/2 (built-in, ref page) 1059
memberchk/3 (bags) . 400
merge/[3,4] (samsort) . 729
message/4 (objects) . 673
message_hook/3 (hook, ref page) 1060
message_hook/3 (user, hook) 216
meta_predicate/1 (built-in, ref page) 1061
meta_predicate/1 (declaration) 85, 171
min/2 (statistics) . 736
min_assoc/3 (assoc) . 387
min_max/3 (statistics) . 737
min_member/[2,3] (lists) 616
min_path/5 (ugraphs) . 852
min_path/5 (wgraphs) . 856
min_paths/3 (ugraphs) . 852
min_paths/3 (wgraphs) . 856
min_tree/3 (ugraphs) . 853
min_tree/3 (wgraphs) . 857
minimize/[2,3] (clpfd) . 465
minimize/1 (clpqr) . 497
minimum/2 (clpfd) . 431
minimum_arg/2 (clpfd) . 432
ml_standard_deviation/2 (statistics) 738
ml_variance/2 (statistics) 737
mode/1 (built-in, ref page) 1063
mode/1 (declaration) . 86
mode/2 (statistics) . 737
module/[2,3] (built-in, ref page) 1064
module/[2,3] (declaration) 85, 164
multi_cumulative/[2,3] (clpfd) 448
multifile/1 (built-in, ref page) 1066
multifile/1 (declaration) 83
must_be/4 (types) . 849
mutable/1 (built-in) . 132
mutable/1 (built-in, ref page) 1068
mzn_load_file/[2,3] (zinc) 872
mzn_run_file/[1,2] (zinc) 870
mzn_run_model/[1,2] (zinc) 870
mzn_to_fzn/[2,3] (zinc) . 873

N
name/2 (built-in) . 128
name/2 (built-in, ref page) 1069
neighbors/3 (ugraphs) . 851
neighbors/3 (wgraphs) . 855
neighbours/3 (ugraphs) . 851
neighbours/3 (wgraphs) . 855
new/[2,3] (structs) . 742
nextto/3 (lists) . 604
nl/[0,1] (built-in) . 108
nl/[0,1] (built-in, ref page) 1071
nodebug/0 (built-in) . 235
nodebug/0 (built-in, ref page) 1072
nodebug_message/0 (objects) 674
nondet/0 (plunit option) 695
nonmember/2 (built-in) . 128
nonmember/2 (built-in, ref page) 1073
nonvar/1 (built-in, ref page) 1074
normalize/2 (statistics) 738
nospy/1 (built-in) . 236
nospy/1 (built-in, ref page) 1075
nospyall/0 (built-in) . 236
nospyall/0 (built-in, ref page) 1076
notrace/0 (built-in) . 235
notrace/0 (built-in, ref page) 1082
now/1 (system) . 748
nozip/0 (built-in) . 235
nozip/0 (built-in, ref page) 1083
nth0/[3,4] (lists) . 605
nth1/[3,4] (lists) . 605
null_foreign_term/2 (structs) 743
number/1 (built-in, ref page) 1084
number_chars/2 (built-in) 128
number_chars/2 (built-in, ref page) 1085
number_codes/2 (built-in) 128
number_codes/2 (built-in, ref page) 1086
numbervars/1 (varnumbers) 854
numbervars/3 (built-in) . 129
numbervars/3 (built-in, ref page) 1088
numlist/[2,3,5] (between) 410
nvalue/2 (clpfd) . 436

O
occurrences_of_term/3 (terms) 845
occurrences_of_var/3 (terms) 845
odbc_db_open/3 (odbc) . 687
odbc_db_open/4 (odbc) . 687
odbc_db_open/5 (odbc) . 687
odbc_env_open/1 (odbc) . 687
odbc_list_DSN/2 (odbc) . 688
on_exception/3 (built-in) 210
on_exception/3 (built-in, ref page) 1089
once/1 . 67
once/1 (built-in, ref page) 1090
one_longer/2 (lists) . 605
op/3 (built-in) . 50
op/3 (built-in, ref page) 1091

Predicate Index 1397

open/[3,4] (built-in) 109, 110
open/[3,4] (built-in, ref page) 1092
open_codes_stream/2 (codesio) 518
open_null_stream/1 (built-in) 111

open_null_stream/1

(built-in, ref page) . 1097
ord_add_element/3 (ordsets) 691
ord_del_element/3 (ordsets) 691
ord_disjoint/2 (ordsets) 691
ord_disjoint_union/3 (ordsets) 692
ord_intersect/2 (ordsets) 691
ord_intersection/[2,3,4] (ordsets) 691
ord_list_to_assoc/2 (assoc) 387
ord_list_to_avl/2 (avl) . 397
ord_member/2 (ordsets) . 692
ord_nonmember/2 (ordsets) 692
ord_seteq/2 (ordsets) . 692
ord_setproduct/3 (ordsets) 692
ord_subset/2 (ordsets) . 692
ord_subtract/3 (ordsets) 692
ord_symdiff/3 (ordsets) . 692
ord_union/[2,3,4] (ordsets) 692
ordered/[1,2] (lists) . 616
ordering/1 (clpqr) . 498, 508
ordset_order/3 (ordsets) 693
otherwise/0 (built-in, ref page) 1099
out/1 (linda_client) . 602

P
pairfrom/4 (sets) . 730
partition/5 (lists) . 615
path/3 (ugraphs) . 853
path/3 (wgraphs) . 856
peek_byte/[1,2] (built-in) 107
peek_byte/[1,2] (built-in, ref page) 1100
peek_char/[1,2] (built-in) 107
peek_char/[1,2] (built-in, ref page) 1101
peek_code/[1,2] (built-in) 107
peek_code/[1,2] (built-in, ref page) 1102
perm/2 (lists) . 605
perm2/4 (lists) . 606
permutation/2 (lists) . 605
phrase/[2,3] (built-in) . 191
phrase/[2,3] (built-in, ref page) 1103
pointer_object/2 (objects) 675

population_standard_

deviation/2 (statistics) 738
population_variance/2 (statistics) 737
portray/1 (hook, ref page) 1105
portray/1 (user, hook) 106, 517
portray_assoc/1 (assoc) . 387
portray_avl/1 (avl) . 396
portray_bag/1 (bags) . 398
portray_clause/[1,2] (built-in) 106

portray_clause/[1,2]

(built-in, ref page) . 1106
portray_message/2 (hook, ref page) 1108

portray_message/2 (user, hook) 215
portray_queue/1 (queues) 724
power_set/2 (sets) . 731
predicate_property/2 (built-in) 135, 170

predicate_property/2

(built-in, ref page) . 1109
prefix/2 (lists) . 609
prefix_length/3 (lists) . 608
print/[1,2] (built-in) . 106
print/[1,2] (built-in, ref page) 1111
print_coverage/[0,1] (built-in) 355

print_coverage/[0,1]

(built-in, ref page) . 1112
print_message/2 (built-in) 215
print_message/2 (built-in, ref page) 1114
print_message_lines/3 (built-in) 216

print_message_lines/3

(built-in, ref page) . 1116
print_profile/[0,1] (built-in) 354

print_profile/[0,1]

(built-in, ref page) . 1117
process_create/[2,3] (process) 707
process_id/1 (process) . 710
process_id/2 (process) . 710
process_kill/[1,2] (process) 710
process_release/1 (process) 710
process_wait/[2,3] (process) 709
profile_data/1 (built-in) 354
profile_data/1 (built-in, ref page) 1118
profile_reset/0 (built-in) 354, 355
profile_reset/0 (built-in, ref page) 1119
project_attributes/2 (Module) 390
projecting_assert/1 (clpqr) 499
prolog_flag/[2,3] (built-in) 103
prolog_flag/[2,3] (built-in, ref page) . . . 1120

prolog_load_context/2

(built-in, ref page) . 1122
prompt/2 (built-in) . 104
prompt/2 (built-in, ref page) 1123
proper_length/2 (lists) . 606
proper_prefix/2 (lists) . 610
proper_prefix_length/3 (lists) 608
proper_segment/2 (lists) 610
proper_suffix/2 (lists) . 610
proper_suffix_length/3 (lists) 608
public/1 (built-in, ref page) 1124
public/1 (declaration) . 86
put_assoc/4 (assoc) . 388
put_atts/2 (Module) . 389
put_byte/[1,2] (built-in) 108
put_byte/[1,2] (built-in, ref page) 1125
put_char/[1,2] (built-in) 108
put_char/[1,2] (built-in, ref page) 1126
put_code/[1,2] (built-in) 108
put_code/[1,2] (built-in, ref page) 1127
put_contents/3 (structs) 742
put_label/[4,5] (trees) . 847

1398 SICStus Prolog

Q
query_abbreviation/3 (hook, ref page) 1128
query_abbreviation/3 (SU_messages) 222
query_class/5 (hook, ref page) 1129
query_class/5 (SU_messages) 222
query_class_hook/5 (hook, ref page) 1130
query_class_hook/5 (user, hook) 222
query_hook/6 (hook, ref page) 1131
query_hook/6 (user, hook) 222
query_input/3 (hook, ref page) 1132
query_input/3 (SU_messages) 222
query_input_hook/3 (hook, ref page) 1133
query_input_hook/3 (user, hook) 222
query_map/4 (hook, ref page) 1134
query_map/4 (SU_messages) 222
query_map_hook/4 (hook, ref page) 1135
query_map_hook/4 (user, hook) 222
queue_append/3 (queues) . 725
queue_cons/3 (queues) . 725
queue_head/2 (queues) . 725
queue_last/[2,3] (queues) 725
queue_length/2 (queues) . 726
queue_list/2 (queues) . 726
queue_member/2 (queues) . 726
queue_memberchk/2 (queues) 726
queue_tail/2 (queues) . 725

R
raise_exception/1 (built-in) 210
raise_exception/1 (built-in, ref page) . . . 1136
random/[1,3] (random) . 727
random_member/2 (random) 728
random_numlist/4 (random) 728
random_perm2/4 (random) . 728
random_permutation/2 (random) 728
random_select/3 (random) 728
random_subseq/3 (random) 728
random_ugraph/3 (ugraphs) 853
random_wgraph/4 (wgraphs) 857
range/2 (statistics) . 737
range_to_fdset/2 (clpfd) 477
rd/[1,2] (linda_client) . 602
rd_noblock/1 (linda_client) 602
reachable/3 (ugraphs) . 853
reachable/3 (wgraphs) . 857
read/[1,2] (built-in) . 103
read/[1,2] (built-in, ref page) 1137
read_from_codes/2 (codesio) 518
read_line/[1,2] (built-in, ref page) 1139
read_record/[1,2] (csv) . 520
read_record_from_codes/[2,3] (csv) 520
read_records/[1,2] (csv) 520
read_term/[2,3] (built-in) 103
read_term/[2,3] (built-in, ref page) 1140
read_term_from_codes/3 (codesio) 518
reconsult/1 (built-in, ref page) 1143
recorda/3 (built-in) . 183

recorda/3 (built-in, ref page) 1144
recorded/3 (built-in, ref page) 1145
recordz/3 (built-in) . 184
recordz/3 (built-in, ref page) 1146
reduce/2 (ugraphs) . 853
reduce/2 (wgraphs) . 856

register_event_listener/[2,3]

(prologbeans) . 717
register_query/[2,3] (prologbeans) 716
relation/3 (clpfd) . 439
rem_add_link/4 (rem) . 729
rem_create/2 (rem) . 728
rem_equivalent/3 (rem) . 728
rem_head/3 (random) . 728
remove_breakpoints/1 (built-in) 261, 274

remove_breakpoints/1

(built-in, ref page) . 1147
remove_dups/2 (lists) . 606
rename_directory/2 (file_systems) 551
rename_file/2 (file_systems) 550
repeat/0 (built-in, ref page) 1148
repeat/1 (between) . 410
restore/1 (built-in) . 28, 93
restore/1 (built-in, ref page) 1150
retract/1 (built-in) . 179
retract/1 (built-in, ref page) 1151
retractall/1 (built-in) . 179
retractall/1 (built-in, ref page) 1153
rev/2 (lists) . 606
reverse/2 (lists) . 606
rotate_list/[2,3] (lists) 609
run_tests/[0,1,2] (plunit) 699
runtime_entry/1 (user, hook) 1372

S
same_functor/[2,3,4] (terms) 846
same_length/[2,3] (lists) 606
samkeysort/2 (samsort) . 729

sample_standard_deviation/2

(statistics) . 738
sample_variance/2 (statistics) 738
samsort/[2,3] (samsort) . 729
sat/1 (clpb) . 420
save_files/2 (built-in) 28, 94
save_files/2 (built-in, ref page) 1154
save_modules/2 (built-in) 28, 94
save_modules/2 (built-in, ref page) 1155
save_predicates/2 (built-in) 28, 94
save_predicates/2 (built-in, ref page) . . . 1156
save_program/[1,2] (built-in) 28, 93

save_program/[1,2]

(built-in, ref page) . 1157
scalar_product/[4,5] (clpfd) 431
scalar_product_reif/[5,6] (clpfd) 431
scanlist/[4,5,6] (lists) 612
see/1 (built-in) . 111
see/1 (built-in, ref page) 1159

Predicate Index 1399

seeing/1 (built-in) . 112
seeing/1 (built-in, ref page) 1160
seek/4 (built-in) . 115
seek/4 (built-in, ref page) 1162
seen/0 (built-in) . 114
seen/0 (built-in, ref page) 1164
segment/2 (lists) . 610
select/3 (lists) . 603
select/4 (lists) . 606
select_max/[3,4] (lists) 617
select_min/[3,4] (lists) 617
selectchk/3 (lists) . 603
selectchk/4 (lists) . 606
seq_precede_chain/[1,2] (clpfd) 464
session_get/4 (prologbeans) 716
session_put/3 (prologbeans) 717
set/1 (plunit option) . 697
set_input/1 (built-in) . 110
set_input/1 (built-in, ref page) 1165
set_module/1 (built-in) . 166
set_module/1 (built-in, ref page) 1166
set_order/3 (sets) . 730
set_output/1 (built-in) . 110
set_output/1 (built-in, ref page) 1167
set_prolog_flag/2 (built-in, ref page) . . . 1168
set_stream_position/2 (built-in) 115

set_stream_position/2

(built-in, ref page) . 1169
seteq/2 (sets) . 730
setof/3 (built-in) . 187
setof/3 (built-in, ref page) 1170
setproduct/3 (sets) . 732
setrand/1 (random) . 727
setup/1 (plunit option) . 695
shorter_list/2 (lists) . 607
shutdown/[0,1] (prologbeans) 715
shutdown_server/0 (linda_client) 601
simple/1 (built-in, ref page) 1172
singleton_queue/2 (queues) 724
size_bound/2 (terms) . 845
skewness/2 (statistics) . 737
skip_byte/[1,2] (built-in) 107
skip_byte/[1,2] (built-in, ref page) 1173
skip_char/[1,2] (built-in) 107
skip_char/[1,2] (built-in, ref page) 1174
skip_code/[1,2] (built-in) 107
skip_code/[1,2] (built-in, ref page) 1175
skip_line/[0,1] (built-in) 107
skip_line/[0,1] (built-in, ref page) 1176
sleep/1 (system) . 748
smt/1 (clpfd) . 433
socket_client_open/3 (sockets) 734
socket_select/7 (sockets) 736
socket_server_accept/4 (sockets) 735
socket_server_close/1 (sockets) 735
socket_server_open/[2,3] (sockets) 735
solve/2 (clpfd) . 470
some/[2,3,4] (lists) . 613

some_queue/[2,3] (queues) 726
somebag/2 (bags) . 399
somechk/[2,3,4] (lists) . 613
somechk_queue/[2,3] (queues) 726
somechkbag/2 (bags) . 399
sort/2 (built-in) . 131
sort/2 (built-in, ref page) 1177
sorting/3 (clpfd) . 437
source_file/[1,2] (built-in) 136
source_file/[1,2] (built-in, ref page) . . . 1178
spy/[1,2] (built-in) 235, 273
spy/[1,2] (built-in, ref page) 1180
start/[0,1] (prologbeans) 715
statistics/[0,2] (built-in) 146, 152
statistics/[0,2] (built-in, ref page) 1181
store_slot/2 (objects) . 676
stream_code/2 (built-in) 109, 311
stream_code/2 (built-in, ref page) 1182
stream_position/2 (built-in) 115
stream_position/2 (built-in, ref page) . . . 1183

stream_position_data/3

(built-in, ref page) . 1184
stream_property/2 (built-in) 114
stream_property/2 (built-in, ref page) . . . 1185
sub_atom/5 (built-in) . 129
sub_atom/5 (built-in, ref page) 1188
sub_term/2 (terms) . 845
subcircuit/[1,2] (clpfd) 445
sublist/[3,4,5] (lists) . 609
subseq/3 (lists) . 607
subseq0/2 (lists) . 607
subseq1/2 (lists) . 607
subset/2 (sets) . 730
subsumes/2 (terms) . 841
subsumes_term/2 (built-in) 127
subsumes_term/2 (built-in, ref page) 1190
subsumeschk/2 (terms) . 841
subtract/3 (sets) . 731
suffix/2 (lists) . 610
suffix_length/3 (lists) . 608
sum/3 (clpfd) . 431
sumlist/2 (lists) . 607
sup/[2,4] (clpqr) . 496
symdiff/3 (sets) . 732
symmetric_all_different/1 (clpfd) 436
symmetric_all_distinct/1 (clpfd) 436
symmetric_closure/2 (ugraphs) 852
symmetric_closure/2 (wgraphs) 856

1400 SICStus Prolog

T
table/[2,3] (clpfd) . 439
tail/2 (lists) . 609
taut/2 (clpb) . 420
tcl_delete/1 (tcltk) 808, 839
tcl_eval/3 (tcltk) . 810, 839
tcl_event/3 (tcltk) . 813, 839
tcl_new/1 (tcltk) . 807, 839
tell/1 (built-in) . 111
tell/1 (built-in, ref page) 1192
telling/1 (built-in) . 113
telling/1 (built-in, ref page) 1193
term_depth/2 (terms) . 845
term_expansion/6 (hook, ref page) 1196
term_expansion/6 (user, hook) 87
term_hash/[2,3,4] (terms) 842
term_order/3 (terms) . 844
term_size/2 (terms) . 846
term_subsumer/3 (terms) . 842
term_variables/2 (built-in) 127
term_variables/2 (built-in, ref page) 1204
term_variables/3 (aggregate) 385
term_variables_bag/2 (terms) 844
term_variables_set/2 (terms) 844
test/[1,2] (plunit declaration) 694
test_sub_bag/2 (bags) . 401
throw/1 (built-in) . 197
throw/1 (built-in, ref page) 1205
throws/1 (plunit option) 697
time_out/3 (timeout) . 847
tk_destroy_window/1 (tcltk) 818, 840
tk_do_one_event/[0,1] (tcltk) 817, 839
tk_main_loop/0 (tcltk) 818, 840
tk_main_window/2 (tcltk) 818, 840
tk_make_window_exist/1 (tcltk) 818, 840
tk_new/2 (tcltk) . 807, 839
tk_next_event/[2,3] (tcltk) 813, 818, 840
tk_num_main_windows/1 (tcltk) 819, 840
told/0 (built-in) . 114
told/0 (built-in, ref page) 1206
top_sort/2 (ugraphs) . 852
top_sort/2 (wgraphs) . 856
trace/0 (built-in) . 234
trace/0 (built-in, ref page) 1207
transitive_closure/2 (ugraphs) 852
transitive_closure/2 (wgraphs) 856
transitive_reduction/2 (ugraphs) 852
transpose/2 (lists) . 607
transpose_ugraph/2 (ugraphs) 851
transpose_wgraph/2 (wgraphs) 856
tree_size/2 (trees) . 848
tree_to_list/2 (trees) . 848
trimcore/0 (built-in) . 146
trimcore/0 (built-in, ref page) 1208
true/0 (built-in, ref page) 1209
true/0 (plunit option) . 696
true/1 (plunit option) . 696
type_definition/[2,3] (structs) 744

U
ugraph_to_wgraph/2 (wgraphs) 855

ugraph_to_wgraph/3 (wgraphs) 855

unbiased_standard_deviation/2

(statistics) . 738

unbiased_variance/2 (statistics) 738

undefine_method/3 (objects) 677

unify_with_occurs_check/2 (built-in) 127

unify_with_occurs_check/2

(built-in, ref page) . 1211

uninherit/1 (objects) . 678

union/[2,3,4] (sets) . 732

unknown/2 (built-in) . 26, 200

unknown/2 (built-in, ref page) 1214

unknown_predicate_handler/3

(hook, ref page) . 1215

unknown_predicate_handler/3

(user, hook) . 26, 199

unload_foreign_resource/1 (built-in) 295

unload_foreign_resource/1

(built-in, ref page) . 1216

unregister_event_listener/1

(prologbeans) . 717

unregister_query/1 (prologbeans) 716

update_mutable/2 (built-in) 132

update_mutable/2 (built-in, ref page) 1217

use_module/[1,2,3] (built-in) 164

use_module/[1,2,3]

(built-in, ref page) . 1218

user:breakpoint_expansion/2 (hook) . . . 267, 282

user:debugger_command_hook/2 (hook) . . 268, 274

user:error_exception/1 (hook) 198, 285

user:file_search_path/2 (hook) 96

user:generate_message_hook/3 (hook) 215

user:message_hook/3 (hook) 216

user:portray/1 (hook) 106, 517

user:portray_message/2 (hook) 215

user:query_class_hook/5 (hook) 222

user:query_hook/6 (hook) 222

user:query_input_hook/3 (hook) 222

user:query_map_hook/4 (hook) 222

user:runtime_entry/1 (hook) 1372

user:term_expansion/6 (hook) 87

user:unknown_predicate_

handler/3 (hook) . 26, 199

Predicate Index 1401

V
value_precede_chain/[2,3] (clpfd) 464
var/1 (built-in, ref page) 1221
variant/2 (terms) . 842
varnumbers/[2,3] (varnumbers) 854
verify_attributes/3 (Module) 389
vertices/2 (ugraphs) . 851
vertices/2 (wgraphs) . 855
vertices_edges_to_ugraph/3 (ugraphs) 851
vertices_edges_to_wgraph/3 (wgraphs) 855
view/0 (gauge) . 555
volatile/1 (built-in, ref page) 1222
volatile/1 (declaration) . 84

W
weighted_mean/3 (statistics) 737

weighted_standard_deviation/3

(statistics) . 738
weighted_variance/3 (statistics) 738
wgraph_to_ugraph/2 (wgraphs) 855
when/2 (built-in, ref page) 1223
with_output_to_codes/[2,3,4] (codesio) . . . 518
write/[1,2] (built-in) . 104

write/[1,2] (built-in, ref page) 1224
write_canonical/[1,2] (built-in) 104

write_canonical/[1,2]

(built-in, ref page) . 1225
write_record/[1,2] (csv) 521
write_record_to_codes/2 (csv) 521
write_records/[1,2] (csv) 521
write_term/[2,3] (built-in) 104
write_term/[2,3] (built-in, ref page) 1226
write_term_to_codes/[3,4] (codesio) 518
write_to_codes/[2,3] (codesio) 518
writeq/[1,2] (built-in) . 104
writeq/[1,2] (built-in, ref page) 1229

X
xml_parse/[2,3] (xml) . 858
xml_pp/1 (xml) . 858
xml_subterm/2 (xml) . 858

Z
zip/0 (built-in) . 234
zip/0 (built-in, ref page) 1230

1403

Keystroke Index

&
& (debugger command) 241, 532

*
* (debugger command) . 241

+
+ (debugger command) . 241

–
- (debugger command) . 241

.

. (debugger command) . 242

;
; (top-level command) . 23

<
< (debugger command) . 242
< (top-level command) . 23

=
= (debugger command) . 241

?
? (debugger command) . 243
? (interruption command) . 27
? (top-level command) . 24

@
@ (debugger command) . 242

[
[(debugger command) . 240

]
] (debugger command) . 241

^
^ (debugger command) . 242
^ (top-level command) . 24

\
\ (debugger command) . 241

A
a (debugger command) . 242
a (interruption command) . 27
A (debugger command) . 532

B
b (debugger command) . 242
b (interruption command) . 27
b (top-level command) . 23

C
c (debugger command) . 238
c (interruption command) . 27
C-c < (emacs command) . 36
C-c ? (emacs command) . 37
C-c C-\ (emacs command) . 37
C-c C-b (emacs command) . 35
C-c C-c (emacs command) . 37
C-c C-c b (emacs command) . 35
C-c C-c f (emacs command) . 35
C-c C-c p (emacs command) . 35
C-c C-c r (emacs command) . 35
C-c C-d (emacs command) . 36
C-c C-g (emacs command) . 36
C-c C-n (emacs command) . 37
C-c C-o (emacs command) . 36
C-c C-p (emacs command) . 35
C-c C-r (emacs command) . 35
C-c C-s (emacs command) . 37
C-c C-t (emacs command) . 36
C-c C-v a (emacs command) . 37
C-c C-z (emacs command) . 36
C-c RET (emacs command) . 37
C-M-a (emacs command) . 36
C-M-c (emacs command) . 36
C-M-e (emacs command) . 36
C-M-h (emacs command) . 36
C-M-n (emacs command) . 36
C-M-p (emacs command) . 36

1404 SICStus Prolog

C-u C-c C-d (emacs command) 36
C-u C-c C-g (emacs command) 36
C-u C-c C-o (emacs command) 36
C-u C-c C-t (emacs command) 36
C-u C-c C-z (emacs command) 36
C-u C-c RET (emacs command) 37
C-u C-x SPC (emacs command) 37
C-x SPC (emacs command) . 37

D
d (debugger command) . 240
d (interruption command) . 27
D (debugger command) . 241

E
e (debugger command) . 242
e (interruption command) . 27
E (debugger command) . 242

F
f (debugger command) . 239

G
g (debugger command) . 240

H
h (debugger command) . 243
h (interruption command) . 27
h (top-level command) . 24

J
j<p> (debugger command) . 239

L
l (debugger command) . 238

M
M-; (emacs command) . 36
M-{ (emacs command) . 36
M-} (emacs command) . 36
M-a (emacs command) . 36
M-e (emacs command) . 36
M-h (emacs command) . 36
M-RET (emacs command) . 37

N
n (debugger command) . 241
n (top-level command) . 23

O
o (debugger command) . 239

P
p (debugger command) . 240

Q
q (debugger command) . 239

R
r (debugger command) . 239
RET (debugger command) . 238
RET (top-level command) . 23

S
s (debugger command) . 238

T
t (debugger command) . 240
t (interruption command) . 27

U
u (debugger command) . 242

V
v (debugger command) . 241

W
w (debugger command) . 240
W (debugger command) . 532

Y
y (top-level command) . 23

Z
z (debugger command) . 238
z (interruption command) . 27

1405

Book Index

!
!, cut . 64
!/0 (built-in, ref page) . 978
!/0, cut . 64

#
/2, boolean eor . 420
#/\ /2 (clpfd) . 433
#< /2 (clpfd) . 430
#<= /2 (clpfd) . 433
#<=> /2 (clpfd) . 430, 433
#= /2 (clpfd) . 430
#=/2 (all_different/2 option) 435
#=/2 (all_distinct/2 option) 435
#=< /2 (clpfd) . 430
#=> /2 (clpfd) . 433
#> /2 (clpfd) . 430
#>= /2 (clpfd) . 430
#\ /1 (clpfd) . 433
#\ /2 (clpfd) . 433
#\/ /2 (clpfd) . 433
#\= /2 (clpfd) . 430

’
'$VAR' . 105
'SU_messages':generate_message/3 215
'SU_messages':query_abbreviation/3 222
'SU_messages':query_class/5 222
'SU_messages':query_input/3 222
'SU_messages':query_map/4 222

*
* /2, boolean and . 420
* /2, multiplication (evaluable) 121
** /2, float power (evaluable) 124

+
+ (CHR mode) . 414
+ /1, identity (evaluable) 121
+ /2, addition (evaluable) 121
+ /2, boolean ior . 420
+, mode annotation . 877

,
, atom . 44
,/2 (built-in, ref page) . 914
,/2 (iterator) . 73, 988
,/2 (when/2 condition) . 1223
,/2, conjunction . 63

–
- (CHR mode) . 414
- /1, negation (evaluable) 121
- /2, subtraction (evaluable) 121
-, mode annotation . 877
-->, grammar rules . 189
-/2 (debugger show control) 283
-> /2 ;/2, if then else . 67
-> /2, if then . 67
-> ;, if-then-else . 67
->/2 (built-in, ref page) 1036

.

. /2, identity (evaluable) 122

., functor . 46

.emacs Emacs initialization file 32

/

/ /2, floating division (evaluable) 121

// /2, integer truncated

division (evaluable) . 121
/\ /2, bitwise conjunction (evaluable) 122

:
: /2, module qualifier . 74
:, use in meta predicate declaration 171
:, use in Module:Goal . 164
:- /1, directive . 24

;
;/2 (built-in, ref page) 1098
;/2 (when/2 condition) . 1223
;/2, disjunction . 66

1406 SICStus Prolog

<
< /2, boolean less . 420
<, arithmetic less than . 120
<-/2 (objects) . 650
</2 (built-in, ref page) 1048
<< /2, left shift (evaluable) 122
<</2 (objects) . 651

=
=../2 (built-in) . 127
=../2 (built-in, ref page) 1212
=/0 (map method) . 221
=/2 (built-in) . 126
=/2 (built-in, ref page) 1210
=/2 (clpfd:dispatch_global/4 request) 473
=:= /2, boolean equal . 420
=:=, arithmetic equal . 120
=:=/2 (built-in, ref page) 992
=< /2, boolean less or equal 420
=<, arithmetic less or equal 120
=</2 (built-in, ref page) 1078
==/2 (built-in) . 131
==/2 (built-in, ref page) 1195
=\= /2, boolean not equal 420
=\=, arithmetic not equal 120
=\=/2 (built-in, ref page) 1077

>
> /2, boolean greater . 420
>, arithmetic greater than 120
>/2 (built-in, ref page) 1032
>= /2, boolean greater or equal 420
>=, arithmetic greater or equal 120
>=/2 (built-in, ref page) 1079
>> /2, right shift (evaluable) 122
>>/2 (objects) . 652

?
? (CHR mode) . 414
?, mode annotation . 877
?- /1, query . 23
?=/2 (built-in) . 127
?=/2 (built-in, ref page) 1203
?=/2 (when/2 condition) . 1223

@
@</2 (built-in) . 131
@</2 (built-in, ref page) 1199
@=</2 (built-in) . 131
@=</2 (built-in, ref page) 1201
@>/2 (built-in) . 131
@>/2 (built-in, ref page) 1198
@>=/2 (built-in) . 131
@>=/2 (built-in, ref page) 1202

[
[], empty grammar body . 190
[], empty list . 46
[]/0 (debugger condition) 281

^
^ /2, boolean existential quantifier 420
^ /2, existential quantifier 74
^ /2, generic power (evaluable) 125
^/2 (built-in) . 188
^/2 (built-in, ref page) . 996
^/2 (input method) . 221

_, anonymous variable . 44

\
\ /1, bitwise negation (evaluable) 122
\ /2, bitwise exclusive or (evaluable) 122
\" (escape sequence) . 60
\' (escape sequence) . 60
\+ /1, not provable . 68
\+/1 (built-in, ref page) 1080
\/ /2, bitwise disjunction (evaluable) 122
\= /2 (built-in) . 127
\=/2 (built-in, ref page) 1081
\==/2 (built-in) . 131
\==/2 (built-in, ref page) 1200
\‘ (escape sequence) . 60
\\ (escape sequence) . 60
\a (escape sequence) . 60
\b (escape sequence) . 60
\d (escape sequence) . 60
\e (escape sequence) . 60
\f (escape sequence) . 60
\LFD (escape sequence) . 60
\n (escape sequence) . 60
\octal-digit...\ (escape sequence) 60

Book Index 1407

\r (escape sequence) . 60
\t (escape sequence) . 60
\v (escape sequence) . 60
\xhex-digit...\ (escape sequence) 60

{
{}/1 (clpqr) . 495

|
|, list separator . 46

~
~ /1, boolean not . 419

0
0’ notation for character conversion 43

A
abolish (definition) . 7
abolish/[1,2] (built-in) 179
abolish/[1,2] (built-in, ref page) 902
abort (CHR debug command) 417
abort (debugger command) 242
abort/0 (built-in) . 211
abort/0 (built-in, ref page) 904
abort/0 (debugger command control) 284
abs /1, absolute value (evaluable) 123
absolute path . 99, 100

absolute_file_name/[2,3]

(built-in, ref page) . 905
accept (top-level command) 23
accepted_hosts/1 (start/1 option) 715
access to streams, random . 115
access/1 (absolute_file_name/3 option) . . . 906
accumulating parameter . 366
acos /1, (evaluable) . 124
acosh /1, (evaluable) . 124
acot /1, (evaluable) . 124
acot2 /2, (evaluable) . 124
acoth /1, (evaluable) . 124
action condition, breakpoint 281
action execution, breakpoint 254
action variables, debugger 252, 282
action, breakpoint . 244, 252
acyclic_term/1 (built-in, ref page) 912
acyclic_term/2 (built-in) 127
add_breakpoint/2 (built-in) 273

add_breakpoint/2 (built-in, ref page) 913
add_edges/3 (ugraphs) . 851
add_edges/3 (wgraphs) . 856
add_element/3 (sets) . 730
add_vertices/3 (ugraphs) 851
add_vertices/3 (wgraphs) 855
address, socket . 733
advice breakpoint . 243, 258
advice point (definition) . 7
advice/0 (debugger condition) 258, 281
agc_count (statistics key) 151
agc_freed (statistics key) 151
agc_margin (prolog flag) 137, 157, 301
agc_nbfreed (statistics key) 151
agc_time (statistics key) 151
aggregate/3 (aggregate) . 385
aggregate/4 (aggregate) . 385
aggregate_all/3 (aggregate) 385
aggregate_all/4 (aggregate) 385
aggregation . 382
alias, of a stream . 109
alias, stream (definition) . 12, 19
alias/1 (open/4 option) 109, 1092
alias/1 (stream property) 1185
all (absolute_file_name/3 solutions) 908
all (labeling/2 option) . 468
all (maximize/3 option) . 466
all (minimize/3 option) . 466
all solutions, predicates for 189, 881
all/1 (plunit option) . 697
all_different/[1,2] (clpfd) 435
all_different_except_0/1 (clpfd) 436
all_distinct/[1,2] (clpfd) 435
all_distinct_except_0/1 (clpfd) 436
alphanumeric (definition) . 7
among/3 (lex_chain/2 option) 438
among/3 (scalar_product/5 option) 431
analysis, coverage . 354
ancestor goal . 236
ancestor/2 (debugger condition) 264, 278
ancestors (CHR debug command) 417
ancestors (debugger command) 240
ancestors (definition) . 7
and . 63
annotate goal (debugger command) 532
annotation . 527
anonymous variable . 44
anonymous variable (definition) 7
ANSI conformance . 5
anti_first_fail (labeling/2 option) 466
any (absolute_file_name/3 file type) 905
anystretchocc/1 (automaton/9 option) 459
API . 289
append (absolute_file_name/3 access) 907

1408 SICStus Prolog

append (open/[3,4] mode) 1092
append, avoiding . 367
append/[2,5] (lists) . 603
append/3 (built-in) . 128
append/3 (built-in, ref page) 915
append_length/[3,4] (lists) 608
append_queue/3 (queues) . 725
appending, to existing files . 110
application builder . 322
apply (CHR port) . 416
arg/3 (built-in) . 127
arg/3 (built-in, ref page) 918
argument (definition) . 7, 45
arguments of terms . 127
arguments, command-line . 21
arguments, reference page field 877
arguments, types of . 877, 879
argv (prolog flag) 137, 329, 1367
arithmetic and character codes 125
arithmetic equality . 120
arithmetic errors . 119
arithmetic exceptions . 119
arithmetic expression . 120
arithmetic expressions, evaluating 119
arithmetic functors . 121
arithmetic limits . 119
arithmetic, predicates for 125, 881
arithmetic_mean/2 (statistics) 737
arity (argument type) . 880
arity (definition) . 7
arity, of a functor . 45
asin /1, (evaluable) . 124
asinh /1, (evaluable) . 124
ask/0 (debugger command control) 283
ask_query/4 (built-in) . 222
ask_query/4 (built-in, ref page) 919
ASPX . 712
assert/[1,2] (built-in) . 179
assert/[1,2] (built-in, ref page) 921
asserta/[1,2] (built-in) 179
asserta/[1,2] (built-in, ref page) 923
assertion and retraction predicates 176
assertz/[1,2] (built-in) 179
assertz/[1,2] (built-in, ref page) 925
assignment, destructive . 131
assignment/[2,3] (clpfd) 436
assoc_to_list/2 (assoc) . 386
association list . 386, 395
associativity of operators . 48
assumptions/1 (labeling/2 option) 469
asynchronously, calling Prolog 308
at_end_of_line/[0,1] (built-in) 108

at_end_of_line/[0,1]

(built-in, ref page) . 927

at_end_of_stream/[0,1] (built-in) 108

at_end_of_stream/[0,1]

(built-in, ref page) . 928
atan /1, (evaluable) . 124
atan2 /2, (evaluable) . 124
atanh /1, (evaluable) . 124
atom (definition) . 7
atom (double_quotes flag value) 138
atom garbage collection . 156
atom, one-char (definition) . 15
atom/1 (built-in, ref page) 929
atom_chars/2 (built-in) . 128
atom_chars/2 (built-in, ref page) 930
atom_codes/2 (built-in) . 128
atom_codes/2 (built-in, ref page) 931
atom_concat/3 (built-in) 129
atom_concat/3 (built-in, ref page) 932

atom_garbage_collection

(statistics key) . 149
atom_length/2 (built-in) 129
atom_length/2 (built-in, ref page) 933
atomic term (definition) . 7
atomic/1 (built-in, ref page) 934
atomic_type/[1,2,3] (structs) 744
atoms . 44
atoms (statistics key) . 149
atoms, canonical representation of 301
atoms_nbfree (statistics key) 150
atoms_nbused (statistics key) 150
atoms_used (statistics key) 150
attribute declaration . 388
attribute/1 (declaration) 388
attribute_goal/2 (Module) 390
attributed variables . 388
auto-generation of names . 528
automaton/[3,8,9] (clpfd) 458
aux (table/3 method/1 value) 440
avl_change/5 (avl) . 396
avl_del_max/4 (avl) . 397
avl_del_min/4 (avl) . 397
avl_delete/4 (avl) . 397
avl_domain/2 (avl) . 395
avl_fetch/2 (avl) . 396
avl_fetch/3 (avl) . 396
avl_height/2 (avl) . 395
avl_incr/4 (avl) . 397
avl_map/2 (avl) . 397
avl_map/3 (avl) . 398
avl_max/2 (avl) . 395
avl_max/3 (avl) . 395
avl_member/2 (avl) . 396
avl_member/3 (avl) . 396
avl_min/2 (avl) . 395

Book Index 1409

avl_min/3 (avl) . 395
avl_next/3 (avl) . 396
avl_next/4 (avl) . 396
avl_prev/3 (avl) . 396
avl_prev/4 (avl) . 396
avl_range/2 (avl) . 395
avl_size/2 (avl) . 396
avl_store/4 (avl) . 397
avl_to_list/2 (avl) . 395
avoiding append . 367

B
bab (labeling/2 option) . 468
backtrace . 240, 262
backtrace (debugger command) 240
backtrace (definition) . 7
backtracking . 75, 76
backtracking (definition) . 7
backtracking, terminating a loop 357
backtracks (fd_statistics/2 option) 472
backtracks (zinc option value) 869
backward-paragraph (emacs command) 36
bag . 398
bag_add_element/4 (bags) 401
bag_del_element/4 (bags) 401
bag_intersect/2 (bags) . 401
bag_intersection/2 (bags) 401
bag_max/2 (bags) . 400
bag_max/3 (bags) . 400
bag_min/2 (bags) . 400
bag_subtract/3 (bags) . 401
bag_to_list/2 (bags) . 399
bag_to_ord_set/2 (bags) . 399
bag_to_ord_set/3 (bags) . 399
bag_to_set/2 (bags) . 399
bag_to_set/3 (bags) . 400
bag_union/2 (bags) . 401
bag_union/3 (bags) . 401
bagof/3 (built-in) . 188
bagof/3 (built-in, ref page) 935
bagof_rd_noblock/3 (linda_client) 602
bb_delete/2 (built-in) . 184
bb_delete/2 (built-in, ref page) 936
bb_get/2 (built-in) . 184
bb_get/2 (built-in, ref page) 937
bb_inf/[3,5] (clpqr) . 497
bb_put/2 (built-in) . 184
bb_put/2 (built-in, ref page) 938
bb_update/3 (built-in) . 184
bb_update/3 (built-in, ref page) 939
bbkey (argument type) . 880
begin_tests/[1,2] (plunit declaration) . . . 694

best (labeling/2 option) 468
best (maximize/3 option) 466
best (minimize/3 option) 466
between/3 (between) . 409
bid/1 (debugger condition) 261, 280
bin_packing/2 (clpfd) . 450
binary tree . 386, 395
binding (definition) . 7
bisect (labeling/2 option) 467
blackboard . 184
block (predicate property) 1109
block declaration . 84
block/0 (debugger port value) 279
block/1 (built-in, ref page) 940
block/1 (declaration) . 84
block/1 (predicate property) 136
blocked goal . 237
blocked goal (definition) . 7
blocked goals (debugger command) 241, 532
blocked/1 (plunit option) 694
body (definition) . 8
body of a clause . 61
bof (seek/4 method) . 1162
bool_and/2 (clpfd) . 439
bool_channel/4 (clpfd) . 439
bool_or/2 (clpfd) . 439
bool_xor/2 (clpfd) . 439
bound/1 (cumulatives/3 option) 447
bounded (prolog flag) . 137
bounding_box/2 (geost/[2,3,4] option) 452

bounds (all_different/2

consistency/1 value) . 435

bounds (all_distinct/2

consistency/1 value) . 435

bounds (global_cardinality/3

consistency/1 value) . 434

bounds (scalar_product/5

consistency/1 value) . 431
bounds-consistent . 480
bounds-disentailed . 480
bounds-entailed . 480
box, invocation . 233
box, invocation (definition) . 13
box, procedure . 231
box, procedure (definition) . 16
break . 27
break (CHR debug command) 417
break (debugger command) 242
break (top-level command) 23
break/0 (built-in) 27, 82, 211
break/0 (built-in, ref page) 942
break_level/1 (debugger condition) . . . 280, 282
breakpoint (definition) . 8

1410 SICStus Prolog

breakpoint action . 244, 252
breakpoint action condition 281
breakpoint action execution 254
breakpoint condition . 244
breakpoint conditions . 277
breakpoint handling predicates 272
breakpoint identifier . 244
breakpoint processing . 275
breakpoint specification . 243
breakpoint specification (definition) 8
breakpoint test . 244
breakpoint test condition . 277
breakpoint, advice . 243, 258
breakpoint, debugger . 243
breakpoint, generic . 251
breakpoint, line . 37
breakpoint, setting . 37
breakpoint, specific . 251
breakpoint_expansion/2 (hook, ref page) . . . 943
breakpoint_expansion/2 (user, hook) . . 267, 282
buffer (definition) . 8
builder, application . 322
built-in operators . 49
built-in operators, list of . 51
built-in predicate (definition) . 8
built-in predicates, annotations 878
built-in predicates, list of . 881
built_in (predicate property) 1109
built_in/0 (predicate property) 135
Button (Tk event type) . 798
button (Tk widget) . 772
ButtonPress (Tk event type) 798
ButtonRelease (Tk event type) 798
byte (argument type) . 880
byte list (definition) . 8
byte_count/2 (built-in) 111, 114
byte_count/2 (built-in, ref page) 944

C
C errors, functions for . 1231
C functions for Exceptions 1232
C functions for File and Stream Handling 1232
C functions for Foreign Interface 1232
C functions for I/O . 1231
C functions for initialization 1235
C functions for memory management 1235
C functions for signal handling 1236
C functions for terms . 1236
C functions for type tests . 1236
C functions, return values, errors 1231
cache_size/1 (db_open/5 option) 405
call (CHR port) . 416

call (leashing mode) . 234
call errors . 77
call exceptions . 77
call, procedure . 61, 76
call/[1,2,...,255] (built-in, ref page) . . . 945
call/0 (debugger port value) 279

call/1

(clpfd:dispatch_global/4 request) 474
call_cleanup/2 (built-in, ref page) 946

call_residue_vars/2

(built-in, ref page) . 947
callable term (definition) . 8
callable/1 (built-in, ref page) 948
calling Prolog asynchronously 308
calling Prolog from C . 305
CallSpec . 522
canonical representation of atoms 301
canvas (Tk widget) . 772
card/2, boolean cardinality 420
case-normalized path . 100
case/[3,4] (clpfd) . 440
cast/1 (structs) . 743
Casting . 743
catch/3 (built-in) . 198
catch/3 (built-in, ref page) 949
catching unknown procedures 178
ceiling /1, (evaluable) . 123
central_moment/3 (statistics) 737
changing prompt . 104
changing type-in module . 166
char (argument type) . 880
char list (definition) . 8
char/1 (map method) . 221
char_code/2 (built-in) . 128
char_code/2 (built-in, ref page) 950
char_conversion (prolog flag) 8, 137
char_conversion/2 (built-in, ref page) 951
character code (definition) . 8
character code set (definition) 8
character codes, arithmetic and 125
character codes, lists of . 46
character encoding . 111
character escaping . 47
character I/O, predicates for 115, 882
character set . 56, 111
character, EOF . 5
character, interrupt . 5
character-conversion . 951, 967
character-conversion mapping (definition) 8
character-type mapping (definition) 8
character_count/2 (built-in) 111, 114
character_count/2 (built-in, ref page) 952
characters, conversion to character code 43

Book Index 1411

characters, conversion to integers 125
characters, input and output of 107
characters, strings of . 46
chars (argument type) . 880
chars (double_quotes flag value) 138
check, occurs (definition) . 15
check_guard_bindings (CHR option) 413
checkbag/2 (bags) . 399
checkbutton (Tk widget) . 772
checker, constraint . 457
checking indexicals . 481
choice (statistics key) . 148
choice stack . 144
choice_free (statistics key) 150
choice_used (statistics key) 150
choicepoints (definition) . 9
CHOICESTKSIZE (system property) 226
chr_constraint/1 (CHR declaration) 414
chr_flag/3 (chr) . 417
chr_leash/1 (chr) . 417
chr_notrace/0 (chr) . 417
chr_option/2 (CHR declaration) 413
chr_show_store/1 (chr) . 417
chr_trace/0 (chr) . 417
chr_type/1 (CHR declaration) 414
circuit/[1,2] (clpfd) . 445
circuit/1 (assignment/3 option) 437
clash, name . 168
clash, name (definition) . 15
class/1 (objects) . 653
class_ancestor/2 (objects) 656
class_method/1 (objects) 657
class_of/2 (objects) . 659
class_superclass/2 (objects) 658
classes, error . 200
Classname, Fully Qualified . 585
clause . 61
clause (definition) . 9
clause, guarded . 373
clause, guarded (definition) . 12
clause, instance of . 74
clause, unit . 61
clause, unit (definition) . 20
clause/[2,3] (built-in) . 181
clause/[2,3] (built-in, ref page) 953

clauseref/5 (source

information descriptor) 1031
clauses, database references to 178
clauses, declarative interpretation of 74
clauses, printing . 106
clauses, procedural interpretation of 74
cleanup/1 (plunit option) 695
close (Tcl command) . 767
close/[1,2] (built-in, ref page) 955

close/1 (built-in) . 114
close_all_streams/0 (file_systems) 552
close_client/0 (linda_client) 601
closing a file . 114
closing a stream . 114
clpfd:dispatch_global/4 . 473
clpfd:full_answer/0 . 472
CLSID . 521
clumped/2 (lists) . 618
clumps/2 (lists) . 618
code (argument type) . 880
code list (definition) . 9
code, character (definition) . 8
code, glue (definition) . 12
code, source (definition) . 18
code, unreachable . 377
codes (argument type) . 880
codes (double_quotes flag value) 138
collection, garbage . 139
collection, garbage (definition) 11
colored resource . 447

colored/1

(multi_cumulative/[2,3] resource) 448

comclient_clsid_from_

progid/2 (comclient) . 523
comclient_create_instance/2 (comclient) . . 523
comclient_equal/2 (comclient) 523
comclient_exception_code/2 (comclient) . . . 524

comclient_exception_

culprit/2 (comclient) . 524

comclient_exception_

description/2 (comclient) 524
comclient_garbage_collect/0 (comclient) . . 522

comclient_get_active_

object/2 (comclient) . 523
comclient_iid_from_name/2 (comclient) 523

comclient_invoke_method_

fun/3 (comclient) . 523

comclient_invoke_method_

proc/2 (comclient) . 523
comclient_invoke_put/3 (comclient) 523
comclient_is_exception/1 (comclient) 524
comclient_is_object/1 (comclient) 522
comclient_name_from_iid/2 (comclient) 523

comclient_progid_from_

clsid/2 (comclient) . 523
comclient_release/1 (comclient) 524
comclient_valid_object/1 (comclient) 523
ComInArg . 522
comint-interrupt-subjob (emacs command) . . . 37
comint-quit-subjob (emacs command) 37
command (debugger command) 242
command-line arguments . 21

1412 SICStus Prolog

command/1 (debugger condition) . . . 253, 280, 281
commands, debug . 237
comment-dwim (emacs command) 36
communication, process 598, 733
compactcode (compiling flag value) 80, 137
compactcode (definition) . 9
compare/3 (built-in, ref page) 957
comparison of terms . 130
comparison, of numbers . 120
compilation, JIT . 80, 227

compilation_mode/1

(load_files/2 option) 1053
compile (definition) . 9
compile-buffer (emacs command) 35
compile-file (emacs command) 35
compile-predicate (emacs command) 35
compile-region (emacs command) 35
compile/1 (built-in) . 163
compile/1 (built-in, ref page) 958
compiled (predicate property) 1109
compiled/0 (predicate property) 135
compiling . 21
compiling (prolog flag) 9, 80, 137
complement/2 (ugraphs) . 852
compose/3 (ugraphs) . 852
compound term (definition) . 9
compound, terms . 45
compound/1 (built-in, ref page) 959
computation rule . 76
ComValue . 521
concat (Tcl command) . 759
concepts, FDBG . 526
condition, breakpoint . 244
condition/1 (plunit option) 695
conditional compilation . 88
conditional compilation (definition) 9
conditional spypoint . 244
conditionals . 371
conditions, breakpoint . 277
conformance, ANSI . 5
conjunction . 63
conjunction (definition) . 9

connection_timeout/1

(odbc_db_open/4 option) 687
cons/3 (lists) . 609
consistency errors . 207
consistency/1 (all_different/2 option) . . . 435
consistency/1 (all_distinct/2 option) 435
consistency/1 (assignment/3 option) 437

consistency/1

(global_cardinality/3 option) 434
consistency/1 (scalar_product/5 option) . . 431
consistency_error/[3,4] (error class) 202

consistent store . 426
console-based executable (definition) 9
constant . 43
constant (definition) . 9
constraint . 425
constraint checker . 457
constraint event . 526
constraint, global . 472
constraints (fd_statistics/2 option) 472
constraints (zinc option value) 869
constraints, forgetting . 428
constraints, posting . 427
consult (definition) . 9
consult-buffer (emacs command) 35
consult-file (emacs command) 35
consult-predicate (emacs command) 35
consult-region (emacs command) 35
consult/1 (built-in, ref page) 960
consulting . 21, 22

consume_layout/1

(read_term/[2,3] option) 1141
contains_term/2 (terms) . 844
contains_var/2 (terms) . 845
context errors . 207
context, load . 143
context-free grammars . 189
context_error/[2,3] (error class) 202
contradictory store . 426
control constructs in grammar rules 190
control structure . 63
control structure (definition) . 9
control, predicates for . 78, 883
conversions, term . 300
converting into module files 163
convlist/3 (lists) . 614
copy_term/[2,3] (built-in) 129
copy_term/[2,3] (built-in, ref page) 961
core (statistics key) . 149
corners/1 (geost/[2,3,4] option) 452
correlation/3 (statistics) 738
correspond/4 (lists) . 603
cos /1, (evaluable) . 123
cosh /1, (evaluable) . 123
cost/2 (assignment/3 option) 437
cost/2 (global_cardinality/3 option) 434
cot /1, (evaluable) . 123
coth /1, (evaluable) . 124
count /3, (iterator) . 73
count/3 (iterator) . 987
count/4 (clpfd) . 434
counter . 353
counterseq/1 (automaton/9 option) 460
covariance/3 (statistics) 738
coverage analysis . 354

Book Index 1413

coverage site . 354
coverage_data/1 (built-in) 355
coverage_data/1 (built-in, ref page) 963
create/2 (objects) . 660
create_mutable/2 (built-in) 132
create_mutable/2 (built-in, ref page) 964
creating new files . 110
creep (CHR debug command) 416
creep (debugger command) 238
creep (definition) . 9
cross-referencer . 377
cumlist/[4,5,6] (lists) . 610
cumulative resource . 447
cumulative/[1,2] (clpfd) 446
cumulative/1 (geost/[2,3,4] option) 451

cumulative/1

(multi_cumulative/[2,3] resource) 448
cumulatives/[2,3] (clpfd) 446
current (seek/4 method) . 1162
current frame . 236, 237
current input . 102
current input stream . 109
current input streams 110, 112, 113
current operators . 50
current output . 102
current output stream . 109
current output streams 110, 112, 113
current stream . 113
current_atom/1 (built-in, ref page) 965
current_breakpoint/5 (built-in) 261, 273

current_breakpoint/5

(built-in, ref page) . 966

current_char_conversion/2

(built-in, ref page) . 967
current_class/1 (objects) 662
current_directory/[1,2] (file_systems) . . . 555
current_host/1 (sockets) 736
current_input/1 (built-in) 112
current_input/1 (built-in, ref page) 968
current_key/2 (built-in) 184
current_key/2 (built-in, ref page) 969
current_module/[1,2] (built-in) 169

current_module/[1,2]

(built-in, ref page) . 970
current_op/3 (built-in) . 50
current_op/3 (built-in, ref page) 972
current_output/1 (built-in) 113
current_output/1 (built-in, ref page) 973

current_predicate/[1,2]

(built-in, ref page) . 974
current_predicate/2 (built-in) 169

current_prolog_flag/2

(built-in, ref page) . 976

current_stream/3 (built-in) 113
current_stream/3 (built-in, ref page) 977
currently loaded modules 168, 169
cursor (definition) . 10
customize-group (emacs command) 33
customize-variable (emacs command) 33
cut . 355
cut (definition) . 10
cut and generate-and-test . 357
cut, green . 65
cut, local . 67
cut, placement of . 357
cut, red . 65
cut, soft . 68
cycles/1 (read_term/[2,3] option) 1140
cycles/1 (write_term/[2,3] option) 1227
cyclic list . 14
cyclic term . 1140, 1227
cyclic terms . 78
cyclic_term/1 (terms) . 844

D
data areas, used by Prolog . 144
data resource . 1374
data tables . 358
data type . 43
data types, foreign . 738
data_file/1 (zinc option) 868
database . 92, 402
database (definition) . 10
database modification . 176
database reference . 178
database references to clauses 178
database, internal . 183
database, loading . 92
database, predicates for 185, 885
database, saving . 92
datime/[1,2] (system) . 748
db-spec . 403
db_close/1 (bdb) . 405
db_close_env/1 (bdb) . 404
db_compress/[2,3] (bdb) . 406
db_current/5 (bdb) . 405
db_current_env/2 (bdb) . 405
db_current_iterator/3 (bdb) 407
db_enumerate/3 (bdb) . 406
db_erase/[2,3] (bdb) . 406
db_export/[2,3] (bdb) . 407
db_fetch/3 (bdb) . 405
db_findall/3 (bdb) . 406
db_import/[2,3] (bdb) . 407
db_iterator_done/1 (bdb) 407

1414 SICStus Prolog

db_iterator_next/3 (bdb) 407
db_make_iterator/[2,3] (bdb) 407
db_open/[4,5] (bdb) . 405
db_open_env/[2,3] (bdb) . 404
db reference (definition) . 10
db_reference/1 (built-in, ref page) 979
db_store/3 (bdb) . 405
db_sync/1 (bdb) . 406
dcg, grammar rule expansion 1196
dcgc_count (statistics key) 151
dcgc_time (statistics key) 151
DCG . 189
debug (CHR option) . 413
debug (debugging flag value) 137, 982
debug (definition) . 10
debug (FD flag) . 475
debug (prolog flag) . 137, 318
debug commands . 237
debug/0 (built-in) . 233
debug/0 (built-in, ref page) 980
debug/0 (debugger mode control) 284
debug_message/0 (objects) 663
debugcode (compiling flag value) 80, 137
debugcode (definition) . 10
debugger action variables 252, 282
debugger breakpoint . 243
debugger port . 279
debugger, port . 232
debugger-ancestor . 278
debugger-parent . 278
debugger/0 (debugger condition) 258, 281
debugger/0 (map method) . 221

debugger_command_hook/2

(hook, ref page) . 981

debugger_command_hook/2

(user, hook) . 268, 274

debugger_print_options

(prolog

flag) . . . 138, 231, 242, 253, 283, 318, 1105, 1227
debugging . 231
debugging (debugger command) 241
debugging (prolog flag) 137, 318
debugging messages . 236
debugging modules . 168
debugging predicates . 233
debugging, predicates for 285, 886
debugging/0 (built-in) 26, 235
debugging/0 (built-in, ref page) 982
dec10 (syntax_errors flag value) 141, 208
declaration (definition) . 10
declaration (predicate annotation) 878
declaration, attribute . 388
declaration, block . 84

declaration, discontiguous . 84
declaration, dynamic . 84
declaration, include . 86
declaration, is/2 . 86
declaration, meta-predicate . 85
declaration, meta predicate 171
declaration, mode . 86
declaration, module . 85, 164
declaration, multifile . 83
declaration, operator . 83
declaration, predicate . 83
declaration, public . 86
declaration, volatile . 84
declarations, mode . 173
declarative semantics . 74
declaring nondeterminacy . 362
declaring operators . 50
decreasing_prefix/[3,4] (lists) 618
default (open/4 if_exists value) 1095
default (table/3 method/1 value) 440
define_method/3 (objects) 664
definite clause grammars . 189
definition, procedure . 76
defrag_count (statistics key) 151
defrag_time (statistics key) 151
defragmentation (statistics key) 149
deinit function . 292
deinit function (definition) . 10
del_edges/3 (ugraphs) . 851
del_edges/3 (wgraphs) . 856
del_element/3 (sets) . 730
del_vertices/3 (ugraphs) 851
del_vertices/3 (wgraphs) 855

delete (delete_directory/2

if_nonempty option value) 551
delete/[3,4] (lists) . 604
delete_directory/[1,2] (file_systems) 551
delete_file/1 (file_systems) 551
deprecated (predicate annotation) 878
depth/1 (debugger condition) 247, 277
depth_bound/2 (terms) . 845
descendant_of/2 (objects) 665
destroy/1 (objects) . 666
destructive assignment . 131
determinacy checker . 361
determinacy detection, last clause 360
determinacy detection, via indexing 359
determinate (definition) . 10
development (predicate annotation) 878
development system . 5
development system (definition) 10
dialect (prolog flag) 90, 138
dif/2 (built-in) . 127
dif/2 (built-in, ref page) 983

Book Index 1415

diffn/[1,2] (clpfd) . 450
direct_message/4 (objects) 667
direction/1 (close/2 option) 955
directive . 21, 23, 61, 62
directive (definition) . 10
directives, in files being compiled 82
directories . 550

directory

(absolute_file_name/3 file type) 906
directory (load context key) 143
directory specification . 96
directory_exists/1 (file_systems) 551
directory_exists/2 (file_systems) 551

directory_member_of_directory/2

(file_systems) . 552

directory_member_of_directory/3

(file_systems) . 552

directory_member_of_directory/4

(file_systems) . 552

directory_members_of_

directory/[1,2,3] (file_systems) 552
directory_must_exist/1 (file_systems) 551
directory_must_exist/2 (file_systems) 551
directory_property/[2,3] (file_systems) . . 553
disable this (debugger command) 242
disable_breakpoints/1 (built-in) 274

disable_breakpoints/1

(built-in, ref page) . 984
discontiguous declaration . 84
discontiguous/1 (built-in, ref page) 985
discontiguous/1 (declaration) 84

discontiguous_warnings

(prolog flag) 81, 84, 138, 318
discrepancy/1 (labeling/2 option) 469
disjoint/2 (sets) . 730
disjoint_union/3 (sets) . 732
disjoint1/[1,2] (clpfd) . 448
disjoint2/[1,2] (clpfd) . 449
disjunction . 66, 371
disjunction (definition) . 10
disjunctive/1 (geost/[2,3,4] option) 451
dispatch_global/4 (clpfd) 473
display (debugger command) 240
display/0 (debugger show control) 283
display/1 (built-in) . 106
display/1 (built-in, ref page) 986
display/1 (tk_new/2 option) 807
displaying statistics . 146
dispose/1 (structs) . 742
distinctions among write predicates 105

div /2, integer floored

division (evaluable) . 121
do loop . 68

do loop (definition) . 10

do/2 (built-in, ref page) 987

do/2, do loop . 68

dom (all_different/2 on/1 value) 435

dom (all_distinct/2 on/1 value) 435

dom (global_cardinality/3 on/1 value) 434

dom/1 (fd_global/[3,4] option) 474

domain (all_different/2

consistency/1 value) . 435

domain (all_distinct/2

consistency/1 value) . 435

domain (global_cardinality/3

consistency/1 value) . 434

domain (scalar_product/5

consistency/1 value) . 431

domain errors . 204

domain variable . 425

domain, finite . 425

domain-consistent . 480

domain-disentailed . 480

domain-entailed . 480

domain/3 (clpfd) . 432

domain_error/[2,4] (error class) 202

double_quotes (prolog flag) 19, 47, 138

down (labeling/2 option) 468

dpgc_count (statistics key) 151

dpgc_time (statistics key) 151

dump/3 (clpqr) . 498

dynamic (predicate property) 1109

dynamic code, indexing of . 178

dynamic code, semantics of 176

dynamic creation of modules 167

dynamic declaration . 84

dynamic predicate (definition) 10

dynamic predicates, importing 170

dynamic resource . 291

dynamic, procedures and declarations 177

dynamic/0 (predicate property) 136

dynamic/1 (built-in, ref page) 989

dynamic/1 (declaration) . 84

dynamic_programming/1

(geost/[2,3,4] option) 452

1416 SICStus Prolog

E
Eclipse . 29
edges/2 (ugraphs) . 851
edges/2 (wgraphs) . 855
effect, side (definition) . 17
efficiency and specifying streams 102
efficiency, increasing . 353
element/3 (clpfd) . 439
elif/1 (conditional directive) 88
else/0 (conditional directive) 88
Emacs initialization file .emacs 32
emacs interface . 32
empty list (definition) . 14
empty_assoc/1 (assoc) . 386
empty_avl/1 (avl) . 395
empty_bag/1 (bags) . 400
empty_fdset/1 (clpfd) . 476
empty_interval/2 (clpfd) 476
empty_queue/1 (queues) . 724
enable this (debugger command) 242
enable_breakpoints/1 (built-in) 274

enable_breakpoints/1

(built-in, ref page) . 990
enabling and disabling garbage collection 154
encoded string . 290
encoded string (definition) . 11
encoding . 111
encoding, UTF-8 . 290
encoding/1 (open/4 option) 1093
encoding/1 (stream property) 1186
encoding_signature/1 (open/4 option) 1093
encoding_signature/1 (stream property) . . 1186
end of line . 927
end of stream . 928
end-of-file on character input 107
end-of-file, characters . 942
end_class/[0,1] (objects) 668
end_of_file . 103
end of file atom . 1137
end_of_stream/1 (stream property) 1185
end_tests/1 (plunit declaration) 694
endif/0 (conditional directive) 88
ensure_loaded/1 (built-in) 163
ensure_loaded/1 (built-in, ref page) 991
entailed/1 (clpqr) . 496
entailments (fd_statistics/2 option) 472
Enter (Tk event type) . 798
entry (Tk widget) . 772
enum (labeling/2 option) 467
enumerating solutions to a goal 187, 188
environ/[2,3] (system) . 748
environment . 404
environment variables . 224

environment/1 (db_open/5 option) 405
eof (seek/4 method) . 1162
eof (Tcl command) . 767
eof_action/1 (open/4 option) 1092
eof_action/1 (stream property) 1185
eof_code (open/4 eof_action value) 1092
EOF character . 5
eol/1 (open/4 option) . 1094
eol/1 (stream property) . 1186
Epoch . 553
equality of floats . 120
equality, arithmetic . 120
equality, unification . 126
erase/1 (built-in) . 179
erase/1 (built-in, ref page) 993

error (absolute_file_name/3

fileerrors value) . 206
error (absolute_file_name/3 fileerrors) . . 907

error (delete_directory/2

if_nonempty option value) 551
error (open/4 eof_action value) 1092
error (open/4 if_exists value) 1095
error (overflow FD flag value) 475
error (syntax_errors flag value) 141, 208
error (unknown flag value) 142, 199
error classes . 200
error handling . 285
error term . 197
error, syntax . 25
error/1 (plunit option) . 697
error/2 (plunit option) . 697
error_exception/1 (hook, ref page) 994
error_exception/1 (user, hook) 198, 285
errors . 197
errors, arithmetics . 119
errors, calls . 77
errors, consistency . 207
errors, context . 207
errors, domain . 204
errors, evaluation . 205
errors, existence . 206
errors, instantiation . 203
errors, permission . 206
errors, representation . 205
errors, resource . 208
errors, streams . 109
errors, syntax . 208
errors, system . 209
errors, type . 204
errors, uninstantiation . 203
escape sequence . 60
escape sequence (definition) . 11
escaping, character . 47

Book Index 1417

eval (Tcl command) . 762
evaluating arithmetic expressions 119
evaluation errors . 205
evaluation_error/[2,4] (error class) 202
event, constraint . 526
event, FDBG . 526
event, labeling . 526
exception (leashing mode) 234
exception handling . 285
exception handling in C . 309
exception term . 197, 309
exception/1 (debugger port value) 279
exception/1 (plunit option) 697
exceptions . 197
exceptions, arithmetic . 119
Exceptions, C functions for 1232
exceptions, calls . 77
exceptions, global handler . 199
exceptions, module name expansion 879
exceptions, streams . 109
exclude/[3,4,5] (lists) . 614

executable

(absolute_file_name/3 access) 907

executable

(absolute_file_name/3 file type) 906
executable, console-based (definition) 9
executable, stand-alone . 317
executable, stand-alone (definition) 18
executable, windowed (definition) 20
execute (absolute_file_name/3 access) 907
execution . 26
execution profiling . 353
execution state, predicates for 211, 887
execution, nested . 27

execution_state/[1,2] (built-in) 260, 262,
274

execution_state/[1,2]

(built-in, ref page) . 995
exist (absolute_file_name/3 access) 907
existence errors . 206
existence_error/[2,5] (error class) 202
existential quantifier . 188, 996
exit (CHR port) . 416
exit (leashing mode) . 234

exit/0

(clpfd:dispatch_global/4 request) 473
exit/1 (debugger port value) 279
exited/1 (debugger condition) 263, 278
exiting . 27
exp /1, exponent (evaluable) 124
exp /2, float power (evaluable) 124
expand_term/2 (built-in) . 88
expand_term/2 (built-in, ref page) 997

expansion, macro . 1029
expansion, module name . 5, 85
expansion, module name (definition) 15
explicit unification . 126
export (definition) . 11
exported (predicate property) 1109
exported/0 (predicate property) 136
exporting predicates from a module 162
expr (argument type) . 880
expr (Tcl command) . 757
expression, arithmetic . 120
extended runtime system (definition) 11

extended_characters/1

(xml_parse/3 option) . 858

extensions/1

(absolute_file_name/3 option) 905

F
fact (definition) . 11

fail (absolute_file_name/3

fileerrors value) . 206
fail (absolute_file_name/3 fileerrors) . . . 908
fail (CHR debug command) . 417
fail (CHR port) . 416
fail (debugger command) . 239

fail (delete_directory/2

if_nonempty option value) 551
fail (leashing mode) . 234
fail (overflow FD flag value) 475
fail (syntax_errors flag value) 142, 208
fail (unknown flag value) 142, 200
fail/0 (built-in, ref page) 998

fail/0

(clpfd:dispatch_global/4 request) 473
fail/0 (debugger port value) 279
fail/0 (plunit option) . 697
fail/1 (debugger command control) 284
false/0 (built-in, ref page) 999
false/0 (debugger condition) 281
fd_batch/1 (clpfd) . 428
fd_closure/2 (clpfd) . 476
fd_constraint (predicate property) 1109
fd_constraint/0 (predicate property) 135
fd_degree/2 (clpfd) . 475
fd_dom/2 (clpfd) . 475
fd_flag/3 (clpfd) . 475
fd_global/[3,4] (clpfd) . 474
fd_max/2 (clpfd) . 475
fd_min/2 (clpfd) . 475
fd_neighbors/2 (clpfd) . 476
fd_purge/1 (clpfd) . 428
fd_set/2 (clpfd) . 475

1418 SICStus Prolog

fd_size/2 (clpfd) . 475
fd_statistics/[0,2] (clpfd) 471
fd_var/1 (clpfd) . 475
FD predicate . 465, 483
FD set . 476
fdbg_annotate/[3,4] (fdbg) 539
fdbg_assign_name/2 (fdbg) 530
fdbg_current_name/2 (fdbg) 530
fdbg_get_name/2 (fdbg) . 531
fdbg_guard/3 (fdbg) . 545
fdbg_label_show/3 (fdbg) 531
fdbg_labeling_step/2 (fdbg) 533
fdbg_legend/[1,2] (fdbg) 539
fdbg_off/0 (fdbg) . 529
fdbg_on/[0,1] (fdbg) . 529
fdbg output . 529
fdbg_show/2 (fdbg) . 531
fdbg_start_labeling/1 (fdbg) 533
fdbg_transform_actions/3 (fdbg) 539
FDBG concepts . 526
FDBG event . 526
FDBG output stream . 529
fdset_add_element/3 (clpfd) 477
fdset_complement/2 (clpfd) 477
fdset_del_element/3 (clpfd) 477
fdset_disjoint/2 (clpfd) 477
fdset_eq/2 (clpfd) . 477
fdset_intersect/2 (clpfd) 477
fdset_intersection/[2,3] (clpfd) 477
fdset_interval/3 (clpfd) 476
fdset_max/2 (clpfd) . 476
fdset_member/2 (clpfd) . 477
fdset_min/2 (clpfd) . 476
fdset_parts/4 (clpfd) . 476
fdset_singleton/2 (clpfd) 476
fdset_size/2 (clpfd) . 477
fdset_subset/2 (clpfd) . 477
fdset_subtract/3 (clpfd) 477
fdset_to_list/2 (clpfd) . 477
fdset_to_range/2 (clpfd) 477
fdset_union/[2,3] (clpfd) 477
fdvar_portray/3 (fdbg, hook) 537
fetch_slot/2 (objects) . 669
ff (labeling/2 option) . 466
ffc (labeling/2 option) . 466
file (load context key) . 143
File and Stream Handling, C functions for . . . 1232
file and stream handling, predicates for . . . 116, 888
file specification . 96, 99
file specification (definition) . 11
file, closing . 114
file, initialization . 98
file, module (definition) . 15
file, PO (definition) . 16

file/1 (debugger condition) 249, 279

file_errors/1

(absolute_file_name/3 option) 907
file_errors/1 (read_term/[2,3] option) . . . 206
file_exists/1 (file_systems) 551
file_exists/2 (file_systems) 551

file_member_of_directory/[2,3,4]

(file_systems) . 552

file_members_of_directory/[1,2,3]

(file_systems) . 553
file_must_exist/1 (file_systems) 551
file_must_exist/2 (file_systems) 551
file_name/1 (stream property) 1185
file_property/[2,3] (file_systems) 554
file_search_path/2 (hook, ref page) 1000
file_search_path/2 (user, hook) 96
file spec (argument type) . 880

file_type/1

(absolute_file_name/3 option) 905

fileerrors (prolog flag) 81, 110, 139, 206,
207, 907, 910, 1150, 1159, 1192

fileerrors/1

(absolute_file_name/3 option) 907

fileerrors/1

(read_term/[2,3] option) 206, 207
filename manipulation, predicates for 101, 888

fileref/2 (source

information descriptor) 1031
files . 550
files, appending to existing . 110
files, creating new . 110
files, opening . 110
files, searching for in a library 95
find this (debugger command) 242
find_chr_constraint/1 (chr) 417
findall/[3,4] (built-in) 188
findall/[3,4] (built-in, ref page) 1002
finding nondeterminacy . 361
finite domain . 425
first (absolute_file_name/3 solutions) . . . 908
first_bound/2 (clpfd) 465, 467
first_fail (labeling/2 option) 466
fixall/2 (geost/[2,3,4] option) 453
fixme/1 (plunit option) . 695
flit/0 (debugger command control) 283
flit/2 (debugger command control) 283
float (CHR type) . 414
float /1, coercion (evaluable) 122
float/1 (built-in, ref page) 1005

float_format/1

(write_term/[2,3] option) 1227

float_fractional_part /1, fractional

part (evaluable) . 122

Book Index 1419

float_integer_part /1,

coercion (evaluable) . 122
floats, equality of . 120
floats, range of . 119
floats, syntax of . 44
floor /1, (evaluable) . 123
floundered query (definition) 11
floundering . 76

flush_output/[0,1]

(built-in, ref page) . 1006
flush_output/1 (built-in) 114
flushing output . 114
for (Tcl command) . 761
for /3, (iterator) . 72
for/3 (iterator) . 987
forall/1 (plunit option) 695
forall/2 (aggregate) . 384
force/1 (abolish/2 option) 902
force/1 (close/2 option) 955
foreach (Tcl command) . 761
foreach /2, (iterator) . 72
foreach/2 (aggregate) . 384
foreach/2 (iterator) . 987
foreacharg /2, (iterator) 72
foreacharg /3, (iterator) 72
foreacharg/2 (iterator) . 987
foreacharg/3 (iterator) . 987
foreign data types . 738
Foreign Interface, C functions for 1232
foreign interface, predicates for 889
foreign language interface 289, 290
foreign predicate (definition) 11
foreign resource . 291
foreign resource (definition) . 11
foreign resource linker . 296
foreign resource, linked 291, 297
foreign resource, prelinked (definition) 16
foreign terms (definition) . 739
foreign/[2,3] (hook, ref page) 1007
foreign/[2,3] (Module, hook) 292
foreign arg (argument type) 880

foreign_resource

(absolute_file_name/3 file type) 906
foreign_resource/2 (hook, ref page) 1008
foreign_resource/2 (Module, hook) 292
foreign spec (argument type) 880
foreign_type/2 (structs) 741
forgetting constraints . 428
formal syntax . 52
format (Tcl command) . 763
format-command . 213
format/[2,3] (built-in) . 108
format/[2,3] (built-in, ref page) 1009

format/1 (xml_parse/3 option) 858

format_to_codes/[3,4] (codesio) 518

formatted printing . 108

forward-paragraph (emacs command) 36

fractile/3 (statistics) . 738

frame (Tk widget) . 772

frame, current . 236, 237

free_of_term/2 (terms) . 844

free_of_var/2 (terms) . 845

free_variables/4 (aggregate) 385

freeze/2 (built-in, ref page) 1015

fromto /4, (iterator) . 72

fromto/4 (iterator) . 987

frozen/2 (built-in, ref page) 1016

full stop . 74

full stop, use of . 103, 104, 1137

full_answer/0 (clpfd) . 472

Fully Qualified Classname . 585

function prototype . 5

function, deinit . 292

function, deinit (definition) . 10

function, init . 292

function, init (definition) . 13

functions for C errors . 1231

functor (definition) . 11

functor, principal . 127

functor, principal (definition) 45

functor/3 (built-in) . 127

functor/3 (built-in, ref page) 1017

functors . 45

functors, arithmetic . 121

fzn_dump/[2,3] (zinc) . 866

fzn_file/1 (zinc option) 868

fzn_identifier/3 (zinc) . 863

fzn_load_file/2 (zinc) . 861

fzn_load_stream/2 (zinc) 861

fzn_objective/2 (zinc) . 864

fzn_output/1 (zinc) . 863

fzn_post/1 (zinc) . 863

fzn_run_file/[1,2] (zinc) 866

fzn_run_stream/[1,2] (zinc) 866
fzn_solve/1 (zinc) . 863

1420 SICStus Prolog

G
garbage collection 139, 145, 152, 902
garbage collection (definition) 11
garbage collection, atoms . 156
garbage collection, enabling and disabling 154
garbage collection, invoking directly 156
garbage collection, monitoring 154
garbage_collect/0 (built-in) 156
garbage_collect/0 (built-in, ref page) . . . 1019
garbage_collect_atoms/0 (built-in) 157

garbage_collect_atoms/0

(built-in, ref page) . 1020
garbage_collection (statistics key) 149
gauge . 555
gc (prolog flag) . 139, 154
gc_count (statistics key) 150
gc_freed (statistics key) 150
gc_margin (prolog flag) 139, 156
gc_time (statistics key) 151
gc_trace (prolog flag) 139, 154, 155

gcd /2, greatest common

divisor (evaluable) . 123
gen_assoc/3 (assoc) . 386
gen_int/1 (between) . 410
gen_label/3 (trees) . 847
gen_nat/1 (between) . 409
generalization/1 (cumulatives/3 option) . . 447
generalized predicate specification (definition) . . 11
generate-and-test, use with cut 357
generate_debug_info (CHR flag) 417
generate_message/3 (hook, ref page) 1021
generate_message/3 (SU_messages) 215

generate_message_hook/3

(hook, ref page) . 1023
generate_message_hook/3 (user, hook) 215

generate_unique_name (open/4

if_exists value) . 1095
generic breakpoint . 251
geometric_mean/2 (statistics) 737
geost/[2,3,4] (clpfd) . 451
get/1 (debugger condition) 280
get_address/3 (structs) . 742
get_assoc/3 (assoc) . 386
get_atts/2 (Module) . 388
get_byte/[1,2] (built-in) 107
get_byte/[1,2] (built-in, ref page) 1025
get_char/[1,2] (built-in) 107
get_char/[1,2] (built-in, ref page) 1026
get_code/[1,2] (built-in) 107
get_code/[1,2] (built-in, ref page) 1027
get_contents/3 (structs) 742
get_label/3 (trees) . 847
get_mutable/2 (built-in) 132

get_mutable/2 (built-in, ref page) 1028
get_next_assoc/4 (assoc) 386
get_prev_assoc/4 . 386
getrand/1 (random) . 727
gets (Tcl command) . 767
glob/1 (absolute_file_name/3 option) 906
global (Tcl command) . 771
global constraint . 472
global exception handler . 199
global stack . 145
global stack, expansion . 145
global/1 (cumulative/2 option) 446
global/1 (disjoint1/2 option) 448
global/1 (disjoint2/2 option) 449
global/1 (lex_chain/2 option) 438
global/1 (value_precede_chain/3 option) . . 465
global_cardinality/[2,3] (clpfd) 434
global_stack (statistics key) 148
global_stack_free (statistics key) 149
global_stack_used (statistics key) 149
GLOBALSTKSIZE (system property) 226
glue code (definition) . 12
GNU Emacs . 32
goal . 61
goal (definition) . 12
goal, ancestor . 236
goal, blocked . 237
goal, blocked (definition) . 7
goal, skeletal (definition) . 18
goal, unblocked (definition) . 20
goal/1 (debugger condition) 245, 277
goal_expansion/5 (hook, ref page) 1029
goal_expansion/5 (Module, hook) 88
goal_private/1 (debugger condition) . . 265, 278
goal_source_info/3 (built-in) 201, 216

goal_source_info/3

(built-in, ref page) . 1031
goals, enumerating solutions 187, 188
grammar rules, control constructs in 190
grammar rules, predicates for 196, 890
grammar rules, semantics of 192
grammars, context-free . 189
grammars, definite clause . 189
greedy/1 (multi_cumulatives/3 option) 448
green cut . 65
ground (definition) . 12
ground/1 (built-in, ref page) 1033
ground/1 (when/2 condition) 1223
group/[3,4,5] (lists) . 615
GROWTHFACTOR (system property) 226
guarded clause . 373
guarded clause (definition) . 12

Book Index 1421

H
halt/[0,1] (built-in) . 211
halt/[0,1] (built-in, ref page) 1034
handling, error . 285
handling, exception . 285
handling, interrupt . 308
handling, signal . 308
harmonic_mean/2 (statistics) 737
head (definition) . 12
head of a clause . 61
head/2 (lists) . 609
heap (statistics key) . 149
help (CHR debug command) . 417
help (debugger command) . 243
help (top-level command) . 24
hidden module . 163
hidden/1 (module/3 option) 163, 1064
hide/0 (debugger condition) 282
hook (function annotation) 1231
hook (predicate annotation) 878
hook predicate . 83
hook predicate (definition) 12, 63
hook predicates . 890
hookable (predicate annotation) 878
hookable predicate (definition) 12
host_type (prolog flag) 98, 139
host_type (prolog flag, volatile) 1000

I
I/O, C functions for . 1231
id/1 (stream property) . 1185
id3 (table/3 order/1 value) 440
idempotent/1 (fd_global/[3,4] option) 474
identifier, breakpoint . 244
if (Tcl command) . 760
if/1 (conditional directive) 88
if/1 (load_files/2 option) 1053
if/3 (built-in, ref page) 1035
if/3, soft cut . 68
if_exists/1 (open/4 option) 1094

if_nonempty/1

(delete_directory/2 option) 551
if_user/1 (absolute_file_name/3 option) . . 908

ignore (delete_directory/2

if_nonempty option value) 551
ignore_ops/1 (write_term/[2,3] option) . . 1226
IID . 521
illarg/[3,4] (types) . 849
import (definition) . 13
importation . 162, 164
importation, predicates from another module . . 163
imported_from (predicate property) 1109

imported_from/1 (predicate property) 136
importing dynamic predicates 170
importing predicates into modules 163
imports/1 (load_files/2 option) 1053
in/1 (linda_client) . 602
in/2 (clpfd) . 432
in/2 (clpfd:dispatch_global/4 request) . . . 473
in/2 (linda_client) . 602
in_noblock/1 (linda_client) 602
in_set/2 (clpfd) . 432

in_set/2

(clpfd:dispatch_global/4 request) 473
IName . 521
include declaration . 86
include/[3,4,5] (lists) . 615
include/1 (built-in, ref page) 1037
include/1 (declaration) . 86
incr (Tcl command) . 757
increasing efficiency . 353
increasing/0 (lex_chain/2 option) 438
increasing_prefix/[3,4] (lists) 617
indented/1 (write_term/[2,3] option) 1227
indexed term . 403
indexical . 481
indexicals, checking . 481
indexicals, propagating . 481
indexing . 358
indexing (definition) . 13
indexing of dynamic code . 178
indexing, determinacy detection via 359
indomain/1 (clpfd) . 465
inf, minus infinity . 426
inf/[2,4] (clpqr) . 496
infix operators . 45, 48
information, source . 35, 141
informational (prolog flag) 139, 318, 1366
inherit/1 (objects) . 670
init function . 292
init function (definition) . 13
initialization . 87
initialization (definition) . 13
initialization file . 98
initialization of saved states . 93
initialization, C functions for 1235
initialization/1 (built-in, ref page) 1038
initialization/1 (declaration) 87
input . 102
input and output of characters 107
input and output of terms . 102
input and output, streams . 102
input stream, current . 109
input, current . 102
input, term . 103
input/0 (stream property) 1185

1422 SICStus Prolog

input_encoding/1 (stream property) 1186
input_order (labeling/2 option) 466
insert (CHR port) . 416
instance of clause . 74
instance/2 (built-in) . 181
instance/2 (built-in, ref page) 1039
instance_method/1 (objects) 672
instantiation (definition) . 13
instantiation errors . 203
instantiation_error/[0,2] (error class) . . 201
int (CHR type) . 414
integer /1, coercion (evaluable) 122
integer, large (definition) . 13
integer, small (definition) . 18
integer/1 (built-in, ref page) 1040
integer_rounding_function (prolog flag) . . 139
integers, range of . 119
integers, syntax of . 43
interactive stream (definition) 12
interactive/0 (stream property) 1186
interf arg type (argument type) 880
interface, Eclipse . 29
interface, emacs . 32
interface, foreign language 289, 290
internal database . 183
interoperability . 289
interpret (definition) . 13
interpretation of clauses, declarative 74
interpretation of clauses, procedural 74
interpreted (predicate property) 1109
interpreted/0 (predicate property) 135
interrupt character . 5
interrupt handling . 308
intersect/2 (sets) . 730
intersection/[2,3] (sets) 731
inv/1 (debugger condition) 247, 277, 282
invocation box . 233
invocation box (definition) . 13
invoking garbage collection directly 156
is/2 (built-in) . 119
is/2 (built-in, ref page) 1041
is/2 (declaration) . 86
is/2 declaration . 86
is_assoc/1 (assoc) . 387
is_avl/1 (avl) . 395
is_bag/1 (bags) . 398
is_fdset/1 (clpfd) . 476
is_json_term/[1,2] (json) 598
is_list/1 (lists) . 604
is_ordset/1 (ordsets) . 691
is_process/1 (process) . 710
is_queue/1 (queues) . 725
is_set/1 (sets) . 730

ISO (predicate annotation) . 878
iterator (definition) . 13

J
jasper_call/4 (jasper) . 585
jasper_create_global_ref/3 (jasper) 586
jasper_create_local_ref/3 (jasper) 586
jasper_deinitialize/1 (jasper) 585
jasper_delete_global_ref/2 (jasper) 586
jasper_delete_local_ref/2 (jasper) 586
jasper_initialize/[1,2] (jasper) 584
jasper_is_instance_of/3 (jasper) 587
jasper_is_jvm/1 (jasper) 586
jasper_is_object/[1,2] (jasper) 587
jasper_is_same_object/3 (jasper) 587
jasper_new_object/5 (jasper) 585, 594
jasper_null/2 (jasper) . 587
jasper_object_class_name/3 (jasper) 587
Java Virtual Machine . 566
jit_count (statistics key) 151
jit_time (statistics key) 152
JIT compilation . 80, 227
jittable (predicate property) 1109
jitted (predicate property) 1109
JNDI . 712
join (Tcl command) . 760
json_read/[2,3] (json) . 598
json_write/[2,3] (json) . 598
jump to port (debugger command) 240
JVM . 566

K
kernel, runtime (definition) . 17
Key (Tk event type) . 798
keyboard . 5
keyclumped/2 (lists) . 618
keyclumps/2 (lists) . 618
keymerge/3 (samsort) . 729
KeyPress (Tk event type) . 798
KeyRelease (Tk event type) 798
keys, recorded . 184
keys/1 (keysorting/3 option) 438
keys_and_values/3 (lists) 604
keysort/2 (built-in) . 131
keysort/2 (built-in, ref page) 1043
keysorting/[2,3] (clpfd) 437
kurtosis/2 (statistics) . 737

Book Index 1423

L
label (Tk widget) . 772
labeling . 533
labeling event . 526
labeling levels . 526
labeling/1 (clpb) . 420
labeling/2 (clpfd) . 465
large integer (definition) . 13
largest (labeling/2 option) 466
last call optimization . 366
last clause determinacy detection 360
last/2 (lists) . 604
last/3 (lists) . 609
later_bound/2 (clpfd) 465, 467
layout term . 1141
layout term (definition) . 13
layout/1 (read_term/[2,3] option) 1141
leap (debugger command) . 238
leap (definition) . 14
leash/0 (debugger condition) 282
leash/1 (built-in) . 234
leash/1 (built-in, ref page) 1044
leashing (definition) . 14
Leave (Tk event type) . 798
leftmost (labeling/2 option) 466
leftmost (table/3 order/1 value) 440

legacy_char_classification

(prolog flag) . 56, 81, 139

legacy_numbervars/1

(write_term/[2,3] option) 1227
legend . 528
legend_portray/3 (fdbg, hook) 537
length/2 (built-in) . 128
length/2 (built-in, ref page) 1046
length/3 (bags) . 401
length_bound/2 (terms) . 845
level, top . 21
levels, labeling . 526
lex/1 (geost/[2,3,4] option) 451
lex_chain/[1,2] (clpfd) . 438
library . 379
library, searching for a file in 95
library_directory/1 (hook, ref page) 1049
limit/1 (cumulative/2 option) 446
limits, arithmetic . 119
Linda . 598
linda/[0,1] (linda) . 600
linda_client/1 (linda_client) 601
linda_timeout/2 (linda_client) 602
lindex (Tcl command) . 759
line breakpoint . 37
line, end of . 927
line/0 (input method) . 221

line/1 (debugger condition) 249, 279
line/2 (debugger condition) 249, 279
line_count/2 (built-in) 111, 114
line_count/2 (built-in, ref page) 1050
line_position/2 (built-in) 111, 115
line_position/2 (built-in, ref page) 1051
linked foreign resource 291, 297
linked foreign resource (definition) 14
linker, foreign resource . 296
linsert (Tcl command) . 759
list (definition) . 14
list (Tcl command) . 759
list constructor (definition) . 14
list of Type (argument type) 880
list of variables . 528
list processing, predicates for 135, 891
list separator, ’|’ . 46
list syntax . 14
list, association . 386, 395
list, byte (definition) . 8
list, char (definition) . 8
list, code (definition) . 9
list, cyclic . 14
list, empty (definition) . 14
list, partial (definition) . 14
list, proper (definition) . 14
list_queue/2 (queues) . 725
list_to_assoc/2 (assoc) . 387
list_to_avl/2 (avl) . 397
list_to_bag/2 (bags) . 399
list_to_fdset/2 (clpfd) . 477
list_to_ord_set/2 (ordsets) 691
list_to_set/2 (sets) . 731
list_to_tree/2 (trees) . 847
listbox (Tk widget) . 772
listing/[0,1] (built-in) 26, 171
listing/[0,1] (built-in, ref page) 1052
lists, predicates for processing 128
lists, syntax of . 46
llength (Tcl command) . 759
load (--main option value) 1372
load (definition) . 14
load context . 143
load_files/[1,2] (built-in) 94
load_files/[1,2] (built-in, ref page) 1053
load_foreign_resource/1 (built-in) 295

load_foreign_resource/1

(built-in, ref page) . 1056
load_type/1 (load_files/2 option) 1053
loading database . 92
loading module files . 164
loading modules . 163
loading PO files . 94
loading programs . 79

1424 SICStus Prolog

loading programs, predicates for 91, 892
local cut . 67, 1098
local stack . 144
local_stack (statistics key) 148
local_stack_free (statistics key) 150
local_stack_used (statistics key) 149
LOCALSTKSIZE (system property) 226
locks, mutual exclusion . 305
log /1, logarithm (evaluable) 124
log /2, logarithm (evaluable) 124
logic programming . 1
logical loop . 68
login_timeout/1 (odbc_db_open/4 option) . . 687
longest_hole/2 (geost/[2,3,4] option) 451
loop, do (definition) . 10
loop, logical . 68
lrange (Tcl command) . 759
lreplace (Tcl command) . 759
lsearch (Tcl command) . 759
lsort (Tcl command) . 760

M
macro (function annotation) 1231
macro expansion . 1029
main thread . 308
make_directory/1 (file_systems) 551
make_sub_bag/2 (bags) . 401
map_assoc/2 (assoc) . 387
map_assoc/3 (assoc) . 387
map_list_queue/3 (queues) 726
map_product/5 (lists) . 612
map_queue/[2,3] (queues) 726
map_queue_list/3 (queues) 726
map_tree/3 (trees) . 847
mapbag/2 (bags) . 399
mapbag/3 (bags) . 399
maplist/[2,3,4] (lists) . 611
margin/3 (disjoint1/2 option) 449
margin/4 (disjoint2/2 option) 450
mark-paragraph (emacs command) 36
max (all_different/2 on/1 value) 436
max (all_distinct/2 on/1 value) 436
max (labeling/2 option) . 466
max /2, maximum value (evaluable) 123
max/1 (fd_global/[3,4] option) 474
max/2 (statistics) . 736
max_arity (prolog flag) . 139
max_assoc/3 (assoc) . 387
max_cliques/2 (ugraphs) . 853
max_depth/1 (write_term/[2,3] option) . . . 1227
max_integer (prolog flag) 139
max_inv/1 (debugger condition) 263, 281
max_member/[2,3] (lists) 616

max_path/5 (ugraphs) . 852
max_path/5 (wgraphs) . 856
max_regret (labeling/2 option) 467
max_tagged_integer (prolog flag) 18, 140
maximize/[2,3] (clpfd) . 465
maximize/1 (clpqr) . 497
maximize/1 (labeling/2 option) 468
maximum/2 (clpfd) . 432
maximum_arg/2 (clpfd) . 432
maybe/[0,1,2] (random) . 727
mean/2 (statistics) . 737
median (labeling/2 option) 467
median/2 (statistics) . 738
member/2 (built-in) . 128
member/2 (built-in, ref page) 1058
member/3 (bags) . 400
memberchk/2 (built-in) . 128
memberchk/2 (built-in, ref page) 1059
memberchk/3 (bags) . 400
memory (statistics key) . 149
Memory management, C functions for 1235
memory statistics . 146
memory, general description 144
memory, predicates for 161, 894
memory, reclamation . 902
memory_buckets (statistics key) 151
memory_culprit (statistics key) 151
memory_free (statistics key) 149
memory_used (statistics key) 149
menu (Tk widget) . 772
menubutton (Tk widget) . 772
merge/[3,4] (samsort) . 729
message (Tk widget) . 773
message/4 (objects) . 673
message_hook/3 (hook, ref page) 1060
message_hook/3 (user, hook) 216
messages and queries, predicates for 223, 894
messages, debugging . 236
meta-call . 77
meta-call (definition) . 14
meta-logical (definition) . 126
meta-logical predicate (definition) 14
meta-logical predicates . 126
meta-predicate (definition) . 14
meta-predicate declaration . 85
meta-predicates (definition) 879
meta_predicate (predicate property) 1109
meta predicate declaration . 171
meta_predicate/1 (built-in, ref page) 1061
meta_predicate/1 (declaration) 85, 171
meta_predicate/1 (predicate property) 136
method/1 (table/3 option) 440
method/3 (Java method identifier) 585
middle (labeling/2 option) 467

Book Index 1425

min (all_different/2 on/1 value) 436
min (all_distinct/2 on/1 value) 436
min (labeling/2 option) . 466
min /2, minimum value (evaluable) 123
min/1 (fd_global/[3,4] option) 474
min/2 (statistics) . 736
min_assoc/3 (assoc) . 387
min_integer (prolog flag) 140
min_max/3 (statistics) . 737
min_member/[2,3] (lists) 616
min_path/5 (ugraphs) . 852
min_path/5 (wgraphs) . 856
min_paths/3 (ugraphs) . 852
min_paths/3 (wgraphs) . 856
min_tagged_integer (prolog flag) 18, 140
min_tree/3 (ugraphs) . 853
min_tree/3 (wgraphs) . 857
minimize/[2,3] (clpfd) . 465
minimize/1 (clpqr) . 497
minimize/1 (labeling/2 option) 468
minimum/2 (clpfd) . 431
minimum_arg/2 (clpfd) . 432
minmax (all_different/2 on/1 value) 436
minmax (all_distinct/2 on/1 value) 436

minmax

(global_cardinality/3 on/1 value) 434
minmax/1 (fd_global/[3,4] option) 474
minus infinity, inf . 426
mixing C/C++ and Prolog . 289
ml_standard_deviation/2 (statistics) 738
ml_variance/2 (statistics) 737

mod /2, integer floored

remainder (evaluable) . 122
mode annotations . 877
mode declaration . 86
mode declarations . 173
mode spec . 5
mode/1 (built-in, ref page) 1063
mode/1 (debugger condition) 253, 280, 281
mode/1 (declaration) . 86
mode/1 (stream property) 1185
mode/2 (statistics) . 737
modification, database . 176
modularity, procedural . 161
module (definition) . 14, 161
module (load context key) 143
module declaration . 85, 164
module file (definition) . 15
module files . 162
module files, converting into 163
module files, loading . 163, 164
module name expansion 5, 85, 171
module name expansion (definition) 15

module name expansion, exceptions 879
module prefixes on clauses . 167
module, declaration . 162
module, hidden . 163
module, source . 165
module, source (definition) . 18
module, type-in . 142, 165
module, type-in (definition) . 20
module/[2,3] (built-in, ref page) 1064
module/[2,3] (declaration) 85, 164
module/1 (debugger condition) 277
modules, currently loaded 168, 169
modules, debugging . 168
modules, defining . 162
modules, dynamic creation of 167
modules, exporting predicates from 162
modules, importing predicates into 163
modules, loading . 163
modules, name clashes . 168
modules, predicates defined in 169
modules, predicates exported from 169
modules, predicates for 176, 895
modules, predicates imported into 170
modules, source . 171
modules, visibility rules . 164
monitoring garbage collection 154
most general unifier . 76
most_constrained (labeling/2 option) 466
Motion (Tk event type) . 798
msb /1, most significant bit (evaluable) . . 123
multi_cumulative/[2,3] (clpfd) 448
multifile (predicate property) 1109
multifile declaration . 83
multifile predicate (definition) 15
multifile/0 (predicate property) 136
multifile/1 (built-in, ref page) 1066
multifile/1 (declaration) 83
multiset . 398
must_be/4 (types) . 849
mutable . 522
mutable term . 132
mutable term (definition) . 15
mutable/1 (built-in) . 132
mutable/1 (built-in, ref page) 1068
mutex . 305
mutual exclusion locks . 305
mzn-sicstus(1) (command line tool) 1368
mzn_load_file/[2,3] (zinc) 872
mzn_run_file/[1,2] (zinc) 870
mzn_run_model/[1,2] (zinc) 870
mzn_to_fzn/[2,3] (zinc) . 873

1426 SICStus Prolog

N
name auto-generation . 528
name clash . 168
name clash (definition) . 15
name expansion, module . 171
name variable (debugger command) 532
name, of a functor . 45
name/1 (tk_new/2 option) 807
name/2 (built-in) . 128
name/2 (built-in, ref page) 1069
names of terms . 527, 530
natural (CHR type) . 414
neighbors/3 (ugraphs) . 851
neighbors/3 (wgraphs) . 855
neighbours/3 (ugraphs) . 851
neighbours/3 (wgraphs) . 855
nested execution . 27
network path . 100
new/[2,3] (structs) . 742
nextto/3 (lists) . 604
nl/[0,1] (built-in) . 108
nl/[0,1] (built-in, ref page) 1071
noaux (table/3 method/1 value) 440
nodebug (CHR debug command) 417
nodebug (debugger command) 241
nodebug/0 (built-in) . 235
nodebug/0 (built-in, ref page) 1072
nodebug_message/0 (objects) 674
non-backtraced tests . 277
nondet/0 (plunit option) 695
nondeterminacy, declaring . 362
nondeterminacy, finding . 361
nondeterminate (definition) . 15
none (--main option value) 1372
none (absolute_file_name/3 access) 907
nonmember/2 (built-in) . 128
nonmember/2 (built-in, ref page) 1073
nonvar/1 (built-in, ref page) 1074
nonvar/1 (when/2 condition) 1223
normalize/2 (statistics) 738
nospy this (debugger command) 241
nospy/1 (built-in) . 236
nospy/1 (built-in, ref page) 1075
nospyall/0 (built-in) . 236
nospyall/0 (built-in, ref page) 1076
notation . 5, 53
notrace/0 (built-in) . 235
notrace/0 (built-in, ref page) 1082
now/1 (system) . 748
nozip/0 (built-in) . 235
nozip/0 (built-in, ref page) 1083
nth0/[3,4] (lists) . 605
nth1/[3,4] (lists) . 605

null streams . 111
null_foreign_term/2 (structs) 743
number (CHR type) . 414
number/1 (built-in, ref page) 1084
number_chars/2 (built-in) 128
number_chars/2 (built-in, ref page) 1085
number_codes/2 (built-in) 128
number_codes/2 (built-in, ref page) 1086
numbers, comparison of . 120
numbervars . 853
numbervars/1 (varnumbers) 854
numbervars/1 (write_term/[2,3] option) . . 1226
numbervars/3 (built-in) . 129
numbervars/3 (built-in, ref page) 1088
numlist/[2,3,5] (between) 410
nvalue/2 (clpfd) . 436

O
Object . 521
object (absolute_file_name/3 file type) . . . 906
object, stream . 109
object, stream position . 115
objects (library package) 619
occurrence (labeling/2 option) 466
occurrences_of_term/3 (terms) 845
occurrences_of_var/3 (terms) 845
occurs check . 78
occurs check (definition) . 15
odbc_db_open/3 (odbc) . 687
odbc_db_open/4 (odbc) . 687
odbc_db_open/5 (odbc) . 687
odbc_env_open/1 (odbc) . 687
odbc_list_DSN/2 (odbc) . 688
off (debug flag value) . 137
off (debugging flag value) 137, 982
off (fileerrors flag value) 206
off (gc_trace flag value) 139
off (profiling flag value) 138
off (redefine_warnings flag value) 141
off/0 (debugger mode control) 284
on (debug flag value) . 137
on (fileerrors flag value) 206
on (profiling flag value) 138
on (redefine_warnings flag value) 141
on/1 (all_different/2 option) 435
on/1 (all_distinct/2 option) 435
on/1 (assignment/3 option) 436
on/1 (global_cardinality/3 option) 434
on_exception/3 (built-in) 210
on_exception/3 (built-in, ref page) 1089
once/1 . 67
once/1 (built-in, ref page) 1090

Book Index 1427

one of List (argument type) 880
one-char atom (definition) . 15
one_longer/2 (lists) . 605
op/1 (lex_chain/2 option) 438
op/3 (built-in) . 50
op/3 (built-in, ref page) 1091
open (Tcl command) . 766
open/[3,4] (built-in) 109, 110
open/[3,4] (built-in, ref page) 1092
open_codes_stream/2 (codesio) 518
open_null_stream/1 (built-in) 111

open_null_stream/1

(built-in, ref page) . 1097
opening a file . 110
operator (definition) . 15
operator declaration . 83
operators . 1091
operators, associativity of . 48
operators, built-in . 49, 51
operators, built-in predicates for handling 50
operators, current . 50
operators, declaring . 50
operators, infix . 45, 48
operators, list of . 51
operators, postfix . 45, 48
operators, precedence of . 48
operators, prefix . 45, 48
operators, reference page convention 879
operators, syntax restrictions on 50
operators, type of . 48

optimality (labeling/2

time_out/2 option value) 469
optimise/1 (zinc option) 869
optimization, last call . 366
optimize (CHR flag) . 417
optimize (CHR option) . 413
optimize/1 (zinc option) 869
or . 66
ord_add_element/3 (ordsets) 691
ord_del_element/3 (ordsets) 691
ord_disjoint/2 (ordsets) 691
ord_disjoint_union/3 (ordsets) 692
ord_intersect/2 (ordsets) 691
ord_intersection/[2,3,4] (ordsets) 691
ord_list_to_assoc/2 (assoc) 387
ord_list_to_avl/2 (avl) . 397
ord_member/2 (ordsets) . 692
ord_nonmember/2 (ordsets) 692
ord_seteq/2 (ordsets) . 692
ord_setproduct/3 (ordsets) 692
ord_subset/2 (ordsets) . 692
ord_subtract/3 (ordsets) 692
ord_symdiff/3 (ordsets) . 692

ord_union/[2,3,4] (ordsets) 692
order (argument type) . 880
order on terms, standard . 130
order/1 (table/3 option) 440
ordered/[1,2] (lists) . 616
ordering/1 (clpqr) . 498, 508
ordset_order/3 (ordsets) 693
os_data (prolog flag) . 140
otherwise/0 (built-in, ref page) 1099
out (debugger command) . 239
out/1 (linda_client) . 602
output . 102
output stream, current . 109
output, current . 102
output, flushing . 114
output, term . 104
output/0 (stream property) 1185
output/1 (zinc option) 865, 868, 869
output_encoding/1 (stream property) 1186
overflow (FD flag) . 475
overlap/1 (geost/[2,3,4] option) 452
ozn_file/1 (zinc option) 865, 869

P
pair (argument type) . 880
pair (definition) . 16
pairfrom/4 (sets) . 730
pallet_loading/1 (geost/[2,3,4] option) . . 452
param /1, (iterator) . 73
param/1 (iterator) . 987
parameter, accumulating . 366
parameters/1 (zinc option) 868
parconflict/1 (geost/[2,3,4] option) 452
parent (definition) . 16

parent_clause/1 (debugger

condition) . 250, 279

parent_clause/2 (debugger

condition) . 250, 279

parent_clause/3 (debugger

condition) . 250, 279
parent_inv/1 (debugger condition) 264, 278
parent_pred/1 (debugger condition) . . . 249, 279
parent_pred/2 (debugger condition) . . . 249, 279
parsing phrases . 1103
partial list (definition) . 14
partition/5 (lists) . 615
passive/1 (CHR pragma) . 413
password/1 (odbc_db_open/4 option) 687
path root . 99
path, absolute . 99, 100
path, case-normalized . 100
path, network . 100

1428 SICStus Prolog

path, UNC . 100
path/3 (ugraphs) . 853
path/3 (wgraphs) . 856
peek_byte/[1,2] (built-in) 107
peek_byte/[1,2] (built-in, ref page) 1100
peek_char/[1,2] (built-in) 107
peek_char/[1,2] (built-in, ref page) 1101
peek_code/[1,2] (built-in) 107
peek_code/[1,2] (built-in, ref page) 1102
perm/2 (lists) . 605
perm2/4 (lists) . 606
permission errors . 206
permission_error/[3,5] (error class) 202
permutation/1 (keysorting/3 option) 438
permutation/2 (lists) . 605
phrase/[2,3] (built-in) . 191
phrase/[2,3] (built-in, ref page) 1103
pi /0, pi (evaluable) . 125
placement of cut . 357
plain spypoint . 235, 243
platform_data (prolog flag) 140
pltrace-break (emacs command) 37
plus infinity, sup . 426
PO file (definition) . 16
PO files . 92
PO files, loading . 94
PO files, saving . 94
point, advice (definition) . 7
pointer_object/2 (objects) 675
polymorphism/1 (geost/[2,3,4] option) 452

population_standard_

deviation/2 (statistics) 738
population_variance/2 (statistics) 737
port (definition) . 16
port debugger . 232
port, debugger . 279
port/1 (debugger condition) 250, 279
port/1 (start/1 option) . 715
portable (quoted_charset flag value) 138
portray/1 (hook, ref page) 1105
portray/1 (user, hook) 106, 517
portray_assoc/1 (assoc) . 387
portray_avl/1 (avl) . 396
portray_bag/1 (bags) . 398
portray_clause/[1,2] (built-in) 106

portray_clause/[1,2]

(built-in, ref page) . 1106
portray_message/2 (hook, ref page) 1108
portray_message/2 (user, hook) 215
portray_queue/1 (queues) 724
portrayed/1 (write_term/[2,3] option) . . . 1226
position in a stream . 115
position, stream . 114

position, stream (definition) . 19
position/1 (stream property) 1185
post/1 (zinc option) . 868
postfix operators . 45, 48
posting constraints . 427
power_set/2 (sets) . 731
precedence (definition) . 16
precedence, of operators . 48
precedences/1 (cumulative/2 option) 446

precedences/1

(multi_cumulatives/3 option) 448
pred/1 (debugger condition) 243, 277
pred spec (argument type) . 880
pred spec forest (argument type) 880
pred spec tree (argument type) 880
predicate . 61
predicate (definition) . 16
predicate declaration . 83
predicate specification (definition) 16

predicate specification,
generalized (definition) . 11

predicate, built-in (definition) 8
predicate, dynamic (definition) 10
predicate, FD . 465, 483
predicate, foreign (definition) 11
predicate, hook . 83
predicate, hook (definition) . 12
predicate, hookable (definition) 12
predicate, meta-logical (definition) 14
predicate, multifile (definition) 15
predicate, public . 162
predicate, static (definition) . 18
predicate, steadfast (definition) 18
predicate, undefined 26, 142, 1215
predicate_property/2 (built-in) 135, 170

predicate_property/2

(built-in, ref page) . 1109
predicates defined in modules 169
predicates exported from modules 169
predicates for all solutions 189, 881
predicates for arithmetic 125, 881
predicates for character I/O 115, 882
predicates for control . 78, 883
predicates for database 185, 885
predicates for debugging 285, 886
predicates for execution state 211, 887
predicates for file and stream handling 116, 888
predicates for filename manipulation 101, 888
predicates for foreign interface 889
predicates for grammar rules 196, 890
predicates for list processing 135, 891
predicates for loading programs 91, 892
predicates for looking at terms 126

Book Index 1429

predicates for memory 161, 894
predicates for messages and queries 223, 894
predicates for modules 176, 895
predicates for processing lists 128
predicates for program state 143, 896
predicates for saving programs 95, 896
predicates for term comparison 133, 897
predicates for term handling 133, 897
predicates for term I/O 118, 899
predicates for type tests 126, 132, 900
predicates imported into modules 170
predicates, annotations . 878
predicates, assertion and retraction 176
predicates, breakpoint handling 272
predicates, debugging . 233
predicates, hook . 890
predicates, importing dynamic 170
predicates, meta-logical . 126
predicates, private . 162
predicates, public . 162
predicates, read . 103
predicates, write . 104
prefix operators . 45, 48
prefix/2 (lists) . 609
prefix_length/3 (lists) . 608
preinit (function annotation) 1231
prelinked foreign resource (definition) 16
prelinked resource . 291
principal functor . 127
principal functor (definition) 45
print (debugger command) 240
print/[1,2] (built-in) . 106
print/[1,2] (built-in, ref page) 1111
print/0 (debugger show control) 283
print_coverage/[0,1] (built-in) 355

print_coverage/[0,1]

(built-in, ref page) . 1112
print_message/2 (built-in) 215
print_message/2 (built-in, ref page) 1114
print_message_lines/3 (built-in) 216

print_message_lines/3

(built-in, ref page) . 1116
print_profile/[0,1] (built-in) 354

print_profile/[0,1]

(built-in, ref page) . 1117
printing clauses . 106
printing, formatted . 108
priority/1 (write_term/[2,3] option) 1227
private predicates . 162
private/1 (debugger condition) 265, 281
proc (Tcl command) . 768
procedural modularity . 161
procedural semantics . 74

procedure . 63
procedure (definition) . 16
procedure box . 231
procedure box (definition) . 16
procedure call . 61, 76
procedure definition . 76
procedures, dynamic and static 177
procedures, redefining during execution 82
procedures, removing properties 902
procedures, self-modifying 176, 181
proceed (redefine_warnings flag value) 141
proceed/0 (debugger command control) 283
proceed/2 (debugger command control) 283
process communication 598, 733
process_create/[2,3] (process) 707
process_id/1 (process) . 710
process_id/2 (process) . 710
process_kill/[1,2] (process) 710
process_release/1 (process) 710
process_wait/[2,3] (process) 709
processing, breakpoint . 275
profile_data/1 (built-in) 354
profile_data/1 (built-in, ref page) 1118
profile_reset/0 (built-in) 354, 355
profile_reset/0 (built-in, ref page) 1119
profiling . 555
profiling (definition) . 16
profiling (prolog flag) 138, 318
profiling, execution . 353
ProgID . 521
program (definition) . 16
program (statistics key) 149
program space . 145
program state . 28
program state, predicates for 143, 896
program, loading . 79
programming in logic . 1
project_attributes/2 (Module) 390
projecting_assert/1 (clpqr) 499
prolog (--main option value) 1372
prolog (quoted_charset flag value) 138
prolog-backward-list (emacs command) 36

prolog-beginning-of-clause

(emacs command) . 36

prolog-beginning-of-predicate

(emacs command) . 36
prolog-debug-on (emacs command) 36
prolog-end-of-clause (emacs command) 36
prolog-end-of-predicate (emacs command) . . . 36
prolog-forward-list (emacs command) 36
prolog-help-on-predicate (emacs command) . . 37

prolog-insert-next-clause

(emacs command) . 37

1430 SICStus Prolog

prolog-insert-predicate-template

(emacs command) . 37
prolog-insert-predspec (emacs command) 37
prolog-mark-clause (emacs command) 36
prolog-mark-predicate (emacs command) 36
prolog-trace-on (emacs command) 36

prolog-variables-to-anonymous

(emacs command) . 37
prolog-zip-on (emacs command) 36
prolog_flag/[2,3] (built-in) 103
prolog_flag/[2,3] (built-in, ref page) . . . 1120

prolog_load_context/2

(built-in, ref page) . 1122
PROLOGINCSIZE (system property) 227
PROLOGINITSIZE (system property) 146, 227
PROLOGKEEPSIZE (system property) 146, 227
PROLOGMAXSIZE (system property) 227
prompt, changing . 104
prompt/2 (built-in) . 104
prompt/2 (built-in, ref page) 1123
propagating indexicals . 481
proper list (definition) . 14
proper_length/2 (lists) . 606
proper_prefix/2 (lists) . 610
proper_prefix_length/3 (lists) 608
proper_segment/2 (lists) 610
proper_suffix/2 (lists) . 610
proper_suffix_length/3 (lists) 608
property, stream . 1185
property, stream (definition) 19
prototype, function . 5
prune/1 (cumulatives/3 option) 447
prunings (fd_statistics/2 option) 472
prunings (zinc option value) 869
public declaration . 86
public predicate . 162
public predicates . 162
public/1 (built-in, ref page) 1124
public/1 (declaration) . 86
put_assoc/4 (assoc) . 388
put_atts/2 (Module) . 389
put_byte/[1,2] (built-in) 108
put_byte/[1,2] (built-in, ref page) 1125
put_char/[1,2] (built-in) 108
put_char/[1,2] (built-in, ref page) 1126
put_code/[1,2] (built-in) 108
put_code/[1,2] (built-in, ref page) 1127
put_contents/3 (structs) 742
put_label/[4,5] (trees) . 847
puts (Tcl command) . 767

Q
qskip/1 (debugger mode control) 284
quantifier, existential . 188
quasi-skip (debugger command) 239
query . 21, 23, 62
query (definition) . 17
query, floundered (definition) 11
query_abbreviation/3 (hook, ref page) 1128
query_abbreviation/3 (SU_messages) 222
query_class/5 (hook, ref page) 1129
query_class/5 (SU_messages) 222
query_class_hook/5 (hook, ref page) 1130
query_class_hook/5 (user, hook) 222
query_hook/6 (hook, ref page) 1131
query_hook/6 (user, hook) 222
query_input/3 (hook, ref page) 1132
query_input/3 (SU_messages) 222
query_input_hook/3 (hook, ref page) 1133
query_input_hook/3 (user, hook) 222
query_map/4 (hook, ref page) 1134
query_map/4 (SU_messages) 222
query_map_hook/4 (hook, ref page) 1135
query_map_hook/4 (user, hook) 222
queue_append/3 (queues) . 725
queue_cons/3 (queues) . 725
queue_head/2 (queues) . 725
queue_last/[2,3] (queues) 725
queue_length/2 (queues) . 726
queue_list/2 (queues) . 726
queue_member/2 (queues) . 726
queue_memberchk/2 (queues) 726
queue_tail/2 (queues) . 725
quiet (syntax_errors flag value) 142, 208
quote characters, in atoms . 44
quoted/1 (write_term/[2,3] option) 1226
quoted/1, write_term/[2,3] option 105
quoted_charset (prolog flag) 138, 1227

quoted_charset/1

(write_term/[2,3] option) 1227

R
radiobutton (Tk widget) . 773
raise exception (debugger command) 242
raise/1 (debugger command control) 284
raise_exception/1 (built-in) 210
raise_exception/1 (built-in, ref page) . . . 1136
random access to streams . 115
random/[1,3] (random) . 727
random_member/2 (random) 728
random_numlist/4 (random) 728
random_perm2/4 (random) . 728
random_permutation/2 (random) 728

Book Index 1431

random_select/3 (random) 728
random_subseq/3 (random) 728
random_ugraph/3 (ugraphs) 853
random_wgraph/4 (wgraphs) 857
range of floats . 119
range of integers . 119
range/2 (statistics) . 737
range_to_fdset/2 (clpfd) 477
raw/1 (odbc_db_open/4 option) 687
rd/[1,2] (linda_client) . 602
rd_noblock/1 (linda_client) 602
reachable/3 (ugraphs) . 853
reachable/3 (wgraphs) . 857
read (absolute_file_name/3 access) 907
read (open/[3,4] mode) . 1092
read (Tcl command) . 767
read predicates . 103
read/[1,2] (built-in) . 103
read/[1,2] (built-in, ref page) 1137
read_from_codes/2 (codesio) 518
read_line/[1,2] (built-in, ref page) 1139
read_record/[1,2] (csv) . 520
read_record_from_codes/[2,3] (csv) 520
read_records/[1,2] (csv) 520
read_term/[2,3] (built-in) 103
read_term/[2,3] (built-in, ref page) 1140
read_term_from_codes/3 (codesio) 518
reading a goal from a string 310
reading in . 22
reclamation, space . 146
reconsult . 285
reconsult/1 (built-in, ref page) 1143
recorda/3 (built-in) . 183
recorda/3 (built-in, ref page) 1144
recorded keys . 184
recorded/3 (built-in, ref page) 1145
recordz/3 (built-in) . 184
recordz/3 (built-in, ref page) 1146
recursion (definition) . 17
red cut . 65
redefine_warnings (prolog flag) . . . 81, 141, 318
redefining procedures, during execution 82
redo (CHR port) . 416
redo (leashing mode) . 234
redo/0 (debugger port value) 279
redo/1 (debugger command control) 284
reduce/2 (ugraphs) . 853
reduce/2 (wgraphs) . 856
reexit/1 (debugger command control) 284
reference page conventions . 877
reference, term . 289
regexp (Tcl command) . 764
region (definition) . 17

register_event_listener/[2,3]

(prologbeans) . 717
register_query/[2,3] (prologbeans) 716
regsub (Tcl command) . 764
reification . 430
reject (redefine_warnings flag value) 141
reject (top-level command) 23
relation/3 (clpfd) . 439

relative_to/1

(absolute_file_name/3 option) 908

rem /2, integer truncated

remainder (evaluable) . 121
rem_add_link/4 (rem) . 729
rem_create/2 (rem) . 728
rem_equivalent/3 (rem) . 728
rem_head/3 (random) . 728
remove (CHR port) . 416
remove this (debugger command) 241

remove_attribute_prefixes/1

(xml_parse/3 option) . 858
remove_breakpoints/1 (built-in) 261, 274

remove_breakpoints/1

(built-in, ref page) . 1147
remove_dups/2 (lists) . 606
rename_directory/2 (file_systems) 551
rename_file/2 (file_systems) 550
repeat/0 (built-in, ref page) 1148
repeat/1 (between) . 410
reposition/1 (open/4 option) 1092
reposition/1 (stream property) 1186
representation errors . 205

representation_error/[1,3]

(error class) . 202
reset (open/4 eof_action value) 1093
reset printdepth (debugger command) 242
reset printdepth (top-level command) 23
reset subterm (debugger command) 243
reset subterm (top-level command) 24
resource errors . 208
resource, colored . 447
resource, cumulative . 447
resource, data . 1374
resource, dynamic . 291
resource, foreign . 291
resource, foreign (definition) . 11
resource, linked foreign (definition) 14
resource, prelinked . 291
resource, static . 291
resource_error/[1,2] (error class) 203
rest of list, ’|’ . 46
restart (labeling/2 option) 469
restore (--main option value) 1372
restore/1 (built-in) . 28, 93

1432 SICStus Prolog

restore/1 (built-in, ref page) 1150
restoring . 28
restrictions, operator syntax . 50
resumptions (fd_statistics/2 option) 472
retract/1 (built-in) . 179
retract/1 (built-in, ref page) 1151
retractall/1 (built-in) . 179
retractall/1 (built-in, ref page) 1153
retry (debugger command) 239
retry/1 (debugger command control) 284
return (Tcl command) . 769
rev/2 (lists) . 606
reverse/2 (lists) . 606
rewriting, syntactic . 99
rotate_list/[2,3] (lists) 609
round /1, (evaluable) . 123
rule (definition) . 17
rule, computation . 76
rule, search . 76
run-prolog (emacs command) 37
run_tests/[0,1,2] (plunit) 699
running . 21
runtime (statistics key) 148
runtime (zinc option value) 869
runtime kernel (definition) . 17
runtime system . 5, 317
runtime system (definition) . 17
runtime system, extended (definition) 11
runtime_entry/1 (user, hook) 1372

S
same_functor/[2,3,4] (terms) 846
same_length/[2,3] (lists) 606
samkeysort/2 (samsort) . 729

sample_standard_deviation/2

(statistics) . 738
sample_variance/2 (statistics) 738
samsort/[2,3] (samsort) . 729
sat/1 (clpb) . 420
satisfy (labeling/2 option) 468
save_files/2 (built-in) 28, 94
save_files/2 (built-in, ref page) 1154
save_modules/2 (built-in) 28, 94
save_modules/2 (built-in, ref page) 1155
save_predicates/2 (built-in) 28, 94
save_predicates/2 (built-in, ref page) . . . 1156
save_program/[1,2] (built-in) 28, 93

save_program/[1,2]

(built-in, ref page) . 1157
saved state . 28, 93
saved state (definition) . 17
saved states, initialization of 93

saved_state

(absolute_file_name/3 file type) 906
saving . 28
saving database . 92
saving PO files . 94
saving programs, predicates for 95, 896
scalar_product/[4,5] (clpfd) 431
scalar_product/4 (case/4 option) 441
scalar_product_reif/[5,6] (clpfd) 431
scale (Tk widget) . 773
scan (Tcl command) . 763
scanlist/[4,5,6] (lists) 612
scollbar (Tk widget) . 773
scope of variables . 62
search (absolute_file_name/3 access) 907
search rule . 76
search/1 (zinc option) 865, 868

searchable

(absolute_file_name/3 access) 907
searching, for a file in a library 95
seconds since the Epoch . 553
see/1 (built-in) . 111
see/1 (built-in, ref page) 1159
seeing/1 (built-in) . 112
seeing/1 (built-in, ref page) 1160
seek/4 (built-in) . 115
seek/4 (built-in, ref page) 1162
seen/0 (built-in) . 114
seen/0 (built-in, ref page) 1164
segment/2 (lists) . 610
select/3 (lists) . 603
select/4 (lists) . 606
select_max/[3,4] (lists) 617
select_min/[3,4] (lists) 617
selectchk/3 (lists) . 603
selectchk/4 (lists) . 606
selector . 528
selector, subterm . 24, 250
selector, subterm (definition) 19
self-modifying procedures 176, 181
semantics . 61
semantics (definition) . 17
semantics of dynamic code . 176
semantics of grammar rules 192
semantics, declarative . 74
semantics, procedural . 74
sentence . 61
sentence (definition) . 17
sentences . 52
seq_precede_chain/[1,2] (clpfd) 464
sequence, escape . 60
sequence, escape (definition) 11
servlet . 712
session_gc_timeout/1 (start/1 option) 715

Book Index 1433

session_get/4 (prologbeans) 716
session_put/3 (prologbeans) 717
session_timeout/1 (start/1 option) 715
set (Tcl command) . 757
set printdepth (debugger command) 242
set printdepth (top-level command) 23
set subterm (debugger command) 243
set subterm (top-level command) 24
set, character . 56
set, FD . 476
set/1 (plunit option) . 697
set_input/1 (built-in) . 110
set_input/1 (built-in, ref page) 1165
set_module/1 (built-in) . 166
set_module/1 (built-in, ref page) 1166
set_order/3 (sets) . 730
set_output/1 (built-in) . 110
set_output/1 (built-in, ref page) 1167
set_prolog_flag/2 (built-in, ref page) . . . 1168
set_stream_position/2 (built-in) 115

set_stream_position/2

(built-in, ref page) . 1169
seteq/2 (sets) . 730
setof/3 (built-in) . 187
setof/3 (built-in, ref page) 1170
setproduct/3 (sets) . 732
setrand/1 (random) . 727
sets, collecting solutions to a goal 186
setting a breakpoint . 37
setup/1 (plunit option) . 695
shorter_list/2 (lists) . 607
show/1 (debugger condition) 253, 280, 281
shutdown/[0,1] (prologbeans) 715
shutdown_server/0 (linda_client) 601
SICStus Prolog IDE (SPIDER) 29
sicstus(1) (command line tool) 1366
sicstus-bindings-on (emacs command) 36

sicstus-bindings-print-depth

(emacs command) . 36
sicstus-coverage-on (emacs command) 36
side effect (definition) . 17
side effects, in repeat loops 1148
SIG_DFL (C macro) . 1347
SIG_ERR (C macro) . 1347
SIG_IGN (C macro) . 1347
sigaction . 309
SIGBREAK . 309
SIGCHLD . 309
SIGCLD . 309
SIGINT . 309
sign /1, (evaluable) . 123
signal . 309
signal handling . 308

Signal handling, C functions for 1236
SIGUSR1 . 309
SIGUSR2 . 309
SIGVTALRM . 309
silent/0 (debugger show control) 283
simple term (definition) . 17
simple/1 (built-in, ref page) 1172
simple pred spec (argument type) 880
SimpleCallSpec . 522
sin /1, (evaluable) . 123

single_var_warnings (prolog flag) 81, 141,
318

singleton_queue/2 (queues) 724
singletons/1 (read_term/[2,3] option) . . . 1140
sinh /1, (evaluable) . 123
site, coverage . 354
size_bound/2 (terms) . 845
skeletal goal (definition) . 18
skewness/2 (statistics) . 737
skip (CHR debug command) . 416
skip (debugger command) . 239
skip/1 (debugger mode control) 284
skip_byte/[1,2] (built-in) 107
skip_byte/[1,2] (built-in, ref page) 1173
skip_char/[1,2] (built-in) 107
skip_char/[1,2] (built-in, ref page) 1174
skip_code/[1,2] (built-in) 107
skip_code/[1,2] (built-in, ref page) 1175
skip_line/[0,1] (built-in) 107
skip_line/[0,1] (built-in, ref page) 1176
sleep/1 (system) . 748
small integer (definition) . 18
smallest (labeling/2 option) 466
smt/1 (clpfd) . 433
socket address . 733
socket_client_open/3 (sockets) 734
socket_select/7 (sockets) 736
socket_server_accept/4 (sockets) 735
socket_server_close/1 (sockets) 735
socket_server_open/[2,3] (sockets) 735
sockets . 733
soft cut . 68
solutions (zinc option value) 869

solutions/1

(absolute_file_name/3 option) 908
solutions/1 (zinc option) 865, 868
solve/2 (clpfd) . 470
solvetime (zinc option value) 869
some/[2,3,4] (lists) . 613
some_queue/[2,3] (queues) 726
somebag/2 (bags) . 399
somechk/[2,3,4] (lists) . 613
somechk_queue/[2,3] (queues) 726

1434 SICStus Prolog

somechkbag/2 (bags) . 399
sort/2 (built-in) . 131
sort/2 (built-in, ref page) 1177
sorting/3 (clpfd) . 437
source (absolute_file_name/3 file type) . . . 905
source (load context key) 143
source (Tcl command) . 771
source code (definition) . 18
source information . 35, 141
source module . 165, 171
source module (definition) . 18
source/1 (fd_global/[3,4] option) 474
source_file/[1,2] (built-in) 136
source_file/[1,2] (built-in, ref page) . . . 1178
source_info (prolog flag) 35, 141, 249, 340
SP_ALLOW_CHDIR (system property) 226
SP_ALLOW_DEVSYS (system property) 342
SP_APP_DIR (system property) 225
SP_APP_PATH (system property) 225

SP_atom (C type) . 7,
18, 301, 1238, 1239, 1243, 1244, 1271, 1277, 1311,

1315, 1322, 1339, 1350, 1355
SP atom (definition) . 18
SP_atom_from_string() (C function) . . 301, 1238
SP_atom_length() (C function) 301, 1239
SP_ATTACH_SPIDER (system property) 342
SP_calloc() (C function) 304, 1240
SP_close_query() (C function) 1241
SP_compare() (C function) 304, 1242
SP_cons_functor() (C function) 302, 1243
SP_cons_functor_array() (C function) 1244
SP_cons_list() (C function) 302, 1245
SP_create_stream() (C function) 1246
SP_curin (C stream) . 312
SP_curout (C stream) . 312
SP_cut_query() (C function) 306, 1248
SP_define_c_predicate() (C function) 1249
SP_deinitialize() (C function) 329, 1251
SP_DEVSYS_NO_TRACE (system property) 342
SP_errno (C macro) . 290, 1231

SP_error_message() (C function) 290, 1231,
1252

SP_ERROR (C macro) . 290, 1231
SP_event() (C function) 309, 1253
SP_exception_term() (C function) 309, 1256
SP_expand_file_name() (C function) 1257
SP_fail() (C function) 309, 1259
SP_FAILURE (C macro) 290, 1231
SP_fclose() (C function) 311, 1260
SP_flush_output() (C function) 311, 1262
SP_fopen() (C function) . 1264
SP_foreign_stash() (C macro) 305, 1266
SP_fprintf() (C function) 311, 1267

SP_free() (C function) 304, 1268
SP_get_address() (C function) 303, 1269
SP_get_arg() (C function) 303, 1270
SP_get_atom() (C function) 303, 1271
SP_get_byte() (C function) 1272
SP_get_byte() (C macro) . 311
SP_get_code() (C function) 1273
SP_get_code() (C macro) . 311
SP_get_current_dir() (C function) . . . 305, 1274
SP_get_dispatch() (C function) 1275
SP_get_float() (C function) 303, 1276
SP_get_functor() (C function) 303, 1277
SP_get_integer() (C function) 303, 1278

SP_get_integer_bytes() (C function) 303,
1279

SP_get_list() (C function) 303, 1281
SP_get_list_codes() (C function) 303, 1282
SP_get_list_n_bytes() (C function) . . 303, 1283
SP_get_list_n_codes() (C function) . . 303, 1284
SP_get_number_codes() (C function) . . 303, 1285
SP_get_stream_counts() (C function) 1286
SP_get_stream_user_data() (C function) . . 1288
SP_get_string() (C function) 303, 1290
SP_getenv() (C function) 1291
SP_initialize() (C function) 329
SP_initialize() (C macro) 1292
SP_integer (C type) . 18
SP integer (definition) . 18
SP_is_atom() (C function) 304, 1294
SP_is_atomic() (C function) 304, 1295
SP_is_compound() (C function) 304, 1296
SP_is_float() (C function) 304, 1297
SP_is_integer() (C function) 304, 1298
SP_is_list() (C function) 304, 1299
SP_is_number() (C function) 304, 1300
SP_is_variable() (C function) 303, 1301
SP_JIT (system property) 227
SP_JIT_CLAUSE_LIMIT (system property) 228
SP_JIT_COUNTER_LIMIT (system property) . . . 228
SP_LIBRARY_DIR (system property) 225
SP_LICENSE_CODE (system property) 341, 342

SP_LICENSE_EXPIRATION

(system property) . 341, 342
SP_LICENSE_FILE (system property) 341, 342
SP_LICENSE_SITE (system property) 341, 342
SP_load() (C function) 329, 1302

SP_load_sicstus_run_time()

(C function) . 1303
SP_malloc() (C function) 304, 1304
SP_mutex_lock() (C function) 305, 1305
SP_mutex_unlock() (C function) 305, 1306
SP_MUTEX_INITIALIZER (C macro) 305
SP_new_term_ref() (C function) 301, 1307

Book Index 1435

SP_next_solution() (C function) 306, 1308
SP_next_stream() (C function) 1309
SP_on_fault() (C macro) . 309
SP_open_query() (C function) 306, 1310
SP_PATH (system property) 226, 289
SP_pred() (C function) 305, 1311
SP_predicate() (C function) 305, 1312
SP_printf() (C function) 311, 1313
SP_put_address() (C function) 302, 1314
SP_put_atom() (C function) 302, 1315
SP_put_byte() (C function) 1316
SP_put_byte() (C macro) . 311
SP_put_bytes() (C function) 311, 1317
SP_put_code() (C function) 1318
SP_put_code() (C macro) . 311
SP_put_codes() (C function) 311, 1319

SP_put_encoded_string()

(C function) . 311, 1320
SP_put_float() (C function) 302, 1321
SP_put_functor() (C function) 302, 1322
SP_put_integer() (C function) 302, 1323

SP_put_integer_bytes() (C function) 302,
1324

SP_put_list() (C function) 302, 1325
SP_put_list_codes() (C function) 302, 1326
SP_put_list_n_bytes() (C function) . . 302, 1327
SP_put_list_n_codes() (C function) . . 302, 1328
SP_put_number_codes() (C function) . . 302, 1329
SP_put_string() (C function) 302, 1330
SP_put_term() (C function) 301, 1331
SP_put_variable() (C function) 302, 1332
SP_qid (C type) 306, 1241, 1248, 1308, 1310
SP_query() (C function) 306, 1333
SP_query_cut_fail() (C function) 306, 1334
SP_raise_exception() (C function) . . . 309, 1335
SP_raise_fault() (C function) 309
SP_read_from_string() (C function) . . 302, 1336
SP_realloc() (C function) 304, 1338
SP_register_atom() (C function) 301, 1339
SP_restore() (C function) 329, 1340
SP_RT_DIR (system property) 225
SP_RT_PATH (system property) 225
SP_set_argv() (C function) 1341
SP_set_current_dir() (C function) . . . 305, 1343
SP_set_memalloc_hooks() (C function) 1344

SP_set_user_stream_hook()

(C function) . 316, 1345

SP_set_user_stream_post_

hook() (C function) 316, 1346
SP_SIG_DFL (C macro) . 1347
SP_SIG_ERR (C macro) . 1347
SP_SIG_IGN (C macro) . 1347
SP_signal() (C function) 309, 1347

SP_SPTI_PATH (system property) 228
SP_STARTUP_DIR (system property) 226
SP_stderr (C stream) . 311
SP_stdin (C stream) . 311
SP_stdout (C stream) . 311
SP_strdup() (C function) 304, 1349
SP_stream (C type) . 311
SP_STREAMHOOK_STDERR (stream hook) 317
SP_STREAMHOOK_STDIN (stream hook) 317
SP_STREAMHOOK_STDOUT (stream hook) 317
SP_string_from_atom() (C function) . . 301, 1350
SP_SUCCESS (C macro) 290, 1231
SP_TEMP_DIR (system property) 225
SP term ref . 289
SP_term_ref (C type) 289, 300
SP term ref (definition) . 18
SP_term_type() (C function) 303, 1351
SP_TYPE_ATOM (C macro) . 1351
SP_TYPE_COMPOUND (C macro) 1351
SP_TYPE_ERROR (C macro) . 1351
SP_TYPE_FLOAT (C macro) . 1351
SP_TYPE_INTEGER (C macro) 1351
SP_TYPE_VARIABLE (C macro) 1351

SP_ULIMIT_DATA_SEGMENT_SIZE

(system property) . 227
SP_unget_byte() (C function) 1352
SP_unget_code() (C function) 1353
SP_unify() (C function) 304, 1354
SP_unregister_atom() (C function) . . . 301, 1355
SP_USE_DEVSYS (system property) 342
SP_USE_MALLOC (system property) 227
SP_WHEN_EXIT (foreign resource context) . . . 297

SP_WHEN_EXPLICIT (foreign

resource context) . 297

SP_WHEN_RESTORE (foreign

resource context) . 297
space reclamation . 146
space, program . 145
space, reclamation . 902
spdet(1) (command line tool) 1370
spdet, the determinacy checker 361
spec, mode . 5
specific breakpoint . 251
specification, breakpoint . 243
specification, directory . 96
specification, file . 96, 99
specification, file (definition) 11
specification, predicate (definition) 16
specifying streams . 102
specifying streams, effiency and 102
spfz(1) (command line tool) 1369
SPIDER . 29
spld . 322

1436 SICStus Prolog

spld(1) (command line tool) 1371
splfr . 296
splfr(1) (command line tool) 1378
split (Tcl command) . 760
splm(1) (command line tool) 1382
spxref . 377
spxref(1) (command line tool) 1383
spy this (debugger command) 241

spy this conditionally

(debugger command) . 241
spy/[1,2] (built-in) 235, 273
spy/[1,2] (built-in, ref page) 1180
spypoint . 231
spypoint (definition) . 18
spypoint, conditional . 244
spypoint, plain . 235, 243
sqrt /1, square root (evaluable) 124
ss_choice (statistics key) 150
ss_global (statistics key) 150
ss_local (statistics key) 150
ss_time (statistics key) 150
stack, choice . 144
stack, global . 145
stack, local . 144
stack, trail . 145
stack_shifts (statistics key) 149
stand-alone executable . 317
stand-alone executable (definition) 18
standard streams . 102
standard, order on terms . 130
start/[0,1] (prologbeans) 715
state, program . 28
state, saved (definition) . 17
state/2 (automaton/9 option) 459
static predicate (definition) . 18
static procedures . 177
static resource . 291
statistics, displaying . 146
statistics, memory . 146
statistics/[0,2] (built-in) 146, 152
statistics/[0,2] (built-in, ref page) 1181
statistics/1 (zinc option) 865, 869
steadfast predicate (definition) 18
step (labeling/2 option) 467
store, consistent . 426
store, contradictory . 426
store_slot/2 (objects) . 676
stream (definition) . 19
stream (load context key) 143
stream alias . 109
stream alias (definition) . 19
stream errors . 109
stream exceptions . 109
stream object . 109

stream object (definition) . 19
stream position . 114
stream position (definition) . 19
stream position information for terminal I/O . . 115
stream position object . 115
stream property . 1185
stream property (definition) . 19
stream, closing . 114
stream, current . 113
stream, end of . 928
stream, position objects 1169, 1183
stream_code/2 (built-in) 109, 311
stream_code/2 (built-in, ref page) 1182
stream object (argument type) 880
stream_position/2 (built-in) 115
stream_position/2 (built-in, ref page) . . . 1183

stream_position_data/3

(built-in, ref page) . 1184
stream_property/2 (built-in) 114
stream_property/2 (built-in, ref page) . . . 1185
streams . 109
streams, current input 110, 112, 113
streams, current input and output 102
streams, current output 110, 112, 113
streams, null . 111
streams, opening . 110
streams, random access to . 115
streams, specifying . 102
streams, standard . 102
stretchmaxlen/2 (automaton/9 option) 459
stretchminlen/2 (automaton/9 option) 459
stretchocc/2 (automaton/9 option) 459
stretchoccmod/3 (automaton/9 option) 459
strict/1 (diffn/2 option) 450
string (definition) . 19, 46
string first (Tcl command) 765
string index (Tcl command) 765
string last (Tcl command) 765
string length (Tcl command) 766
string match (Tcl command) 764
string range (Tcl command) 765
string string (Tcl command) 766
string tolower (Tcl command) 766
string toupper (Tcl command) 766
string trim (Tcl command) 766
string trimright (Tcl command) 766
string, encoded . 290
string, encoded (definition) . 11
strings, lists of character codes 46
structs (library package) 738
structure, control . 63
structure, control (definition) . 9
SU_initialize() (C function) 1356, 1375

Book Index 1437

sub_atom/5 (built-in) . 129
sub_atom/5 (built-in, ref page) 1188
sub_term/2 (terms) . 845
subcircuit/[1,2] (clpfd) 445
subcircuit/1 (assignment/3 option) 437
sublist/[3,4,5] (lists) . 609
subseq/3 (lists) . 607
subseq0/2 (lists) . 607
subseq1/2 (lists) . 607
subset/2 (sets) . 730
subsumes/2 (terms) . 841
subsumes_term/2 (built-in) 127
subsumes_term/2 (built-in, ref page) 1190
subsumeschk/2 (terms) . 841
subterm selector . 24, 250
subterm selector (definition) 19
subtract/3 (sets) . 731

success (labeling/2 time_out/2

option value) . 469
suffix/2 (lists) . 610
suffix_length/3 (lists) . 608
sum/3 (clpfd) . 431
sumlist/2 (lists) . 607
sup, plus infinity . 426
sup/[2,4] (clpqr) . 496
suppress (redefine_warnings flag value) . . . 141
switch (Tcl command) . 762
symdiff/3 (sets) . 732
symmetric_all_different/1 (clpfd) 436
symmetric_all_distinct/1 (clpfd) 436
symmetric_closure/2 (ugraphs) 852
symmetric_closure/2 (wgraphs) 856
synchronization . 598
synchronization/1 (disjoint2/2 option) . . . 450
synopsis, reference page field 877
syntactic rewriting . 99
syntax (definition) . 19
syntax error . 25
syntax errors . 208
syntax restrictions on operators 50
syntax, formal . 52
syntax, of atoms . 44
syntax, of compound terms . 45
syntax, of floats . 44
syntax, of integers . 43
syntax, of lists . 46
syntax, of sentences as terms 53
syntax, of terms as tokens . 55
syntax, of tokens as character strings 56
syntax, of variables . 44
syntax, rule notation . 53
syntax_error/[1,5] (error class) 202

syntax_errors (prolog flag) 26, 141, 208,
1137, 1140

syntax_errors/1

(read_term/[2,3] option) 208, 1140
system errors . 209
system properties . 224
system property (definition) . 19
system, development . 5
system, development (definition) 10
system, extended runtime (definition) 11
system, runtime . 5, 317
system, runtime (definition) . 17
system_error/[0,1] (error class) 203
system_type (prolog flag) 142

T
table/[2,3] (clpfd) . 439
tables, data . 358
tail/2 (lists) . 609
tan /1, (evaluable) . 123
tanh /1, (evaluable) . 124
task_intervals/1 (cumulatives/3 option) . . 447
task_intervals/1 (geost/[2,3,4] option) . . 452
taut/2 (clpb) . 420
tcl_delete/1 (tcltk) 808, 839
tcl_eval/3 (tcltk) . 810, 839
tcl_event/3 (tcltk) . 813, 839
tcl_new/1 (tcltk) . 807, 839
tell/1 (built-in) . 111
tell/1 (built-in, ref page) 1192
telling/1 (built-in) . 113
telling/1 (built-in, ref page) 1193
term (argument type) . 880
term (definition) . 19
term comparison, predicates for 133, 897
term conversions . 300
term handling, predicates for 133, 897
term I/O, predicates for 118, 899
term input . 103
term names . 527, 530
term output . 104
term reference . 289
term, atomic (definition) . 7
term, callable (definition) . 8
term, compound (definition) . 9
term, cyclic . 1140, 1227
term, error. 197
term, exception . 197, 309
term, indexed . 403
term, layout . 1141
term, layout (definition) . 13
term, mutable . 132

1438 SICStus Prolog

term, mutable (definition) . 15
term, simple (definition) . 17
term/1 (input method) . 221
term_depth/2 (terms) . 845
term_expansion/6 (hook, ref page) 1196
term_expansion/6 (user, hook) 87
term_hash/[2,3,4] (terms) 842
term_order/3 (terms) . 844
term_position (load context key) 143
term_size/2 (terms) . 846
term_subsumer/3 (terms) . 842
term_variables/2 (built-in) 127
term_variables/2 (built-in, ref page) 1204
term_variables/3 (aggregate) 385
term_variables_bag/2 (terms) 844
term_variables_set/2 (terms) 844

terminal I/O, stream position
information for . 115

terminating a backtracking loop 357
Terms in C, C functions for 1236
terms, arguments of . 127
terms, as sentences . 52
terms, comparison of . 130
terms, compound . 45
terms, cyclic . 78
terms, input and output of . 102
terms, ordering on . 130
terms, predicates for looking at 126
terse (gc_trace flag value) 139
test condition, breakpoint . 277
test, breakpoint . 244
test/[1,2] (plunit declaration) 694
test_sub_bag/2 (bags) . 401
text (absolute_file_name/3 file type) 905
text (Tk widget) . 773
thread, main . 308
threads . 305
threads, calling Prolog from 308
throw/1 (built-in) . 197
throw/1 (built-in, ref page) 1205
throws/1 (plunit option) 697

time_out (labeling/2 time_out/2

option value) . 469
time_out/2 (labeling/2 option) 469
time_out/3 (timeout) . 847
timeout/1 (zinc option) 866, 869
timestamp . 553
title (prolog flag) . 142

tk_all_events

(tk_do_one_event/1 option) 817
tk_destroy_window/1 (tcltk) 818, 840
tk_do_one_event/[0,1] (tcltk) 817, 839
tk_dont_wait (tk_do_one_event/1 option) . . 817

tk_file_events

(tk_do_one_event/1 option) 817

tk_idle_events

(tk_do_one_event/1 option) 817
tk_main_loop/0 (tcltk) 818, 840
tk_main_window/2 (tcltk) 818, 840
tk_make_window_exist/1 (tcltk) 818, 840
tk_new/2 (tcltk) . 807, 839
tk_next_event/[2,3] (tcltk) 813, 818, 840
tk_num_main_windows/1 (tcltk) 819, 840

tk_timer_events

(tk_do_one_event/1 option) 817

tk_window_events

(tk_do_one_event/1 option) 817
tokens . 52
told/0 (built-in) . 114
told/0 (built-in, ref page) 1206
top level . 21
top_level_events/0 (tk_new/2 option) 807
top_sort/2 (ugraphs) . 852
top_sort/2 (wgraphs) . 856
toplevel (Tk widget) . 773

toplevel_print_options

(prolog flag) 24, 142, 213, 1105, 1227
toplevel_show_store (CHR flag) 417
total_runtime (statistics key) 148
trace (debugging flag value) 137, 982
trace (definition) . 19
trace (unknown flag value) 142, 199
trace/0 (built-in) . 234
trace/0 (built-in, ref page) 1207
trace/0 (debugger mode control) 284
trail (statistics key) . 148
trail stack . 145
trail_free (statistics key) 150
trail_used (statistics key) 150
TRAILSTKSIZE (system property) 226
transitive_closure/2 (ugraphs) 852
transitive_closure/2 (wgraphs) 856
transitive_reduction/2 (ugraphs) 852
transpose/2 (lists) . 607
transpose_ugraph/2 (ugraphs) 851
transpose_wgraph/2 (wgraphs) 856
tree, binary . 386, 395
tree/1 (abolish/2 option) 902
tree_size/2 (trees) . 848
tree_to_list/2 (trees) . 848
trimcore/0 (built-in) . 146
trimcore/0 (built-in, ref page) 1208
true/0 (built-in, ref page) 1209
true/0 (debugger condition) 281
true/0 (plunit option) . 696
true/1 (debugger condition) 245, 281

Book Index 1439

true/1 (plunit option) . 696
truncate /1, (evaluable) 123
try (CHR port) . 416
type errors . 204
type of operators . 48
type tests, C functions for 1236
type tests, predicates for 126, 132, 900
type-in module . 142, 165
type-in module (definition) . 20
type-in module, changing . 166
type/1 (open/4 option) . 1092
type/1 (stream property) 1186
type_definition/[2,3] (structs) 744
type_error/[2,4] (error class) 202
typein_module (prolog flag) 142

U
ugraph_to_wgraph/2 (wgraphs) 855
ugraph_to_wgraph/3 (wgraphs) 855

unbiased_standard_deviation/2

(statistics) . 738
unbiased_variance/2 (statistics) 738
unblock/0 (debugger port value) 279
unblocked goal (definition) . 20
unbound (definition) . 20
UNC path . 100
undefine_method/3 (objects) 677
undefined predicate 26, 142, 1215
unification . 75, 76
unification (definition) . 20
unification, explicit . 126
unifier, most general . 76
unify (debugger command) 242
unify_with_occurs_check/2 (built-in) 127

unify_with_occurs_check/2

(built-in, ref page) . 1211
uninherit/1 (objects) . 678
uninstantiation errors . 203

uninstantiation_error/[1,3]

(error class) . 202
union/[2,3,4] (sets) . 732
unit clause . 61
unit clause (definition) . 20
unknown (prolog flag) . . . 26, 142, 199, 1214, 1215
unknown procedures, catching 178
unknown/2 (built-in) . 26, 200
unknown/2 (built-in, ref page) 1214

unknown_predicate_handler/3

(hook, ref page) . 1215

unknown_predicate_handler/3

(user, hook) . 26, 199
unleash/0 (debugger condition) 282

unload_foreign_resource/1 (built-in) 295

unload_foreign_resource/1

(built-in, ref page) . 1216
unreachable code . 377

unregister_event_listener/1

(prologbeans) . 717
unregister_query/1 (prologbeans) 716
unset (Tcl command) . 757
up (labeling/2 option) . 468
update_mutable/2 (built-in) 132
update_mutable/2 (built-in, ref page) 1217
uplevel (Tcl command) . 770
upvar (Tcl command) . 769
use of full stop . 103, 104
use_module/[1,2,3] (built-in) 164

use_module/[1,2,3]

(built-in, ref page) . 1218
user . 22
user (--main option value) 1372
user:breakpoint_expansion/2 (hook) . . . 267, 282
user:debugger_command_hook/2 (hook) . . 268, 274
user:error_exception/1 (hook) 198, 285
user:file_search_path/2 (hook) 96
user:generate_message_hook/3 (hook) 215
user:message_hook/3 (hook) 216
user:portray/1 (hook) 106, 517
user:portray_message/2 (hook) 215
user:query_class_hook/5 (hook) 222
user:query_hook/6 (hook) 222
user:query_input_hook/3 (hook) 222
user:query_map_hook/4 (hook) 222
user:runtime_entry/1 (hook) 1372
user:term_expansion/6 (hook) 87

user:unknown_predicate_

handler/3 (hook) . 26, 199
user_close() (C function) 1357
user_error (prolog flag) 109, 143, 311
user_error (stream alias) 109
user_flush_output() (C function) 1359
user_input (prolog flag) 109, 142, 311
user_input (stream alias) 109
user_main() (C function) 328
user_output (prolog flag) 109, 142, 311
user_output (stream alias) 109
user_read() (C function) 1361
user_write() (C function) 1363
username/1 (odbc_db_open/4 option) 687
UTC . 553
UTF-8 encoding . 290

1440 SICStus Prolog

V
val (all_different/2 on/1 value) 436
val (all_distinct/2 on/1 value) 436
val (global_cardinality/3 on/1 value) 434
val/1 (fd_global/[3,4] option) 474

value (all_different/2

consistency/1 value) . 435

value (all_distinct/2

consistency/1 value) . 435

value (global_cardinality/3

consistency/1 value) . 434

value (scalar_product/5

consistency/1 value) . 431
value/1 (labeling/2 option) 467
value_precede_chain/[2,3] (clpfd) 464
valueprec/3 (automaton/9 option) 458
var or Type (argument type) 880
var/1 (built-in, ref page) 1221
variable . 522
variable (definition) . 20
variable, anonymous . 44
variable, anonymous (definition) 7
variable, domain . 425
variable/1 (labeling/2 option) 467

variable_names/1

(read_term/[2,3] option) 1140

variable_names/1

(write_term/[2,3] option) 1226
variables, attributed . 388
variables, list of . 528
variables, scope of . 62
variables, syntax of . 44
variables, writing . 104
variables/1 (read_term/[2,3] option) 1140
variables/1 (zinc option) 867, 869
variant/2 (terms) . 842
varnumbers/[2,3] (varnumbers) 854
verbose (gc_trace flag value) 139
verify_attributes/3 (Module) 389
version (prolog flag) . 143
version_data (prolog flag) 143
vertices/2 (ugraphs) . 851
vertices/2 (wgraphs) . 855
vertices_edges_to_ugraph/3 (ugraphs) 851
vertices_edges_to_wgraph/3 (wgraphs) 855
view/0 (gauge) . 555
visavis/1 (geost/[2,3,4] option) 452

visavis_floating/1

(geost/[2,3,4] option) 452
visavis_init/1 (geost/[2,3,4] option) 452
visibility rules for modules . 164
visualizer . 527
volatile (definition) . 20

volatile (predicate property) 1109
volatile declaration . 84
volatile/0 (predicate property) 136
volatile/1 (built-in, ref page) 1222
volatile/1 (declaration) . 84

W
wake (CHR port) . 416
walltime (statistics key) 148
WAM . 1
warning (unknown flag value) 142, 200
weighted_mean/3 (statistics) 737

weighted_standard_deviation/3

(statistics) . 738
weighted_variance/3 (statistics) 738
wgraph_to_ugraph/2 (wgraphs) 855
when/1 (load_files/2 option) 1053
when/2 (built-in, ref page) 1223
while (Tcl command) . 761
windowed executable (definition) 20
with_output_to_codes/[2,3,4] (codesio) . . . 518
wordocc/2 (automaton/9 option) 459
wordoccmod/3 (automaton/9 option) 459
wordprefix/2 (automaton/9 option) 459
wordsuffix/2 (automaton/9 option) 459
wrap/2 (disjoint1/2 option) 449
wrap/4 (disjoint2/2 option) 449
write (absolute_file_name/3 access) 907
write (debugger command) 240
write (open/[3,4] mode) . 1092
write predicates . 104
write predicates, distinctions among 105
write/[1,2] (built-in) . 104
write/[1,2] (built-in, ref page) 1224
write/0 (debugger show control) 283
write_canonical/[1,2] (built-in) 104

write_canonical/[1,2]

(built-in, ref page) . 1225
write_record/[1,2] (csv) 521
write_record_to_codes/2 (csv) 521
write_records/[1,2] (csv) 521
write_term/[2,3] (built-in) 104
write_term/[2,3] (built-in, ref page) 1226
write_term/1 (debugger show control) 283
write_term_to_codes/[3,4] (codesio) 518
write_to_codes/[2,3] (codesio) 518
writeq/[1,2] (built-in) . 104
writeq/[1,2] (built-in, ref page) 1229
writing variables . 104

Book Index 1441

X
X, identity for numbers . 125
XEmacs . 32
xml_parse/[2,3] (xml) . 858
xml_pp/1 (xml) . 858
xml_subterm/2 (xml) . 858
xor /2, bitwise exclusive or (evaluable) . . 122

Z
zero-quote notation for character conversion 43
zip (debugger command) . 238
zip (debugging flag value) 137, 982
zip (definition) . 20

zip/0 (built-in) . 234

zip/0 (built-in, ref page) 1230
zip/0 (debugger mode control) 284

	Introduction
	Acknowledgments
	Notational Conventions
	Keyboard Characters
	Mode Spec
	Development and Runtime Systems
	Function Prototypes
	ISO Compliance

	Glossary
	How to Run Prolog
	Getting Started
	Reading in Programs
	Inserting Clauses at the Terminal
	Queries and Directives
	Queries
	Directives

	Syntax Errors
	Undefined Predicates
	Program Execution And Interruption
	Exiting From The Top Level
	Nested Executions---Break
	Saving and Restoring Program States
	SICStus Prolog IDE
	Emacs Interface
	Installation
	Quick-Start
	Customizing Emacs
	Enabling Emacs Support for SICStus
	Enabling Emacs Support for SICStus Documentation

	Basic Configuration
	Usage
	Mode Line
	Configuration
	Tips
	Font-locking
	Auto-fill Mode
	Speed
	Changing Colors

	The Prolog Language
	Syntax
	Overview
	Terms
	Overview
	Integers
	Floating-point Numbers
	Atoms
	Variables
	Foreign Terms

	Compound Terms
	Lists
	Strings As Lists

	Character Escaping
	Operators and their Built-in Predicates
	Overview
	Manipulating and Inspecting Operators
	Syntax Restrictions
	Built-in Operators

	Commenting
	Formal Syntax
	Overview
	Notation
	Syntax of Sentences as Terms
	Syntax of Terms as Tokens
	Syntax of Tokens as Character Strings
	Escape Sequences
	Notes

	Summary of Predicates

	Semantics
	Programs
	Types of Predicates Supplied with SICStus Prolog
	Hook Predicates

	Control Structures
	The Cut
	Disjunction
	If-Then-Else
	Negation as Failure
	Do Loops release 4.1
	Other Control Structures

	Declarative and Procedural Semantics
	Meta-Calls
	Exceptions Related to Procedure Calls
	Occurs Check
	Summary of Control Predicates

	Loading Programs
	Overview
	The Load Predicates
	Redefining Procedures during Program Execution
	Declarations and Initializations
	Multifile Declarations
	Dynamic Declarations
	Volatile Declarations
	Discontiguous Declarations
	Block Declarations
	Meta-Predicate Declarations
	Module Declarations
	Public Declarations
	Mode Declarations
	is/2 Declarations
	Include Declarations
	Initializations

	Term and Goal Expansion
	Conditional Compilation
	Conditional Compilation Examples

	Predicate List

	Saving and Loading the Prolog Database
	Overview of PO Files
	Saved States
	Selective Saving and Loading of PO Files
	Predicate List

	Files and Directories
	The File Search Path Mechanism
	Defining File Search Paths
	Frequently Used File Specifications
	Predefined File Search Paths

	Syntactic Rewriting
	List of Predicates

	Input and Output
	Introduction
	About Streams
	Programming Note
	Stream Categories

	Term Input
	Reading Terms: The "Read" Predicates
	Changing the Prompt

	Term Output
	Writing Terms: the ``Write'' Predicates
	Common Characteristics
	Distinctions Among the ``Write'' Predicates
	Displaying Terms
	Using the Portray Hook
	Portraying a Clause

	Byte and Character Input
	Overview
	Reading Bytes and Characters
	Peeking
	Skipping
	Finding the End of Line and End of File

	Byte and Character Output
	Writing Bytes and Characters
	New Line
	Formatted Output

	Stream and File Handling
	Stream Objects
	Exceptions Related to Streams
	Suppressing Error Messages
	Opening a Stream
	Text Stream Encodings
	Finding the Current Input Stream
	Finding the Current Output Stream
	Finding Out About Open Streams
	Closing a Stream
	Flushing Output

	Reading the State of Opened Streams
	Stream Position Information for Terminal I/O

	Random Access to Files
	Summary of Predicates and Functions

	Arithmetic
	Overview
	Evaluating Arithmetic Expressions
	Exceptions Related to Arithmetic
	Arithmetic Comparison
	Arithmetic Expressions
	Predicate Summary

	Looking at Terms
	Meta-logical Predicates
	Type Checking
	Unification

	Analyzing and Constructing Terms
	Analyzing and Constructing Lists
	Converting between Constants and Text
	Atom Operations
	Assigning Names to Variables
	Copying Terms
	Comparing Terms
	Introduction
	Standard Order of Terms
	Sorting Terms

	Mutable Terms
	Summary of Predicates

	Looking at the Program State
	Overview
	Associating Predicates with their Properties
	Associating Predicates with Files
	Prolog Flags
	Load Context
	Predicate Summary

	Memory Use and Garbage Collection
	Overview
	Reclaiming Space
	Displaying Statistics

	Garbage Collection and Programming Style
	Enabling and Disabling the Garbage Collector
	Monitoring Garbage Collections
	Interaction of Garbage Collection and Global Stack Expansion
	Invoking the Garbage Collector Directly
	Atom Garbage Collection
	The Atom Garbage Collector User Interface
	Protecting Atoms in Foreign Memory
	Permanent Atoms
	Details of Atom Registration

	Summary of Predicates

	Modules
	Overview
	Basic Concepts
	Defining a Module
	Converting Non-module Files into Module Files
	Loading a Module
	Visibility Rules
	The Source Module
	The Type-in Module
	Creating a Module Dynamically
	Module Prefixes on Clauses
	Current Modules

	Debugging Code in a Module
	Name Clashes
	Obtaining Information about Loaded Modules
	Predicates Defined in a Module
	Predicates Visible in a Module

	Importing Dynamic Predicates
	Module Name Expansion
	The meta_predicate Declaration
	Semantics of Module Name Expansion
	Predicate Summary

	Modification of the Database
	Introduction
	Dynamic and Static Procedures
	Database References
	Adding Clauses to the Database
	Removing Clauses from the Database
	A Note on Efficient Use of retract/1

	Accessing Clauses
	Modification of Running Code: Examples
	Example: assertz
	Example: retract
	Example: abolish

	The Internal Database
	Blackboard Primitives
	Summary of Predicates

	Sets and Bags: Collecting Solutions to a Goal
	Introduction
	Collecting a Sorted List
	Existential Quantifier

	Collecting a Bag of Solutions
	Collecting All Instances

	Predicate Summary

	Grammar Rules
	Definite Clause Grammars
	How to Use the Grammar Rule Facility
	An Example
	Semantics of Grammar Rules
	Summary of Predicates

	Errors and Exceptions
	Overview
	Throwing Exceptions
	Handling Exceptions
	Protecting a Particular Goal
	Handling Unknown Predicates

	Error Classes
	Instantiation Errors
	Uninstantiation Errors
	Type Errors
	Domain Errors
	Evaluation Errors
	Representation Errors
	Existence Errors
	Permission Errors
	Context Errors
	Consistency Errors
	Syntax Errors
	Resource Errors
	System Errors

	An Example
	Legacy Predicates
	Interrupting Execution
	Summary of Predicates

	Messages and Queries
	Message Processing
	Phases of Message Processing
	Message Generation Phase
	Message Printing Phase

	Message Handling Predicates
	Query Processing
	Query Classes
	Phases of Query Processing
	Hooks in Query Processing
	Default Input Methods
	Default Map Methods
	Default Query Classes

	Query Handling Predicates
	Predicate Summary

	Other Topics
	System Properties and Environment Variables
	System Properties Set by SICStus Prolog
	System Properties Affecting Initialization
	Other System Properties

	Debugging
	The Procedure Box Control Flow Model
	Basic Debugging Predicates
	Plain Spypoints
	Format of Debugging Messages
	Commands Available during Debugging
	Advanced Debugging --- an Introduction
	Creating Breakpoints
	Processing Breakpoints
	Breakpoint Tests
	Specific and Generic Breakpoints
	Breakpoint Actions
	Advice points
	Built-in Predicates for Breakpoint Handling
	Accessing Past Debugger States
	Storing User Information in the Backtrace
	Hooks Related to Breakpoints
	Programming Breakpoints

	Breakpoint Handling Predicates
	The Processing of Breakpoints
	Breakpoint Conditions
	Tests Related to the Current Goal
	Tests Related to Source Information
	Tests Related to the Current Port
	Tests Related to the Break Level
	Other Conditions
	Conditions Usable in the Action Part
	Options for Focusing on a Past State
	Condition Macros
	The Action Variables

	Consulting during Debugging
	Catching Exceptions
	Predicate Summary

	Mixing C/C++ and Prolog
	Notes
	Calling C from Prolog
	Foreign Resources
	Conversion Declarations
	Conversions between Prolog Arguments and C Types
	Interface Predicates
	The Foreign Resource Linker
	Customizing splfr.
	Creating Linked Foreign Resources Manually under UNIX
	Windows-specific splfr issues

	Init and Deinit Functions
	Creating the Linked Foreign Resource
	Foreign Code Examples

	Calling C++ from Prolog
	Support Functions
	Creating and Manipulating SP_term_refs
	Atoms in C
	Creating Prolog Terms
	Accessing Prolog Terms
	Testing Prolog Terms
	Unifying and Comparing Terms
	Operating System Services
	Memory Management
	File System
	Threads

	Calling Prolog from C
	Finding One Solution of a Call
	Finding Multiple Solutions of a Call
	Backtracking Loops
	Calling Prolog Asynchronously
	Signal Handling

	Exception Handling in C
	Reading a goal from a string

	SICStus Streams
	Prolog Streams
	Defining a New Stream
	Low Level I/O Functions

	Hookable Standard Streams
	Writing User-stream Hooks
	Writing User-stream Post-hooks

	Stand-Alone Executables
	Runtime Systems
	Runtime Systems on Target Machines
	Runtime Systems on UNIX Target Machines
	Runtime Systems on Windows Target Machines

	The Application Builder
	Customizing spld
	All-in-one Executables
	Setting up the C compiler on Windows
	Extended Runtime Systems
	Examples

	User-defined Main Programs
	Initializing the Prolog Engine
	Loading Prolog Code

	Generic Runtime Systems

	Mixing C and Prolog Examples
	Train Example (connections)
	Building for a Target Machine
	Exceptions from C
	Stream Example

	Debugging Runtime Systems
	Locating the License Information
	Customizing the Debugged Runtime System
	Examples of Debugging Runtime Systems

	Interfacing .NET and Java
	Multiple SICStus Runtimes in a Process
	Multiple SICStus Runtimes in Java
	Multiple SICStus Runtimes in C
	Using a Single SICStus Runtime
	Using More than One SICStus Runtime

	Foreign Resources and Multiple SICStus Runtimes
	Foreign Resources Supporting Only One SICStus Runtime
	Foreign Resources Supporting Multiple SICStus Runtimes
	Full Support for Multiple SICStus Runtimes

	Multiple Runtimes and Threads

	Writing Efficient Programs
	Overview
	Execution Profiling
	Coverage Analysis
	The Cut
	Overview
	Making Predicates Determinate
	Placement of Cuts
	Terminating a Backtracking Loop

	Indexing
	Overview
	Data Tables
	Determinacy Detection

	Last Clause Determinacy Detection
	The Determinacy Checker
	Using the Determinacy Checker
	Declaring Nondeterminacy
	Checker Output
	Example
	Options
	What is Detected

	Last Call Optimization
	Accumulating Parameters
	Accumulating Lists

	Building and Dismantling Terms
	Conditionals and Disjunction
	Programming Examples
	Simple List Processing
	Family Example (descendants)
	Association List Primitives
	Differentiation
	Use of Meta-Logical Predicates
	Prolog in Prolog
	Translating English Sentences into Logic Formulae

	The Cross-Referencer
	Introduction
	Practice and Experience

	The Prolog Library
	An Aggregation Operator for Data-Base-Style Queries---library(aggregate)
	Association Lists---library(assoc)
	Attributed Variables---library(atts)
	AVL Trees---library(avl)
	Bags, or Multisets---library(bags)
	External Storage of Terms (Berkeley DB)---library(bdb)
	Basics
	Current Limitations
	Berkeley DB
	The DB-Spec---Informal Description
	Predicates
	Conventions
	The Environment
	Memory Leaks
	The Predicates

	An Example Session
	The DB-Spec
	Exporting and importing a database

	Generating Integers---library(between)
	Constraint Handling Rules---library(chr)
	Introduction
	Syntax and Semantics
	Syntax
	Semantics

	CHR in Prolog Programs
	Embedding in Prolog Programs
	Constraint Declaration
	Compilation

	Debugging
	Ports
	Tracing
	Debugging Predicates

	Examples
	Guidelines

	Constraint Logic Programming over Booleans---library(clpb)
	Introduction
	Solver Interface
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Constraint Logic Programming over Finite Domains---library(clpfd)
	Introduction
	Referencing this Software
	Acknowledgments

	Caveats and Limitations
	Solver Interface
	Posting Constraints
	Forgetting Constraints
	Constraint Satisfaction Problems
	Reified Constraints

	Available Constraints
	Arithmetic Constraints
	Membership Constraints
	Propositional Constraints
	Arithmetic-Logical Constraints
	Extensional Constraints
	Graph Constraints
	Scheduling Constraints
	Placement Constraints
	Sequence Constraints
	User-Defined Constraints

	Enumeration Predicates
	Statistics Predicates
	Answer Constraints
	Debugging
	Defining Global Constraints
	The Global Constraint Programming Interface
	Reflection Predicates
	FD Set Operations
	Global Constraint Example

	Defining Primitive Constraints
	Definitions
	Pitfalls of Interval Reasoning
	Indexicals
	Range Expressions
	Term Expressions
	Monotonicity of Ranges
	FD Predicates
	Execution of Propagating Indexicals
	Execution of Checking Indexicals
	Compiled Indexicals

	Coexisting with Attributes and Blocked Goals
	Example Programs
	Send More Money
	N Queens
	Cumulative Scheduling

	Syntax Summary
	Syntax of Indexicals
	Syntax of Arithmetic Expressions
	Operator Declarations

	Constraint Logic Programming over Rationals or Reals---library([clpq,clpr])
	Introduction
	Referencing this Software
	Acknowledgments

	Solver Interface
	Notational Conventions
	Solver Predicates
	Unification
	Feedback and Bindings

	Linearity and Nonlinear Residues
	How Nonlinear Residues Are Made to Disappear
	Isolation Axioms

	Numerical Precision and Rationals
	Projection and Redundancy Elimination
	Variable Ordering
	Turning Answers into Terms
	Projecting Inequalities

	Why Disequations
	Monash Examples
	A Mixed Integer Linear Optimization Example
	Implementation Architecture
	Fragments and Bits
	Bugs

	I/O on Lists of Character Codes---library(codesio)
	I/O on Comma-Separated Values (CSV) Files and Strings---library(csv)
	COM Client---library(comclient)
	Preliminaries
	Terminology
	Predicate Reference
	Examples

	Finite Domain Constraint Debugger---library(fdbg)
	Introduction
	Concepts
	Events
	Labeling Levels
	Visualizers
	Names of Terms
	Selectors
	Name Auto-Generation
	Legend
	The fdbg_output Stream

	Basics
	FDBG Options
	Naming Terms
	Built-In Visualizers
	New Debugger Commands
	Annotating Programs
	An Example Session

	Advanced Usage
	Customizing Output
	Writing Visualizers
	Writing Legend Printers
	Showing Selected Constraints (simple version)
	Showing Selected Constraints (advanced version)
	Debugging Global Constraints

	Accessing Files And Directories---library(file_systems)
	The Gauge Profiling Tool---library(gauge)
	Heap Operations---library(heaps)
	Declaring determinacy attributes---library(is_directives)
	Introduction
	Available Determinacy Annotations
	Syntax of Determinacy Declarations
	Specifying Instantiation Patterns
	Declaring Meta Predicate Determinacy

	Using Determinacy Declarations
	Accessing Determinacy Declarations at Runtime

	Jasper Interface---library(jasper)
	Jasper Overview
	Getting Started
	Calling Prolog from Java
	Single Threaded Example
	Multi Threaded Example
	Another Multi Threaded Example (Prolog Top Level)

	Jasper Package Class Reference
	Java Exception Handling
	SPTerm and Memory
	Lifetime of SPTerms and Prolog Memory
	Preventing SPTerm Memory Leaks

	Java Threads
	The Jasper Library
	Jasper Method Call Example
	Jasper Library Predicates
	Conversion between Prolog Arguments and Java Types
	Global vs. Local References
	Handling Java Exceptions
	Deprecated Jasper API
	Deprecated Argument Conversions
	Deprecated Jasper Predicates

	JSON format serialization---library(json)
	Options
	Examples
	Process Communication
	JSON Text as Atoms and Character Lists

	Exported Predicates

	Process Communication---library(linda/[server,client])
	Linda Server
	Linda Client

	List Operations---library(lists)
	Array Operations---library(logarr)
	The Objects Package---library(objects)
	Introduction
	Using SICStus Objects
	Defining Classes
	Using Classes
	Looking Ahead

	Simple Classes
	Scope of a Class Definition
	Slots
	Methods

	Inheritance
	Single Inheritance
	Multiple Inheritance
	Asking About Classes and Objects

	Term Classes
	Simple Term Classes
	Restricted Term Classes
	Specifying a Term Class Essence

	Technical Details
	Syntax of Class Definitions
	Limitations

	Exported Predicates
	<-/2
	<</2
	>>/2
	class/1
	class_ancestor/2
	class_method/1
	class_superclass/2
	class_of/2
	create/2
	current_class/1
	debug_message/0
	define_method/3
	descendant_of/2
	destroy/1
	direct_message/4
	end_class/[0,1]
	fetch_slot/2
	inherit/1
	instance_method/1
	message/4
	nodebug_message/0
	pointer_object/2
	store_slot/2
	undefine_method/3
	uninherit/1

	Glossary

	The ODBC Interface Library--library(odbc)
	Overview
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Datatypes
	Reading from the database
	Writing to the database

	Exceptions
	Predicates

	Ordered Set Operations---library(ordsets)
	The PiLLoW Web Programming Library---library(pillow)
	Plunit Interface---library(plunit)
	Introduction
	A Unit Test Box
	Writing the Test-Body
	Determinate Tests
	Nondeterminate Tests
	Tests Expected to Fail
	Tests Expected to Raise Exceptions

	Running the Test-Suite
	Tests and Production Systems

	Process Utilities---library(process)
	Examples
	Microsoft Windows Shell

	Quoting and Security

	PrologBeans Interface---library(prologbeans)
	Introduction
	Features
	A First Example
	Prolog Server Interface
	Java Client Interface
	Java Examples
	Embedding Prolog in Java Applications
	Application Servers
	Configuring Tomcat for PrologBeans

	.NET Client Interface
	.NET Examples
	C# Examples
	Visual Basic Example

	Queue Operations ---library(queues)
	Random Number Generator---library(random)
	Rem's Algorithm---library(rem)
	Generic Sorting---library(samsort)
	Unordered Set Operations---library(sets)
	Socket I/O---library(sockets)
	Statistics Functions---library(statistics)
	The Structs Package---library(structs)
	Foreign Types
	Declaring Types

	Checking Foreign Term Types
	Creating and Destroying Foreign Terms
	Accessing and Modifying Foreign Term Contents
	Casting
	Null Foreign Terms
	Interfacing with Foreign Code
	Examining Type Definitions at Runtime
	Tips
	Example

	Operating System Utilities---library(system)
	Tcl/Tk Interface---library(tcltk)
	Introduction
	What Is Tcl/Tk?
	What Is Tcl/Tk Good For?
	What Is Tcl/Tks Relationship to SICStus Prolog?
	A Quick Example of Tcl/Tk in Action
	Outline of This Tutorial

	Tcl
	Syntax
	Variables
	Commands
	What We Have Left Out

	Tk
	Widgets
	Types of Widget
	Widgets Hierarchies
	Widget Creation
	Geometry Managers
	Event Handling
	Miscellaneous
	What We Have Left Out
	Example pure Tcl/Tk program

	The Tcl/Tk Prolog Library
	How it Works - An Overview
	Basic Functions
	Evaluation Functions
	Event Functions
	Servicing Tcl and Tk events
	Passing Control to Tk
	Housekeeping functions
	Summary

	Putting It All Together
	Tcl The Master, Prolog The Slave
	Prolog The Master, Tk The Slave
	Prolog And Tcl Interact through Prolog Event Queue
	The Whole 8-Queens Example

	Quick Reference
	Command Format Summary
	Predicates for Prolog to Interact with Tcl Interpreters
	Predicates for Prolog to Interact with Tcl Interpreters with Tk Extensions
	Commands for Tcl Interpreters to Interact with The Prolog System

	Resources
	Web Sites
	Books
	Manual Pages

	Term Utilities---library(terms)
	Meta-Call with Limit on Execution Time---library(timeout)
	Updatable Binary Trees---library(trees)
	Type Checking---library(types)
	Unweighted Graph Operations---library(ugraphs)
	An Inverse of numbervars/3---library(varnumbers)
	Weighted Graph Operations---library(wgraphs)
	Parsing and Generating XML---library(xml)
	Zinc Interface---library(zinc)
	Prerequisites
	FlatZinc
	Exported Predicates

	MiniZinc
	Exported Predicates

	Error Messages
	Limitations

	Prolog Reference Pages
	Reading the Reference Pages
	Overview
	Mode Annotations
	Predicate Annotation
	Argument Types
	Simple Types
	Extended Types

	Exceptions
	Other Fields

	Topical List of Prolog Built-Ins
	All Solutions
	Arithmetic
	Character I/O
	Control
	Database
	Debugging
	Errors and Exceptions
	Filename Manipulation
	File and Stream Handling
	Foreign Interface
	Grammar Rules
	Hook Predicates
	List Processing
	Loading Programs
	Memory
	Messages and Queries
	Modules
	Program State
	Saving Programs
	Term Comparison
	Term Handling
	Term I/O
	Type Tests

	Built-In Predicates
	abolish/[1,2]
	abort/0
	absolute_file_name/[2,3]
	acyclic_term/1
	add_breakpoint/2
	,/2
	append/3
	arg/3
	ask_query/4
	assert/[1,2]
	asserta/[1,2]
	assertz/[1,2]
	at_end_of_line/[0,1]
	at_end_of_stream/[0,1]
	atom/1
	atom_chars/2
	atom_codes/2
	atom_concat/3
	atom_length/2
	atomic/1
	bagof/3
	bb_delete/2
	bb_get/2
	bb_put/2
	bb_update/3
	block/1
	break/0
	breakpoint_expansion/2 ,
	byte_count/2
	call/[1,2,...,255]
	call_cleanup/2
	call_residue_vars/2
	callable/1
	catch/3
	char_code/2
	char_conversion/2
	character_count/2
	clause/[2,3]
	close/[1,2]
	compare/3
	compile/1
	compound/1
	consult/1
	copy_term/[2,3]
	coverage_data/1
	create_mutable/2
	current_atom/1
	current_breakpoint/5
	current_char_conversion/2
	current_input/1
	current_key/2
	current_module/[1,2]
	current_op/3
	current_output/1
	current_predicate/[1,2]
	current_prolog_flag/2
	current_stream/3
	!/0
	db_reference/1
	debug/0
	debugger_command_hook/2 ,
	debugging/0
	dif/2
	disable_breakpoints/1
	discontiguous/1 ,
	display/1
	do/2
	dynamic/1 ,
	enable_breakpoints/1
	ensure_loaded/1
	=:=/2
	erase/1
	error_exception/1 ,
	execution_state/[1,2]
	^/2
	expand_term/2
	fail/0
	false/0
	file_search_path/2
	findall/[3,4]
	float/1
	flush_output/[0,1]
	foreign/[2,3]
	foreign_resource/2
	format/[2,3]
	freeze/2
	frozen/2
	functor/3
	garbage_collect/0
	garbage_collect_atoms/0
	generate_message/3
	generate_message_hook/3
	get_byte/[1,2]
	get_char/[1,2]
	get_code/[1,2]
	get_mutable/2
	goal_expansion/5
	goal_source_info/3
	>/2
	ground/1
	halt/[0,1]
	if/3
	->/2
	include/1 ,
	initialization/1 ,
	instance/2
	integer/1
	is/2
	keysort/2
	leash/1
	length/2
	</2
	library_directory/1
	line_count/2
	line_position/2
	listing/[0,1]
	load_files/[1,2]
	load_foreign_resource/1
	member/2
	memberchk/2
	message_hook/3
	meta_predicate/1
	mode/1
	module/[2,3]
	multifile/1 ,
	mutable/1
	name/2
	nl/[0,1]
	nodebug/0
	nonmember/2
	nonvar/1
	nospy/1
	nospyall/0
	=\=/2
	=</2
	>=/2
	\+/1
	\=/2
	notrace/0
	nozip/0
	number/1
	number_chars/2
	number_codes/2
	numbervars/3
	on_exception/3
	once/1
	op/3
	open/[3,4]
	open_null_stream/1
	;/2
	otherwise/0
	peek_byte/[1,2]
	peek_char/[1,2]
	peek_code/[1,2]
	phrase/[2,3]
	portray/1
	portray_clause/[1,2]
	portray_message/2
	predicate_property/2
	print/[1,2]
	print_coverage/[0,1]
	print_message/2
	print_message_lines/3
	print_profile/[0,1]
	profile_data/1
	profile_reset/0
	prolog_flag/[2,3]
	prolog_load_context/2
	prompt/2
	public/1
	put_byte/[1,2]
	put_char/[1,2]
	put_code/[1,2]
	query_abbreviation/3
	query_class/5
	query_class_hook/5
	query_hook/6
	query_input/3
	query_input_hook/3
	query_map/4
	query_map_hook/4
	raise_exception/1
	read/[1,2]
	read_line/[1,2]
	read_term/[2,3]
	reconsult/1
	recorda/3
	recorded/3
	recordz/3
	remove_breakpoints/1
	repeat/0
	restore/1
	retract/1
	retractall/1
	save_files/2
	save_modules/2
	save_predicates/2
	save_program/[1,2]
	see/1
	seeing/1
	seek/4
	seen/0
	set_input/1
	set_module/1
	set_output/1
	set_prolog_flag/2
	set_stream_position/2
	setof/3
	simple/1
	skip_byte/[1,2]
	skip_char/[1,2]
	skip_code/[1,2]
	skip_line/[0,1]
	sort/2
	source_file/[1,2]
	spy/[1,2]
	statistics/[0,2]
	stream_code/2
	stream_position/2
	stream_position_data/3
	stream_property/2
	sub_atom/5
	subsumes_term/2
	tell/1
	telling/1
	==/2
	term_expansion/6
	@>/2
	@</2
	\==/2
	@=</2
	@>=/2
	?=/2
	term_variables/2
	throw/1
	told/0
	trace/0
	trimcore/0
	true/0
	=/2
	unify_with_occurs_check/2
	=../2
	unknown/2
	unknown_predicate_handler/3
	unload_foreign_resource/1
	update_mutable/2
	use_module/[1,2,3]
	var/1
	volatile/1
	when/2
	write/[1,2]
	write_canonical/[1,2]
	write_term/[2,3] ,
	writeq/[1,2]
	zip/0

	C Reference Pages
	Return Values and Errors
	Topical List of C Functions
	C Errors
	I/O
	Exceptions
	Files and Streams
	Foreign Interface
	Initialization
	Memory Management
	Signal Handling
	Terms in C
	Type Tests

	API Functions
	SP_atom_from_string()
	SP_atom_length()
	SP_calloc()
	SP_close_query()
	SP_compare()
	SP_cons_functor()
	SP_cons_functor_array()
	SP_cons_list()
	SP_create_stream()
	SP_cut_query()
	SP_define_c_predicate()
	SP_deinitialize()
	SP_error_message()
	SP_event()
	SP_exception_term()
	SP_expand_file_name()
	SP_fail()
	SP_fclose()
	SP_flush_output()
	SP_fopen()
	SP_foreign_stash()
	SP_fprintf()
	SP_free()
	SP_get_address()
	SP_get_arg()
	SP_get_atom()
	SP_get_byte()
	SP_get_code()
	SP_get_current_dir()
	SP_get_dispatch()
	SP_get_float()
	SP_get_functor()
	SP_get_integer()
	SP_get_integer_bytes()
	SP_get_list()
	SP_get_list_codes()
	SP_get_list_n_bytes()
	SP_get_list_n_codes()
	SP_get_number_codes()
	SP_get_stream_counts()
	SP_get_stream_user_data()
	SP_get_string()
	SP_getenv()
	SP_initialize()
	SP_is_atom()
	SP_is_atomic()
	SP_is_compound()
	SP_is_float()
	SP_is_integer()
	SP_is_list()
	SP_is_number()
	SP_is_variable()
	SP_load()
	SP_load_sicstus_run_time()
	SP_malloc()
	SP_mutex_lock()
	SP_mutex_unlock()
	SP_new_term_ref()
	SP_next_solution()
	SP_next_stream()
	SP_open_query()
	SP_pred()
	SP_predicate()
	SP_printf()
	SP_put_address()
	SP_put_atom()
	SP_put_byte()
	SP_put_bytes()
	SP_put_code()
	SP_put_codes()
	SP_put_encoded_string()
	SP_put_float()
	SP_put_functor()
	SP_put_integer()
	SP_put_integer_bytes()
	SP_put_list()
	SP_put_list_codes()
	SP_put_list_n_bytes()
	SP_put_list_n_codes()
	SP_put_number_codes()
	SP_put_string()
	SP_put_term()
	SP_put_variable()
	SP_query()
	SP_query_cut_fail()
	SP_raise_exception()
	SP_read_from_string()
	SP_realloc()
	SP_register_atom()
	SP_restore()
	SP_set_argv()
	SP_set_current_dir()
	SP_set_memalloc_hooks() ,
	SP_set_user_stream_hook()
	SP_set_user_stream_post_hook()
	SP_signal()
	SP_strdup()
	SP_string_from_atom()
	SP_term_type()
	SP_unget_byte()
	SP_unget_code()
	SP_unify()
	SP_unregister_atom()
	SU_initialize()
	user_close()
	user_flush_output()
	user_read()
	user_write()

	Command Reference Pages
	sicstus --- SICStus Prolog Development System
	mzn-sicstus --- Shortcut for MiniZinc with SICStus back-end
	spfz --- FlatZinc Interpreter
	spdet --- Determinacy Checker
	spld --- SICStus Prolog Application Builder
	splfr --- SICStus Prolog Foreign Resource Linker
	splm --- SICStus Prolog License Manager
	spxref --- Cross Referencer

	References
	Predicate Index
	Keystroke Index
	Book Index

