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Introduction 1

Introduction

Prolog is a simple but powerful programming language developed at the University of Mar-
seille [Roussel 75], as a practical tool for programming in logic [Kowalski 74]. From a user’s
point of view the major attraction of the language is ease of programming. Clear, readable,
concise programs can be written quickly with few errors.

For an introduction to programming in Prolog, readers are recommended to consult [Sterling
& Shapiro 86]. However, for the benefit of those who don’t have access to a copy of this book,
and for those who have some prior knowledge of logic programming, we include a summary
of the language. For a more general introduction to the field of Logic Programming see
[Kowalski 79]. See Chapter 4 [Prolog Intro], page 43.

This manual describes a Prolog system developed at the Swedish Institute of Computer
Science. Parts of the system were developed by the project “Industrialization of SICStus
Prolog” in collaboration with Ericsson Telecom AB, NobelTech Systems AB, Infologics AB
and Televerket. The system consists of a WAM emulator written in C, a library and runtime
system written in C and Prolog and an interpreter and a compiler written in Prolog. The
Prolog engine is a Warren Abstract Machine (WAM) emulator [Warren 83]. Two modes
of compilation are available: in-core i.e. incremental, and file-to-file. When compiled, a
predicate will run about 8 times faster and use memory more economically. Implementation
details can be found in [Carlsson 90] and in several technical reports available from SICS.

SICStus Prolog follows the mainstream Prolog tradition in terms of syntax

and built-in predicates. As of release 4, SICStus Prolog is fully compliant

with the International Standard ISO/IEC 13211-1 (PROLOG: Part 1—General Core)
(http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITSY2FIS0%2FIEC+13211%2D1%2D1995).
Since release 4.3, SICStus Prolog complies with Technical Corrigenda 1 and 2.


http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITS%2FISO%2FIEC+13211%2D1%2D1995
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Chapter 1: Notational Conventions 5)

1 Notational Conventions

1.1 Keyboard Characters

When referring to keyboard characters, printing characters are written thus: a, while control
characters are written like this: ~A. Thus ~C is the character you get by holding down the
CTL key while you type c. Finally, the special control characters carriage-return, line-feed
and space are often abbreviated to RET, LFD and SPC respectively.

Throughout, we will assume that ~D is the EOF character (it’s usually ~Z under Windows)
and that ~Cis the interrupt character. In most contexts, the term end_of_file terminated
by a full stop (.) can be typed instead of the EOF character.

1.2 Mode Spec

When describing a predicate, we present its usage with a mode spec, which has the form
name(arg, ..., arg), where each arg denotes how that argument is used by the predicate,
and has one of the following forms:

:ArgName The argument is used as a term denoting a goal or a clause or a predicate name,
or that otherwise needs special handling of module prefixes. It is is subject to
module name expansion (see Section 4.11.15 [ref-mod-mne|, page 169).

+ArgName
The argument is an input argument. Usually, but not always, this implies that
the argument should be instantiated.

-ArgName The argument is an output argument. Usually, but not always, this implies
that the argument should be uninstantiated.

?ArgName

The argument may be used for both input and output.

Please note: The reference pages for built-in predicate use slightly different mode specs.

1.3 Development and Runtime Systems

The full Prolog system with top-level, compiler, debugger etc. is known as the development
system.

It is possible to link user-written C code with a subset of SICStus Prolog to create runtime
systems. When introducing a built-in predicate, any limitations on its use in runtime
systems will be mentioned.

1.4 Function Prototypes

Whenever this manual documents a C function as part of SICStus Prolog’s foreign language
interface, the function prototype will be displayed in ANSI C syntax.
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1.5 ISO Compliance

SICStus Prolog is fully compliant with the International Stan-

dard ISO/IEC 13211-1 (PROLOG: Part 1—General Core)
(http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITSY2FIS0%2FIEC+13211%2D1%2D1995)
as augmented by Technical Corrigenda 1 and 2.

To aid programmers who wish to write standard compliant programs, built-in predicates
and arithmetic functors that are part of the ISO Prolog Standard are annotated with [ISO/
in this manual.


http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITS%2FISO%2FIEC+13211%2D1%2D1995
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2 Glossary

abolish To abolish a predicate is to retract all the predicate’s clauses and to remove all
information about it from the Prolog system, to make it as if that predicate
had never existed.

advice-point
A special case of breakpoint, the advice breakpoint. It is distinguished from
spypoints in that it is intended for non-interactive debugging, such as checking
of program invariants, collecting information, profiling, etc.

alphanumeric
An alphanumeric character is any of the lowercase characters from ‘a’ to ‘z’, the
uppercase characters from ‘A’ to ‘Z’, the numerals from ‘0’ to ‘9’, or underscore
((_7).

ancestors An ancestor of a goal is any goal that the system is trying to solve when it calls
that goal. The most distant ancestor is the goal that was typed at the top-level
prompt.

anonymous variable
An anonymous variable is one that has no unique name, and whose value is
therefore inaccessible. An anonymous variable is denoted by an underscore
(27

argument See predicate, structure, and arity.

arity The arity of a structure is its number of arguments. For example, the structure
customer (jones,85) has an arity of 2.

atom A character sequence used to uniquely denote some entity in the problem do-
main. A number is not an atom. Examples of legal atoms are:

hello  * 1= T #$%° ’New York’ ’don\’t’
See Section 4.1.2.4 [ref-syn-trm-ato], page 44. Atoms are recognized by the

built-in predicate atom/1. Each Prolog atom is represented internally by a
unique integer, represented in C as an SP_atom.

atomic term
Synonym for constant.

backtrace A collection of information on the control flow of the program, gathered by the
debugger. Also the display of this information produced by the debugger. The
backtrace includes data on goals that were called but not exited and also on
goals that exited nondeterminately.

backtracking
The process of reviewing the goals that have been satisfied and attempting to
resatisfy these goals by finding alternative solutions.

binding The process of assigning a value to a variable; used in unification.

blocked goal
A goal that is suspended because it is not instantiated enough.
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body The body of a clause consists of the part of a Prolog clause following the *:-’
symbol.

breakpoint

A description of certain invocations in the program where the user wants the
debugger to stop, or to perform some other actions. A breakpoint is specific
if it applies to the calls of a specific predicate, possibly under some condi-
tions; otherwise, it is generic. Depending on the intended usage, breakpoints
can be classified as debugger breakpoints, also known as spypoints, or advice
breakpoints, also called advice-points; see Section 5.6 [Advanced Debugging],
page 239.

breakpoint spec
A term describing a breakpoint. Composed of a test part, specifying the con-
ditions under which the breakpoint should be applied, and an action part,
specifying the effects of the breakpoint on the execution.

byte-list A byte-list is a list of bytes, i.e. integers in [0,. . .,255].
buffer A temporary workspace in Emacs that contains a file being edited.

built-in predicate
A predicate that comes with the system and that does not have to be explicitly
loaded before it is used.

callable term
A callable term is either a compound term or an atom. Callable terms are
recognized by the built-in predicate callable/1.

character code
An integer that is the numeric representation of a character in the character
code set.

character code set
A subset of the set {0, ..., 2°31-1} that can be handled in input/output.
SICStus Prolog fixes the character code set to a superset of Unicode, which
includes the ASCII code set, i.e. codes 0..127, and these codes are interpreted
as ASCII characters

character-conversion mapping
SICStus Prolog maintains a character-conversion mapping, which is used while
reading terms and programs. Initially, the mapping prescribes no character
conversions. It can be modified by the built-in predicate char_conversion(In,
Out), following which In will be converted to Out. Character coversion can be
switched off by the char_conversion Prolog flag.

Please note: the mapping is global, as opposed to being local to the current
module, Prolog text, or otherwise.

character-type mapping
A function mapping each element of the character code set to one of the char-
acter categories (whitespace, letter, symbol-char, etc.), required for parsing
tokens.
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choicepoints

clause

code-list

A memory block representing outstanding choices for some goals or disjunctions.

A fact or a rule. A rule comprises a head and a body. A fact consists of a head
only, and is equivalent to a rule with the body true.

A code-list is a list of character codes.

conditional compilation

Conditionally including or excluding parts of a file at compile time.

compactcode

compile

Virtual code representation of compiled code. A reasonable compromise be-
tween performance and space requirement. A valid value for the compiling
Prolog flag.

To load a program (or a portion thereof) into Prolog through the compiler.
Compiled code runs more quickly than interpreted code, and provides better
precision for execution profiling and coverage analysis. On the other hand, you
cannot debug compiled code in as much detail as interpreted code.

compound term

conjunction

A compound term is a term that is an atom together with one or more argu-
ments. For example, in the term father (X), father is the name, and X is the
first and only argument. The argument to a compound term can be another
compound term, as in father(father(X)). Compound terms are recognized
by the built-in predicate compound/1.

A series of goals connected by the connective “and” (that is, a series of goals
whose principal operator is ¢,’).

console-based executable

constant

consult

An executable that inherits the standard streams from the process that invoked
it, e.g. a UNIX shell or a DOS-prompt.

An integer (for example: 1, 20, -10), a floating-point number (for exam-
ple: 12.35), or an atom. Constants are recognized by the built-in predicate
atomic/1.

To load a program (or a portion thereof) into Prolog through the interpreter.
Interpreted code runs more slowly than compiled code, and does not provide
as good precision for execution profiling and coverage analysis. On the other
hand, you can debug interpreted code in more detail than compiled code.

control structure

creep

A built-in predicate that is “part of the language” in the sense that it is treated
specially in certain language features. The set of such control structures and
language features is enuemrated in Section 4.2.3 [ref-sem-ctr], page 63.

What the debugger does in trace mode, also known as single-stepping. It goes
to the next port of a procedure box and prints the goal, then prompts you for
input. See Section 5.2 [Basic Debug], page 229.
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cursor The point on the screen at which typed characters appear. This is usually
highlighted by a line or rectangle the size of one space, which may or may not
blink.

cut Written as !. A built-in predicate that succeeds when encountered; if back-

tracking should later return to the cut, the goal that matched the head of the
clause containing the cut fails immediately.

database  The Prolog database comprises all of the clauses that have been loaded or
asserted into the Prolog system or that have been asserted, except those clauses
that have been retracted or abolished.

db_reference
A compound term denoting a unique reference to a dynamic clause. Recognized
by the built-in predicate db_reference/1.

debug A mode of program execution in which the debugger stops to print the current
goal only at predicates that have spypoints set on them (see leap).

debugcode
Interpreted representation of compiled code. A valid value for the compiling
Prolog flag.

declaration
A declaration looks like a directive, but is not executed but rather conveys
information about predicates about to be loaded.

deinit function
A function in a foreign resource that is called prior to unloading the resource.

determinate
A predicate is determinate if it can supply only one answer.

development system
A stand-alone executable with the full programming environment, including
top-level, compiler, debugger etc. The default sicstus executable is a develop-
ment system; new development systems containing prelinked foreign resources
can also be created.

directive A directive is a goal preceded by the prefix operator ‘:-’, whose intuitive mean-
ing is “execute this as a query, but don’t print out any variable bindings.”

disjunction
A series of goals connected by the connective “or” (that is, a series of goals
whose principal operator is ;’).

do-loop A control structure of the form (Iterators do Body). It expresses a simple

iteration. See Section 4.2.3.5 [ref-sem-ctr-dol], page 68.

dynamic predicate
A predicate that can be modified while a program is running. The semantics of
such updates is described in Section 4.12.1 [ref-mdb-bas], page 174. A predicate
must explicitly be declared to be dynamic or it must be added to the database
via one of the assertion predicates.



Chapter 2: Glossary 11

encoded string
A sequence of bytes representing a sequence of possibly wide character codes,
using the UTF-8 encoding.

escape sequence
A sequence of characters beginning with ‘\” inside certain syntactic tokens (see
Section 4.1.7.6 [ref-syn-syn-esc]|, page 60).

export A module exports a predicate so that other modules can import it.

extended runtime system
A stand-alone executable. In addition to the normal set of built-in runtime
system predicates, extended runtime systems include the compiler. Extended
runtime systems require the extended runtime library, available from SICS as
an add-on product.

fact A clause with no conditions—that is, with an empty body. A fact is a statement
that a relationship exists between its arguments. Some examples, with possible
interpretations, are:

king(louis, france). 7 Louis was king of France.
have_beaks(birds) . % Birds have beaks.
employee(nancy, data_processing, 55000).
% Nancy is an employee in the
% data processing department.

file specification
An atom or a compound term denoting the name of a file. The rules for mapping
such terms to absolute file names are described in Section 4.5 [ref-fdi], page 94.

floundered query
A query where all unsolved goals are blocked.

foreign predicate
A predicate that is defined in a language other than Prolog, and explicitly
bound to Prolog predicates by the Foreign Language Interface.

foreign resource
A named set of foreign predicates.

functor The functor of a compound term is its name and arity. For example, the
compound term foo(a,b) is said to have “the functor foo of arity two”, which
is generally written foo/2.

The functor of a constant is the term itself paired with zero. For example, the
constant nl is said to have “the functor nl of arity zero”, which is generally
written nl/0.

garbage collection
The freeing up of space for computation by making the space occupied by terms
that are no longer available for use by the Prolog system.

generalized predicate spec
A generalized predicate spec corresponds to the argument type pred_spec_tree
(see Section 11.1.4.2 [mpg-ref-aty-ety]|, page 856) and is a term of one of the
following forms. It is always interpreted wrt. a given module context:
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Name all predicates called Name no matter what arity, where Name is an
atom for a specific name or a variable for all names, or

Name/Arity
the predicate of that name and arity, or

Module:Spec
specifying a particular module Module instead of the default mod-
ule, where Module is an atom for a specific module or a variable
for all modules, or

[Spec,. . .,Spec]
the set of all predicates covered by the Specs.

glue code Interface code between the Prolog engine and foreign predicates. Automatically
generated by the foreign language interface as part of building a linked foreign
resource.

goal A simple goal is a predicate call. When called, it will either succeed or fail.

A compound goal is a formula consisting of simple goals connected by connec-

[

tives such as “and” (*,’) or “or” (‘;’).

A goal typed at the top-level is called a query.

ground A term is ground when it is free of (unbound) variables. Ground terms are
recognized by the built-in predicate ground/1.

guarded clause
A clause of the form

Head :- Goals, !, Goals.

head The head of a clause is the single goal, which will be satisfied if the conditions
in the body (if any) are true; the part of a rule before the ‘:-’ symbol. The
head of a list is the first element of the list.

extendible predicate
An extendible predicate is a multifile predicate, to which new clauses can be
added by the user.

hook predicate
A hook predicate is a predicate that somehow alters or customizes the behavior
of a hookable predicate. Please note: any exception thrown by a hook predicate
is caught locally and printed as an error message.

hookable predicate
A hookable predicate is a built-in predicate whose behavior is somehow altered
or customized by a hook predicate.

interactive stream
A stream with the interactive stream property. Certain behavior of interac-
tive streams are optimized for the case where a human is at the other end of
the stream.
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import Exported predicates in a module can be imported by other modules. Once a
predicate has been imported by a module, it can be called, or exported, as if it
were defined in that module.

There are two kinds of importation: predicate-importation, in which only spec-
ified predicates are imported from a module; and module-importation, in which
all the predicates exported by a module are imported.

indexing  The process of filtering a set of potentially matching clauses of a predicate given
a goal. For interpreted and compiled code, indexing is done on the principal
functor of the first argument. Indexing is coarse wrt. large integers and floats.

init function

A function in a foreign resource that is called upon loading the resource.
initialization

An initialization is a goal that is executed when the file in which the initial-

ization is declared is loaded. An initialization is declared as a directive :-
initialization Goal. They are executed in input order.

instantiation
A variable is instantiated if it is bound to a non-variable term; that is, to an
atomic term or a compound term.

interpret  Load a program or set of clauses into Prolog through the interpreter (also known
as consulting). Interpreted code runs more slowly than compiled code, does not
provide as good precision for execution profiling and coverage analysis. On the
other hand, more extensive facilities are available for debugging interpreted
code.

invocation box
Same as procedure box.

iterator A compound term expressing how a do-loop should be iterated. See
Section 4.2.3.5 [ref-sem-ctr-dol], page 68.

large integer
An integer that is not a small integer.

layout term
In the context of handling line number information for source code, a source
term Source gets associated to a layout term Layout, which is one of the fol-
lowing:
e [], if no line number information is available for Source.

e If Source is a simple term, Layout is the number of the line where Source
occurs.

e If Source is a compound term, Layout is a list whose head is the number
of the line where the first token of Source occurs, and whose remaining
elements are the layouts of the arguments of Source.

leap What the debugger does in debug mode. The debugger shows only the ports
of predicates that have spypoints on them. It then normally prompts you for
input, at which time you may leap again to the next spypoint (see trace).
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leashing  Determines how frequently the debugger will stop and prompt you for input
when you are tracing. A port at which the debugger stops is called a “leashed
port”.

linked foreign resource
A foreign resource that is ready to be installed in an atomic operation, normally
represented as a shared object or DLL.

list
A partial list is either a variable, or a compound term whose principal functor is

the list constructor (’.?/2) and whose second argument is a partial list. Often
it is implied that the partial list is not a variable.

A proper list is either the empty list, i.e. the atom [], or a compound term whose
principal functor is the list constructor (’.’/2) and whose second argument is
a proper list.

A partial list or a proper list that is a compound term is said to be non-empty.

In many cases list is used to denote both the case of a proper list and the case
of a, most often non-variable, partial list.

A cyclic list is a compound term whose principal functor is the list constructor
(>.?/2) and whose second argument is a cyclic list, e.g. what could be con-
structed using L="."(a,L), or L=[a,b|L]. Passing a cyclic list as an argument
to a predicate that expects a partial or proper list should be avoided as not all
predictes are prepared to handle such input.

A list is often written using list syntax, e.g. using [a,b] to denote the
(proper) list >.’>(a,?.’ (b, [1)), or using [a,b|Tail] to denote the (partial)
list .7 (a,’.’ (b,Tail)).

load To load a Prolog clause or set of clauses, in source or binary form, from a file
or set of files.

meta-call The process of interpreting a callable term as a goal. This is done e.g. by the
built-in predicate call/1.

meta-logical predicate
A predicate that performs operations that require reasoning about the current
instantiation of terms or decomposing terms into their constituents. Such op-
erations cannot be expressed using predicate definitions with a finite number
of clauses.

meta-predicate
A meta-predicate is one that calls one or more of its arguments; more generally,
any predicate that needs to assume some module in order to operate is called
a meta-predicate. Some arguments of a meta-predicate are subject to module
name expansion.

module Every predicate belongs to a module. The name of a module is an atom. Some
predicates in a module are exported. The default module is user.

module name expansion
The process by which certain arguments of meta-predicates get prefixed by the
source module. See Section 4.11.15 [ref-mod-mne], page 169.
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module-file
A module-file is a file that is headed with a module declaration of the form:

:— module(ModuleName, ExportedPredList) .

which must appear as the first term in the file. When a module-file or its
corresponding object file is loaded, all predicates defined in the module are
removed, and all predicate imported into the module are unimported.

multifile predicate
A predicate whose definition is to be spread over more than one file. Such
a predicate must be preceded by an explicit multifile declaration in all files
containing clauses for it.

mutable term
A special form of compound term subject to destructive assignment. See
Section 4.8.9 [ref-lte-mut]|, page 129. Mutable terms are recognized by the
built-in predicate mutable/1.

name clash
A name clash occurs when a module attempts to define or import a predicate
that it has already defined or imported.

occurs-check
A test to ensure that binding a variable does not bind it to a term where that
variable occurs.

one-char atom
An atom that consists of a single character.

operator A notational convenience that allows you to express any compound term in a
different format. For example, if 1ikes in
| ?- likes(sue, cider).
is declared an infix operator, the query above could be written:
| ?- sue likes cider.

An operator does not have to be associated with a predicate. However, certain
built-in predicates are declared as operators. For example,

| 7= =.. (X, V).
can be written as
| 7- X =.. Y.
because =. . has been declared an infix operator.

Those predicates that correspond to built-in operators are written using infix
notation in the list of built-in predicates at the beginning of the part that
contains the reference pages.

Some built-in operators do not correspond to built-in predicates; for example,
arithmetic operators. See Section 4.1.5.4 [ref-syn-ops-bop]|, page 51 for a list of
built-in operators.

pair A compound term K-V. Pairs are used by the built-in predicate keysort/2 and
by many library modules.
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parent The parent of the current goal is a goal that, in its attempt to obtain a successful
solution to itself, is calling the current goal.

port One of the seven key points of interest in the execution of a Prolog predicate.
See Section 5.1 [Procedure Box], page 227 for a definition.

prelinked foreign resource
A linked foreign resource that is linked into a stand-alone executable as part of
building the executable.

precedence
A number associated with each Prolog operator, which is used to disambiguate
the structure of the term represented by an expression containing a number
of operators. Operators of lower precedence are applied before those of higher
precedence; the operator with the highest precedence is considered the principal
functor of the expression. To disambiguate operators of the same precedence,
the associativity type is also necessary. See Section 4.1.5 [ref-syn-ops]|, page 47.

predicate A functor that specifies some relationship existing in the problem domain. For
example, < /2 is a built-in predicate specifying the relationship of one number
being less than another. In contrast, the functor + /2 is not (normally used as)
a predicate.

A predicate is either built-in or is implemented by a procedure.

predicate spec
A compound term name/arity or module :name/arity denoting a predicate.

procedure A set of clauses in which the head of each clause has the same predicate. For
instance, a group of clauses of the following form:
connects(san_francisco, oakland, bart_train).
connects(san_francisco, fremont, bart_train).
connects(concord, daly_city, bart_train).

is identified as belonging to the predicate connects/3.

procedure box
A way of visualizing the execution of a Prolog procedure, A procedure box is
entered and exited via ports.

profiling  The process of gathering execution statistics of the program, essentially count-
ing the number of times selected program points have been reached.

program A set of procedures designed to perform a given task.

PO file A PO (Prolog object) file contains a binary representation of a set of mod-
ules, predicates, clauses and directives. They are portable between different
platforms, except between 32-bit and 64-bit platforms. They are created by
save_files/2, save_modules/2, and save_predicates/2.

query A query is a question put by the user to the Prolog system. A query is written as
a goal followed by a full-stop in response to the top-level prompt. For example,

| ?- father(edward, ralph).
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refers to the predicate father/2. If a query has no variables in it, the system
will respond either ‘yes’ or ‘no’. If a query contains variables, the system will
try to find values of those variables for which the query is true. For example,

| ?- father(edward, X).

X = ralph
After the system has found one answer, the user can direct the system to look
for additional answers to the query by typing ;.

recursion  The process in which a running predicate calls itself, presumably with different
arguments and for the purpose of solving some subset of the original problem.

region The text between the cursor and a previously set mark in an Emacs buffer.

rule A clause with one or more conditions. For a rule to be true, all of its conditions
must also be true. For example,

has_stiff_neck(ralph) :-
hacker (ralph) .

This rule states that if the individual ralph is a hacker, he must also have a
stiff neck. The constant ralph is replaced in

has_stiff_neck(X) :-
hacker (X) .

by the variable X. X unifies with anything, so this rule can be used to prove
that any hacker has a stiff neck.

runtime kernel
A shared object or DLL containing the SICStus virtual machine and other
runtime support for stand-alone executables.

runtime system
A stand-alone executable with a restricted set of built-in predicates and no top-
level. Stand-alone applications containing debugged Prolog code and destined
for end-users are typically packaged as runtime systems.

saved-state
A snapshot of the state of Prolog saved in a file by save_program/[1,2].

semantics The relation between the set of Prolog symbols and their combinations (as
Prolog terms and clauses), and their meanings. Compare syntax.

sentence A clause or directive.

side-effect A predicate that produces a side-effect is one that has any effect on the “outside
world” (the user’s terminal, a file, etc.), or that changes the Prolog database.

simple term
A simple term is a constant or a variable. Simple terms are recognized by the
built-in predicate simple/1.

skeletal goal
A compound term name(arg, ..., arg) or module:name (arg, ..., arg)
denoting a predicate.
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small integer
An integer in the range [-2728,2728-1] on 32-bit platforms, or [-2760,2760-
1] on 64-bit platforms. The start and end of this range is available as the
value of the Prolog flags min_tagged_integer and max_tagged_integer, re-
spectively.

source code
The human-readable, as opposed to the machine-executable, representation of
a program.

source module
The module that is the context of a file being loaded. For module-files, the
source module is named in the file’s module declaration. For other files, the
source module is inherited from the context.

SP_atom since release 4.3
A C type for the internal representation of Prolog atoms. Used in SICStus API
functions.

SP_integer since release 4.3

A C type denoting an integer that is large enough to hold a pointer. Used in
SICStus API functions.

SP_term_ref
A C type denoting a “handle” object providing an interface from C to Prolog
terms. Used in SICStus API functions.

spypoint A special case of breakpoint, the debugger breakpoint, intended for interactive
debugging. Its simplest form, the plain spypoint instructs the debugger to stop
at all ports of all invocations of a specified predicate. Conditional spypoints
apply to a single predicate, but are more selective: the user can supply appli-
cability tests and prescribe the actions to be carried out by the debugger. A
generic spypoint is like a conditional spypoint, but not restricted to a single
predicate. See Section 5.6 [Advanced Debugging], page 239.

stand-alone executable
A binary program that can be invoked from the operating system, containing
the SICStus runtime kernel. A stand-alone executable is a development system
(e.g. the default sicstus executable), or a runtime system. Both kinds are
created by the application builder. A stand-alone executable does not itself
contain any Prolog code; all Prolog code must be loaded upon startup.

static predicate
A predicate that can be modified only by being reloaded or by being abolished.
See dynamic predicate.

steadfast A predicate is steadfast if it refuses to give the wrong answer even when the
query has an unexpected form, typically with values supplied for arguments
intended as output.

stream An input/output channel. See Section 4.6 [ref-iou], page 100.
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stream alias

A name assigned to a stream at the time of opening, which can be referred to
in I/O predicates. Must be an atom. There are also three predefined aliases for
the standard streams: user_input, user_output and user_error. Although
not a stream alias proper, the atom user also stands for the standard input or
output stream, depending on context.

stream object

A term denoting an open Prolog stream. See Section 4.6 [ref-iou], page 100.

stream position

A term representing the current position of a stream. This position is deter-
mined by the current byte, character and line counts and line position. Stan-
dard term comparison on stream position terms works as expected. When SP1
and SP2 refer to positions in the same stream, SP1@<SP2 if and only if SP1
is before SP2 in the stream. You should not otherwise rely on their internal
representation.

stream property

string

A term representing the property of an open Prolog stream. The possible forms
of this term are defined in Section 4.6.7.8 [ref-iou-sth-bos], page 112.

A special syntactic notation, which, by default, denotes a code-list, e.g.:
"SICStus"

By setting the Prolog flag double_quotes, the meaning of strings can be
changed. With an appropriate setting, a string can be made to denote a char-
list, or an atom. Strings are not a separate data type.

subterm selector

syntax

A list of argument positions selecting a subterm within a term (i.e. the subterm
can be reached from the term by successively selecting the argument positions
listed in the selector). Example: within the term q, (r, s; t) the subterm s
is selected by the selector [2, 1, 2].

The part of Prolog grammar dealing with the way in which symbols are put
together to form legal Prolog terms. Compare semantics.

system property

term

trace

SICStus Prolog stores some information in named variables called system prop-
erties. System properties are used as of release 4.1, where previous releases used
environment variables.

The default value for a system property is taken from the corresponding en-
vironment variable. Any exceptions to this rule is explicitly mentioned in the
documentation. See Section 4.17.1 [System Properties and Environment Vari-
ables]|, page 222 for more information.

A basic data object in Prolog. A term can be a constant, a variable, or a
compound term.

A mode of program execution in which the debugger creeps to the next port
and prints the goal.
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type-in module

The module that is the context of queries.

unblocked goal

unbound

unification

unit clause

variable

volatile

A goal that is not blocked any more.
A variable is unbound if it has not yet been instantiated.

The process of matching a goal with the head of a clause during the evaluation
of a query, or of matching arbitrary terms with one another during program
execution.

The rules governing the unification of terms are:
e Two constants unify with one another if they are identical.

e A variable unifies with a constant or a compound term. As a result of the
unification, the variable is instantiated to the constant or compound term.

e A variable unifies with another variable. As a result of the unification, they
become the same variable.

e A compound term unifies with another compound term if they have the
same functor and if all of the arguments can be unified.

See fact.

A logical variable is a name that stands for objects that may or may not be
determined at a specific point in a Prolog program. When the object for which
the variable stands is determined in the Prolog program, the variable becomes
instantiated. A logical variable may be unified with a constant, a compound
term, or another variable. Variables become uninstantiated when the predicate
they occur in backtracks past the point at which they were instantiated.

Variables may be written as any sequence of alphanumeric characters starting

with either a capital letter or ‘_’; e.g.:
X Y Z Name Position c _305 O0One_stop

See Section 4.1.2.5 [ref-syn-trm-var], page 44.

Predicate property. The clauses of a volatile predicate are not saved in saved-
states.

windowed executable

ZIip

An executable that pops up its own window when run, and that directs the
standard streams to that window.

Same as debug mode, except no debugging information is collected while zip-
ping.
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3 How to Run Prolog

SICStus Prolog offers the user an interactive programming environment with tools for incre-
mentally building programs, debugging programs by following their executions, and modi-
fying parts of programs without having to start again from scratch.

The text of a Prolog program is normally created in a file or a number of files using one of
the standard text editors. The Prolog interpreter can then be instructed to read in programs
from these files; this is called consulting the file. Alternatively, the Prolog compiler can be
used for compiling the file.

3.1 Getting Started

Under UNIX, SICStus Prolog can be started from one of the shells. On other platforms, it
is normally started by clicking on an icon. However, it is often convenient to run SICStus
Prolog under GNU Emacs or the SPIDER IDE (see Section 3.11 [SPIDER]|, page 29),
instead. A GNU Emacs interface for SICStus Prolog is described later (see Section 3.12
[Emacs Interface|, page 32). From a UNIX or Windows shell, SICStus Prolog can be
started by invoking the sicstus command-line tool, using the full path to sicstus unless
its location has been added to the shell’s path.

Under UNIX, a saved-state file can be executed directly by typing:
% file argument...

This is equivalent to:
% sicstus -r file [-- argument...]

Please note: Saved-states don’t store the complete path of the binary sicstus.
Instead, they call the main executable using the version specific name sicstus-
4.3.1, which is assumed to be found in the shell’s path. If there are several
versions of SICStus installed, it is up to the user to make sure that the correct
start-script is found.

Notice that the flags are not available when executing saved-states—all the command-line
arguments are treated as Prolog arguments.

The development system checks that a valid SICStus license exists and, unless the
‘-—nologo’ option was used, responds with a message of identification and the prompt
‘| 7- 7 as soon as it is ready to accept input, thus:

SICStus 4.3.1 ...

Licensed to SICS
| 7-

At this point the top-level is expecting input of a query. You cannot type in clauses or
directives immediately (see Section 3.3 [Inserting Clauses|, page 22). While typing in a
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query, the prompt (on following lines) becomes ¢ ’. That is, the ‘| 7- ’ appears only
for the first line of the query, and subsequent lines are indented.

3.2 Reading in Programs

A program is made up of a sequence of clauses and directives. The clauses of a predicate
don’t have to be immediately consecutive, but remember that their relative order may be
important (see Section 4.2 [ref-sem]|, page 61).

To input a program from a file file, issue a query of the form:
| ?- consult(file).

This instructs the interpreter to read in (consult) the program. Note that it may be neces-
sary to enclose the filename file in single quotes to make it a legal Prolog atom; e.g.:

| 7= consult(’myfile.pl’).

| ?- consult(’/usr/prolog/somefile’).

The specified file is then read in. Clauses in the file are stored so that they can later be
interpreted, while any directives are obeyed as they are encountered. When the end of
the file is found, the system displays on the standard error stream the time spent. This
indicates the completion of the query.

Predicates that expect the name of a Prolog source file, or more generally a file specification,
use the facilities described in Section 4.5 [ref-fdi], page 94 to resolve the file name. File
extensions are optional. There is also support for libraries.

This query can also take any list of filenames, such as:
| ?- consult([myprog,extras,tests]).

In this case all three files would be consulted. The clauses for all the predicates in the
consulted files will replace any existing clauses for those predicates, i.e. any such previously
existing clauses in the database will be deleted.

3.3 Inserting Clauses at the Terminal

Clauses may also be typed in directly at the terminal, although this is only recommended
if the clauses will not be needed permanently, and are few in number. To enter clauses at
the terminal, you must give the special query:

| ?- consult(user).

and the new prompt ‘| ’ shows that the system is now in a state where it expects input of
clauses or directives. To return to top-level, type “D. The system responds thus:

% consulted user in module user, 20 msec 200 bytes
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3.4 Queries and Directives

Queries and directives are ways of directing the system to execute some goal or goals.

In the following, suppose that list membership has been defined by loading the following
clauses from a file:

memb (X, [X[_]1).
memb(X, [_IL]) :- memb(X, L).

(Notice the use of anonymous variables written ‘_’.)

3.4.1 Queries

The full syntax of a query is ‘?-’ followed by a sequence of goals. The top-level expects
queries. This is signaled by the initial prompt ‘| 7- ’. Thus a query at top-level looks like:

| ?- memb(b, [a,b,c]).

Remember that Prolog terms must terminate with a full stop (‘.’, possibly followed by
whitespace), and that therefore Prolog will not execute anything until you have typed the
full stop (and then RET) at the end of the query.

If the goal(s) specified in a query can be satisfied, and if there are no variables as in this
example, the system answers

yes
and execution of the query terminates.

If variables are included in the query, the final value of each variable is displayed (except
for variables whose names begin with ‘_"). Thus the query

| ?- memb(X, [a,b,c]).

would be answered by

At this point, the development system accepts one-letter commands corresponding to certain
actions. To execute an action simply type the corresponding character (lower or upper case)
followed by RET. The available commands in development systems are:

RET

v “accepts” the solution; the query is terminated and the development system
responds with ‘yes’.

n “rejects” the solution; the development system backtracks (see Section 4.2 [ref-

sem|, page 61) looking for alternative solutions. If no further solutions can be
found it outputs ‘no’.

b invokes a recursive top-level.
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In the top-level, a global printdepth is in effect for limiting the subterm nesting
level when printing bindings. The limit is initially 10.

This command, without arguments, resets the printdepth to 10. With an ar-
gument of n, the printdepth is set to n, treating 0 as infinity. This command
works by changing the value of the toplevel_print_options Prolog flag.

A local subterm selector, initially [], is maintained. The subterm selector
provides a way of zooming in to some subterm of each binding. For example,
the subterm selector [2,3] causes the 3rd subterm of the 2nd subterm of each
binding to be selected.

This command, without arguments, resets the subterm selector to [1. With
an argument of 0, the last element of the subterm selector is removed. With
an argument of n (> 0), n is added to the end of the subterm selector. With
multiple arguments separated by whitespace, the arguments are applied from
left to right.

lists available commands.

While the variable bindings are displayed, all variables occurring in the values are replaced
by friendlier variable names. Such names come out as a sequence of letters and digits
preceded by ‘_’. The outcome of some queries is shown below.

X

no

< o

X

?7- memb (X, [tom,dick,harry]).

-~

-~

t

om ;

dick ;
harry ;

- memb(X, [a,b,f(Y,c)]), memb(X, [f(b,Z),d]).

£
b
c

(b,c),

3

- memb(X, [f(_),gl).

f

(_B)

Directives are like queries except that:

1. Variable bindings are not displayed if and when the directive succeeds.

2. You are not given the chance to backtrack through other solutions.

3.4.2 Directives

Directives start with the symbol ‘:-’. Any required output must be programmed explicitly;
e.g. the directive:
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:- memb(3, [1,2,3]), write(ok).

asks the system to check whether 3 belongs to the list [1,2,3]. Execution of a direc-
tive terminates when all the goals in the directive have been successfully executed. Other
alternative solutions are not sought. If no solution can be found, the system prints:

* Goal - goal failed
as a warning.

The principal use for directives (as opposed to queries) is to allow files to contain directives
that call various predicates, but for which you don’t want to have the answers printed
out. In such cases you only want to call the predicates for their effect, i.e. you don’t want
terminal interaction in the middle of consulting the file. A useful example would be the use
of a directive in a file that consults a whole list of other files, e.g.:

:— consult([ bits, bobs, main, tests, data, junk ]).

If a directive like this were contained in the file ‘myprog’, typing the following at top-level
would be a quick way of reading in your entire program:

| ?- [myprogl].

When simply interacting with the top-level, this distinction between queries and directives
is not normally very important. At top-level you should just type queries normally. In a file,
queries are in fact treated as directives, i.e. if you wish to execute some goals, the directive
in the file must be preceded by ‘:-" or ‘?-’; otherwise, it would be treated as a clause.

3.5 Syntax Errors

Syntax errors are detected during reading. Each clause, directive or, in general, any term
read in by the built-in predicate read/1 that fails to comply with syntax requirements is
displayed on the standard error stream as soon as it is read, along with its position in the
input stream and a mark indicating the point in the string of symbols where the parser has
failed to continue analysis, e.g.:

| memb(X, X$L).

I Syntax error

I , or ) expected in arguments
! in line 5

! memb ( X , X

I <<here>>

I

$ L)
if ‘¢’ has not been declared as an infix operator.

Note that any comments in the faulty line are not displayed with the error message. If you
are in doubt about which clause was wrong you can use the listing/1 predicate to list all
the clauses that were successfully read in, e.g.:
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| ?- listing(memb/2).

Please note: The built-in predicates read/ [1,2] normally raise an exception on
syntax errors (see Section 4.15 [ref-ere], page 195). The behavior is controlled
by the Prolog flag syntax_errors.

3.6 Undefined Predicates

There is a difference between predicates that have no definition and predicates that have
no clauses. The latter case is meaningful e.g. for dynamic predicates (see Section 4.3.4
[ref-lod-dcl], page 81) that clauses are being added to or removed from. There are good
reasons for treating calls to undefined predicates as errors, as such calls easily arise from
typing errors.

The system can optionally catch calls to predicates that have no definition. First, the
user defined predicate user:unknown_predicate_handler/3 (see Section 4.15 [ref-ere],
page 195) is called. If undefined or if the call fails, the action is governed by the state
of the unknown Prolog flag; see Section 4.9.4 [ref-Ips-flg], page 134. Calls to predicates that
have no clauses are not caught. See Section 11.3.244 [mpg-ref-unknown_predicate_handler],
page 1190. Two development system predicates are handy in this context:

| ?- unknown(X,error).
% Undefined predicates will raise an exception (error)
X = error

This sets the flag and prints a message about the new value.

| ?- debugging.

The debugger is switched off

Using leashing stopping at [call,exit,redo,fail,exception] ports
Undefined predicates will raise an exception (error)

There are no breakpoints

This prints a message about the current value, as well as information about the state of the
debugger.

3.7 Program Execution And Interruption

Execution of a program is started by giving the system a query that contains a call to one
of the program’s predicates.

Only when execution of one query is complete does the system become ready for another
query. However, one may interrupt the normal execution of a query by typing ~C. This
~C interruption has the effect of suspending the execution, and the following message is
displayed:

Prolog interruption (h or ? for help) 7



Chapter 3: How to Run Prolog 27

At this point, the development system accepts one-letter commands corresponding to certain
actions. To execute an action simply type the corresponding character (lower or upper case)
followed by RET. The available commands in development systems are:

a aborts the current computation.
c continues the execution.

exits from SICStus Prolog, closing all files.

h

? lists available commands.

b invokes a recursive top-level.

d

z

t switch on the debugger. See Chapter 5 [Debug Intro|, page 227.

If the standard input stream is not connected to the terminal, e.g. by redirecting standard
input to a file or a pipe, the above ~C interrupt options are not available. Instead, typing
~C causes SICStus Prolog to exit, and no terminal prompts are printed.

3.8 Exiting From The Top-Level

To exit from the top-level and return to the shell, either type ~D at the top-level, or call the
built-in predicate halt/0, or use the e (exit) command following a ~C interruption.

3.9 Nested Executions—Break

The Prolog system provides a way to suspend the execution of your program and to enter
a new incarnation of the top-level where you can issue queries to solve goals etc. This is
achieved by issuing the query (see Section 3.7 [Execution], page 26):

| ?- break.

This invokes a recursive top-level, indicated by the message:
% Break level 1

You can now type queries just as if you were at top-level.

If another call of break/0 is encountered, it moves up to level 2, and so on. To close the
break and resume the execution that was suspended, type “D. The debugger state and
current input and output streams will be restored, and execution will be resumed at the
predicate call where it had been suspended after printing the message:

% End break

3.10 Saving and Restoring Program States

Once a program has been read, the system will have available all the information necessary
for its execution. This information is called a program state.
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The saved-state of a program may be saved on disk for future execution. To save a program
into a file File, type the following query. On UNIX platforms, the file becomes executable:

| ?- save_program(File).

You can also specify a goal to be run when a saved program is restored. This is done by:
| ?- save_program(File, start).

where start/0 is the predicate to be called.

Once a program has been saved into a file File, the following query will restore the system
to the saved-state:

| ?- restore(File).

If a saved-state has been moved or copied to another machine, or if it is a symbolic link, the
path names of foreign resources and other files needed upon restore are typically different
at restore time from their save time values. To solve this problem, certain atoms will be
renamed during restore as follows:

e Atoms that had ‘$SP_PATH/library’ (the name of the directory containing the Prolog
Library) as prefix at save time will have that prefix replaced by the corresponding
restore time value.

e Atoms that had the name of the directory containing Flile as prefix at save time will
have that prefix replaced by the corresponding restore time value.

The purpose of this procedure is to be able to build and deploy an application consisting of
a saved-state and other files as a directory tree with the saved-state at the root: as long as
the other files maintain their relative position in the deployed copy, they can still be found
upon restore. See Section 6.8.2 [Building for a Target Machine], page 328 for an example.

Please note: When creating a saved-state with save_program/[1,2], the
names and paths of foreign resources, are included in the saved-state. After
restoring a saved-state, this information is used to reload the foreign resources
again.

The state of the foreign resource in terms of global C variables and allocated
memory is thus not preserved. Foreign resources may define init and deinit
functions to take special action upon loading and unloading; see Section 6.2.6
[Init and Deinit Functions]|, page 292.

As of release 3.8, partial saved-states corresponding to a set of source files, modules, and
predicates can be created by the built-in predicates save_files/2, save_modules/2, and
save_predicates/2 respectively. These predicates create files in a binary format, by default
with the prefix ‘.po’ (for Prolog object), which can be loaded by load_files/[1,2]. In
fact, PO files use exactly the same binary format as saved-states, and are subject to the
same above-mentioned atom renaming rules. For example, to compile a program split into
several source files into a single PO file, type:
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| ?- compile(Files), save_files(Files, Object).

For each filename given, the first goal will try to locate a source file and compile it into
memory. The second goal will save the program just compiled into a PO file whose default
suffix is ‘.po’. Thus the PO file will contain a partial memory image.

Please note: PO files can be created with any suffix, but cannot be loaded
unless the suffix is ‘. po’!

3.11 SICStus Prolog IDE

SICStus Prolog IDE, also known as SPIDER, is an Eclipse-based development environment
for SICStus with many powerful features.

SPIDER was added in release 4.1 and is described on its own site,
http://sicstus.sics.se/spider/.

Some of the features of SPIDER are:

Semantic Highligting
Code is highlighted based on semantic properties such as singleton variables,

On-the-fly warnings
The editor flags things like calls to undefined predicates, incorrect use of direc-
tives, missing declarations, . ..

Pop-up documentation
Predicate documentation is parsed on-the-fly and shown when the mouse is
hovering over a call. This works for both built-in and user-defined predicates.

Open Definition
Clicking on a called predicate can bring up its source code.

Call Hierarchy
Show callers and other references to a predicate or file.

Profiling  Show profiling data

Source Code Coverage
Show source code coverage, both as margin annotations and in various tabular
forms.

Call Hierarchy
Show callers and other references to a predicate or file.

File outline
The predicates in a file are shown in an outline. They can be alphabetically
sorted and non-exported predicates can be hidden from the outline.

Variable Bindings in Debugger
The debugger shows the names and values of variables.
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Debugger Backtrace
Backtrace is shown and there are buttons for common debugger actions (Step
Over, Step Out, Redo, .. .).

Source Code Debugging
Source-linked debugging. Works also for code that has no recorded source info,
like the SICStus library.

Prolog Toplevel
The ordinary toplevel is still available, including the traditional debugger in-
terface.

Attach to embedded code
SPIDER can attach to a SICStus runtime embedded in some other program.

Works With Existing Code
No need to reorganize your code, SPIDER can work with your existing folder
structure.

Powered by Eclipse
Eclipse provides many features for free, like support for other programming
languages, revision control, and much more.

Some of these features can be seen in the following screen shot.
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3 SIC5tus Debugging - My Prelog Project/my_module.pro - Eclipse SDK
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Some Features of SPIDER

3.12 Emacs Interface

This section explains how to use the GNU Emacs interface for SICStus Prolog, and how
to customize your GNU Emacs environment for it. Note that the SPIDER IDE (see
Section 3.11 [SPIDER], page 29) has many more features than the GNU Emacs interface.

Emacs is a powerful programmable editor especially suitable for program development.
It is available for free for many platforms, including various UNIX dialects, Windows
and OS X. For information specific to GNU Emacs , see http://www.gnu.org. For in-
formation on running Emacs under Windows, see the ‘GNU Emacs FAQ For MS Windows’ at
http://www.gnu.org/software/emacs/windows/ntemacs.html.

The advantages of using SICStus in the Emacs environment are source-linked debugging,
auto indentation, syntax highlighting, help on predefined predicates (requires the SICStus
info files to be installed), loading code from inside Emacs, auto-fill mode, and more.

The Emacs interface is not part of SICStus Prolog proper, but is included in the distribution
for convenience. It was written by Emil Astrém and Milan Zamazal, based on an earlier
version of the mode written by Masanobu Umeda. Contributions have also been made
by Johan Andersson, Peter Olin, Mats Carlsson, Johan Bevemyr, Stefan Andersson, Per
Danielsson, Per Mildner, Henrik Bakman, and Tamas Rozméan. Some ideas and also a few
lines of code have been borrowed (with permission) from ‘0z.el’, by Ralf Scheidhauer and
Michael Mehl, the Emacs major mode for the Oz programming language.

3.12.1 Installation

See Section “The Emacs Interface” in SICStus Prolog Release Notes for more information
about installing the Emacs interface.

3.12.1.1 Quick-Start

Assuming the Emacs interface for SICStus Prolog has been installed in the default location,
inserting a single line in your ‘*/.emacs’ will make Emacs use the SICStus Prolog mode
automatically when editing files with a ‘. pro’ or ‘.pl’ extension. It will also ensure Emacs
can find the SICStus executables and on-line documentation, etc.

Note to Windows users: ‘7/.emacs’ denotes a file ‘.emacs’ in whatever FEmacs
considers to be your home directory. See ‘GNU Emacs FAQ For MS Windows’ at
http://www.gnu.org/software/emacs/windows/ntemacs.html for details.

Under UNIX, assuming SICStus 4.3.1 was installed in ‘/usr/local/’, add the following
line:

(load "/usr/local/lib/sicstus-4.3.1/emacs/sicstus_emacs_init")

Under Windows, assuming SICStus 4.3.1 was installer in ‘C:\Program Files\SICStus
Prolog 4.3.1\’, add the following line:


http://www.gnu.org
http://www.gnu.org/software/emacs/windows/ntemacs.html
http://www.gnu.org/software/emacs/windows/ntemacs.html
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(load "C:/Program Files/SICStus Prolog
4.3.1/emacs/sicstus_emacs_init")

No other configuration should be needed to get started. If you want to customize things,
look in the ‘sictus_emacs_init.el’ file and the rest of this section.

3.12.1.2 Customizing Emacs

Version 20 of GNU Emacs and XEmacs introduced a new method for editing and storing
user settings. This feature is available from the menu bar as ‘Customize’ and particular
FEmacs variables can be customized with M-x customize-variable. Using ‘Customize’ is
the preferred way to modify the settings for Emacs and the appropriate customize commands
will be indicated below, sometimes together with the old method of directly setting Emacs
variables.

3.12.1.3 Enabling Emacs Support for SICStus

This section is for reference only, it can safely be skipped; it will let you understand the
setup that is performed by the ‘sictus_emacs_init.el’ file.

Assuming the Emacs interface for SICStus Prolog has been installed in the default location,
inserting the following lines in your ‘~/.emacs’ will make Emacs use this mode automatically
when editing files with a ‘.pro’ or ‘.pl’ extension:

(setq load-path

(cons (expand-file-name "/usr/local/lib/sicstus-4.3.1/emacs")

load-path))
(autoload ’run-prolog "prolog" "Start a Prolog sub-process." t)
(autoload ’prolog-mode "prolog" "Major mode for editing Prolog programs." t)
(setq prolog-use-sicstus-sd t)
(setq auto-mode-alist (append ’(("\\.pro$" . prolog-mode)
("\\.pl$" . prolog-mode))
auto-mode-alist))

where the path in the first line is the file system path to ‘prolog.el’ (the generic Prolog
mode) and ‘sicstus-support.el’ (SICStus specific code). For example, ‘~/emacs’ means
that the file is in the user’s home directory, in directory emacs. Windows paths can be
written like ‘C:/Program Files/SICStus Prolog 4.3.1/emacs’.

The last line above makes sure that files ending with ‘.pro’ or ‘.pl’ are assumed to be

Prolog files and not Perl, which is the default Emacs setting for ‘.pl’. If this is undesirable,
remove that line. It is then necessary for the user to manually switch to Prolog mode
by typing M-x prolog-mode after opening a Prolog file; for an alternative approach, see
Section 3.12.4 [Mode Line], page 37.

If the shell command sicstus is not available in the default path, it is necessary to set the
value of the environment variable EPROLOG to a shell command to invoke SICStus Prolog.
This is an example for C Shell:

% setenv EPROLOG /usr/local/bin/sicstus
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3.12.1.4 Enabling Emacs Support for SICStus Documentation

If you follow the steps in Section Quick Start, above, you can skip this section.

It is possible to look up the documentation for any built-in or library predicate from within
Emacs (using C-c 7 or the menu). For this to work Emacs must be told about the location
of the ‘info’-files that make up the documentation.

The default location for the ‘info’-files are ‘<prefix>/1ib/sicstus-4.3.1/doc/info/’ on
UNIX platforms and ‘C:/Program Files/SICStus Prolog 4.3.1/doc/info/’ under Win-
dows.

Add the following to your ‘~/.emacs’ file, assuming INFO is the path to the info files, e.g.
‘C:/Program Files/SICStus Prolog 4.3.1/doc/info/’

(setq Info-default-directory-list
(append Info-default-directory-list ’("INFO")))

for GNU Emacs, or

(setq Info-directory-list
(append Info-directory-list ’("INF0")))

for XEmacs. You can also use M-x customize-group RET info RET if your Emacs is recent
enough. You may have to quit and restart Emacs for these changes to take effect.

3.12.2 Basic Configuration

If the following lines are not present in ‘~/.emacs’, we suggest they are added, so that
the font-lock mode (syntax coloring support) is enabled for all major modes in Emacs that
support it.

(global-font-lock-mode t) ; GNU Emacs
(setq font-lock-auto-fontify t) ; XEmacs
(setq font-lock-maximum-decoration t)

These settings and more are also available through M-x customize-group RET font-lock.

If one wants to add font-locking only to the Prolog mode, the two lines above could be
replaced by:

(add-hook ’prolog-mode-hook ’turn-on-font-lock)
Similarly, to turn it off only for Prolog mode use:
(add-hook ’prolog-mode-hook ’turn-off-font-lock)

3.12.3 Usage

A Prolog process can be started by choosing Run Prolog from the Prolog menu, by typing
C-c RET, or by typing M-x run-prolog. It is however not strictly necessary to start a Prolog
process manually since it is automatically done when consulting or compiling, if needed.
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The process can be restarted (i.e. the old one is killed and a new one is created) by typing
C-u C-c RET, in this case Emacs will also prompt for a Lisp list of extra parameters to pass
on the command line.

Programs are run and debugged in the normal way, with terminal I/O via the *prolog*
buffer. The most common debugging predicates are available from the menu or via key-
bindings.

A particularly useful feature under the Emacs interface is source-linked debugging. This
is enabled or disabled using the Prolog/Source-linked debugging menu entry. It can
also be enabled by setting the Emacs variable prolog-use-sicstus-sd to t in ‘7/.emacs’.
Both these methods set the Prolog flag source_info to emacs. Its value should be emacs
while loading the code to be debugged and while debugging. If so, the debugger will display
the source code location of the current goal when it prompts for a debugger command, by
highlighting the current line. If source_info was off when the code was loaded, or if it
was asserted or loaded from user, the current goal will still be shown but out of context.

Note that if the code has been modified since it was last loaded, Prolog’s line number
information may be invalid. If this happens, just reload the relevant buffer.

Another useful feature which is available for code loaded with source_info switched on is
that the debugger can show the variable bindings for the current goal, its ancestors, and
the clauses they occur in. The bindings are shown in a separate *Prolog Bindings* buffer.
This is enabled by the C-c C-g command and disabled by the C-u C-c C-g command.

Yet another feature which is available for compiled code loaded with source_info switched
on is code coverage highlighting (see Section 9.3 [Coverage Analysis], page 348). Highlight-
ing of the current buffer is refreshed by the C-c C-o command and cleared by the C-u C-c
C-o command.

Consultation and compilation is either done via the menu or with the following key-bindings:

C-c C-f  Consult file.

C-c C-b Consult buffer.
C-c C-r Consult region.
C-c C-p  Consult predicate.
C-c C-c £ Compile file.

C-c C-c b Compile buffer.
C-c C-c r Compile region.
C-c C-c p Compile predicate.

The boundaries used when consulting and compiling predicates are the first and last clauses
of the predicate the cursor is currently in.

Other useful key-bindings are:
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M-a Go to beginning of clause. Go to the previous clause if already at the beginning.

M-e Go to end of clause. Go to the next clause if already at the end.

C-M-c Mark clause.

C-M-a Go to beginning of predicate.

C-M-e Go to end of predicate.

C-M-h Mark predicate.

M-{ Go to the previous paragraph (i.e. empty line).

M-} Go to the next paragraph (i.e. empty line).

M-h Mark paragraph.

C-M-n Go to matching right parenthesis.

C-M-p Go to matching left parenthesis.

M-; Creates a comment at comment-column. This comment will always stay at this
position when the line is indented, regardless of changes in the text earlier on
the line, provided that prolog-align-comments-flag is set to t.

C-c C-t

C-u C-c C-t
Enable and disable creeping, respectively.

C-c C-d

C-u C-c C-d
Enable and disable leaping, respectively.

C-c C-z

C-u C-c C-z
Enable and disable zipping, respectively.

C-c C-g since release 4.2

C-u C-c C-g since release 4.2
Enable and disable bindings window, respectively. When enabled, SICStus will
endeavor to show the variable bindings of the clause containing the current
goal. C-c C-g splits the *prolog* window vertically and inserts the *Prolog
Bindings* window, which shows the bindings and is updated upon every de-
bugger command. C-u C-c C-g deletes the *Prolog Bindings* window.

C-c C-o since release 4.2

C-u C-c C-o since release 4.2

Refresh and clear coverage highlighting for the current buffer, respectively.
Lines containing coverage sites (see Section 9.3 [Coverage Analysis|, page 348)
will be highlighted in face pltrace-face-reached-det (defaults to green) if
they were hit at least once and made no nondet calls with the execution profiler
switched on; in face pltrace-face-reached-nondet (defaults to yellow) if they
were hit at least once and made one or more nondet calls with the execution
profiler switched on; otherwise, they will be highlighted in face pltrace-face-
reached-not (defaults to red). Lines not containing coverage sites are not
highlighted.
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C-x SPC

C-u C-x SPC
Set and remove a line breakpoint. This uses the advanced debugger features
introduced in release 3.8; see Section 5.6 [Advanced Debugging], page 239.

C-c C-s Insert the PredSpec of the current predicate into the code.

C-c C-n Insert the template of the current predicate (name, parentheses, commas) into
the code.

M-RET since release 4.2
Insert a line break followed by the template of the current predicate into the
code. This can be useful when writing recursive predicates or predicates with
several clauses. See also the prolog-electric-dot-flag variable below.

C-c C-v a Convert all variables in a region to anonymous variables. See also the prolog-
electric-underscore-flag Emacs variable.

C-c ? Help on predicate. This requires the SICStus info files to be installed. If the
SICStus info files are installed in a nonstandard way, you may have to change
the Emacs variable prolog-info-predicate-index.

C-c RET since release 4.2

C-u C-c RET since release 4.2
Run Prolog. With the second variant, Emacs will prompt for a Lisp list of extra
parameters to pass on the command line.

C-c C-c since release 4.2
Interrupt Prolog. The same as typing ~C in a shell.

C-c C-\ since release 4.2
Kill Prolog. Immediately kills the process.

3.12.4 Mode Line

If working with an application split into several modules, it is often useful to let files begin
with a “mode line”:

%kt —*- Mode: Prolog; Module: ModuleName; —*-

The Emacs interface will look for the mode line and notify the SICStus Prolog module
system that code fragments being incrementally reconsulted or recompiled should be im-
ported into the module ModuleName. If the mode line is missing, the code fragment will
be imported into the type-in module. An additional benefit of the mode line is that it tells
Emacs that the file contains Prolog code, regardless of the setting of the Emacs variable
auto-mode-alist. A mode line can be inserted by choosing Insert/Module modeline in
the Prolog menu.

3.12.5 Configuration

The behavior of the Emacs interface can be controlled by a set of user-configurable settings.
Some of these can be changed on the fly, while some require Emacs to be restarted. To
set a variable on the fly, type M-x set-variable RET VariableName RET Value RET. Note
that variable names can be completed by typing a few characters and then pressing TAB.
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To set a variable so that the setting is used every time Emacs is started, add lines of the
following format to ‘~/.emacs’:

(setq VariableName Value)

Note that the Emacs interface is presently not using the ‘Customize’ functionality to edit
the settings.

The available settings are:

prolog-system
The Prolog system to use. Defaults to >sicstus, which will be assumed for
the rest of this chapter. See the on-line documentation for the meaning of
other settings. For other settings of prolog-system the variables below named
sicstus-something will not be used, in some cases corresponding functionality
is available through variables named prolog-something.

sicstus-version
The version of SICStus that is used. Defaults to > (4 . 2). Note that the spaces
are significant!

prolog-use-sicstus-sd
Set to t (the default) to enable the source-linked debugging extensions by de-
fault. The debugging can be enabled via the Prolog menu even if this variable
is nil. Note that the source-linked debugging only works if sicstus-version
is set correctly.

prolog-indent-width
How many positions to indent the body of a clause. Defaults to tab-width,
normally 8.

prolog-paren-indent
The number of positions to indent code inside grouping parentheses. Defaults
to 4, which gives the following indentation.

p =
( qt
;0 92,
q3
).

Note that the spaces between the parentheses and the code are automatically
inserted when TAB is pressed at those positions.

prolog-align-comments-flag
Set to nil to prevent single %-comments from being automatically aligned.
Defaults to t.
Note that comments with one % are indented to comment-column, comments

with two % to the code level, and that comments with three % are never changed
when indenting.
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prolog-indent-mline-comments-flag
Set to nil to prevent indentation of text inside /* ... */ comments. Defaults
t.

sicstus-keywords
This is a list with keywords that are highlighted in a special color when used
as directives (i.e. as :- keyword). Defaults to

>("block" "discontiguous" "dynamic" "initialization"
"meta_predicate" "mode" "module" "multifile" "public" "volatile"
"det" '"nondet" ; for spdet
)

prolog-electric-newline-flag
Set to nil to prevent Emacs from automatically indenting the next line when
pressing RET. Defaults to t.

prolog-hungry-delete-key-flag
Set to t to enable deletion of all whitespace before the cursor when pressing
DEL (unless inside a comment, string, or quoted atom). Defaults to nil.

prolog-electric-dot-flag
Set to t to enable the electric dot function. If enabled, pressing . at the end of
a non-empty line inserts a dot and a newline. When pressed at the beginning of
a line, a new head of the last predicate is inserted. When pressed at the end of
a line with only whitespace, a recursive call to the current predicate is inserted.
The function respects the arity of the predicate and inserts parentheses and the
correct number of commas for separation of the arguments. Defaults to nil.

prolog-electric-underscore-flag
Set to t to enable the electric underscore function. When enabled, pressing
underscore (_) when the cursor is on a variable, replaces the variable with the
anynomous variable. Defaults to nil.

prolog-use-prolog-tokenizer-flag
Set to nil to use built-in functions of Emacs for parsing the source code when
indenting. This is faster than the default but does not handle some of the
syntax peculiarities of Prolog. Defaults to t.

prolog-parse—-mode
What position the parsing is done from when indenting code. Two possible
settings: *beg-of-line and ’beg-of-clause. The first is faster but may result
in erroneous indentation in /* ... */ comments. The default is >beg-of-1line.

prolog-imenu-flag
Set to t to enable a new Predicate menu that contains all predicates of the
current file. Choosing an entry in the menu moves the cursor to the start of
that predicate. Defaults to nil.

prolog-info-predicate-index
The info node for the SICStus predicate index. This is important if the online
help function is to be used (by pressing C-c ?, or choosing the Prolog/Help on
predicate menu entry). The default setting is " (sicstus)Predicate Index".
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prolog-underscore-wordchar-flag
Set to nil to not make underscore (_) a word-constituent character. Defaults
to t.

Font-locking uses a number of “faces”, which can be customized with regular Emacs com-
mands, for instance M-x describe-face RET FaceName RET. The following faces are rele-
vant:

highlight since release 4.2
Source code highlight at debug ports.

pltrace-face-reached-det since release 4.2
Highlight for a line of code reached by coverage analysis with no nondet calls
made from that line of code.

pltrace-face-reached-nondet since release 4.2
Highlight for a line of code reached by coverage analysis with one or more
nondet calls made from that line of code.

pltrace-face-reached-not since release 4.2
Highlight for a line of code not reached by coverage analysis.

prolog-warning-face since release 4.2
Face used in warning messages.

prolog-informational-face since release 4.2
Face used in informational messages.

prolog-exception-face since release 4.2
Face used in the first line of an error exception message, as well as to highlight
Exception port displays.

prolog-error-face since release 4.2
Face used in other lines of exception messages.

prolog-call-face since release 4.2
Face used to highlight Call port displays.

prolog-exit-face since release 4.2
Face used to highlight Exit port displays.

prolog-redo-face since release 4.2
Face used to highlight Redo port displays.

prolog-fail-face since release 4.2
Face used to highlight Fail port displays.

prolog-builtin-face since release 4.2
Face used to highlight keywords used in directives (see sicstus-keywords).

3.12.6 Tips

Some general tips and tricks for using the SICStus mode and Emacs in general are given
here. Some of the methods may not work in all versions of Emacs.
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3.12.6.1 Font-locking

When editing large files, it might happen that font-locking is not done because the file is
too large. Typing M-x lazy-lock-mode, which is much faster, results in only the visible
parts of the buffer being highlighted; see its Emacs on-line documentation for details.

If the font-locking seems to be incorrect, choose Fontify Buffer from the Prolog menu.

3.12.6.2 Auto-fill Mode

Auto-fill mode is enabled by typing M-x auto-fill-mode. This enables automatic line
breaking with some features. For example, the following multiline comment was created
by typing M-; followed by the text. The second line was indented and a ‘%’ was added
automatically.

dynamics ([1). % A list of pit furnace
% dynamic instances

3.12.6.3 Speed

There are several things to do if the speed of the Emacs environment is a problem:

e First of all, make sure that ‘prolog.el’ and ‘sicstus-support.el’ are compiled, i.e.
that there is a ‘prolog.elc’ and a ‘sicstus-support.elc’ file at the same location
as the original files. To do the compilation, start Emacs and type M-x byte-compile-
file RET path RET, where path is the path to the ‘*.el’ file. Don’t be alarmed if there
are a few warning messages as this is normal. If all went well, there should now be a
compiled file, which is used the next time Emacs is started.

e The next thing to try is changing the setting of prolog-use-prolog-tokenizer-flag
to nil. This means that Emacs uses built-in functions for some of the source code
parsing, thus speeding up indentation. The problem is that it does not handle all
peculiarities of the Prolog syntax, so this is a trade-off between correctness and speed.

e The setting of the prolog-parse-mode variable also affects the speed, *beg-of-line
being faster than ’beg-of-clause.

e Font locking may be slow. You can turn it off using customization, available through
M-x customize-group RET font-lock RET. An alternative is to enable one of the
lazy font locking modes. You can also turn it off completely; see Section 3.12.2 [Basic
Configuration|, page 34.

3.12.6.4 Changing Colors

The Prolog mode uses the default Emacs colors for font-locking as far as possible. The only
custom settings are in the Prolog process buffer. The default settings of the colors may not
agree with your preferences, so here is how to change them.

If your Emacs supports it, use ‘Customize’. M-x customize-group RET font-lock RET
will show the ‘Customize’ settings for font locking and also contains pointers to the
‘Customize’ group for the font lock (type)faces. The rest of this section outlines the more
involved methods needed in older versions of Emacs.
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First of all, list all available faces (a face is a combined setting of foreground and background
colors, font, boldness, etc.) by typing M-x list-faces-display.

There are several functions that change the appearance of a face, the ones you will most
likely need are:

e set-face-foreground

e set-face-background

e set-face-underline-p
e make-face-bold

e make-face-bold-italic
e make-face-italic

e make-face-unbold

e make-face-unitalic

These can be tested interactively by typing M-x function-name. You will then be asked
for the name of the face to change and a value. If the buffers are not updated according to
the new settings, refontify the buffer using the Fontify Buffer menu entry in the Prolog
mentu.

Colors are specified by a name or by RGB values. Available color names can be listed with
M-x list-colors-display.

To store the settings of the faces, a few lines must be added to ‘~/.emacs’. For example:

;; Customize font-lock faces
(add-hook ’font-lock-mode-hook
’(lambda ()
(set-face-foreground font-lock-variable-name-face "#00a000")
(make-face-bold font-lock-keyword-face)
(set-face-foreground font-lock-reference-face "Blue")

))
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4 The Prolog Language

This chapter describes the syntax and semantics of the Prolog language, and introduces
the central built-in predicates and other important language constructs. In many cases, an
entry in a list of built-in predicates, will be annotated with keywords. These annotations
are defined in Section 11.1.3 [mpg-ref-cat], page 854.

4.1 Syntax
4.1.1 Overview

This section describes the syntax of SICStus Prolog.

4.1.2 Terms
4.1.2.1 Overview

The data objects of the language are called terms. A term is either a constant, a variable,
or a compound term.

A constant is either a number (integer or floating-point) or an atom. Constants are definite
elementary objects, and correspond to proper nouns in natural language.

Variables and compound terms are described in Section 4.1.2.5 [ref-syn-trm-var|, page 44,
and Section 4.1.3 [ref-syn-cpt|, page 45, respectively.

Foreign data types are discussed in the context of library(structs); see Section 10.35
[lib-structs|, page 714.

4.1.2.2 Integers

The printed form of an integer consists of a sequence of digits optionally preceded by a
minus sign (‘=’). These are normally interpreted as base 10 integers. It is also possible to
enter integers in base 2 (binary), 8 (octal), and 16 (hexadecimal); this is done by preceding
the digit string by the string ‘0b’, ‘00’, or ‘0x’ respectively. The characters A-F or a-f stand
for digits greater than 9. For example, the following tokens all represent the integer fifteen:

15 Ob1111 Ool7 Oxf

Note that
+525

is not a valid integer.

There is also a special notation for character constants. E.g.:
0’A  0°\x41\ 0°\101\

are all equivalent to 65 (the character code for ‘A’). ‘0°’ followed by any character except
‘\” (backslash) is thus read as an integer. If ‘0°’ is followed by ‘\’, the ‘\’ denotes the start
of an escape sequence with special meaning (see Section 4.1.7.6 [ref-syn-syn-esc|, page 60).
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4.1.2.3 Floating-point Numbers

A floating-point number (float) consists of a sequence of digits with an embedded decimal
point, optionally preceded by a minus sign (-), and optionally followed by an exponent
consisting of upper- or lowercase ‘E’ and a signed base 10 integer. Examples of floats are:

1.0 -23.45 187.6E12 -0.0234e15 12.0E-2
Note that there must be at least one digit before, and one digit after, the decimal point.

4.1.2.4 Atoms

An atom is identified by its name, which is a sequence characters, and can be written in
any of the following forms:

(S

e Any sequence of alphanumeric characters (including ‘_’), starting with a lowercase
letter. Note that an atom may not begin with an underscore. The characters that are
allowed to occur in such an unquoted atom are restricted to a subset of Unicode; see
Section 4.1.7.5 [ref-syn-syn-tok|, page 56.

e Any sequence from the following set of characters (except ‘/*’, which begins a com-
ment):

+-%x /\"<>=":.70#$%$ &

e Any sequence of characters delimited by single quotes. Backslashes in the sequence
denote escape sequences (see Section 4.1.7.6 [ref-syn-syn-esc|, page 60), and if the single
quote character is included in the sequence it must be escaped, e.g. >can\’t’. The
characters that are allowed to occur in such a quoted atom are restricted to a subset of

Unicode; see Section 4.1.7.5 [ref-syn-syn-tok|, page 56. Backquotes are allowed as an
alternative to quotes.

e Any of:
;o0 {3
Note that the bracket pairs are special: ‘[]’ and ‘{}’ are atoms but ‘[’; ‘1°, ‘{’, and ‘}’
are not. The form [X] is a special notation for lists (see Section 4.1.3.1 [ref-syn-cpt-lis],
page 46) as an alternative to . (X, [1), and the form {X} is allowed as an alternative

to {3(X).

Examples of atoms are:
a void = := ’Anything in quotes’ []

Please note: It is recommended that you don’t invent atoms beginning with the
character ‘$’, since it is possible that such names may conflict with the names
of atoms having special significance for certain built-in predicates.

4.1.2.5 Variables

Variables may be written as any sequence of alphanumeric characters (including ‘_’) begin-
ning with either a capital letter or ‘_’. For example:

X Value A A1 -3  _RESULT
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If a variable is referred to only once in a clause, it does not need to be named and may be
written as an anonymous variable, represented by the underline character ‘_’ by itself. Any
number of anonymous variables may appear in a clause; they are read as distinct variables.
Anonymous variables are not special at runtime.

4.1.2.6 Foreign Terms

Pointers to C data structures can be handled using the Structs package.

4.1.3 Compound Terms

The structured data objects of Prolog are compound terms. A compound term comprises
a functor (called the principal functor of the term) and a sequence of one or more terms
called arguments. A functor is characterized by its name, which is an atom, and its arity or
number of arguments. For example, the compound term whose principal functor is ‘point’
of arity 3, and which has arguments X, Y, and Z, is written

point(X, Y, Z)

When we need to refer explicitly to a functor we will normally denote it by the form
Name/ Arity. Thus, the functor ‘point’ of arity 3 is denoted

point/3
Note that a functor of arity 0 is represented as an atom.

Functors are generally analogous to common nouns in natural language. One may think of
a functor as a record type and the arguments of a compound term as the fields of a record.
Compound terms are usefully pictured as trees. For example, the (compound) term

s(np(john), vp(v(likes), np(mary)))
would be pictured as the following tree:

S

np vp

john v np

likes mary

The principal functor of this term is s/2. Its arguments are also compound terms. In
illustration, the principal functor of the first argument is np/1.

Sometimes it is convenient to write certain functors as operators; binary functors (that is,
functors of two arguments) may be declared as infix operators, and unary functors (that is,
functors of one argument) may be declared as either prefix or postfix operators. Thus it is
possible to write

X+Y P;Q X<y +X P;
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as optional alternatives to

+X,Y) ;(@P,Q <&E,) +X ;@
The use of operators is described fully in Section 4.1.5 [ref-syn-ops]|, page 47.
4.1.3.1 Lists

Lists form an important class of data structures in Prolog. They are essentially the same as
the lists of Lisp: a list is either the atom [], representing the empty list, or else a compound
term with functor . and two arguments, which are the head and tail of the list respectively,
where the tail of a list is another list. Thus a list of the first three natural numbers is the
structure

/ \
1 .
/ \
2 .
/ \
3 0
which could be written using the standard syntax, as (A) but which is normally written in

a special list notation, as (B). Two examples of this list notation, as used when the tail of
a list is a variable, are (C), which represent the structure in (D).

.(1,.02,.@3,1HON (A)
[1,2,3] (B)
[XIL] [a,b|L] (9]
/ \ / \
X L a .
/ \
b L (D)

Note that the notation [X|L] does not add any new power to the language; it simply
improves readability. These examples could be written equally well as (E).

-(X,L) .(a,.(,L)) (E)

4.1.3.2 Strings As Lists

For convenience, a further notational variant is allowed for lists of integers that correspond
to character codes. Lists written in this notation are called strings. E.g.:

"SICStus"

which, by default, denotes exactly the same list as
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[83,73,67,83,116,117,115]

The Prolog flag double_quotes can be used to change the way strings are interpreted. The
default value of the flag is codes, which implies the above interpretation. If the flag is set
to chars, a string is transformed to a list of character atoms. E.g. with this setting the
above string represents the list:

[!S),JI),JC7’7SJ,t’u’S]

Finally if double_quotes has the value atom, the string is made equivalent to the atom
formed from its characters: the above sample string is then the same as the atom >SICStus’.

Please note: Most code assumes that the Prolog flag double_quotes has its default value
(codes). Changing this flag is not recommended.

Backslashes in the sequence denote escape sequences (see Section 4.1.7.6 [ref-syn-syn-esc|,
page 60). As for quoted atoms, if a double quote character is included in the sequence it
must be escaped, e.g. "can\"t".

The built-in predicates that print terms (see Section 4.6.4 [ref-iou-tou], page 102) don’t use
string syntax even if they could.

The characters that are allowed to occur within double quotes are restricted to a subset of
Unicode; see Section 4.1.7.5 [ref-syn-syn-tok], page 56.
4.1.4 Character Escaping

The character escaping facility is prescribed by the ISO Prolog standard, and allows escape
sequences to occur within strings and quoted atoms, so that programmers can put non-
printable characters in atoms and strings and still be able to see what they are doing.

Strings or quoted atoms containing escape sequences can occur in terms obtained by
read/[1,2], compile/1, and so on. The ‘0’’ notation for the integer code of a charac-
ter is also affected by character escaping.

The only characters that can occur in a string or quoted atom are the printable characters
and SPC. All other whitespace characters must be expressed with escape sequences (see
Section 4.1.7.6 [ref-syn-syn-esc|, page 60).

4.1.5 Operators and their Built-in Predicates

4.1.5.1 Overview

Operators in Prolog are simply a notational convenience. For example, ‘+’ is an infix
operator, so

2+ 1

is an alternative way of writing the term +(2, 1). That is, 2 + 1 represents the data
structure
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and not the number 3. (The addition would only be performed if the structure were passed
as an argument to an appropriate procedure, such as is/2; see Section 4.7.2 [ref-ari-eae],
page 118.)

Prolog syntax allows operators of three kinds: infix, prefix, and postfix. An infix operator
appears between its two arguments, while a prefix operator precedes its single argument
and a postfix operator follows its single argument.

Fach operator has a precedence, which is a number from 1 to 1200. The precedence is used
to disambiguate expressions in which the structure of the term denoted is not made explicit
through the use of parentheses. The general rule is that the operator with the highest
precedence is the principal functor. Thus if ‘+’ has a higher precedence than ‘/’, then

a+b/c a+(b/c)

are equivalent, and denote the term +(a,/(b,c)). Note that the infix form of the term
/(+(a,b),c) must be written with explicit parentheses:

(a+b)/c

If there are two operators in the expression having the same highest precedence, the am-
biguity must be resolved from the types of the operators. The possible types for an infix
operator are

o xfx
o xfy
o yfx

Operators of type ‘xfx’ are not associative: it is required that both of the arguments of the
operator be subexpressions of lower precedence than the operator itself; that is, the principal
functor of each subexpression must be of lower precedence, unless the subexpression is
written in parentheses (which gives it zero precedence).

Operators of type ‘xfy’ are right-associative: only the first (left-hand) subexpression must
be of lower precedence; the right-hand subexpression can be of the same precedence as the
main operator. Left-associative operators (type ‘yfx’) are the other way around.

An atom named Name is declared as an operator of type Type and precedence Precedence
by the command

:—op(Precedence, Type, Name) .

An operator declaration can be cancelled by redeclaring the Name with the same Type, but
Precedence 0.
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The argument Name can also be a list of names of operators of the same type and precedence.

It is possible to have more than one operator of the same name, so long as they are of
different kinds: infix, prefix, or postfix. Note that the ISO Prolog standard contains the
restriction that there should be no infix and postfix operators with the same name, however,
SICStus Prolog lifts this restriction.

An operator of any kind may be redefined by a new declaration of the same kind. This
applies equally to operators that are provided as standard, except for the ’,’ operator.
Declarations for all these built-in operators can be found in Section 4.1.5.4 [ref-syn-ops-
bop]|, page 51.

For example, the built-in operators ‘+’ and ‘-’ are as if they had been declared by (A) so
that (B) is valid syntax, and means (C) or pictorially (D).

:-op(500, yfx, [+,-1). @)
a-b+c (B
(a-b)+c ©
+
/ N\
- c
/ \
a b (D)

The list functor ./2 is not a standard operator, but we could declare it to be (E) and then
(F) would represent the structure (G).

:-op(600, xfy, .). (E)
a.b.c €]
/\
a .
/\
b ¢ (®

Contrasting this with the diagram above for a-b+c shows the difference between ‘yfx’ oper-
ators where the tree grows to the left, and ‘xfy’ operators where it grows to the right. The
tree cannot grow at all for ‘xfx’ operators; it is simply illegal to combine ‘xfx’ operators
having equal precedences in this way.

The possible types for a prefix operator are:

o fx

o fy
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and for a postfix operator they are:

o xf

oyf

The meaning of the types should be clear by analogy with those for infix operators. As an
example, if not were declared as a prefix operator of type fy, then

not not P

would be a permissible way to write not(not(P)). If the type were fx, the preceding
expression would not be legal, although

not P
would still be a permissible form for not (P).

If these precedence and associativity rules seem rather complex, remember that you can
always use parentheses when in any doubt.

4.1.5.2 Manipulating and Inspecting Operators

To add or remove an operator, use op(Precedence, Type, Name). op/3 declares the atom
Name to be an operator of the stated Type and Precedence. If Precedence is 0, the operator
properties of Name (if any) are cancelled. Please note: operators are global, as opposed to
being local to the current module, Prolog text, or otherwise. See Section 11.3.147 [mpg-ref-
op], page 1066.

To examine the set of operators currently in force, use current_op(Precedence, Type,
Name). See Section 11.3.53 [mpg-ref-current_op|, page 947.

4.1.5.3 Syntax Restrictions

Note carefully the following syntax restrictions, which serve to remove potential ambiguities
associated with prefix operators.

1. The arguments of a compound term written in standard syntax must be expressions
of precedence less than 1000. Thus it is necessary to write the expression P:-Q in

parentheses
assert ((P:-Q))
because the precedence of the infix operator ‘:-’, and hence of the expression P:-Q, is

1200. Enclosing the expression in parentheses reduces its precedence to 0.

2. Similarly, the elements of a list written in standard syntax must be expressions of prece-
dence less than 1000. Thus it is necessary to write the expression P->Q in parentheses
[(P—>Q)]
because the precedence of the infix operator ‘=>’; and hence of the expression P->Q, is
1050. Enclosing the expression in parentheses reduces its precedence to 0.

3. In a term written in standard syntax, the principal functor and its following ‘(" must
not be separated by any intervening spaces, newlines, or other characters. Thus
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point (X,Y,Z)
is invalid syntax.
4. If the argument of a prefix operator starts with a ‘(’, this ‘(" must be separated from
the operator by at least one space or other whitespace character. Thus
:=(p;q),r.
(where ‘:-" is the prefix operator) is invalid syntax. The system would try to interpret
it as the structure:

P aq
That is, it would take ‘: =’ to be a functor of arity 1. However, since the arguments of a
functor are required to be expressions of precedence less than 1000, this interpretation
would fail as soon as the ‘;’ (precedence 1100) were encountered.

In contrast, the term:
- (p;q),r.

is valid syntax and represents the following structure:

b

/ \
; r
/ \
P q

4.1.5.4 Built-in Operators
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:- op( 1200, xfx, [ :=, -=> 1).
:— op( 1200, fx, [ :-, 7= 1).
:- op( 1150, fx, [ mode, public, dynamic, volatile, discontiguous,

multifile, block, meta_predicate,
initialization ]).

:— op( 1100, xfy, [ ;, do 1).

:- op( 1050, xfy, [ -> 1).

:- op( 1000, xfy, [ ’,” 1).

:= op( 900, fy, [ \+, spy, nospy 1).
:= op( 700, xfx, [

=, \=, is, =.., ==, \==, 0L, ©@>, 0=<, O>=,
: >, =<, >=1]).

:- op( 550, xfy, [ : 1).

:— op( 500, yfx, [+, -, \, /\, \/ D).

:- op( 400, yfx, [ *, /, //, div, mod, rem, <<, >> ).
:— op( 200, xfx, [ **x ]).

:= op( 200, xfy, [ =~ 1).

[

:— op( 200, fy, [+, -, \ 1.

The above operators are as in the ISO Prolog standard, except the following, which are not
present in ISO Prolog at all:

op( 1150, fx, [ mode, public, dynamic, volatile, discontiguous,
multifile, block, meta_predicate,
initialization J]).

:- op( 1100, xfy, [ do 1).

:= op( 900, fy, [ spy, nospy 1).

:- op( 550, xfy, [ :

:= op( 500, yfx, [ \ 1).

:- op( 200, fy, [+

4.1.6 Commenting

Comments have no effect on the execution of a program, but they are very useful for making
programs more comprehensible. Two forms of comments are allowed:

1. The character ‘%’ followed by any sequence of characters up to the end of the line.

2. The symbol ‘/*’ followed by any sequence of characters (including newlines) up to the
symbol ‘x/’.

4.1.7 Formal Syntax
4.1.7.1 Overview

A Prolog program consists of a sequence of sentences. Each sentence is a Prolog term. How
sentences are interpreted as terms is defined in Section 4.1.7.3 [ref-syn-syn-sen|, page 53,
below. Note that a term representing a sentence may be written in any of its equivalent
syntactic forms. For example, the functor :-/2 could be written in standard prefix notation
instead of as the usual infix operator.
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Terms are written as sequences of tokens. Tokens are sequences of characters, which are
treated as separate symbols. Tokens include the symbols for variables, constants, and
functors, as well as punctuation characters such as parentheses and commas.

The interpretation of sequences of tokens as terms is defined in Section 4.1.7.4 [ref-syn-syn-
trm|, page 55. Each list of tokens that is read in (for interpretation as a term or sentence)
must be terminated by a full-stop (a period followed by a whitespace character such as
newline or space) token. Two tokens must be separated by a space if they could otherwise
be interpreted as a single token. Both spaces and comments are ignored when interpreting
the token list as a term. A comment may appear at any point in a token list (separated
from other tokens by spaces where necessary).

The interpretation of sequences of characters as tokens is defined in Section 4.1.7.5 [ref-syn-
syn-tok], page 56. The next section describes the notation used in the formal definition of
Prolog syntax.

4.1.7.2 Notation

e Syntactic categories (or nonterminals) are printed in italics, for example query. De-
pending on the section, a category may represent a class of either terms, token lists, or
character strings.

e A syntactic rule takes the general form
C ::=F1
| F2
| F3

which states that an entity of category C may take any of the alternative forms F1,
F2 or F3.

e Certain definitions and restrictions are given in ordinary English, enclosed in braces
({3).

e A category written as ‘C...’" denotes a sequence of one or more Cs.

e A category written as ‘?C’ denotes an optional C. Therefore ‘?C. ..  denotes a sequence
of zero or more Cs.

e A few syntactic categories have names with arguments, and rules in which they appear
may contain meta-variables in the form of italicized capital letters. The meaning of
such rules should be clear from analogy with the definite clause grammars described in
Section 4.14 [ref-gru], page 187.

e In Section 4.1.7.4 [ref-syn-syn-trm], page 55, particular tokens of the category Name (a
name beginning with a capital letter) are written as quoted atoms, while tokens that
are individual punctuation characters are written literally.

4.1.7.3 Syntax of Sentences as Terms

sentence ::= module : sentence
| Iist { where list is a list of sentence }
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clause

rule
unit-clause
directive
query
head

body

goal

grammar-rule
gr-head

gr-body

| clause

| directive

| query

| grammar-rule

::= rule | unit-clause
»= head :- body
::= head

= :- body

:= 7- body

::= module : head

| goal

::= module : body
body -> body disj body
body -> body

\+ body

body disj body

body , body

once (body)
do(iter,body)

if (body, body, body )
term ~ body

| goal

1= term

:= gr-head --> gr-body
::= module : gr-head

| gr-head , terminals

| non-terminal

:= module : gr-body

| gr-body -> gr-body disj gr-
body

| gr-body -> gr-body

| \+ gr-body

| gr-body disj gr-body

| gr-body , gr-body

| once(gr-body)

| do(iter,gr-body)

| if (gr-body,gr-body, gr-
body)

| term ~ gr-body

| non-terminal

| terminals

| gr-condition

SICStus Prolog

{ where head is not otherwise a
sentence }

{ where goal is not a variable }

{ where term is not otherwise a

body }

{ where non-terminal is not a vari-

able }



Chapter 4: The Prolog Language

non-terminal = term
terminals = list | string
gr-condition m= 1| {body}
module ::= atom

disj n= 0

iter = iter , iter

fromto(term, term, term, term)
| foreach(term,term)

| foreacharg(term,term)

| foreacharg(term,term,term)
| count (term, term,term)

| for(term,term,term)

| param(term)

4.1.7.4 Syntax of Terms as Tokens

term-read-in ::= subterm(1200) full-stop
subterm(N) = term(M)
term(N) ::= op(N,fx) subterm(N-1)

| op(N,fy) subterm(N)

I subterm(N-1) op(N,xfx)
subterm(N-1)

| subterm(N-1) op(N,xfy) sub-
term(N)

| subterm(N) op(N,yfx)
subterm(N-1)

| subterm(N-1) op(N,xf)

| subterm(N) op(N,yf)

term(1100) = subterm(1099) |
subterm(1100)

term(1000) ::= subterm(999) , subterm(1000)

term(0) ::= functor ( arguments )

| ( subterm(1200) )
| { subterm(1200) }
| List

| string

| constant

95

{ where term is not otherwise a
gr-body }

{ read as ; unless | is declared
infix }

{ where M is less than or equal to
N}

{ except in the case of a number if
subterm starts with a ‘', op must
be followed by whitespace-text }
{ if subterm starts with a ‘(C’, op
must be followed by whitespace-
text }

{ term with functor ;/2 unless |
is declared infix }

{ term with functor ’>,’/2 }

{ provided there is no whitespace-
text between the functor and the

‘%



56 SICStus Prolog

| variable
op(N,T) 1= name { where name has been declared
as an operator of type T and
precedence N }
arguments ::= subterm(999)
| subterm(999) , arguments
list =[]
| [ listexpr ]
listexpr ::= subterm(999)

| subterm(999) , listexpr
| subterm(999) | subterm(999)

constant := atom | number
number ::= unsigned-number
| sign unsigned-number
| sign inf
| sign nan
unsigned-number  ::= natural-number | unsigned-
float
atom ;1= name
functor '= name

4.1.7.5 Syntax of Tokens as Character Strings

SICStus Prolog supports wide characters (up to 31 bits wide), interpreted as a superset of
Unicode.

Each character in the code set has to be classified as belonging to one of the character
categories, such as small-letter, digit, etc. This classification is called the character-type
mapping, and it is used for defining the syntax of tokens.

Only character codes 0..255, i.e. the ISO-8859-1 (Latin 1) subset of Unicode, can be
part of unquoted tokens!, unless the Prolog flag legacy_char_classification is set; see
Section 4.9.4 [ref-lps-flg], page 134. This restriction may be lifted in the future.

For quoted tokens, i.e. quoted atoms and strings, almost any sequence of code points as-
signed to non-private abstract characters in Unicode 5.0 is allowed. The disallowed char-
acters are those in the whitespace-char category except that space (character code 32) is
allowed despite it being a whitespace-char.

An additional restriction is that the sequence of characters that makes up a quoted to-
ken must be in Normal Form C (NFC) http://www.unicode.org/reports/tr15/. This
is currently not enforced. A future release may enforce this restriction or perform this
normalization automatically.

I Characters outside this range can still be included in quoted atoms and strings by using escape sequences
(see Section 4.1.7.6 [ref-syn-syn-esc|, page 60).
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NFC is the normalization form used on the web (http://www.w3.org/TR/charmod/) and
what most software can be expected to produce by default. Any sequence consisting of only
characters from Latin 1 is already in NFC.

When the Prolog flag legacy_char_classification is set, characters in the whitespace-
char category are still treated as whitespace but other character codes outside the range
0..255, assigned to non-private abstract characters in Unicode 5.0, are treated as lower case.
Such characters can therefore appear as themselves, without using escape sequences, both
in quoted and unquoted tokens.

Note: Any output produced by write_term/2 with the option quoted(true) will be in
NFC. This includes output from writeq/[1,2] and write_canonical/[1,2].

whitespace-char
These are character codes 0..32, 127..160, 8206..8207, and 8232..8233. This
includes ASCII characters such as TAB, LFD, and SPC, as well as all characters
with Unicode property “Pattern_Whitespace” including the Unicode-specific
LINE SEPARATOR (8232).

small-letter
These are character codes 97..122, i.e. the letters ‘a’ through ‘z’, as well as the
non-ASCII character codes 170, 186, 223..246, and 248..255.

If the Prolog flag legacy_char_classification (see Section 4.9.4 [ref-1ps-flg],
page 134) is set then the small-letter set will also include almost every code
point above 255 assigned to non-private abstract characters in Unicode 5.0.

capital-letter
These are character codes 65..90, i.e. the letters ‘A’ through ‘Z’; as well as the
non-ASCII character codes 192..214, and 216..222.

digit These are character codes 48..57, i.e. the digits ‘0’ through ‘9’.

symbol-char
These are character codes 35, 36, 38, 42, 43, 45..47, 58, 60..64, 92, 94, and 126,
i.e. the characters:

+-%x/\N"<>=":_.70#$2&
In addition, the non-ASCII character codes 161..169, 171..185, 187..191, 215,
and 247 belong to this character type?.

solo-char  These are character codes 33 and 59 i.e. the characters ‘!’ and *;’.

punctuation-char
These are character codes 37, 40, 41, 44, 91, 93, and 123..125, i.e. the characters:

hC)y, LT L1}

quote-char
These are character codes 34 and 39 i.e. the characters ‘"’ and ‘.

underline This is character code 95 i.e. the character ‘_’.

2 In release 3 and 4.0.0 the lower case characters 170 and 186 were incorrectly classified as symbol-char.
This was corrected in release 4.0.1.
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Other characters are unclassified and may only appear in comments and to some extent, as

discussed above, in quoted atoms and strings.

token

name

word
symbol

natural-number

unsigned-float

simple-float
exp
exponent
sign
variable

string
string-item

quoted-atom
quoted-item

whitespace-text
whitespace-text-
item

= name
| natural-number

| unsigned-float

| variable

| string

| punctuation-char

| whitespace-text

| full-stop

::= quoted-name

| word

| symbol

| solo-char

| [ ?whitespace-text ]
| { ?whitespace-text }

::= small-letter 7alpha. . .

::= symbol-char. . .

= digit. . .
| base-prefix alpha. . .

| 0 char-item

::= simple-float

| simple-float exp exponent

= digit. .. . digit. ..
m=e | E

= digit. .. | sign digit. ..
= - | +

::= underline ?alpha. . .

| capital-letter 7alpha. . .

=" 7string-item. .. "
::= quoted-char

| nn

| \ escape-sequence
=’ ’quoted-item. .. ’
::= quoted-char

|))

| \ escape-sequence

::= whitespace-text-item. . .
::= whitespace-char | comment

{ except in the case of a full-stop
or where the first 2 chars are ‘/*’

}

{ where each alpha must be
digits of the base indicated by
base-prefix, treating a,b,... and
AB,... as 10,11,... }

{ yielding the character code for
char }

{ other than ‘"’ or ‘\’ }

{ other than ‘’’ or ‘\’ }
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comment = /* 7char... */ { where ?char... must not con-
tain ‘x/” }
| % ?char... LFD { where ?char... must not con-
tain LFD }
full-stop n= { the following token, if any, must
be whitespace-text}
char ::= whitespace-char
| printing-char
printing-char ::= alpha
| symbol-char
| solo-char
| punctuation-char
| quote-char
alpha »= capital-letter | small-letter |
digit | underline
escape-sequence = { backspace, character code 8 }
| t { horizontal tab, character code 9
}
| n { newline, character code 10 }
| v { vertical tab, character code 11 }
| £ { form feed, character code 12 }
| r { carriage return, character code
13}
| e { escape, character code 27 }
| d { delete, character code 127 }
| a { alarm, character code 7 }
| other-escape-sequence
quoted-name = quoted-atom
base-prefix = 0b { indicates base 2 }
| Oo { indicates base 8 }
| 0x { indicates base 16 }
char-item := quoted-item
other-escape- = x alpha. .. \ {treating a,b,... and AB,... as
sequence 10,11,... } in the range [0..15],
hex character code
| digit. .. \ { in the range [0..7], octal charac-
ter code }
| LFD { ignored }
I\ { stands for itself }
| 2 { stands for itself }
[ " { stands for itself }
| ¢ { stands for itself }
quoted-char == SPC

| printing-char
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4.1.7.6 Escape Sequences

A backslash occurring inside integers in ‘0’’ notation or inside quoted atoms or strings
has special meaning, and indicates the start of an escape sequence. The following escape
sequences exist:

\b backspace (character code 8)

\t horizontal tab (character code 9)
\n newline (character code 10)

\v vertical tab (character code 11)

\f form feed (character code 12)

\r carriage return (character code 13)
\e escape (character code 27)

\d delete (character code 127)

\a alarm (character code 7)

\xhex-digit...\
the character code represented by the hexadecimal digits

\octal-digit...\
the character code represented by the octal digits.

\LFD A backslash followed by a single newline character is ignored. The purpose of
this is to allow a string or quoted-name to be spread over multiple lines.
AV

Stand for the character following the ‘\’.

4.1.7.7 Notes

1. The expression of precedence 1000 (i.e. belonging to syntactic category term(1000)),
which is written

X,Y
denotes the term ’,’ (X,Y) in standard syntax.
2. The parenthesized expression (belonging to syntactic category term(0))
(XD
denotes simply the term X.
3. The curly-bracketed expression (belonging to syntactic category term(0))
{X}
denotes the term {}(X) in standard syntax.

4. Note that, for example, -3 denotes a number whereas -(3) denotes a compound term
that has - /1 as its principal functor.

5. The character ‘"’ within a string must be written duplicated: ‘""’. Similarly for the
character ‘’’ within a quoted atom.
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6. Backslashes in strings, quoted atoms, and integers written in ‘0’’ notation denote
escape sequences.

7. A name token declared to be a prefix operator will be treated as an atom only if no
term-read-in can be read by treating it as a prefix operator.

8. A name token declared to be both an infix and a postfix operator will be treated as a
postfix operator only if no term-read-in can be read by treating it as an infix operator.

9. The whitespace following the full stop is not considered part of the full stop, and so it
remains in the input stream.

4.1.8 Summary of Predicates
Detailed information is found in the reference pages for the following:

current_op(P,T,4) IS0
atom A is an operator of type T with precedence P

op(P,T,4) IS0
make atom A an operator of type T with precedence P

4.2 Semantics
This section gives an informal description of the semantics of SICStus Prolog.

4.2.1 Programs

A fundamental unit of a logic program is the goal or procedure call for example:

gives(tom, apple, teacher)
reverse([1,2,3], L)

X<Y

A goal is merely a special kind of term, distinguished only by the context in which it appears
in the program. The principal functor of a goal is called a predicate. It corresponds roughly
to a verb in natural language, or to a procedure name in a conventional programming
language.

A logic program consists simply of a sequence of statements called sentences, which are
analogous to sentences in natural language.

A sentence comprises a head and a body. The head either consists of a single goal or is
empty. The body consists of a sequence of zero or more goals (it may be empty). If the
head is not empty, the sentence is called a clause.

If the body of a clause is empty, the clause is called a unit clause, and is written in the
form (A) where P is the head goal. We interpret this declaratively as (B) and procedurally
as (C).

P. (A)
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“P is true.” (B)

“Goal P is satisfied.” (C)

If the body of a clause is non-empty, the clause is called a non-unit clause, and is written
in the form (D) where P is the head goal and Q, R, and S are the goals that make up the
body. We can read such a clause either declaratively as (E) or procedurally as (F).

P:-QR,S. (D)
“P is true if Q and R and S are true.” (E)
“To satisfy goal P, satisfy goals @, R, and S.” (F)

A sentence with an empty head is called a directive, of which the most important kind is
called a query and is written in the form (G). Such a query is read declaratively as (H),
and procedurally as (I).

?_ P7 Q (G>
“Are P and Q true?” (H)
“Satisfy goals P and Q.” (I)

Sentences generally contain variables. A variable should be thought of as standing for
some definite but unidentified object. This is analogous to the use of a pronoun in nat-
ural language. Note that a variable is not simply a writable storage location as in most
programming languages; rather it is a local name for some data object, like the variable
of pure Lisp. Note that variables in different sentences are completely independent, even
if they have the same name—the lexical scope of a variable is limited to a single sentence.
To illustrate this, here are some examples of sentences containing variables, with possible
declarative and procedural readings:

employed(X) :- employs(Y, X).

“Any X is employed if any Y employs X.”

“To find whether a person X is employed, find whether any Y employs X.”
derivative(X, X, 1).

“For any X, the derivative of X with respect to X is 1.”

“The goal of finding a derivative for the expression X with respect to X itself
is satisfied by the result 1.”
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?7- ungulate(X), aquatic(X).
“Is it true, for any X, that X is an ungulate and X is aquatic?”

“Find an X that is both an ungulate and aquatic.”

In any program, the procedure for a particular predicate is the sequence of clauses in
the program whose head goals have that predicate as principal functor. For example, the
procedure for a predicate concatenate of three arguments might well consist of the two
clauses shown in (J) where concatenate (L1, L2, L3) means “the list L1 concatenated with
the list L2 is the list L3”.

concatenate([], L, L). (@))
concatenate([X|L1], L2, [X|L3]) :-
concatenate (L1, L2, L3). (X)

In Prolog, several predicates may have the same name but different arities. Therefore,
when it is important to specify a predicate unambiguously, the form Name/Arity is used,
for example concatenate/3.

4.2.2 Types of Predicates Supplied with SICStus Prolog

Certain predicates are predefined by the Prolog system. Most of these cannot be changed
or retracted. Such predicates are called built-in predicates.

Certain ones, however, can be modified or totally redefined. These are the hook predicates
and the extendible predicates used in message and query handling.

4.2.2.1 Hook Predicates

Hook predicates are called by the system. They enable you to modify SICStus Prolog’s
behavior. They are undefined by default. The idea of a hook predicate is that its clauses
are independent of each other, and it makes sense to spread their definitions over several files
(which may be written by different people). In other words, a hook predicate is typically
declared to be multifile (see Section 4.3.4.1 [Multifile Declarations|, page 82). Often, an
application needs to combine the functionality of several software modules, among which
some define clauses for such hook predicates. By simply declaring every hook predicate as
multifile, the functionality of the clauses for the hook predicate is automatically combined.
If this is not done, the last software module to define clauses for a particular hook predicate
will effectively supersede any clauses defined for the same hook predicate in a previous
module. Most hook predicates must be defined in the user module, and only their first
solution is relevant.

4.2.2.2 Extendible Predicates

Extendible predicates exist to enable you to extend or modify SICStus Prolog’s message
and query handling. These predicates are all defined in the file library (’SU_messages’).
4.2.3 Control Structures

As we have seen, the goals in the body of a sentence are linked by the operator ‘,’, which
can be interpreted as conjunction (and). The Prolog language provides a number of other
operators, known as control structures, for building complex goals. Apart from being built-
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in predicates, these control structures play a special role in certain language features, namely
Grammar Rules (see Section 4.14 [ref-gru], page 187), and when code is loaded or asserted in
the context of modules (see Section 4.11 [ref-mod], page 159). The set of control structures
is described in this section, and consists of:

:P,:Q IS0
prove P and Q

:P;:Q IS0
prove P or QQ

+M: :P IS0
call P in module M

:P->:0Q;:R IS0

if P succeeds, prove Q); if not, prove R
:P->:Q 150
if P succeeds, prove Q; if not, fail

! IS0
cut any choices taken in the current procedure

\+ :P IS0
goal P is not provable

?X ~ :P  there exists an X such that P is provable (used in setof/3 and bagof/3)

+Iterators do :Body
executes Body iteratively according to Iterators

if(:P,:Q, :R)
for each solution of P succeeds, prove Q; if none, prove R

once(:P) IS0
Find the first solution, if any, of goal P.

4.2.3.1 The Cut

Besides the sequencing of goals and clauses, Prolog provides one other very important
facility for specifying control information. This is the cut, written ‘!’. It is inserted in the
program just like a goal, but is not to be regarded as part of the logic of the program and
should be ignored as far as the declarative semantics is concerned.

The effect of the cut is as follows. When first encountered as a goal, cut succeeds imme-
diately. If backtracking should later return to the cut, the effect is to fail the parent goal,
i.e. the goal that matched the head of the clause containing the cut, and caused the clause
to be activated. In other words, the cut operation commits the system to all choices made
since the parent goal was invoked, and causes other alternatives to be discarded. The goals
thus rendered determinate are the parent goal itself, any goals occurring before the cut in
the clause containing the cut, and any subgoals that were executed during the execution of
those preceding goals.

For example, the procedure
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member (X, [X|L]).
member (X, [YIL]) :-
member (X, L).

can be used to test whether a given term is in a list:
| ?- member(b, [a,b,c]).

returns the answer ‘yes’. The procedure can also be used to extract elements from a list,
as in

| ?- member(X, [d,e,f]).

With backtracking this will successively return each element of the list. Now suppose that
the first clause had been written instead:

member (X, [X|L]) :- !.

In this case, the second call above would extract only the first element of the list (‘d’). On
backtracking, the cut would immediately fail the entire procedure.

Another example:

x :-p, !, q.
X - r.

This is analogous to “if p then ¢ else r” in an Algol-like language.

Note that a cut discards all the alternatives subsequent to the parent goal, even when the
cut appears within a disjunction. This means that the normal method for eliminating a
disjunction—by defining an extra predicate—cannot be applied to a disjunction containing
a cut.

A proper use of the cut is usually a major difficulty for new Prolog programmers. The usual
mistakes are to over-use cut, and to let cuts destroy the logic. A cut that doesn’t destroy
the logic is called a green cut; a cut that does is called a red cut. We would like to advise
all users to follow these general rules. Also see Chapter 9 [Writing Efficient Programs],
page 347.

e Write each clause as a self-contained logic rule, which just defines the truth of goals
that match its head. Then add cuts to remove any fruitless alternative computation
paths that may tie up memory.

e Cuts are hardly ever needed in the last clause of a predicate.

e Use cuts sparingly, and only at proper places. A cut should be placed at the exact
point that it is known that the current choice is the correct one; no sooner, no later,
usually placed right after the head, sometimes preceded by simple tests.

e Make cuts as local in their effect as possible. If a predicate is intended to be determinate,
define it as such; don’t rely on its callers to prevent unintended backtracking.

e Binding output arguments before a cut is a common source of programming errors. If



66 SICStus Prolog

a predicate is not steadfast, it is usually for this reason.

To illustrate the last issue, suppose that you want to write a predicate max/3 that finds the
greater of two numbers. The pure version is:

max(X, Y, X) :- X >= Y.
max(X, Y, Y) :- X < Y.

Now since the two conditions are mutually exclusive, we can add a green cut to the first
clause:

max(X, Y, X) (- X>=Y, I,
max(X, Y, Y) :- X < Y.

Furthermore, if the X >= Y test fails we know that X < Y must be true, and therefore it is
tempting to turn the green cut into a red one and drop the X < Y test:

max(X, Y, X) :- X >=Y, !.
max(X, Y, Y).

Unfortunately, this version of max/3 can give wrong answers, for example:

| ?- max(10, 0, 0).
yes

The reason is that the query doesn’t match the head of the first clause, and so we never
executed the X >= Y test. When we dropped the X < Y test, we made the mistake of assuming
that the head of the first clause would match any query. This is an example of a predicate
that is not steadfast. A steadfast version is:

max(X, Y, Z) (- X>=Y, !, Z =X.
max(X, Y, Y).

4.2.3.2 Disjunction

It is sometimes convenient to use an additional operator *;’, standing for disjunction (or).
(The precedence of *;’ is such that it dominates ¢,” but is dominated by ‘:-’.) An example
is the clause (A), which can be read as (B).

grandfather (X, Z) :-
(  mother(X, Y)
;  father (X, Y)
),
father (Y, Z). 9]

“For any X, Y, and Z,
X has 7Z as a grandfather if
either the mother of X is Y
or the father of X is Y,
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and the father of Y is Z.” (B)

Such uses of disjunction can usually be eliminated by defining an extra predicate. For
instance, (A) is equivalent to (C)

grandfather(X, Z) :- parent(X, Y), father(Y, Z).
parent (X, Y) :- mother(X, Y).
parent (X, Y) :- father(X, Y). (©

[

For historical reasons, the token ‘|’, when used outside a list, is actually an alias for ;.
The aliasing is performed when terms are read in. Since release 4.3, however, ‘|’ can be
defined as a proper infix operator, which then disables the aliasing. So the use of ‘|’ instead
of *;’ for disjunction is not recommended in new code.

(l’

4.2.3.3 If-Then-Else

As an alternative to the use of cuts, and as an extension to the disjunction syntax, Prolog
provides the construct:

(If -> Then ; Else)

This is the same as the if-then-else construct in other programming languages. Procedurally,
it calls the If goal, committing to it if it succeeds, then calling the Then goal, otherwise
calling the Else goal. Then and Else, but not If, can produce more solutions on backtracking.

Cuts inside of If don’t make much sense and are not recommended. If you do use them,
their scope is limited to If itself.

The if-then-else construct is often used in a multiple-branch version:

(  If_1 -> Then_1
; If_2 -> Then_2

; /* otherwise -> x/
WhenAllElseFails
)

In contexts other than as the first argument of ;/2, the following two goals are equivalent:

(If -> Then)

(If -> Then ; fail)

That is, the ‘=>’ operator has nothing to do with, and should not be confused with, logical
implication.

once/1 is a control construct that provides a “local cut”. That is, the following three goals
are equivalent:
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once (If)
(If -> true)

(If -> true ; fail)
Finally, there is another version of if-then-else of the form:
if (If,Then,Else)

which differs from (If -> Then ; Else) in that if/3 explores all solutions to If. This
feature is also known as a “soft cut”. There is a small time penalty for this—if If is known
to have only one solution of interest, the form (If -> Then ; Else) should be preferred.

4.2.3.4 Negation as Failure

The following construct provides a kind of pseudo-negation meaning “P is not provable”.
This is not real negation (“P is false”). The following two goals are equivalent:

\+ P

(P -> fail ; true)
4.2.3.5 Do-Loops since release 4.1
Proposed in [Schimpf 2002], the control structure

(Iterators do Body)

often eliminates the need to write an auxiliary predicate to perform some simple iteration.
A do-loop is substituted by a goal:

PreCallGoals, aux(CallArgs).

where aux is a new, unique predicate symbol, CallArgs is its initial arguments, and Pre-
CallGoals is a sequence of goals to be executed before calling aux. In addition, a definition
for aux is defined, and is always of the form:

aux (BaseArgs) :- !.
aux (HeadArgs) :- PreBodyGoals, Body, aux (RecArgs).

where BaseArgs, HeadArgs and RecArgs are sequence of arguments and PreBodyGoals a
sequence of goals.

[

The ‘do’ operator is an infix operator of the same priority as ‘;’. It is recommended to
always enclose a do-loop in parentheses.

Iterators is a comma-separated sequence of iterators. Before giving the full list of available
iterators, we first show some simple examples.

The iterator foreach(Var,List) provides iteration over a list:
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| ?- (foreach(X,[1,2,3]) do write(X), nl).
1

2

3

yes

The same iterator can be used to construct a list:

| ?- (foreach(X,[1,2,3]), foreach(Y,List) do Y is X+3).
List = [4, 5, 6]

The iterator fromto(First, In,0Out,Last) can be used to express an accumulator with
initial value First, final value Last, with In and Out being local variables in Body:

| ?- (foreach(X,[1,2,3]), fromto(0,In,Out,Sum) do Out is In+X).
Sum = 6

The iterator for(Var,Min,Max) will iterate Body with Var ranging over integers Min thru
Max, which can be expressions:

| ?- (for(I,1,5), foreach(I,List) do true).
List = [1,2,3,4,5]

The iterator count (Var,Min,Max) will iterate Body with Var ranging over ascending inte-
gers from Min, unifying Max with the final value. Its main use is to count the number of
iterations:

| ?- (foreach(X,[a,b,c,d,e]), count(I,1,N), foreach(I-
X,Pairs) do true).

N =5,

Pairs = [1-a,2-b,3-c,4-d,5-¢]

The iterator foreacharg(Var, Struct) provides iteration over the arguments of a structure.
The variant foreacharg(Var,Struct,I) also exists, with I ranging over the argument
number, 1-based:

| ?- (foreacharg(A,f(1,2,3)), foreach(A,List) do true).
List = [1,2,3]

| ?- (foreacharg(A,f(a,b,c,d,e),I), foreach(I-A,List) do true).
List = [1-a,2-b,3-c,4-d,5-¢]

Do-loops have special variable scoping rules, which sometimes contradict the default rule
that the scope of a variable is the clause in which it occurs: the scope of variables occurring
in Body as well as variables quantified by iterators is one loop iteration. The exact scope of
variables is given in the table below. To override the scoping rule, i.e. to enable a variable
to be passed to all loop iterations, use the param(Var) declaration:

| ?- (for(I1,1,5), foreach(X,List), param(X) do true).
List = [X,X,X,X,X]
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An omitted param(Var) iterator is often spotted by the compiler, which issues a warning.
Suppose that we want to define a predicate that removes all occurrences of the element
Kill from the list List giving Residue. A do-loop formulation is given below, along with a
buggy version where param(Kill) is missing:

% do.pl
deletel(List, Kill, Residue) :- % correct
(  foreach(X,List),
fromto(Residue,S0,S,[1),
param(Kill)
do (X = Kill -> SO =S ; SO = [XIS])

delete2(List, Kill, Residue) :- % wrong
( foreach(X,List),
fromto(Residue,S0,S, [1)
do (X = Kill -> SO =S ; SO = [XI|S])
).

The compiler warns about the missing param(Kill), and for a good reason: the first version
works as intended, but the second does not:

| 7- [do].
% compiling /home/matsc/sicstus4/do.pl...
[Kill] treated as local in do-loop but also used outside
* suggest renaming or adding param([Kill])
* Approximate lines: 8-15, file: ’/home/matsc/sicstus4/do.pl’
% compiled /home/matsc/sicstus4/do.pl in mod-
ule user, 10 msec 192 bytes
| ?- delete1l([1,2,3,4,5], 3, R).
R = [1,2,4,5]

| 7- delete2([1,2,3,4,5], 3, R).
R = []

Finally, do-loops can be used as a control structure in grammar rules as well. A do-loop in
a grammar rule context will generate (or parse) the concatenation of the lists of symbols
generated (or parsed) by each loop iteration. For example, suppose that you are representing
three-dimensional points as lists [x,y,z]. Suppose that you need to generate a list of all
such points for x between 1 and Length, y between 1 and Width, and z between 1 and
Height. A generator of such lists can be written as a grammar rule with nested do-loops as
follows.
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7- compile(user).
points3d(Length, Width, Height) -->
( for(X,1,Length),

?- "D

% compiled user in module user, O msec 1024 bytes

| ?- phrase(points3d(3,2,4), S).

s=1[[1,1,1],[1,1,2],[1,1,3],[1,1,4],
(1,2,11,[1,2,2],[1,2,3],[1,2,4],
(2,1,1],[2,1,21,[2,1,3],[2,1,4],
(2,2,11,[2,2,2],[2,2,3],[2,2,4],
(3,1,11,03,1,21,(3,1,3],[3,1,4],
(3,2,11,103,2,21,[3,2,3],[3,2,4]]

|

|

|

I param(Width,Height)
| do ( for(Y,1,Width),
| param(X,Height)
[ do ( for(Z,1,Height),
| param(X,Y)

I do [[X,Y,Z]]

| )

| )

|

|

We now summarize the available iterators. In this table, the phrase “var is a local variable”
means that var is a brand new variable in each iteration. All other variables have global
scope, i.e. the scope is the clause containing the do-loop.

fromto(First, In,Out,Last)
Iterate Body starting with In=First until OQut=Last. In and Out are local
variables. For all but the first iteration, the value of In is the same as the value
of Out in the previous iteration.

foreach(X,List)
Iterate Body with X ranging over all elements of List. X is a local variable.
Can also be used for constructing a list.

foreacharg(X, Struct)
Iterate Body with X ranging over all arguments of Struct. X is a local variable.
Cannot be used for constructing a term.

foreacharg(X, Struct, Idx)
Same as before, but Idx is set to the argument position of X in Struct, i.e.
arg(Idx, Struct, X) is true. X and Idx are local variables.

for(I,MinExpr,MaxExpr)
Iterate Body with I ranging over integers from MinExpr to MaxExpr. I is a
local variable. MinExpr and MaxExpr can be arithmetic expressions. Can be
used only for controlling iteration, i.e. MaxExpr cannot be uninstantiated.
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count (I,Min,Max)
Iterate Body with I ranging over integers from Min up to Max. I is a local
variable. Can be used for controlling iteration as well as counting, i.e. Max can
be a uninstantiated.

param(Var)
For declaring variables global, i.e. shared with the context, even if they are
quantified by some other iterator of this table. Var can be a single variable or
a list of variables. Please note: By default, variables in Body have local scope.

IterSpecl, IterSpec?2

The specifiers are iterated synchronously; that is, they all take their first value
for the first execution of Body, their second value for the second execution of
Body, etc. The order in which they are written does not matter, and the set
of local variables in Body is the union of those of IterSpecl and IterSpec2.
When multiple iteration specifiers are given in this way, typically not all of
them will impose a termination condition on the loop (e.g. foreach with an
uninstantiated list and count with an uninstantiated maximum doesn’t impose
a termination condition), but at least one of them should do so. If several
specifiers impose termination conditions, then these conditions must coincide,
i.e. specify the same number of iterations.

Finally, we present a translation scheme for the iterators in terms of PreCallGoals, CallArgs,
BaseArgs, HeadArgs, PreBodyGoals and RecArgs, as previously introduced:

iterator PreCallGoals CallArgs BaseArgsHead ArgPreBodyGoals ~ RecArgs
fromto(F,I0,I1,T)true F, T LO,LO IO0,L1 true I1,L1
foreach(X,L) true L ] [XIT] +true T
foreacharg(4,S) functor(S,_ S,1,N1 _ S,I10,I2 11 is I0+1, S,I1,I2
N, ,10,I0
N1 is N+1 arg(I0,S,4)
foreacharg(4,S,I1Junctor(S,_ S,1,N1 _ S,10,I2 I1 is I0+1, S,I1,I2
N, ,10,I0
N1 is N+1 arg(I0,S,4)
count (I,FE,T) F is FE-1 F,T LO,LO IO,L1 I is I0O+1 I,L1
for(I,FE,TE) F is FE F,S LO,LO I,L1 I1is I+1 I1,L1
S is
max(F,TE+1)
param(P) true P P P true P

4.2.3.6 Other Control Structures

The “all solution” predicates recognize the following construct as meaning “there exists an
X such that P is true”, and treats it as equivalent to P. The use of this explicit existential
quantifier outside the setof/3 and bagof/3 constructs is superfluous and discouraged.
Thus, the following two goals are equivalent:
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X"P
P

The following construct is meaningful in the context of modules (see Section 4.11 [ref-mod],
page 159), meaning “P is true in the context of the M module”:

M:P

4.2.4 Declarative and Procedural Semantics

The semantics of definite clauses should be fairly clear from the informal interpretations
already given. However, it is useful to have a precise definition. The declarative semantics
of definite clauses tells us which goals can be considered true according to a given program,
and is defined recursively as follows:

A goal is true if it is the head of some clause instance and each of the goals (if
any) in the body of that clause instance is true, where an instance of a clause
(or term) is obtained by substituting, for each of zero or more of its variables,
a new term for all occurrences of the variable.

For example, if a program contains the procedure for concatenate/3, declared in
Section 4.2.1 [ref-sem-pro|, page 61, the declarative semantics tells us that (A) is true, be-
cause this goal is the head of a certain instance of the second clause (K) for concatenate/3,
namely (B), and we know that the only goal in the body of this clause instance is true,
because it is an instance of the unit clause that is the first clause for concatenate/3.

concatenate([al, [bl, [a,bl)

concatenate([a], [b], [a,bl):-
concatenate([], [bl, [bl).

Note that the declarative semantics makes no reference to the sequencing of goals within
the body of a clause, nor to the sequencing of clauses within a program. This sequencing
information is, however, very relevant for the procedural semantics that Prolog gives to defi-
nite clauses. The procedural semantics defines exactly how the Prolog system will execute a
goal, and the sequencing information is the means by which the Prolog programmer directs
the system to execute his program in a sensible way. The effect of executing a goal is to
enumerate, one by one, its true instances. Here is an informal definition of the procedural
semantics.

To execute a goal, the system searches forwards from the beginning of the
program for the first clause whose head matches or unifies with the goal. The
unification process [Robinson 65] finds the most general common instance of
the two terms, which is unique if it exists. If a match is found, the matching
clause instance is then activated by executing in turn, from left to right, each
of the goals (if any) in its body. If at any time the system fails to find a match
for a goal, it backtracks; that is, it rejects the most recently activated clause,
undoing any substitutions made by the match with the head of the clause. Next
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it reconsiders the original goal that activated the rejected clause, and tries to
find a subsequent clause that also matches the goal.

For example, if we execute the goal expressed by the query (A) we find that it matches
the head of the second clause for concatenate/3, with X instantiated to [a|X1]. The new
variable X1 is constrained by the new goal produced, which is the recursive procedure call
(B) and this goal matches the second clause, instantiating X1 to [b|X2], and yielding the
new goal (C).

| ?- concatenate(X, Y, [a,b]). (A)
concatenate (X1, Y, [bl) (B)
concatenate(X2, Y, [1) ©

Now this goal will only match the first clause, instantiating both X2 and Y to []. Since
there are no further goals to be executed, we have a solution

X = [a,b]
Y =[]

That is, the following is a true instance of the original goal:
concatenate([a,b], [1, [a,b])

If this solution is rejected, backtracking will generate the further solutions

X = [a]
Y = [b]
X =[]
Y = [a,b]

in that order, by re-matching goals already solved once using the first clause of
concatenate/3, against the second clause.

Thus, in the procedural semantics, the set of clauses
H :- B1, ..., Bm.
H’ :- B1’, ..., Bm’.

are regarded as a procedure definition for some predicate H, and in a query
?- G1, ..., Gn.

each Gi is regarded as a procedure call. To execute a query, the system selects by its
computation rule a goal, Gj say, and searches by its search rule a clause whose head matches
Gj. Matching is done by the unification algorithm (see [Robinson 65]), which computes the
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most general unifier, mgu, of Gj and H). The mgu is unique if it exists. If a match is found,
the current query is reduced to a new query

?- (61, ..., Gj-1, B1, ..., Bm, Gj+1, ..., Gn)mgu.

and a new cycle is started. The execution terminates when the empty query has been
produced.

If there is no matching head for a goal, the execution backtracks to the most recent successful
match in an attempt to find an alternative match. If such a match is found, an alternative
new query is produced, and a new cycle is started.

In SICStus Prolog, as in other Prolog systems, the search rule is simple: “search forward
from the beginning of the program”.

The computation rule in traditional Prolog systems is also simple: “pick the leftmost goal
of the current query”. However, SICStus Prolog and other modern implementations have a
somewhat more complex computation rule “pick the leftmost unblocked goal of the current
query”.

A goal can be blocked on one ore more uninstantiated variables, and a variable may block
several goals. Thus binding a variable can cause blocked goals to become unblocked, and
backtracking can cause currently unblocked goals to become blocked again. Moreover, if
the current query is

?- G1, ..., Gj-1, Gj, Gj+1, ..., Gn.

where Gj is the first unblocked goal, and matching Gj against a clause head causes several
blocked goals in G1, ..., Gj-1 to become unblocked, these goals may become reordered.
The internal order of any two goals that were blocked on the same variable is retained,
however.

Another consequence is that a query may be derived consisting entirely of blocked goals.
Such a query is said to have floundered. The top-level checks for this condition. If detected,
the outstanding blocked subgoals are printed on the standard error stream along with the
answer substitution, to notify the user that the answer (s)he has got is really a speculative
one, since it is only valid if the blocked goals can be satisfied.

A goal is blocked if certain arguments are uninstantiated and its predicate definition is anno-
tated with a matching block declaration (see Section 4.3.4.5 [Block Declarations], page 83).
Goals of certain built-in predicates may also be blocked if their arguments are not sufficiently
instantiated.

When this mechanism is used, the control structure resembles that of coroutines, suspending
and resuming different threads of control. When a computation has left blocked goals
behind, the situation is analogous to spawning a new suspended thread. When a blocked
goal becomes unblocked, the situation is analogous to temporarily suspending the current
thread and resuming the thread to which the blocked goal belongs.
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4.2.5 Meta-Calls

If X is instantiated to a term that would be acceptable as the body of a clause, the goal
call(X) is executed exactly as if that term appeared textually in place of the call(X),
except the scope of any cut occurring in X is limited to the execution of X. That is, the
cut does not “propagate” into the clause in which call(X) occurs. If X is not properly
instantiated, an error exception is raised as described in Section 4.2.6 [ref-sem-exc], page 76.

In release 4, call/1 has been generalized to call/N of any arity N between 1 and 255:
the first argument is treated as template, which should be augmented by the remaining
arguments, giving the goal to call. For example, the goal call(p(X),Y,Z) is equivalent to
the goal p(X,Y,Z). Note in particular that the first argument does not need to be an atom.

4.2.6 Exceptions Related to Procedure Calls

All predicates that take a call argument will raise the following exceptions:

instantiation_error
Module prefix or goal uninstantiated.

type_error
Goal not a callable.

existence_error
Procedure does not exist.

context_error
Declaration or clause construct called as procedure.

The reference page for such predicates will simply refer to these as “Call errors” and will
go on to detail other exceptions that may be raised for a particular predicate.

4.2.7 Occurs-Check

Prolog’s unification does not have an occurs-check; that is, when unifying a variable against
a term, the system does not check to see if the variable occurs in the term. When the
variable occurs in the term, unification should fail, but the absence of the check means
that the unification succeeds, producing a cyclic term. Operations such as trying to print
a cyclic term will cause a loop.

The absence of the occurs-check is not a bug or a design oversight, but a conscious design
decision. The reason for this decision is that unification with the occurs-check is at best
linear on the sum of the sizes of the terms being unified, whereas unification without the
occurs-check is linear on the size of the smallest of the terms being unified. For any pro-
gramming language to be practical, basic operations should take constant time. Unification
against a variable may be thought of as the basic operation of Prolog, and this can take
constant time only if the occurs-check is omitted. Thus the absence of an occurs-check is
essential to Prolog’s practicality as a programming language. The inconvenience caused by
this restriction is, in practice, very slight.

SICStus Prolog unifies, compares (see Section 4.8.8 [ref-lte-cte], page 128), asserts, and
copies cyclic terms without looping. The write_term/[2,3] built-in predicate can option-



Chapter 4: The Prolog Language 7

ally handle cyclic terms. Unification with occurs-check is available as a built-in predicate;
see Section 4.8.1.2 [ref-lte-met-usu], page 124. The acyclic_term/1 built-in predicate can
test whether a term is acyclic; subsumes_term/2 can test whether a term is subsumed by
another one (see Section 4.8 [ref-lte]|, page 124). Additional predicates for subsumption and
testing (a)cyclicity are available in a library package; see Section 10.38 [lib-terms], page 817.
Other predicates usually don’t handle cyclic terms well.

4.2.8 Summary of Control Predicates

:P,:Q IS0
prove P and Q

:P;:Q IS0
prove P or @

+M::P IS0
call P in module M

:P->:0Q;:R 1s0
if P succeeds, prove Q); if not, prove R

:P->:Q IS0

if P succeeds, prove Q); if not, fail

] IS0
cut any choices taken in the current procedure

\+ :P IS0
goal P is not provable

?X ~ :P  there exists an X such that P is provable (used in setof/3 and bagof/3)

block :P declaration
declaration that predicates specified by P should block until sufficiently instan-
tiated

call(:P) IS0

call(:P,...)
execute P or P(...)

call_cleanup(:Goal, :Cleanup)
Executes the procedure call Goal. When Goal succeeds determinately, is cut,
fails, or raises an exception, Cleanup is executed.

call_residue_vars(:Goal, ?Vars)
Executes the procedure call Goal. Vars is unified with the list of new vari-
ables created during the call that remain unbound and have blocked goals or
attributes attached to them.

+Iterators do :Body
executes Body iteratively according to Iterators

fail IS0
fail (start backtracking)

false same as fail
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freeze(+Var, :Goal)
Blocks Goal until nonvar (Var) holds.

if(:P,:Q, :R)
for each solution of P that succeeds, prove Q); if none, prove R

once(:P) IS0
Find the first solution, if any, of goal P.

otherwise
same as true

repeat IS0
succeed repeatedly on backtracking

true IS0
succeed

when (+Cond, :Goal)
block Goal until Cond holds

4.3 Loading Programs

4.3.1 Overview

There are two ways of loading programs into Prolog—loading source files and loading pre-
compiled PO files. Source files can be compiled into virtual machine code, as well as
consulted for interpretation. Dynamic predicates are always stored in interpreted form,
however.

Virtual machine code runs about 8 times faster than interpreted code, and requires less
runtime storage. Compiled code is fully debuggable, except certain constructs compile
inline and cannot be traced. Compiled code also provides better precision for execution
profiling and coverage analysis.

Since release 4.3, on 32 and 64 bit x86 platforms running Windows, OS X, and Linux,
SICStus Prolog has the ability to compile predicates from virtual machine code to native
code. This process, known as Just In Time (JIT) compilation, is controlled by a couple
of system properties (see Section 4.17.1 [System Properties and Environment Variables],
page 222), but is otherwise automatic. JIT compilation is seamless wrt. debugging, profiling,
coverage analysis, etc. JIT compiled code runs up to 4 times faster than virtual machine
code, but takes more space.

The virtual machine compiler operates in two different modes, controlled by the compiling
Prolog flag. The possible values of the flag are:

compactcode
Compilation produces byte-coded abstract instructions. The default.

debugcode
Compilation produces interpreted code, i.e. compiling is replaced by consulting.
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This section contains references to the use of the module system. These can be ignored if
the module system is not being used (see Section 4.11 [ref-mod], page 159 for information
on the module system).

4.3.2 The Load Predicates

Loading a program is accomplished by one of these predicates

(1
[:File| :Files]
load_files(:Files)
load_files(:Files, +Options)
loads source or PO file(s), whichever is the more recent, according to Options.

compile(:Files)
loads source file(s) into virtual machine code.

consult(:Files)
reconsult(:Files)
loads source file(s) into interpreted representation.

ensure_loaded(:Files)
loads source or PO file(s), whichever is the more recent, unless the file has
already been loaded and it has not been modified since it was loaded.

use_module(:Files)

use_module(:File,+I)

use_module(?M, :File,+I)
loads module files, see Section 4.11.3 [ref-mod-def], page 160 for information
about module-files.

The following notes apply to all the Load Predicates:

1. The File argument must be one of the following;:

4

e a file specification, that is the name of a file containing Prolog code; a ‘.pro’,
‘.pl’ or a ‘.po’ suffix to a filename may be omitted (see Section 4.5.1 [ref-fdi-fsp],
page 94)
e the atom user
2. The Files argument can be a File, as above, or a list of such elements.

3. These predicates resolve file specifications in the same way as absolute_file_name/2.
For information on file names refer to Section 4.5 [ref-fdi], page 94.

4. The above predicates raise an exception if any of the files named in Files does not exist,
unless the fileerrors flag is set to off.

Errors detected during compilation, such as an attempt to redefine a built-in predi-
cate, also cause exceptions to be raised. However, these exceptions are caught by the
compiler, an appropriate error message is printed, and compilation continues.

5. There are a number of style warnings that may appear when a file is compiled. These
are designed to aid in catching simple errors in your programs and are initially on, but
can be turned off if desired by setting the appropriate flags, which are:
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single_var_warnings

If on, warnings are printed when a sentence (see Section 4.1.7.3 [ref-syn-
syn-sen|, page 53) containing variables not beginning with ‘_’ occurring
once only is compiled or consulted.

The Prolog flag legacy_char_classification (see Section 4.9.4 [ref-Ips-
flg], page 134) expands the set of variable names for which warnings are
printed. When legacy_char_classification is in effect warnings are
printed also for variables that occur only once and whose name begin with
¢_’ followed by a character that is not an uppercase Latin 1 character.

redefine_warnings
This flag can take more values; see Section 4.9.4 [ref-Ips-flg], page 134. If
on, the user is asked what to do when:

e a module or predicate is being redefined from a different file than its
previous definition.

e a predicate is being imported whilst it was locally defined already.
e a predicate is being redefined locally whilst it was imported already.

e a predicate is being imported whilst it was imported from another
module already.

discontiguous_warnings
If on, warnings are printed when clauses are not together in source files,
and the relevant predicate has not been declared discontiguous.

. By default, all clauses for a predicate are required to come from just one file. A
predicate must be declared multifile if its clauses are to be spread across several
different files. See the reference page for multifile/1.

. If a file being loaded is not a module-file, all the predicates defined in the file are loaded
into the source module. The form load_files(Module:Files) can be used to load the
file into the specified module. See Section 4.11.3 [ref-mod-def], page 160 for information
about module-files. If a file being loaded is a module-file, it is first loaded in the normal
way, the source module imports all the public predicates of the module-file except for
use_module/[1,2,3] and load_files/[1,2] if you specify an import list.

. If there are any directives in the file being loaded, that is, any terms with principal
functor :-/1 or 7-/1, these are executed as they are encountered. Only the first
solution of directives is produced, and variable bindings are not displayed. Directives
that fail or raise exceptions give rise to warning or error messages, but don’t terminate
the load. However, these warning or error messages can be intercepted by the hook
user:portray_message/2, which can call abort/0 to terminate the load, if that is the
desired behavior.

. A common type of directive to have in a file is one that loads another file, such as
:— [otherfile].

In this case, if otherfile is a relative filename it is resolved with respect to the directory
containing the file that is being loaded, not the current working directory of the Prolog
system.

Any legal Prolog goal may be included as a directive. There is no difference between a
‘:=/1" and a ‘?-/1’ goal in a file being compiled.
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10. If Files is the atom user, or Files is a list, and during loading of the list user is
encountered, procedures are to be typed directly into Prolog from user_input, e.g.
the terminal. A special prompt, ‘| 7, is displayed at the beginning of every new clause
entered from the terminal. Continuation lines of clauses typed at the terminal are
preceded by a prompt of five spaces. When all clauses have been typed in, the last
should be followed by end-of-file, or the atom end_of_file followed by a full-stop.

11. During loading of source code, all terms being read in are subject to term expansion.
Grammar rules is a special, built-in case of this mechanism. By defining the hook pred-
icates user:term_expansion/6 and goal_expansion/5, you can specify any desired
transformation to be done as clauses are loaded.

12. The current load context (module, file, stream, directory) can be queried using prolog._
load_context/2.

13. Predicates loading source code are affected by the character-conversion mapping, cf.
char_conversion/2.

4.3.3 Redefining Procedures during Program Execution

You can redefine procedures during the execution of the program, which can be very useful
while debugging. The normal way to do this is to use the ‘break’ option of the debugger
to enter a break state (see break/0, Section 4.15.7 [ref-ere-int|, page 209), and then load
an altered version of some procedures. If you do this, it is advisable, after redefining the
procedures and exiting from the break state, to wind the computation back to the first call
to any of the procedures you are changing: you can do this by using the ‘retry’ option with
an argument that is the invocation number of that call. If you don’t wind the computation
back like this, then:

e if you are in the middle of executing a procedure that you redefine, you will find that
the old definition of the procedure continues to be used until it exits or fails;

e if you should backtrack into a procedure you have just redefined, alternative clauses in
the old definition will still be used.

See Section 11.3.27 [mpg-ref-break], page 917.

4.3.4 Declarations and Initializations

When a program is to be loaded, it is sometimes necessary to tell the system to treat some of
the predicates specially. This information is supplied by including declarations about such
predicates in the source file, preceding any clauses for the predicates that they concern. A
declaration is written just as a directive is, beginning with ‘:-’. A declaration is effective
from its occurrence through the end of file.

Although declarations that affect more than one predicate may be collapsed into a single
declaration, the recommended style is to write the declarations for a predicate immediately
before its first clause.

Operator declarations are not declarations proper, but rather directives that modify the
global table of syntax operators. Operator declarations are executed as they are encountered
while loading programs.



82 SICStus Prolog

The rest of this section details the available forms of predicate declarations.

4.3.4.1 Multifile Declarations

A declaration

:— multifile :PredSpec, ..., :PredSpec. IS0

where each PredSpec is a predicate spec, causes the specified predicates to become multifile.
This means that if more clauses are subsequently loaded from other files for the same
predicate, the new clauses will not replace the old ones, but will be added at the end
instead.

An example where multifile declarations are particularly useful is in defining hook predi-
cates. A hook predicate is a user-defined predicate that somehow alters or customizes the
behavior of SICStus Prolog. A number of such hook predicates are described in this man-
ual. See also Section 4.2.2.1 [ref-sem-typ-hok], page 63. Hook predicates should always be
declared as multifile, as this is the convention followed in the library modules.

Multifile declarations must precede any other declarations for the same predicate(s)!

If a file containing clauses for a multifile predicate is reloaded, the old clauses from the
same file are removed. The new clauses are added at the end. Please note: if the file being
reloaded is a module-file, however, all predicates belonging to the module are abolished,
including any multifile predicate.

If a multifile predicate is loaded from a file with no multifile declaration for it, the predicate
is redefined as if it were an ordinary predicate (i.e. the user is asked for confirmation).

If a multifile predicate is declared dynamic in one file, it must also be done so in the other
files from which it is loaded. See Section 11.3.125 [mpg-ref-multifile], page 1041.
4.3.4.2 Dynamic Declarations

A declaration

:— dynamic :PredSpec, ..., :PredSpec. IS0

where each PredSpec is a predicate spec, causes the specified predicates to become dynamic,
which means that other predicates may inspect and modify them, adding or deleting individ-
ual clauses. Dynamic predicates are always stored in interpreted form even if a compilation
is in progress. This declaration is meaningful even if the file contains no clauses for a
specified predicate—the effect is then to define a dynamic predicate with no clauses.

The semantics of dynamic code is described in Section 4.12.1 [ref-mdb-bas], page 174. See
Section 11.3.68 [mpg-ref-dynamic|, page 964.

4.3.4.3 Volatile Declarations

A declaration
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:— volatile :PredSpec, ..., :PredSpec.
where each PredSpec is a predicate spec, causes the specified predicates to become volatile.

A predicate should be declared as volatile if it refers to data that cannot or should not be
saved in a saved-state. In most cases a volatile predicate will be dynamic, and it will be
used to keep facts about streams or memory references. When a program state is saved at
runtime, the clauses of all volatile predicates will be left unsaved. The predicate definitions
will be saved though, which means that the predicates will keep all its properties such as
volatile, dynamic or multifile when the saved-state is restored. See Section 11.3.249
[mpg-ref-volatile], page 1197.

4.3.4.4 Discontiguous Declarations

By default, the development system issues warnings if it encounters clauses that are not
together for some predicate. A declaration:

:— discontiguous :PredSpec, ..., :PredSpec. IS0

disables such warnings for the predicates specified by each PredSpec. The warnings
can also be disabled globally by setting the discontiguous_warnings flag to off. See
Section 11.3.65 [mpg-ref-discontiguous], page 960.

4.3.4.5 Block Declarations

The declaration
:— block :BlockSpec, ..., :BlockSpec.

where each BlockSpec is a skeletal goal, specifies conditions for blocking goals of the pred-
icate referred to by the skeletal goal (£/3 say). The arguments of the skeletal goal can
be:

see below
4?7

‘anything else’
ignored

When a goal for £/3 is to be executed, the mode specs are interpreted as conditions for
blocking the goal, and if at least one condition evaluates to true, the goal is blocked.

A block condition evaluates to true if and only if all arguments specified as ‘=’ are uninstan-
tiated, in which case the goal is blocked until at least one of those variables is instantiated.
If several conditions evaluate to true, the implementation picks one of them and blocks the
goal accordingly.

The recommended style is to write the block declarations in front of the source code of the
predicate they refer to. Indeed, they are part of the source code of the predicate, and must
precede the first clause. For example, with the definition:
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:- block merge(-,?,-), merge(?,-,-).

merge([], Y, Y).
merge(X, [J, X).
merge([HIX], [E|Y], [HIZ]) :- H @< E, merge(X, [EIY], Z).
merge ([HIX], [E|Y], [E|Z]) :- H @= E, merge([HIX], Y, Z).

calls to merge/3 having uninstantiated arguments in the first and third position or in the
second and third position will suspend.

The behavior of blocking goals for a given predicate on uninstantiated arguments cannot
be switched off, except by abolishing or redefining the predicate. See Section 11.3.26 [mpg-
ref-block], page 915.

4.3.4.6 Meta-Predicate Declarations

To ensure correct semantics in the context of multiple modules, some predicates are subject
to module name expansion. Clauses or directives containing goals for such predicates need
to have certain arguments annotated by a module prefix. A declaration:

:— meta_predicate :MetaPredSpec, ..., :MetaPredSpec.

where each MetaPredSpec is a skeletal goal, informs the compiler which predicates and
which of its arguments should be subject to such annotations. See Section 4.11.16 [ref-mod-
met], page 170 and Section 4.11.15 [ref-mod-mne|, page 169 for details.

4.3.4.7 Module Declarations

One of the following declarations:

:— module (+ModuleName, +ExportList).

:— module (+ModuleName, +ExportList, +0Options) .

where ExportList is a list of predicate specs, declares that the forthcoming predicates
should go into the module named ModuleName and that the predicates listed should be
exported. See Section 4.11 [ref-mod], page 159 for details. See Section 11.3.122 [mpg-ref-
meta_predicate|, page 1036.

4.3.4.8 Public Declarations

The only effect of a declaration
:— public :PredSpec, ..., :PredSpec.

where each PredSpec is a predicate spec, is to give the SICStus cross-referencer (see
Section 9.12 [The Cross-Referencer], page 371) a starting point for tracing reachable code.
In some Prologs, this declaration is necessary for making compiled predicates visible. In
SICStus Prolog, predicate visibility is handled by the module system. See Section 4.11
[ref-mod], page 159.
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4.3.4.9 Mode Declarations

A declaration
:— mode :ModeSpec, ..., :ModeSpec.

where each ModeSpec is a skeletal goal, has no effect whatsoever, but is accepted for
compatibility reasons. Such declarations may be used as a commenting device, as they
express the programmer’s intention of data flow in predicates.

4.3.4.10 Include Declarations

A directive

:— include(+Files). IS0

where Files is a file name or a list of file names, instructs the processor to literally embed
the Prolog clauses and directives in Files into the file being loaded. This means that the
effect of the include directive is as if the include directive itself were being replaced by
the text in the Files. Including some files is thus different from loading them in several
respects:

e The embedding file counts as the source file of the predicates loaded, e.g. with respect
to the built-in predicate source_file/2; see Section 4.9.3 [ref-lps-apf]|, page 134.

e Some clauses of a predicate can come from the embedding file, and some from included
files.

e When including a file twice, all the clauses in it will be entered twice into the program
(although this is not very meaningful).

e The virtual clauses beginning_of_file and end_of_file are seen by term expansions
for source files, but not for included files.

SICStus Prolog uses the included file name (as opposed to the embedding file name) only
in source-linked debugging and error reporting. See Section 11.3.104 [mpg-ref-include],
page 1012.

4.3.4.11 Initializations

A directive

:— initialization :Goal. IS0

in a file appends Goal to the list of goals that shall be executed after that file has been
loaded.

initialization/1 is actually callable at any point during loading of a file. Initializations
are saved by save_modules/2 and save_program/[1,2], and so are executed after loading
or restoring such files too, in input order.
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Goal is associated with the file loaded, and with a module, if applicable. When a file, or
module, is going to be reloaded, all goals earlier installed by that file, or in that module,
are removed first. See Section 11.3.105 [mpg-ref-initialization], page 1013.

4.3.5 Term and Goal Expansion

During loading of source code, all terms being read in are subject to term expansion. Gram-
mar rules is a special, built-in case of this mechanism. By defining the hook predicates
user:term_expansion/6 and goal_expansion/5, you can specify any desired transforma-
tion to be done as clauses are loaded.

Term expansions are added by defining clauses for the following hook predicate. Such
clauses should follow the pattern:

:- multifile user:term_expansion/6.
user:term_expansion(Terml, Layoutl, Ids, Term2, Layout2, [to-
ken|Ids]) :- ...

nonmember (token, Ids),

token_expansion (Terml, Layoutl, Term2, Layout2), !.

where token_expansion/4 should be a predicate defining how to transform a given Terml
into Term2. The hook is called for every Terml read, including at end of file, represented
as the term end_of_file. If it succeeds, Term2 is used for further processing; otherwise,
the default grammar rule expansion is attempted. It is often useful to let a term expand to
a list of directives and clauses, which will then be processed sequentially.

A key idea here is Ids, which is used to look up what expansions have already been ap-
plied. The argument is supposed to be a list of tokens, each token uniquely identifying an
expansion. The tokens are arbitrary atoms, and are simply added to the input list, before
expansions recursively are applied. This token list is used to avoid cyclic expansions.

The other arguments are for supporting source-linked debugging; see the reference page for
details. See Section 11.3.227 [mpg-ref-term_expansion|, page 1171.

Please note: term expansions are global, i.e. they affect all code that are compiled or
consulted. In particular a term expansion is not affected by module imports. Care should
be taken so that a term expansion does not unintentionally affect some unrelated source
code. goal_expansion/5 provides a more robust, and module aware, way to transform
individual goals.

Goal expansions are added by defining the hook predicate:
M:goal_expansion(Goall, Layoutl, Module, Goal2, Layout2) :- ...

which should define how to transform a given Goall into Goal2. Expansions are per module
and should be defined in the module M in which Goall is locally defined. It is called for
every goal occurring in a clause being loaded, asserted, or meta-called. If it succeeds, Goal2
is used for further processing, and may be arbitrarily complex.
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Please note: In general, the goal expansion can happen both at compile time and at runtime
(and sometimes both, even for the same goal). For this reason the code that implements
goal expansion should be present both at compile time and at runtime.

The other arguments are for supporting source-linked debugging and passing the source
module; see the reference page for details.

To invoke term expansion from a program, use:
?- expand_term(Terml, Term2).

which transforms TermI into Term2 using the built-in (for grammar rules) as well as user-
defined term expansion rules. See Section 11.3.97 [mpg-ref-goal_expansion|, page 1004.

4.3.6 Conditional Compilation

A pair of directives
:— if(:Goal).
:— endif.

will evaluate Goal and, if the goal succeeds, the sentences between the if/1 directive and
the matching endif/0 directive will be processed as usual.

If the evaluation of Goal does not succeed, i.e. fails or raises an exception, the sentences
between the if/1 directive and the endif/0 directive are completely ignored, except that
any conditional directives must be properly nested. In particular, term expansion will not
be performed on such ignored sentences and the goals of any nested conditional directives
will not be evaluated.

The full form of conditional compilation directives include optional else/0 and elif/1 and
are used as follows

:— if(:Goall).
:— else.
:— endif.

If the goal of the if/1 directive succeeds, the sentences up to the matching else/0 directive
are processed as usual. Otherwise, if the goal fails or raises an exception, the sentences
between the else/0 directive and the matching endif/0 directive are processed as usual.

Finally, elif/1 is available as a shorthand for nested uses of if/1 and else/0
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:— if(:Goall).
;;.elif(:Goal2).
;;.elif(:GoalS).
:—.else.
:—'endif.

will evaluate the goals in turn, until one of them succeeds in which case the following
sentences will be processed as usual up to the corresponding else/0, endif/0 or elif/1.

A valid sequence of conditional compilation directives must contain exactly one if/1 direc-
tive followed by zero or more elif/1 directives followed by at most one else/0 directive
followed by exactly one endif/0 directive. Valid sequences of conditional directives can be
nested.

All directives that make up a sequence of conditional compilation directives must be in the
same file. For instance, you cannot have a if/1 directive in one file and then have the
corresponding endif/0 directive in a file included with an include/1 directive. Nested
conditional compilation sequences can of course be located in included files.

Conditional compilation directives are handled very early in the processing of an input
file. In particular, term expansion hooks will never see if/1, else/0, elif/1 or endif/0
directives. Also, neither of if/1, else/0, elif/1 or endif/0 are defined as predicates.

If evaluation of a goal for if/1 directive or an elif/1 directive raises an exception, an error
message will be written and the goal will be treated as if it failed.

4.3.6.1 Conditional Compilation Examples

Conditional compilation is useful for writing portable Prolog code since it makes it possible
to adapt to peculiarities of various implementations. The Prolog flag dialect, used by
several Prolog implementations, is especially useful here.
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:— if (current_prolog_flag(dialect, sicstus).
%% We are being compiled in SICStus

%% Only SICStus has this library

:— use_module(library(process), [process_create/2]).

:— elif (current_prolog_flag(dialect, othervendor)).

%% We are being compiled in Other Vendor, we need to provide our own
%% compatibility layer

:— use_module(...).
process_create(A,B) :—- ...

:— else.
%% We are being compiled in some unknown Prolog, give up.

process_create(_,_) :- throw(not_implemented) .

:— endif.

Another possible usage is for disabling, perhaps costly, debugging code when building an
optimized version of the code.

%% Only need environ/2 at compile-time for conditional compilation
:- load_files(library(system), [when(compile_time), imports([environ/2])]).

:-= if(\+ environ(optimize, true)).

%% This clause does some expensive sanity checks. Disabled when building
%% an optimized version.
foo(X) :-

\+ valid_x(X),

throw(invalid_x(X)).

:— endif.

%% This clause is always present.
foo(X) :-
do_x_things(X).

Invoking the SICStus development system with an option ‘-Doptimize=true’, to set the
system property optimize, and then compiling the above code will ensure that the first,
sanity checking, clause is not part of the foo/1 predicate. Invoking the development system
without such an option will ensure that the sanity checking clause is part of the foo/1
predicate.
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4.3.7 Predicate List

Detailed information is found in the reference pages for the following:

(]
[:F|+Fs] same as load_files([F|Fs])

block :P declaration
predicates specified by P should block until sufficiently instantiated

compile(:F)
load compiled clauses from files F

consult(:F)
reconsult (:F)
load interpreted clauses from files F

expand_term(+T, -X) hookable
term T expands to term X using user:term_expansion/6 or grammar rule
expansion

goal_expansion(+Terml, +Layoutl, +Module, -Term2, -Layout2) hook

Defines transformations on goals while clauses are being compiled or asserted,
and during meta-calls.

discontiguous :P declaration,ISO
clauses of predicates P don’t have to appear contiguously

dynamic :P declaration,ISO
predicates specified by P are dynamic

elif (:Goal declaration
Provides an alternative branch in a sequence of conditional compilation direc-
tives.

else declaration
Provides an alternative branch in a sequence of conditional compilation direc-
tives.

endif declaration

Terminates a sequence of conditional compilation directives.

ensure_loaded(:F) IS0
load F if not already loaded

if (:Goal) declaration
Starts a sequence of conditional compilation directives for conditionally includ-
ing parts of a source file.

include (+F) declaration,ISO
include the source file(s) F' verbatim

initialization :G declaration,ISO
declares G to be run when program is started
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load_files(:F)
load_files(:F,+0)
load files according to options O

meta_predicate :P declaration
declares predicates P that are dependent on the module from which they are
called

mode :P declaration

NO-OP: document calling modes for predicates specified by P

module (+M,+L) declaration
module (+M,+L,+0) declaration
module M exports predicates in L, options O

multifile :P declaration, ISO
the clauses for P are in more than one file

public :P declaration
NO-OP: declare predicates specified by P public

restore(+F)
restore the state saved in file F

user:term_expansion(+Terml, +Layoutl, +Tokensl, -Term2, -Layout2, -Tokens2)
hook
Overrides or complements the standard transformations to be done by expand_
term/2.

use_module(:F)
use_module(:F,+I)
import the procedure(s) I from the module-file F

use_module(?M, :F,+I)
import I from module M, loading module-file F' if necessary

volatile :P declaration
predicates specified by P are not to be included in saves

4.4 Saving and Loading the Prolog Database
4.4.1 Overview of PO Files

A PO file (Prolog object file) contains a binary representation of a set of modules, predicates,
clauses and directives. They are portable between different platforms, except between 32-bit
and 64-bit platforms.

PO files are created by save_files/2, save_modules/2, and save_predicates/2, which
all save a selected set of code and data from the running application. They can be loaded
by the predicates described in Section 4.3 [ref-lod], page 78.

PO files provide tremendous flexibility that can be used for many purposes, for example:

e precompiling Prolog libraries for fast loading;
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e packaging Prolog code for distribution;

e generating precompiled databases of application data;

e selectively loading particular application databases (and rule bases);
e saving Prolog data across application runs;

e building and saving new application databases from within applications;

The facilities for saving and loading PO files are more than just a convenience when devel-
oping programs; they are also a powerful tool that can be used as part of the application
itself.

4.4.2 Saved-States

Saved-states are just a special case of PO files. The save_program/[1,2] predicate will save
the execution state in a file. The state consists of all predicates and modules except built-in
predicates and clauses of volatile predicates, the current operator declarations, the current
character-conversion mapping, the values of all writable Prolog flags except those marked
as volatile in Section 4.9.4 [ref-lps-flg], page 134, any blackboard data (see Section 4.12.9
[ref-mdb-bbd], page 182), database data (see Section 4.12.1 [ref-mdb-bas]|, page 174), and
as of release 4.2, information for source-linked debugging. See Section 11.3.198 [mpg-ref-
save_program], page 1132.

A saved-state, can be restored using the restore/1 predicate from within Prolog:
| ?- restore(File).

which will replace the current program state by the one in File. See Section 11.3.192 [mpg-
ref-restore], page 1125.

A saved-state can also be given as an option to the sicstus command:
% sicstus -r File
which will start execution by restoring File.

The location (i.e. directory) of the saved-state, when it is created with save_program/[1,2]
and loaded with restore/1, is treated in a special way in order to make it possible locate
files when the saved-state has been moved. See Section 3.10 [Saving], page 27 for more
information.

The save_program/2 predicate can be used to specify an initial goal that will be run when
the saved-state is restored. For example:

| ?- save_program(saved_state,initial_goal([a,b,cl)).

When ‘saved_state’ is loaded initial_goal/1 will be called. This allows saved-states to
be generated that will immediately start running the user’s program when they are restored.
In addition to this save_program/2 facility, see also the initialization/1 facility to
declare goal to be executed upon loading (see Section 4.3.4.11 [Initializations|, page 85).
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4.4.3 Selective Saving and Loading of PO Files

The save_program/[1,2] and restore/1 predicates discussed in the previous section are
used for saving and restoring the entire Prolog database. To save selected parts of a Prolog
database, the predicates save_files/2, save_modules/2, and save_predicates/2 are
used.

To save everything that was loaded from the files ‘src1.pl’ and ‘src2.pl’ into ‘filel.po’
(extensions optional), as well as from any file included by them, you would use:

| ?- save_files([srcl,src2],filel).

Any module declarations, predicates, multifile clauses, or directives encountered in those
files will be saved. Source file information as provided by source_file/[1,2] for the
relevant predicates and modules is also saved.

To save the modules user and special into ‘file2.po’ you would use:
| ?7- save_modules([user,special],file2).

The module declarations, predicates and initializations belonging to those modules will
be saved. Source file information and embedded directives (except initializations) are not
saved.

To just save certain predicates into ‘file3.po’ you would use:
| 7- save_predicates([person/2,dept/4],file3).

This will only save the predicates specified. When the PO file is loaded the predicates will
be loaded into the same module they were in originally.

Any PO file, however generated, can be loaded into Prolog with load_files/[1,2]:
| ?- load_files(filel).

or, equivalently:
| 7- [filel].

The information from each PO file loaded is incrementally added to the database. This
means that definitions from later loads may replace definitions from previous loads.

The predicates load_files/[1,2] are used for compiling and loading source files as well
as PO files. If ‘filel.po’ and ‘filel.pl’ both exist (and ‘filel’ does not), load_
files(filel) will load the source (‘.pl’) or the PO, whichever is the most recent.

Refer to Section 4.3 [ref-lod], page 78 for more information on loading programs, and also
to the reference page for load_files/[1,2].

4.4.4 Predicate List

Detailed information is found in the reference pages for the following:
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initialization :G declaration,ISO
declares G to be run when program is started

load_files(:F)
load_files(:F,+0)
load files according to options O

user:runtime_entry(+S) hook
entry point for a runtime system

save_files(+L,+F)
saves the modules, predicates, clauses and directives in the given files L into

file F

save_modules (+L,+F)
save the modules specifed in L into file F

save_predicates(:L,+F)
save the predicates specified in L into file F

save_program(+F)
save_program(+F, :G)
save all Prolog data into file F' with startup goal G

volatile :P declaration
declares predicates specified by P to not be included in saves.

4.5 Files and Directories
4.5.1 The File Search Path Mechanism

As a convenience for the developer and as a means for extended portability of the final
application, SICStus Prolog provides a flexible mechanism to localize the definitions of the
system dependent parts of the file and directory structure a program relies on, in such a
way that the application can be moved to a different directory hierarchy or to a completely
new file system, with a minimum of effort.

This mechanism, which can be seen as a generalization of the user:library_directory/1
scheme available in previous releases, presents two main features:

1. An easy way to create aliases for frequently used directories, thus localizing to one
single place in the program the physical directory name, which typically depends on
the file system and directory structure.

2. A possibility to associate more than one directory specification with each alias, thus
giving the developer full freedom in sub-dividing libraries, and other collections of
programs, as it best suits the structure of the external file system, without making the
process of accessing files in the libraries any more complicated. In this case, the alias
can be said to represent a file search path, not only a single directory.

The directory aliasing mechanism, together with the additional file search capabilities of
absolute_file_name/3, can effectively serve as an intermediate layer between the external
world and a portable program. For instance, the developer can hide the directory repre-
sentation by defining directory aliases, and he can automatically get a proper file extension
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added, dependent on the type of file he wants to access, by using the appropriate options
to absolute_file_name/3.

A number of directory aliases and file search paths, are predefined in the SICStus Prolog
system. The most important of those is the 1ibrary file search path, giving the user instant
access to the SICStus library, consisting of several sub-directories and extensive supported
programs and tools.

Specifying a library file, using the alias, is possible simply by replacing the explicit file (and
directory) specification with the following term:

library(file)

The name of the file search path, in this case 1ibrary, is the main functor of the term, and
indicates that file is to be found in one of the library directories.

The association between the alias library (the name of the search path) and the library
directories (the definitions of the search path), is extended by Prolog facts, user:library_
directory/1, which are searched in sequence to locate the file. Each of these facts specifies
a directory where to search for file, whenever a file specification of the form 1library(file)
is encountered.

The library mechanism discussed above, which can be extended with new directories associ-
ated with the alias 1ibrary, has become subsumed by a more general aliasing mechanism,
in which arbitrary names can be used as aliases for directories. The general mechanism also
gives the possibility of defining path aliases in terms of already defined aliases.

In addition to library, the following aliases are predefined in SICStus Prolog: runtime,
system, application, temp, and path. The interpretation of the predefined aliases are
explained below.

4.5.1.1 Defining File Search Paths
The information about which directories to search when an alias is encountered is extended

by clauses for the hook predicate user:file_search_path/2, of the following form:

user:file_search_path(PathAlias, DirectorySpec).

PathAlias must be an atom. It can be used as an alias for DirectorySpec.

DirectorySpec
Can either be an atom, spelling out the name of a directory, or a compound
term using other path aliases to define the location of the directory.

The directory path may be absolute, as in (A) or relative as in (B), which defines a path
relative to the current working directory.

Then, files may be referred to by using file specifications of the form similar to
library(file). For example, (C), names the file ‘/usr/jackson/.login’, while (D) spec-
ifies the path ‘etc/demo/my_demo’ relative to the current working directory.
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user:file_search_path(home, ’/usr/jackson’). (A)
user:file_search_path(demo, ’etc/demo’). (B)
home (’.login’) (©
demo (my_demo) D

As mentioned above, it is also possible to have multiple definitions for the same alias. If
clauses (E) and (F) define the home alias, to locate the file specified by (G) each home
directory is searched in sequence for the file *.login’. If ‘/usr/jackson/.login’ exists, it
is used. Otherwise, ‘/u/jackson/.login’ is used if it exists.

user:file_search_path(home, ’/usr/jackson’). (E)
user:file_search_path(home, ’/u/jackson’). )
home (’.login’) (®

The directory specification may also be a term of arity 1, in which case it specifies that the
argument of the term is relative to the user:file_search_path/2 defined by its functor.
For example, (H) defines a directory relative to the directory given by the home alias.
Therefore, the alias sp_directory represents the search path ‘/usr/jackson/prolog/sp’
followed by ‘/u/jackson/prolog/sp’. Then, the file specification (I) refers to the file (J),
if it exists. Otherwise, it refers to the file (K), if it exists.

user:file_search_path(sp_directory, home(’prolog/sp’)). ¢:))
sp_directory(test) (D
/usr/jackson/prolog/sp/test (@)
/u/jackson/prolog/sp/test (K)

Aliases such as home or sp_directory are useful because even if the home directory changes,
or the sp_directory is moved to a different location, only the appropriate user:file_
search_path/2 facts need to be changed. Programs relying on these paths are not af-
fected by the change of directories because they make use of file specifications of the form
home(file) and sp_directory(file).

All built-in predicates that take file specification arguments allow these specifications to
include path aliases defined by user:file_search_path/2 facts. The main predicate for
expanding file specifications is absolute_file_name/[2,3]. See Section 11.3.79 [mpg-ref-
file_search_path]|, page 975.

Please note: The user:file_search_path/2 database may contain directories that do not
exist or are syntactically invalid (as far as the operating system is concerned). If an invalid
directory is part of the database, the system will fail to find any files in it, and the directory
will effectively be ignored.
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4.5.1.2 Frequently Used File Specifications

Frequently used user:file_search_path/2 facts are best defined using the initialization
file **/.sicstusrc’ or ‘“/sicstus.ini’, which is consulted at startup time by the Develop-
ment System. Therefore, with reference to the examples from Section 4.5.1.1 [ref-fdi-fsp-def],
page 95, clauses like the one following should be placed in the initialization file so that they
are automatically available to user programs after startup:

:- multifile user:file_search_path/2.
user:file_search_path(home, ’/usr/jackson’).
user:file_search_path(sp_directory, home(’prolog/sp’)).
user:file_search_path(demo, ’etc/demo’).

4.5.1.3 Predefined File Search Paths

user:file_search_path/2 is undefined at startup, but all callers first try a number of
default file search paths, almost as if user:file_search_path/2 had the following initial
clauses. Therefore, to expand file search paths, you should not call user:file_search_
path/2 directly, but instead call absolute_file_name/[2,3].

See Section 4.9.4 [ref-lps-flg], page 134 for more info on the Prolog flag host_type.

The system properties SP_APP_DIR and SP_RT_DIR expand respectively to the absolute path
of the directory that contains the executable and the directory that contains the SICStus
runtime. The system property SP_TEMP_DIR expands to a directory suitable for storing
temporary files, it is particularly useful with the open/4 option if_exists(generate_
unique_name).

%% file_search_path/2 (virtual) initial clauses
file_search_path(library, ’$SP_LIBRARY_DIR’).
file_search_path(library, Path) :-
library_directory(Path).
file_search_path(system, Platform) :-
prolog_flag(host_type, Platform).
file_search_path(application, ’$SP_APP_DIR’).
file_search_path(runtime, ’$SP_RT_DIR’).
file_search_path(temp, ’$SP_TEMP_DIR’).
file_search_path(path, Path) :-
%% enumerate all directories in $PATH

The only default expansion for the library file search path is the value of the system
property SP_LIBRARY_DIR. However, you can add expansions for library by adding clauses
to user:library_directory/1 (which is initially undefined). This feature is mainly for
compatibility with earlier releases. It is better to add your own names for file search paths
directly to user:file_search_path/2 and not extend the file search path library at all.

:- multifile user:library_directory/1.
user:library_directory(’/home/joe/myprologcode/’).
user:library_directory(’/home/jane/project/code’).
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4.5.2 Syntactic Rewriting

A file specification must be an atom or a compound term with arity 1. Such compound
terms are transformed to atoms as described in Section 4.5.1 [ref-fdi-fsp|, page 94. Let
FileSpec be the given or transformed atomic file specification.

A file specification FileSpec is subject to syntactic rewriting. Depending on the opera-
tion, the resulting absolute filename is subject to further processing. Syntactic rewriting is
performed wrt. a context directory Context (an absolute path), in the following steps:

e Under Windows, all ‘\’ characters are converted to ‘/’. This replacement is also per-
formed, as needed, during all subsequent steps.

e A ‘$PROP’ in the beginning of FileSpec, followed by ¢/’ or the end of the path, is
replaced by the absolute path of the value of the system property PROP. This is
especially useful when the system property has no explicit value and thus takes its
value from the environment variable with the same name. If var doesn’t exist or its
value is empty, a permission error is raised.

A relative path that does not begin with ‘/’ is made absolute by prepending Context
followed by a ‘/’. Note that, under UNIX, all paths that begin with ‘/* are absolute.
Under Windows only, a relative path that begins with a ¢/’ is made absolute by prepend-
ing the root (see below) of Context.

e A ‘““user’ in the beginning of FileSpec, followed by ‘/’ or the end of the path, is
replaced by the absolute path of the home directory of user. If the home directory of
user cannot be determined, a permission error is raised.

Under Windows this has not been implemented, instead a permission error is raised.

If the home directory of user is a relative path, it is made absolute using Context if
needed.

e A ‘77 in the beginning of FileSpec, followed by ‘/’ or the end of the path, is replaced
by the absolute path of the home directory of the current user. If the home directory
of the current user cannot be determined, a permission error is raised.

The the home directory of the current user is a relative path it is made absolute using
Context if needed.

Under Windows, the home directory of the current user is determined using the system
properties or environment variables HOMEDRIVE and HOMEPATH.

e If FileSpec is a relative file name, Context is prepended to it.

e The root of the file name is determined. Under UNIX this is simply the initial ‘/’, if
any. Under Windows there are several variants of roots, as follows.

— driveletter:/ where driveletter is a single upper or lower case character in the
range ‘a’ to ‘z’. For example, ‘C:/’.
— //7?/driveletter:/ This is transformed to driveletter:/.

— //host/share/ (a ‘UNC’ path, also known as a network path) where host and share
are non-empty and do not contain /.

— //?/unc/host/share/ This is transformed to //host/share/

If no root can be determined a permission error is raised.
A path is absolute if and only if it is begins with a root, as above.
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e The following steps are repeatedly applied to the last ¢/’ of the root and the characters
that follow it repeatedly until no change occurs.

1. Repeated occurrences of / are replaced by a single /.
2. /.7, followed by ¢/’ or the end of the path, is replaced by /.
3. /parent/. ., followed by ‘/’ or the end of the path, is replaced by ‘/’.

If the path still contains /. ., followed by ‘/’ or the end of the path, a permission error
is raised.

e Any trailing ‘/’ is deleted unless it is part of the root.
e Finally, under Windows, the case-normalized path is obtained as follows: All Latin

1 characters (i.e. character codes in [0..255]) are converted to lower case. All other
characters are converted to upper case.

File systems under Windows are generally case insensitive. This step ensures that two
file names that differ only in case, and therefore would reference the same file in the
file system, will case-normalize to identical atoms.

Since release 4.3, open/[3,4], and other build-in predicates that create files and direc-
tories, creates files using the file name argument as obtained from syntactic rewriting
but before applying case-normalization. This means that open(’HelloWorld.txt’,
write, S), file_property(S,file_name(Name) . will create a file that has the mixed-
case name ‘HelloWorld.txt’ in the file system but Name will end in ‘helloworld.txt’,
i.e. the stream property will reflect the case-normalized path.

The fact that open/[3,4] et al. preserves case when creating files seldom matters,
except for aesthetics, since any Windows application that tries to open a file named
‘HelloWorld.txt’ will also find ‘helloworld.txt’.

The following UNIX examples assumes that Context is ‘/usr/’; that the environment vari-
ables VAR1, VAR2, VAR3 have the values ‘/opt/bin’, ‘foo’ and ‘~/temp’ respectively and that
the home directory of the current user, ‘joe’, is ‘/home/joe’.

/foo/bar
— /foo/bar

/foo/.//bar/../blip///
— /foo/blip

/foo//../baxr/../../blip
— error

$VAR1/../local/
— /opt/local

$VAR2/misc/.
— /usr/foo/misc

$VAR3/misc/.
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+— /home/joe/temp/misc

~joe/../jenny/bin.
> /home/jenny/bin

The following Windows examples assume that Context is ‘C:/Source/projl’; that the
environment variables VAR1, VAR2, VAR3 have the values ‘\\server\docs\brian’, ‘foo’ and
*~/temp’ respectively and that the home directory of the current user is ‘C:/home’.

/foo/bar
— c:/foo/bar

foo//../../blip
— c:/source/blip

$VAR1/../local/
— //server/docs/local

$VAR2/misc/.
— c:/source/projl/foo/misc

$VAR3/misc/.
> c:/home/temp/misc

“joe/../jenny/bin.
— error

4.5.3 List of Predicates

Detailed information is found in the reference pages for the following:

absolute_file_name(+R,-4) hookable
absolute_file_name(+R,-A4,+0) hookable
expand relative filename R to absolute file name A using options specified in O

user:file_search_path(+F,-D) hook
directory D is included in file search path F

user:library_directory(-D) hook
D is a library directory that will be searched

4.6 Input and Output
4.6.1 Introduction

Prolog provides two classes of predicates for input and output: those that handle individual
bytes or characters, and those that handle complete Prolog terms.
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Input and output happen with respect to streams. Therefore, this section discusses pred-
icates that handle files and streams in addition to those that handle input and output of
bytes, characters and terms.

4.6.2 About Streams

A Prolog stream can refer to a file or to the user’s terminal®. Each stream is used either for
input or for output, but typically not for both. A stream is either text, for character and
term I/O, or binary, for byte I/O. At any one time there is a current input stream and a
current output stream.

Input and output predicates fall into two categories:

1. those that use the current input or output stream;
2. those that take an explicit stream argument;

Initially, the current input and output streams both refer to the user’s terminal. Each input
and output built-in predicate refers implicitly or explicitly to a stream. The predicates that
perform byte, character and term I/O operations come in pairs such that (A) refers to the
current stream, and (B) specifies a stream.

predicate_name/n (A
predicate_name/n+1 €:))

4.6.2.1 Programming Note

Deciding which version to use involves a trade-off between speed and readability of code: in
general, version (B), which specifies a stream, runs slower than (A). So it may be desirable
to write code that changes the current stream and uses version (A). However, the use of
(B) avoids the use of global variables and results in more readable programs.

4.6.2.2 Stream Categories

SICStus Prolog streams are divided into two categories, those opened by see/1 or tell/1
and those opened by open/[3,4]. A stream in the former group is referred to by its file spec-
ification, while a stream in the latter case is referred to by its stream object (see the figure
“Categorization of Stream Handling Predicates”). For further information about file spec-
ifications, see Section 4.5 [ref-fdi], page 94. Stream objects are discussed in Section 4.6.7.1
[ref-iou-sfh-sob], page 108. Reading the state of open streams is discussed in Section 4.6.8
[ref-iou-sos], page 113.

Each operating system permits a different number of streams to be open.

4.6.3 Term Input

Term input operations include:

e reading a term and
e changing the prompt that appears while reading.

3 At the C level, you can define more general streams, e.g. referring to pipes or to encrypted files.
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4.6.3.1 Reading Terms: The "Read" Predicates
The “Read” predicates are

read(-Term)
read (+Stream, -Term)
read_term(-Term, +Options)

read_term(+Stream, -Term, +0Options)

read_term/[2,3] offers many options to return extra information about the term. See
Section 11.3.185 [mpg-ref-read_term], page 1115.

When Prolog reads a term from the current input stream the following conditions must
hold:

The term must be followed by a full-stop. See Section 4.1.7.1 [ref-syn-syn-ove], page 52.
The full-stop is removed from the input stream but is not a part of the term that is
read.

read/[1,2] does not terminate until the full-stop is encountered. Thus, if you type at
top-level

| ?- read(X)

you will keep getting prompts (first ‘| : ’, and five spaces thereafter) every time you
type RET, but nothing else will happen, whatever you type, until you type a full-stop.

The term is read with respect to current operator declarations. See Section 4.1.5 [ref-
syn-ops|, page 47 for a discussion of operators.

When a syntax error is encountered, an error message is printed and then the “read”
predicate tries again, starting immediately after the full-stop that terminated the erro-
neous term. That is, it does not fail on a syntax error, but perseveres until it eventually
manages to read a term. This behavior can be changed with prolog_flag/3 or using
read_term/[2,3]. See Section 11.3.167 [mpg-ref-prolog_flag], page 1095.

If the end of the current input stream has been reached, read (X) will cause X to be
unified with the atom end_of_file.

4.6.3.2 Changing the Prompt

To query or change the sequence of characters (prompt) that indicates that the system is
waiting for user input, call prompt/2.

This predicate affects only the prompt given when a user’s program is trying to read from
the terminal (for example, by calling read/1 or get_code/1). Note also that the prompt is
reset to the default ‘| : ’ on return to the top-level. See Section 11.3.169 [mpg-ref-prompt],
page 1098.

4.6.4 Term Output

Term output operations include:

e writing to a stream (various

¢

‘write” Predicates)
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e displaying, usually on the user’s terminal (display/1)
e changing the effects of print/[1,2] (user:portray/1)

e writing a clause as 1isting/ [0, 1] does, except original variable names are not retained
(portray_clause/[1,2])

4.6.4.1 Writing Terms: the “Write” Predicates

e write(+Stream, +Term)

e write(+Term)

e writeq(+Stream, +Term)

e writeq(+Term)

e write_canonical (+Term)

e write_canonical (+Stream, +Term)

e write_term(+Stream, +Term, +Options)

e write_term(+Term, +Options)

write_term/[2,3] is a generalization of the others and provides a number of options. See
Section 11.3.253 [mpg-ref-write_term|, page 1201.

4.6.4.2 Common Characteristics

The output of the “write” predicates is not terminated by a full-stop; therefore, if you want
the term to be acceptable as input to read/[1,2], you must send the terminating full-stop
to the output stream yourself. For example,

| ?- write(a), write(’ .’), nl.

Note that, in general, you need to prefix the full-stop with a layout character, like space,
to ensure that it can not “glue” with characters in the term.

If Term is uninstantiated, it is written as an anonymous variable (an underscore followed
by a non-negative integer).

Please note: The “name” used when writing a variable may differ between separate calls
to a ‘Write“ predicate. If this is a concern, you can use either of the following methods to
ensure that the variable is always written in same way.

e Avoid the problem altogher by writing the entire term with a single call to a “write“
predicate. Multiple occurrence of the same variable within the written term will be
written in the same way.

e Use the variable_names/1 write_term option to explicitly name the variable. This
option was added in release 4.3.

e Use numbervars/3 to bind the variables in the written term to (ground) ’$VAR’ (V)
terms and use the numbervars(true) write_term option. Note that this may not
work with attributed variables, like those used by library(clpfd).
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write_canonical/[1,2] is provided so that Term, if written to a file, can be read back by
read/[1,2] regardless whether there are special characters in Term or prevailing operator
declarations.

4.6.4.3 Distinctions Among the “Write” Predicates

e Forwrite and writeq, the term is written with respect to current operator declarations
(See Section 4.1.5 [ref-syn-ops], page 47 for a discussion of operators).
write_canonical(Term) writes Term to the current or specified output stream in
standard syntax (see Section 4.1 [ref-syn|, page 43 on Prolog syntax), and quotes atoms
and functors to make them acceptable as input to read/[1,2]. That is, operator
declarations are not used and compound terms are always written in the form:

name (argl, ..., argn)
and the special list syntax, e.g. [a,b,c], or braces syntax, e.g. {a,b,c} are not used.
Calling write_canonical/1 is a good way of finding out how Prolog parses a term
with several operators.

e Atoms output by write/[1,2] cannot in general be read back using read/[1,2]. For
example,

| ?- write(’a b’).

ab
For this reason write/[1,2] is only useful as a way to treat atoms as strings of char-
acters. It is rarely, if ever, useful to use write/[1,2] with other kinds of terms, i.e.
variables, numbers or compound terms.
If you want to be sure that the atom can be read back by read/[1,2], you should
use writeq/[1,2], or write_canonical/[1,2], which put quotes around atoms when
necessary, or use write_term/[2,3] with the quoted option set to true. Note also
that the printing of quoted atoms is sensitive to character escaping (see Section 4.1.4
[ref-syn-ces|, page 47).

e write/[1,2] and writeq/[1,2] use the write option numbervars(true), so treat
terms of the form >$VAR’ (N) specially: they write ‘A’ if N=0, ‘B’ if N=1, ...‘Z’ if
N=25, ‘A1’ if N=26, etc. Terms of this form are generated by numbervars/3 (see
Section 4.8.6 [ref-lte-anv], page 127).

| ?- writeq(a(’$VAR’(0),’$VAR’(1))).
a(A,B)

write_canonical/1 does not treat terms of the form >$VAR’ (N) specially.

4.6.4.4 Displaying Terms

Like write_canonical/[1,2], display/1 ignores operator declarations and shows all com-
pound terms in standard prefix form. For example, the command

| 7- display(a+b).
produces the following:

+(a,b)
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Unlike write_canonical/[1,2], display/1 does not put quotes around atoms and func-
tors, even when needed for reading the term back in, so write_canonical/[1,2] is often
preferable. See Section 11.3.66 [mpg-ref-display], page 961.

4.6.4.5 Using the Portray Hook

By default, the effect of print/[1,2] is the same as that of write/[1,2], but you can
change its effect by providing clauses for the hook predicate user:portray/1.

If X is a variable, it is printed using write(X). Otherwise the user-definable procedure
user:portray(X) is called. If this succeeds, it is assumed that X has been printed and
print/[1,2] exits (succeeds).

If the call to user:portray/1 fails, and if X is a compound term, write/[1,2] is used to
write the principal functor of X and print/[1,2] is called recursively on its arguments. If
X is atomic, it is written using write/[1,2].

When print/[1,2] has to print a list, say [X1,X2,...,Xn], it passes the whole list to
user:portray/1. As usual, if user:portray/1 succeeds, it is assumed to have printed the
entire list, and print/[1,2] does nothing further with this term. Otherwise print/[1,2]
writes the list using bracket notation, calling print/[1,2] on each element of the list in
turn.

Since [X1,X2,...,Xn] is simply a different way of writing . (X1, [X2,...,Xn]), one might
expect print/[1,2] to be called recursively on the two arguments X1 and [X2,...,Xn],
giving user:portray/1 a second chance at [X2,...,Xn]. This does not happen; lists are
a special case in which print/[1,2] is called separately for each of X1,X2,...Xn.

4.6.4.6 Portraying a Clause

If you want to print a clause, portray_clause/[1,2] is almost certainly the command you
want. None of the other term output commands puts a full-stop after the written term.
If you are writing a file of facts to be loaded by compile/1, use portray_clause/[1,2],
which attempts to ensure that the clauses it writes out can be read in again as clauses.

The output format used by portray_clause/[1,2] and listing/[0,1] has been carefully
designed to be clear. We recommend that you use a similar style. In particular, never
put a semicolon (disjunction symbol) at the end of a line in Prolog. See Section 11.3.157
[mpg-ref-portray_clause|, page 1081.

4.6.5 Byte and Character Input
4.6.5.1 Overview

The operations in this category are:

e reading (“get” predicates),
e peeking (“peek” predicates),
e skipping (“skip” predicates),

e checking for end of line or end of file (“at_end” predicates).
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4.6.5.2 Reading Bytes and Characters

e get_byte([Stream,] N) unifies N with the next consumed byte from the current or
given input stream, which must be binary.

e get_code([Stream,] N) unifies N with the next consumed character code from the
current or given input stream, which must be text.

e get_char([Stream,] A) unifies A with the next consumed character atom from the
current or given input stream, which must be text.

4.6.5.3 Peeking

Peeking at the next character without consuming it is useful when the interpretation of
“this character” depends on what the next one is.

e peek_byte([Stream,] N) unifies N with the next unconsumed byte from the current
or given input stream, which must be binary.

e peek_code([Stream,] N) unifies N with the next unconsumed character code from
the current or given input stream, which must be text.

e peek_char([Stream,] A) unifies A with the next unconsumed character atom from
the current or given input stream, which must be text.

4.6.5.4 Skipping

There are two ways of skipping over characters in the current or given input stream: skip
to a given character, or skip to the end of a line.

e skip_byte([Stream,] N) skips over bytes through the first occurrence of N from the
current or given input stream, which must be binary.

e skip_code([Stream,] N) skips over character codes through the first occurrence of N
from the current or given input stream, which must be text.

e skip_char([Stream,] 4) skips over character atoms through the first occurrence of
A from the current or given input stream, which must be text.

e skip_line or skip_line(Stream) skips to the end of line of the current or given input
stream. Use of this predicate helps portability of code since it avoids dependence on
any particular character code(s) being returned at the end of a line.

4.6.5.5 Finding the End of Line and End of File

To test whether the end of a line on the end of the file has been reached on the current or
given input stream, use at_end_of_line/[0,1] or at_end_of_stream/[0,1].

Note that these predicates never block waiting for input. This means that they may fail
even if the stream or line is in fact at its end. An alternative that will never guess wrong is
to use peek_code/[1,2] or peek_byte/[1,2].

4.6.6 Byte and Character Output

The byte and character output operations are:

e writing (putting) bytes and characters
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e creating newlines and tabs
e flushing buffers
e formatting output.

4.6.6.1 Writing Bytes and Characters
e put_byte([Stream,] N) writes the byte N to the current or given output stream,
which must be binary.

e put_code([Stream,] N) writes the character code N to the current or given output
stream, which must be text.

e put_char([Stream,] 4) writes the character atom A to the current or given output
stream, which must be text.

The byte or character is not necessarily printed immediately; they may be flushed if the
buffer is full. See Section 4.6.7.10 [ref-iou-sth-flu], page 113.

4.6.6.2 New Line

nl or nl(Stream) terminates the record on the current or given output stream. A linefeed
character is printed.

4.6.6.3 Formatted Output

format ([Stream,] Control, Arguments) interprets the Arguments according to the Con-
trol string and prints the result on the current or given output stream. Alternatively, an
output stream can be specified in an initial argument. This predicate is used to produce
formatted output, like the following example.

| ?- toc(1.5).
Table of Contents i

okokokskokokokkokokokokokkkskskokkkkskk NTCE TABLE  skokokok sk sk skok ok ok ok sk sk ok ok ok ok ok sk skok ok ok ok ok

* *
* Right aligned Centered Left aligned *
* 123 45 678 *
* 1 2345 6789 *

3k 3k >k 5k >k 3k 5k 3k 5k 5k 5k >k 3k 3k 3k 5k >k 5k >k 3k 5k 5k 5k >k 3k >k 5k 5k >k 5k >k 3k >k 5k 5k >k 5k >k 3k >k >k 5k >k 5k >k 3k >k >k 5k >k >k >k %k 5k >k >k %k >k *k k%

For details, including the code to produce this example, see the example program in the
reference page for format/[2,3]. See Section 11.3.85 [mpg-ref-format], page 984.

4.6.7 Stream and File Handling

The operations implemented are opening, closing, querying status, flushing, error handling,
setting.

The predicates in the “see” and “tell” families are supplied for compatibility with other
Prologs. They take either file specifications or stream objects as arguments (see Section 11.1
[mpg-ref], page 853) and they specify an alternative, less powerful, mechanism for dealing
with files and streams than the similar predicates (open/[3,4], etc.), which take stream
objects (see the figure “Categorization of Stream Handling Predicates”).
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4.6.7.1 Stream Objects

Each input and output stream is represented by a unique Prolog term, a stream object. In
general, this term is of the form

user Stands for the standard input or output stream, depending on context.

’$stream’ (X)
A stream connected to some file. X is an integer.

Atom A stream alias. Aliases can be associated with streams using the alias(Atom)
option of open/4. There are also three predefined aliases:

user_input
An alias initially referring to the UNIX stdin stream. The alias
can be changed with prolog_flag/3 and accessed by the C variable
SP_stdin.

user_output
An alias initially referring to the UNIX stdout stream. The alias
can be changed with prolog_flag/3 and accessed by the C variable
SP_stdout.

user_error
An alias initially referring to the UNIX stderr stream. The alias
can be changed with prolog_flag/3 and accessed by the C vari-
able SP_stderr. This stream is used by the Prolog top-level and
debugger, and for all unsolicited messages by built-in predicates.

Stream objects are created by the predicate open/[3,4] Section 4.6.7.4 [ref-iou-sth-opn],
page 109 and passed as arguments to those predicates that need them. Representation for
stream objects to be used in C code is different. Use stream_code/2 to convert from one
to the other when appropriate. See Section 11.3.218 [mpg-ref-stream_code|, page 1157.

4.6.7.2 Exceptions Related to Streams

All predicates that take a stream argument will raise the following exceptions:

instantiation_error
Stream argument is not ground

type_error
Stream is not an input (or output) stream type.

existence_error
Stream is syntactically valid but does not name an open stream.

permission_error
Stream names an open stream but the stream is not open for the required
operation, or has reached the end of stream on input, or is binary when text
is required, or vice versa, or there was an error in the bottom layer of write
function of the stream.
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system_error
Some operating system dependent error occurred during I/0.

The reference page for each stream predicate will simply refer to these as “Stream errors”
and will go on to detail other exceptions that may be raised for a particular predicate.

4.6.7.3 Suppressing Error Messages

If the fileerrors flag is set to off, the built-in predicates that open files simply fail,
instead of raising an exception if the specified file cannot be opened.

4.6.7.4 Opening a Stream

Before I/O operations can take place on a stream, the stream must be opened, and it must
be set to be current input or current output. As illustrated in the figure “Categorization
of Stream Handling Predicates”, the operations of opening and setting are separate with
respect to the stream predicates, and combined in the File Specification Predicates.

e open(File, Mode, Stream) attempts to open the file File in the mode specified
(read,write or append). If the open/3 request is successful, a stream object, which
can be subsequently used for input or output to the given file, is unified with Stream.
The read mode is used for input. The write and append modes are used for output.
The write option causes a new file to be created for output. If the file already exists,
it is set to empty and its previous contents are lost. The append option opens an
already-existing file and adds output to the end of it. The append option will create
the file if it does not already exist.

Options can be specified by calling open/4. See Section 11.3.148 [mpg-ref-open],
page 1067.

e set_input(Stream) makes Stream the current input stream. Subsequent input pred-
icates such as read/1 and get_code/1 will henceforth use this stream.

e set_output(Stream) makes Stream the current output stream. Subsequent output
predicates such as write/1 and put_code/1 will henceforth use this stream.

Opening a stream and making it current are combined in see and tell:

e see(S) makes file S the current input stream. If S is an atom, it is taken to be a file
specification, and

— if there is an open input stream associated with the filename, and that stream was
opened by see/1, it is made the current input stream;

— Otherwise, the specified file is opened for input and made the current input stream.
If it is not possible to open the file, and the fileerrors flag is on (as it is by
default), see/1 raises an error exception. Otherwise, see/1 merely fails.
See Section 11.3.199 [mpg-ref-see], page 1134.
e tell(S) makes S the current output stream.

— If there is an open output stream currently associated with the filename, and that
stream was opened by tell/1, it is made the current output stream;
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— Otherwise, the specified file is opened for output and made the current output
stream. If the file does not exist, it is created. If it is not possible to open the file
(because of protections, for example), and the fileerrors flag is on (which it is
by default), tell/1 raises an error exception. Otherwise, tell/1 merely fails.

See Section 11.3.224 [mpg-ref-tell], page 1167.

It is important to remember to close streams when you have finished with them. Use seen/0
or close/1 for input files, and t01d/0 or close/1 for output files.

e open_null_stream(Stream) opens a text output stream that is not connected to any
file and unifies its stream object with Stream. Characters or terms that are sent to
this stream are thrown away. This predicate is useful because various pieces of local
state are kept for null streams: the predicates character_count/2, line_count/2
and line_position/2 can be used on these streams (see Section 4.6.8 [ref-iou-sos],
page 113).

4.6.7.5 Text Stream Encodings

SICStus Prolog supports character codes up to 31 bits wide where the codes are interpreted
as for Unicode for the common subset.

When a character code (a “code point” in Unicode terminology) is read or written to a
stream, it must be encoded into a byte sequence. The method by which each character
code is encoded to or decoded from a byte sequence is called “character encoding”.

The following character encodings are currently supported by SICStus Prolog.

ANST_X3.4-1968
The 7-bit subset of Unicode, commonly referred to as ASCII.

IS0-8859-1
The 8-bit subset of Unicode, commonly referred to as Latin 1.

IS0-8859-2
A variant of ISO-8859-1, commonly referred to as Latin 2.

IS0-8859-15
A variant of ISO-8859-1, commonly referred to as Latin 9.

windows 1252
The Microsoft Windows code page 1252.

UTF-8
UTF-16
UTF-16LE
UTF-16BE
UTF-32
UTF-32LE
UTF-32BE

The suffixes LE and BE denote respectively little endian and big endian.
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These encodings can be auto-detected if a Unicode signature is present in a

file opened for read. A Unicode signature is also known as a Byte order mark
(BOM).

In addition, it is possible to use all alternative names defined by the IANA registry
http://www.iana.org/assignments/character-sets.

All encodings in the table above, except the UTF-XXX encodings, supports the
reposition(true) option to open/4 (see Section 11.3.148 [mpg-ref-open], page 1067).

The encoding to use can be specified when using open/4 and similar predicates using the
option encoding/1. When opening a file for input, the encoding can often be determined
automatically. The default is IS0-8859-1 if no encoding is specified and no encoding can
be detected from the file contents.

The encoding used by a text stream can be queried using stream_property/2.

See Section 11.3.148 [mpg-ref-open|, page 1067 for details on how character encoding is
auto-detected when opening text files.

4.6.7.6 Finding the Current Input Stream

e current_input(Stream) unifies Stream with the current input stream.

e If the current input stream is user_input, seeing(S) unifies S with user. Otherwise,
if the current input stream was opened by see(F), seeing(S) unifies S with F. Oth-
erwise, if the current input stream was opened by open/[3,4], seeing(S) unifies S
with the corresponding stream object.

seeing/1 can be used to verify that a section of code leaves the current input stream
unchanged as follows:

/* nonvar (FileNameOrStream), */
see(FileNameOrStream) ,

seeing(FileNameOrStream)
WARNING: The sequence

seeing(File),

set_input(File),
will signal an error if the current input stream was opened by see/1. The
only sequences that are guaranteed to succeed are

seeing(FileOrStream),

see(FileOrStream)
and

current_input (Stream),

set_input (Stream)


http://www.iana.org/assignments/character-sets

112 SICStus Prolog

4.6.7.7 Finding the Current Output Stream

e current_output (Stream) unifies Stream with the current output
stream.

e If the current output stream is user_output, telling(S) unifies S with user. Other-
wise, if the current output stream was opened by tell(F), telling(S) unifies S with
F. Otherwise, if the current output stream was opened by open/[3,4], telling(S)
unifies S with the corresponding stream object.

telling/1 can be used to verify that a section of code leaves the current output stream
unchanged as follows:

/* nonvar (FileNameOrStream), */
tell(FileNameOrStream),

telling(FileNameOrStream)
WARNING: The sequence
telling(File),

set_output (File),

will signal an error if the current output stream was opened by tell/1.
The only sequences that are guaranteed to succeed are

telling(FileOrStream),

tell (FileOrStream)
and

current_output (Stream),

set_output (Stream)

4.6.7.8 Finding Out About Open Streams

current_stream(File, Mode, Stream) succeeds if Stream is a stream that is currently
open on file File in mode Mode, where Mode is either read, write, or append. None of
the arguments need be initially instantiated. This predicate is nondeterminate and can be
used to backtrack through all open streams. current_stream/3 ignores certain predefined
streams, including the initial values of the special streams for the standard input, output,
and error channels. See Section 11.3.57 [mpg-ref-current_stream|, page 952.

stream_property(Stream, Property) succeeds if Stream is a currently open stream with
property Property. Predefined streams, like the three standard channels, are not ignored.
See Section 11.3.221 [mpg-ref-stream_property], page 1160.

4.6.7.9 Closing a Stream

e close(X) closes the stream corresponding to X, where X should be a stream object
created by open/[3,4], or a file specification passed to see/1 or tell/1. In the
example:



Chapter 4: The Prolog Language 113

see(foo),

close(foo)
‘foo’ will be closed. However, in the example:

open(foo, read, S),

close(foo)
an exception will be raised and ‘foo’ will not be closed. See Section 11.3.39 [mpg-ref-
close], page 930.

e t£01d/0 closes the current output stream. The current output stream is then set to be
user_output.

e seen/0 closes the current input stream. The current input stream is then set to be
user_input.

4.6.7.10 Flushing Output

Output to a stream is not necessarily sent immediately; it is buffered. The predicate f1lush_
output/1 flushes the output buffer for the specified stream and thus ensures that everything
that has been written to the stream is actually sent at that point.

e flush_output(Stream) sends all data in the output buffer to stream Stream.

See Section 11.3.82 [mpg-ref-flush_output|, page 981.
4.6.8 Reading the State of Opened Streams

Byte, character, line count and line position for a specified stream are obtained as follows:

e byte_count (Stream, N) unifies N with the total number of bytes either read or written
on the open binary stream Stream.

e character_count(Stream, N) unifies N with the total number of characters either
read or written on the open text stream Stream.

e line_count(Stream, N) unifies N with the total number of lines either read or written
on the open text stream Stream. A freshly opened text stream has a line count of 0,
i.e. this predicate counts the number of newlines seen.

e line_position(Stream, N) unifies N with the total number of characters either read
or written on the current line of the open text stream Stream. A fresh line has a line
position of 0, i.e. this predicate counts the length of the current line.

4.6.8.1 Stream Position Information for Terminal I/0

Input from Prolog streams that have opened the user’s terminal for reading is echoed back
as output to the same terminal. This is interleaved with output from other Prolog streams
that have opened the user’s terminal for writing. Therefore, all streams connected to the
user’s terminal share the same set of position counts and thus return the same values for
each of the predicates character_count/2, line_count/2 and line_position/2.
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4.6.9 Random Access to Files

There are two methods of finding and setting the stream position, stream positioning and
seeking. The current position of the read/write pointer in a specified stream can be obtained
by using stream_position/2 or stream_property/2. It may be changed by using set_
stream_position/2. Alternatively, seek/4 may be used.

Seeking is more general, and stream positioning is more portable. The differences between
them are:

e stream_position/2 is similar to seek/4 with Offset = 0, and Method = current.

e Where set_stream_position/2 asks for stream position objects, seek/4 uses integer
expressions to represent the position or offset. Stream position objects are obtained by
calling stream_position/2, and are discussed in the reference page.

4.6.10 Summary of Predicates and Functions

Reference pages for the following provide further detail on the material in this section.

at_end_of_line
at_end_of_line(+S)
testing whether at end of line on input stream S

at_end_of_stream IS0

at_end_of_stream(+S) IS0
testing whether end of file is reached for the input stream S

flush_output IS0

flush_output (+S) IS0
flush the output buffer for stream S

get_byte(-C) IS0

get_byte(+S,-C) IS0
C is the next byte on binary input stream S

get_char(-C) Iso

get_char(+S,-C) IS0
C is the next character atom on text input stream S

get_code(-C) IS0

get_code(+S,-C) IS0
C is the next character code on text input stream S

nl IS0

nl(+S) IS0
send a newline to stream S

peek_byte (+C) IS0

peek_byte(+S,+C) IS0
looks ahead for next input byte on the binary input stream S

peek_char (+C) IS0

peek_char (+5,+C) IS0

looks ahead for next input character atom on the text input stream S
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peek_code (+C) IS0

peek_code (+S,+C) IS0
looks ahead for next input character code on the text input stream S

put_byte (+C) IS0

put_byte(+S,+C) IS0
write byte C to binary stream S

put_char (+C) Is0

put_char (+S,+C) IS0
write character atom C to text stream S

put_code (+C) IS0

put_code (+S,+C) IS0

write character code C to text stream S

skip_byte(+C)
skip_byte(+S,+C)
skip input on binary stream S until after byte C

skip_char (+C)
skip_char(+S,+C)
skip input on text stream S until after char C

skip_code (+C)
skip_code(+S,+C)
skip input on text stream S until after code C

skip_line
skip_line(+S)
skip the rest input characters of the current line (record) on the input stream

S

byte_count (+S, -N)
N is the number of bytes read/written on binary stream S

character_count (+S,-N)
N is the number of characters read/written on text stream S

close(+F) IS0
close(+F,+0) IS0
close file or stream F' with options O

current_input(-S) IS0
S is the current input stream

current_output (-S) IS0
S is the current output stream

current_stream(?F, ?M, ?S)
S is a stream open on file F' in mode M

line_count (+S, -N)
N is the number of lines read /written on text stream S
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line_position(+S,-N)
N is the number of characters read/written on the current line of text stream

S

open(+F,+M,-S) IS0
open(+F,+M,-S,+0) IS0
file F is opened in mode M, options O, returning stream S

open_null_stream(+S)
new output to text stream S goes nowhere

prompt (-0,+N)
queries or changes the prompt string of the current input stream

see(+F)  make file F the current input stream

seeing(-N)
the current input stream is named N

seek (+S,+0,+M,+N)
seek to an arbitrary byte position on the stream S

seen close the current input stream

set_input (+3) IS0
select S as the current input stream

set_output (+5) IS0
select S as the current output stream

set_stream_position(+S,+P) Iso
P is the new position of stream S

stream_code(?S, ?C)
Converts between Prolog and C representations of a stream

stream_position(+S,-P)
P is the current position of stream S

stream_position_data(?Field, 7Position, ?Data)
The Field field of the stream position term Position is Data.

stream_property(?Stream, 7Property)) Is0
Stream Stream has property Property.

tell(+F) make file F' the current output stream
telling(-N)

to file N

told close the current output stream

char_conversion(+InChar, +0OutChar) IS0
The mapping of InChar to OutChar is added to the character-conversion map-
ping.

current_char_conversion(?InChar, 7?0utChar) IS0

InChar is mapped to OutChar in the current character-conversion mapping.
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current_op(?P, 7T, 74) IS0
atom A is an operator of type T with precedence P

display (+T)
write term T to the user output stream in prefix notation

format (+C, :4)

format (+S,+C, :4)
write arguments A on stream S according to control string C

op(+P,+T,+4) IS0
make atom A an operator of type T with precedence P

user:portray (+T) hook
tell print/[1,2] and write_term/[2,3] what to do

portray_clause(+C)
portray_clause(+S,+C)
write clause C to the stream S

print (+T) hookable

print (+S,+T) hookable
display the term T on stream S using user:portray/1 or write/2

read(-T) IS0

read(+S,-T) IS0
read term T from stream S

read_term(-T,+0) IS0

read_term(+S,-T,+0) IS0
read T from stream S according to options O

write(+T) IS0

write(+S,+T) IS0
write term T on stream S

write_canonical (+T) IS0

write_canonical (+S,+T) IS0

write term T on stream S so that it can be read back by read/[1,2]

writeq(+T) IS0
writeq(+S,+T) IS0
write term T on stream S, quoting atoms where necessary
write_term(+T,+0) ISO,hookable
write_term(+S,+T,+0) ISO,hookable

writes T to S according to options O

4.7 Arithmetic

4.7.1 Overview

In Prolog, arithmetic is performed by certain built-in predicates, which take arithmetic
expressions as their arguments and evaluate them. Arithmetic expressions can evaluate to
integers or floating-point numbers (floats).
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The range of integers is [-272147483616, 2°2147483616). Thus for all practical purposes,
the range of integers can be considered infinite.

The range of floats is the one provided by the C double type, typically [4.9e-324,
1.8e+308] (plus or minus). In case of overflow or division by zero, an evaluation error
exception will be raised. Floats are represented by 64 bits and they conform to the IEEE
754 standard.

The arithmetic operations of evaluation and comparison are implemented in the predicates
described in Section 4.7.2 [ref-ari-eae], page 118 and Section 4.7.4 [ref-ari-acm], page 118.
All of them take arguments of the type Expr, which is described in detail in Section 4.7.5
[ref-ari-aex]|, page 119.

4.7.2 Evaluating Arithmetic Expressions

The most common way to do arithmetic calculations in Prolog is to use the built-in predicate
is/2.

-Term is +Expr
Term is the value of arithmetic expression Expr.

Expr must not contain any uninstantiated variables. Don’t confuse is/2 with =/2.

4.7.3 Exceptions Related to Arithmetic

All predicates that evaluate arithmetic expressions will raise the following exceptions:

instantiation_error
Nonground expression given.

type_error
Float given where integer required, or integer given where float is required, or
term given as expression with a principal functor that is not a defined function.

evaluation_error
Function undefined for the given argument. For example, attempt to divide by
ZEro.

representation_error
Integer value too large to be represented.

The reference page for such predicates will simply refer to these as “Arithmetic errors” and
will go on to detail other exceptions that may be raised for a particular predicate.

4.7.4 Arithmetic Comparison

Each of the following predicates evaluates each of its arguments as an arithmetic expression,
then compares the results. If one argument evaluates to an integer and the other to a float,
the integer is coerced to a float before the comparison is made.

Note that two floating-point numbers are equal if and only if they have the same bit pattern.
Because of rounding error, it is not normally useful to compare two floats for equality.



Chapter 4: The Prolog Language 119

Exprl =:= Expr2
succeeds if the results of evaluating terms Exprl and Expr2 as arithmetic ex-
pressions are equal

Expr1l =\= Expr2

succeeds if the results of evaluating terms Exprl and Expr2 as arithmetic ex-
pressions are not equal

Exprl < Expr2
succeeds if the result of evaluating Exprl as an arithmetic expression is less
than the result of evaluating Expr2 as an arithmetic expression.

Exprl > Expr2
succeeds if the result of evaluating Exprl as an arithmetic expression Exprl is
greater than the result of evaluating Expr2 as an arithmetic expression.

Exprl =< Expr2
succeeds if the result of evaluating Exprl as an arithmetic expression is not
greater than the result of evaluating Expr2 as an arithmetic expression.

Exprl >= Expr2
succeeds if the result of evaluating Exprl as an arithmetic expression is not less
than the result of evaluating Expr2 as an arithmetic expression.

4.7.5 Arithmetic Expressions

Arithmetic evaluation and testing is performed by predicates that take arithmetic expres-
sions as arguments. An arithmetic expression is a term built from numbers, variables, and
functors that represent arithmetic functions. These expressions are evaluated to yield an
arithmetic result, which may be either an integer or a float; the type is determined by the
rules described below.

At the time of evaluation, each variable in an arithmetic expression must be bound to a
number or another arithmetic expression. If the expression is not sufficiently bound or if
it is bound to terms of the wrong type, Prolog raises exceptions of the appropriate type
(see Section 4.15.3 [ref-ere-hex|, page 196). Some arithmetic operations can also detect
overflows. They also raise exceptions, e.g. division by zero results in an evaluation error
being raised.

Only certain functors are permitted in arithmetic expressions. These are listed below,
together with a description of their arithmetic meanings. For the rest of the section, X
and Y are considered to be arithmetic expressions. Unless stated otherwise, the arguments
of an expression may be any numbers and its value is a float if any of its arguments is
a float; otherwise, the value is an integer. Any implicit coercions are performed with the
integer/1 and float/1 functions. All trigonometric and transcendental functions take
float arguments and deliver float values. The trigonometric functions take arguments or
deliver values in radians.
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Integers can for all practical purposes be considered to be of infinite size. Negative integers
can be considered to be infinitely sign extended.

The arithmetic functors are annotated with ISO, with the same meaning as for the built-in
predicates; see Section 1.5 [ISO Compliance], page 6.

+X IS0 The value is X.
-X IS0 The value is the negative of X.
X+Y IS0 The value is the sum of X and Y.
X-Y IS0 The value is the difference between X and Y.
X*xY IS0 The value is the product of X and Y.
X/Y IS0 The value is the float quotient of X and Y.
X//Y IS0

The value is the integer quotient of X and Y, truncated towards zero. X and
Y have to be integers.

Xdivy since release 4.3, ISO
The value is the integer quotient of X and Y, rounded downwards to the nearest
integer. X and Y have to be integers.

XremY IS0
The value is the integer remainder after truncated division of X by Y, i.e. X-
Y*(X//Y). The sign of a nonzero remainder will thus be the same as that of
the dividend. X and Y have to be integers.

X mod Y IS0
The value is the integer remainder after floored division of X by Y, i.e. X-Y* (X
div Y). The sign of a nonzero remainder will thus be the same as that of the
divisor. X and Y have to be integers.

integer (X)
The value is the closest integer between X and 0, if X is a float; otherwise, X
itself.

float_integer_part(X) IS0
The same as float(integer(X)). X has to be a float.

float_fractional_part(X) IS0
The value is the fractional part of X, i.e. X - float_integer_part(X). X has
to be a float.

float (X) IS0
The value is the float equivalent of X, if X is an integer; otherwise, X itself.

X/\Y IS0

The value is the bitwise conjunction of the integers X and Y. X and Y have to
be integers, treating negative integers as infinitely sign extended.

X\/Y Is0
The value is the bitwise disjunction of the integers X and Y. X and Y have to
be integers, treating negative integers as infinitely sign extended.
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xor(X,Y) since release 4.3, ISO
X\Y The value is the bitwise exclusive or of the integers X and Y. X and Y have to
be integers, treating negative integers as infinitely sign extended.

\ (X) IS0 The value is the bitwise negation of the integer X. X has to be an integer,
treating negative integers as infinitely sign extended.

X<y IS0
The value is the integer X shifted arithmetically left by Y places. i.e. filling
with a copy of the sign bit. X and Y have to be integers, and Y can be negative,
in which case the shift is right.

X>>Y IS0
The value is the integer X shifted arithmetically right by Y places, i.e. filling
with a copy of the sign bit. X and Y have to be integers, and Y can be negative,
in which case the shift is left.

[x] A list of just one number X evaluates to X. Since a quoted string is just a list
of integers, this allows a quoted character to be used in place of its character
code; e.g. "A" behaves within arithmetic expressions as the integer 65.

abs(X) IS0
The value is the absolute value of X.

sign(X) Iso
The value is the sign of X i.e. -1, if X is negative, 0, if X is zero, and 1, if X
is positive, coerced into the same type as X (i.e. the result is an integer, if and
only if X is an integer).

gcd(X,Y) The value is the greatest common divisor of the two integers X and Y. X and
Y have to be integers.

min(X,Y) IS0
The value is the lesser value of X and Y.

max(X,Y) IS0
The value is the greater value of X and Y.

msb(X) The value is the position of the most significant nonzero bit of the integer X,
counting bit positions from zero. It is equivalent to, but more efficient than,
integer (log(2,X)). X must be greater than zero, and X has to be an integer.

round (X) IS0
The value is the closest integer to X. If X is exactly half-way between two
integers, it is rounded up (i.e. the value is the least integer greater than X).

truncate (X) IS0
The value is the closest integer between X and 0.

floor(X) IS0
The value is the greatest integer less or equal to X.

ceiling(X) IS0
The value is the least integer greater or equal to X.
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sin(X) IS0
The value is the sine of X.

cos (X) IS0
The value is the cosine of X.

tan(X) IS0
The value is the tangent of X.

cot (X) The value is the cotangent of X.

sinh(X)  The value is the hyperbolic sine of X.

cosh(X)  The value is the hyperbolic cosine of X.

tanh(X)  The value is the hyperbolic tangent of X.

coth(X)  The value is the hyperbolic cotangent of X.

asin(X) IS0
The value is the arc sine of X.

acos (X) IS0
The value is the arc cosine of X.

atan(X) IS0
The value is the arc tangent of X.

atan2(X,Y) IS0
The value is the four-quadrant arc tangent of X and Y.

acot(X)  The value is the arc cotangent of X.

acot2(X,Y)
The value is the four-quadrant arc cotangent of X and Y.

asinh(X) The value is the hyperbolic arc sine of X.

acosh(X) The value is the hyperbolic arc cosine of X.

atanh(X) The value is the hyperbolic arc tangent of X.

acoth(X) The value is the hyperbolic arc cotangent of X.

sqrt (X) IS0
The value is the square root of X.

log(X) 150
The value is the natural logarithm of X.

log(Base, X)
The value is the logarithm of X in the base Base.

exp(X) IS0
The value is the natural exponent of X.

X %% Y IS0

exp(X,Y) The value is X raised to the power of Y, represented as a float. In particular,

the value of 0.0 ** 0.01is 1.0.
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X"y since release 4.3, ISO
The value is X raised to the power of Y, represented as a float if any of X and
Y is a float; otherwise, as an integer. In particular, the value of 070 is 1.

pi since release 4.3, ISO
The value is approximately 3.14159.

The following operation is included in order to allow integer arithmetic on character codes.

[x] Evaluates to X for numeric X. This is relevant because character strings in
Prolog are lists of character codes, that is, integers. Thus, for those integers
that correspond to character codes, the user can write a string of one character
in place of that integer in an arithmetic expression. For example, the expression
(A) is equivalent to (B), which in turn becomes (C) in which case X is unified

with 2:
X is "c" - mng" (A)
X is [99] - [97] (B)
X is 99 - 97 (9]

A cleaner way to do the same thing is

X is 0’c - 0’a
4.7.6 Predicate Summary
-Y is +X 1S0

Y is the value of arithmetic expression X
+X =:=+Y IS0
the results of evaluating terms X and Y as arithmetic expressions are equal.

+X =\=+Y IS0
the results of evaluating terms X and Y as arithmetic expressions are not equal.

+X < +Y IS0
the result of evaluating X as an arithmetic expression is less than the result of
evaluating Y as an arithmetic expression.

+X >=+Y IS0
the result of evaluating X as an arithmetic expression is not less than the result
of evaluating Y as an arithmetic expression.

+X > +Y IS0
the result of evaluating X as an arithmetic expression X is greater than the
result of evaluating Y as an arithmetic expression.

+X =< +Y IS0
the result of evaluating X as an arithmetic expression is not greater than the
result of evaluating Y as an arithmetic expression.
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4.8 Looking at Terms
4.8.1 Meta-logical Predicates

Meta-logical predicates are those predicates that allow you to examine the current instan-
tiation state of a simple or compound term, or the components of a compound term. This
section describes the meta-logical predicates as well as others that deal with terms as such.

4.8.1.1 Type Checking

The following predicates take a term as their argument. They are provided to check the
type of that term. The reference pages for these predicates include examples of their use.

atom(+T) IS0
term T is an atom

atomic (+T) IS0
term T is an atom or a number

callable(+T)
T is an atom or a compound term

compound (+T) Is0
T is a compound term

db_reference (+X) since release 4.1
X is a db_reference

float (+N) IS0
N is a floating-point number

ground (+T)
term T is a nonvar, and all substructures are nonvar

integer (+T) IS0
term T' is an integer

mutable (+X)
X is a mutable term

nonvar (+T) IS0
term T is one of atom, number, compound (that is, T is instantiated)

number (+N) IS0
N is an integer or a float

simple(+T)
T is not a compound term; it is either atomic or a var

var (+T) IS0

term T is a variable (that is, T is uninstantiated)

4.8.1.2 Unification

The following predicates are related to unification. Unless mentioned otherwise, unification
is performed without occurs-check (see Section 4.2.7 [ref-sem-occ|, page 76).

To unify two terms, simply use:
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- X =Y.
Please note:

e Don’t confuse this predicate with =:=/2 (arithmetic comparison) or ==/2
(term identity).

e =/2 binds free variables in X and Y in order to make them identical.

To unify two terms with occurs-check, use:
?7- unify_with_occurs_check(X,Y).

To check whether two terms don’t unify, use the following, which is equivalent to \+ (X=Y):
7- X \=Y.

To check whether two terms are either strictly identical or don’t unify, use the following.
This construct is useful in the context of when/2:

7- 7=(X,Y).

To constrain two terms to not unify, use the following. It blocks until ?=(X,Y) holds:
7- dif(X,Y).

The goal:
7- subsumes_term(General,Specific).

is true when Specific is an instance of General. It does not bind any variables.

4.8.2 Analyzing and Constructing Terms
The built-in predicate functor/3:

e decomposes a given term into its name and arity, or

e given a name and arity, constructs the corresponding compound term creating new
uninstantiated variables for its arguments.

The built-in predicate arg/3 unifies a term with a specified argument of another term.

The built-in predicate Term =.. List unifies List with a list whose head is the atom cor-
responding to the principal functor of Term and whose tail is a list of the arguments of
Term.

The built-in predicate acyclic_term/2(Term) succeeds if and only if Term is finite
(acyclic).

The built-in predicate term_variables(Term, Variables) unifies Variables with the set of
variables that occur in Term, sorted in standard order.
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4.8.3 Analyzing and Constructing Lists
To combine two lists to form a third list, use append (Head, Tail, List).
To analyze a list into its component lists in various ways, use append/3 with List instantiated

to a proper list. The reference page for append/3 includes examples of its usage, including
backtracking.

To check the length of a list call length(List, Length).

To produce a list of a certain length, use length/2 with Length instantiated and List
uninstantiated or instantiated to a list whose tail is a variable.

To check if a term is the element of a list, use memberchk (Element, List).
To enumerate the elements of a list via backtracking, use member (Element, List).

To check that a term is NOT the element of a list, use nonmember (Element, List), which
is equivalent to \+member (Element, List).

4.8.4 Converting between Constants and Text

Three predicates convert between constants and lists of character codes: atom_codes/2,
number_codes/2, and name/2. Two predicates convert between constants and lists of char-
acter atoms: atom_chars/2, number_chars/2.

atom_codes (Atom, Codes) is a relation between an atom Atom and a list Codes consisting
of the character codes comprising the printed representation of Atom. Initially, either Atom
must be instantiated to an atom, or Codes must be instantiated to a proper code-list.

number_codes (Number, Codes) is a relation between a number Number and a list Codes
consisting of the character codes comprising the printed representation of Number. Initially,
either Number must be instantiated to a number, or Codes must be instantiated to a proper
code-list.

Similarly, atom_chars(Atom, Chars) and number_chars(Atom, Chars) are relations be-
tween a constant and a list consisting of the character atoms comprising the printed repre-
sentation of the constant.

name/2 converts between a constant and a code-list. Given a code-list, name/2 will convert
it to a number if it can, otherwise to an atom. This means that there are atoms that can
be constructed by atom_codes/2 but not by name/2. name/2 is retained for backwards
compatibility with other Prologs. New programs should use atom_codes/2 or number_
codes/2 as appropriate.

char_code/2 converts between a character atom and a character code.

4.8.5 Atom Operations

To compute Length, the number of characters of the atom Atom, use:

7- atom_length(Atom,Length).
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To concatenate Atoml with Atom2 giving Atom12, use the following. The predicate can
also be used to split a given Atom12 into two unknown parts:

?- atom_concat (Atoml,Atom2,Atom12) .

To extract a sub-atom SubAtom from Atom, such that the number of characters preceding
SubAtom is Before, the number of characters after SubAtom is After, and the length of
SubAtom is Length, use the following. Only Atom needs to be instantiated:

7- sub_atom(Atom,Before,Length,After,SubAtom) .

4.8.6 Assigning Names to Variables

Each variable in a term is instantiated to a term of the form ’$VAR’ (), where N is an inte-
ger, by the predicate numbervars/3. The “write” predicates (write/[1,2], writeq/[1,2],
and write_term/[2,3] with the numbervars(true) option) transform these terms into
variable names starting with upper case letters.

4.8.7 Copying Terms

The meta-logical predicate copy_term/2 makes a copy of a term in which all variables have
been replaced by brand new variables, and all mutables by brand new mutables. This is
precisely the effect that would have been obtained from the definition:

copy_term(Term, Copy) :-
recorda(copy, copy(Term), DBref),
instance(DBref, copy(Temp)),
erase (DBref),
Copy = Temp.

although the built-in predicate copy_term/2 is more efficient.

When you call clause/[2,3] or instance/2, you get a new copy of the term stored in the
database, in precisely the same sense that copy_term/2 gives you a new copy. One of the
uses of copy_term/2 is in writing interpreters for logic-based languages; with copy_term/2
available you can keep “clauses” in a Prolog data structure and pass this structure as an
argument without having to store the “clauses” in the Prolog database. This is useful if
the set of “clauses” in your interpreted language is changing with time, or if you want to
use clever indexing methods.

A naive way to attempt to find out whether one term is a copy of another is shown in this
example:

identical_but_for_variables(X, Y) :-
\+ \+ (
numbervars (X, 0, N),
numbervars(Y, 0, N),
X=Y
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This solution is sometimes sufficient, but will not work if the two terms have any variables
in common. If you want the test to succeed even when the two terms do have some variables
in common, you need to copy one of them; for example,

identical_but_for_variables(X, Y) :-
\+ \+ (
copy_term(X, Z),
numbervars(Z, 0, N),
numbervars(Y, 0, N),
Z=Y
).

Please note: If the term being copied contains attributed variables (see Section 10.3 [lib-
atts], page 381) or suspended goals (see Section 4.2.4 [ref-sem-sec], page 73), those attributes
are not retained in the copy. To retain the attributes, you can use:

copy_term(Term, Copy, Body)

which in addition to copying the term unifies Body with a goal such that executing Body will
reinstate the attributes in the Copy. Copy as well as Body contain brand new (unattributed)
variables only.

copy_term/2 is efficient enough to use without hesitation if there is no solution that does
not require the use of meta-logical predicates. However, for the sake of both clarity and
efficiency, such a solution should be sought before using copy_term/2. See Section 11.3.44
[mpg-ref-copy-term|, page 936.

4.8.8 Comparing Terms
4.8.8.1 Introduction

The predicates described in this section are used to compare and order terms, rather than to
evaluate or process them. For example, these predicates can be used to compare variables;
however, they never instantiate those variables. These predicates should not be confused
with the arithmetic comparison predicates (see Section 4.7.4 [ref-ari-acm], page 118) or with
unification.

4.8.8.2 Standard Order of Terms

These predicates use a standard total order when comparing terms. The standard total
order is:

e Variables, by age (oldest first—the order is not related to the names of variables).
e Floats, in numeric order (e.g. -1.0 is put before 1.0).

e Integers, in numeric order (e.g. -1 is put before 1).

e Atoms, in alphabetical (i.e. character code) order.

e Compound terms, ordered first by arity, then by the name of the principal functor,
then by age for mutables and by the arguments in left-to-right order for other terms.
Recall that lists are equivalent to compound terms with principal functor ./2.
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For example, here is a list of terms in standard order:
[ X, -1.0, -9, 1, fie, foe, X =Y, foe(0,2), fie(1,1,1) 1]

Please note: the standard order is only well-defined for finite (acyclic) terms.
There are infinite (cyclic) terms for which no order relation holds. Furthermore,
blocking goals (see Section 4.2.4 [ref-sem-sec|, page 73) on variables or modifying
their attributes (see Section 10.3 [lib-atts], page 381) does not preserve their
order.

The predicates for comparison of terms are described below.

+T1 == +T2
T1 and T2 are literally identical (in particular, variables in equivalent positions
in the two terms must be identical).

+T1 \==+T2
T1 and T2 are not literally identical.
+T1 @< +T2
T1 is before term T2 in the standard order.
+T1 @ +T2
T1 is after term T2
+T1 @=< +T2
T1 is not after term T2
+T1 @>=+T12

T'1 is not before term T2

compare (-Op, +T1, +T2)
the result of comparing terms T1 and T2 is Op, where the possible values for

Op are:

= if T1 is identical to T2,

< if T1 is before T2 in the standard order,
> if T1 is after T2 in the standard order.

4.8.8.3 Sorting Terms

Two predicates, sort/2 and keysort/2 sort lists into the standard order. keysort/2 takes
a list consisting of key-value pairs and sorts according to the key.

Further sorting predicates are available in 1ibrary(samsort).

4.8.9 Mutable Terms

One of the tenets of logic programming is that terms are immutable objects of the Herbrand
universe, and the only sense in which they can be modified is by means of instantiating
non-ground parts. There are, however, algorithms where destructive assignment is essential
for performance. Although alien to the ideals of logic programming, this feature can be
defended on practical grounds.
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SICStus Prolog provides an abstract datatype and four operations for efficient backtrackable
destructive assignment. In other words, any destructive assignments are transparently
undone on backtracking. Modifications that are intended to survive backtracking must be
done by asserting or retracting dynamic program clauses instead. Unlike previous releases
of SICStus Prolog, destructive assignment of arbitrary terms is not allowed.

A mutable term is represented as a compound term with a reserved functor:
>$mutable’ (Value, Timestamp) where Value is the current value and Timestamp is re-
served for bookkeeping purposes [Aggoun & Beldiceanu 90).

Any copy of a mutable term created by copy_term/[2,3], assert, retract, a database
predicate, or an all solutions predicate, is an independent copy of the original mutable term.
Any destructive assignment done to one of the copies will not affect the other copy.

The following operations are provided:

create_mutable(+Datum,-Mutable)
Datum.

get_mutable(-Datum,+Mutable)
The current value of the mutable term Mutable is Datum.

update_mutable(+Datum,+Mutable)
Updates the current value of the mutable term Mutable to become Datum.

mutable (+Mutable)
X is currently instantiated to a mutable term.

Please note: the effect of unifying two mutables is undefined.

4.8.10 Summary of Predicates

atom(+T) IS0
term T is an atom

atomic(+T) IS0
term T is an atom or a number

callable(+T)
T is an atom or a compound term

compound (+T) IS0
T is a compound term

db_reference(+X) since release 4.1
X is a db_reference

float (+N) IS0

N is a floating-point number

ground (+T)
term T is a nonvar, and all substructures are nonvar

integer (+T) Iso
term T is an integer
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mutable (+X)
X is a mutable term

nonvar (+T) Iso
term T is one of atom, number, compound (that is, T is instantiated)

number (+N) IS0
N is an integer or a float

simple (+T)
T is not a compound term; it is either atomic or a var

var (+T) IS0
term T is a variable (that is, T is uninstantiated)

compare (-C,+X,+Y)
C is the result of comparing terms X and Y

+X == +Y IS0
terms X and Y are strictly identical

+X \==+Y IS0
terms X and Y are not strictly identical

+X @< +Y IS0
term X precedes term Y in standard order for terms

+X @>= +Y IS0
term X follows or is identical to term Y in standard order for terms

+X @ +Y IS0
term X follows term Y in standard order for terms

+X 0=< +Y IS0
term X precedes or is identical to term Y in standard order for terms

?T=.. 7L IS0
the functor and arguments of term T comprise the list L

?X=7Y IS0
terms X and Y are unified

+X \=+Y IS0
terms X and Y no not unify

7=(+X,+Y)
X and Y are either strictly identical or don’t unify

acyclic_term(+T) since release 4.3, ISO
term T is a finite (acyclic) term

arg (+N,+T,-4) IS0
the Nth argument of term T is A

atom_chars(?4,7?L) IS0

A is the atom containing the character atoms in list L
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atom_codes (7?4, ?L) IS0
A is the atom containing the characters in code-list L

atom_concat (?Atoml, PAtom2, 7Atom12) IS0
Atom Atoml concatenated with Atom2 gives Atom12.

atom_length(+Atom,-Length) IS0
Length is the number of characters of the atom Atom.

char_code(?Char, ?Code) IS0
Code is the character code of the one-char atom Char.

copy_term(+T,-C) IS0
C is a copy of T in which all variables have been replaced by new variables

copy_term(+T,-C,-G)
C is a copy of T in which all variables have been replaced by new variables,
and G is a goal for reinstating any attributes in C

create_mutable(+Datum,-Mutable)
Mutable is a new mutable term with current value Datum.

dif (+X,+Y)
X and Y are constrained to be different.

frozen(+Var,-Goal)
The goal Goal is blocked on the variable Var.

functor (?T, ?F, 7?N) IS0
the principal functor of term T has name F' and arity N

get_mutable (-Datum,+Mutable)
The current value of the mutable term Mutable is Datum.

name (74, 7L)
the code-list of atom or number A is L

number_chars(?N, 7?L) IS0
N is the numeric representation of list of character atoms L

number_codes (?N, ?L) IS0
N is the numeric representation of code-list L

numbervars (+T,+M, -N)
number the variables in term T from M to N-1

sub_atom(+Atom, ?Before, ?Length, PAfter, ?SubAtom) IS0
The characters of SubAtom form a sublist of the characters of Atom, such
that the number of characters preceding SubAtom is Before, the number of
characters after SubAtom is After, and the length of SubAtom is Length.

subsumes_term(General,Specific) since release 4.3, ISO
Specific is an instance of General

term_variables (+Term,-Variables) since release 4.3, ISO
Variables is the set of variables that occur in Term
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unify_with_occurs_check(?X, 7Y) Iso
True if X and Y unify to a finite (acyclic) term.

?T=.. 7L IS0
the functor and arguments of term T comprise the list L

append (7?4, 7B, 7C)
the list C is the concatenation of lists A and B

keysort (+L,-S)
the list L sorted by key yields S

length(?L, ?N)
the length of list L is N

member (?X, 7L)
X is a member of L

memberchk (+X,+L)
X is a member of L

nonmember (+X,+L)
X is not a member of L

sort(+L,-S)
sorting the list L into order yields S

4.9 Looking at the Program State

4.9.1 Overview

Various aspects of the program state can be inspected: the clauses of all or selected dynamic
procedures, currently available atoms, user defined predicates, source files of predicates and
clauses, predicate properties and the current load context can all be accessed by calling the
predicates listed in Section 4.9.1 [ref-Ips-ove], page 133. Furthermore, the values of Prolog
flags can be inspected and, where it makes sense, changed.

4.9.2 Associating Predicates with their Properties

The following properties are associated with predicates either implicitly or by declaration:

built_in The predicate is built-in.
compiled The predicate is in virtual code representation.

interpreted
The predicate is in interpreted representation.

fd_constraint
The predicate is a so-called FD predicate; see Section 10.10.10 [Defining Prim-
itive Constraints|, page 471.

dynamic  The predicate was declared dynamic.

volatile The predicate was declared volatile.
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multifile
The predicate was declared multifile.

block(SkeletalGoal)
The predicate has block declarations.

meta_predicate(SkeletalGoal)
The predicate is a meta-predicate.

As of release 4.2, the SkeletalGoal will contain the specifications used in the
original meta-predicate declaration.

exported The predicate was exported from a module.

imported_from(Module)
The predicate was imported from the module Module.

Every predicate has exactly one of the properties [built_in, compiled, interpreted,
fd_constraint], at most one of the properties

[exported, imported_from(SkeletalGoal)], zero or more block(SkeletalGoal) prop-
erties, and at most one of the remaining properties.

To query these associations, use predicate_property/2. The reference page contains sev-
eral examples. See Section 11.3.159 [mpg-ref-predicate_property|, page 1084.

4.9.3 Associating Predicates with Files

Information about loaded files and the predicates and clauses in them is returned by source_
file/[1,2]. source_file/1 can be used to identify an absolute filename as loaded, or to
backtrack through all loaded files. To find out the correlation between loaded files and
predicates, call source_file/2. See Section 11.3.215 [mpg-ref-source_file|, page 1153.

4.9.4 Prolog Flags

Certain aspects of the state of the program are accessible as values of the global Prolog flags.
Some of these flags are read-only and correspond to implementation defined properties and
exist to aid portability. Others can be set and impact the behavior of certain built-in
predicates.

The flags are accessed by the built-in predicates prolog_flag/[2,3], current_prolog_
flag/2, and set_prolog_flag/2.

Please note: Prolog flags are global, as opposed to being local to the current module, Prolog
text, or otherwise.

The possible Prolog flag names and values are listed below. Flags annotated ISO are
prescribed by the ISO standard. Flags annotated volatile are not saved by save_
program/[1,2]. Flags annotated read-only are read-only:

agc_margin
An integer Margin. The atoms will be garbage collected when Margin new
atoms have been created since the last atom garbage collection. Initially 10000.
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argv volatile
The value is a list of atoms of the program arguments supplied when the cur-
rent SICStus Prolog process was started. For example, if SICStus Prolog were
invoked with:
% sicstus -- hello world 2001
the value will be [hello,world,’2001°].
Setting the value can be useful when writing test cases for code that expects to
be run with command line parameters.
bounded ISO,read-only,volatile
One of the flags defining the integer type. For SICStus, its value is false,
indicating that the domain of integers is practically unbounded.
char_conversion ISO,volatile
If this flag is on, unquoted characters in terms and programs read in will be
converted, as specified by previous invocations of char_conversion/2. If the
flag is off no conversion will take place. The default value is on.
compiling
Governs the mode in which compile/1 operate (see Section 4.3 [ref-lod],
page 78).
compactcode
Compilation produces byte-coded abstract instructions (the de-
fault).
debugcode
Compiling is replaced by consulting.
debugging volatile
Corresponds to the predicates debug/0, nodebug/0, trace/0, notrace/O,
zip/0, nozip/0. The flag describes the mode the debugger is in, or is required
to be switched to:
trace Trace mode (the debugger is creeping).
debug Debug mode (the debugger is leaping).
zip Zip mode (the debugger is zipping).
off The debugger is switched off (the default).
debug ISO,volatile
The flag debug, prescribed by the ISO Prolog standard, is a simplified form of
the debugging flag:
off IS0 The debugger is switched off (the default).
on IS0 The debugger is switched on (to trace mode, if previously
switched off).
profiling since release 4.2

This flag describes the mode the execution profiler (see Section 9.2 [Execution
Profiling], page 347) is in, or is required to be switched to:
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off The profiler is switched off (the default).
on The profiler is switched on.
(The flags profiling, debugging and debug have no effect in runtime systems.)

double_quotes ISO,volatile
Governs the interpretation of double quoted strings (see Section 4.1.3.2 [ref-
syn-cpt-sli], page 46):

codes IS0
Code-list comprising the string. The default.

chars IS0
Char-list comprising the string.

atom IS0 The atom composed of the same characters as the string.

quoted_charset
This flag is relevant when quoted(true) holds when writing terms. Its value
should be one of the atoms:

portable Atoms and functors are written using character codes less than 128
only, i.e. using the 7-bit subset of the ISO-8859-1 (Latin 1) character
set (see Section 4.1.7.5 [ref-syn-syn-tok|, page 56).

prolog

Atoms and functors are written using a character set that can be
read back by read/[1,2]. This is a subset of Unicode that includes
all of ISO-8859-1 (Latin 1) as well as some additional characters.

This character set may grow but not shrink in subsequent releases.
This ensures that future releases can always read a term written by
an older release.

Note that the character set supported by the stream is not taken
into account. You can use portable instead of prolog if the stream
does not support Unicode.

debugger_print_options
The value is a list of options for write_term/3 (see Section 4.6.4.1 [ref-iou-tou-
wrt], page 103), to be used in the debugger’s messages. The initial value is
[quoted(true) ,numbervars(true) ,portrayed(true) ,max_depth(10)].

dialect since release 4.1,read-only
The value of this flag is sicstus. It is useful for distinguishing between Prolog
implementations.

Also see the Prolog flag version_data, below.

discontiguous_warnings volatile
on or off. Enable or disable warning messages when clauses are not together
in source files. Initially on in development systems, off in runtime systems.

fileerrors
on or off. Enables or disables raising of file error exceptions. Initially on
(enabled).
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gc on or off. Enables or disables garbage collection of the global stack. Initially
on (enabled).

gc_margin
Margin: At least Margin kilobytes of free global stack space are guaranteed to
exist after a garbage collection. Also, no garbage collection is attempted unless
the global stack is at least Margin kilobytes. Initially 1000.

gc_trace Governs global stack garbage collection trace messages.
verbose  Turn on verbose tracing of garbage collection.
terse Turn on terse tracing of garbage collection.
off Turn off tracing of garbage collection (the default).

host_type read-only,volatile
The value is an atom identifying the platform on which SICStus was compiled,
such as >x86-1linux-glibc2.1’ or ’sparc-solaris-5.7’.

informational volatile
on or off. Enables or disables the printing of informational messages. Initially
on (printing enabled) in development systems, unless the ‘--noinfo’ command
line option was used; off (printing disabled) in runtime systems.

integer_rounding_function ISO,read-only,volatile
One of the flags defining the integer type. In SICStus Prolog its value is
toward_zero, indicating that the integer division ((//)/2) and integer remain-
der (rem/2) arithmetic functions use rounding toward zero; see Section 4.7
[ref-ari], page 117.

legacy_char_classification since release 4.0.3,volatile
on or off. When enabled, most legal Unicode codepoints above 255 are treated
as lowercase characters when reading Prolog terms. This improves compati-
bility with earlier versions of SICStus Prolog and makes it possible to use full
Unicode, e.g. Chinese characters, in unquoted atoms as well as variable names,
Section 4.1.7.5 [ref-syn-syn-tok], page 56. Initially off (disabled).

Setting this flag affects the read_term/[2,3] option singletons/1; see
Section 11.3.185 [mpg-ref-read_term|, page 1115. It also affects the style warn-
ing for singleton variables; see the description of the single_var_warnings in
Section 4.3.2 [ref-lod-lod], page 79.

max_arity ISO,read-only,volatile
Specifies the maximum arity allowed for a compound term. In SICStus Prolog
this is 255.

max_integer ISO,read-only,volatile

Specifies the largest possible integer value. As in SICStus Prolog the range
of integers in not bounded, prolog_flag/[2,3] and current_prolog_flag/2
will fail when accessing this flag.

max_tagged_integer since release 4.1,read-only,volatile
The largest small integer, i.e. integers larger than this are less efficient to ma-
nipulate and are not available in library(clpfd).
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min_integer ISO,read-only,volatile
Specifies the smallest possible integer value. As in SICStus Prolog the range
of integers in not bounded, prolog_flag/[2,3] and current_prolog_flag/2
will fail, when accessing this flag.

min_tagged_integer since release 4.1,read-only,volatile
The smallest small integer, i.e. integers smaller than this are less efficient to
manipulate and are not available in 1ibrary(clpfd).

os_data since release 4.1,read-only,volatile
The value is a term os(Family,Name,Extra) describing the operating system
on which this SICStus process is running, i.e. it is the runtime version of the
platform_data flag, below.
Family has the same value and meaning as for the platform_data flag, below.

On UNIX-like systems the Name is the lower case value sysname returned from
uname (3) at runtime, i.e. the same as from the comamnd uname -s. On all
supported versions of Microsoft Windows this is win32nt.

Extra is a list of extra information. Entries may be added to this list without
prior notice.

Currently, at least up to release 4.2.3, the Family and Name for the platform_
data and os_data flags happens to be the same but this may change in the
unlikely case that the operating system starts to return something new. For
this reason it is probably better to use platform_data than os_data in most
cases.

The Extra value for os_data may differ from its platform_data counterpart
in order to accurately describe the running operating system.

platform_data since release 4.1,read-only,volatile
The value is a term platform(Family,Name,Extra) describing the operating
system platform for which this version of SICStus was built.

Family describes the family or class of operating system. Currently documented
values are unix, for UNIX-like systems like Linux, OS X, Solaris and Androind;
and windows for all supported versions of Microsoft Windows. You should not
assume that these are the only two possibilities.

Name describes the name of the operating system. On UNIX-like systems this
correspond to the (lower case) output from uname -s. Currently documented
values are 1linux, darwin, sunos, android and win32nt.

Note that this implies that some operating systems may have unexpected names.
In particular the name for Apple OS X is darwin, for Oracle Solaris it is sunos
and for 64-bit versions of SICStus on Microsoft Windows it is win32nt.

Extra is bound to a list of extra information. Entries may be added to this list
without prior notice.

redefine_warnings
Enable or disable warning messages when:
e a module or predicate is being redefined from a different file than its pre-
vious definition. Such warnings are currently not issued when a ‘.po’ file
is being loaded.
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e a predicate is being imported while it was locally defined already.
e a predicate is being redefined locally while it was imported already.

e a predicate is being imported while it was imported from another module
already.

The possible values are:

on The default in development systems. The user is queried about
what to do in each case.

of f The default in runtime systems, but note that this flag is not
volatile. Redefinitions are performed silently, as if the user had
accepted them.

reject since release 4.0.3
Redefinitions are refused silently, as if the user had rejected them.

proceed since release 4.0.3
Redefinitions are performed, and warnings are issued.

suppress since release 4.0.3
Redefinitions are refused, and warnings are issued.

single_var_warnings volatile
on or off. Enable or disable warning messages when a sentence (see
Section 4.1.7.3 [ref-syn-syn-sen|, page 53) containing variables not beginning
with ‘_’ occurring once only is compiled or consulted. Initially on in develop-
ment systems, off in runtime systems.

source_info volatile
emacs or on or off. If not off while source code is being loaded, information
about line numbers and file names are stored with the loaded code. If the value
is on while debugging, this information is used to print the source code location
while prompting for a debugger command. If the value is on while printing an
uncaught error exception message, the information is used to print the source
code location of the culprit goal or one of its ancestors, as far as it can be
determined. If the value is emacs in any of these cases, the appropriate line
of code is instead highlighted, and no extra text is printed. The value is off
initially, and that is its only available value in runtime systems.

syntax_errors
Controls what action is taken upon syntax errors in read/[1,2].

dec10 The syntax error is reported and the read is repeated.
error An exception is raised. See Section 4.15 [ref-ere], page 195. (the
default).
fail The syntax error is reported and the read fails.
quiet The read quietly fails.
system_type read-only,volatile

The value is development in development systems and runtime in runtime
systems.
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title The window title. The default value is the same as the boot message ‘SICStus
4.3.1 ...

Licensed to SICS’. It is currently only used as the window title on the Win-
dows platform.

toplevel_print_options
The value is a list of options for write_term/3 (see Section 4.6.4.1 [ref-iou-tou-
wrt], page 103), to be used when the top-level displays variable bindings and an-
swer constraints. It is also used when messages are displayed. The initial value
is [quoted(true) ,numbervars(true) ,portrayed(true) ,max_depth(10)].

typein_module
Permitted values are atoms. Controls the current type-in module (see
Section 4.11.8 [ref-mod-tyi], page 164). Corresponds to the predicate set_
module/1.

unknown IS0
The system can optionally catch calls to predicates that have no definition.
First, the user defined predicate user:unknown_predicate_handler/3 (see
Section 4.15 [ref-ere]|, page 195) is called. If undefined or if the call fails, the
action is governed by the state of the this flag, which can be:

trace Causes calls to undefined predicates to be reported and the de-
bugger to be entered at the earliest opportunity. Not available in
runtime systems.

error IS0
Causes calls to such predicates to raise an exception (the default).
See Section 4.15 [ref-ere], page 195.

warning IS0
Causes calls to such predicates to display a warning message and
then fail.
fail IS0 Causes calls to such predicates to fail.
user_input volatile

Permitted values are any stream opened for reading. Controls which stream
is referenced by user_input and SP_stdin. It is initially set to a stream con-
nected to UNIX stdin.

user_output volatile
Permitted values are any stream opened for writing. Controls which stream
is referenced by user_output and SP_stdout. It is initially set to a stream
connected to UNIX stdout.

user_error volatile
Permitted values are any stream opened for writing. Controls which stream
is referenced by user_error and SP_stderr. It is initially set to a stream
connected to UNIX stderr.

version read-only,volatile
The value is an atom containing the banner text displayed on startup, such as
’SICStus 4.1.0 (i386-darwin-9.8.0): Wed Oct 14 14:43:58 CEST 2009°.
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Also see the Prolog flag version_data, below.

version_data since release 4.1,read-only,volatile
The value is a term sicstus(Major,Minor,Revision,Beta,Extra) with inte-
ger major, minor, revision, and beta version.
Extra is bound to a list of extra information. Entries may be added to this list
without prior notice.

Also see the Prolog flag dialect, above.

You can use prolog_flag/2 to enumerate all the FlagNames that the system currently
understands, together with their current values. Use prolog_flag/2 to make queries,
prolog_flag/3 to make changes.

4.9.5 Load Context

When a Prolog source file is being read in, some aspects of the load context can be accessed
by the built-in predicate prolog_load_context/2, which accesses the value of a given key.
The available keys are:

source The absolute path name of the file being loaded. During loading of a PO file,
the corresponding source file name is returned.

file Outside included files (see Section 4.3.4.10 [Include Declarations|, page 85) this
is the same as the source key. In included files this is the absolute path name
of the file being included.

directory
The absolute path name of the directory of the file being loaded. In included
files this is the directory of the file being included.

module The source module (see Section 4.11.15 [ref-mod-mne], page 169). This is useful
for example if you are defining clauses for user:term_expansion/6 and need
to access the source module at compile time.

stream The stream being loaded. This key is not available during loading of a PO file.

term_position
A term representing the stream position of the last clause read. This key is not
available during loading of a PO file.

4.9.6 Predicate Summary

current_atom(?4)
backtrack through all atoms

current_module (?M)
M is the name of a current module

current_module(?M, 7F)
F is the name of the file in which M’s module declaration appears

current_predicate(:A4/7N) IS0
current_predicate(74, :P)
A is the name of a predicate with most general goal P and arity N
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current_prolog_flag(?F, ?V) Iso
V' is the current value of Prolog flag F

listing list all dynamic procedures in the type-in module
listing(:P)
list the dynamic procedure(s) specified by P

predicate_property(:P, ?Prop)
Prop is a property of the loaded predicate P

prolog_flag(?F,?V)
V' is the current value of Prolog flag F

prolog_flag(+F,=0,+N)
O is the old value of Prolog flag F'; N is the new value

prolog_load_context (7K, ?V)
find out the context of the current load

set_module (+M)
make M the type-in module

set_prolog_flag(+F,+N) IS0
N is the new value of Prolog flag F'

source_file(?F)
F is a source file that has been loaded into the database

source_file(:P, ?F)
P is a predicate defined in the loaded file F

unknown (-0,+N) development
Changes action on undefined predicates from O to N.

4.10 Memory Use and Garbage Collection
4.10.1 Overview

SICStus Prolog uses five data areas: program space, global stack, local stack, choice stack,
and trail stack. Each of these areas is automatically expanded if it overflows.

The local stack contains all the control information and variable bindings needed in a Prolog
execution. Space on the local stack is reclaimed on determinate success of predicates and
by tail recursion optimization, as well as on backtracking.

The choice stack contains data representing outstanding choices for some goals or disjunc-
tions. Space on the choice stack is reclaimed on backtracking.

The global stack contains all the data structures constructed in an execution of the program.
This area grows with forward execution and shrinks on backtracking.

The trail stack contains references to all the variables that need to be reset when backtrack-
ing occurs. This area grows with forward execution and shrinks on backtracking.
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The program space contains compiled and interpreted code, recorded terms, and atoms.
The space occupied by compiled code, interpreted code, and recorded terms is recovered
when it is no longer needed; the space occupied by atoms that are no longer in use can be
recovered by atom garbage collection described in Section 4.10.7 [ref-mgc-agol, page 154.

These fluctuations in memory usage of the above areas can be monitored by
statistics/[0,2].

SICStus Prolog uses the global stack to construct compound terms, including lists. Global
Stack space is used as Prolog execution moves forward. When Prolog backtracks, it auto-
matically reclaims space on the global stack. However, if a program uses a large amount of
space before failure and backtracking occur, this type of reclamation may be inadequate.

Without garbage collection, the Prolog system must attempt to expand the global stack
whenever a global stack overflow occurs. To do this, it first requests additional space from
the operating system. If no more space is available, the Prolog system attempts to allocate
unused space from the other Prolog data areas. If additional space cannot be found, a
resource error is raised.

Global stack expansion and abnormal termination of execution due to lack of stack space
can occur even if there are structures on the global stack that are no longer accessible to the
computation (these structures are what is meant by “garbage”). The proportion of garbage
to non-garbage terms varies during execution and with the Prolog code being executed.
The global stack may contain no garbage at all, or may be nearly all garbage.

The garbage collector periodically reclaims inaccessible global stack space, reducing the
need for global stack expansion and lessening the likelihood of running out of global stack.
When the garbage collector is enabled (as it is by default), the system makes fewer requests
to the operating system for additional space. The fact that less space is required from the
operating system can produce a substantial savings in the time taken to run a program,
because paging overhead can be much less.

For example, without garbage collection, compiling a file containing the sequence

p(L) - p(lal).
= p(L).

causes the global stack to expand until the Prolog process eventually runs out of space.
With garbage collection enabled, the above sequence continues indefinitely. The list built
on the global stack by each recursive call is inaccessible to future calls (since p/1 ignores
its argument) and can be reclaimed by the garbage collector.

Garbage collection does not guarantee freedom from out-of-space errors, however. Compil-
ing a file containing the sequence

pX) - p(IX]).
- pa).
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expands the global stack until the Prolog process eventually runs out of space. This happens
in spite of the garbage collector, because all the terms built on the global stack are accessible
to future computation and cannot be reclaimed.

4.10.1.1 Reclaiming Space

trimcore/0 reclaims space in all of Prolog’s data areas. At any given time, each data area
contains some free space. For example, the local stack space contains the local stack and
some free space for that stack to grow into. The data area is automatically expanded when
it runs out of free space, and it remains expanded until trimcore/0 is called, even though
the stack may have shrunk considerably in the meantime. The effect of trimcore/0 is to
reduce the free space in all the data areas as much as possible, and to endeavor to give the
space no longer needed back to the operating system.

The system property PROLOGKEEPSIZE can be used to define a lower bound on the amount of
memory to be retained. Also, the system property PROLOGINITSIZE can be used to request
that an initial amount of memory be allocated. This initially allocated memory will not be
touched by trimcore/0.

When trimming a given stacks, trimcore/0 will retain at least the amount of space initially
allocated for that stack.

trimcore/0 is called each time Prolog returns to the top-level or the top of a break level,
except it does not trim the stacks then. See Section 11.3.238 [mpg-ref-trimcore], page 1183.

4.10.1.2 Displaying Statistics

Statistics relating to memory usage, run time, and garbage collection, including information
about which areas of memory have overflowed and how much time has been spent expanding
them, can be displayed by calling statistics/0.

The output from statistics/0 looks like this:
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memory (total) 3334072 bytes

global stack 1507184 bytes: 2516 in use, 1504668 free
local stack 49296 bytes: 276 in use, 49020 free
trail stack 34758 bytes: 248 in use, 34510 free
control stack 34874 bytes: 364 in use, 34510 free
program space 1707960 bytes: 1263872 in use, 444088 free
program space breakdown:

compiled code 575096 bytes

atom 166528 bytes

predicate 157248 bytes

try_node 144288 bytes

sw_on_key 105216 bytes

incore_info 51096 bytes

atom table 36864 bytes

interpreted code 13336 bytes

atom buffer 2560 bytes

SP_malloc 2288 bytes

FLI stack 2048 bytes

miscellaneous 1640 bytes

BDD hash table 1560 bytes

source info (B-tree) 1024 bytes

numstack 1024 bytes

int_info 880 bytes

file table 400 bytes

source info (itable) 328 bytes

module 320 bytes

source info (lheap) 80 bytes

foreign resource 32 bytes

all solutions 16 bytes

4323 atoms (151927 bytes) in use, 1044252 free
No memory resource errors

.020 sec. for 7 global, 20 local, and O choice stack overflows

.060 sec. for 15 garbage collections which collected 5461007 bytes

.000 sec. for O atom garbage collections which collected O atoms (0 bytes)
.000 sec. for 4 defragmentations

.000 sec. for 7 dead clause reclamations

.000 sec. for O dead predicate reclamations

39.410 sec. runtime

39.490 sec. total runtime
109.200 sec. elapsed time

Note the use of indentation to indicate sub-areas. That is, memory contains the program
space and the four stacks: global, local, choice, and trail.
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The memory (total) figure shown as “in use” is the sum of the spaces for the program space
and stacks. The “free” figures for the stacks are for free space within those areas. However,
this free space is considered used as far as the memory (total) area is concerned, because it
has been allocated to the stacks. The program space is not considered to have its own free
space. It always allocates new space from the general memory (total) free area.

If a memory resource error has occurred previously in the execution, the memory area for
which memory could not be allocated is displayed.

Individual statistics can be obtained by statistics/2, which accepts a keyword and returns
a list of statistics related to that keyword.

The keys and values for statistics(Keyword, Value) are summarized below. The key-
words core and heap are included to retain compatibility with other Prologs. Times are
given in milliseconds and sizes are given in bytes.

Keyword  Value

runtime [since start of Prolog,since previous statistics]
These refer to CPU time used while executing, excluding time spent in memory
management tasks or or in system calls. The second element is the time since
the latest call to statistics/2 with this key or to statistics/0.

total_runtime
[since start of Prolog,since previous statistics]
These refer to total CPU time used while executing, including memory manage-
ment tasks such as garbage collection but excluding system calls. The second
element is the time since the latest call to statistics/2 with this key or to
statistics/0.

walltime [since start of Prolog,since previous statistics]
These refer to absolute time elapsed. The second element is the time since the
latest call to statistics/2 with this key or to statistics/0.

global_stack
[size used, free]
This refers to the global stack, where compound terms are stored. The values
are gathered before the list holding the answers is allocated. Formed from basic
values below.

local_stack
[size used, freel
This refers to the local stack, where recursive predicate environments are stored.
Formed from basic values below.

trail [size used, freel
This refers to the trail stack, where conditional variable bindings are recorded.
Formed from basic values below.

choice [size used, freel
This refers to the choice stack, where partial states are stored for backtracking
purposes. Formed from basic values below.
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[size used,0]

These refer to the amount of memory actually allocated by the Prolog engine.
The zero is there for compatibility with other Prolog implementations. Formed
from basic values below.

[size used,size freel
These refer to the amount of memory allocated for the database, symbol tables,
and the like. Formed from basic values below.

garbage_collection

[no. of GCs,bytes freed, time spent]
Formed from basic values below.

stack_shifts

atoms

[no. of global shifts,no. of local/choice shifts,time spent]
Formed from basic values below.

[no. of atoms,bytes used, atoms free]

The number of atoms free is the number of atoms allocated (the first element in
the list) subtracted from the maximum number of atoms, i.e. 262143 (33554431)
on 32-bit (64-bit) architectures. Note that atom garbage collection may be able
to reclaim some of the allocated atoms. Formed from basic values below.

atom_garbage_collection

[no. of AGCs,bytes freed, time spent]
Formed from basic values below.

defragmentation

[no. of defragmentations,time spent]
Formed from basic values below.

memory_used since release 4.1
bytes used

memory_free since release 4.1
bytes free

global_stack_used since release 4.1
bytes used

global_stack_free since release 4.1
bytes free

local_stack_used since release 4.1

bytes used
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local_stack_free

bytes free

trail_used
bytes used

trail_free
bytes free

choice_used
bytes used

choice_free
bytes free

atoms_used
bytes used

atoms_nbused
atoms used

atoms_nbfree
atoms free

ss_global

number of global stack shifts
ss_local

number of local stack shifts
ss_choice

number of choice stack shifts
ss_time

time spent stack shifting
gc_count

number of garbage collections
gc_freed

number of bytes freed

SICStus Prolog

since release 4.1

since release 4.1

since release 4.1

since release 4.1

since release 4.1

since release 4.1

since release 4.1

since release 4.1

since release 4.1

since release 4.1

since release 4.1

since release 4.1

since release 4.1

since release 4.1
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gc_time

time spent collecting garbage

agc_count
number of atom garbage collections

agc_nbfreed
number of garbage collected atoms

agc_freed
number of bytes freed by atom garbage collected

agc_time
time spent garbage collected atoms

defrag_count
number of memory defragmentations

defrag_time
time spent defragmenting memory

dpgc_count
number of dead predicate reclamations

dpgc_time
time spent reclaiming dead predicates

dcgc_count
number of dead clause reclamations

dcgc_time
time spent reclaiming dead clauses

memory_culprit

149

since release 4.1

since release 4.1

since release 4.1

since release 4.1

since release 4.1

since release 4.1

since release 4.1

since release 4.1

since release 4.1

since release 4.1

since release 4.1

since release 4.1

memory bucket in which latest memory resource error occurred

memory_buckets
list of bucket-size pair

since release 4.1

where size is the amount of memory in use for memory bucket bucket.

jit_count
number of JIT-compiled predicates

This is zero when JIT compilation is not available.

since release 4.3
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jit_time since release 4.3
time spent JI'T-compiling predicates
This is zero when JIT compilation is not available.

To see an example of the use of each of these keywords, type
| ?- statistics(K, L).

and then repeatedly type ‘;’ to backtrack through all the possible keywords. As an addi-
tional example, to report information on the runtime of a predicate p/0, add the following
to your program:

:— statistics(runtime, [TO| _]),
P,
statistics(runtime, [T1l/_1),
T is T1 - TO,
format (’p/0 took ~3d sec.”n’, [T]).

See Section 11.3.217 [mpg-ref-statistics], page 1156.

4.10.2 Garbage Collection and Programming Style

The availability of garbage collection can lead to a more natural programming style. With-
out garbage collection, a procedure that generates heap garbage may have to be executed in
a failure-driven loop. Failure-driven loops minimize heap usage from iteration to iteration
of a loop via SICStus Prolog’s automatic recovery of heap space on failure. For instance, in
the following procedure echo/0 echoes Prolog terms until it reads an end-of-file character.
It uses a failure-driven loop to recover inaccessible heap space.

echo :- repeat,
read(Term),

echo_term(Term),
|

echo_term(Term) :-
Term == end_of_file.
echo_term(Term) :-
write(Term), nl,
fail.

Any heap garbage generated by read/1 or write/1 is automatically reclaimed by the failure
of each iteration.

Although failure-driven loops are an accepted Prolog idiom, they are not particularly easy
to read or understand. So we might choose to write a clearer version of echo/0 using
recursion instead, as in
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echo :- read(Term),
echo_term(Term) .

echo_term(Term) :-
Term == end_of_file,
1.

echo_term(Term) :-
write(Term), nl,
echo.

Without garbage collection the more natural recursive loop accumulates heap garbage that
cannot be reclaimed automatically. While it is unlikely that this trivial example will run
out of heap space, larger and more practical applications may be unable to use the clearer
recursive style without garbage collection. With garbage collection, all inaccessible heap
space will be reclaimed by the garbage collector.

Using recursion rather than failure-driven loops can improve programming style further.
We might want to write a predicate that reads terms and collects them in a list. This
is naturally done in a recursive loop by accumulating results in a list that is passed from
iteration to iteration. For instance,

collect(List) :-
read(Term),
collect_term(Term, List).

collect_term(Term, []) :-
Term == end_of_file,
I,

collect_term(Term, [Term|ListO]) :-
collect(ListO0).

For more complex applications this sort of construction might prove unusable without
garbage collection. Instead, we may be forced to use a failure-driven loop with side-effects
to store partial results, as in the following much less readable version of collect/1:
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collect(List) :-—
repeat,
read(Term),

store_term(Term),
|

*

collect_terms(List).

store_term(Term) :-
Term == end_of_file.

store_term(Term) :-
assertz(term(Term)),
fail.

collect_terms([M|List]) :-

retract (term(M)),
|

t

collect_terms(List).
collect_terms([]).

The variable bindings made in one iteration of a failure-driven loop are unbound on failure
of the iteration. Thus partial results cannot simply be stored in a data structure that is
passed along to the next iteration. We must instead resort to storing partial results via
side-effects (here, assertz/1) and collect (and clean up) partial results in a separate pass.
The second example is much less clear to most people than the first. It is also much less
efficient than the first. However, if there were no garbage collector, larger examples of the
second type might be able to run where those of the first type would run out of memory.

4.10.3 Enabling and Disabling the Garbage Collector

The user has the option of executing programs with or without garbage collection. Proce-
dures that don’t use a large amount of heap space before backtracking may not be affected
when garbage collection is enabled. Procedures that do use a large amount of heap space
may execute more slowly due to the time spent garbage collecting, but will be more likely
to run to completion. On the other hand, such programs may run faster when the garbage
collector is enabled because the virtual memory is not expanded to the extent that “thrash-
ing” occurs. The gc Prolog flag can be set to on or off. To monitor garbage collections in
verbose mode, set the gc_trace flag to verbose. By default, garbage collection is enabled.

4.10.4 Monitoring Garbage Collections

By default, the user is given no indication that the garbage collector is operating. If no
program ever runs out of space and no program using a lot of heap space requires an
inordinate amount of processing time, such information is unlikely to be needed.

However, if a program thought to be using much heap space runs out of space or runs
inordinately slowly, the user may want to determine whether more or less frequent garbage
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collections are necessary. Information obtained from the garbage collector by turning on
the gc_trace Prolog flag can be helpful in this determination.

4.10.5 Interaction of Garbage Collection and Heap Expansion

For most programs, the default settings for the garbage collection parameters should suffice.
For programs that have high heap requirements, the default parameters may result in a
higher ratio of garbage collection time to run time. These programs should be given more
space in which to run.

The gc_margin is a non-negative integer specifying the desired margin in kilobytes. For
example, the default value of 1000 means that the heap will not be expanded if garbage
collection can reclaim at least one megabyte. The advantage of this criterion is that it takes
into account both the user’s estimate of the heap usage and the effectiveness of garbage
collecting.

1. Setting the gc_margin higher than the default will cause fewer heap expansions and
garbage collections. However, it will use more space, and garbage collections will be
more time-consuming when they do occur.

Setting the margin too large will cause the heap to expand so that if it does overflow,
the resulting garbage collection will significantly disrupt normal processing. This will
be especially so if much of the heap is accessible to future computation.

2. Setting the gc_margin lower than the default will use less space, and garbage collections
will be less time-consuming. However, it will cause more heap expansions and garbage
collections.

Setting the margin too small will cause many garbage collections in a small amount of
time, so that the ratio of garbage-collecting time to computation time will be abnor-
mally high.

3. Setting the margin correctly will cause the heap to expand to a size where expan-
sions and garbage collections are infrequent and garbage collections are not too time-
consuming, if they occur at all.

The correct value for the gc_margin is dependent upon many factors. Here is a non-
prioritized list of some of them:

e The amount of memory available to the Prolog process

e The maximum memory limit imposed on the Prolog process
e The program’s rate of heap garbage generation

e The program’s rate of heap non-garbage generation

e The program’s backtracking behavior

e The amount of time needed to collect the generated garbage
e The growth rate of the other Prolog stacks

The algorithm used when the heap overflows is as follows:

if gc is on
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and the heap is larger than gc_margin kilobytes then
garbage collect the heap
if less than gc_margin kilobytes are reclaimed then
try to expand the heap
endif
else
try to expand the heap
endif

The user can use the gc_margin option of prolog_flag/3 to reset the gc_margin (see
Section 4.9.1 [ref-lps-ove|, page 133). If a garbage collection reclaims at least the gc_
margin kilobytes of heap space the heap is not expanded after garbage collection completes.
Otherwise, the heap is expanded after garbage collection. This expansion provides space
for the future heap usage that will presumably occur. In addition, no garbage collection
occurs if the heap is smaller than gc_margin kilobytes.

4.10.6 Invoking the Garbage Collector Directly

Normally, the garbage collector is invoked only when some Prolog data area overflows, so the
time of its invocation is not predictable. In some applications it may be desirable to invoke
the garbage collector at regular intervals (when there is known to be a significant amount
of garbage on the heap) so that the time spent garbage collecting is more evenly distributed
in the processing time. For instance, it may prove desirable to invoke the garbage collector
after each iteration of a question-and-answer loop that is not failure-driven.

In rare cases the default garbage collection parameters result in excessive garbage collecting
costs or heap expansion, and the user cannot tune the gc_margin parameter adequately.
Explicitly invoking the garbage collector using the built-in predicate garbage_collect/0
can be useful in these circumstances.

See Section 11.3.89 [mpg-ref-garbage_collect], page 994.
4.10.7 Atom Garbage Collection

By default, atoms created during the execution of a program remain permanently in the
system until Prolog exits. For the majority of applications this behavior is not a problem
and can be ignored. However, for two classes of application this can present problems.
Firstly the internal architecture of SICStus Prolog limits the number of atoms that be can
created to 1,048,575 on 32-bit machines, and this can be a problem for database applications
that read large numbers of atoms from a database. Secondly, the space occupied by atoms
can become significant and dominate memory usage, which can be a problem for processes
designed to run perpetually.

These problems can be overcome by using atom garbage collection to reclaim atoms that
are no longer accessible to the executing program.

Atoms can be created in many ways: when an appropriate token is read with read_term/3,
when source or PO files are loaded, when atom_codes/2 is called with a character list, or
when SP_atom_from_string() is called in C code. In any of these contexts an atom is
only created if it does not already exist; all atoms for a given string are given the same
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identification number, which is different from the atom of any other string. Thus, atom
recognition and comparison can be done quickly, without having to look at strings. An
occurrence of an atom is always of a fixed, small size, so where a given atom is likely to be
used in several places simultaneously the use of atoms can also be more compact than the
use of strings.

A Prolog functor is implemented like an atom, but also has an associated arity. For the
purposes of atom garbage collection, a functor is considered to be an occurrence of the atom
of that same name.

Atom garbage collection is similar to heap garbage collection, invoked automatically as well
as through a call to the built-in predicate garbage_collect_atoms/0. The atom garbage
collector scans Prolog’s data areas looking for atoms that are currently in use and then
throws away all unused atoms, reclaiming their space.

Atom garbage collection can turn an application that continually grows and eventually either
runs into the atom number limit or runs out of space into one that can run perpetually. It
can also make feasible applications that load and manipulate huge quantities of atom-rich
data that would otherwise become full of useless atoms.

4.10.7.1 The Atom Garbage Collector User Interface

Because the creation of atoms does not follow any other system behaviors like memory
growth or heap garbage collection, SICStus has chosen to keep the invocation of atom
garbage collection independent of any other operation and to keep the invocation of atom
garbage collection explicit rather than making it automatic. It is often preferable for the
programmer to control when it will occur in case preparations need to be made for it.

Atom garbage collection is invoked automatically when the number of new atoms created
since the last atom garbage collection reaches the value of the agc_margin flag.

Atom garbage collection can be invoked explicitly by calling garbage_collect_atoms/0.
The predicate normally succeeds silently. The user may determine whether to invoke
atom garbage collection at a given point based on information returned from a call to
statistics/2 with the keyword atoms. That call returns a list of the form

[number of atoms, atom space in use, atom space free]
For example,

| ?- statistics(atoms, Stats).

Stats = [4313,121062,31032]

One would typically choose to call garbage_collect_atoms/0 prior to each iteration of
an iterative application, when either the number of atoms or the atom space in use passes
some threshold, e.g.
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<driver loop> :-

repeat,
maybe_atom_gc,
<do next iteration>

fail.
<driver loop>.

where

maybe_atom_gc :-
statistics(atoms, [_,Inuse,_]),
atom_gc_space_threshold(Space),
( Inuse > Space -> garbage_collect_atoms ; true ).

% Atom GC if there are more than 100000 bytes of atoms:
atom_gc_space_threshold(100000) .

More sophisticated approaches might use both atom number, atom space and agc_margin
thresholds, or could adjust a threshold if atom garbage collection didn’t free an adequate
number of atoms.

To be most effective, atom garbage collection should be called when as few as possible
atoms are actually in use. In the above example, for instance, it makes the most sense to
do atom garbage collection at the beginning of each iteration rather than at the end, as
at the beginning of the iteration the previous failure may just have freed large amounts of
atom-rich global and local stack. Similarly, it’s better to invoke atom garbage collection
after abolishing or retracting a large database than to do so before. See Section 11.3.90
[mpg-ref-garbage_collect_atoms], page 995.

4.10.7.2 Protecting Atoms in Foreign Memory

SICStus Prolog’s foreign language interface allows atoms to be passed to foreign functions.
When calling foreign functions from Prolog, atoms are passed via the +atom argument type
in the predicate specifications of foreign/[2,3] facts. The strings of atoms can be passed
to foreign functions via the +string argument type. In the latter case a pointer to the
Prolog symbol table’s copy of the string for an atom is what is passed. When calling Prolog
from C, atoms are passed back from C to Prolog using the -atom and -string argument
types in extern/1 declarations. Atoms can also be created in foreign code via functions
like SP_atom_from_string().

Prolog does not keep track of atoms (or strings of atoms) stored in foreign memory. As such,
it cannot guarantee that those atoms will be retained by atom garbage collection. Therefore
SICStus Prolog provides functions to register atoms (or their strings) with the atom garbage
collector. Registered atoms will not be reclaimed by the atom garbage collector. Atoms can
be registered while it is undesirable for them to be reclaimed, and then unregistered when
they are no longer needed.
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Of course, the majority of atoms passed as atoms or strings to foreign functions don’t need
to be registered. Only those that will be stored across foreign function calls (in global
variables) or across nested calls to Prolog are at risk. An extra margin of control is given by
the fact the programmer always invokes atom garbage collection explicitly, and can ensure
that this is only done in contexts that are “safe” for the individual application.

To register or unregister an atom, one of the following functions is used:

int SP_register_atom(atom)
SP_atom atom;

int SP_unregister_atom(atom)
SP_atom atom;

These functions return either SP_ERROR or a non-negative integer. The return values are
discussed further in Section 4.10.7.4 [ref-mgc-ago-are|, page 158.

As noted above, when an atom is passed as a string (+string) to a foreign function, the
string the foreign function receives is the one in Prolog’s symbol table. When atom garbage
collection reclaims the atom for that string, the space for the string will also be reclaimed.

Thus, if the string is to be stored across foreign calls, either a copy of the string or else the
atom (+atom) should be passed into the foreign function so that it can be registered and
SP_string_from_atom() can be used to access the string from the atom.

Keep in mind that the registration of atoms only pertains to those passed to foreign functions
or created in foreign code. Atoms in Prolog’s data areas are maintained automatically. Note
also that even though an atom may be unregistered in foreign code, atom garbage collection
still may not reclaim it as it may be referenced from Prolog’s data areas. But if an atom
is registered in foreign code, it will be preserved regardless of its presence in Prolog’s data
areas.

The following example illustrates the use of these functions. In this example the current
value of an object (which is an atom) is being stored in a C global variable. There are two
C functions that can be called from Prolog, one to update the current value and one to
access the value.



158 SICStus Prolog

#include <sicstus/sicstus.h>
SP_atom current_object = NULL;

update_object (newvalue)
SP_atom newvalue;

{
/* if current_object contains an atom, unregister it */
if (current_object)
(void) SP_unregister_atom(current_object);
/* register new value */
(void) SP_register_atom(newvalue) ;
current_object = newvalue;
}
SP_atom get_object ()
{
return current_object;
}

4.10.7.3 Permanent Atoms

Atom garbage collection scans all Prolog’s dynamic data areas when looking for atoms
that are in use. Scanning finds atoms in the Prolog stacks and in all compiled and inter-
preted code that has been dynamically loaded into Prolog via consult/1, use_module/1,
assert/2, etc. However, there are certain potential sources of atoms in the Prolog image
from which atoms cannot be reclaimed. Atoms for Prolog code that has been statically
linked with either the Prolog Development Environment or the Runtime Environment have
been placed in the text space, making them (and the code that contains them) effectively
permanent. Although such code can be abolished, its space can never be reclaimed.

These atoms are internally flagged as permanent by the system and are always retained
by atom garbage collection. An atom that has become permanent cannot be made non-
permanent, so can never be reclaimed.

4.10.7.4 Details of Atom Registration

The functions that register and unregister atoms are in fact using reference counting to
keep track of atoms that have been registered. As a result, it is safe to combine your code
with libraries and code others have written. If the other code has been careful to register
and unregister its atoms as appropriate, atoms will not be reclaimed until everyone has
unregistered them.

Of course, it is possible when writing code that needs to register atoms that errors could
occur. Atoms that are registered too many times simply will not be garbage collected until
they are fully unregistered. However, atoms that aren’t registered when they should be
may be reclaimed on atom garbage collection. One normally doesn’t need to think about
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the reference counting going on in SP_register_atom() and SP_unregister_atom(), but
some understanding of its details could prove helpful when debugging.

To help you diagnose problems with registering and unregistering atoms, SP_register_
atom() and SP_unregister_atom() both normally return the current reference count for
the atom. If an error occurs, e.g. a nonexistent atom is registered or unregistered, SP_ERROR
is returned.

An unregistered atom has a reference count of 0. Unregistering an atom that is unregis-
tered is a no-op; in this case, SP_unregister_atom() returns 0. A permanent atom has
a reference count of 256. In addition, if an atom is simultaneously registered 256 times,
it becomes permanent. (An atom with 256 distinct references is an unlikely candidate
for reclamation!) Registering or unregistering an atom that is permanent is also a no-op;
SP_register_atom() and SP_unregister_atom() return 256.

4.10.8 Summary of Predicates

garbage_collect
force an immediate garbage collection

garbage_collect_atoms
garbage collect atom space

statistics
display various execution statistics

statistics(?K, ?V)
the execution statistic with key K has value V

trimcore reduce free stack space to a minimum

4.11 Modules
4.11.1 Overview

The module system lets the user divide large Prolog programs into modules, or rather
smaller sub-programs, and define the interfaces between those modules. Each module has
its own name space; that is, a predicate defined in one module is distinct from any predicates
with the same name and arity that may be defined in other modules. The module system
encourages a group of programmers to define the dependence each has on others’ work before
any code is written, and subsequently allows all to work on their own parts independently.
It also helps to make library predicates behave as extensions of the existing set of built-in
predicates.

The SICStus Prolog library uses the module system and can therefore serve as an extended
example of the concepts presented in the following text. The design of the module system
is such that loading library files and calling library predicates can be performed without
knowledge of the module system.

Some points to note about the module system are that:

e [t is based on predicate modularity rather than on data modularity; that is, atoms and
functors are global.
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e It is flat rather than hierarchical; any module may refer to any other module by its
name—there is no need to specify a path of modules.

e It is not strict; modularity rules can be explicitly overridden. This is primarily for
flexibility during debugging.

e It is efficient; calls to predicates across module boundaries incur little or no overhead.

4.11.2 Basic Concepts

Each predicate in a program is identified by its module, as well as by its name and arity.

A module defines a set of predicates, among which some have the property of being public.
Public predicates are predicates that can be imported by other modules, which means
that they can then be called from within those modules. Predicates that are not public
are private to the module in which they are defined; that is, they cannot be called from
outside that module (except by explicitly overriding the modularity rules as described in
Section 4.11.6 [ref-mod-vis], page 163).

There are two kinds of importation:

1. A module M1 may import a specified set of predicates from another module M2. All
the specified predicates should be public in M2.

2. A module M1 may import all the public predicates of another module M2.

Built-in predicates don’t need to be imported; they are automatically available from within
any module.

There is a special module called user, which is used by default when predicates are being
defined and no other module has been specified.

The other predefined module is the prolog module where all the built-in predicates reside.
The exported built-in predicates are automatically imported into each new module as it is
created.

If you are using a program written by someone else, you need not be concerned as to whether
or not that program has been made into a module. The act of loading a module from a file
using compile/1, or ensure_loaded/1 (see Section 4.3 [ref-lod], page 78) will automatically
import all the public predicates in that module. Thus the command

:— ensure_loaded(library(lists)).

will load the list-processing predicates from the library and make them available.

4.11.3 Defining a Module

The normal way to define a module is by creating a module-file for it and loading it into
the Prolog system. A module-file is a Prolog file that begins with a module declaration.

A module declaration has one of the forms:
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:— module(+ModuleName, +PublicPredList).

:— module (+ModuleName, +PublicPredList, +Options).

Such a declaration must appear as the first term in a file, and declares that file to be a
module-file. The predicates in the file will become part of the module ModuleName, and
the predicates specified in PublicPredList are those that can be imported by other modules;
that is, the public predicates of this module.

Options is an optional argument, and should be a list. The only available option is
hidden(Boolean), where Boolean is false (the default) or true. In the latter case, tracing
of the predicates of the module is disabled (although spypoints can be set), and no source
information is generated at compile time.

Instead of creating and loading a module-file, it is also possible to define a module dynam-
ically by, for example, asserting clauses into a specified module. A module created in this
way has no public predicates; all its predicates are private. This means that they cannot be
called from outside that module except by explicitly overriding the modularity rules as de-
scribed in Section 4.11.6 [ref-mod-vis], page 163. Dynamic creation of modules is described
in more detail in Section 4.11.9 [ref-mod-dmo], page 165.

4.11.4 Converting Non-module-files into Module-files

The Prolog cross-referencer can automatically generate module/2 declarations from its
cross-reference information. This is useful if you want to take a set of files making up
a program and make each of those files into a module-file. For more information, see
Section 9.12 [The Cross-Referencer], page 371

Alternatively, if you have a complete Prolog program consisting of a set of source files
{filel, file2, ...}, and you wish to encapsulate it in a single module mod, this can be
done by creating a “driver” file of the following form:

:— module(mod, [ ... ]).

:— ensure_loaded(filel).
:— ensure_loaded(file?2).

When a module is created in this way, none of the files in the program {filel, file2,
...} have to be changed.

4.11.5 Loading a Module

To gain access to the public predicates of a module-file, load it as you would any other file—
using compile/1, or ensure_loaded/1 as appropriate. For example, if your code contains
a directive such as
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:— ensure_loaded(File).

this directive will load the appropriate file File whether or not File is a module-file. The
only difference is that if File is a module-file any private predicates that it defines will not
be visible to your program.

The load predicates are adequate for use at Prolog’s top-level, or when the file being
loaded is a utility such as a library file. When you are writing modules of your own,
use_module/[1,2,3] is the most useful.

The following predicates are used to load modules:

use_module (F)
import the module-file(s) F, loading them if necessary; same as ensure_
loaded (F) if all files in F' are module-files

use_module(:F,+I)
import the procedure(s) I from the module-file F, loading module-file F' if nec-
essary

use_module(?M, :F,+I)
import I from module M, loading module-file F' if necessary

Before a module-file is loaded, the associated module is reinitialized: any predicates previ-
ously imported into or defined in that module are forgotten by the module.

If a module of the same name with a different PublicPredList or different meta-predicate
list has previously been loaded from a different module-file, a warning is printed and you
are given the option of abandoning the load. Only one of these two modules can exist in
the system at one time.

Normally, a module-file can be reloaded after editing with no need to reload any other
modules. However, when a module-file is reloaded after its PublicPredList has been changed,
any modules that import predicates from it may have become inconsistent. This is because
a module is associated with a predicate at compile time, rather than run time. Thus, other
modules may refer to predicates in a module-file that are no longer public. In the case
of module-importation (where all, rather than specific, public predicates of a module are
imported), it is possible that some predicates in the importing module should now refer
to a newly-public predicate but don’t. SICStus Prolog tries to detect such inconsistencies,
and issues a warning when it does detect one. Similarly, if a meta-predicate declaration of
an exported predicate changes, modules that have already imported that predicate become
inconsistent, because module name expansion requirements have changed. The current
release of SICStus Prolog is unable to detect such inconsistencies.

Modules may be saved to a PO file by calling save_modules(Modules,File) (see
Section 4.4 [ref-sls], page 91).
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4.11.6 Visibility Rules

By default, predicates defined in one module cannot be called from another module. This
section enumerates the exceptions to this—the ways in which a predicate can be visible to
modules other than the one in which it is defined.

1. The built-in predicates can be called from any module.

2. Any predicate that is named in the PublicPredList of a module, and that is imported
by some other module M, can be called from within M.

3. Module Prefixing: Any predicate, whether public or not, can be called from any other
module if its module is explicitly given as a prefix to the goal, attached with the :/2
operator. The module prefix overrides the default module. For example,

:— mod:foo(X,Y).

always calls foo/2 in module mod. This is effectively a loophole in the module system,
which allows you to override the normal module visibility rules. It is intended primarily
to facilitate program development and debugging, and it should not be used extensively
since it subverts the original purposes of using the module system.

Note that a predicate called in this way does not necessarily have to be defined in the
specified module. It may be imported into it. It can even be a built-in predicate, and
this is sometimes useful—see Section 4.11.7 [ref-mod-som|, page 163 for an example.

4.11.7 The Source Module

For any given procedure call, or goal, the source module is the module in which the cor-
responding predicate must be visible. That is, unless the predicate is built-in, it must be
defined in, or imported into, the source module.

For goals typed at the top-level, the source module is the type-in module, which is user by
default—see Section 4.11.8 [ref-mod-tyi], page 164. For goals appearing in a file, whether
in a directive or in the body of a clause, the source module is the one into which that file
has been loaded.

There are a number of built-in predicates that take predicate specifications, clauses, or goals
as arguments. Each of these types of argument must be understood with reference to some
module. For example, assert/1 takes a clause as its argument, and it must decide into
which module that clause should be asserted. The default assumption is that it asserts the
clause into the source module. Another example is call/1. The goal (A) calls the predicate
foo/1 in the source module; this ensures that in the compound goal (B) both occurrences
of foo/1 refer to the same predicate.

call(foo (X)) (8

call(foo(X)), foo(Y) (B)

All predicates that refer to the source module allow you to override it by explicitly naming
some other module to be used instead. This is done by prefixing the relevant argument
of the predicate with the module to be used followed by a ‘:’ operator. For example (C),
asserts f (x) in module m.
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| ?- assert(m:f(x)). ©

Note that if you call a goal in a specified module, overriding the normal visibility rules
(see Section 4.11.6 [ref-mod-vis|, page 163), the source module for that goal is the one you
specify, not the module in which this call occurs. For example (D), has exactly the same
effect as (C)—f£ (x) is asserted in module m. In other words, prefixing a goal with a module
duplicates the effect of calling that goal from that module.

| ?- m:assert(f(x)). D)

Another built-in predicate that refers to the source module is compile/1. In this case,
the argument is a file, or list of files, rather than a predicate specification, clause, or goal.
However, in the case where a file is not a module-file, compile/1 must decide into which
module to compile its clauses, and it chooses the source module by default. This means
that you can compile a file File into a specific module M using

| ?- compile(M:File).

Thus if File is a module-file, this command would cause its public predicates to be imported
into module M. If File is a non-module-file, it is loaded into module M.

For a list of the built-in predicates that depend on the source module, see Section 4.11.15
[ref-mod-mne|, page 169. In some cases, user-defined predicates may also require the concept
of a source module. This is discussed in Section 4.11.16 [ref-mod-met], page 170.

4.11.8 The Type-in Module

The type-in module is the module that is taken as the source module for goals typed in by
the user. The name of the default type-in module is user. That is, the predicates that are
available to be called directly by the user are those that are visible in the module user.

When debugging, it is often useful to call, directly from the top-level, predicates that are
private to a module, or predicates that are public but that are not imported into user. This
can be done by prefixing each goal with the module name, as described in Section 4.11.6
[ref-mod-vis], page 163; but rather than doing this extensively, it may be more convenient
to make this module the type-in module.

The type-in module can be changed using the built-in predicate set_module/1; for example,
| ?- set_module(mod).

This command will cause subsequent goals typed at the top-level to be executed with mod
as their source module.

The name of the type-in module is always displayed, except when it is user. If you are
running Prolog under the editor interface, the type-in module is displayed in the status line
of the Prolog window. If you are running Prolog without the editor interface, the type-in
module is displayed before each top-level prompt.

For example, if you are running Prolog without the editor:
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| ?- set_module(foo).

yes
[foo]
| 7-

It should be noted that it is unlikely to be useful to change the type-in module via a directive
embedded in a file to be loaded, because this will have no effect on the load—it will only
change the type-in module for commands subsequently entered by the user.

4.11.9 Creating a Module Dynamically

There are several ways in which you can create a module without loading a module-file
for it. One way to do this is by asserting clauses into a specified module. For example,
the command (A) will create the dynamic predicate £/1 and the module m if they did not
previously exist.

| ?- assert(m:f(x)). (4)

Another way to create a module dynamically is to compile a non-module-file into a specified
module. For example (B), will compile the clauses in File into the module M.

| ?- compile(M:File). (B)

The same effect can be achieved by (temporarily) changing the type-in module to M (see
Section 4.11.8 [ref-mod-tyi], page 164) and then calling compile(File), or executing the
command in module M as in (C).

| ?- M:compile(File). ©

4.11.10 Module Prefixes on Clauses

Every clause in a Prolog file has a source module implicitly associated with it. If the file
is a module-file, the module named in the module declaration at the top of the file is the
source module for all the clauses. If the file is not a module-file, the relevant module is the
source module for the command that caused this file to be loaded.

The source module of a predicate decides in which module it is defined (the module of the
head), and in which module the goals in the body are going to be called (the module of
the body). It is possible to override the implicit source module, both for head and body, of
clauses and directives, by using prefixes. For example, consider the module-file:

:- module(a, []).

:— dynamic m:a/1.

b(1).

m:c([1).

m:d([HIT]) :- q(H), r(D).
m:(e(X) :- s(X), t(X)).
f(X) :- m:(uX), vX)).
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In the previous example, the following modules apply:

a/1 is declared dynamic in the module m.
b/1 is defined in module a (the module of the file).

c/1 is defined in module m.

=W N

d/1 is defined in module m, but q/1 and r/1 are called in module a (and must therefore
be defined in module a).

ot

e/1 is defined in module m, and s/1 and t/1 are called in module m.

6. £/1 is defined in module a, but u/1 and v/1 are called in module m.

Module prefixing is especially useful when the module prefix is user. There are several
predicates that have to be defined in module user but that you may want to define (or
extend) in a program that is otherwise entirely defined in some other module or modules;
see Section 11.2.12 [mpg-top-hok]|, page 866.

Note that if clauses for one of these predicates are to be spread across multiple files, it will
be necessary to declare that predicate to be multifile by putting a multifile declaration in
each of the files.

4.11.10.1 Current Modules

A loaded, or dynamically created, module becomes current as soon as it is encountered, and
a module can never lose the property of being current. The set of current modules can be
obtained with current_module/1, see Section 4.11.13 [ref-mod-ilm], page 167.

4.11.11 Debugging Code in a Module

Having loaded a module to be debugged, you can trace through its execution in the normal
way. When the debugger stops at a port, the procedure being debugged is displayed with
its module name as a prefix unless the module is user.

The predicate spy/1 depends on the source module. It can be useful to override this during
debugging. For example,

| ?- spy modl:f/3.
puts a spypoint on £/3 in module mod1.

It can also be useful to call directly a predicate that is private to its module in order to test
that it is doing the right thing. This can be done by prefixing the goal with its module; for
example,

| ?- modl:f(a,b,X).

4.11.12 Name Clashes

A name clash can arise if:

1. a module tries to import a predicate from some other module m1 and it has already
imported a predicate with the same name and arity from a module m2;
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2. amodule tries to import a predicate from some other module m1 and it already contains
a definition of a predicate with the same name and arity; or

3. a module tries to define a predicate with the same name and arity as one that it has
imported.

Whenever a name clash arises, a message is displayed beginning with the words ‘NAME
CLASH’. The user is asked to choose from one of several options; for example,

NAME CLASH: £/3 is already imported into module user
from module mil;
do you want to override this definition with
the one in m2? (y,n,p,s,a or 7)

The meanings of the five recognized replies are as follows:

y forget the previous definition of £/3 from m1 and use the new definition of £/3
from m2 instead.

n retain the previous definition of £/3 from m1 and ignore the new definition of
£/3 from m2.

p (for proceed) means forget the previous definition of £/3 and of all subsequent

predicate definitions in m1 that clash during the current load of m2. Instead, use
the new definitions in m2. When the p option is chosen, predicates being loaded
from m1 into m2 will cause no ‘NAME CLASH’ messages for the remainder of the
load, though clashes with predicates from other modules will still generate such
messages.

s (for suppress) means forget the new definition of £/3 and of all subsequent
predicate definitions in m1 that clash during the current load of m2. Instead,
use the old definitions in m2. When the s option is chosen, predicates being
loaded from m1 into m2 will cause no ‘NAME CLASH’ messages for the remainder of
the load, though clashes with predicates from other modules will still generate
such messages.

? gives brief help information.

4.11.13 Obtaining Information about Loaded Modules

The built-in predicate current_module/2 can be used to find all the currently loaded
module, and where they were loaded from. See Section 11.3.52 [mpg-ref-current_module],
page 945.

current_module(?M)
M is the name of a current module

current_module(?M, 7F)
F is the name of the file in which M’s module declaration appears. Not all
modules have a corresponding file.
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4.11.13.1 Predicates Defined in a Module

The built-in predicate current_predicate/2 can be used to find the predicates that are
defined in a particular module.

To backtrack through all of the predicates defined in module m, use
| ?- current_predicate(_, m:Goal).

To backtrack through all predicates defined in any module, use
| ?- current_predicate(_, M:Goal).

This succeeds once for every predicate in your program. See Section 11.3.55 [mpg-ref-
current_predicate], page 949.

4.11.13.2 Predicates Visible in a Module

The built-in predicate predicate_property/2 can be used to find the properties of any
predicate that is visible to a particular module.

To backtrack through all of the predicates imported by module m, use
| ?- predicate_property(m:Goal, imported_from(_)).

To backtrack through all of the predicates imported by module m1 from module m2, use
| ?- predicate_property(ml:Goal, imported_from(m2)).

For example, you can load the between module from the library and then remind yourself
of what predicates it defines like this:

| 7~ compile(library(between)).
% ... loading messages ...

yes
| ?- predicate_property(P, imported_from(between)).
P = numlist(_A,_B) 7 ;

P numlist(_A,_B,_C,_D,_E) 7 ;

This tells you what predicates are imported into the type-in module from basics.
You can also find all imports into all modules using

| ?- predicate_property(M1:G, imported_from(M2)).
To backtrack through all of the defined predicates exported by module m, use

| ?- predicate_property(m:Goal, exported).
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See Section 11.3.159 [mpg-ref-predicate_property], page 1084.

4.11.14 Importing Dynamic Predicates

Imported dynamic predicates may be asserted and retracted. For example, suppose the
following file is loaded via use_module/1:

:- module(ml, [f/1]).
:— dynamic f/1.
£(0).

Then £/1 can be manipulated as if it were defined in the current module. For example,

| ?- clause(f(X), true).
X=0

The built-in predicate 1isting/[0,1] distinguishes predicates that are imported into the
current source module by prefixing each clause with the module name. Thus,

| ?- listing(f).
ml:£(0).

However, listing/[0,1] does not prefix clauses with their module if they are defined in
the source module itself. Note that

| 7- listing.

can be used to see all the dynamic predicates defined in or imported into the current type-in
module. And

| ?- listing(mil:_).

can be used to see all such predicates that are defined in or imported into module m1. See
Section 11.3.116 [mpg-ref-listing], page 1027.

4.11.15 Module Name Expansion

The concept of a source module is explained in Section 4.11.7 [ref-mod-som|, page 163. For
any goal, the applicable source module is determined when the goal is compiled rather than
when it is executed.

A procedure that needs to refer to the source module has arguments designated for mod-
ule name expansion. These arguments are expanded when code is consulted, compiled or
asserted by the transformation X -> M:X where M is the name of the source module. For
example, the goal call(X) is expanded into call(M:X) and the goal clause(Head, Body)
is expanded into clause (M:Head, Body).
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Module name expansion is avoided if the argument to be expanded is already a :/2 term.
In this case it is unnecessary since the module to be used has already been supplied by the
programmer.

4.11.16 The meta_predicate Declaration

Sometimes a user-defined predicate will require module name expansion (see Section 4.11.15
[ref-mod-mne|, page 169). This can be specified by providing a meta_predicate declaration
for that procedure.

Module name expansion is needed whenever the argument of a predicate has some module-
dependent meaning. For example, if this argument is a goal that is to be called, it will be
necessary to know in which module to call it—or, if the argument is a clause to be asserted,
in which module it should go.

Consider, for example, a sort routine to which the name of the comparison predicate is
passed as an argument. In this example, the comparison predicate should be called, with
two arguments like the built-in @=</2, with respect to the module containing the call to the
sort routine. Suppose that the sort routine is

mysort (CompareProc, InputList, OutputList)
An appropriate meta_predicate declaration for this is
:- meta_predicate mysort(2, +, -).

The significant argument in the mysort/3 term is the ‘2’, which indicates that module name
expansion is required for this argument and that two additional arguments will be added
when this argument is invoked as a goal. This means that whenever a goal mysort (4, B,
C) appears in a clause, it will be transformed at load time into mysort(M:4, B, C), where
M is the source module. There are some exceptions to this compile-time transformation
rule; the goal is not transformed if either of the following applies:

1. A is of the form Module:Goal.

2. A is a variable and the same variable appears in the head of the clause in a module-
name-expansion position.

The reason for (2) is that otherwise module name expansion could build larger and larger
structures of the form Mn: ... :M2:M1:Goal. For example, consider the following program
fragment adapted from the library (see library(samsort) for the full program):
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:— module(samsort, [samsort/3]).

:— meta_predicate
samsort (2, +, 7),
sam_sort(+, 2, +, +, 7).

samsort(_, [1, [1) :- !'.
samsort (Order, List, Sorted) :-
sam_sort(List, Order, [], O, Sorted).

Normally, the sam_sort/5 goal in this example would have the module name of its second
argument expanded thus:

sam_sort(List, samsort:0rder, [], O, Sorted)

because of the meta_predicate declaration. However, in this situation the appropriate
source module will have already been attached to Order because it is the first argument
of samsort/3, which also has a meta_predicate declaration. Therefore it is not useful to
attach the module name (samsort) to Order in the call of sam_sort/5.

The argument of a meta_predicate declaration can be a term, or a sequence of terms
separated by commas. Each argument of each of these terms must be one of the following:

© requires module name expansion

If the argument will be treated as a goal, it is better to explicitly indicate this
using an integer; see the next item.

nsuppressed
a non-negative integer.
This is a special case of ‘:’ which means that the argument can be made into
a goal by adding nsuppressed additional arguments. E.g., if the argument will
be passed to call/1 then O (zero) should be used.

An integer is treated the same as ‘:” above by the SICStus runtime. Other tools,
such as the cross referencer (see Section 9.12 [The Cross-Referencer|, page 371)
and the SICStus Prolog IDE (see Section 3.11 [SPIDER], page 29), will use this
information to better follow predicate references in analyzed source code.

If the number of extra arguments is unknown or varies, the generic : is always
safe to use, but will give less accurate results from source analysis tools.

e ignored
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(0

The reason for ‘+’, ‘=’ and ‘?’ is simply so that the information contained in a DEC-10
Prolog-style “mode” declaration may be represented in the meta_predicate declaration if
you wish. There are many examples of meta_predicate declarations in the library.

Prior to release 4.1, only : (colon) was used and the integer form was undocumented (but
supported, e.g. by the cross referencer).

4.11.17 Semantics of Module Name Expansion

Although module name expansion is performed when code is consulted, compiled or as-
serted, it is perhaps best explained in terms of an interpreter, especially the issue of how
deeply clauses are expanded. The semantics of call/1, taking meta_predicate declara-
tions into account, is shown as if defined by the interpreter shown below. The interpreter’s
case analysis is as follows:

control constructs
(Including cuts and module prefixes). The interpreter implements the semantics
of the construct, expanding its argument.

callable terms with functor N/A
First, we look for a meta_predicate declaration for N/A. If one exists, the rel-
evant arguments are expanded. Otherwise, the goal is left unexpanded. Then,
if N/A is a built-in predicate, it is called. Otherwise, a clause with head functor
N/A is looked up using the imaginary predicate :-/2, unified against, and its
body is interpreted.

non-callable terms

Raise error exception.

Throughout the interpretation, we must keep track of the module context. The interpreter
is as follows, slightly simplified. -=>/2 is not a predicate:



Chapter 4: The Prolog Language 173

call(M:Body) :-
call(Body, M).

call(Var, M) :- \+callable(Var), !,
must_be(Term, callable, call(M:Var), 1).
call(!, _) := 1,
% cut relevant choicepoints.
call((A, B), M) :- !,

call(A, M),
call(B, M).
call((A -> B), M) :- !,
( call(A, M) ->
call(B, M)

).
call((A ->B ; C), M) :- !,
( call(A, M) —>

call(B, M)
; call(c, M)
).
call((A ; B), M) :- !,
( call(a, M)
; call(B, M)
).

call(\+(A), M) :- !,
( call(a, M) —>

fail
; true
).
call(_"A, M) :- !,
call(A, M).
call(do(Iter,Body), M) :- !,
( Iter
do call(Body, M)
).
call(if(A,B,C), M) :- !,
if(call(A, M),
call(B, M),
call(C, M)).
call(once(A), M) :—- !,
( call(A, M) -> true
)

call(Goal, M) :-
(  predicate_property(M:Goal, meta_predicate(Meta)) ->
functor(Goal, Name, Arity),

functor (AGoal, Name, Arity),

( foreacharg(Spec,Meta),
foreacharg(Arg,Goal),
foreacharg(Ann,AGoal),
param (M)

do ( Spec==(:) -> Ann = M:Arg
;  integer(Spec) -> Ann = M:Arg
; Ann = Arg
)



174 SICStus Prolog

4.11.18 Predicate Summary

current_module (?M)
M 1is the name of a current module

current_module(?M, ?F)
F is the name of the file in which M’s module declaration appears

meta_predicate :P declaration
declares predicates P that are dependent on the module from which they are
called

module (+M,+L) declaration

module (+M,+L,+0) declaration

declaration that module M exports predicates in L, options O

save_modules (+L,+F)
save the modules specifed in L into file F

set_module (+M)
make M the type-in module

use_module(:F)
import the module-file(s) F, loading them if necessary

use_module(:F,+I)
import the procedure(s) I from the module-file F

use_module(?M, :F,+I)
import I from module M, loading module-file F' if necessary

4.12 Modification of the Database
4.12.1 Introduction

The family of assertion and retraction predicates described below enables you to modify a
Prolog program by adding or deleting clauses while it is running. These predicates should
not be overused. Often people who are experienced with other programming languages have
a tendency to think in terms of global data structures, as opposed to data structures that
are passed as procedure arguments, and hence they make too much use of assertion and
retraction. This leads to less readable and less efficient programs.

An interesting question in Prolog is what happens if a procedure modifies itself, by asserting
or retracting a clause, and then fails. On backtracking, does the current execution of the
procedure use new clauses that are added to the bottom of the procedure?

Historical note: In some non-ISO-conforming implementations of Prolog,
changes to the Prolog database become globally visible upon the success of
the built-in predicate modifying the database. An unsettling consequence is
that the definition of a procedure can change while it is being run. This can
lead to code that is difficult to understand. Furthermore, the memory per-
formance of the interpreter implementing these semantics is poor. Worse yet,
the semantics rendered ineffective the added determinacy detection available
through indexing.
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SICStus Prolog implements the “logical” view in updating dynamic predicates, conforming
to the ISO standard. This means that the definition of a dynamic procedure that is visible
to a call is effectively frozen when the call is made. A procedure always contains, as far as
a call to it is concerned, exactly the clauses it contained when the call was made.

A useful way to think of this is to consider that a call to a dynamic procedure makes a
virtual copy of the procedure and then runs the copy rather than the original procedure.
Any changes to the procedure made by the call are immediately reflected in the Prolog
database, but not in the copy of the procedure being run. Thus, changes to a running
procedure will not be visible on backtracking. A subsequent call, however, makes and runs
a copy of the modified Prolog database. Any changes to the procedure that were made by
an earlier call will now be visible to the new call.

In addition to being more intuitive and easy to understand, the new semantics allow inter-
preted code to execute with the same determinacy detection (and excellent memory perfor-
mance) as static compiled code (see Section 9.5 [Indexing], page 352 for more information
on determinacy detection).

4.12.2 Dynamic and Static Procedures

All Prolog procedures are classified as being either static or dynamic procedures. Static
procedures can be changed only by completely redefining them using the Load Predicates
(see Section 4.3 [ref-lod], page 78). Dynamic procedures can be modified by adding or
deleting individual clauses using the assert and retract procedures.

If a procedure is defined by loading source code, it is static by default. If you need to be
able to add, delete, or inspect the individual clauses of such a procedure, you must make
the procedure dynamic.

There are two ways to make a procedure dynamic:

e If the procedure is defined by loading source code, it must be declared to be dynamic
before it is defined.

e If the procedure is to be created by assertions only, the first assert operation on the
procedure automatically makes it dynamic.

A procedure is declared dynamic by preceding its definition with a declaration of the form:
:— dynamic :Pred

where Pred must be a procedure specification of the form Name/Arity, or a sequence of
such specifications, separated by commas. For example,

:- dynamic exchange_rate/3, spouse_of/2,
gravitational_constant/1.

where ‘dynamic’ is a built-in prefix operator. If Pred is not of the specified form an exception
is raised, and the declaration is ignored.
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Note that the symbol ‘:- 7 preceding the word ‘dynamic’ is essential. If this symbol is
omitted, a permission error is raised because it appears that you are trying to define a
clause for the built-in predicate dynamic/1. Although dynamic/1 is a built-in predicate, it
may only be used in declarations.

When a dynamic declaration is encountered in a file being loaded, it is considered to be a
part of the redefinition of the procedures specified in its argument. Thus, if you load a file
containing only

:— dynamic hello/0

the effect will be to remove any previous definition of hello/0 from the database, and to
make the procedure dynamic. You cannot make a procedure dynamic retroactively. If you
wish to make an already-existing procedure dynamic it must be redefined.

It is often useful to have a dynamic declaration for a procedure even if it is to be created only
by assertions. This helps another person to understand your program, since it emphasizes
the fact that there are no pre-existing clauses for this procedure, and it also avoids the
possibility of Prolog stopping to tell you there are no clauses for this procedure if you
should happen to call it before any clauses have been asserted. This is because unknown
procedure catching (see Section 3.6 [Undefined Predicates], page 26) does not apply to
dynamic procedures; it is presumed that a call to a dynamic procedure should simply fail
if there are no clauses for it.

If a program needs to make an undefined procedure dynamic, this can be achieved by calling
clause/2 on that procedure. The call will fail because the procedure has no clauses, but
as a side-effect it will make the procedure dynamic and thus prevent unknown procedure
catching on that procedure. See the Reference page for details of clause/2.

Although you can simultaneously declare several procedures to be dynamic, as shown above,
it is recommended that you use a separate dynamic declaration for each procedure placed
immediately before the clauses for that procedure. In this way when you reload the proce-
dure using the editor interface, you will be reminded to include its dynamic declaration.

Dynamic procedures are implemented by interpretation, even if they are included in a file
that is compiled. This means that they are executed more slowly than if they were static,
and also that they can be printed using listing/0. Dynamic procedures, as well as static
procedures, are indexed on their first argument; see Section 9.5 [Indexing|, page 352.

4.12.3 Database References

A database reference is a term that uniquely identifies a clause or recorded term (see
Section 4.12.8 [ref-mdb-idb], page 181) in the database. Database references are provided
only to increase efficiency in programs that access the database in complex ways. Use of a
database reference to a clause can save repeated searches using clause/2. However, it does
not normally pay to access a clause via a database reference when access via first argument
indexing is possible.
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4.12.4 Adding Clauses to the Database

The assertion predicates are used to add clauses to the database in various ways. The
relative position of the asserted clause with respect to other clauses for the same predicate
is determined by the choice among assert/1, asserta/1, and assertz/1. A database
reference that uniquely identifies the clause being asserted is established by providing an
optional second argument to any of the assertion predicates.

assert(:C)
clause C' is asserted in an arbitrary position in its predicate

assert(:C,-R)
as assert/1; reference R is returned

asserta(:C)
clause C is asserted before existing clauses

asserta(:C,-R)
as asserta/1; reference R is returned

assertz(:C)
clause C is asserted after existing clauses

assertz(:C,-R)
as assertz/1; reference R is returned

Please note: If the term being asserted contains attributed variables (see Section 10.3 [lib-
atts|, page 381) or suspended goals (see Section 4.2.4 [ref-sem-sec|, page 73), those attributes
are not stored in the database. To retain the attributes, you can use copy_term/3 (see
Section 4.8.7 [ref-lte-cpt], page 127).

4.12.5 Removing Clauses from the Database

This section briefly describes the predicates used to remove the clauses and/or properties
of a predicate from the system.

Please note: Removing all of a predicate’s clauses by retract/1 and/or
erase/1 (see Section 4.12.5.1 [ref-mdb-rcd-efu], page 178) does not remove
the predicate’s properties (and hence its definition) from the system. The
only way to completely remove a predicate’s clauses and properties is to use
abolish/[1,2].

retract(:C)
erase the first dynamic clause that matches C

retractall(:H)
erase every clause whose head matches H

abolish(:F)
abolish the predicate(s) specified by F

abolish(:F,+0)
abolish the predicate(s) specified by F' with options O
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erase (+R)
erase the clause or recorded term (see Section 4.12.8 [ref-mdb-idb], page 181)
with reference R

4.12.5.1 A Note on Efficient Use of retract/1

WARNING: retract/1 is a nondeterminate procedure. Thus, we can use
| ?- retract((foo(X) :- Body)), fail.

to retract all clauses for foo/1. A nondeterminate procedure in SICStus Prolog uses a
choicepoint, a data structure kept on an internal stack, to implement backtracking. This
applies to user-defined procedures as well as to built-in and library procedures. In a simple
model, a choicepoint is created for each call to a nondeterminate procedure, and is deleted
on determinate success or failure of that call, when backtracking is no longer possible. In
fact, SICStus Prolog improves upon this simple model by recognizing certain contexts in
which choicepoints can be avoided, or are no longer needed.

The Prolog cut (‘!”) works by removing choicepoints, disabling the potential backtracking
they represented. A choicepoint can thus be viewed as an “outstanding call”, and a cut as
deleting outstanding calls.

To avoid leaving inconsistencies between the Prolog database and outstanding calls, a re-
tracted clause is reclaimed only when the system determines that there are no choicepoints
on the stack that could allow backtracking to the clause. Thus, the existence of a sin-
gle choicepoint on the stack can disable reclamation of retracted clauses for the procedure
whose call created the choicepoint. Space is recovered only when the choicepoint is deleted.

Often retract/1 is used determinately; for example, to retract a single clause, as in

| ?- <do some stuff>
retract(Clause),
<do more stuff without backtracking>.

No backtracking by retract/1 is intended. Nonetheless, if Clause may match more than
one clause in its procedure, a choicepoint will be created by retract/1. While executing
“<do more stuff without backtracking>”, that choicepoint will remain on the stack, making it
impossible to reclaim the retracted Clause. Such choicepoints can also disable tail recursion
optimization. If not cut away, the choicepoint can also lead to runaway retraction on the
unexpected failure of a subsequent goal. This can be avoided by simply cutting away the
choicepoint with an explicit cut or a local cut (‘->). Thus, in the previous example, it is
preferable to write either

| ?- <do some stuff>

retract (Clause),
!

c

<do more stuff without backtracking>.

or
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| ?- <do some stuff>
( retract(Clause) -> true ),
<do more stuff without backtracking>.

This will reduce stack size and allow the earliest possible reclamation of retracted clauses.

4.12.6 Accessing Clauses
Goal Succeeds If:

clause(:P,?Q)
there is a clause for a dynamic predicate with head P and body Q

clause(:P,?Q,7R)
there is a clause for a dynamic predicate with head P, body Q, and reference R

instance(+R,-T)
T is an instance of the clause or term referenced by R

4.12.7 Modification of Running Code: Examples

The following examples show what happens when a procedure is modified while it is running.
This can happen in two ways:

1. The procedure calls some other procedure that modifies it.

2. The procedure succeeds nondeterminately, and a subsequent goal makes the modifica-
tion.

In either case, the question arises as to whether the modifications take effect upon back-
tracking into the modified procedure. In SICStus Prolog the answer is that they don’t. As
explained in the overview to this section (see Section 4.12.1 [ref-mdb-bas], page 174), modi-
fications to a procedure affect only calls to that procedure that occur after the modification.

4.12.7.1 Example: assertz
Consider the procedure foo/0 defined by

:— dynamic foo/0.
foo :- assertz(foo), fail.

Each call to foo/0 asserts a new last clause for foo/0. After the Nth call to foo/0 there
will be N+1 clauses for foo/0. When foo/0 is first called, a virtual copy of the procedure
is made, effectively freezing the definition of foo/0 for that call. At the time of the call,
foo/0 has exactly one clause. Thus, when fail/0 forces backtracking, the call to foo/0
simply fails: it finds no alternatives. For example,
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?- compile(user).

:= dynamic foo/0.

foo :- assertz(foo), fail.

°D

% user compiled in module user, 0.100 sec 2.56 bytes

yes
| ?- foo. Y The asserted clause is not found

no
| ?7- foo. % A later call does find it, however

yes
| 7-

Even though the virtual copy of foo/0 being run by the first call is not changed by the
assertion, the Prolog database is. Thus, when a second call to foo/0 is made, the virtual
copy for that call contains two clauses. The first clause fails, but on backtracking the second
clause is found and the call succeeds.

4.12.7.2 Example: retract

| ?- assert(p(1)), assert(p(2)), assert(p(3)).

yes

| 7= p(NW), write(N), nl, retract(p(2)),
retract(p(3)), fail.

1

no
| 7= p(N), write(N), fail.
1

no
| 7-

At the first call to p/1, the procedure has three clauses. These remain visible throughout
execution of the call to p/1. Thus, when backtracking is forced by £ail/0, N is bound to 2
and written. The retraction is again attempted, causing backtracking into p/1. N is bound
to 3 and written out. The call to retract/1 fails. There are no more clauses in p/1, so
the query finally fails. A subsequent call to p/1, made after the retractions, sees only one
clause.
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4.12.7.3 Example: abolish

?7- compile(user).

:= dynamic q/1.

q(1).

q(2).

q(3).

°D

% user compiled in modules user, 0.117 sec 260 bytes

yes
| 7= q(N), write(N), nl, abolish(q/1), fail.
1
2
3

no
| 7-

Procedures that are abolished while they have outstanding calls don’t become invisible to
those calls. Subsequent calls however, will find the procedure undefined.

4.12.8 The Internal Database

The following predicates are provided solely for compatibility with other Prolog systems.
Their semantics can be understood by imagining that they are defined by the following
clauses:

recorda(Key, Term, Ref) :-
functor(Key, Name, Arity),
functor(F, Name, Arity),
asserta(’$recorded’ (F,Term), Ref).
recordz(Key, Term, Ref) :-
functor(Key, Name, Arity),
functor(F, Name, Arity),
assertz(’$recorded’ (F,Term), Ref).
recorded(Key, Term, Ref) :-
functor (Key, Name, Arity),
functor(F, Name, Arity),
clause(’$recorded’ (F,Term), _, Ref).

The reason for the calls to functor/3 in the above definition is that only the principal
functor of the key is significant. If Key is a compound term, its arguments are ignored.

Please note: Equivalent functionality and performance, with reduced memory
costs, can usually be had through normal dynamic procedures and indexing (see
Section 4.12.1 [ref-mdb-bas|, page 174 and Section 9.5 [Indexing], page 352).
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recorda(Key, Term, Ref) records the Term in the internal database as the first item for
the key Key; a database reference to the newly-recorded term is returned in Ref.

recordz(Key, Term, Ref) is like recorda/3 except that it records the term as the last
item in the internal database.

recorded (Key, Term, Ref) searches the internal database for a term recorded under the
key Key that unifies with Term, and whose database reference unifies with Ref.

current_key(KeyName, KeyTerm) succeeds when KeyName is the atom or integer that is
the name of KeyTerm. KeyTerm is an integer, atom, or compound term that is the key for
a currently recorded term.

4.12.9 Blackboard Primitives

The predicates described in this section store arbitrary terms in a per-module repository
known as the “blackboard”. The main purpose of the blackboard was initially to provide a
means for communication between branches executing in parallel, but the blackboard works
equally well during sequential execution. The blackboard implements a mapping from keys
to values. Keys are restricted to being atoms or small integers, whereas values are arbitrary
terms. In contrast to the predicates described in the previous sections, a given key can map
to at most a single term.

Each Prolog module maintains its own blackboard, so as to avoid name clashes if different
modules happen to use the same keys. The “key” arguments of these predicates are subject
to module name expansion, so the module name does not have to be explicitly given unless
multiple Prolog modules are supposed to share a single blackboard.

The predicates below implement atomic blackboard actions.

bb_put (:Key, +Term)
A copy of Term is stored under Key. See Section 11.3.24 [mpg-ref-bb_put],
page 913.

bb_get (:Key, ?Term)
If a term is currently stored under Key, a copy of it is unified with Term. Oth-
erwise, bb_get/2 silently fails. See Section 11.3.23 [mpg-ref-bb_get], page 912.

bb_delete(:Key, ?Term)
If a term is currently stored under Key, the term is deleted, and a copy of it is
unified with Term. Otherwise, bb_delete/2 silently fails. See Section 11.3.22
[mpg-ref-bb_delete], page 911.

bb_update(:Key, 701dTerm, 7?NewTerm)
If a term is currently stored under Key and unifies with OldTerm, the term is
replaced by a copy of NewTerm. Otherwise, bb_update/3 silently fails. This
predicate provides an atomic swap operation. See Section 11.3.25 [mpg-ref-
bb_update|, page 914.

Please note: If the term being stored contains attributed variables (see Section 10.3 [lib-
atts|, page 381) or suspended goals (see Section 4.2.4 [ref-sem-sec], page 73), those attributes
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are not stored. To retain the attributes, you can use copy_term/3 (see Section 4.8.7 [ref-
lte-cpt], page 127).

The following example illustrates how these primitives may be used to implement a “maxof”
predicate that finds the maximum value computed by some nondeterminate goal. We use a
single key max. We assume that Goal does not produce any “false” solutions that would be
eliminated by cuts in a sequential execution. Thus, Goal may need to include redundant
checks to ensure that its solutions are valid, as discussed above.

maxof (Value, Goal, _) :-

bb_put (max, -1), % initialize max-so-far
call(Goal),
update_max(Value),
fail.
maxof(_, _, Max) :-
bb_delete(max, Max),
Max > 1.

update_max (New) : -
bb_get (max, 01d),
compare(C, 01d, New),
update_max(C, 01d, New).

update_max (<, 01d, New) :- bb_update(max, 01d, New).
update_max(=, _, _).
update_max(>, _, _).

4.12.10 Summary of Predicates

abolish(:F) IS0
abolish the predicate(s) specified by F

abolish(:F,+0)
abolish the predicate(s) specified by F with options O

assert(:C)
assert(:C,-R)
clause C is asserted; reference R is returned

asserta(:C) IS0
asserta(:C,-R)
clause C is asserted before existing clauses; reference R is returned

assertz(:C) IS0
assertz(:C,-R)
clause C is asserted after existing clauses; reference R is returned

bb_delete(:Key, -Term)
Delete from the blackboard Term stored under Key.

bb_get (:Key, -Term)
Get from the blackboard Term stored under Key.
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bb_put (:Key,+Term)
Store Term under Key on the blackboard.

bb_update (:Key, -01dTerm, +NewTerm)
Replace OldTerm by NewTerm under Key on the blackboard.

clause(:P,?Q) IS0
clause(:P, ?@, ?R)
there is a clause for a dynamic predicate with head P, body @, and reference R

current_key(?N, ?K)
N is the name and K is the key of a recorded term

dynamic :P ISO,declaration
predicates specified by P are dynamic

erase(+R)
erase the clause or record with reference R

instance(+R,-T)
T is an instance of the clause or term referenced by R

recorda(+K,+T,-R)
make term T the first record under key K; reference R is returned

recorded(?K, ?T, 7R)
term T is recorded under key K with reference R

recordz (+K,+T,-R)
make term T the last record under key K; reference R is returned

retract(:C) IS0
erase the first dynamic clause that matches C

retractall(:H)
erase every clause whose head matches H

4.13 Sets and Bags: Collecting Solutions to a Goal
4.13.1 Introduction

When there are many solutions to a goal, and a list of all those solutions is desired, one
means of collecting them is to write a procedure that repeatedly backtracks into that goal to
get another solution. In order to collect all the solutions together, it is necessary to use the
database (via assertion) to hold the solutions as they are generated, because backtracking
to redo the goal would undo any list construction that had been done after satisfying the
goal.

The writing of such a backtracking loop can be avoided by the use of one of the built-
in predicates setof/3, bagof/3 and findall/[3,4], which are described below. These
provide a nice logical abstraction, whereas with a user-written backtracking loop the need
for explicit side-effects (assertions) destroys the declarative interpretation of the code. The
built-in predicates are also more efficient than those a user could write.
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Please note: If the solutions being collected contain attributed variables (see Section 10.3
[lib-atts], page 381) or suspended goals (see Section 4.2.4 [ref-sem-sec|, page 73), those
attributes are not retained in the list of solutions. To retain the attributes, you can use
copy_term/3 (see Section 4.8.7 [ref-lte-cpt], page 127).

4.13.2 Collecting a Sorted List

setof (Template, Generator, Set) returns the set Set of all instances of Template such
that Generator is provable, where that set is non-empty. The term Generator specifies a
goal to be called as if by call/1. Set is a set of terms represented as a list of those terms,
without duplicates, in the standard order for terms (see Section 4.8.8 [ref-lte-cte], page 128).

Obviously, the set to be enumerated should be finite, and should be enumerable by Prolog
in finite time. It is possible for the provable instances to contain variables, but in this case
Set will only provide an imperfect representation of what is in reality an infinite set.

If Generator is instantiated, but contains uninstantiated variables that don’t also appear
in Template, setof/3 can succeed nondeterminately, generating alternative values for Set
corresponding to different instantiations of the free variables of Generator. (It is to allow
for such usage that Set is constrained to be non-empty.) For example, if your program
contained the clauses

likes(tom, beer).

likes(dick, beer).
likes (harry, beer).
likes(bill, cider).
likes(jan, cider).
likes(tom, cider).

the call
| ?7- setof(X, likes(X,Y), S).

might produce two alternative solutions via backtracking:

X = _872,
Y = beer,
S = [dick,harry,tom] ;
X = _872,
Y = cider,
S = [bill, jan,tom] ;
no
The call

| ?7- setof((Y,S), setof(X,likes(X,Y),S), SS).

would then produce
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Y = _402,
S = _417,
X = _440,

SS = [(beer, [dick,harry,tom]), (cider, [bill, jan,tom])] ;

no
See Section 11.3.208 [mpg-ref-setof], page 1145.

4.13.2.1 Existential Quantifier

X ~ P is recognized as meaning “there exists an X such that P is true”, and is treated as
equivalent to simply calling P. The use of the explicit existential quantifier outside setof/3
and bagof/3 is superfluous.

Variables occurring in Generator will not be treated as free if they are explicitly bound
within Generator by an existential quantifier. An existential quantification is written:

Y Q

meaning “there exists a Y such that @ is true”, where Y is some Prolog variable. For
example:

| ?- setof(X, Y likes(X,Y), S).

would produce the single result

X = _400,
Y = _a1s,
S = [bill,dick,harry,jan,tom] ;

no
in contrast to the earlier example.

Furthermore, it is possible to existentially quantify a term, where all the variables in that
term are taken to be existentially quantified in the goal. e.g.

A=term(X,Y), setof(Z, A~foo(X,Y,Z), L).
will treat X and Y as if they are existentially quantified.

4.13.3 Collecting a Bag of Solutions

bagof/3 is is exactly the same as setof/3 except that the list (or alternative lists) returned
will not be ordered, and may contain duplicates. This relaxation saves time and space in
execution. See Section 11.3.21 [mpg-ref-bagof], page 910.
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4.13.3.1 Collecting All Instances

findall/3 is a special case of bagof /3, where all free variables in the generator are taken to
be existentially quantified. Thus the use of the operator ~ is avoided. Because findall/3
avoids the relatively expensive variable analysis done by bagof/3, using findall/3 where
appropriate rather than bagof/3 can be considerably more efficient.

findall/4 is a variant of findall/3 with an extra argument to which the list of solutions
is appended. This can reduce the amount of append operations in the program. See
Section 11.3.80 [mpg-ref-findall], page 977.

4.13.4 Predicate Summary
?X P there exists an X such that P is provable (used in setof/3 and bagof/3)

bagof (?X, :P,-B) IS0
B is the bag of instances of X such that P is provable
findall(?T, :G,-L) IS0

findall(?T, :G, 7L, 7R)
L is the list of all solutions T for the goal G, concatenated with R or with the
empty list

setof (?X, :P,-S) IS0
S is the set of instances of X such that P is provable

4.14 Grammar Rules

This section describes SICStus Prolog’s grammar rules, and the translation of these rules
into Prolog clauses. At the end of the section is a list of grammar-related built-in predicates.

4.14.1 Definite Clause Grammars

Prolog’s grammar rules provide a convenient notation for expressing definite clause gram-
mars, which are useful for the analysis of both artificial and natural languages.

The usual way one attempts to make precise the definition of a language, whether it is
a natural language or a programming language, is through a collection of rules called a
“grammar”. The rules of a grammar define which strings of words or symbols are valid
sentences of the language. In addition, the grammar generally analyzes the sentence into a
structure that makes its meaning more explicit.

A fundamental class of grammar is the context-free grammar (CFG), familiar to the com-
puting community in the notation of “BNF” (Backus-Naur form). In CFGs, the words,
or basic symbols, of the language are identified by “terminal symbols”, while categories
of phrases of the language are identified by non-terminal symbols. Each rule of a CFG
expresses a possible form for a non-terminal, as a sequence of terminals and non-terminals.
The analysis of a string according to a CFG is a parse tree, showing the constitutent phrases
of the string and their hierarchical relationships.

Context-free grammars (CFGs) consist of a series of rules of the form:

nt --> body.
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where nt is a non-terminal symbol and body is a sequence of one or more items separated by
commas. Each item is either a non-terminal symbol or a sequence of terminal symbols. The
meaning of the rule is that body is a possible form for a phrase of type nt. A non-terminal
symbol is written as a Prolog atom, while a sequence of terminals is written as a Prolog
list, whereas a terminal may be any Prolog term.

Definite clause grammars (DCGs) are a generalization of context-free grammars and rules
corresponding to DCGs are referred to as “Grammar Rules”. A grammar rule in Prolog
takes the general form

head --> body.

meaning “a possible form for head is body”. Both body and head are sequences of one or

more items linked by the standard Prolog conjunction operator ,” (comma).

Definite clause grammars extend context-free grammars in the following ways:

e A non-terminal symbol may be any callable Prolog term.

A terminal symbol may be any Prolog term. To distinguish terminals from non-
terminals, a sequence of one or more terminal symbols is written within a grammar rule
as a Prolog list. An empty sequence is written as the empty list ‘[1°. If the terminal
symbols are character codes, such lists can be written (as elsewhere) as strings. An
empty sequence is written as the empty list (‘[1” or ‘""").

e Extra conditions, in the form of Prolog procedure calls, may be included in the right-
hand side of a grammar rule. These extra conditions allow the explicit use of procedure
calls in the body of a rule to restrict the constitutents accepted. Such procedure calls
are written enclosed in curly brackets (‘{’ and ‘}’).

e The left-hand side of a grammar rule consists of a non-terminal, optionally followed by
a sequence of terminals (again written as a Prolog list).

e Alternatives may be stated explicitly in the right-hand side of a grammar rule, using

)

the disjunction operator ‘;’ (semicolon) as in Prolog.

e The cut symbol ‘!’ may be included in the right-hand side of a grammar rule, as in a
Prolog clause. The cut symbol does not need to be enclosed in curly brackets. The same
is true for the control constructs. However, all other built-in predicates not enclosed
in curly brackets will be treated as non-terminal symbols. The precise meaning of this
rule is clarified in Section 4.14.4 [ref-gru-tra], page 190.

e The extra arguments of non-terminals provide the means of building structure (such as
parse trees) in grammar rules. As non-terminals are “expanded” by matching against
grammar rules, structures are progressively built up in the course of the unification
process.

e The extra arguments of non-terminals can also provide a general treatment of context
dependency by carrying test and contextual information.

4.14.2 How to Use the Grammar Rule Facility

Following is a summary of the steps that enable you to construct and utilize definite clause
grammars:
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STEPS:

1. Write a grammar, using —-->/2 to formulate rules.

2. Compile the file containing the grammar rules. The Load Predicates automatically
translate the grammar rules into Prolog clauses.

3. Use phrase/[2,3] to parse or generate strings.

OPTIONAL STEPS:

1. Modify the way in which Prolog translates your grammar rules by defining clauses for
user:term_expansion/6; see Section 4.3.5 [ref-lod-exp], page 86.

2. In debugging or in using the grammar facility for more obscure purposes it may be
useful to understand more about expand_term/2.

4.14.3 An Example

As an example, here is a simple grammar that parses an arithmetic expression (made up of
digits and operators) and computes its value. Create a file containing the following rules:

grammar.pl

+

Y}.
Y}.

expr(Z) --> term(X), "+", expr(Y), {Z is X
expr(Z) --> term(X), "-", expr(Y), {Z is X
expr (X) --> term(X).

term(Z) --> number(X), "x", term(Y), {Z is X * YI}.
term(Z) --> number(X), "/", term(Y), {Z is X / Y}.
term(Z) -—> number(Z).

number (C) --> "+", number(C).
number (C) --> "-", number(X), {C is -X}.
number (X) --> [C], {"0"=<C, C=<"9", X is C - "O"}.

In the last rule, C is the character code of a decimal digit.

This grammar can now be used to parse and evaluate an expression by means of the built-in
predicates phrase/[2,3]. See Section 11.3.155 [mpg-ref-phrase|, page 1078. For example,
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| ?- [grammar].
| ?- phrase(expr(Z), "-2+3x5+1").

Z =14

| ?- phrase(expr(Z), "-2+3*5", Rest).

Z = 13,
Rest a ;
Z =1

Rest = "+3x*5"

no

4.14.4 Semantics of Grammar Rules

Grammar rules are best explained in terms of an interpreter. The semantics of phrase/3
is shown as if defined by the interpreter shown below. The interpreter’s case analysis is as
follows:

control constructs
(Including cuts and module prefixes). The interpreter implements the seman-
tics of the construct, descending into its argument. Note that other built-in
predicates are not treated this way.

lists Treated as terminal symbols.

curly brackets
Treated as procedure calls.

callable terms with functor N/A
A grammar rule with head functor N/A is looked up using the imaginary pred-
icate -=>/2, unified against, and its body is interpreted. If none exists, this is
treated as a procedure call to a predicate N/A+2.

non-callable terms
Raise error exception.

The following points are worth noting:

e The code below defines what constructs of and to what depth grammar rule bodies are
interpreted, as opposed to being treated as non-terminals.

e Throughout the interpretation, we must keep track of the module context.

e The head non-terminal of a grammar rule is optionally followed by a sequence of ter-
minals. This feature is not supported by the interpreter, but is supported in the actual
implementation.
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e As a general rule, the last argument is unified after any side-effects, including cuts.
This is in line with the rule that output arguments should not be unified before a cut
(see Section 9.1 [Eff Overview|, page 347). In other words, grammar rules are steadfast.

e The last clause gives a clue to how grammar rules are actually implemented, i.e. by
compile-time transformation to ordinary Prolog clauses. A grammar rule with head
functor N/A is transformed to a Prolog clause with head functor N/A+2, the extra
arguments being SO and S. -->/2 is not a predicate.

The interpreter is as follows, slightly simplified:
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phrase(M:Body, S0, S) :-
phrase(Body, M, S0, S).

phrase(Var, M, S0, S) :- \+callable(Var), !,
must_be(Var, callable, phrase(M:Var,S0,S), 1).
phrase (M:Body, _, SO, S) :- !,
phrase (Body, M, SO, S).
phrase(!, _, SO, S) :- !,
cut relevant choicepoints,
SO = S. % unification AFTER action
phrase((A, B), M, SO, S) :- !,
phrase(A, M, S0, S1),
phrase(B, M, S1, S).
phrase((A -> B), M, SO, S) :- !,
(  phrase(A, M, S0, S1) —>
phrase(B, M, S1, S)
).
phrase((A -> B ; C), M, SO, S) :- !,
(  phrase(A, M, S0, S1) —>
phrase(B, M, S1, S)
; phrase(C, M, SO, S)
).
phrase((A ; B), M, S0, S) :- !,
(  phrase(A, M, SO, S)
; phrase(B, M, SO, S)

).
phrase(\+(A), M, SO, S) :- !,
(  phrase(A, M, S0, _) ->
fail
; SO =S
)

phrase(_"A, M, S0, S) :- !,
phrase(A, M, S0, S).
phrase(do(Iter,Body), M, SO, S) :- !,
(  Iter,
fromto(S0,S1,82,S)
do phrase(Body, M, S1, S2)
).
phrase(if (A,B,C), M, SO, S) :- !,
if (phrase(A, M, SO, S1),
phrase(B, M, S1, S),
phrase(C, M, SO, S)).

phrase(once(A), M, S0, S) :- !,
(  phrase(A, M, S0, S1) —->
S1 =38 % unification AFTER call
).
phrase([], _, SO, S) :- !,
SO = S.
phrase([H|T], M, SO, S) :- !,
S0 = [HI|S1],

phrase(T, M, S1, S).
phrase({G}, M, S0, S) :- !,
call(M:@) . Y Please note: transnarent to cuts
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As mentioned above, grammar rules are merely a convenient abbreviation for ordinary
Prolog clauses. Each grammar rule is translated into a Prolog clause as it is compiled. This
translation is exemplified below.

The procedural interpretation of a grammar rule is that it takes an input list of symbols
or character codes, analyzes some initial portion of that list, and produces the remaining
portion (possibly enlarged) as output for further analysis. The arguments required for the
input and output lists are not written explicitly in a grammar rule, but are added when the
rule is translated into an ordinary Prolog clause. The translations shown differ from the
output of listing/[0,1] in that internal translations such as variable renaming are not
represented. This is done in the interests of clarity. For example, a rule such as (A) will be
depicted as translating into (B) rather than (C).

p(X) -—> qX). (A)
p(X, S0, S) :-

q(X, S0, 9). (B)
p(A, B, C) :-

q(A, B, C). ©

If there is more than one non-terminal on the right-hand side, as in (D) the corresponding
input and output arguments are identified, translating into (E):

pX, Y) -—> qX), rX, Y), s(¥). (D)

p(X, Y, SO, S) :- (E)
q(X, S0, s1),
r(X, Y, S1, S2),
s(Y, s2, S).

Terminals are translated using the built-in predicate =/2. For instance, (F) is translated
into (G):

p(X) --> [go, tol, q(X), [stop]. (€D

pX, SO, S) :- ®
S0 = [go,tolS1],
q(X, S1, s82),
S2 = [stoplS].

Extra conditions expressed as explicit procedure calls, enclosed in curly braces, naturally
translate into themselves. For example (H) translates to (I):

p(X) --> [X], {integer(X), X > 0}, qX). (H)
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p(X, S0, 8) :- (D)
S0 = [X]s1],
integer (X),
X >0,
q(X, s1, 9).

Terminals on the left-hand side of a rule, enclosed in square brackets, also translate into a
unification. For example, (J) becomes (K):

is(N), [not] --> [aint]. (@))
is(N, SO, S) :- (K)
SO0 = [aint|S1],
S = [not|S1].

Disjunction and other control constructs have a fairly obvious translation. For example,
(L), a rule that equates phrases like “(sent) a letter to him” and “(sent) him a letter”,
translates to (M):

args(X, Y) -—> ¢»)
( indir(X), [to]l, indir(Y)
; indir(Y), dir(X)
).

args(X, Y, SO, S) :- )
( dir(X, S0, S1),
S1 = [tolS2],
indir (Y, S2, S)
;  indir(Y, SO, S1),
dir(X, S1, S)
).

In order to look at these translations, declare the grammar rules dynamic and use
listing/[0,1]. However, bear in mind that a grammar rule with head functor N/A is
transformed to a Prolog clause with head functor N/A+2. For example, the following dec-
laration for grammar rule (L) would enable you to list its translation, (M):

:- dynamic args/4.

4.14.5 Summary of Predicates

:Head --> :Body
A possible form for Head is Body

expand_term(+T, -X) hookable
term T expands to term X using user:term_expansion/6 or grammar rule
expansion

phrase(:P, -L)
phrase(:P, 7L, 7R)
R or the empty list is what remains of list L after phrase P has been found
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user:term_expansion(+Terml, +Layoutl, +Tokens1, -Term2, -Layout2, -Tokens2)
hook
Overrides or complements the standard transformations to be done by expand_
term/2.

4.15 Errors and Exceptions
4.15.1 Overview

Whenever the Prolog system encounters a situation where it cannot continue execution, it
throws an exception. For example, if a built-in predicate detects an argument of the wrong
type, it throws a type_error exception. The manual page description of each built-in
predicate lists the kinds of exceptions that can be thrown by that built-in predicate.

The default effect of throwing an exception is to terminate the current computation and
then print an error message. After the error message, you are back at Prolog’s top-level.
For example, if the goal

X is a/2
is executed somewhere in a program you get

! Type error in argument 2 of (is)/2
| expected evaluable, but found a/0
| goal: _255 is a/2

| 7-

Particular things to notice in this message are:

L

This character indicates that this is an error message rather than a warning*
or informational message.

‘Type Error’
This is the error class. Exceptions thrown by the Prolog system are called
errors. Every error is categorized into one of a small number of classes. The
classes are listed in Section 4.15.4 [ref-ere-err|, page 198.

‘goal:’ The goal that caused the exception to be thrown.

Built-in predicates check their arguments, but predicates exported by library modules gen-
erally don’t, although some do check their arguments to a lesser or greater extent.

4.15.2 Throwing Exceptions

You can throw exceptions from your own code using:

4 The difference between an error (including exceptions) and a warning: A warning is issued if Prolog
detects a situation that is likely to cause problems, though it is possible that you intended it. An error,
however, indicates that Prolog recognizes a situation where it cannot continue.
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throw (+ExceptionTerm) IS0

The argument to this predicate is the exception term, an arbitrary non-variable term. See
Section 11.3.235 [mpg-ref-throw|, page 1180.

Please note: If the exception term contains attributed variables (see Section 10.3 [lib-atts],
page 381) or suspended goals (see Section 4.2.4 [ref-sem-sec|, page 73), those attributes
don’t become part of the exception. To retain the attributes, you can use copy_term/3 (see
Section 4.8.7 [ref-lte-cpt], page 127).

4.15.3 Handling Exceptions

It is possible to protect a part of a program against abrupt termination in the event of an
exception. There are several ways to do this:

e Trap exceptions to a particular goal by calling catch/3 as described in Section 4.15.3.1
[ref-ere-hex-pgo], page 196.

e Handle undefined predicates or subsets of them through the hook predicate
user:unknown_predicate_handler/3; see Section 4.15.3.2 [ref-ere-hex-hup]|, page 197.

e Trap exceptions matching Exception to the debugger by defining the following hook
predicate:

user:error_exception(+Exception) hook,development
See Section 11.3.73 [mpg-ref-error_exception|, page 969.

e Control syntax errors with the syntax_errors Prolog flag or with the same option to
read_term/[2,3]; see Section 4.15.4.11 [ref-ere-err-syn], page 206.

e Control existence and permission errors in the context of opening files with the
fileerrors Prolog flag or with the same option to absolute_file_name/3; see
Section 4.15.4.7 [ref-ere-err-exi|, page 204 and Section 4.15.4.8 [ref-ere-err-per],
page 204.

4.15.3.1 Protecting a Particular Goal

The built-in predicate catch/3 enables you to handle exceptions to a specific goal:

catch(:ProtectedGoal, PExceptionTerm, :Handler) IS0

ProtectedGoal is executed. If all goes well, it will behave just as if you had written
call(ProtectedGoal) instead. If an exception is thrown while ProtectedGoal is run-
ning, Prolog will abandon ProtectedGoal entirely. Any bindings made by ProtectedGoal
will be undone, just as if it had failed. If the exception occurred in the scope of a call_
cleanup(Goal, Cleanup), Cleanup will be called. Side-effects, such as asserts and retracts,
are not undone, just as they are not undone when a goal fails. After undoing the bindings,
Prolog tries to unify the exception term thrown with the ExceptionTerm argument. If this
unification succeeds, Handler will be executed as if you had written

ExceptionTerm=<the actual exception term>,
Handler
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If this unification fails, Prolog will keep searching up the ancestor list looking for another
exception handler. If during this search it reaches a recursive call to Prolog from C, the
recursive calls returns with an uncaught exception. If it reaches the top-level (or a break
level), an appropriate error message is printed (using print_message/2).

ProtectedGoal need not be determinate. That is, backtracking into ProtectedGoal is possi-
ble, and the exception handler becomes reactivated in this case. However, if ProtectedGoal
is determinate, the call to catch/3 is also determinate.

The ProtectedGoal is logically inside the catch/3 goal, but the Handler is not. If an
exception is thrown inside the Handler, this catch/3 goal will not be reactivated. If you
want an exception handler that protects itself, you have to program it, perhaps like this:

recursive_catch_handler(Err, Goal, Handler) :-
catch(Goal, Err,
recursive_catch_handler (Err, Handler, Handler)).

See Section 11.3.34 [mpg-ref-catch], page 924.

Certain built-in and library predicates rely on the exception mechanism, so it is usually a
bad idea to let Pattern be a variable, matching any exception. If it must be a variable,
the Handler should examine the exception and pass it on if it is not relevant to the current
invocation.

4.15.3.2 Handling Unknown Predicates

Users can write a handler for the specific exception occurring when an undefined predicate
is called by defining clauses for the hook predicate user:unknown_predicate_handler/3.
This can be thought of as a “global” exception handler for this particular exception, because
unlike catch/3, its effect is not limited to a particular goal. Furthermore, the exception is
handled at the point where the undefined predicate is called.

The handler can be written to apply to all unknown predicates, or to a class of them. The
reference page contains an example of constraining the handler to certain predicates.

If call (Module:Goal) is the trapped call to the undefined predicate, then the hook is called
as:

user:unknown_predicate_handler(+Goal, +Module, -NewGoal) hook

If this succeeds, then Prolog replaces the call to the undefined predicate with the call to
Module:NewGoal. Otherwise, the action taken is governed by the unknown Prolog flag (see
Section 4.9.4 [ref-1ps-flg], page 134), the allowed values of which are:

trace Causes calls to undefined predicates to be reported and the debugger to be
entered at the earliest opportunity. Not available in runtime systems.

error IS0
Causes calls to such predicates to raise an exception (the default).



198 SICStus Prolog

warning IS0
Causes calls to such predicates to display a warning message and then fail.

fail IS0 Causes calls to such predicates to fail.
Finally, this flag can be accessed by the built-in predicate:

unknown (701dValue, 7NewValue) development

This unifies OldValue with the current value, sets the flag to NewValue, and prints a
message about the new value. See Section 11.3.244 [mpg-ref-unknown_predicate_handler],
page 1190.

4.15.4 Error Classes

Exceptions thrown by the Prolog system are called errors.
Error terms have the form:
error (ISO_Error, SICStus_Error)

where the principal functor of ISO_Error (resp. SICStus_Error) indicates the error class
(see Section 4.15.4 [ref-ere-err|, page 198). The classification always coincides.

Please note: Don’t throw error terms except when you re-throw a previously caught error
term. They correspond to the exceptions thrown by the built-in predicates. Throwing such
forged error terms can lead to unexpected results.

See Section 10.41 [lib-types]|, page 824 for an alternative interface to throwing error excep-
tions, which tries to include line number information for source-linked debugging.

Error messages like the one shown earlier are printed using the built-in predicate print_
message/2. One of the arguments to print_message/2 is the exception term. print_
message/2 can be customized, as described in Section 4.16 [ref-msg], page 210.

The set of error classes used by the system has been kept small:

Instantiation Error ISO
An input argument is insufficiently instantiated.

Uninstantiation Error ISO
An input argument is too instantiated.

Type Error ISO
An input argument is of the wrong type.

Domain Error ISO
An input argument is illegal but of the right type.

Evaluation Error ISO

An incorrect arithmetic expression was evaluated.

Representation Error 1SO
A computed value cannot be represented.
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Existence Error ISO
Something does not exist.

Permission Error ISO
Specified operation is not permitted.

Context Error
Specified operation is not permitted in this context.

Consistency Error
Two otherwise correct values are inconsistent with each other.

Syntax Error ISO
Error in reading a term.

Resource Error ISO
Some resource limit has been exceeded.

System Error ISO

An error detected by the operating system.

The format of the exception thrown by the built-in predicates is:
error (ISO_Error, SICStus_Error)

where ISO_Error is the error term prescribed by the ISO Prolog standard, while SICS-
tus_Error is the part defined by the standard to be implementation defined. This so called
SICStus error term has the same principal functor as ISO_Error but more arguments con-
taining additional information, such as the goal and the argument number causing the error.
Arguments are numbered from 1 upwards. An argument number given as zero means that
an unspecific argument caused the error.

The list below itemizes the error terms, showing the ISO_Error and SICStus_Error form of
each one, in that order. The SICStus and ISO error terms always belong to the same error
class, but note that the Context and Consistency error classes are extensions to the ISO
Prolog standard.

The goal part of the error term may optionally have the form $@(Callable,PC) where PC
is an internal encoding of the line of code containing the culprit goal or one of its ancestors.
To decompose an annotated goal AGoal into a Goal proper and a Sourcelnfo descriptor
term, indicating the source position of the goal, use:

7- goal_source_info(AGoal, Goal, Sourcelnfo).

The reference page gives details about the Sourcelnfo format. See Section 11.3.98 [mpg-ref-
goal_source_info|, page 1006.

instantiation_error IS0
instantiation_error(Goal,ArghNo)
Goal was called with insufficiently instantiated arguments.
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uninstantiation_error(Culprit) IS0
uninstantiation_error(Goal,ArgNo,Culprit)
Goal was called with too instantiated arguments, expecting Culprit to be unin-
stantiated.

type_error(TypeName, Culprit) IS0
type_error(Goal, ArgNo, TypeName, Culprit)
Goal was called with the wrong type of argument(s). TypeName is the expected
type and Culprit what was actually found.

domain_error(Domain,Culprit) IS0
domain_error(Goal, ArgNo,Domain,Culprit)
Goal was called with argument(s) of the right type but with illegal value(s).
Domain is the expected domain and Culprit what was actually found.

existence_error(ObjectType,Culprit) IS0
existence_error(Goal,Arglo,0ObjectType,Culprit,Reserved)
Something does not exist as indicated by the arguments. See Section 4.15.4.7
[ref-ere-err-exi], page 204 for ways of controlling this behavior.

permission_error (Operation,ObjectType,Culprit) IS0
permission_error(Goal,Operation,ObjectType,Culprit,Reserved)
The Operation is not permitted on Culprit of the ObjectType.  See
Section 4.15.4.8 [ref-ere-err-per], page 204 for ways of controlling this behavior.

context_error(ContextType, CommandType)
context_error(Goal,ContextType, CommandType)
The CommandType is not permitted in ContextType.

syntax_error (Message) Iso
syntax_error(Goal,Position,Message, Tokens,AfterError)
A syntax error was found when reading a term with read/[1,2] or assembling
a number from its characters with number_chars/2 or number_codes/2. See
Section 4.15.4.11 [ref-ere-err-syn|, page 206 for ways of controlling this behavior.

evaluation_error (ErrorType,Culprit) IS0
evaluation_error(Goal,ArgNo,ErrorType,Culprit)
An incorrect arithmetic expression was evaluated.

representation_error (ErrorType) IS0
representation_error(Goal, ArgNo, ErrorType)
A representation error occurs when the program tries to compute some well-
defined value that cannot be represented, such as a compound term with arity
> 255.

consistency_error(Culpritl,Culprit2,Message)
consistency_error(Goal,Culpritl,Culprit2,Message)
A consistency error occurs when two otherwise valid values or operations have
been specified that are inconsistent with each other.



Chapter 4: The Prolog Language 201

resource_error (ResourceType) IS0
resource_error(Goal,ResourceType)
A resource error occurs when SICStus Prolog has insufficient resources to com-
plete execution. The only value for ResourceType that is currently in use is
memory.

system_error IS0
system_error (Message)
An error occurred while dealing with the operating system.

Most exception terms include a copy of the Goal that threw the exception.

In general, built-in predicates that cause side-effects, such as the opening of a stream or
asserting a clause into the Prolog database, attempt to do all error checking before the
side-effect is performed. Unless otherwise indicated in the documentation for a particular
predicate or error class, it should be assumed that goals that throw exceptions have not
performed any side-effect.

4.15.4.1 Instantiation Errors

An instantiation error occurs when a predicate or command is called with one of its input
arguments insufficiently instantiated.

The SICStus_Error term associated with an instantiation error is
instantiation_error(Goal, ArgNo)

where ArgNo is a non-negative integer indicating which argument caused the problem.
ArgNo=0 means that the problem could not be localized to a single argument.

Note that the ArgNoth argument of Goal might well be a non-variable: the error is in that
argument. For example, the goal

X is Y+1
where Y is uninstantiated throws the exception

error(instantiation_error,
instantiation_error(_A is _B+1,2))

because the second argument to is/2 contains a variable.

4.15.4.2 Uninstantiation Errors

An uninstantiation error occurs when a predicate or command is called with one of its input
arguments instantiated when an unbound variable was expected.

The SICStus_Error term associated with an instantiation error is
uninstantiation_error(Goal,ArgNo,Culprit)

For example, the goal
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open(f, write, bar)
throws the exception

error(uninstantiation_error(bar),
uninstantiation_error (open(f,write,bar),3,bar))

because the third argument was not a variable.

4.15.4.3 Type Errors

A type error occurs when an input argument is of the wrong type. In general, a type is
taken to be a class of terms for which there exists a unary type test predicate. Some types
are built-in, such as atom/1 and integer/1.

The type of a term is the sort of thing you can tell just by looking at it, without checking
to see how big it is. So “integer” is a type, but “non-negative integer” is not, and “atom”
is a type, but “atom with 5 letters in its name” and “atom starting with ‘x’” are not.

The point of a type error is that you have obviously passed the wrong sort of argument
to a command; perhaps you have switched two arguments, or perhaps you have called the
wrong predicate, but it isn’t a subtle matter of being off by one.

Most built-in predicates check all their input arguments for type errors.
The SICStus_Error term associated with a type error is

type_error(Goal, ArgNo, TypeName, Culprit)

ArgNo Culprit occurs somewhere in the ArgNoth argument of Goal.

TypeName
says what sort of term was expected; it should be the name of a unary predicate
that is true of whatever terms would not provoke a type error.

Culprit is the actual term being complained about: TypeName(Culprit) should be false.

For example:

| ?- catch((write(3),1), Error, true).
Error = error(type_error(callable, (write(3),1)),
type_error(user: (write(3),1),0,callable, (write(3),1)))

4.15.4.4 Domain Errors

A domain error occurs when an input argument is of the right type but there is something
wrong with its value. For example, the second argument to open/[3,4] is supposed to be
an atom that represents a valid mode for opening a file, such as read or write. If a number
or a compound term is given instead, that is a type error. If an atom is given that is not a
valid mode, that is a domain error.
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The main reason that we distinguish between type errors and domain errors is that they
usually represent different sorts of mistakes in your program. A type error usually indicates
that you have passed the wrong argument to a command, whereas a domain error usually
indicates that you passed the argument you meant to check, but you hadn’t checked it
enough.

The SICStus_Error term associated with a domain error is
domain_error(Goal, ArgNo, DomainName, Culprit)

The arguments correspond to those of the SICStus_Error term for a type error, except that
DomainName is not in general the name of a unary predicate: it needn’t even be an atom.
For example, if some command requires an argument to be an integer in the range 1..99, it
might use between(1,99) as the DomainName. With respect to the date_plus example
under Type Errors, if the month had been given as 13 it would have passed the type test
but would throw a domain error.

For example, the goal
open(somefile,rread,S)
throws the exception

error (domain_error(io_mode,rread),
domain_error (open(somefile,rread,_A),2,io_mode,rread))

The Message argument is used to provide extra information about the problem.

4.15.4.5 Evaluation Errors

An evaluation error occurs when an incorrect arithmetic expression was evaluated. Floating-
point overflow is another evaluation error. The SICStus_Error term associated with an
evaluation error is

evaluation_error(Goal, ArgNo, TypeName, Culprit)
This has the same arguments as a type error.

4.15.4.6 Representation Errors

A representation error occurs when your program calls for the computation of some well-
defined value that cannot be represented.

Most representation errors are some sort of overflow. For example, creating a compound
term with arity greater than 255 results in a representation error.

The SICStus_Error term for a representation error is

representation_error(Goal, ArgNo, Message)

ArgNo identifies the argument of the goal that cannot be constructed.
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Message  further classifies the problem. A message of 0 or ’’ provides no further infor-
mation.

4.15.4.7 Existence Errors

An existence error occurs when a predicate attempts to access something that does not
exist. For example, trying to compile a file that does not exist, erasing a database reference
that has already been erased.

The SICStus_Error term associated with an existence error is

existence_error(Goal, ArgNo, ObjectType, Culprit, Message)

ArgNo index of argument of Goal where Culprit appears

ObjectType
expected type of non-existent object
Culprit name for the non-existent object
Message  the constant 0 or >, or some additional information provided by the operating

system or other support system indicating why Culprit is thought not to exist.

For example, ‘see(’../brother/niece’)’ might throw the exception

error(existence_error(source_sink,’../brother/niece’),
existence_error(see(’../brother/niece’),1,file,’../brother/niece’,0))

An existence error does not necessarily cause an exception to be thrown. For I/O predicates,
the behavior can be controlled with the fileerrors Prolog flag (see Section 4.9.4 [ref-Ips-
flg], page 134) or with the fileerrors/1 alias file_errors/1 option to absolute_file_
name/3. The following values are possible:

on (fileerrors flag value)
error (absolute_file_name/3 fileerrors value)
Throw an exception if a given file can’t be opened. The default.

off (fileerrors flag value)
fail (absolute_file_name/3 fileerrors value)
Merely fail if a given file can’t be opened.

4.15.4.8 Permission Errors

A permission error occurs when an operation is attempted that is among the kinds of
operation that the system is in general capable of performing, and among the kinds that
you are in general allowed to request, but this particular time it isn’t permitted. Usually,
the reason for a permission error is that the owner of one of the objects has requested that
the object be protected.

For example, an attempts to assert or retract clauses for a predicate that has not been
declared :-dynamic is rejected with a permission error.

File system protection is another major source of such errors.
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The SICStus_Error term associated with a permission error is

permission_error(Goal, Operation, ObjectType, Culprit, Message)

Operation operation attempted; Operation exists but is not permitted with Culprit.

ObjectType
Culprit’s type.

Culprit name of protected object.
Message  provides such operating-system-specific additional information as may be avail-

able. A message of 0 or ’’ provides no further information.

A permission error does not necessarily cause an exception to be thrown. For I/O predicates,
the behavior can be controlled with the fileerrors Prolog flag (see Section 4.9.4 [ref-Ips-
flg], page 134) or with the fileerrors/1 alias file_errors/1 option to absolute_file_
name/3, exactly as for existence errors.

4.15.4.9 Context Errors

A context error occurs when a goal or declaration appears in the wrong place. There may
or may not be anything wrong with the goal or declaration as such; the point is that it is
out of place. Calling multifile/1 as a goal is a context error, as is having :-module/2
anywhere but as the first term in a source file. This error classe is an extension to the ISO
Prolog standard.

The SICStus_Error term associated with a context error is

context_error(Goal, ContextType, CommandType)
ContextType
the context in which the command was attempted.

CommandType
the type of command that was attempted.

4.15.4.10 Consistency Errors

A consistency error occurs when two otherwise valid values or operations have been specified
that are inconsistent with each other. For example, if two modules each import the same
predicate from the other, that is a consistency error. This error classe is an extension to
the ISO Prolog standard.

The SICStus_Error term associated with a consistency error is
consistency_error(Goal, Culpritl, Culprit2, Message)
Culpritl ~ One of the conflicting values/operations.

Culprit2  The other conflicting value/operation.

Message  Additional information, or 0, or *’.



206 SICStus Prolog

4.15.4.11 Syntax Errors

A syntax error occurs when data are read from some external source but have an improper
format or cannot be processed for some other reason. This category mainly applies to
read/1 and its variants.

The SICStus_Error term associated with a syntax error is
syntax_error(Goal, Position, Message, Left, Right)

where Goal is the goal in question, Position identifies the position in the stream where
reading started, and Message describes the error. Left and right are lists of tokens before
and after the error, respectively.

Note that the Position is where reading started, not where the error is.

read/1 does two things. First, it reads a sequence of characters from the current input
stream up to and including a clause terminator, or the end of file marker, whichever comes
first. Then it attempts to parse the sequence of characters as a Prolog term. If the parse
is unsuccessful, a syntax error occurs. Thus, in the case of syntax errors, read/1 disobeys
the normal rule that predicates should detect and report errors before they perform any
side-effects, because the side-effect of reading the characters has been done.

A syntax error does not necessarily cause an exception to be thrown. For I/O predicates,
but not for number_chars/2 and number_codes/2, The behavior can be controlled via the
syntax_errors Prolog flag (see Section 4.9.4 [ref-lps-flg], page 134), or via the syntax_
errors/1 option to read_term/[2,3]. The following values are possible:

quiet When a syntax error is detected, nothing is printed, and read/1 just quietly
fails.
dec10 This provides compatibility with other Prologs: when a syntax error is de-

tected, a syntax error message is issued with print_message/2, and the read
is repeated. This is the default.

fail This provides compatibility with other Prologs. When a syntax error is de-
tected, a syntax error message is printed on user_error, and the read then
fails.

error When a syntax error is detected, an exception is thrown.

4.15.4.12 Resource Errors

A resource error occurs when some resource runs out. For example, you can run out of vir-
tual memory, or you can exceed the operating system limit on the number of simultaneously
open files.

Often a resource error arises because of a programming mistake: for example, you may
exceed the maximum number of open files because your program doesn’t close files when
it has finished with them. Or, you may run out of virtual memory because you have a
non-terminating recursion in your program.
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The SICStus_Error term for a resource error is

resource_error (Goal, Resource)

Goal A copy of the goal, or 0 if no goal was responsible; for example there is no
particular goal to blame if you run out of virtual memory.

Resource  identifies the resource that was exhausted. The only value currently in use is
memory.

4.15.4.13 System Errors

System errors are problems that the operating system notices (or causes). Note that many
of the exception indications returned by the operating system (such as “file does not exist”)
are mapped to Prolog exceptions; it is only really unexpected things that show up as system
errors.

The SICStus_Error term for a system error is
system_error (Message)
where Message is not further specified.

4.15.5 An Example

Suppose you want a routine that is to prompt for a file name and open the file if it can;
otherwise it is to prompt the user for a replacement name. If the user enters an empty
name, it is to fail. Otherwise, it is to keep asking the user for a name until something
works, and then it is to return the stream that was opened. There is no need to return the
file name that was finally used. We can get it from the stream. Code:
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retry_open_output (Stream) :-
ask_query(filename, format(’Type name of file to open\n’,[]), -, FileName),
FileName \== ’’,
catch(open(FileName, write, Stream),
Error,
( Error = error(_,Excp),
file_error(Excp)
-> print_message(warning, Excp),
retry_open_output (Stream)

; throw(Error)

).
file_error (existence_error(open(_,_,_), 1, _, _, ).
file_error(permission_error(open(_,_,_), _, _, _, _)).

:- multifile ’SU_messages’:query_class/5.
’SU_messages’:query_class(filename, ’> ?, line, atom_codes, help_query) =

:- multifile ’SU_messages’:query_map/4.
’SU_messages’ :query_map(atom_codes, Codes, success, Atom) :- !,
(Codes==end_of_file -> Atom = ’’ ; atom_codes(Atom, Codes)).

Sample session:

| ?- retry_open_output(S).

Type name of file to open

> nodir/nofile

* Existence error in argument 1 of open/3
* file ’/tmp/nodir/nofile’ does not exist
* goal: open(’nodir/nofile’,write,_701)
Type name of file to open

> newfile

S = ’$stream’ (3491752)

What this example does not catch is as interesting as what it does. All errors except
existence and permission errors are re-thrown, as they represent errors in the program. The
example also shows that you generally don’t want to catch all exceptions that a particular
goal might throw.

4.15.6 Legacy Predicates

Exception handling for Prolog was originally introduced in Quintus Prolog, and later in-
herited by SICStus Prolog, with an API that predated the ISO standard. This API is
still supported but should be regarded as legacy, and consists of the two predicates raise_
exception/1 and on_exception/3:
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on_exception(?Template, :ProtectedGoal, :Handler)
Equivalent to catch(:ProtectedGoal, ?Template, :Handler). Any excep-
tion term matching Template is caught and handled. See Section 11.3.145
[mpg-ref-on_exception|, page 1064.

raise_exception(+ExceptionTerm)
If ExceptionTerm matches one of the SICStus error terms listed in Section 4.15.4
[ref-ere-err], page 198, then the corresponding error term error(ISO_Error,
SICStus_Error) is constructed and thrown. Otherwise, ExceptionTerm is
thrown as is.

Prior to release 4.3, throw/1 and raise_exception/3 used to be equivalent and throw
their argument as is, whereas catch/3 and on_exception/3 both used to attempt to rec-
ognize and expand SICStus error terms into error/2 terms. Unless a forged SICStus error
term is thrown by throw/1, the net behavior is unchanged. See Section 11.3.182 [mpg-ref-
raise_exception], page 1111.

4.15.7 Interrupting Execution

There exist more drastic means of interrupting the normal control flow. To invoke a recursive
top-level, use:

?- break.
See Section 11.3.27 [mpg-ref-break], page 917.
To exit from Prolog, use:
?- halt.
To exit from Prolog with return code Code, use:
?7- halt(Code).
See Section 11.3.101 [mpg-ref-halt], page 1009.
To abort the execution of the current query and return to the top-level, use:
?- abort.
See Section 11.3.2 [mpg-ref-abort], page 879.

Please note: halt/[0,1] and abort/0 are implemented by throwing a reserved
exception, which has a handler at the top-level of development systems and
executables built with the spld tool. Thus they give the opportunity for cleanup
goals (see call_cleanup/2) to run.

4.15.8 Summary of Predicates

abort abort execution of the program; return to current break level

break start a new break-level to interpret commands from the user
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catch(:P,?E, :H) IS0
specify a handler H for any exception E arising in the execution of the goal P

user:error_exception(+Exception) hook,development
Exception is an exception that traps to the debugger if it is switched on.

goal_source_info(+AGoal, -Goal, -Sourcelnfo)
Decomposes the annotated goal AGoal into a Goal proper and the Sourcelnfo
descriptor term, indicating the source position of the goal.

halt ISO
halt(C) IS0
exit from Prolog with exit code C

on_exception(?E, :P, :H)
specify a handler H for any exception E arising in the execution of the goal P

raise_exception(+E)
raise exception E

throw (+E) IS0
raise exception E

unknown (?01dValue, ?NewValue) development
access the unknown Prolog flag and print a message

user:unknown_predicate_handler(+Goal, +Module, -NewGoal) hook
tell Prolog to call Module : NewGoal if Module : Goal is undefined

4.16 Messages and Queries

This section describes the two main aspects of user interaction, displaying messages and
querying the user. We will deal with these two issues in turn.

4.16.1 Message Processing

Every message issued by the Prolog system is displayed using a single predicate:
print_message(Severity, Message)

Message is a term that encodes the message to be printed. The format of message terms
is subject to change, but can be inspected in the file ‘library(’SU_messages’)’ of the
SICStus Prolog distribution.

The atom Severity specifies the type (or importance) of the message. The following table
lists the severities known to the SICStus Prolog system, together with the line prefixes used
in displaying messages of the given severity:

error >1 > for error messages
warning ’x 2 for warning messages
informational %’ for informational messages
help ?? for help messages

query ) for query texts (see Section 4.16.3 [Query Processing], page 214)
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silent ?0 a special kind of message, which normally does not produce any
output, but can be intercepted by hooks

print_message/2 is a built-in predicate, so that users can invoke it to have their own
messages processed in the same way as the system messages.

The processing and printing of the messages is highly customizable. For example, this
allows the user to change the language of the messages, or to make them appear in dialog
windows rather than on the terminal.

4.16.1.1 Phases of Message Processing

Messages are processed in two major phases. The user can influence the behavior of each
phase using appropriate hooks, described later.

The first phase is called the message generation phase: it determines the text of the message
from the input (the abstract message term). No printing is done here. In this phase the
user can change the phrasing or the language of the messages.

The result of the first phase is created in the form of a format-command list. This is a
list whose elements are format-commands, or the atom nl denoting the end of a line. A
format-command describes a piece of text not extending over a line boundary and it can be
one of the following:

FormatString-Args
format (FormatString, Args)
This indicates that the message text should appear as if printed by

format (FormatString, Args).
write_term(Term, Options)
This indicates that the message text should appear as if printed by
write_term(Term, Options) .
write_term(Term)

Equivalent to write_term(Term, Options) where Options is the actual value
of the Prolog flag toplevel_print_options.

As an example, let us see what happens in case of the toplevel call _ =:= 3. An instan-
tiation error is raised by the Prolog system, which is caught, and the abstract message
term error(instantiation_error,instantiation_error(_=:=3,1)) is generated—the

first argument is the goal, and the second argument is the position of the uninstantiated
variable within the goal. In the first phase of message processing this is converted to the
following format-command list:

[’Instantiation error’-[],’ in argument ~“d of ~q’-[1,=:= /2],nl,
’goal: ’-[],write_term(_=:=3),nl]

A minor transformation, so-called line splitting is performed on the message text before it
is handed over to the second phase. The format-command list is broken up along the nl
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atoms into a list of lines, where each line is a list of format-commands. We will use the
term format-command lines to refer to the result of this transformation.

In the example above, the result of this conversion is the following:

[[’Instantiation error’-[],’ in argument ~d of ~q’-[1,=:= /2]],
[’goal: ’-[],write_term(_=:=3)]]

The above format-command lines term is the input of the second phase of message process-
ing.

The second phase is called the message printing phase, this is where the message is actually
displayed. The severity of the message is used here to prefix each line of the message with
some characters indicating the type of the message, as listed above.

The user can change the exact method of printing (e.g. redirection of messages to a stream,
a window, or using different prefixes, etc.) through appropriate hooks.

In our example the following lines are printed by the second phase of processing:

! Instantiation error in argument 1 of =:= /2
I goal: _=:=3

The user can override the default message processing mechanism in the following two ways:

e A global method is to define the hook predicate portray_message/2, which is the first
thing called by message processing. If this hook exists and succeeds, it overrides all
other processing—mnothing further is done by print_message/2.

e If a finer method of influencing the behavior of message processing is needed, there are
several further hooks provided, which affect only one phase of the process. These are
described in the following paragraphs.

4.16.1.2 Message Generation Phase

The default message generation predicates are located in the ‘library(’SU_messages’)’
file, in the ’SU_messages’ module, together with other message and query related pred-
icates. This is advantageous when these predicates have to be changed as a whole (for
example when translating all messages to another language), because this can be done
simply by replacing the file ‘library(’SU_messages’)’ by a new one.

In the message generation phase three alternative methods are tried:

e First the hook predicate generate_message_hook/3 is executed, if it succeeds, it is
assumed to deliver the output of this phase.

o Next the default message generation is invoked via ’SU_messages’:generate_
message/3.

e In the case that neither of the above methods succeed, a built-in fall-back message
generation method is used.
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The hook predicate generate_message_hook/3 can be used to override the default behav-
ior, or to handle new messages defined by the programmer that don’t fit the default message
generation schemes. The latter can also be achieved by adding new clauses to the extendible
’SU_messages’ :generate_message/3 predicate.

If both the hook and the default method refuses to handle the message, the following simple
format-command list is generated from the abstract message term Message:

[’"q’-[Message] ,nl]
This will result in displaying the abstract message term itself, as if printed by writeq/1.

For messages of the severity silent the message generation phase is skipped, and the []
format-command list is returned as the output.

4.16.1.3 Message Printing Phase

By default this phase is handled by the built-in predicate print_message_lines/3. Each
line of the message is prefixed with a string depending on the severity, and is printed to
user_error. The query severity is special—no newline is printed after the last line of the
message.

This behavior can be overridden by defining the hook predicate message_hook/3, which
is called with the severity of the message, the abstract message term and its translation
to format-command lines. It can be used to make smaller changes, for example by calling
print_message_lines/3 with a stream argument other than user_error, or to implement
a totally different display method such as using dialog windows for messages.

For messages of the severity silent the message printing phase consists of calling the hook
predicate message_hook/3 only. Even if the hook fails, no printing is done.

4.16.2 Message Handling Predicates

print_message(+Severity, +Message) hookable
Portrays or else writes Message of a given Severity on the standard error stream.
See Section 11.3.162 [mpg-ref-print_message], page 1089.

portray_message (+Severity, +Message) hook
user:portray_message (+Severity, +Message)
Tells print_message/2 what to do.

generate_message_hook (+Message, -LO, -L) hook
user:generate_message_hook(+Message, -LO, -L)
A way for the user to override the call to >SU_messages’ :generate_message/3
in the message generation phase in print_message/2.

’SU_messages’ :generate_message (+Message, -L0, -L) extendible
Predefined message generation rules.
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message_hook(+Severity, +Message, +Lines) hook
user:message_hook(+Severity, +Message, +Lines)
Overrides the call to print_message_lines/3 in print_message/2. A way
for the user to intercept the abstract message term Message of type Severity,
whose translation is Lines, before it is actually printed.

print_message_lines(+Stream, +Severity, +Lines)
Print the Lines to Stream, preceding each line with a prefix defined by Severity.

goal_source_info(+AGoal, -Goal, -SourcelInfo)
Decomposes the annotated goal AGoal into a Goal proper and the Sourcelnfo
descriptor term, indicating the source position of the goal.

4.16.3 Query Processing
All user input in the Prolog system is handled by a single predicate:

ask_query(QueryClass, Query, Help, Answer)

QueryClass, described below, specifies the form of the query interaction. Query is an
abstract message term specifying the query text, Help is an abstract message term used as
a help message in certain cases, and Answer is the (abstract) result of the query.

ask_query/4 is a built-in predicate, so that users can invoke it to have their own queries
processed in the same way as the system queries.

The processing of queries is highly customizable. For example, this allows changing the
language of the input expected from the user, or to make queries appear in dialog windows
rather than on the terminal.

4.16.3.1 Query Classes

Queries posed by the system can be classified according to the kind of input they expect,
the way the input is processed, etc. Queries of the same kind form a query class.

For example, queries requiring a yes/no answer form a query class with the following char-
acteristics:

e the text * (y or n) ’is used as the prompt;
e a single line of text is input;

e if the first non-whitespace character of the input is y or n (possibly in capitals), the
query returns the atom yes or no, respectively, as the abstract answer;

e otherwise a help message is displayed and the query is repeated.

There are built-in query classes for reading in yes/no answers, toplevel queries, debugger
commands, etc.

A query class is characterized by a ground Prolog term, which is supplied as the first
argument to the query processing predicate ask_query/4. The characteristics of a query
class are normally described by the extendible predicate
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’SU_messages’ :query_class(QueryClass, Prompt, InputMethod,

MapMethod, FailureMode) .

The arguments of the query_class predicate have the following meaning;:

Prompt

an atom to be used for prompting the user.

InputMethod

a non-variable term, which specifies how to obtain input from the user.

For example, a built-in input method is described by the atom line. This
requests that a line is input from the user, and the code-list is returned. An-
other built-in input method is term(Options); here, a Prolog term is read and
returned.

The input obtained using InputMethod is called raw input, as it may undergo
further processing.

In addition to the built-in input methods, the user can define his/her own
extensions.

MapMethod

a non-variable term, which specifies how to process the raw input to get the
abstract answer to the query.

For example, the built-in map method char ([yes-"yY", no-"nN"]) expects a
code-list as raw input, and gives the answer term yes or no depending on the
first non-whitespace character of the input. For another example, the built-
in map method = requests that the raw input itself be returned as the answer
term—this is often used in conjunction with the input method term(Options).

In addition to the built-in map methods the user can define his/her own exten-
sions.

FailureMode

This is used only when the mapping of raw input fails, and the query must be
repeated. This happens for example if the user typed a character other than
y or n in case of the yes_or_no query class. FailureMode determines what to
print before re-querying the user. Possible values are:

help_query
print a help message, then print the text of the query again
help only print the help message
query only print the text of the query
none don’t print anything

4.16.3.2 Phases of Query Processing

Query processing is done in several phases, described below. We will illustrate what is done
in each phase through a simple example: the question put to the user when the solution to
the toplevel query ‘X is 1+1’ is displayed, requesting a decision whether to find alternative
answers or not:
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| 7- X is 1+1.

X =27 no
Please enter ";" for more choices; otherwise, <return>
?

2

i

We focus on the query ‘X = 2 7’ in the above script.

The example query belongs to the class next_solution, its text is described by the message
term solutions([binding("X",2)]), and its help text by the message term bindings_
help. Accordingly, such a query is executed by calling:

ask_query(next_solution, /* QueryClass */
solutions([binding("X",2)]), /* Query */
bindings_help, /* Help */
Answer)

In general, execution of ask_query(QueryClass, Query, Help, Answer) consists of the
following phases:

Preparation phase

The abstract message terms Query (for the text of the query) and Help (for
the help message) are converted to format-command lines via the message
generation and line splitting phases (see Section 4.16.1 [Message Processing],
page 210). Let us call the results of the two conversions QueryLines and
HelpLines, respectively. The text of the query, QueryLines is printed imme-
diately (via the message printing phase, using query severity). HelpLines may
be printed later, and QueryLines printed again, in case of invalid user input.

The characteristics of QueryClass (described in the previous subsubsection) are
retrieved to control the exact behavior of the further phases.

In our example, the following parameters are sent in the preparation phase:

QueryLines = [[,0’"s="-["X"],write_term(2)]1]
HelpLines =

[[’Please enter ";" for more choices; otherwise, <return>’-[1]]
Prompt = 272
InputMethod = 1line
MapMethod = char([yes-";", no-[0’\n]])
FailureMode = help
QueryLines is displayed immediately, printing:

X =2

(Note that the first element of QueryLines is [], therefore the output is preceded
by a newline. Also note that no newline is printed at the end of the last line,
because the query severity is used.)

The subsequent phases will be called repeatedly until the mapping phase suc-
ceeds in generating an answer.
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Input phase
By default, the input phase is implemented by the extendible predicate

’SU_messages’ :query_input (InputMethod, Prompt, RawInput).

This phase uses the Prompt and InputMethod characteristics of the query
class. InputMethod specifies the method of obtaining input from the user.
This method is executed, and the result (Rawlnput) is passed on to the next
phase.

The use of Prompt may depend on InputMethod. For example, the built-in
input method line prints the prompt unconditionally, while the input method
term(_) passes Prompt to prompt/2.

In the example, first the ¢ ? > prompt is displayed. Next, because InputMethod
is line, a line of input is read, and the code-list is returned in RawInput. Sup-
posing that the user typed noRET, Rawlnput becomes " no" = [32,110,111].

Mapping phase
By default, the mapping phase is implemented by the extendible predicate
’SU_messages’ :query_map (MapMethod, RawInput,
Result, Answer).
This phase uses the MapMethod parameter to control the method of converting
the raw input to the abstract answer.

In some cases Rawlnput is returned as it is, but otherwise it has to be processed
(parsed) to generate the answer.

The conversion process may have two outcomes indicated in the Result re-
turned:

e success, in which case the query processing is completed with the Answer
term returned;

e failure, the query has to be repeated.

In the latter case a message describing the cause of failure may be returned, to
be printed before the query is repeated.

In our example, the map method is char([yes-";", no-[0’\n]]). The map-
ping phase fails for the RawInput passed on by the previous phase of the ex-
ample, as the first non-whitespace character is n, which does not match any of
the given characters.

Query restart phase
This phase is executed only if the mapping phase returned with failure.

First, if a message was returned by the mapping, it is printed. Subsequently, if
requested by the FailureMode parameter, the help message HelpLines and/or
the text of the query QueryLines is printed.

The query is then repeated—the input and mapping phase will be called again
to try to get a valid answer.

In the above example, the user typed an invalid character, so the mapping
failed. The char(_) mapping does not return any message in case of failure.
The FailureMode of the query class is help, so the help message HelpLines is
printed, but the query is not repeated:



218 SICStus Prolog

nter "; r mor i ; rwise, <return
Please enter ";" fo ore choices; othe se, <ret >

Having completed the query restart phase, the example script continues by re-
entering the input phase: the prompt ¢ 7 ’ is printed, another line is read, and
is processed by the mapping phase. If the user types the character ; this time,
the mapping phase returns successfully and gives the abstract answer term yes.

4.16.3.3 Hooks in Query Processing

As explained above, the major parts of query processing are implemented in the ’>SU_
messages’ module in the file ‘1ibrary (’SU_messages’)’ through the following extendible
predicates:

e ’SU_messages’:query_class(+QueryClass, -Prompt, —InputMethod,
-MapMethod, -FailureMode)

e ’SU_messages’:query_input (+InputMethod, +Prompt, -RawInput)

e ’SU_messages’:query_map(+MapMethod, +RawInput, -Result, —Answer)

This is to enable the user to change the language used, the processing done, etc., simply by
changing or replacing the ‘library (’SU_messages’)’ file.

To give more control to the user and to make the system more robust (for example if the >SU_
messages’ module is corrupt) the so-called four step procedure is used in the above three
cases—obtaining the query class parameters, performing the query input and performing
the mapping. The four steps of this procedure, described below, are tried in the given order
until the first one that succeeds. Note that if an exception is raised within the first three
steps, a warning is printed and the step is considered to have failed.

e First, a hook predicate is tried. The name of the hook is derived from the name of
the appropriate predicate by appending ‘_hook’ to it, e.g. user:query_class_hook/5
in case of the query class. If this hook predicate exists and succeeds, it is assumed to
have done all necessary processing, and the following steps are skipped.

e Second, the predicate in the ’SU_messages’ module is called (this is the default case,
these are the predicates listed above). Normally this should succeed, unless the mod-
ule is corrupt, or an unknown query-class/input-method /map-method is encountered.
These predicates are extendible, so new classes and methods can be added easily by
the user.

e Third, as a fall-back, a built-in minimal version of the predicates in the original ’>SU_
messages’ is called. This is necessary because the ‘library(’SU_messages’)’ file is
modifiable by the user, therefore vital parts of the Prolog system (e.g. the toplevel
query) could be damaged.

e If all the above steps fail, nothing more can be done, and an exception is raised.

4.16.3.4 Default Input Methods

The following InputMethod types are implemented by the default >SU_messages’ :query_
input (InputMethod, Prompt, RawInput) (and these are the input methods known to the
third, fall-back step):
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line The Prompt is printed, a line of input is read using read_line/2 and the
code-list is returned as Rawlnput.

term(Options)
Prompt is set to be the prompt (cf. prompt/2), and a Prolog term is read by
read_term/2 using the given Options, and is returned as Rawlnput.

FinalTerm~term(Term,Options)
A Prolog term is read as above, and is unified with Term. FinalTerm is returned
as Rawlnput. For example, the T-Vs~term(T, [variable_names(Vs)]) input
method will return the term read, paired with the list of variable names.

4.16.3.5 Default Map Methods

The following MapMethod types are known to ’SU_messages’:query_map(MapMethod,
RawInput, Result, Answer) and to the built-in fall-back mapping:

char(Pairs)
In this map method Rawlnput is assumed to be a code-list.

Pairs is a list of Name-Abbreviations pairs, where Name is a ground term, and
Abbreviations is a code-list. The first non-whitespace character of Rawlnput is
used for finding the corresponding name as the answer, by looking it up in the
abbreviation lists. If the character is found, Result is success, and Answer is
set to the Name found; otherwise, Result is failure.

= No conversion is done, Answer is equal to Rawlnput and Result is success.

debugger This map method is used when reading a single line debugger command. It
parses the debugger command and returns the corresponding abstract com-
mand term. If the parse is unsuccessful, the answer unknown(Line,Warning)
is returned. This is to allow the user to extend the debugger command language
via debugger_command_hook/2, see Section 5.5 [Debug Commands|, page 233.

The  details of this mapping can be obtained from the
‘library(’SU_messages’)’ file.

Note that the fall-back version of this mapping is simplified, it only accepts
parameterless debugger commands.

4.16.3.6 Default Query Classes

Most of the default query classes are designed to support some specific interaction with
the user within the Prolog development environment. The full list of query classes can be
inspected in the file ‘library(’SU_messages’)’. Here, we only describe the two classes
defined by ’SU_messages’ :query_class/5 that may be of general use:

QueryClass yes_or_no yes_no_proceed

Prompt > (y ormn) ’ > (y,n, p, s, a,or?)’

InputMethod line line

MapMethod char([yes-"yY", char([yes-"yY", no-"nN", proceed-"pP",
no-"nN"]) suppress-"sS", abort-"aA"])

FailureMode  help_query help_query
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4.16.4 Query Handling Predicates

ask_query(+QueryClass, +Query, +Help, —Answer) hookable
Prints the question Query, then reads and processes user input according to
QueryClass, and returns the result of the processing, the abstract answer term
Answer. The Help message is printed in case of invalid input. See Section 11.3.9
[mpg-ref-ask_query], page 894.

query_hook (+QueryClass, +Query, +QueryLines, +Help, +HelpLines, —-Answer)

hook

user:query_hook(+@ueryClass, +Query, +QueryLines, +Help, +HelpLines, —-Answer)
Called by ask_query/4 before processing the query. If this predicate succeeds,
it is assumed that the query has been processed and nothing further is done.

query_class_hook(+QueryClass, -Prompt, —InputMethod, -MapMethod,
-FailureMode) hook
user:query_class_hook(+QueryClass, -Prompt, —InputMethod, —-MapMethod,
-FailureMode)
Provides the wuser with a method of overriding the call to °’SU_
messages’ :query_class/5 in the preparation phase of query processing. This
way the default query class characteristics can be changed.

’SU_messages’ :query_class (+QueryClass, -Prompt, -InputMethod, -MapMethod,
-FailureMode) extendible
Predefined query class characteristics table.

’SU_messages’ :query_abbreviation(+QueryClass, -Prompt, -Pairs) extendible
Predefined query abbreviation table.

query_input_hook (+InputMethod, +Prompt, —RawInput) hook
user:query_input_hook (+InputMethod, +Prompt, —-RawInput)
Provides the wuser with a method of overriding the call to °’SU_
messages’ :query_input/3 in the input phase of query processing. This way
the implementation of the default input methods can be changed.

’SU_messages’ :query_input (+InputMethod, +Prompt, -RawInput) extendible
Predefined query input methods.

query_map_hook (+MapMethod, +RawInput, -Result, —Answer) hook
user:query_map_hook(+MapMethod, +RawInput, -Result, —Answer)
Provides the wuser with a method of overriding the call to °’SU_
messages’ :query_map/4 in the mapping phase of query processing. This way
the implementation of the default map methods can be changed.

’SU_messages’ :query_map (+MapMethod, +RawInput, -Result, —Answer) extendible
Predefined query map methods.

4.16.5 Predicate Summary

ask_query(+QueryClass, +Query, +Help, —Answer) hookable
Prints the question Query, then reads and processes user input according to
QueryClass, and returns the result of the processing, the abstract answer term
Answer. The Help message is printed in case of invalid input.



Chapter 4: The Prolog Language 221

user:message_hook (+M,+S,+L) hook
intercept the printing of a message

’SU_messages’ :generate_message (+M, 750, 7S) extendible
determines the mapping from a message term into a sequence of lines of text
to be printed

user:generate_message_hook(+M, 750, 7S) hook
intercept message before it is given to ’SU_messages’ :generate_message/3

goal_source_info(+AGoal, -Goal, -SourcelInfo)
Decomposes the annotated goal AGoal into a Goal proper and the Sourcelnfo
descriptor term, indicating the source position of the goal.

user:portray_message(+Severity,+Message) hook
Tells print_message/2 what to do.

print_message (+S,+M) hookable
print a message M of severity S

print_message_lines(+S,+P,+L)
print the message lines L to stream S with prefix P

’SU_messages’ :query_abbreviation(+T,-P) extendible
specifies one letter abbreviations for responses to queries from the Prolog system

user:query_hook(+QueryClass, +Query, +QueryLines, +Help, +HelpLines, —-Answer)
hook
Called by ask_query/4 before processing the query. If this predicate succeeds,
it is assumed that the query has been processed and nothing further is done.

’SU_messages’ :query_class (+QueryClass, -Prompt, -InputMethod, -MapMethod,
-FailureMode) extendible
Access the parameters of a given QueryClass.

user:query_class_hook(+QueryClass, -Prompt, —InputMethod, —-MapMethod,

-FailureMode) hook
Provides the wuser with a method of overriding the call to °’SU_
messages’ :query_class/5 in the preparation phase of query processing. This
way the default query class characteristics can be changed.

’SU_messages’ :query_input (+InputMethod, +Prompt, -RawInput) extendible
Implements the input phase of query processing.

user:query_input_hook (+InputMethod, +Prompt, -Rawlnput) hook
Provides the wuser with a method of overriding the call to °’SU_
messages’ :query_input/3 in the input phase of query processing. This way
the implementation of the default input methods can be changed.

’SU_messages’ :query_map (+MapMethod, +RawInput, -Result, -Answer) extendible
Implements the mapping phase of query processing.

user:query_map_hook (+MapMethod, +RawInput, -Result, —Answer) hook
Provides the wuser with a method of overriding the call to °’SU_
messages’ :query_map/4 in the mapping phase of query processing. This way
the implementation of the default map methods can be changed.
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4.17 Other Topics

This section describes topics that don’t fit elsewhere.

4.17.1 System Properties and Environment Variables

SICStus Prolog stores some information in named variables called system properties. System
properties are used since release 4.1, whereas previous releases used environment variables.

The default value when reading a system property is taken from the corresponding envi-
ronment variable. This makes system properties largely backward compatible with how
environment variables were used in previous releases. Any exceptions to this rule are ex-
plicitly mentioned in the documentation.

You can obtain the value of system properties and environment variables using
system:environ/[2,3] (see Section 10.36 [lib-system], page 723) and SP_getenv ().

Some system properties affect the SICStus Prolog initialization process and must therefore
be set before SICStus Prolog has been initialized. There are three ways to affect the initial
values of system properties:

1. Set the corresponding environment variable.

System properties get their default value from the environment so this is often a con-
venient method. It was the only method available prior to release 4.1.

2. Pass the ‘-Dvar=value’ option to the sicstus command line tool. See Section 13.1
[too-sicstus], page 1344.

3. Pass an option block to SP_initialize() if you initialize the SICStus runtime from
C. See Section 6.7.4.1 [Initializing the Prolog Engine], page 324.

Looking up system properties follows the platform convention for environment variables.
This means that the lookup is case sensitive on UNIX-like platforms and case insensitive
on Windows.

On UNIX-like systems, the environment is assumed to use the UTF-8 character encoding;
on Windows, the native Unicode encoding is used.

SICStus reads and copies the process environment during initialization, e.g. in SP_
initialize(). Any subsequent changes to the proces environment will not be detected
by SICStus. Note that, at least on UNIX-like systems, changing the process environment,
e.g. using setenv (), has undefined behavior when the process has multiple threads, which
is the case for any process running SICStus.

While copying the environment, each entry in the environment is normalized as follows:

e If it does not contain an equal sign, the entry is ignored.

e On Windows only, if it starts with an equal sign but has no other equal signs, the entry
is ignored.

e If the entry consists of valid UTF-8, it is kept as is. This is always true on Windows
where a Unicode encoding is used internally by the operating system.
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e If the entry does not consist of valid UTF-8, it is treated as Latin-1 and converted to
UTF-8. This cannot happen on Windows.

e On Windows only, if the entry starts with an equal sign, the equal sign is treated as
part of the variable name.

In particular, on UNIX-like systems, this means that the environment should preferably be
in UTF-8.

4.17.1.1 System Properties Set by SICStus Prolog

The following system properties are set automatically on startup.

SP_APP_DIR
The absolute path to the directory that contains the executable. Also available
as the application file search path.

SP_APP_PATH
The absolute path to the executable. Unlike SP_APP_DIR, this system property
may not be available under all circumstances.

SP_RT_DIR
The full path to the directory that contains the SICStus runtime. If the appli-
cation was linked statically to the SICStus runtime, SP_RT_DIR is the same as
SP_APP_DIR. Also available as the runtime file search path.

SP_RT_PATH
The absolute path to the SICStus runtime. Unlike SP_RT_DIR, this system
property may not be available under all circumstances, e.g. if the runtime is
not a shared library.

SP_LIBRARY_DIR
The absolute path to the directory that contains the SICStus library files. Also
available as the initial value of the library file search path.

SP_TEMP_DIR
A directory suitable for storing temporary files. It is particularly useful with
the open/4 option if_exists(generate_unique_name). Also available as the
temp file search path.

SP_STARTUP_DIR
During initialization the SP_STARTUP_DIR system property will be set to the
working directory used by SICStus.

Note that this system property can also be set prior to initialization, in order
to tell SICStus which working directory to use. See below.

4.17.1.2 System Properties Affecting Initialization

The following system properties can be set before starting SICStus Prolog.

Some of these override the default sizes of certain areas. For variables ending with ‘SIZE’,

the size is in bytes, but may be followed by ‘K’, ‘M’, or ‘G’ meaning 2**10, 2**20 and 2**30
respectively.
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Boolean values true and false are represented by ‘yes’ and ‘no’, respectively.

See Section 4.10 [ref-mgc|, page 142 for more information about the properties that affect
memory management.

SP_PATH  Can be used to specify the location of the Runtime Library. In most cases there
is no need to use it, but see Section 6.1 [CPL Notes], page 285.

SP_STARTUP_DIR
The value of this system property, if set, is used as the initial working directory.
Note that this system property is also set automatically during initialization;
see above.

This value of this system property is not read from the corresponding environ-
ment variable.

SP_ALLOW_CHDIR
If this system property is set to ‘no’, then SICStus will not change the process’s
working directory when the SICStus working directory changes. This is useful
when embedding SICStus and would probably be the better default behavior
except for backwards compatibility.

GLOBALSTKSIZE
Controls the initial size of the global stack. Please note: The global stack will
not be subsequently trimmed to a size smaller than this initial size.

LOCALSTKSIZE
Controls the initial size of the local stack. Please note: The local stack will not
be subsequently trimmed to a size smaller than this initial size.

CHOICESTKSIZE
Controls the initial size of the choicepoint stack. Please note: The choicepoint
stack will not be subsequently trimmed to a size smaller than this initial size.

TRAILSTKSIZE
Controls the initial size of the trail stack. Please note: The trail stack will not
be subsequently trimmed to a size smaller than this initial size.

GROWTHFACTOR since release 4.0.8
Meaningful values are between 10 and 100; the default is 62. Controls the rate
at which the Prolog stacks grow when they are expanded. These stacks are
stored in two data areas: one holding the global and local stacks; another one
holding the choicepoint and trail stacks. In addition, both data areas hold some
memory reserved for the garbage collector.

The sizes of the two data areas are constrained to take certain discrete values
only. The initial size as well as the size after expansion is constrained to be
w*((1+g)"n) kilobytes, rounded up to an integral number of words, where w is
the word length in bits, g is GROWTHFACTOR/100, and n is an integer.

PROLOGINITSIZE
Controls the size of Prolog’s initial memory allocation. Only used by the default
memory allocator (see Section 12.3.93 [SP_set_memalloc_hooks]|, page 1319).
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Please note: This initially allocated memory will be kept by the Prolog process
until SP_deinitialize() is called or the process exits.

PROLOGMAXSIZE
Defines an upper bound on the amount of memory that Prolog will use. If not
set, Prolog will try to use the available address space. Only used by the default
memory allocator (see Section 12.3.93 [SP_set_memalloc_hooks]|, page 1319).
Thus if Prolog needs to allocate memory beyond this bound, a memory resource
error will be raised.

PROLOGINCSIZE
Controls the amount of memory Prolog asks the operating system for in any
given memory expansion. Only used by the default memory allocator (see
Section 12.3.93 [SP_set_memalloc_hooks], page 1319).

PROLOGKEEPSIZE
Defines a lower bound on the amount of memory retained by trimcore/O0.
By default, Prolog gets memory from the O/S as the user program executes,
whereas trimcore/0 endeavors to return free memory back to the O/S. If the
programmer knows that her program, once it has grown to a certain size, is likely
to need as much memory for future computations, she can advise Prolog not to
return all the free memory back to the operating system by setting this vari-
able. trimcore/0 only endeavors to return memory that is allocated above and
beyond PROLOGKEEPSIZE; the rest will be kept. Only used by the default mem-
ory allocator (see Section 12.3.93 [SP_set_memalloc_hooks|, page 1319). Please
note: The initially allocated memory will be kept by the Prolog process forever,
S0 it is not meaningful to set PROLOGKEEPSIZE smaller than PROLOGINITSIZE.

SP_ULIMIT_DATA_SEGMENT_SIZE
Sets the maximum size of the data segment of the Prolog process. The value
can be unlimited or a numeric value as described in the first paragraph in
this section. A numeric value of zero (0) is equivalent to unlimited. Not used
under Windows.

SP_USE_MALLOQOC
If yes then malloc() et al. will be used for memory management instead of
the default memory allocator. This is sometimes useful, e.g$: with debugging
tools like valgrind.

Please note: Enabling malloc () allocation is not compatible with JI'T compi-
lation.

SP_JIT since release 4.3
Affects whether the JIT (Just In Time) compiler should be used to compile
Prolog code inte native (machine) code. One of:

yes JIT compilation is enabled and happens automatically. This is the
default on platforms that support JIT compilation.

no JIT compilation is enabled but does not happen automatically.
Currently, there is no documented way to JIT compile predicates
manually.
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disabled JIT compilation is disabled completely. Please report if you en-
counter any reason to disable the JIT compiler.

JIT compilation may need to be disabled on certain security-
hardened operating systems, e.g. because they do not permit mem-
ory to be both writeable and executable.

This system property is ignored on platforms that do not support the JIT
compiler.

SP_JIT_COUNTER_LIMIT since release 4.3
Determines how many times a predicate can be called before it is JIT compiled.
The default is 0.

The heuristics used in order to decide when, and whether, a predicate should
be JIT compiled, is subject to change without notice. In particular, this system
property may be treated differently in some future release.

SP_JIT_CLAUSE_LIMIT since release 4.3
Sets an upper bound on the number of clauses of a predicate for JIT compilation
to be attempted. The default is 1024.

SP_SPTI_PATH since release 4.3
Specify a plugin that will be told when predicates are JIT compiled. The details
of writing or using such plugins are currently not documented, and subject to
change without notice.

There are two predefined plugins,

verbose  Write verbose information when a predicate is JIT compiled. This
can be useful when troubleshooting problems with JI'T compilation,
e.g. if some predicate takes too long to JIT-compile.

This plugin can be activated by passing
‘~-DSP_SPTI_PATH=verbose’ to sicstus.

oprofile
Tell OProfile profiler about the location and name of the JIT com-
piled predicates. This makes it possible to use OProfile for getting
accurate and low-overhead profiling info about JIT compiled code.
Information about using OProfile for profiling jitted code is avail-
able at the OProfile site, http://oprofile.sourceforge.net/.

This plugin can be activated either by
passing ‘-DSP_SPTI_PATH=oprofile’ to sicstus, or, once SICS-
tus has started, with the goal use_module(library(oprofile)).

OProfile integration is only available on Linux.

4.17.1.3 Other System Properties

In addition some system properties are read during normal execution. In this case the
system property is typically not meant to be explicitly set, instead the value is intended to
be taken from the corresponding environment variable. Examples of such system properties
include PATH and HOME.
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5 Debugging

This chapter describes the debugging facilities that are available in development systems.
The purpose of these facilities is to provide information concerning the control flow of your
program.

The main features of the debugging package are as follows:

e The Procedure Box model of Prolog execution, which provides a simple way of visualiz-
ing control flow, especially during backtracking. Control flow is viewed at the predicate
level, rather than at the level of individual clauses.

e The ability to exhaustively trace your program or to selectively set spypoints. Spypoints
allow you to nominate interesting predicates at which, for example, the program is to
pause so that you can interact.

e The ability to set advice-points. An advice-point allows you to carry out some actions
at certain points of execution, independently of the tracing activity. Advice-points
can be used, e.g. for checking certain program invariants (cf. the assert facility of the
C programming language), or for gathering profiling or branch coverage information.
Spypoints and advice-points are collectively called breakpoints.

e The wide choice of control and information options available during debugging.

The Procedure Box model of execution is also called the Byrd Box model after its inventor,
Lawrence Byrd.

Much of the information in this chapter is also in Chapter eight of [Clocksin & Mellish 81],
which is recommended as an introduction.

Unless otherwise stated, the debugger prints goals using write_term/3 with the value of
the Prolog flag debugger_print_options.

The debugger is not available in runtime systems and the predicates defined in this chapter
are undefined; see Section 6.7.1 [Runtime Systems], page 313.

5.1 The Procedure Box Control Flow Model

During debugging, the debugger prints out a sequence of goals in various states of instantia-
tion in order to show the state the program has reached in its execution. However, in order
to understand what is occurring it is necessary to understand when and why the debugger
prints out goals. As in other programming languages, key points of interest are predicate
entry and return, but in Prolog there is the additional complexity of backtracking. One
of the major confusions that novice Prolog programmers have to face is the question of
what actually happens when a goal fails and the system suddenly starts backtracking. The
Procedure Box model of Prolog execution views program control flow in terms of movement
about the program text. This model provides a basis for the debugging mechanism in devel-
opment systems, and enables the user to view the behavior of the program in a consistent
way.

Let us look at an example Prolog predicate :
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Call | | Exit
—————— > + descendant(X,Y) :- offspring(X,Y). + -———-———->

| |
| descendant(X,Z) :- |

————————— + offspring(X,Y), descendant(Y,Z). + <--—------
Fail | I Redo
K —m Fmm *
|
______________________________ +
Exception

The first clause states that Y is a descendant of X if Y is an offspring of X, and the second
clause states that Z is a descendant of X if Y is an offspring of X and if Z is a descendant
of Y. In the diagram a box has been drawn around the whole predicate and labeled arrows
indicate the control flow in and out of this box. There are five such arrows, which we shall
look at in turn.

Call

Exit

Redo

Fail

This arrow represents initial invocation of the predicate. When a goal of the
form descendant (X,Y) is required to be satisfied, control passes through the
Call port of the descendant box with the intention of matching a component
clause and then satisfying the subgoals in the body of that clause. Note that
this is independent of whether such a match is possible; i.e. first the box is
called, and then the attempt to match takes place. Textually we can imagine
moving to the code for descendant when meeting a call to descendant in some
other part of the code.

This arrow represents a successful return from the predicate. This occurs when
the initial goal has been unified with one of the component clauses and the
subgoals have been satisfied. Control now passes out of the Exit port of the
descendant box. Textually we stop following the code for descendant and go
back to the place we came from.

This arrow indicates that a subsequent goal has failed and that the system is
backtracking in an attempt to find alternatives to previous solutions. Control
passes through the Redo port of the descendant box. An attempt will now be
made to resatisfy one of the component subgoals in the body of the clause that
last succeeded; or, if that fails, to completely rematch the original goal with an
alternative clause and then try to satisfy any subgoals in the body of this new
clause. Textually we follow the code backwards up the way we came looking
for new ways of succeeding, possibly dropping down on to another clause and
following that if necessary.

This arrow represents a failure of the initial goal, which might occur if no
clause is matched, or if subgoals are never satisfied, or if any solution produced
is always rejected by later processing. Control now passes out of the Fail port
of the descendant box and the system continues to backtrack. Textually we
move back to the code that called this predicate and keep moving backwards
up the code looking for choicepoints.



Chapter 5: Debugging 229

Exception This arrow represents an exception that was raised in the initial goal, either by
a call to throw/1 or raise_exception/1 or by an error in a built-in predicate.
See Section 4.15 [ref-ere], page 195. Control now passes out of the Exception
port of the descendant box and the system continues to pass the exception to
outer levels. Textually we move back to the code that called this predicate
and keep moving backwards up the code looking for a call to catch/3 or on_
exception/3.

In terms of this model, the information we get about the procedure box is only the control
flow through these five ports. This means that at this level we are not concerned with
identifying the matching clause, and how any subgoals are satisfied, but rather we only
wish to know the initial goal and the final outcome. However, it can be seen that whenever
we are trying to satisfy subgoals, what we are actually doing is passing through the ports
of their respective boxes. If we were to follow this, we would have complete information
about the control flow inside the procedure box.

Note that the box we have drawn round the predicate should really be seen as an invocation
box. That is, there will be a different box for each different invocation of the predicate.
Obviously, with something like a recursive predicate, there will be many different Calls and
Exits in the control flow, but these will be for different invocations. Since this might get
confusing each invocation box is given a unique integer identifier.

In addition to the five basic ports discussed above, there are two more ports for invocations
involving a blocked goal:

Block This port is passed through when a goal is blocked.
Unblock  This port is passed through when a previously blocked goal is unblocked.

5.2 Basic Debugging Predicates

Development systems provide a range of built-in predicates for control of the debugging
facilities. The most basic predicates are as follows:

debug development
Switches the debugger on, and ensures that the next time control reaches a
spypoint, it will be activated. In basic usage this means that a message will be
produced and you will be prompted for a command. In order for the full range
of control flow information to be available it is necessary to have the debugger
on from the start. When it is off the system does not remember invocations
that are being executed. (This is because it is expensive and not required for
normal running of programs.) You can switch Debug Mode on in the middle of
execution, either from within your program or after a ~C (see trace/0 below),
but information prior to this will be unavailable. See Section 11.3.60 [mpg-ref-
debug], page 955.
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development
Same as debug/0, except no debugging information is being collected, and so is
almost as fast as running with the debugger switched off. See Section 11.3.255
[mpg-ref-zip|, page 1205.

development
Switches the debugger on, and ensures that the next time control enters an
invocation box, a message will be produced and you will be prompted for a
command. The effect of trace/0 can also be achieved by typing t after a ~C
interruption of a program.

At this point you have a number of options. See Section 5.5 [Debug Commands],
page 233. In particular, you can just type RET to creep (or single-step) into
your program. If you continue to creep through your program you will see every
entry and exit to/from every invocation box, including compiled code, except
for code belonging to hidden modules (see Section 4.11 [ref-mod], page 159).
You will notice that the debugger stops at all ports. However, if this is not
what you want, the next predicate gives full control over the ports at which you
are prompted. See Section 11.3.237 [mpg-ref-trace], page 1182.

leash(+Mode) development

Leashing Mode is set to Mode. Leashing Mode determines the ports of invo-
cation boxes at which you are to be prompted when you creep through your
program. At unleashed ports a tracing message is still output, but program
execution does not stop to allow user interaction. Note that 1leash/1 does not
apply to spypoints, the leashing mode of these can be set using the advanced
debugger features; see Section 5.6 [Advanced Debugging], page 239. Block and
Unblock ports cannot be leashed. Mode can be a subset of the following, spec-
ified as a list of the following:

call Prompt on Call.
exit Prompt on Exit.
redo Prompt on Redo.
fail Prompt on Fail.
exception

Prompt on Exception.
The following shorthands are also allowed:

leash(all)
Same as leash([exception,call,exit,redo,faill).

leash(half)
Same as leash([exception,call,redo]).

leash(loose)
Same as leash([exception,call]).

leash(tight)
Same as leash([exception,call,redo,faill).
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leash(off)
Same as leash([]).

The initial value of Leashing Mode is [call,exit,redo,fail,exception] (full
leashing). See Section 11.3.110 [mpg-ref-leash|, page 1019.

nodebug development

notrace development

nozip development
Switches the debugger off. Any spypoints set will be kept but will never be
activated.

debugging development

Prints information about the current debugging state. This will show:
1. Whether undefined predicates are being trapped.
2. What breakpoints have been set (see below).

3. What mode of leashing is in force (see above).
See Section 11.3.62 [mpg-ref-debugging], page 957.

5.3 Plain Spypoints

For programs of any size, it is clearly impractical to creep through the entire program.
Spypoints make it possible to stop the program whenever it gets to a particular predicate
of interest. Once there, one can set further spypoints in order to catch the control flow a
bit further on, or one can start creeping.

In this section we discuss the simplest form of spypoints, the plain spypoints. The more
advanced forms, the conditional and generic spypoints will be discussed later; see Section 5.6
[Advanced Debugging], page 239.

Setting a plain spypoint on a predicate indicates that you wish to see all control flow through
the various ports of its invocation boxes, except during skips. When control passes through
any port of an invocation box with a spypoint set on it, a message is output and the user is
asked to interact. Note that the current mode of leashing does not affect plain spypoints:
user interaction is requested on every port.

Spypoints are set and removed by the following built-in predicates. The first two are also
standard operators:

spy :Spec development
Sets plain spypoints on all the predicates given by the generalized predicate
spec Spec.
Examples:

| ?- spy [user:p, m:q/2, m:q/3].

| ?- spy m:[p/1, q/1].
If you set some spypoints when the debugger is switched off, it will be auto-
matically switched on, entering zip mode. See Section 11.3.216 [mpg-ref-spy],
page 1155.
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nospy :Spec development
Similar to spy Spec except that all the predicates given by Spec will have all
previously set spypoints removed from them (including conditional spypoints;
see Section 5.6.1 [Creating Breakpoints|, page 239). See Section 11.3.132 [mpg-
ref-nospy]|, page 1050.

nospyall development
Removes all the spypoints that have been set, including the conditional and
generic ones. See Section 11.3.133 [mpg-ref-nospyall], page 1051.

The commands available when you arrive at a spypoint are described later. See Section 5.5
[Debug Commands], page 233.

5.4 Format of Debugging Messages

We shall now look at the exact format of the message output by the system at a port.
All trace messages are output to the standard error stream, using the print_message/2
predicate; see Section 4.16 [ref-msg], page 210. This allows you to trace programs while
they are performing file I/O. The basic format is as follows:

N S 23 F6 Call: T foo(hello,there,_123) 7

N is only used at Exit ports and indicates whether the invocation could backtrack and
find alternative solutions. Unintended nondeterminacy is a source of inefficiency, and this
annotation can help spot such efficiency bugs. It is printed as ‘?’, indicating that foo/3
could backtrack and find alternative solutions, or ¢ ’ otherwise.

S is a spypoint indicator. If there is a plain spypoint on foo/3, it is printed as ‘+’. In case
of conditional and generic spypoints it takes the form ‘*’ and ‘#’, respectively. Finally, it is
printed as ¢ 7, if there is no spypoint on the predicate being traced.

The first number is the unique invocation identifier. It is increasing regardless of whether
or not debugging messages are output for the invocations (provided that the debugger is
switched on). This number can be used to cross correlate the trace messages for the various
ports, since it is unique for every invocation. It will also give an indication of the number of
procedure calls made since the start of the execution. The invocation counter starts again
for every fresh execution of a command, and it is also reset when retries (see later) are
performed.

Just before the second number is an optional frame marker, printed as ‘@ if present. This
marks the location of the current frame, the meaning of which is explained in the next
section.

The second number is the current depth; i.e. the number of direct ancestors this goal has,
for which a procedure box has been built by the debugger.

The next word specifies the particular port (Call, Exit, Redo, Fail, or Exception).

(~)

T is a subterm trace. This is used in conjunction with the command (set subterm),
described below. If a subterm has been selected, T is printed as the sequence of commands
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used to select the subterm. Normally, however, T is printed as °

subterm has been selected.

', indicating that no

The goal is then printed so that you can inspect its current instantiation state.

The final ‘?’ is the prompt indicating that you should type in one of the commands allowed
(see Section 5.5 [Debug Commands|, page 233). If this particular port is unleashed, you will
not get this prompt since you have specified that you don’t wish to interact at this point.

At Exception ports, the trace message is preceded by a message about the pending excep-
tion, formatted as if it would arrive uncaught at the top-level.

Note that calls that are compiled inline are not traced.
Block and Unblock ports are exceptions to the above debugger message format. A message
S - - Block: p(_133)

indicates that the debugger has encountered a blocked goal, i.e. one which is temporar-
ily suspended due to insufficiently instantiated arguments (see Section 4.2.4 [ref-sem-sec],
page 73). By default, no interaction takes place at this point, and the debugger simply
proceeds to the next goal in the execution stream. The suspended goal will be eligible for
execution once the blocking condition ceases to exist, at which time a message

S - - Unblock: p(_133)

is printed. Although Block and Unblock ports are unleashed by default in trace mode, you
can make the debugger interact at these ports by using conditional spypoints.

5.5 Commands Available during Debugging

This section describes the particular commands that are available when the system prompts
you after printing out a debugging message. All the commands are one or two letter
mnemonics, among which some can be optionally followed by an argument. They are read
from the standard input stream with any blanks being completely ignored up to the end of
the line (RET).

While you are typing commands at a given port, the debugger maintains a notion of current
frame of the ancestor stack. The “current goal”, referred to by many commands, is the goal
of the current frame. The current frame is initially at the bottom of the ancestor stack, but
can be moved by certain commands. If the current frame is above the bottom of the stack,
the port indicator, displayed in front of the current goal, is replaced by the word Ancestor.

The only command that you really have to remember is ‘h’ (followed by RET). This provides
help in the form of the following list of available commands.
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ET  creep C creep
leap z zip
skip s <i> skip i
out o <n> out n
q-skip q <i> g-skip i
retry r <i> retry i
fail f <i> fail i
<p> jump to port j<p><i>jump to port i

display W write
print p <n> print partial
ancestors g <n> ancestors n
backtrace t <n> backtrace n
frame up ] frame down

<i> frame i ] <i> frame i
variables v <i> wvariables i
blocked goals & <n> nth blocked goal
nodebug = debugging
spy this * spy conditionally
nospy this \ <i> remove brkpoint

<i> disable brkpoint E <i> enable brkpoint
abort b break
command u unify
raise exception . find this
reset printdepth < <n> set printdepth
reset subterm ~ <n> set subterm
help h help

creep causes the debugger to single-step to the very next port and print a
message. Then if the port is leashed (see Section 5.2 [Basic Debug], page 229),
the user is prompted for further interaction. Otherwise, it continues creeping.
If leashing is off, creep is the same as leap (see below) except that a complete
trace is printed on the standard error stream.

leap causes the debugger to resume running your program, only stopping when
a spypoint is reached (or when the program terminates). Leaping can thus be
used to follow the execution at a higher level than exhaustive tracing. All you
need to do is to set spypoints on an evenly spread set of pertinent predicates,
and then follow the control flow through these by leaping from one to the other.
Debugging information is collected while leaping, so when a spypoint is reached,
it is possible to inspect the ancestor goals, or creep into them upon entry to
Redo ports.

zip is like leap, except no debugging information is being collected while zipping,
resulting in significant savings in memory and execution time.

skip is only valid for Call and Redo ports. It skips over the entire execution
of the predicate. That is, you will not see anything until control comes back
to this predicate (at either the Exit port or the Fail port). Skip is particularly
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Jj<p>

useful while creeping since it guarantees that control will be returned after the
(possibly complex) execution within the box. If you skip, no message at all will
appear until control returns. This includes calls to predicates with spypoints
set; they will be masked out during the skip. No debugging information is being
collected while skipping.

If you supply an integer argument, this should denote an invocation number of
an ancestral goal. The system tries to get you to the Exit or Fail port of the
invocation box you have specified.

out is a shorthand for skipping to the Exit or Fail port of the immediate ancestor
goal. If you supply an integer argument n, it denotes skipping to the Exit or
Fail port of the nth ancestor goal.

quasi-skip is like a combination of zip and skip: execution stops when either
control comes back to this predicate, or a spypoint is reached. No debugging
information is being collected while quasi-skipping.

An integer argument can be supplied as for skip.

retry can be used at any port (although at the Call port it has no effect). It
transfers control back to the Call port of the box. This allows you to restart
an invocation when, for example, you find yourself leaving with some weird
result. The state of execution is exactly the same as when you originally called,
(unless you use side-effects in your program; i.e. asserts etc. will not be undone).
When a retry is performed the invocation counter is reset so that counting
will continue from the current invocation number regardless of what happened
before the retry. This is in accord with the fact that you have, in executional
terms, returned to the state before anything else was called.

If you supply an integer argument, this should denote an invocation number
of an ancestral goal. The system tries to get you to the Call port of the box
you have specified. It does this by continuously failing until it reaches the right
place. Unfortunately this process cannot be guaranteed: it may be the case
that the invocation you are looking for has been cut out of the search space by
cuts (!) in your program. In this case the system fails to the latest surviving
Call port before the correct one.

fail can be used at any of the four ports (although at the Fail port it has no
effect). It transfers control to the Fail port of the box, forcing the invocation
to fail prematurely.

If you supply an integer after the command, this is taken as specifying an
invocation number and the system tries to get you to the Fail port of the
invocation box you have specified. It does this by continuously failing until it
reaches the right place. Unfortunately this process cannot be guaranteed: it
may be the case that the invocation you are looking for has been cut out of the
search space by cuts (!) in your program. In this case the system fails to the
latest surviving Fail port before the correct one.

jump to port transfers control back to the prescribed port <p>. Here, <p> is
one of: ‘c’, ‘e’, ‘r’, ‘f’, standing for Call, Exit, Redo and Fail ports. Takes an
optional integer argument, an invocation number.
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Jumping to a Call port is the same as retrying it, i.e. ‘jc’ is the same as the ‘r’
debugger command; and similarly ‘jf’ is the same as ‘f’.

The ‘je’ jump to Exit port command transfers control back to the Exit port
of the box. It can be used at a Redo or an Exit port (although at the latter it
has no effect). This allows you to restart a computation following an Exit port,
which you first leapt over, but because of its unexpected failure you arrived
at the Redo port. If you supply an integer argument, this should denote an
eract invocation number of an exited invocation present in the backtrace, and
then the system will get you to the specified Exit port. The debugger requires
here an exact invocation number so that it does not jump too far back in the
execution (if an Exit port is not present in the backtrace, it may be be a better
choice to jump to the preceding Call port, rather than to continue looking for
another Exit port).

The ‘jr’ jump to Redo port command transfers control back to the Redo port
of the box. It can be used at an Exit or a Redo port (although at the latter it
has no effect). This allows you to force the goal in question to try to deliver
another solution. If you supply an integer argument, this should denote an
exact invocation number of an exited invocation present in the backtrace, and
then the system will get you to the specified Redo port.

display goal displays the current goal using display/1. See Write (below).

print goal displays the current goal using print/1. An argument will override
the default printdepth, treating 0 as infinity.

write goal displays the current goal using writeq/1.

print ancestor goals provides you with a list of ancestors to the current goal, i.e.
all goals that are hierarchically above the current goal in the calling sequence.
You can always be sure of jumping to the Call or Fail port of any goal in the
ancestor list (by using retry etc). If you supply an integer n, only that number
of ancestors will be printed. That is to say, the last n ancestors will be printed
counting back from the current goal. Each entry is displayed just as they would
be in a trace message, except the current frame is indicated by a @ in front of
the invocation number.

print backtrace is the same as the above, but also shows any goals that have
exited nondeterminately and their ancestors. This information shows where
there are outstanding choices that the program could backtrack to. If you
supply an integer n, only that number of goals will be printed.

Ancestors to the current goal are annotated with the ‘Call:’ port, as they have
not yet exited, whereas goals that have exited are annotated with the ‘Exit:’
port. You can always be sure of jumping to the Exit or Redo port of any goal
shown to be exited in the backtrace listing.

The backtrace is a tree rather than a stack: to find the parent of a given goal
with depth indicator d, look for the closest goal above it with depth indicator
d-1.
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[ since release 4.2
frame up: moves the frame up one step. If you supply an argument, it should
denote an invocation number of an existing goal.

] since release 4.2
frame down: moves the frame down one step. If you supply an argument, it
should denote an invocation number of an existing goal.

v since release 4.2
print variable bindings endeavors to print the variable bindings of the clause
containing the current goal. This is available for both compiled and interpreted
code, if the source code was originally loaded with the source_info Prolog flag
switched on. The coverage is usually better for compiled code. If you supply
an argument, it should denote an invocation number of an existing goal.

Just like the top-level, the debugger displays variable bindings as well as any
goals that are blocked on a variable found among those bindings, and prompts
for the same one-letter commands as the top-level does; see Section 3.4.1
[Queries]|, page 23. To return to the debugger, simply type RET.

& print blocked goals prints a list of the goals that are currently blocked in the
current debugging session together with the variable that each such goal is
blocked on (see Section 4.2.4 [ref-sem-sec], page 73). The goals are enumerated
from 1 and up. If you supply an integer n, only that goal will be printed. Each
entry is preceded by the goal number followed by the variable name.

n nodebug switches the debugger off. Note that this is the correct way to switch
debugging off at a trace point. You cannot use the @ or b commands because
they always return to the debugger.

= debugging outputs information concerning the status of the debugging package.
See the built-in predicate debugging/0.

+ spy this sets a plain spypoint on the current goal.

* spy this conditionally sets a conditional spypoint on the current goal. Prompts
for the Conditions, and calls the

spy (Func, Conditions)

goal, where Func is the predicate spec of the current invocation. For spy/2,
see Section 5.7 [Breakpoint Predicates], page 268.

- nospy this removes all spypoints applicable to the current goal. Equivalent to
nospy Func, where Func is the predicate spec of the current invocation.

\ remove this removes the spypoint that caused the debugger to interact at the
current port. With an argument n, it removes the breakpoint with identifier n.
Equivalent to remove_breakpoints (BID), where BID is the current breakpoint
identifier, or the supplied argument (see Section 5.7 [Breakpoint Predicates],
page 268).

D disable this disables the spypoint that caused the debugger to interact at the
current port. With an argument n, it disables the breakpoint with identi-
fier n. Equivalent to disable_breakpoints(BID), where BID is the current
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breakpoint identifier, or the supplied argument (see Section 5.7 [Breakpoint
Predicates], page 268).

enable this enables all specific spypoints for the predicate at the current port.
With an argument n, it enables the breakpoint with identifier n. Equivalent
to enable_breakpoints(BID), where BID is the breakpoint identifiers for the
current predicate, or the supplied argument (see Section 5.7 [Breakpoint Pred-
icates], page 268).

find this outputs information about where the predicate being called is defined.

abort causes an abort of the current execution. All the execution states built
so far are destroyed and you are put right back at the top-level. (This is the
same as the built-in predicate abort/0.)

break calls the built-in predicate break/0, thus putting you at a recursive top-
level with the execution so far sitting underneath you. When you end the break
("D) you will be reprompted at the port at which you broke. The new execution
is completely separate from the suspended one; the invocation numbers will
start again from 1 during the break. The debugger is temporarily switched
off as you call the break and will be re-switched on when you finish the break
and go back to the old execution. However, any changes to the leashing or to
spypoints will remain in effect.

command gives you the ability to call arbitrary Prolog goals. It is effectively
a one-off break (see above). The initial message ‘| :- ’ will be output on
the standard error stream, and a command is then read from the standard
input stream and executed as if you were at top-level. If the term read is of
form Pattern ~ Body, Pattern is unified with the current goal and Body is
executed. Please note:

1. If Body is compound, it should be parenthesized.

2. If the current goal has a module qualifier, Pattern should not include the
module qualifier.

unify is available at the Call port and gives you the option of providing a
solution to the goal from the standard input stream rather than executing the
goal. This is convenient e.g. for providing a “stub” for a predicate that has not
yet been written. A prompt will be output on the standard error stream, and
the solution is then read from the standard input stream and unified with the
goal. If the term read in is of the form Head :- Body, Head will be unified with
the current goal, and Body will be executed in its place.

raise exception is available at all ports. A prompt will be output on the standard
error stream, and an exception term is then read from the standard input stream
and raised in the program being debugged.

This command, without arguments, resets the printdepth to 10. With an ar-
gument of n, the printdepth is set to n, treating 0 as infinity. This command
works by changing the value of the debugger_print_options Prolog flag.
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While at a particular port, a current subterm of the current goal is maintained.
It is the current subterm that is displayed, printed, or written when prompt-
ing for a debugger command. Used in combination with the printdepth, this
provides a means for navigating in the current goal for focusing on the part of
interest. The current subterm is set to the current goal when arriving at a new
port. This command, without arguments, resets the current subterm to the
current goal. With an argument of n (> 0), the current subterm is replaced by
its n:th subterm. With an argument of 0, the current subterm is replaced by its
parent term. With multiple arguments separated by whitespace, the arguments
are applied from left to right.

help displays the table of commands given above.

The user can define new debugger commands or modify the behavior of the above ones
using the user:debugger_command_hook/2 hook predicate, see Section 5.7 [Breakpoint
Predicates], page 268.

5.6 Advanced Debugging — an Introduction

This section gives an overview of the advanced debugger features. These center around the
notion of breakpoint. Breakpoints can be classified as either spypoints (a generalization of
the plain spypoint introduced earlier) or advice-points (e.g. for checking program invariants
independently from tracing). The first five subsections will deal with spypoints only. Nev-
ertheless we will use the term breakpoint, whenever a statement is made that applies to
both spypoints and advice-points.

Section 5.8 [Breakpoint Processing], page 271 describes the breakpoint processing mecha-
nism in full detail. Reference style details of built-in predicates dealing with breakpoints
are given in Section 5.7 [Breakpoint Predicates|, page 268 and in Section 5.9 [Breakpoint
Conditions|, page 273.

5.6.1 Creating Breakpoints

Breakpoints can be created using the add_breakpoint/2 built-in predicate. Its first argu-
ment should contain the description of the breakpoint, the so called breakpoint spec. It will
return the breakpoint identifier (BID) of the created breakpoint in its second argument.
For example:

| 7- add_breakpoint(pred(foo/2), BID).
% Plain spypoint for user:foo/2 added, BID=1
BID = 1

Here, we have a simple breakpoint spec, prescribing that the debugger should stop at all
ports of all invocations of the predicate foo/2. Thus the above goal actually creates a plain
spypoint, exactly as 7- spy foo/2. does.

A slightly more complicated example follows:
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| ?- add_breakpoint ([pred(foo/2),1ine(’/myhome/bar.pl’,123)], _).
% Conditional spypoint for user:foo/2 added, BID=1

This breakpoint will be activated only for those calls of foo/2 that occur in line 123 of the
Prolog program file ’ /myhome/bar.pl’. Because of the additional condition, this is called
a conditional spypoint.

The breakpoint identifier (BID) returned by add_breakpoint/2 is an integer, assigned in
increasing order, i.e. more recent breakpoints receive higher identifier values. When looking
for applicable breakpoints, the debugger tries the breakpoints in descending order of BIDs,
i.e. the most recent applicable breakpoint is used. Breakpoint identifiers can be used for
referring to breakpoints to be deleted, disabled or enabled (see later).

Generally, the breakpoint spec is a pair Tests-Actions. Here, the Tests part describes the
conditions under which the breakpoint should be activated, while the Actions part contains
instructions on what should be done at activation. The test part is built from tests, while
the action part from actions and tests. Test, actions and composite constructs built from
these are generally referred to as breakpoint conditions, or simply conditions.

The action part can be omitted, and then the breakpoint spec consists of tests only. For
spypoints, the default action part is [show(print),command(ask)]. This instructs the
debugger to print the goal in question and then ask the user what to do next, exactly as
described in Section 5.4 [Debug Format]|, page 232. To illustrate other possibilities let us
explain the effect of the [show(display),command(proceed)] action part: this will use
display/1 for presenting the goal (just as the ‘d” debugger command does, see Section 5.5
[Debug Commands], page 233), and will then proceed with execution without stopping (i.e.
the spypoint is unleashed).

5.6.2 Processing Breakpoints

We first give a somewhat simplified sketch of how the debugger treats the breakpoints. This
description will be refined in the sequel.

The debugger allows us to prescribe some activities to be performed at certain points of
execution, namely at the ports of procedure boxes. In principle, the debugger is entered
at each port of each procedure invocation. It then considers the current breakpoints one
by one, most recent first. The first breakpoint for which the evaluation of the test part
succeeds is then activated, and the execution continues according to its action part. The
activated breakpoint “hides” the remaining (older) ones, i.e. those are not tried here. If
none of the current breakpoints is activated, the debugger behaves according to the actual
debugging mode (trace, debug or zip).

Both the test and the action part can be simple or composite. Evaluating a simple test
amounts to checking whether it holds in the current state of execution, e.g. pred(foo/2)
holds if the debugger is at a port of predicate foo/2.

Composite conditions can be built from simple ones by forming lists, or using the *,’; *;’,

‘=>" and ‘\+’ operators, with the usual meaning of conjunction, disjunction, if-then-else
and negation. A list of conditions is equivalent to a conjunction of the same conditions.
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For example, the condition [pred(foo/2), \+port(fail)] will hold for all ports of foo/2,
except for the Fail port.

5.6.3 Breakpoint Tests

This section gives a tour of the most important simple breakpoint tests. In all examples
here the action part will be empty. Note that the examples are independent, so if you want
to try out these you should get rid of the old breakpoints (e.g. using ?- nospyall.) before
you enter a new one.

The goal(...) test is a generalization of the pred(...) test, as it allows us to check the
arguments of the invocation. For example:

| ?- add_breakpoint(goal(foo(1,_)), _).
% Conditional spypoint for user:foo/2 added, BID=1

The goal(G) breakpoint test specifies that the breakpoint should be applied only if the
current goal is an instance of G, i.e. G and the current goal can be unified without sub-
stituting any variables in the latter. This unification is then carried out. The goal(G)
condition is thus equivalent to the subsumes (G, CurrentGoal) test (subsumes/2 is defined
in library(terms), see Section 10.38 [lib-terms], page 817).

In the above example the debugger will stop if foo/2 is called with 1 as its first argument,
but not if the first argument is, say, 2, nor if it is a variable.

You can use non-anonymous variables in the goal test, and then put further constraints on
these variables using the true condition:

| 7- add_breakpoint ([goal (foo(X,_)),true(X>1)], _).
% Conditional spypoint for user:foo/2 added, BID=1

Here the first test, goal, specifies that we are only interested in invocations of foo/2, and
names the first argument of the goal as X. The second, the true/1 test, specifies a further
condition stated as a Prolog goal: X is greater than 1 (we assume here that the argument is
numeric). Thus this breakpoint will be applicable if and only if the first argument of foo/2
is greater than 1. Generally, an arbitrary Prolog goal can be placed inside the true test:
the test will succeed if and only if the goal completes successfully.

Any variable instantiations in the test part will be undone before executing the action part,
as the evaluation of the test part is enclosed in a double negation (\+ \+ (...)). This
ensures that the test part has no effect on the variables of the current goal.

Both the pred and the goal tests may include a module name. In fact, the first argument
of add_breakpoint is module name expanded, and the (explicit or implicit) module name
of this argument is then inherited by default by the pred, goal, and true tests. Notice the
module qualification inserted in front of the breakpoint spec of the last example, as shown
in the output of the debugging/0 built-in predicate:
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| 7- debugging.
...
Breakpoints:
1 x user:foo/2 if user:[goal(foo(A,B)),true(A>1)]

As no explicit module qualifications were given in the tests, this breakpoint spec is trans-
formed to the following form:

[goal(user:foo(A,B)),true(user: (A>1))]

For exported predicates, a pred or goal test will be found applicable for all invocations of the
predicate, irrespective of the module the call occurs in. When you add the breakpoint you
can use the defining or an importing module name, but this information is not remembered:
the module name is “normalized”, i.e. it is changed to the defining module. The example
below shows this: although the spypoint is placed on user:append, the message and the
breakpoint list both mention 1lists:append.

| ?- use_module(library(lists)).

...
% module lists imported into user
C...)

| ?- spy user:append.
% Plain spypoint for lists:append/3 added, BID=1
| ?- debugging.
...
Breakpoints:
1 + lists:append/3

Note that the debugger does not stop inside a library predicate when doing an exhaustive
trace. This is because the library modules are declared hidden (see Section 4.11 [ref-mod],
page 159), and no trace is produced for calls inside hidden modules that invoke predicates
defined in hidden modules. However, a spypoint is always shown in the trace, even if it
occurs in a hidden module:

+ 1 1 Call: append([1,2],[3,4],_531) 7 RET

+ 2 2 Call: lists:append([2],[3,4],_1182) 7 RET
+ 3 3 Call: lists:append([],[3,4],_1670) 7 RET
+ 3 3 Exit: lists:append([],[3,4],[3,4]) ? RET
...)

You can narrow a breakpoint to calls from within a particular module by using the module
test, e.g.
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| ?- add_breakpoint ([pred(append/3),module (user)], _).
% The debugger will first zip -- showing spypoints (zip)
% Conditional spypoint for lists:append/3 added, BID=1

% zip
| ?- append([1,2], [3,4], L).
* 1 1 Call: append([1,2],[3,4],_.5631) ? RET
% 1 1 Exit: append([1,2]1,[3,4],[1,2,3,4]1) 7 RET

L = [1929334]

With this spypoint, the debugger will only stop at the invocations of append/3 from the
user module.

Note that calling module information is not kept by the compiler for the built-in predicates,
therefore the module test will always unify its argument with prolog in case of compiled
calls to built-in predicates.

There are two further interesting breakpoint tests related to invocations: inv(Inv) and
depth(Depth). These unify their arguments with the invocation number and the depth,
respectively (the two numbers shown at the beginning of each trace message). Such tests
are most often used in more complex breakpoints, but there may be some simple cases when
they are useful.

Assume you put a plain spypoint on foo/2, and start leaping through your program. After
some time, you notice some inconsistency at an Exit port, but you cannot go back to the
Call port for retrying this invocation, because of side-effects. So you would like to restart
the whole top-level goal and get back to the Call port of the suspicious goal as fast as
possible. Here is what you can do:

| ?- spy foo/2.

% Plain spypoint for user:foo/2 added, BID=1

| 7- debug, foo(23, X).

% The debugger will first leap -- showing spypoints (debug)

+ 1 1 Call: foo(23,_414) 7 1

...

+ 81 17 Call: foo(7,_9151) 7 1

+ 86 18 Call: foo(6,_9651) 7 1

+ 86 18 Exit: foo0(6,8) 7 -

% Plain spypoint for user:foo/2, BID=1, removed (last)
86 18 Exit: foo(6,8) 7 *

Placing spypoint on user:foo/2 with conditions: inv(86).

% Conditional spypoint for user:foo/2 added, BID=1

* 86 18 Exit: foo0(6,8) 7 a

% Execution aborted

% source_info

| 7- debug, foo(23, X).

% The debugger will first leap -- showing spypoints (debug)
* 86 18 Call: foo(6,_.2480) 7 RET
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When you reach the Exit port of the suspicious invocation (number 86), you remove the
plain spypoint (via the - debugger command), and add a conditional one using the ‘¥’
debugger command. This automatically includes pred(foo/2) among the conditions and
displays the prompt ‘Placing spypoint ... with conditions:’, requesting further ones.
You enter here the inv test with the invocation number in question, resulting in a breakpoint
with the [pred(foo/2),inv(86)] conditions. If you restart the original top-level goal in
debug mode, the debugger immediately positions you at the invocation with the specified
number.

Note that when the debugger executes a skip or a zip command, no procedure boxes are
built. Consequently, the invocation and depth counters are not incremented. If skip and/or
zip commands were used during the first execution, the suspicious invocation gets an in-
vocation number higher than 86 in the second run. Therefore it is better to supply the
inv(I),true(I>=86) condition to the ‘*’ debugger command, which will bring you to the
first call of foo/2 at, or after invocation number 86 (which still might not be the suspicious
invocation).

In the examples, the inv test was used both with a numeric and a variable argument
(inv(86) and inv(I)). This is possible because the debugger unifies the given feature with
the argument of the test. This holds for most tests, we will mention the exceptions.

Another similar example: if you suspect that a given predicate goes into an infinite recursion,
and would like the execution to stop when entering this predicate somewhere inside the
recursion, you can do the following:

| ?- add_breakpoint ([pred(foo/2),depth(_D),true(_D>=100)], _).
% Conditional spypoint for user:foo/2 added, BID=1
% zip,source_info
| ?- debug, foo(200, X).
% The debugger will first leap -- showing spypoints (debug)
* 496 100 Call: foo(101,_12156) 7

The above breakpoint spec will cause the debugger to stop at the first invocation of foo/2
at depth 100 or greater. Note again that debug mode has to be entered for this to work (in
zip mode no debugging information is kept, so the depth does not change).

We now continue with tests that restrict the breakpoint to an invocation at a specific place
in the code.

Assume file /home/bob/myprog.pl contains the following Prolog program:

7% /home/bob/myprog.pl
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pX, U) :- % line 1
qX, V), % line 2
q(y, 2), % line 3
¢ \+q(zZ, 0 % line 4
-> q(zZ+1, U) % line 5
;0 q(Z+2, ) % line 6
). % ...
q(X, Y) :-
X <10, !, Y is X+1. % line 10
qX, Y) :-
Y is X+2. % line 12

If you are interested only in the last invocation of q/2 within p/2, you can use the following
breakpoint:

| ?- add_breakpoint ([pred(q/2),line(’/home/bob/myprog.pl’,6)], _).
% Conditional spypoint for user:q/2 added, BID=1

Generally, the test line(File,Line) holds if the current invocation was in line number
Line of a file whose absolute name is File. This test (as well as the line/1 and file/1
tests; see below) require the presence of source information: the file in question had to
be consulted or compiled with the source_info Prolog flag switched on (i.e. set to on or
emacs).

If e.g. q/2 is called only from a single file, the file name need not be mentioned and a
line/1 test suffices: 1ine(6). On the other hand, if we are interested in all invocations of
a predicate within a file, we can omit the line number and use the file(File) test.

For Prolog programs that are interpreted (consulted or asserted), further positioning in-
formation can be obtained, even in the absence of source information. The test parent_
pred(Pred) unifies the module name expanded Pred with a predicate spec (of form Mod-
ule :PredName/Arity) identifying the predicate in which the current invocation resides.
The test parent_pred(Pred,N) will additionally unify N with the serial number of the
clause containing the current goal.

For example, assuming the above myprog.pl file is consulted, the breakpoint below will
cause the execution to stop when the call of is/2 in the second clause of q/2 is reached:

| ?- add_breakpoint ([pred(is/2),parent_pred(q/2,2)]1, _).
% Conditional spypoint for prolog:is/2 added, BID=1
* Predicate prolog:is/2 compiled inline, breakable only in inter-
preted code
% zip,source_info
| 7= p(20, X).
in scope of a goal at line 12 in /home/bob/myprog.pl
* 1 1 Call: _579 is 2042 7
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Notice the warning issued by add_breakpoint/2: there are some built-in predicates (e.g.
arithmetic, functor/3, arg/3, etc.), for which the compiler generates specific inline trans-
lation, rather than the generic predicate invocation code. Therefore compiled calls to such
predicates are not visible to the debugger.

More exact positioning information can be obtained for interpreted programs by using the
parent_clause(Cl,Sel,I) test. This unifies C1 with the clause containing the current
invocation, while Sel and I both identify the current invocation within the body of this
clause. Sel is unified with a subterm selector, while I with the serial number of the call.
This test has the variants parent_clause/[1,2], in which only the C1 argument, or the
Cl,Sel arguments are present.

As an example, two further alternatives of putting a breakpoint on the last call of q/2
within myprog.pl (line 6) are shown below, together with a listing showing the selectors
and call serial numbers for the body of p/2:

| ?- add_breakpoint ([pred(q/2),parent_clause((p(_,_):-_),[2,2,2]1)],_).

| ?- add_breakpoint ([pred(q/2),parent_clause((p(_,_):-_),_,5)1,_).

pX, U) :- % line % call no. Y% subterm selector
qX, Y, h 2 1 [1]
qly, 2), % 3 2 [2,1]
¢ \+q(Z, D) ho 4 3 [2,2,1,1,1]
-> q(zZ+1, U) % 5 4 [2,2,1,2]
;0 q(Z+2, U) h 6 5 [2,2,2]
). ho T

Here, the first argument of the parent_clause test ensures that the current invocation is
in (the only clause of) p/2. If p/2 had more clauses, we would have to use an additional
test, say parent_pred(user:p/2,1), and then the first argument of parent_clause could
be an anonymous variable.

In the examples so far the breakpoint tests referred only to the goal in question. Therefore,
the breakpoint was found applicable at all ports of the procedure box of the predicate. We
can distinguish between ports using the port breakpoint test:

| ?- add_breakpoint([pred(foo/2),port(call)]l, _).

With this breakpoint, the debugger will stop at the Call port of foo/2, but not at other
ports. Note that the port(call) test can be simplified to call — add_breakpoint/2 will
recognize this as a port name, and treat it as if it were enclosed in a port/1 functor.

Here are two equivalent formulations for a breakpoint that will cause the debugger to stop
only at the Call and Exit ports of foo/2:
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| ?- add_breakpoint ([pred(foo/2), (call;exit)], _).

| 7=
add_breakpoint ([pred(foo/2),port (P),true((P=call;P=exit(_)))], _).

In both cases we have to use disjunction. In the first example we have a disjunctive break-
point condition of the two simple tests port (call) and port(exit) (with the port functor
omitted). In the second case the disjunction is inside the Prolog test within the true test.

Notice that the two examples refer to the Exit port differently. When you use port(P),
where P is a variable, then, at an exit port, P will be unified with either exit(nondet)
or exit(det), depending on the determinacy of the exited predicate. However, for conve-
nience, the test port (exit) will also succeed at Exit ports. So in the first example above,
exit can be replaced by exit(_), but the exit(_) in the second cannot be replaced by
exit.

Finally, there is a subtle point to note with respect to activating the debugger at non Call
ports. Let us look at the following breakpoint:

| ?- add_breakpoint([pred(foo/2),fail], _).

The intention here is to have the debugger stop at only the Fail port of foo/2. This is very
useful if foo/2 is not supposed to fail, but we suspect that it does. The above breakpoint
will behave as expected when the debugger is leaping, but not while zipping. This is because
for the debugger to be able to stop at a non Call port, a procedure box has to be built at
the Call port of the given invocation. However, no debugging information is collected in zip
mode by default, i.e. procedure boxes are not built. Later we will show how to achieve the
required effect, even in zip mode.

5.6.4 Specific and Generic Breakpoints

In all the examples so far a breakpoint was put on a specific predicate, described by a goal
or pred test. Such breakpoints are called specific, as opposed to generic ones.

Generic breakpoints are the ones that don’t specify a concrete predicate. This can happen
when the breakpoint spec does not contain goal or pred tests at all, or their argument is
not sufficiently instantiated. Here are some examples of generic breakpoints:

| ?- add_breakpoint (line(’/home/bob/myprog.pl’,6), _).

% Generic spypoint added, BID=1

| ?- add_breakpoint (pred(foo/_), _).

% Generic spypoint added, BID=2

| ?- add_breakpoint ([goal(G),true((arg(1,G,X),X==bar))], _).
% Generic spypoint added, BID=3

The first breakpoint will stop at all calls in line 6 of the given file, the second at all calls of a
predicate foo, irrespective of the number of arguments, while the third one will stop at any
predicate with bar as its first argument. However, there is an additional implicit condition:
the module name expansion inserts the type-in module as the default module name in the
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goal and pred conditions. Consequently, the second and third breakpoint applies only to
predicates in the type-in module (user by default). If you would like the breakpoint to
cover all modules you have to include an anonymous module prefix in the argument of the
goal or pred test:

| ?- add_breakpoint (pred(_:foo/_), _).

% Generic spypoint added, BID=1

% zip

| ?- add_breakpoint ([goal(_:G),true((arg(1,G,X),X==bar))], _).
% Generic spypoint added, BID=2

Generic breakpoints are very powerful, but there is a price to pay: the zip mode is slowed
down considerably.

As said earlier, in principle the debugger is entered at each port of each procedure invocation.
As an optimization, the debugger can request the underlying Prolog engine to run at full
speed and invoke the debugger only when one of the specified predicates is called. This
optimization is used in zip mode, provided there are no generic breakpoints. In the presence
of generic breakpoints, however, the debugger has to be entered at each call, to check their
applicability. Consequently, with generic breakpoints, zip mode execution will not give
much speed-up over debug mode, although its space requirements will still be much lower.

It is therefore advisable to give preference to specific breakpoints over generic ones, whenever
possible. For example, if your program includes predicates foo/2 and foo/3, it is much
better to create two specific breakpoints, rather than a single generic one with conditions
[pred(foo/_),...].

spy/2 is a built-in predicate that will create specific breakpoints only. Its first argument is
a generalized predicate spec, much like in spy/1, and the second argument is a breakpoint
spec. spy/2 will expand the first argument to one or more predicate specs, and for each of
these will create a breakpoint, with a pred condition added to the test part of the supplied
breakpoint spec. For example, in the presence of predicates foo/2 and foo/3

| ?- spy(foo/_, file(...))
is equivalent to:

| ?- add_breakpoint([pred(foo/2),file(...)]1, _),
add_breakpoint ([pred(foo/3),file(...)1, _).

Note that with spy/[1,2] it is not possible to put a breakpoint on a (yet) undefined
predicate. On the other hand, add_breakpoint/2 is perfectly capable of creating such
breakpoints, but warns about them.

5.6.5 Breakpoint Actions

The action part of a breakpoint spec supplies information to the debugger as to what should
be done when the breakpoint is activated. This is achieved by setting the three so called
debugger action variables. These are listed below, together with their most important
values.
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e The show variable prescribes how the debugged goal should be displayed:
print write the goal according to the debugger_print_options Prolog flag.
silent don’t display the goal.

e The command variable prescribes what the debugger should do:

ask ask the user.

proceed  continue the execution without stopping, creating a procedure box for the
current goal at the Call port,

flit continue the execution without stopping, without creating a procedure box
for the current goal at the Call port.

e The mode variable prescribes in what mode the debugger should continue the execution:

trace creeping.

debug leaping.

zip zipping.

off without debugging.

For example, the breakpoint below specifies that whenever the Exit port of foo/2 is reached,
no trace message should be output, no interaction should take place and the debugger should
be switched off.

| ?- add_breakpoint ([pred(foo/2),port(exit)]-
[show(silent),command (proceed) ,mode (off)], _).

Here, the action part consists of three actions, setting the three action variables. This
breakpoint spec can be simplified by omitting the wrappers around the variable values,
as the sets of possible values of the variables are all disjoint. If we use spy/2, the pred
wrapper goes away, too, resulting in a much more concise, equivalent formulation of the
above breakpoint:

| ?- spy(foo/2,exit-[silent,proceed,off]).

Let us now revisit the process of breakpoint selection. When the debugger arrives at a
port it first initializes the action variables according to the current debugging and leashing
modes, as shown below:

debugging leashing Action variables

I

mode mode | show command mode

________________________________ | m o

trace at leashed port | print ask trace
I

trace at unleashed port | print proceed trace
I

debug - | silent proceed debug
I

zip - | silent flit zip



250 SICStus Prolog

It then considers each breakpoint, most recent first, until it finds a breakpoint whose test
part succeeds. If such a breakpoint is found, its action part is evaluated, normally changing
the action variable settings. A failure of the action part is ignored, in the sense that the
breakpoint is still treated as the selected one. However, as a side-effect, a procedure box will
always be built in such cases. More precisely, the failure of the action part causes the f1it
command value to be changed to proceed, all other command values being left unchanged.
This is to facilitate the creation of breakpoints that stop at non-Call ports (see below for
an example).

If no applicable breakpoint is found, the action variables remain unchanged.

The debugger then executes the actions specified by the action variables. This process,
referred to as the action execution, means the following:

e The current debugging mode is set to the value of the mode action variable.
e A trace message is displayed according to the show variable.

e The program continues according to the command variable.

Specifically, if command is ask, the user is prompted for a debugger command, which in turn
is converted to new assignments to the action variables. The debugger will then repeat the
action execution process, described above. For example, the ‘c’ (creep) interactive command
is converted to [silent,proceed,trace], the ‘d’ (display) command to [display,ask]
(when command is ask, the mode is irrelevant), etc.

The default values of the action variables correspond to the standard debugger behavior
described in Section 5.2 [Basic Debug], page 229. For example, when an unleashed port is
reached in trace mode, a trace message is printed and the execution proceeds in trace mode,
without stopping. In zip mode, no trace message is shown, and execution continues in zip
mode, without building procedure boxes at Call ports.

Note that a spypoint action part that is empty ([] or not present) is actually treated as
[print,ask]. Again, this is the standard behavior of spypoints, as described in Section 5.2
[Basic Debug], page 229.

If an action part is nonempty, but it does not set the action variables, the only effect it will
have is to hide the remaining older spypoints, as the debugger will behave in the standard
way, according to the debugging mode. Still, such breakpoints may be useful if they have
side-effects, for example:
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| ?- spy(foo/2, -[parent_pred(P),
goal(G),
true (format (°~q called from:"w™n’,[G,P]))]).
% The debugger will first zip -- showing spypoints (zip)
% Conditional spypoint for user:foo/2 added, BID=1
true
% zip
| ?7- foo(3,X).
foo(2,_701) called from:bar/3
foo(1,_1108) called from:bar/3
f00(0,_1109) called from:bar/3
foo(1,_702) called from:bar/3
X=27;
no

This spypoint produces some output at ports of foo/2, but otherwise will not influence the
debugger. Notice that a breakpoint spec with an empty test part can be written -Actions.

Let us look at some simple examples of what other effects can be achieved by appropriate
action variable settings:

| ?- spy(foo/2, -[print,proceed]).

This is an example of an unleashed spypoint: it will print a trace message passing each port
of foo/2, but will not stop there. Note that because of the proceed command a procedure
box will be built, even in zip mode, and so the debugger will be activated at non-Call ports
of foo/2.

The next example is a variant of the above:
| ?- spy(foo/2, -[print,flit]).

This will print a trace message at the Call port of foo/2 and will then continue the execution
in the current debugging mode, without building a procedure box for this call. This means
that the debugger will not be able to notice any other ports of foo/2.

Now let us address the task of stopping at a specific non-Call port of a predicate. For this
to work in zip mode, one has to ensure that a procedure box is built at the Call port. In
the following example, the first spypoint causes a box to be built for each call of foo/2,
while the second one makes the debugger stop when the Fail port of foo/2 is reached.

| ?- spy(foo/2, call-proceed), spy(foo/2, fail).
% Conditional spypoint for user:foo/2 added, BID=1
% Conditional spypoint for user:foo/2 added, BID=2

You can achieve the same effect with a single spypoint, by putting the fail condition (which
is a shortcut for port(fail)) in the action part, rather than in the test part.

| ?- spy(foo/2, -[fail,print,ask]).
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Here, when the execution reaches the Call port of foo/2, the test part (which contains the
pred(foo/2) condition only) succeeds, so the breakpoint is found applicable. However, the
action part fails at the Call port. This has a side-effect in zip mode, as the default f1it
command value is changed to proceed. In other modes the action variables are unaffected.
The net result is that a procedure box is always built for foo/2, which means that the
debugger will actually reach the Fail port of this predicate. When this happens, the action
part succeeds, and executing the actions print,ask will cause the debugger to stop.

Note that we have to explicitly mention the print,ask actions here, because the action part
is otherwise nonempty (contains the fail condition). It is only the empty or missing action
part, which is replaced by the default [print,ask]. If you want to include a condition in
the action part, you have to explicitly mention all action variable settings you need.

To make this simpler, the debugger handles breakpoint condition macros, which expand
to other conditions. For example leash is a macro that expands to [print,ask]. Conse-
quently, the last example can be simplified to:

| ?- spy(foo/2, -[fail,leash]).

Similarly, the macro unleash expands to [print,proceed], while hide to
[silent,proceed].

We now briefly describe further possible settings to the action variables.

The mode variable can be assigned the values skip(Inv) and qskip(Inv), meaning skipping
and quasi-skipping until a port is reached whose invocation number is less or equal to Inv.
When the debugger arrives at this port it sets the mode variable to trace.

It may be surprising that skip(...) is a mode, rather than a command. This is because
commands are executed and immediately forgotten, but skipping has a lasting effect: the
program is to be run with no debugging until a specific point, without creating new proce-
dure boxes, and ignoring the existing ones in the meantime.

Here is an example using the skip mode:
| 7- spy(foo/2,call-[print,proceed,inv(Inv),skip(Inv)]).

This breakpoint will be found applicable at Call ports of foo/2. It will print a trace message
there and will skip over to the Exit or Fail port without stopping. Notice that the number
of the current invocation is obtained in the action part, using the inv condition with a
variable argument. A variant of this example follows:

| ?- spy(foo/2,-[silent,proceed,
(  call -> inv(Inv), skip(Inv)
N true

1)

This spypoint makes foo/2 invisible in the output of the debugger: at all ports we silently
proceed (i.e. display nothing and don’t stop). Furthermore, at the Call port we perform
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a skip, so neither foo/2 itself, nor any predicate called within it will be shown by the
debugger.

Notice the use of the true/0 test in the above conditional! This is a breakpoint test that
always succeeds. The debugger also recognizes false as a test that always fails. Note that
while false and fail are synonyms as built-in predicates, they are completely different as
breakpoint conditions: the latter is a shortcut for port (fail).

The show variable has four additional value patterns. Setting it to display, write, or
write_term(Options) will result in the debugged goal G being shown using display(G),
writeq(G), or write_term(G, Options), respectively. The fourth pattern, Method-Sel,
can be used for replacing the goal in the trace message by one of its subterms, the one
pointed to by the selector Sel.

For example, the following spypoint instructs the debugger to stop at each port of foo/2,
and to only display the first argument of foo/2 in the trace message, instead of the complete
goal.

| ?- spy(foo/2, -[print-[1],ask]).
% Conditional spypoint for user:foo/2 added, BID=1
| ?7- foo(5,X).

* 1 1 Call: "1 65 7

The command variable has several further value patterns. The variable can be set to
proceed(0ldGoal,NewGoal). At a Call port this instructs the debugger to first build
a procedure box for the current goal, then to unify it with OldGoal and finally execute
NewGoal in its place (cf. the ‘u’ (unify) interactive debugger command). At non-Call ports
this command first goes back to the Call port (cf. the ‘r’ (retry) command), and then does
the above activities.

A variant of the proceed/2 command is f1it(0ldGoal,NewGoal). This has the same
effect, except for not building a procedure box for OldGoal.

We now just briefly list further command values (for the details, see Section 5.9.9 [Action
Variables], page 278). Setting command to raise(E) will raise an exception E, abort will
abort the execution. The values retry(Inv), reexit(Inv), redo(Inv), fail(Inv) will
cause the debugger to go back to an earlier Call, Exit, Redo, or Fail port with invocation
number Inv (cf. the ‘j7 (jump) interactive debugger command).

Sometimes it may be useful to access the value of an action variable. This can be done with
the get condition: e.g. get(mode(M)) will unify M with the current execution mode. The
get(...) wrapper can be omitted in the test part, but not in the action part (since there
a mode (M) action will set, rather than read, the mode action variable). For example:

| 7- spy(foo/2, mode(trace)-show(print-[1])).

This spypoint will be found applicable only in trace mode (and will cause the first argument
of foo/2 to appear in the trace message). (The mode and show wrappers can also be omitted
in the above example, they are used only to help with interpreting the breakpoint spec.)
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5.6.6 Advice-points

As mentioned earlier, there are two kinds of breakpoints: spypoints and advice-points.
The main purpose of spypoints is to support interactive debugging. In contrast with this,
advice-points can help you to perform non-interactive debugging activities. For example,
the following advice-point will check a program invariant: whether the condition Y-X<3
always holds at exit from foo(X,Y).

| ?- add_breakpoint([pred(foo/2),advicel
-[exit,goal(foo(X,Y)),\+true(Y-X<3),tracel, _).
% Conditional advice point for user:foo/2 added, BID=1

% advice

| ?- foo(4, Y).

Y =3

% advice

| ?- foo(9, V).
3 3 Exit: foo(7,13) 7 n
2 2 Exit: foo(8,21) 7

The test part of the above breakpoint contains a pred test, and the advice condition,
making it an advice-point. (You can also include the debugger condition in spypoint specs,
although this is the default interpretation.)

The action part starts with the exit port condition. Because of this the rest of the action
part is evaluated only at Exit ports. By placing the port condition in the action part, we
ensure the creation of a procedure box at the Call port, as explained earlier.

Next, we get hold of the goal arguments using the goal condition, and use the \+true (Y-
X<3) test to check if the invariant is violated. If this happens, the last condition sets the
mode action variable to trace, switching on the interactive debugger.

Following the add_breakpoint/2 call the above example shows two top-level calls to foo/2.
The invariant holds within the first goal, but is violated within the second. Notice that the
advice mechanism works with the interactive debugger switched off.

You can ask the question, why do we need advice-points? The same task could be imple-
mented using a spypoint. For example:

| ?- add_breakpoint (pred(foo/2)
-[exit,goal(foo(X,Y)),\+true(Y-X<3),leash], _).
% The debugger will first zip -- showing spypoints (zip)
% Conditional spypoint for user:foo/2 added, BID=1
% zip
| 7- foo(4, X).
X=3
% zip
| ?- foo(9, X).
* 3 3 Exit: foo(7,13) 7 z
* 2 2 Exit: foo(8,21) 7
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The main reason to have a separate advice mechanism is to be able to perform checks
independently of the interactive debugging. With the second solution, if you happen to
start some interactive debugging, you cannot be sure that the invariant is always checked.
For example, no spypoints will be activated during a skip. In contrast with this, the advice
mechanism is watching the program execution all the time, independently of the debugging
mode.

Advice-points are handled in very much the same way as spypoints are. When arriving
at a port, advice-point selection takes place first, followed by spypoint selection. This can
be viewed as the debugger making two passes over the current breakpoints, considering
advice-points only in the first pass, and spypoints only in the second.

In both passes the debugger tries to find a breakpoint that can be activated, checking the
test and action parts, as described earlier. However, there are some differences between the
two passes:

e Advice processing is performed if there are any (non-disabled) advice-points. Spypoint
processing is only done if the debugger is switched on, and is not doing a skip.

e For advice-points, the action variables are initialized as follows: mode is set to current
debugging mode, command = proceed, show = silent. Note that this is done indepen-
dently of the debugging mode (in contrast with the spypoint search initialization).

e The default action part for advice-points is []. This means that if no action part is
given, the only effect of the advice-point will be to build a procedure box (because of
the command = proceed initialization).

e If no advice-point was found applicable, command is set to f1lit.

Having performed advice processing, the debugger inspects the command variable. The com-
mand values different from proceed and £1it are called divertive, as they alter the normal
flow of control (e.g. proceed(...,...)), or involve user interaction (ask). If the command
value is divertive, the prescribed action is performed immediately, without executing the
spypoint selection process. Otherwise, if command = proceed, it is noted that the advice
part requests the building of a procedure box. Next, the second, spypoint processing pass
is carried out, and possible user interaction takes place, as described earlier. A procedure
box is built if either the advice-point or the spypoint search requests this.

Let us conclude this section by another example, a generic advice-point for collecting branch
coverage information:



256 SICStus Prolog

| ?- add_breakpoint (
(advice,call) -
( line(F,L) -> true(assert(line_reached(F,L))), flit
; flit
), ).
% Generic advice point added, BID=1
% advice,source_info
| ?- foo(4,X).
X=37;
no
% advice,source_info
?- setof (X, line_reached(F,X), S).
> /home/bob/myprog.pl’,

I
F
S [31,33,34,35,36]

This advice-point will be applicable at every Call port. It will then assert a fact with the
file name and the line number if source information is available. Finally, it will set the

command variable to f1it on both branches of execution. This is to communicate the fact
that the advice-point does not request the building of a procedure box.

It is important to note that this recording of the line numbers reached is performed inde-
pendently of the interactive debugging.

In this example we used the ’,’/2 operator, rather than list notation, for describing the
conjunction of conditions, as this seems to better fit the if-then-else expression used in the
action part. We could have still used lists in the tests part, and in the “then” part of
the actions. Note that if we omit the “else” branch, the action part will fail if no source
information is available for the given call. This will cause a procedure box to be built,
which is an unnecessary overhead. An alternative solution, using the line/2 test twice, is
the following:

| ?- add_breakpoint([advice,call,line(_,_)]-
[1ine(F,L),true(assert(line_reached(F,L))),flit], _).

Further examples of advice-points are available in 1ibrary(debugger_examples).

5.6.7 Built-in Predicates for Breakpoint Handling

This section introduces built-in predicates for evaluating breakpoint conditions, and for
retrieving, deleting, disabling and enabling breakpoints.

The breakpoint spec of the last advice-point example was quite complex. And, to be practi-
cal, it should be improved to assert only line numbers not recorded so far. For this you will
write a Prolog predicate for the conditional assertion of file/line information, assert_line_
reached(File,Line), and use it instead of the assert(line_reached(F,L)) condition.

Because of the complexity of the breakpoint spec, it looks like a good idea to move the
if-then-else condition into Prolog code. This requires that we test the 1ine (F,L) condition
from Prolog. The built-in predicate execution_state/1 serves for this purpose. It takes
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a simple or a composite breakpoint condition as its argument and evaluates it, as if in the
test part of a breakpoint spec. The predicate will succeed if and only if the breakpoint
condition evaluates successfully. Thus execution_state/1 allows you to access debugging
information from within Prolog code. For example, you can write a Prolog predicate,
assert_line_reached/0, which queries the debugger for the current line information and
then processes the line number:

assert_line_reached :-
( execution_state(line(F,L)) -> assert_line_reached(F,L).
; true

).

| ?- add_breakpoint([advice,call]-
[true (assert_line_reached),flit], _).

Arbitrary tests can be used in execution_state/1, if it is called from within a true condi-
tion. It can also be called from outside the debugger, but then only a subset of conditions
is available. Furthermore, the built-in predicate execution_state/2 allows accessing in-
formation from past debugger states (see Section 5.6.8 [Accessing Past Debugger States],
page 258). See Section 11.3.74 [mpg-ref-execution_state], page 970.

The built-in predicates remove_breakpoints(BIDs), disable_breakpoints(BIDs) and
enable_breakpoints(BIDs) serve for removing, disabling and enabling the given break-
points. Here BIDs can be a single breakpoint identifier, a list of these, or one of the atoms
all, advice, debugger.

We now show an application of remove_breakpoints/1 for implementing one-off break-
points, i.e. breakpoints that are removed when first activated.

For this we need to get hold of the currently selected breakpoint identifier. The bid (BID)
condition serves for this purpose: it unifies its argument with the identifier of the breakpoint
being processed. The following is an example of a one-off breakpoint.

| ?7- spy(foo/2, -[bid(BID),true(remove_breakpoints(BID)),leash]).
% Conditional spypoint for user:foo/2 added, BID=1

% zip

| ?- foo(2, X).

% Conditional spypoint for user:foo/2, BID=1, removed (last)
1 1 Call: foo(2,_402) ? z

X=1

The action part of the above breakpoint calls the bid test to obtain the breakpoint
identifier. It then uses this number as the argument to the built-in predicate remove_
breakpoints/1, which removes the activated breakpoint. See Section 11.3.190 [mpg-ref-
remove_breakpoints|, page 1122.
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The built-in predicate current_breakpoint(Spec, BID, Status, Kind, Type) enumer-
ates all breakpoints present in the debugger. For example, if we call current_breakpoint/5
before the invocation of foo/2 in the last example, we get this:

| ?- current_breakpoint(Spec, BID, Status, Kind, Type).
Spec = [pred(user:foo/2)]-

[bid(_A) ,true(remove_breakpoints(_A)),leash],

BID = 1,

Status = on,

Kind = conditional(user:foo/2),

Type = debugger

Here Spec is the breakpoint spec of the breakpoint with identifier BID. Status is on
for enabled breakpoints and off for disabled ones. Kind is one of plain(MFunc),
conditional (MFunc) or generic, where MFunc is the module qualified functor of the
specific breakpoint. Finally Type is the breakpoint type: debugger or advice.

The Spec returned by current_breakpoint/5 is exactly the same as the one given in
add_breakpoint/2. If the breakpoint was created by spy/2, the test part is extended
by a pred condition, as exemplified above. Earlier we described some preprocessing steps
that the spec goes through, such as moving the module qualification of the spec to certain
conditions. These transformations are performed on the copy of the breakpoint used for
testing. Independently of this, the debugger also stores the original breakpoint, which
is returned by current_breakpoint/5. See Section 11.3.48 [mpg-ref-current_breakpoint],
page 941.

5.6.8 Accessing Past Debugger States

In this section we introduce the built-in predicates for accessing past debugger states, and
the breakpoint conditions related to these.

The debugger collects control flow information about the goals being executed, more pre-
cisely about those goals, for which a procedure box is built. This collection of information,
the backtrace, includes the invocations that were called but not exited yet, as well as those
that exited nondeterminately. For each invocation, the main data items present in the
backtrace are the following: the goal, the module, the invocation number, the depth and
the source information, if any.

Furthermore, as you can enter a new break level from within the debugger, there can be
multiple backtraces, one for each active break level.

You can access all the information collected by the debugger using the built-in predicate
execution_state(Focus, Tests). Here Focus is a ground term specifying which break
level and which invocation to access. It can be one of the following:

e break_level(BL) selects the current invocation within the break level BL.
e inv(Inv) selects the invocation number Inv within the current break level.

e A list containing the above two elements, selects the invocation with number Inv within
break level BL.
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Note that the top-level counts as break level 0, while the invocations are numbered from 1
upwards.

The second argument of execution_state/2, Tests, is a simple or composite breakpoint
condition. Most simple tests can appear inside Tests, with the exception of the port, bid,
advice, debugger, and get tests. These tests will be interpreted in the context of the
specified past debugger state. Specifically, if a true/1 condition is used, any execution_
state/1 queries appearing in it will be evaluated in the past context.

To illustrate the use of execution_state/2, we now define a predicate last_call_
arg(ArgNo, Arg), which is to be called from within a break, and which will look at the last
debugged goal of the previous break level, and return in Arg the ArgNoth argument of this
goal.

last_call_arg(ArgNo, Arg) :-
execution_state(break_level(BL1)),
BL is BL1-1,
execution_state(break_level(BL), goal(Goal)),
arg(ArgNo, Goal, Arg).

We see two occurrences of the term break_level(...) in the above example. Although
these look very similar, they have different roles. The first one, in execution_state/1, is a
breakpoint test, which unifies the current break level with its argument. Here it is used to
obtain the current break level and store it in BL1. The second use of break_level(...),
in the first argument of execution_state/2, is a focus condition, whose argument has to
be instantiated, and which prescribes the break level to focus on. Here we use it to obtain
the goal of the current invocation of the previous break level.

Note that the goal retrieved from the backtrace is always in its latest instantiation state.
For example, it is not possible to get hold of the goal instantiation at the Call port, if the
invocation in question is at the Exit port.

Here is an example run, showing how last_call_arg/2 can be used:

5 2 Call: _937 is 13+8 7 b
% Break level 1
%1
| 7- last_call_arg(2, A).
A = 13+8

There are some further breakpoint tests that are primarily used in looking at past execution
states.

The test max_inv(MaxInv) returns the maximal invocation number within the current (or
selected) break level. The test exited(Boolean) unifies Boolean with true if the invocation
has exited, and with false otherwise.

The following example predicate lists those goals in the backtrace, together with their
invocation numbers, that have exited. These are the invocations that are listed by the ¢
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interactive debugger command (print backtrace), but not by the g command (print ancestor
goals). Note that the predicate between (N, M, I) enumerates all integers such that N <
I <M.

exited_goals :-
execution_state(max_inv(Max)),
between(1l, Max, Inv),
execution_state(inv(Inv), [exited(true),goal(G)]),
format(’~t~d"6| “p\n’, [Inv,G]l),
fail.
exited_goals.

...)

Tx 41 11 Exit: foo(2,1) 7 @
| :- exited_goals.

26 foo0(3,2)

28 bar(3,1,1)

31 foo(2,1)

33 bar(2,1,0)

36 foo(1,1)

37 f00(0,0)

39 foo(1,1)

41 foo(2,1)

43 bar(2,1,0)

46 foo(1,1)

47 f00(0,0)
Tk 41 11 Exit: foo(2,1) 7

Note that similar output can be obtained by entering a new break level and calling exited_
goals from within an execution_state/2:

b1
| 7- execution_state(break_level(0), true(exited_goals)).

The remaining two breakpoint tests allow you to find parent and ancestor invocations
in the backtrace. The parent_inv(Inv) test unifies Inv with the invocation number of
the youngest ancestor present in the backtrace, called debugger-parent for short. The
test ancestor (AncGoal, Inv) looks for the youngest ancestor in the backtrace that is an
instance of AncGoal. It then unifies the ancestor goal with AncGoal and its invocation
number with Inv.

Assume you would like to stop at all invocations of foo/2 that are somewhere within bar/1,
possibly deeply nested. The following two breakpoints achieve this effect:

| ?- spy(bar/1, advice), spy(foo/2, ancestor(bar(_),_)).
% Plain advice point for user:bar/1 added, BID=3
% Conditional spypoint for user:foo/2 added, BID=4
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We added an advice-point for bar/1 to ensure that all calls to it will have procedure boxes
built, and so become part of the backtrace. Advice-points are a better choice than spypoints
for this purpose, as with 7- spy(bar/1, -proceed) the debugger will not stop at the call
port of bar/1 in trace mode. Note that it is perfectly all right to create an advice-point
using spy/2, although this is a bit of terminological inconsistency.

See Section 11.3.74 [mpg-ref-execution_state|, page 970. Further examples of accessing past
debugger states can be found in library(debugger_examples).

5.6.9 Storing User Information in the Backtrace

The debugger allows the user to store some private information in the backtrace. It al-
locates a Prolog variable in each break level and in each invocation. The breakpoint test
private(Priv) unifies Priv with the private information associated with the break level,
while the test goal_private(GPriv) unifies GPriv with the Prolog variable stored in the
invocation.

Both variables are initially unbound, and behave as if they were passed around the program
being debugged in additional arguments. This implies that any variable assignments done
within these variables are undone on backtracking.

In practice, the private condition gives you access to a Prolog variable shared by all
invocations of a break level. This makes it possible to remember a term and look at it later,
in a possibly more instantiated form, as shown by the following example.

memory (Term) :-
execution_state(private(P)),
memberchk (myterm(Term), P).

| ?- trace, append([1,2,3,4], [5,6], L).

1 1 Call: append([1,2,3,4],[5,6],_514) 7 @
| :- append(_,_,L) memory (L) .
1 1 Call: append([1,2,3,4]1,[5,6],_514) ? ¢
2 2 Call: append([2,3,4],[5,6],_2064) 7 c
3 3 Call: append([3,4],[5,6],_2422) 7 c
4 4 Call: append([4],[5,6],_2780) 7 @
| :- memory(L), write(L), nl.
[1,2,3]_2780]
4 4 Call: append([4],[5,6],_2780) ?

The predicate memory/1 receives the term to be remembered in its argument. It gets hold
of the private field associated with the break level in variable P, and calls memberchk/2 (see
Section 10.20 [lib-lists], page 582), with the term to be remembered, wrapped in myterm,
as the list element, and the private field, as the list. Thus the latter, initially unbound
variable, is used as an open-ended list. For example, when memory/1 is called for the first
time, the private field gets instantiated to [myterm(Term)|_]. If later you call memory/1
with an uninstantiated argument, it will retrieve the term remembered earlier and unify it
with the argument.
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The above trace excerpt shows how this utility predicate can be used to remember an
interesting Prolog term. Within invocation number 1 we call memory/1 with the third,
output argument of append/3, using the ‘@’ command (see Section 5.5 [Debug Commands],
page 233). A few tracing steps later, we retrieve the term remembered and print it, showing
its current instantiation. Being able to access the instantiation status of some terms of
interest can be very useful in debugging. In library(debugger_examples) we describe
new debugger commands for naming Prolog variables and providing name-based access to
these variables, based on the above technique.

We could have avoided the use of memberchk/2 in the example by simply storing
the term to be remembered in the private field itself (memory(Term) :- execution_
state(private(Term)).). But this would have made the private field unusable for other
purposes. For example, the finite domain constraint debugger (see Section 10.14 [lib-fdbg],
page 516) would stop working, as it relies on the private fields.

There is only a single private variable of both kinds within the given scope. Therefore the
convention of using an open ended list for storing information in private fields, as shown
in the above example, is very much recommended. The different users of the private field
are distinguished by the wrapper they use (e.g. myterm/1 above, £dbg/1 for the constraint
debugger, etc.). Future releases may enforce this convention by providing appropriate break-
point tests.

We now present an example of using the goal private field. Earlier we have shown a spypoint
definition that made a predicate invisible in the sense that its ports are silently passed
through and it is automatically skipped over. However, with that earlier solution, execution
always continues in trace mode after skipping. We now improve the spypoint definition:
the mode in which the Call port was reached is remembered in the goal private field, and
the mode action variable is reset to this value at the Exit port.

mode_memory (Mode) :-
execution_state(goal_private(GP)),
memberchk (mymode (Mode) , GP).

| ?- spy(foo/2, -[silent,proceed,
true (mode_memory (MM) ),
( call -> get(mode(MM)), inv(Inv), skip(Inv)
; exit -> mode (MM)
; true

)1).

Here, we first define an auxiliary predicate mode_memory/1, which uses the open list con-
vention for storing information in the goal private field, applying the mymode/1 wrapper.
We then create a spypoint for foo/2, whose action part first sets the print and command
action variables. Next, the mode_memory/1 predicate is called, unifying the mode memory
with the MM variable. We then branch in the action part: at Call ports the uninstantiated
MM is unified with the current mode, and a skip command is issued. At Exit ports MM holds
the mode saved at the Call port, so the mode (MM) action re-activates this mode. At all
other ports we just silently proceed without changing the debugger mode.
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5.6.10 Hooks Related to Breakpoints

There are two hooks related to breakpoints.

The hook breakpoint_expansion(Macro,Body) makes it possible for the user to extend the
set of allowed conditions. This hook is called, at breakpoint addition time, with each simple
test or action within the breakpoint spec, as the Macro argument. If the hook succeeds,
the term returned in the Body argument is substituted for the original test or action. Note
that Body cannot span both the test and the action part, i.e. it cannot contain the - /2
operator. The whole Body will be interpreted either as a test or as an action, depending on
the context of the original condition. See Section 11.3.28 [mpg-ref-breakpoint_expansion],
page 918.

We now give a few examples for breakpoint macros. The last example defines a condition
making a predicate invisible, a reformulation of the last example of the previous subsection.

:- multifile user:breakpoint_expansion/2.
user:breakpoint_expansion(
skip, [inv(I),skip(I)]).

user:breakpoint_expansion(
gpriv(Value),
[goal_private(GP),true(memberchk(Value,GP))]).

user:breakpoint_expansion(
invisible,
[silent,proceed,
( call -> get(mode(M)), gpriv(mymode(M)), skip
;  exit —-> gpriv(mymode(MM)), mode (MM)
; true

)1).

| ?7- spy(foo/2, -invisible).

We first define the skip macro, instructing the debugger to skip the current invocation.
This macro is only meaningful in the action part.

The second clause defines the gpriv/2 macro, a generalization of the earlier
mode_memory/1 predicate. For example, gpriv(mymode(M)) expands to goal_
private(GP) ,true (memberchk (mymode (M) ,GP)). This embodies the convention of using
open-ended lists for the goal private field.

Finally, the last clause implements the action macro invisible/0, which makes the predi-
cate in question disappear from the trace. The last line shows how this macro can be used
to make foo/2 invisible.

Below is an alternative implementation of the same macro. Here we use a Prolog predicate
that returns the list of action variable settings to be applied at the given port. Notice that
a variable can be used as a breakpoint condition, as long as this variable gets instantiated
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to a (simple or composite) breakpoint condition by the time it is reached in the process of
breakpoint evaluation.

user:breakpoint_expansion(invisible,
[true(invisible(Settings)),Settings]).

invisible([proceed,silent,NewMode]) :-
execution_state([mode (M) ,port(P),inv(Inv),goal_private(GP)]),
memberchk (mymode (MM) , GP),
( P == call -> MM = M, NewMode = skip(Inv)
; P = exit(_) -> NewMode = MM
; NewMode = M
).

The second hook related to breakpoints is debugger _command_hook (DCommand, Actions).
This hook serves for customizing the behavior of the interactive debugger, i.e. for introducing
new interactive debugger commands. The hook is called for each debugger command read
in by the debugger. DCommand contains the abstract format of the debugger command
read in, as returned by the query facility (see Section 4.16.3 [Query Processing], page 214).
If the hook succeeds, it should return in Actions an action part to be evaluated as the result
of the command.

If you want to redefine an existing debugger command, you should study library(’SU_
messages’) to learn the abstract format of this command, as returned by the query facility.
If you want to add a new command, it suffices to know that unrecognized debugger com-
mands are returned as unknown(Line,Warning). Here, Line is the code-list typed in, with
any leading whitespace removed, and Warning is a warning message.

9

The following example defines the ‘S’ interactive debugger command to behave as skip at
Call and Redo ports, and as creep otherwise:

:- multifile user:debugger_command_hook/2.
user:debugger_command_hook (unknown ([0°S|_],_), Actions) :-
execution_state([port(P),inv(I)]),
Actions = [Mode,proceed,silent],
(P = call -> Mode = skip(I)
; P =redo -> Mode = skip(I)
; Mode = trace

).

Note that the silent action is needed above; otherwise, the trace message will be printed
a second time, before continuing the execution.

See Section 11.3.61 [mpg-ref-debugger_command_hook], page 956. library(debugger_
examples) contains some of the above hooks, as well as several others.

5.6.11 Programming Breakpoints

We will show two examples using the advanced features of the debugger.
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The first example defines a hide_exit (Pred) predicate, which will hide the Exit port for
Pred (i.e. it will silently proceed), provided the current goal was already ground at the
Call port, and nothing was traced inside the given invocation. The hide_exit (Pred) goal
creates two spypoints for predicate Pred:

:— meta_predicate hide_exit(:).
hide_exit(Pred) :-
add_breakpoint ([pred(Pred) ,call]-
true(save_groundness), _),
add_breakpoint ([pred (Pred) ,exit,true(hide_exit)]-hide, _).

The first spypoint is applicable at the Call port, and it calls save_groundness to check
if the given invocation was ground, and if so, it stores a term hide_exit (ground) in the
goal_private attribute of the invocation.

save_groundness :-
execution_state([goal(_:G),goal_private(Priv)]),
ground(G), !, memberchk(hide_exit(ground), Priv).
save_groundness.

The second spypoint created by hide_exit/1 is applicable at the Exit port and it checks
whether the hide_exit/0 condition is true. If so, it issues a hide action, which is a
breakpoint macro expanding to [silent,proceed].

hide_exit :-
execution_state([inv(I) ,max_inv(I),goal_private(Priv)]),
memberchk (hide_exit(Ground), Priv), Ground == ground.

Here, hide_exit encapsulates the tests that the invocation number be the same as the last
invocation number used (max_inv), and that the goal_private attribute of the invocation
be identical to ground. The first test ensures that nothing was traced inside the current
invocation.

If we load the above code, as well as the small example below, the following interaction,
discussed below, can take place. Note that the hide_exit predicate is called with the _: _
argument, resulting in generic spypoints being created.
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| ?- consult (user).
| cnt(0) :- !.
| ent(N) :-
N > 0, N1 is N-1, cnt(N1).
| °D
% consulted user in module user, O msec 424 bytes

| ?- hide_exit(_:_), trace, cnt(1).

% The debugger will first zip -- showing spypoints (zip)

% Generic spypoint added, BID=1

% Generic spypoint added, BID=2

% The debugger will first creep -- showing everything (trace)
# 1 1 Call: cnt(1) 7 ¢

# 2 2 Call: 1>0 7 ¢
# 3 2 Call: _2019 is 1-1 ? ¢
3 2 Exit: 0 is 1-1 7 ¢
# 4 2 Call: cnt(0) 7 ¢
1 1 Exit: cnt(1) ? ¢
% trace
| 7-

Invocation 1 is ground, its Exit port is not hidden, because further goals were traced inside
it. On the other hand, Exit ports of ground invocations 2 and 4 are hidden.

Our second example defines a predicate call_backtrace(Goal, BTrace), which will ex-
ecute Goal and build a backtrace showing the successful invocations executed during the
solution of Goal.

The advantages of such a special backtrace over the one incorporated in the debugger are
the following:

e it has much lower space consumption;

e the user can control what is put on and removed from the backtrace (e.g. in this example
all goals are kept, even the ones that exited determinately);

e the interactive debugger can be switched on and off without affecting the “private”
backtrace being built.

The call_backtrace/2 predicate is based on the advice facility. It uses the variable ac-
cessible via the private(_) condition to store a mutable (see Section 4.8.9 [ref-lte-mut],
page 129) holding the backtrace. Outside the call_backtrace predicate the mutable will
have the value off.

The example is a module-file, so that internal invocations can be identified by the module
name. We load the lists library, because memberchk/2 will be used in the handling of the
private field.
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:— module(backtrace, [call_backtrace/2]).
:— use_module(library(lists)).

:- meta_predicate call_backtrace(0, 7).
call_backtrace(Goal, BTrace) :-

Spec = [advice,call]

-[true((goal (M:G),store_goal (M,G))),flit],

( current_breakpoint (Spec, _, on, _, _) -> B = []

;  add_breakpoint(Spec, B)

),

call_cleanup(call_backtracel(Goal, BTrace),

remove_breakpoints(B)) .

call_backtrace(Goal, BTrace) is a meta-predicate, which first sets up an appropriate
advice-point for building the backtrace. The advice-point will be activated at each Call
port and will call the store_goal/2 predicate with arguments containing the module and
the goal in question. Note that the advice-point will not build a procedure box (cf. the
flit command in the action part).

The advice-point will be added just once: any further (recursive) calls to call_backtrace/2
will notice the existence of the breakpoint and will skip the add_breakpoint/2 call.

Having ensured the appropriate advice-point exists, call_backtrace/2 calls call_
backtracel/2 with a cleanup operation that removes the breakpoint added, if any.

:- meta_predicate call_backtracel(0, 7).
call_backtracel(Goal, BTrace) :-

execution_state(private(Priv)),

memberchk (backtrace_mutable(Mut), Priv),

( mutable(Mut) -> get_mutable(0ld, Mut),

update_mutable([], Mut)

; create_mutable([], Mut), 01d = off

),

call(Goal),

get_mutable(BTrace, Mut), update_mutable(0ld, Mut).

The predicate call_backtracel/2 retrieves the private field of the execution state and uses
it to store a mutable, wrapped in backtrace_mutable. When first called within a top-level
the mutable is created with the value []. In later calls the mutable is re-initialized to [].
Having set up the mutable, Goal is called. In the course of the execution of the Goal the
debugger will accumulate the backtrace in the mutable. Finally, the mutable is read, its
value is returned in BTrace, and it is restored to its old value (or off).
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store_goal(M, G) :-
M \== backtrace,
G \= call()),
execution_state(private(Priv)),
memberchk (backtrace_mutable(Mut), Priv),
mutable (Mut),
get_mutable(BTrace, Mut),
BTrace \== off, !,
update_mutable([M:G|BTrace], Mut).
store_goal(_, _).

store_goal/2 is the predicate called by the advice-point, with the module and the goal
as arguments. We first ensure that calls from within the backtrace module and those of
call/1 get ignored. Next, the module qualified goal term is prepended to the mutable value
retrieved from the private field, provided the mutable exists and its value is not off.

Below is an example run, using a small program:

| ?- consult (user).
| cnt(N):- N =< 0, !.
| cnt(N) :-
N> 0, N1 is N-1, cnt(N1).
| °D
% consulted user in module user, O msec 424 bytes

| ?- call_backtrace(cnt(1), B).
% Generic advice point added, BID=1
% Generic advice point, BID=1, removed (last)

B = [user: (0=<0),user:cnt(0),user:(0 is 1-1),user:(1>0),user:cnt(1)]
| 7-

Note that the backtrace produced by call_backtrace/2 can not contain any information
regarding failed branches. For example, the very first invocation within the above execution,
1 =< 0, is first put on the backtrace at its Call port, but this is immediately undone because
the goal fails. If you would like to build a backtrace that preserves failed branches, you
have to use side-effects, e.g. dynamic predicates.

Further examples of complex breakpoint handling are contained in library(debugger_
examples).

This concludes the tutorial introduction of the advanced debugger features.

5.7 Breakpoint Handling Predicates

This section describes the advanced built-in predicates for creating and removing break-
points.
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add_breakpoint (:Spec, ?BID) development
Adds a breakpoint with a spec Spec, the breakpoint identifier assigned is unified
with BID. Spec is one of the following:

Tests-Actions
Tests standing for Tests-[]

-Actions  standing for []-Actions

Here, both Tests and Actions are either a simple Condition, see Section 5.9
[Breakpoint Conditions|, page 273, or a composite Condition. Conditions can
be composed by forming lists, or by using the ¢,’, ;’, ‘=>’, and ‘\+’ operators,
with the usual meaning of conjunction, disjunction, if-then-else, and negation,
respectively. A list of conditions is equivalent to a conjunction of the same

conditions ([A|B] is treated as (4,B)).

The add_breakpoint/2 predicate performs some transformations and checks
before adding the breakpoint. All condition macros invoked are expanded into
their bodies, and this process is repeated for the newly introduced bodies. The
goal and pred conditions are then extracted from the outermost conjunctions
of the test part and moved to the beginning of the conjunction. If these are
inconsistent, a consistency error is signalled. Module name expansion is per-
formed for certain tests, as described below.

Both the original and the transformed breakpoint spec is recorded by the debug-
ger. The original is returned in current_breakpoint/5, while the transformed
spec is used in determining the applicability of breakpoints.

There can only be a single plain spypoint for each predicate. If a plain spypoint
is added, and there is already a plain spypoint for the given predicate, then:

a. the old spypoint is deleted and a new added as the most recent breakpoint,
if this change affects the breakpoint selection mechanism.

b. otherwise, the old spypoint is kept and enabled if needed.
See Section 11.3.5 [mpg-ref-add_breakpoint|, page 888.

spy (: PredSpec, :Spec) development
Adds a conditional spypoint with a breakpoint spec formed by adding
pred(Pred) to the test part of Spec, for each predicate Pred designated by
the generalized predicate spec PredSpec. See Section 11.3.216 [mpg-ref-spy],
page 1155.

current_breakpoint (:Spec, 7BID, ?Status, 7Kind, 7Type) development
There is a breakpoint with breakpoint spec Spec, identifier BID, status Status,
kind Kind, and type Type. Status is one of on or off, referring to enabled and
disabled breakpoints. Kind is one of plain(MFunc), conditional (MFunc) or
generic, where MFunc is the module qualified functor of the specific break-
point. Type is the breakpoint type: debugger or advice.

current_breakpoint/5 enumerates all breakpoints on backtracking.

The Spec as returned by current_breakpoint/5 is exactly the same as
supplied at the creation of the breakpoint. See Section 11.3.48 [mpg-ref-
current_breakpoint|, page 941.
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remove_breakpoints(+BIDs) development
disable_breakpoints(+BIDs) development
enable_breakpoints(+BIDs) development

Removes, disables or enables the breakpoints with identifiers specified by BID:s.
BIDs can be a number, a list of numbers or one of the atoms: all, debugger,
advice. The atoms specify all breakpoints, debugger type breakpoints and
advice type breakpoints, respectively.

execution_state(:Tests) development
Tests are satisfied in the current state of the execution. Arbitrary tests can be
used in this predicate, if it is called from inside the debugger, i.e. from within a
true condition. Otherwise only those tests can be used, which query the data
stored in the backtrace. An exception is raised if the latter condition is violated,
i.e. a non-backtraced test (see Section 5.9 [Breakpoint Conditions|, page 273)
occurs in a call of execution_state/1 from outside the debugger.

execution_state(+FocusConditions, :Tests) development
Tests are satisfied in the state of the execution pointed to by FocusConditions
(see Section 5.9.7 [Past States], page 278). An exception is raised if there is a
non-backtraced test among Tests.

Note that the predicate arguments holding a breakpoint spec (Spec or Tests above) are sub-
ject to module name expansion. The first argument within simple tests goal(_), pred(_),
parent_pred(_), parent_pred(_,_), ancestor(_,_), and true(_) will inherit the module
name from the (module name expanded) breakpoint spec/tests predicate argument, if there
is no explicit module qualification within the simple test. Within the proceed(01d, New)
and £1it(01d,New) command value settings, Old will get the module name from the goal
or pred condition by default, while New from the whole breakpoint spec argument. See
Section 11.3.74 [mpg-ref-execution_state|, page 970.

The following hook predicate can be used to customize the behavior of the interactive
debugger.

debugger_command_hook (+DCommand, 7Actions) hook,development

user:debugger_command_hook (+DCommand, 7Actions)
This predicate is called for each debugger command that SICStus Prolog reads.
The first argument is the abstract format of the debugger command DCom-
mand, as returned by the query facility (see Section 4.16.3 [Query Processing],
page 214). If it succeeds, Actions is taken as the list of actions (see Section 5.9.6
[Action Conditions], page 277) to be done for the given debugger command. If
it fails, the debugger command is interpreted in the standard way.

Note that if a line typed in response to the debugger prompt cannot be parsed
as a debugger command, debugger_command_hook/2 is called with the term
unknown(Line,Warning). Here, Line is the code-list typed in, with any lead-
ing whitespace removed, and Warning is a warning message. This allows
the user to define new debugger commands, see Section 5.6.10 [Hooks Re-
lated to Breakpoints|, page 263 for an example. See Section 11.3.61 [mpg-
ref-debugger_command_hook], page 956.
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5.8 The Processing of Breakpoints

This section describes in detail how the debugger handles the breakpoints. For the purpose
of this section disabled breakpoints are not taken into account: whenever we refer to the
existence of some breakpoint(s), we always mean the existence of enabled breakpoint(s).

The Prolog engine can be in one of the following three states with respect to the debugger:

no debugging
if there are no advice-points and the debugger is either switched off, or doing a
skip;

full debugging
if the debugger is in trace or debug mode (creeping or leaping), or there are
any generic breakpoints;

selective debugging
in all other cases.

In the selective debugging state only those predicate invocations are examined, for which
there exists a specific breakpoint. In the full debugging state all invocations are examined,
except those calling a predicate of a hidden module (but even these will be examined, if
there is a specific breakpoint for them). In the no debugging state the debugger is not
entered at predicate invocations.

Now we describe what the debugger does when examining an invocation of a predicate, i.e.
executing its Call port. The debugger activities can be divided into three stages: advice-
point processing, spypoint processing and interaction with the user. The last stage may be
repeated several times before program execution continues.

The first two stages are similar, as they both search for an applicable breakpoint (spypoint
or advice-point). This common breakpoint search is carried out as follows. The debugger
considers all breakpoints of the given type, most recent first. For each breakpoint, the test
part of the spec is evaluated, until one successful is found. Any variable bindings created
in this successful evaluation are then discarded (this is implemented by enclosing it in
double negation). The first breakpoint, for which the evaluation of the test part succeeds is
selected. If such a breakpoint can be found, the breakpoint search is said to have completed
successfully, otherwise it is said to have failed.

If a breakpoint has been selected, its action part is evaluated, normally setting some debug-
ger action variables. If the action part fails, as a side-effect, it is ensured that a procedure
box will be built. This is achieved by changing the value of the command action variable
from f1lit to proceed.

Having described the common breakpoint search, let us look at the details of the first
stage, advice-point processing. This stage is executed only if there are any advice-points
set. First, the debugger action variables are initialized: mode is set to the current debugger
mode, command to proceed and show to silent. Next, advice-point search takes place. If
this fails, command is set to £1it, otherwise its value is unchanged.
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After completing the advice-point search the command variable is examined. If its value is
divertive, i.e. different from proceed and flit, the spypoint search stage is omitted, and
the debugger continues with the third stage. Otherwise, it is noted that the advice-point
processing has requested the building of a procedure box (i.e. command = proceed), and the
debugger continues with the second stage.

The second stage is spypoint processing. This stage is skipped if the debugger is switched
off or doing a skip (mode is off or skip(_)). First the show and command variables are
re-assigned, based on the hiddenness of the predicate being invoked, the debugger mode,
and the leashing status of the port. If the predicate is both defined in, and called from a
hidden module, their values will be silent and £1it. An example of this is when a built-in
predicate is called from a hidden module, e.g. from a library. Otherwise, in trace mode,
their values are print and ask for leashed ports, and print and proceed for unleashed
ports. In debug mode, the variables are set to silent and proceed, while in zip mode to
silent and flit (Section 5.6.5 [Breakpoint Actions], page 248 contains a tabulated listing
of these initialization values).

Having initialized the debugger action variables, the spypoint search phase is performed. If
an empty action part has been selected in a successful search, show and command are set to
print and ask. The failure of the search is ignored.

The third stage is the interactive part. First, the goal in question is displayed according
to the value of show. Next, the value of command is checked: if it is other than ask, the
interactive stage ends. Otherwise, (it is ask), the variable show is re-initialized to print, or
to print-Sel, if its value was of form Method-Sel. Next, the debugger prompts the user
for a command, which is interpreted either in the standard way, or through user:debugger_
command_hook/2. In both cases the debugger action variables are modified as requested,
and the interactive part is repeated.

After the debugger went through all the three stages, it decides whether to build a procedure
box. This will happen if either the advice-point stage or the other two stages require it. The
latter is decided by checking the command variable: if that is £1it or £1it (01d, New), no pro-
cedure box is required by the spypoint part. If the advice-point does require the building of a
procedure box, the above command values are replaced by proceed and proceed(01d, New),
respectively.

At the end of the process the value of mode will be the new debugging mode, and command
will determine what the debugger will do; see Section 5.9.9 [Action Variables], page 278.

A similar three-stage process is carried out when the debugger arrives at a non-Call port of
a predicate. The only difference is that the building of a procedure box is not considered
(f1it is equivalent to proceed), and the hiddenness of the predicate is not taken into
account.

While the Prolog system is executing the above three-stage process for any of the ports, it
is said to be inside the debugger. This is relevant, because some of the conditions can only
be evaluated in this context.
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5.9 Breakpoint Conditions

This section describes the format of simple breakpoint conditions. We first list the tests that
can be used to enquire the state of execution. We then proceed to describe the conditions
usable in the action part and the options for focusing on past execution states. Finally, we
describe condition macros and the format of the values of the debugger action variables.

We distinguish between two kinds of tests, based on whether they refer to information
stored in the backtrace or not. The latter category, the non-backtraced tests, contains
the conditions related to the current port (port, bid, mode, show, command, get) and
the breakpoint type selection conditions (advice and debug). All remaining tests refer to
information stored in the backtrace.

Non-backtraced tests will raise an exception, if they appear in calls to execution_state/1
from outside the debugger, or in queries about past execution state, in execution_state/2.

Backtraced tests are allowed both inside and outside the debugger. However such tests
can fail if the given query is not meaningful in the given context, e.g. if execution_
state(goal(G)) is queried before any breakpoints were encountered.

Note that if a test is used in the second argument of execution_state/2, the term current,
in the following descriptions, should be interpreted as referring to the execution state focused
on (described by the first argument of execution_state/2).

5.9.1 Tests Related to the Current Goal

The following tests give access to basic information about the current invocation.

inv(Inv) The invocation number of the current goal is Inv. Invocation numbers start
from 1.

depth(Depth)
The current execution depth is Depth.

goal (MGoal)
The current goal is an instance of the module name expanded MGoal tem-
plate. The current goal and MGoal are unified. This condition is equivalent to
subsumes (MGoal, CurrentGoal) (subsumes/2 is defined in library(terms),
see Section 10.38 [lib-terms|, page 817).

pred (MFunc)
The module name expanded MFunc template matches (see notes below) the
functor (M : F/N) of the current goal. The unification required for matching is
carried out.

module (Module)
The current goal is invoked from module Module. For compiled calls to built-in
predicates Module will always be prolog.

goal_private(GoalPriv)
The private information associated with the current goal is GoalPriv. This is
initialized to an unbound variable at the Call port. It is strongly recommended
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that GoalPriv be used as an open ended list, see Section 5.6.9 [Storing User
Information in the Backtrace], page 261.

exited(Boolean)
Boolean is true if the current invocation has exited, and false otherwise. This
condition is mainly used for looking at past execution states.

parent_inv(Inv)
The invocation number of the debugger-parent (see notes below) of the current
goal is Inv.

ancestor (AncGoal, Inv)
The youngest debugger-ancestor of the current goal, which is an instance of the
module name expanded AncGoal template, is at invocation number Inv. The
unification required for matching is carried out.

Notes:

The debugger-parent of a goal is the youngest ancestor of the goal present on the backtrace.
This will differ from the ordinary parent if not all goals are traced, e.g. if the goal in question
is reached in zip mode. A debugger-ancestor of a goal is any of its ancestors on the backtrace.

In the goal and ancestor tests above, there is a given module qualified goal template, say
ModT: GoalT, and it is matched against a concrete goal term Mod: Goal in the execution
state. This matching is carried out as follows:

a. It is checked that Goal is an instance of GoalT.

b. Goal and GoalT are unified.

c. It is checked that Mod and ModT are either unifiable (and are unified), or name
such modules in which Goal has the same meaning, i.e. either one of Mod: Goal and

ModT: Goal is an exported variant of the other, or both are imported from the same
module.

Similar matching rules apply for predicate functors, in the pred condition. In this test the
argument holds a module qualified functor template, say ModT': Name/Arity, and this is
matched against a concrete goal term Mod: Goal in the execution state.

a. It is checked that the functor of Goal unifies with Name/ Arity, and this unification is
carried out.

b. It is checked that Mod and ModT are either unifiable (and are unified), or name such
modules in which Goal has the same meaning.

5.9.2 Tests Related to Source Information

These tests provide access to source related information. The file and 1ine tests will fail if
no source information is present. The parent_clause and parent_pred tests are available
for interpreted code only, they will fail in compiled code.

file(File)
The current goal is invoked from a file whose absolute name is File.
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line(File,Line)
The current goal is invoked from line Line, from within a file whose absolute
name is File.

line(Line)
The current goal is invoked from line Line.

parent_clause(Cl)
The current goal is invoked from clause CL

parent_clause(Cl,Sel)
The current goal is invoked from clause CI and within its body it is pointed to
by the subterm selector Sel.

parent_clause(Cl,Sel,I)
The current goal is invoked from clause CI, it is pointed to by the subterm
selector Sel within its body, and it is the Ith goal within it. The goals in the
body are counted following their textual occurrence.

parent_pred(Pred)
The current goal is invoked from predicate Pred.

parent_pred(Pred,N)
The current goal is invoked from predicate Pred, clause number N.

The parent_pred tests match their first argument against the functor of the parent predi-
cate in the same way as the pred test does; see the notes in the previous section (Section 5.9.1

[Goal Tests|, page 273).

5.9.3 Tests Related to the Current Port

These tests can only be used inside the debugger and only when focused on the current
invocation. If they appear in execution_state/2 or in execution_state/1 called from
outside the debugger, an exception will be raised.

The notion of port in breakpoint handling is more general than outlined earlier in Section 5.1
[Procedure Box|, page 227. Here, the following terms are used to describe a port:

call, exit(nondet), exit(det), redo, fail,
exception(Exception), block, unblock

Furthermore, the atoms exit and exception can be used in the port condition (see below),
to denote either of the two exit ports and an arbitrary exception port, respectively.

port (Port)
The current execution port matches Port in the following sense: either Port
and the current port unify, or Port is the functor of the current port (e.g.
port(exit) holds for both exit(det) and exit(nondet) ports).

As explained earlier, the port condition for a non Call port is best placed in
the action part. This is because the failure of the action part will cause the
debugger to pass through the Call port silently, and to build a procedure box,
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even in zip mode. The following idiom is suggested for creating breakpoints at
non Call ports:

add_breakpoint (Tests-[port (Port) ,Actions], BID).

bid(BID) The breakpoint being examined has a breakpoint identifier BID. (BID = off
if no breakpoint was selected.)

mode (Mode)
Mode is the value of the mode variable, which normally reflects the current
debugger mode.

command (Command )
Command is the value of the command variable, which is the command to be
executed by default, if the breakpoint is selected.

show (Show)
Show is the value of the show variable, i.e. the default show method (the method
for displaying the goal in the trace message).

The last three of the above tests access the debugger action wvariables. These break-
point conditions have a different meaning in the action part. For example, the condition
mode (trace), if it occurs in the tests, checks if the current debugger mode is trace. On
the other hand, if the same term occurs within the action part, it sets the debugger mode
to trace.

To support the querying of the action variables in the action part, the following breakpoint
condition is provided:

get (ActVar)
Equivalent to ActVar, where this is an action variable test, i.e. one of the
terms mode (Mode), command (Command), show(Show). It has this meaning in
the action part as well.

For the port, mode, command and show conditions, the condition can be replaced by its
argument, if that is not a variable. For example the condition call can be used instead
of port(call). Conditions matching the terms listed above as valid port values will be
converted to a port condition. Similarly, any valid value for the three debugger action
variables is converted to an appropriate condition. These valid values are described in
Section 5.9.9 [Action Variables|, page 278.

5.9.4 Tests Related to the Break Level

These tests can be used both inside and outside the condition evaluation process, and also
can be used in queries about past break levels.

break_level (N)
We are at (or focused on) break level N (N = 0 for the outermost break level).
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max_inv(MaxInv)
The last invocation number used within the current break level is MaxInv. Note
that this invocation number may not be present in the backtrace (because the
corresponding call exited determinately).

private(Priv)
The private information associated with the break level is Priv. Similarly to
goal_private/1, this condition refers initially to an unbound variable and can
be used to store an arbitrary Prolog term. However, it is strongly recommended
that Priv be used as an open ended list, see Section 5.6.9 [Storing User Infor-
mation in the Backtrace], page 261.

5.9.5 Other Conditions

The following conditions are for prescribing or checking the breakpoint type. They cause
an exception if used outside the debugger or in execution_state/2.

advice The breakpoint in question is of advice type.

debugger The breakpoint in question is of debugger type.
The following construct converts an arbitrary Prolog goal into a condition.

true (Cond)

The Prolog goal Cond is true, i.e. once(Cond) is executed and the condition
is satisfied if and only if this completes successfully. If an exception is raised
during execution, an error message is printed and the condition fails.

The substitutions done on executing Cond are carried out. Cond is subject to
module name expansion. If used in the test part of spypoint conditions, the
goal should not have any side-effects, as the test part may be evaluated several
times.

The following conditions represent the Boolean constants.

true
] A condition that is always true. Useful e.g. in conditionals.
false A condition that is always false.

5.9.6 Conditions Usable in the Action Part

The meaning of the following conditions, if they appear in the action part, is different from
their meaning in the test part.

mode (Mode)
Set the debugger mode to Mode.

command (Command )
Set the command to be executed to Command.

show(Show)
Set the show method to Show.
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The values admissible for Mode, Command and Show are described in Section 5.9.9 [Action
Variables], page 278.

Furthermore, any other condition can be used in the action part, except for the ones spec-
ifying the breakpoint type (advice and debugger). Specifically, the get condition can be
used to access the value of an action variable.

5.9.7 Options for Focusing on a Past State

The following ground terms can be used in the first argument of execution_state/2 (see
Section 5.7 [Breakpoint Predicates], page 268). Alternatively, a list containing such terms
can be used. If a given condition occurs multiple times, only the last one is considered. The
order of conditions within the list does not matter.

break_level (BL)
Focus on the current invocation of break level BL. BL is the break level num-
ber, the top-level being break_level(0). For past break levels, the current
invocation is the one from which the next break level was entered.

inv(Inv) Focus on the invocation number Inv of the currently focused break level.

5.9.8 Condition Macros

There are a few condition macros expanding to a list of other conditions:

unleash  Expands to [show(print),command (proceed)]
hide Expands to [show(silent),command (proceed)]

leash Expands to [show(print) ,command(ask)]
The user can also define condition macros using the hook predicate below.

breakpoint_expansion(+Macro, -Body) hook,development
user:breakpoint_expansion(+Macro, -Body)
This predicate is called with each (non-composite) breakpoint test or action,
as its first argument. If it succeeds, the term returned in the second argument
(Body) is substituted for the original condition. The expansion is done at the
time the breakpoint is added.

Note that Body can be composite, but it cannot be of form Tests-Actions.
This means that the whole Body will be interpreted as being in either the test
or the action part, depending on the context.

The built-in breakpoint conditions cannot be redefined using this predicate. See
Section 11.3.28 [mpg-ref-breakpoint_expansion], page 918.

5.9.9 The Action Variables

In this section we list the possible values of the debugger action variables, and their meaning.

Note that the Prolog terms, supplied as values, are copied when a variable is set. This is
relevant primarily in the case of the proceed/2 and £f1it/2 values.
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Values allowed in the show condition:

print
silent
display

write

Write using options stored in the debugger_print_options Prolog flag.
Display nothing.
Write using display.

Write using writeq.

write_term(Options)

Method-Sel

Write using options Options.

Display only the subterm selected by Sel, using Method. Here, Method is one
of the methods above, and Sel is a subterm selector.

Values allowed in the command condition:

ask
proceed

flit

Ask the user what to do next.
Continue the execution without interacting with the user (cf. unleashing).

Continue the execution without building a procedure box for the current goal
(and consequently not encountering any other ports for this invocation). Only
meaningful at Call ports, at other ports it is equivalent to proceed.

proceed(Goal,New)

Unless at call port, first go back to the call port (retry the current invocation;
see the retry(Inv) command value below). Next, unify the current goal with
Goal and execute the goal New in its place. Create (or keep) a procedure box
for the current goal.
This construct is used by the ‘u’ (unify) interactive debugger command.
Both the Goal and New arguments are module name expanded when the break-
point is added: the module of Goal defaults to the module of the current goal,
while that of New to the module name of the breakpoint spec. If the command
value is created during run time, the module name of both arguments defaults
to the module of the current goal.
The term proceed(Goal,New) will be copied when the command action variable
is set. Therefore breakpoint specs of form

Tests - [goal(foo(X)),...,proceed(_,bar(X))]
should be avoided, and

Tests - [goal(foo(X)),...,proceed(foo(Y),bar(Y))
should be used instead. The first variant will not work as expected if X is non-
ground, as the variables in the bar/1 call will be detached from the original
ones in foo/1. Even if X is ground, the first variant may be much less efficient,
as it will copy the possibly huge term X.

f1lit(Goal,New)

Same as proceed(Goal,New), but don’t create (or discard) a procedure box
for the current goal. (Consequently no other ports will be encountered for this
invocation.)
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Notes for proceed/2, on module name expansion and copying, also apply to
flit/2.

raise(E) Raise the exception E.
abort Abort the execution.

retry(Inv)
Retry the most recent goal in the backtrace with an invocation number less
or equal to Inv (go back to the Call port of the goal). This is used by the
interactive debugger command ‘r’, retry; see Section 5.5 [Debug Commands],
page 233.

reexit(Inv)
Re-exit the invocation with number Inv (go back to the Exit port of the goal).
Inv must be an exact reference to an exited invocation present in the backtrace
(exited nondeterminately, or currently being exited). This is used by the in-
teractive debugger command ‘je’, jump to Exit port; see Section 5.5 [Debug
Commands]|, page 233.

redo(Inv)
Redo the invocation with number Inv (go back to the Redo port of the goal).
Inv must be an exact reference to an exited invocation present in the backtrace.
This is used by the interactive debugger command ‘jr’, jump to Redo port; see
Section 5.5 [Debug Commands]|, page 233.

fail(Inv)
Fail the most recent goal in the backtrace with an invocation number less or
equal to Inv (transfer control back to the Fail port of the goal). This is used by
the interactive debugger command ‘f’, fail; see Section 5.5 [Debug Commands],
page 233.

Values allowed in the mode condition:

qskip(Inv)
Quasi-skip until the first port with invocation number less or equal to Inv
is reached. Having reached that point, mode is set to trace. Valid only if
Inv > 1 and furthermore Inv < Currlnv for entry ports (Call, Redo), and
Inv < Currlnv for all other ports, where Currlnv is the invocation number of
the current port.

skip(Inv)
Skip until the first port with invocation number less or equal to Inv is reached,
and set mode to trace there. Inv should obey the same rules as for gskip.

trace Creep.
debug Leap.
zip Zip.

off Continue without debugging.
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5.10 Consulting during Debugging

It is possible, and sometimes useful, to consult a file whilst in the middle of program
execution. Predicates that have been successfully executed and are subsequently redefined
by a consult and are later reactivated by backtracking, will not notice the change of their
definitions. In other words, it is as if every predicate, when called, creates a copy of its
definition for backtracking purposes.

5.11 Catching Exceptions

Usually, exceptions that occur during debugging sessions are displayed only in trace mode
and for invocation boxes for predicates with spypoints on them, and not during skips.
However, it is sometimes useful to make exceptions trap to the debugger at the earliest
opportunity instead. The hook predicate user:error_exception/1 provides such a possi-
bility:

error_exception(+Exception) hook
user:error_exception(+Exception)
This predicate is called at all Exception ports. If it succeeds, the debugger enters
trace mode and prints an exception port message. Otherwise, the debugger
mode is unchanged and a message is printed only in trace mode or if a spypoint
is reached, and not during skips. See Section 11.3.73 [mpg-ref-error_exception],
page 969.

Note that this hook takes effect when the debugger arrives at an Exception port. For this
to happen, procedure boxes have to be built, e.g. by running (the relevant parts of) the
program in debug mode.

A useful definition that ensures that all standard error exceptions causes the debugger to
enter trace mode, is as follows:

:- multifile user:error_exception/1.
user:error_exception(error(_,_)).

(this example would not have worked prior to release 4.0.5).

5.12 Predicate Summary

add_breakpoint (+Conditions, -BID) development
Creates a breakpoint with Conditions and with identifier BID.

user:breakpoint_expansion(+Macro, -Body) hook,development
defines debugger condition macros

coverage_data(7Data) since release 4.2,development
Data is the coverage data accumulated so far

current_breakpoint (?Conditions, 7BID, 7?Status, 7Kind, ?Type) development
There is a breakpoint with conditions Conditions, identifier BID, enabledness
Status, kind Kind, and type Type.
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debug development
switch on debugging

user:debugger_command_hook (+DCommand, -Actions) hook,development
Allows the interactive debugger to be extended with user-defined commands.

debugging development
display debugging status information

disable_breakpoints(+BIDs) development
Disables the breakpoints specified by BIDs.

enable_breakpoints(+BIDs) development
Enables the breakpoints specified by BIDs.

user:error_exception(+Exception) hook
Exception is an exception that traps to the debugger if it is switched on.

execution_state (+Tests) development
Tests are satisfied in the current state of the execution.

execution_state (+FocusConditions, +Tests) development
Tests are satisfied in the state of the execution pointed to by FocusConditions.

leash(+M) development
set the debugger’s leashing mode to M

nodebug development
switch off debugging

nospy (:P) development
remove spypoints from the procedure(s) specified by P

nospyall development
remove all spypoints

notrace development
switch off debugging (same as nodebug/0)

nozip development
switch off debugging (same as nodebug/0)

print_coverage since release 4.2,development

print_coverage(?Data) since release 4.2,development
The coverage data Data is displayed in a hierarchical format. Data defaults to
the coverage data accumulated so far.

print_profile since release 4.2,development

print_profile(?Data) since release 4.2,development
The profiling data Data is displayed in a format similar to gprof(1). Data
defaults to the profiling data accumulated so far.

profile_data(?Data) since release 4.2,development
Data is the profiling data accumulated so far

profile_reset since release 4.2,development
All profiling data is reset.
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remove_breakpoints(+BIDs) development
Removes the breakpoints specified by BIDs.

spy (:P) development
spy(:P, :C)
set spypoints on the procedure(s) specified by P with conditions C

trace development
switch on debugging and start tracing immediately

unknown (-0,+N) development
Changes action on undefined predicates from O to N.

user:unknown_predicate_handler (+G,+M,-N) hook
handle for unknown predicates.

zip development
switch on debugging in zip mode
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6 Mixing C/C++ and Prolog

SICStus Prolog provides a bi-directional, procedural interface for program parts written in
C and Prolog. The C side of the interface defines a number of functions and macros for
various operations. On the Prolog side, you have to supply declarations specifying the names
and argument /value types of C functions being called as predicates. These declarations are
used by the predicate load_foreign_resource/1, which performs the actual binding of
functions to predicates. They are also needed when the functions are unloaded, for example
when SICStus is halted.

In most cases, the argument/value type declarations suffice for making the necessary con-
versions of data automatically as they are passed between C and Prolog. However, it is
possible to declare the type of an argument to be a Prolog term, in which case the receiving
function will see it as a “handle” object, called an SP_term_ref, for which access functions
are provided.

The C support routines are available in a development system as well as in runtime systems.
The support routines include:

e Static and dynamic linking of C code into the Prolog environment.

e Automatic conversion between Prolog terms and C data with foreign/[2,3] declara-
tions.

e Functions for accessing and creating Prolog terms, and for creating and manipulating
SP_term_refs.

e The Prolog system may call C predicates, which may call Prolog back without limits
on recursion. Predicates that call C may be defined dynamically from C.

e Support for creating stand-alone executables.

e Support for creating user defined Prolog streams.

e Functions to read and write on Prolog streams from C.

e Functions to install interrupt handlers that can safely call Prolog.
e Functions for manipulating mutual exclusion locks.

e User hooks that can be used to perform user defined actions e.g. for customizing the
memory management bottom layer.

In addition to the interface described in this chapter, library(structs) and
library(objects) (see Section 10.35 [lib-structs], page 714 and Section 10.22 [lib-objects],
page 599) allow Prolog to hold pointers to C data structures and arrays and access and
store into fields in those data structures in a very efficient way, allowing the programmer to
stay completely inside Prolog.

6.1 Notes

The SP_PATH variable
It is normally not necessary, nor desirable, to set this system property (or
environment variable), but its value will be used, as a fall-back, at runtime
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if it cannot be determined automatically during initialization of a runtime or
development system. In this chapter, SP_PATH is used as a shorthand, as follows.

On  Windows, SP_PATH is a  shorthand for the  SICS-
tus Prolog installation directory, whose default location for SICStus 4.3.1 is
‘C:\Program Files\SICStus Prolog 4.3.1\".

On UNIX, the default installation directory
for SICStus 4.3.1 is ‘/usr/local/sicstus4.3.1/’ and SP_PATH is a shorthand
for the subdirectory ‘1ib/sicstus-4.3.1/’ of the installation directory, e.g.:
‘/usr/local/sicstus4.3.1/1ib/sicstus-4.3.1/ .

See Section 4.17.1 [System Properties and Environment Variables], page 222 for
more information.

Definitions and declarations

Type definitions and function declarations for the interface are found in the
header file ‘<sicstus/sicstus.h>’.

Error Codes

The value of many support functions is a return code, namely: SP_SUCCESS
for success, SP_FAILURE for failure, SP_ERROR if an error condition occurred,
or if an uncaught exception was raised during a call from C to Prolog. If the
value is SP_ERROR, the macro SP_errno will return a value describing the error
condition:

int SP_errno

The function SP_error_message () returns a pointer to the diagnostic message
corresponding to a specified error number.

Wide Characters

The foreign interface supports wide characters. Whenever a sequence of possibly
wide character codes is to be passed to or from a C function it is encoded as
a sequence of bytes, using the UTF-8 encoding. Unless noted otherwise the
encoded form is terminated by a NUL byte. This sequence of bytes will be
called an encoded string, representing the given sequence of character codes.
Note that it is a property of the UTF-8 encoding that it does not change ASCII
character code sequences.

If a foreign function is specified to return an encoded string, an ex-
ception will be raised if, on return to Prolog, the actual string
is malformed (is not a wvalid sequence of UTF-8 encoded charac-
ters). The exception raised is error(representation_error(mis_encoded_
string) ,representation_error(...,...,mis_encoded_string)).

6.2 Calling C from Prolog

Functions written in the C language may be called from Prolog using an interface in which
automatic type conversions between Prolog terms and common C types are declared as
Prolog facts. Calling without type conversion can also be specified, in which case the
arguments and values are passed as SP_term_refs. This interface is partly modeled after
Quintus Prolog.
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The functions installed using this foreign language interface may invoke Prolog code and
use the support functions described in the other sections of this chapter.

Functions, or their equivalent, in any other language having C compatible calling conven-
tions may also be interfaced using this interface. When referring to C functions in the
following, we also include such other language functions. Note however that a C compiler is
needed since a small amount of glue code (in C) must be generated for interfacing purposes.

As an alternative to this interface, SP_define_c_predicate() defines a Prolog predicate
such that when the Prolog predicate is called it will call a C function with a term corre-
sponding to the Prolog goal. For details, see Section 12.3.11 [cpg-ref-SP_define_c_predicate],
page 1225.

6.2.1 Foreign Resources

A foreign resource is a set of C functions, defined in one or more files, installed as an atomic
operation. The name of a foreign resource, the resource name, is an atom, which should
uniquely identify the resource. Thus, two foreign resources with the same name cannot be
installed at the same time, even if they correspond to different files.

The resource name of a foreign resource is derived from its file name by deleting any leading
path and the suffix. Therefore the resource name is not the same as the absolute file name.
For example, the resource name of both ‘~john/foo/bar.so’ and ‘"ringo/blip/bar.so’ is
bar. If load_foreign_resource(’~john/foo/bar’) has been done ‘~john/foo/bar.so’
will be unloaded if either load_foreign_resource(’~john/foo/bar’) or load_foreign_
resource(’“ringo/blip/bar’) is subsequently called.

It is recommended that a resource name be all lowercase, starting with ‘a’ to ‘z’ followed by
a sequence consisting of ‘a’ to ‘z’, underscore (‘_’), and digits. The resource name is used
to construct the file name containing the foreign resource.

For each foreign resource, a foreign_resource/2 fact is used to declare the interfaced
functions. For each of these functions, a foreign/[2,3] fact is used to specify conver-
sions between predicate arguments and C-types. These conversion declarations are used for
creating the necessary interface between Prolog and C.

The functions making up the foreign resource, the automatically generated glue code, and
any libraries, are compiled and linked, using the splfr tool (see Section 6.2.5 [The Foreign
Resource Linker]|, page 292), to form a linked foreign resource. A linked foreign resource can
be either static or dynamic. A static resource is simply a relocatable object file containing
the foreign code. A dynamic resource is a shared library (‘.so’ under most UNIX dialects,
‘.d11’ under Windows), which is loaded into the Prolog executable at runtime.

Foreign resources can be linked into the Prolog executable either when the executable is built
(prelinked), or at runtime. Prelinking can only be done using static resources. Runtime-
linking can only be done using dynamic resources. Dynamic resources can also be unlinked.
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In all cases, the declared predicates are installed by the built-in predicate load_foreign_
resource/1. If the resource was prelinked, only the predicate names are bound; otherwise,
runtime-linking is attempted (using dlopen(), LoadLibrary(), or similar).

6.2.2 Conversion Declarations

Conversion declaration predicates:

foreign_resource(+ResourceName,+Functions) hook

Specifies that a set of foreign functions, to be called from Prolog, are to be
found in the resource named by ResourceName. Functions is a list of functions
exported by the resource. Only functions that are to be called from Prolog and
optionally one init function and one deinit function should be listed. The init
and deinit functions are specified as init (Function) and deinit(Function)
respectively (see Section 6.2.6 [Init and Deinit Functions|, page 292). This
predicate should be defined entirely in terms of facts (unit clauses) and will
be called in the relevant module, i.e. not necessarily in the user module. For
example:

foreign_resource(’terminal’, [scroll,pos_cursor,ask]).

specifies that functions scroll(), pos_cursor() and ask() are to be found
in the resource ‘terminal’. See Section 11.3.84 [mpg-ref-foreign_resource],
page 983.

foreign(+CFunctionName, +Predicate) hook
foreign(+CFunctionName, +Language, +Predicate) hook

Specify the Prolog interface to a C function. Language is at present constrained
to the atom c, so there is no advantage in using foreign/3 over foreign/2.
CFunctionName is the name of a C function. Predicate specifies the name
of the Prolog predicate that will be used to call CFunction(). Predicate also
specifies how the predicate arguments are to be translated to and from the
corresponding C arguments. These predicates should be defined entirely in
terms of facts (unit clauses) and will be called in the relevant module, i.e. not
necessarily in the user module. For example:

foreign(pos_cursor, c, move_cursor(+integer, +integer)).

The above example says that the C function pos_cursor() has two integer
value arguments and that we will use the predicate move_cursor/2 to call this
function. A goal move_cursor (5, 23) would translate into the C call pos_
cursor(5,23) ;.

The third argument of the predicate foreign/3 specifies how to translate be-
tween Prolog arguments and C arguments. A call to a foreign predicate will
throw an Instantiation Error if an input arguments is uninstantiated, a Type
Error if an input arguments has the wrong type, or a Domain Error if an input
arguments is in the wrong domain. The call will fail upon return from the
function if the output arguments don’t unify with the actual arguments.

The available conversions are listed in the next subsection. See Section 11.3.83
[mpg-ref-foreign|, page 982.
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6.2.3 Conversions between Prolog Arguments and C Types

The following table lists the possible values for the arguments in the predicate specification
of foreign/[2,3]. The value declares which conversion between corresponding Prolog
argument and C type will take place.

Prolog: +integer

C: SP_integer
The argument should be a number. It is converted to a C SP_integer and
passed to the C function.

Prolog: +float
C: double The argument should be a number. It is converted to a C double and passed
to the C function.

Prolog: +atom

C: SP_atom
The argument should be an atom. Its canonical representation is passed to the
C function.

Prolog: +codes

C: char const *
The argument should be a code-list. The C function will be passed the address
of an array with the encoded string representation of these characters. The
array is subject to reuse by other support functions, so if the value is going to
be used on a more than temporary basis, it must be moved elsewhere.

Prolog: +string

C: char const *
The argument should be an atom. The C function will be passed the address
of an encoded string representing the characters of the atom. Please note: The
C function must not overwrite the string.

Prolog: +address
C: void * The value passed will be a void * pointer.

Prolog: +address(TypeName)
C: TypelName *
The value passed will be a TypeName * pointer.

Prolog: +term

C: SP_term_ref
The argument could be any term. The value passed will be the internal repre-
sentation of the term.

Prolog: -integer

C: SP_integer *
The C function is passed a reference to an uninitialized SP_integer. The value
returned will be converted to a Prolog integer.

Prolog: -float

C: double *
The C function is passed a reference to an uninitialized double. The value
returned will be converted to a Prolog float.
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Prolog: —atom

C: SP_atom *
The C function is passed a reference to an uninitialized SP_atom. The value
returned should be the canonical representation of a Prolog atom.

Prolog: -codes

C: char const *x*
The C function is passed the address of an uninitialized char *. The returned
encoded string will be converted to a Prolog code-list.

Prolog: -string

C: char const *x*
The C function is passed the address of an uninitialized char *. The returned
encoded string will be converted to a Prolog atom. Prolog will copy the string
to a safe place, so the memory occupied by the returned string may be reused
during subsequent calls to foreign code.

Prolog: -address
C: void *x*
The C function is passed the address of an uninitialized void *.

Prolog: -address(TypeName)
C: TypelName *x*
The C function is passed the address of an uninitialized TypeName *.

Prolog: -term

C: SP_term_ref
The C function is passed a new SP_term_ref, and is expected to set its value
to a suitable Prolog term. Prolog will try to unify the value with the actual
argument.

Prolog: [-integer]

C: SP_integer F()
The C function should return an SP_integer. The value returned will be
converted to a Prolog integer.

Prolog: [-float]

C: double F()
The C function should return a double. The value returned will be converted
to a Prolog float.

Prolog: [-atom]

C: SP_atom F()
The C function should return an SP_atom. The value returned must be the
canonical representation of a Prolog atom.

Prolog: [-codes]

C: char const *F ()
The C function should return a char *. The returned encoded string will be
converted to a Prolog code-list.
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Prolog: [-string]

C: char const *F ()
The C function should return a char *. The returned encoded string will be
converted to a Prolog atom. Prolog will copy the string to a safe place, so the
memory occupied by the returned string may be reused during subsequent calls
to foreign code.

Prolog: [-address]

C: void *F ()
The C function should return a void *, which will be converted to a Prolog
integer.

Prolog: [-address(TypeName) ]
C: TypeName *F ()
The C function should return a TypeName *.

Prolog: [-term]

C: SP_term_ref F()
The C function should return an SP_term_ref. Prolog will try to unify its value
with the actual argument.

6.2.4 Interface Predicates

load_foreign_resource(:Resource)
Unless a foreign resource with the same name as Resource has been statically
linked, the linked foreign resource specified by Resource is linked into the Prolog
load image. In both cases, the predicates defined by Resource are installed, and
any init function is called. Dynamic linking is not possible if the foreign resource
was linked using the ‘--static’ option.

If a resource with the same name has been previously loaded, it will be unloaded,
as if unload_foreign_resource(Resource) were called, before Resource is
loaded.

An example of usage of load_foreign_resource/1 can be found in its reference
page, Section 11.3.118 [mpg-ref-load_foreign_resource], page 1031.

unload_foreign_resource(:ResourceName)
Any deinit function associated with ResourceName, a resource name, is called,
and the predicates defined by ResourceName are uninstalled. If ResourceName
has been dynamically linked, it is unlinked from the Prolog load image.

If no resource named ResourceName is currently loaded, an existence error is
raised.

For backward compatibility, ResourceName can also be of the same type as the
argument to load_foreign_resource/1. In that case the resource name will be
derived from the absolute file name in the same manner as for load_foreign_
resource/1. Also for backward compatibility, unload_foreign_resource/1
is a meta-predicate, but the module is ignored. See Section 11.3.245 [mpg-ref-
unload_foreign_resource], page 1191.
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Please note: all foreign resources are unloaded before Prolog exits.
This implies that the C library function atexit (func) cannot be
used if func is defined in a dynamically linked foreign resource.

6.2.5 The Foreign Resource Linker

The foreign resource linker, splfr, is used for creating foreign resources (see Section 6.2.1
[Foreign Resources|, page 287). splfr reads terms from a Prolog file extracting any
foreign_resource/2 fact with first argument matching the resource name and all
foreign/[2,3] facts. Based on this information, it generates the necessary glue code,
including a header file that the user code should include, and combines it with any addi-
tional C or object files provided by the user into a linked foreign resource. The output file
name will be the resource name with a suitable extension.

Note that no pathnames passed to splfr should contain spaces. Under Windows, this can
be avoided by using the short version of pathnames as necessary.

See Section 13.6 [too-splfr], page 1357 for detailed information about splfr options etc..

6.2.5.1 Customizing splfr.

The splfr tool reads a configuration file at start-up that contains default values for many
configurable parameters. It is sometimes useful to modify these in order to adapt to local
variations.

Both splfr and spld use the same configuration file and use the same options for changing
the default parameters. See Section 6.7.3.1 [Customizing spld], page 317 for details.

6.2.5.2 Creating Linked Foreign Resources Manually under UNIX

The only supported method for building foreign resources is by compiling and linking them
with splfr. However, this is sometimes inconvenient, for instance when writing a Makefile
for use with make. To figure out what needs to be done to build a foreign resource, you
should build it once with splfr --verbose --keep ..., note what compiler and linker
flags are used, and save away any generated files. You can then mimic the build commands
used by splfr in your ‘Makefile’. You should repeat this process each time you upgrade
SICStus Prolog.

6.2.5.3 Windows-specific splfr issues

splfr needs to be able to invoke the C compiler from the command line. On Windows, this
will only work if the command line environment has been properly set up. See Section 6.7.3.3
[Setting up the C compiler on Windows|, page 321 for Windows-specific information about
getting the C compiler to work.

6.2.6 Init and Deinit Functions

An init function and/or a deinit function can be declared by foreign_resource/2. If this
is the case, these functions should have the prototype:
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void FunctionName (int when)

The init function is called by load_foreign_resource/1 after the resource has been loaded
and the interfaced predicates have been installed. If the init function fails (using SP_fail())
or raises an exception (using SP_raise_exception() ), the failure or exception is propagated
by load_foreign_resource/1 and the foreign resource is unloaded (without calling any
deinit function). However, using SP_fail() is not recommended, and operations that may
require SP_raise_exception() are probably better done in an init function that is called
explicitly after the foreign resource has been loaded.

The deinit function is called by unload_foreign_resource/1 before the interfaced pred-
icates have been uninstalled and the resource has been unloaded. If the deinit function
fails or raises an exception, the failure or exception is propagated by unload_foreign_
resource/1, but the foreign resource is still unloaded. However, neither SP_fail() nor
SP_raise_exception() should be called in a deinit function. Complex deinitialization
should be done in an explicitly called deinit function instead.

The init and deinit functions may use the C-interface to call Prolog etc.

Foreign resources are unloaded when the saved-state is restored; see Section 3.10 [Saving],
page 27. Foreign resources are also unloaded when exiting Prolog execution. The parameter
when reflects the context of the (un)load_foreign_resource/1 and is set as follows for
init functions:

SP_WHEN_EXPLICIT
Explicit call to load_foreign_resource/1.

SP_WHEN_RESTORE
Resource is reloaded after restore.

For deinit functions:

SP_WHEN_EXPLICIT
Explicit call to unload_foreign_resource/1 or a call to load_foreign_
resource/1 with the name of an already loaded resource.

SP_WHEN_EXIT
Resource is unloaded before exiting Prolog.

6.2.7 Creating the Linked Foreign Resource

Suppose we have a Prolog source file ex.pl containing:

% ex.pl
foreign(f1, pl(+integer, [-integer])).
foreign(f2, p2(+integer, [-integer])).
foreign_resource(ex, [f1,f2]).
:- load_foreign_resource(ex) .

and a C source file ex.c with definitions of the functions £1 and £2, both returning SP_
integer and having an SP_integer as the only parameter. The conversion declarations in
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‘ex.pl’ state that these functions form the foreign resource ex. Normally, the C source file
should contain the following two line near the beginning (modulo the resource name):

#include <sicstus/sicstus.h>

/* ex_glue.h is generated by splfr from the foreign/[2,3] facts.
Always include the glue header in your foreign resource code.

*/

#include "ex_glue.h"
To create the linked foreign resource, simply type (to the Shell):
% splfr ex.pl ex.c

The linked foreign resource ‘ex.so’ (file suffix ‘.so’ is system dependent) has been cre-
ated. It will be dynamically linked by the directive : - load_foreign_resource(ex). when
the file ‘ex.pl’ is loaded. For a full example, see Section 6.2.8 [Foreign Code Examples],
page 294.

Dynamic linking of foreign resources can also be used by runtime systems.

6.2.8 Foreign Code Examples

Given: a Prolog file ‘ex.pl’” and a C file ‘ex.c’ shown below.

ex.pl
foreign_resource(ex, [cl, c2, cl1l, c21, c3, c4, c5, c6]).

foreign(cl, c, cl(+integer, [-integerl)).
foreign(c2, c, c2(-integer)).
foreign(cll, c, cli(+atom, [-atom])).
foreign(c21, c, c21(+atom, -atom)).
foreign(c3, ¢, c3(+float, [-floatl])).
foreign(c4, c, c4(-float)).

foreign(ch5, c, cb(+string, [-stringl)).
foreign(c6, c, c6(-string)).

:— load_foreign_resource(ex) .
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ex.c
#include <sicstus/sicstus.h>
/* ex_glue.h is generated by splfr from the foreign/[2,3] facts.
Always include the glue header in your foreign resource code.
*/

#include "ex_glue.h"

/* cl(+integer, [-integer]) */
SP_integer c1(a)
SP_integer a;

{
return(a+9);
}
/* c2(-integer) */
void c2(a)
SP_integer *a;
{
*a = 99;
}

/* cli(+atom, [-atom]) */
SP_atom cl11(a)
SP_atom a;

{

return(a) ;

/* c21(+atom, -atom) */
void c21(a,b)

SP_atom a;

SP_atom *b;

{

*b = a;

/* c3(+float, [-float]) */
double c3(a)
double a;
{
return(a+9.0);
}
/* c4(-float) */
void c4(a)
double *a;
{
*a = 9.9;
}
/* cb(string, [-string]) =*/
char const * c5(a)
char const * a;
{

return(a) :
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Dialog at the command level:

% splfr ex.pl ex.c
% sicstus -1 ex
% compiling /home/matsc/sicstus4/ex.pl...
% loading foreign resource /home/matsc/sicstus4/ex.so in module user
% compiled /home/matsc/sicstus4/ex.pl in mod-
ule user, 0 msec 3184 bytes
SICStus 4.3.1
Licensed to SICS
| ?- c1(1,X1), c2(X2), cii(foo,X11), c21(foo,X21),
c3(1.5,X3), c4(X4), c5(foo,X5), c6(X6).

X1 = 10,

X2 = 99,

X3 = 10.5,

X4 = 9.9,

X5 = foo,

X6 = 997,

X11 = foo,

X21 = foo ? RET
yes

6.3 Calling C++ from Prolog

Functions in C++ files that should be called from Prolog must use C linkage, e.g.

extern "C" {

void myfun(SP_integer i)
{...};

s

On Windows, C++ is a first class citizen and no special steps are needed in order to mix
C++ and C code.

On other platforms, to build a dynamically linked foreign resource with C++ code, you may
have to explicitly include certain libraries and you may need to use an executable compiled
and linked with a C++ compiler. The details are platform and C++ compiler dependent and
outside the scope of this manual.

6.4 Support Functions

The support functions include functions to manipulate SP_term_refs, functions to convert
data between the basic C types and Prolog terms, functions to test whether a term can be
converted to a specific C type, and functions to unify or compare two terms.

6.4.1 Creating and Manipulating SP_term_refs

Normally, C functions only have indirect access to Prolog terms via SP_term_refs. C func-
tions may receive arguments as unconverted Prolog terms, in which case the actual argu-
ments received will have the type SP_term_ref. Also, a C function may return an uncon-
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verted Prolog term, in which case it must create an SP_term_ref. Finally, any temporary
Prolog terms created by C code must be handled as SP_term_refs.

SP_term_refs are motivated by the fact that SICStus Prolog’s memory manager must have
a means of reaching all live Prolog terms for memory management purposes, including such
terms that are being manipulated by the user’s C code. Previous releases provided direct
access to Prolog terms and the ability to tell the memory manager that a given memory
address points to a Prolog term, but this approach was too low level and highly error-prone.
The current design is modeled after and largely compatible with Quintus Prolog release 3.

SP_term_refs are created dynamically. At any given time, an SP_term_ref has a value (a
Prolog term, initially [1). This value can be examined, accessed, and updated by the
support functions described in this section.

A new SP_term_ref is created by calling SP_new_term_ref ().
An SP_term_ref can be assigned the value of another SP_term_ref by calling SP_put_term().

It is important to understand the rules governing the scope of SP_term_refs, and the terms
they hold, in conjunction with calls from Prolog to C and vice versa. This is explained in
Section 6.5.2 [Finding Multiple Solutions of a Call], page 302.

6.4.2 Atoms in C

Each Prolog atom is represented internally by a unique integer, its canonical representation,
with the corresponding C type SP_atom. This mapping between atoms and integers depends
on the execution history. Certain functions require this representation as opposed to an
SP_term_ref. It can be obtained by a special argument type declaration when calling C
from Prolog, by calling SP_get_atom(), or by looking up an encoded string s in the Prolog
symbol table by calling SP_atom_from_string(s) which returns the atom, or zero if the
given string is malformed (is not a valid sequence of UTF-8 encoded characters).

The encoded string containing the characters of a Prolog atom a can be obtained by calling
SP_string_from_atom().

The length of the encoded string representing a Prolog atom a can be obtained by calling
SP_atom_length().

Prolog atoms, and the space occupied by their print names, are subject to garbage col-
lection when the number of atoms has reached a certain threshold, under the control of
the agc_margin Prolog flag, or when the atom garbage collector is called explicitly. The
atom garbage collector will find all references to atoms from the Prolog specific memory
areas, including SP_term_refs and arguments passed from Prolog to foreign language func-
tions. However, atoms created by SP_atom_from_string() and merely stored in a local
variable are endangered by garbage collection. The functions SP_register_atom() and
SP_unregister_atom() make it possible to protect an atom while it is in use. The opera-
tions are implemented using reference counters to support multiple, independent use of the
same atom in different foreign resources.
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6.4.3 Creating Prolog Terms

The following functions create a term and store it as the value of an SP_term_ref, which
must exist prior to the call. They return zero if the conversion fails (as far as failure can be
detected), and a nonzero value otherwise, assigning to t the converted value.

SP_put_variable()
Creates a variable.

SP_put_integer ()
Creates an integer.

SP_put_float()
Creates a float.

SP_put_atom()
Creates an atom.

SP_put_string()
Creates an atom.

SP_put_address ()
Creates an integer representing a pointer.

SP_put_list_codes()
Creates a char-list.

SP_put_list_n_codes()
Creates a char-list.

SP_put_list_n_bytes()
Creates a byte-list.

SP_put_integer_bytes()
Creates an arbitrarily sized integer.

SP_put_number_codes ()
Creates a char-list denoting a number.

SP_put_functor ()
Creates a compound term.

SP_put_list()
Creates a list.

SP_cons_functor ()
Creates a compound term with arguments filled in.

SP_cons_list ()
Creates a list with arguments filled in.

SP_read_from_string() (C function)
Reads a term from its textual representation, replacing variables by specified
terms.
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6.4.4 Accessing Prolog Terms

The following functions will take an SP_term_ref and convert it to C data. They return
zero if the conversion fails, and a nonzero value otherwise, and store the C data in output
arguments, except the last two, which merely decompose compound terms.

SP_get_integer ()
Accesses an integer.

SP_get_float()
Accesses a float.

SP_get_atom()
Accesses an atom.

SP_get_string()
Accesses an atom.

SP_get_address()
Accesses an integer representing a pointer.

SP_get_list_codes()
Accesses a code-list.

SP_get_list_n_codes()
Accesses a code-list.

SP_get_list_n_bytes()
Accesses a byte-list.

SP_get_number_codes ()
Accesses a code-list denoting a number.

SP_get_integer_bytes()
Accesses an arbitrarily sized integer.

SP_get_functor()
Accesses a compound term.

SP_get_list()
Accesses a list.

SP_get_arg()
Accesses an argument of a compound term.
6.4.5 Testing Prolog Terms

There is one general function for type testing of Prolog terms as well as a set of specialized,
more efficient, functions—one for each term type:

SP_term_type ()
Accesses term type.

SP_is_variable()
Checks whether term is a variable.
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SP_is_integer()
Checks whether term is an integer.

SP_is_float()
Checks whether term is a float.

SP_is_atom()
Checks whether term is an atom.

SP_is_compound ()
Checks whether term is compound.

SP_is_1list()
Checks whether term is a list.

SP_is_atomic()
Checks whether term is atomic.

SP_is_number ()
Checks whether term is a number.
6.4.6 Unifying and Comparing Terms

The two functions are:

SP_unify()
Unify terms.

SP_compare ()
Compare terms.

6.4.7 Operating System Services
6.4.7.1 Memory Management

The standard C library memory allocation functions (malloc, calloc, realloc, and free)
are available in foreign code, but cannot reuse any free memory that SICStus Prolog’s
memory manager may have available, and so may contribute to memory fragmentation.

The following functions provide the same services via SICStus Prolog’s memory manager.

SP_malloc()
Allocates a piece of memory.

SP_calloc()
Allocates memory for an array of elements, and clears the allocated memory.

SP_realloc()
Changes the size of an allocated piece of memory.

SP_free()
Deallocates a piece of memory.

SP_strdup()
Makes a copy of a string in allocated memory.
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6.4.7.2 File System

SICStus Prolog caches the name of the current working directory. To take advantage of the
cache and to keep it consistent, foreign code should call the following interface functions
instead of calling chdir () and getcwd() directly:

SP_set_current_dir()
Obtains the absolute name of the current working directory.

SP_get_current_dir()
Sets the current working directory.

6.4.7.3 Threads

When running more that one SICStus runtime in the same process it is often necessary
to protect data with mutual exclusion locks. The following functions implement recursive
mutual exclusion locks, which only need static initialization.

SP_mutex_lock()
Locks the mutex.

SP_mutex_unlock()
Unlocks the mutex.

A (recursive) mutual exclusion lock is declared as type SP_mutex. It should be initialized
to (the static initializer) SP_MUTEX_INITIALIZER before use.

Note that the SICStus runtime is not thread safe in general.

A dynamic foreign resource that is used by multiple SICStus runtimes in the same process
may need to maintain a global state that is kept separate for each SICStus runtime. Each
SICStus runtime maintains a location (containing a voidx) for each foreign resource. By
calling SP_foreign_stash(), a foreign resource can then access this location to store any
data that is specific to the calling SICStus runtime.

6.5 Calling Prolog from C

In development and runtime systems alike, Prolog and C code may call each other to
arbitrary depths.

Before calling a predicate from C you must look up the predicate definition by module,
name, and arity. The function SP_predicate() will return a pointer to this definition or
return NULL if the predicate is not visible in the module. This definition can be used in
more than one call to the same predicate.

The function SP_pred () may be used as an alternative to the above. The only difference is
that the name and module arguments are passed as Prolog atoms rather than strings, and
the module argument is mandatory. This saves the cost of looking up the two arguments
in the Prolog symbol table. This cost dominates the cost of the operation.
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6.5.1 Finding One Solution of a Call

The easiest way to call a predicate if you are only interested in the first solution is to call the
function SP_query (). It will create a goal from the predicate definition and the arguments,
call it, and commit to the first solution found, if any.

If you are only interested in the side-effects of a predicate you can call SP_query_cut_
fail(). It will try to prove the predicate, cut away the rest of the solutions, and finally
fail. This will reclaim any memory used after the call, and throw away any solution found.

6.5.2 Finding Multiple Solutions of a Call

If you are interested in more than one solution a more complicated scheme is used. You
find the predicate definition as above, but you don’t call the predicate directly.

1. Set up a call with SP_open_query()

2. Call SP_next_solution() to find a solution. Call this predicate again to find more
solutions if there are any.

3. Terminate the call with SP_close_query() or SP_cut_query()

The function SP_open_query() will return an identifier of type SP_qid that you use in
successive calls. Note that if a new query is opened while another is already open, the new
query must be terminated before exploring the solutions of the old one. That is, queries
must be strictly nested.

The function SP_next_solution() will cause the Prolog engine to backtrack over any
current solution of an open query and look for a new one.

A query must be terminated in either of two ways. The function SP_cut_query() will
discard the choices created since the corresponding SP_open_query (), like the goal !. The
current solution is retained in the arguments until backtracking into any enclosing query.

Alternatively, the function SP_close_query() will discard the choices created since the
corresponding SP_open_query (), and then backtrack into the query, throwing away any
current solution, like the goal !, fail.

A simple way to call arbitrary Prolog code, whether for one solution or for multiple solutions,
is to use SP_read_from_string() (see Section 6.4.3 [Creating Prolog Terms|, page 298) to
create an argument to call/1. It is a good idea to always explicitly specify the module
context when using call/1 or other meta-predicates from C.

It is important to understand the rules governing the scope of SP_term_refs, and the terms
they hold, in conjunction with calls from Prolog to C and vice versa. SP_term_refs are
internally stored on a stack, which is manipulated by the various API functions as follows:

SP_new_term_ref ()
The new SP_term_ref is pushed onto the stack.
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calling C' from Prolog
SP_query()
SP_query_cut_fail()
The top of the stack is saved on call and restored upon return.

SP_open_query ()
The top of the stack is saved in the new query.

SP_close_query()
SP_cut_query()
SP_next_solution()
The top of the stack is restored from the query argument.

Among other things, this means that an SP_term_ref cannot be saved across multiple calls
from Prolog to C. Thus it makes no sense to declare an SP_term_ref as a static C variable.

Prolog terms are also generally stored on a stack, which keeps growing until the execution
backtracks, either spontaneously or by calling SP_close_query () or SP_next_solution().
It is an abuse of the SP_open_query() API to assign a term to an SP_term_ref, and then
backtrack over the term while the SP_term_ref is still live. Such abuse results in a dangling
pointer that can potentially crash SICStus Prolog. The API typically follows the pattern:

SP_pred_ref pred = SP_predicate(...);
SP_term_ref refl SP_new_term_ref();
SP_qid goal = SP_open_query(pred,refl,...);
/*
* PART A: perform some initializations, and
* loop through all solutioms.

*/

while (SP_next_solution(goal)==SP_SUCCESS) {
/*
* PART B: perform some action on the current solution.
*/

b

SP_close_query(goal);

In order to avoid dangling pointer hazards, we recommend some simple coding rules:

PART A In this part of the code, don’t call SP_new_term_ref () or the functions in
Section 6.4.3 [Creating Prolog Terms], page 298 at all.

PART B  In this part of the code, don’t call SP_new_term_ref () except to initialize any
SP_term_refs declared locally to Part B. Don’t call the functions in Section 6.4.3
[Creating Prolog Terms], page 298, except to set SP_term_refs declared locally
to Part B.
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6.5.3 Calling Prolog Asynchronously

If you wish to call Prolog back from a signal handler or a thread other than the thread that
called SP_initialize (), that is, the main thread, you cannot use SP_query () etc. directly.
The call to Prolog has to be delayed until such time that the Prolog execution can accept
an interrupt and the call has to be performed from the main thread (the Prolog execution
thread). The function SP_event () serves this purpose, and installs the function func to be
called from Prolog (in the main thread) when the execution can accept a callback.

A queue of functions, with corresponding arguments, is maintained; that is, if several calls
to SP_event () occur before Prolog can accept an interrupt, the functions are queued and
executed in turn at the next possible opportunity. A func installed with SP_event () will
not be called until SICStus is actually running. One way of ensuring that all pending
functions installed with SP_event () are run is to call, from the main thread, some dummy
goal, such as, SP_query_cut_fail (SP_predicate("true",0,"user")).

While SP_event () is safe to call from any thread, it is not safe to call from arbitrary signal
handlers. If you want to call SP_event () when a signal is delivered, you need to install
your signal handler with SP_signal () (see below).

Note that SP_event () is one of the very few functions in the SICStus API that can safely
be called from another thread than the main thread.

6.5.3.1 Signal Handling

As noted above it is not possible to call e.g. SP_query() or even SP_event() from an
arbitrary signal handler. That is, from signal handlers installed with signal or sigaction.
Instead you need to install the signal handler using SP_signal ().

When the OS delivers a signal sig for which SP_signal(sig,func,user_data) has been
called SICStus will not call func immediately. Instead the call to func will be delayed until
it is safe for Prolog to do so, in much the same way that functions installed by SP_event ()
are handled (this is an incompatible change as of release 3.9).

Since the signal handling function func will not be called immediately upon delivery of the
signal to the process it only makes sense to use SP_signal () to handle certain asynchronous
signals such as SIGINT, SIGUSR1, SIGUSR2. Other asynchronous signals handled specially
by the OS, such as SIGCHLD are not suitable for handling via SP_signal(). Note that the
development system installs a handler for ‘SIGINT’, and, under Windows, ‘SIGBREAK’, to
catch keyboard interrupts. Under UNIX, 1library(timeout) currently uses SIGVTALRM.

When func is called, it cannot call any SICStus API functions except SP_event (). Note
that func will be called in the main thread.

6.5.4 Exception Handling in C

When an exception has been raised, the functions SP_query (), SP_query_cut_fail() and
SP_next_solution() return SP_ERROR. To access the exception term (the argument of the
call to raise_exception/1), which is asserted when the exception is raised, the function
SP_exception_term() is used. As a side-effect, the exception term is retracted, so if your
code wants to pass the exception term back to Prolog, use SP_raise_exception().
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To raise an exception from a C function called from Prolog, just call SP_raise_
exception(). Upon return, Prolog will detect that an exception has been raised, any
value returned from the function will be ignored, and the exception will be passed back to
Prolog. Please note: this should only be called right before returning to Prolog.

To propagate failure to Prolog, call SP_fail (). Upon return, Prolog will backtrack. Please
note: this should only be called right before returning to Prolog.

Prolog error handling is mostly done by raising and catching exceptions. However, some
faults are of a nature such that when they occur, the internal program state may be cor-
rupted, and it is not safe to merely raise an exception. In runtime systems, the C macro
SP_on_fault() provides an environment for handling faults.

The function SP_raise_fault() can be used to raise a fault with an encoded string ex-
plaining the reason.

6.5.5 Reading a goal from a string

A simple way to call arbitrary Prolog code is to use SP_read_from_string() (see
Section 6.4.3 [Creating Prolog Terms|, page 298) to create an argument to call/1. It
is a good idea to always explicitly specify the module context when using call/1 or other
meta-predicates from C.

This example calls a compound goal (without error checking):

SP_pred_ref call_pred = SP_predicate("call", 1, "prolog");
SP_term_ref x = SP_new_term_ref();

SP_term_ref goal = SP_new_term_ref();

SP_term_ref vals[] = {x, 0 /* zero termination */};
SP_integer len;

SP_put_variable(x);
/* The X=_ is a trick to ensure that X is the first variable
in the depth-first order and thus corresponds to vals[0] (x).
There are no entries in vals for _,L1,L2.
*/
SP_read_from_string(goal,
"user: (X=_, length([0,1,2],L1), length([3,4],L2), X is L1+L2).", vals);

SP_query(call_pred, goal);
SP_get_integer(x, &len);
/* here len is 5 */

6.6 SICStus Streams

With the SICStus Prolog C interface, the user can define his/her own streams as well as
from C read or write on the predefined streams. The stream interface provides:

e C functions to perform I/O on Prolog streams. This way you can use the same stream
from Prolog and C code.
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e User defined streams. You can define your own Prolog streams in C.
e Bidirectional streams. A SICStus stream supports reading or writing or both.

e Hookable standard input/output/error streams.

6.6.1 Prolog Streams

From the Prolog level there is a unique number that identifies a stream. This identifier can
be converted from/to a Prolog stream:

stream_code (?Stream, ?StreamCode)
StreamCode is the C stream identifier (an integer) corresponding to the Prolog
stream Stream. This predicate is only useful when streams are passed between
Prolog and C. See Section 11.3.218 [mpg-ref-stream_code], page 1157.

The StreamCode is a Prolog integer representing an SP_stream * pointer.

To read or write on a Prolog stream from C, the following functions and macros can be
used:

SP_get_byte()
Read one byte from a binary stream.

SP_get_code ()
Read one character code from a text stream.

SP_put_byte()
Write one byte to a binary stream.

SP_put_code()
Write one character code to a text stream.

SP_put_bytes ()
Write multiple bytes to a binary stream.

SP_put_codes()
Write multiple character codes to a text stream.

SP_put_encoded_string ()
Write a NUL terminated encoded string to a text stream.

SP_printf ()
SP_fprintf ()
Perform formatted output.

SP_flush_output ()
Flush buffered data of an output stream.

SP_fclose()
Close a stream.

The following predefined streams are accessible from C:



Chapter 6: Mixing C/C++ and Prolog 307

SP_stdin Standard input. Refers to the same stream as user_input in Prolog. Which
stream is referenced by user_input is controlled by the Prolog flag user_input.

SP_stdout
Standard output. Refers to the same stream as user_output in Prolog. Which
stream is referenced by user_output is controlled by the Prolog flag user_
output.

SP_stderr
Standard error. Refers to the same stream as user_error in Prolog. Which
stream is referenced by user_error is controlled by the flag user_error.

SP_curin Current input. It is initially set equal to SP_stdin. It can be changed with the
predicates see/1 and set_input/1.

SP_curout
Current output. It is initially set equal to SP_stdout. It can be changed with
the predicates tell/1 and set_output/1.

Note that these variables are read only.

6.6.2 Defining a New Stream

The following steps are required to define a new stream in C:

e Define low level functions (byte or character reading, writing etc).

Initialize and open your stream.

Allocate memory needed for your particular stream.

Initialize and install a Prolog stream with SP_create_stream().

The following sample makes it possible to create read-only binary streams that use the C
FILE* API.
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SICStus Prolog

include <sicstus/sicstus.h>
include <stdio.h>
include <string.h>
include <errno.h>

truct stdio_t_stream {
FILE *f;

3

ypedef struct stdio_t_stream stdio_t_stream;

tatic spio_t_error_code SPCDECL stdio_read(void *user_data,
void *buf,
size_t *pbuf_size,
spio_t_bits read_options)

spio_t_error_code ecode = SPIO_E_ERROR;
stdio_t_stream *s;
size_t res;

if (read_options & SPIO_DEVICE_READ_OPTION_NONBLOCKING) {
ecode = SPIO_E_NOT_SUPPORTED;
goto barf;

}
s = (stdio_t_stream *)user_data;

res = fread(buf, 1, *pbuf_size, s->f);
if (res == 0) { /* error */
if (feof(s->f)) {
ecode = SPIO_E_END_OF_FILE;

} else { /* some other error */
ecode = SPIO_E_OS_ERROR;
}
goto barf;
}
xpbuf_size = res; /* number of bytes read */

return SPIO_S_NOERR;

barf:
return ecode;
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static spio_t_error_code SPCDECL stdio_close(void **puser_data, spio_t_bits close_opti

{

stdio_t_stream *s;

s = (stdio_t_stream *)*puser_data;
/* we can ignore SPIO_DEVICE_CLOSE_OPTION_FORCE */

if (close_options & SPIO_DEVICE_CLOSE_OPTION_READ) {
*xpuser_data = NULL; /* tell caller we are gone */
if (fclose(s—>f) '= 0) {
; /* ignore errors */
}

}
return SPIO_S_NOERR;
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/* Identify our streams with (an arbitrary) pointer that is unique to us */
#define STDIO_STREAM_CLASS ((void*)&stdio_open_c)

int stdio_open_c(char const *path,
char const *direction,
SP_stream **pstream)

spio_t_error_code ecode = SPIO_E_ERROR;
stdio_t_stream *s = NULL;
SP_stream *stream = NULL;

if (strcmp(direction, "read") != 0) goto not_supported;

/* read */
s = (stdio_t_streamx*)SP_malloc(sizeof *s);
if (s == NULL) goto out_of_memory;

/* open binary */
s—>f = fopen(path, "rb");
if (s->f == NULL) {
ecode = SPIO_E_OPEN_ERROR;
goto barf;
}
ecode = SP_create_stream((voidx*)s,
STDIO_STREAM_CLASS,
stdio_read,
NULL, /#* write */ NULL, /* flush_output */ NULL, /* seek */
stdio_close,
NULL, /* interrupt */ NULL, /#* ioctl %/ NULL, /* args */
SP_CREATE_STREAM_OPTION_BINARY,
&stream) ;
if (SPIO_FAILED(ecode)) goto barf;

*pstream = stream;
return O; /* success */

barf:
if (s !'= NULL) {
if (s->f != NULL) fclose(s—>f);
SP_free(s);
}
return ecode;
out_of_memory:
ecode = SPIO_E_OUT_OF_MEMORY;
goto barf;
not_supported:
ecode = SPIO_E_NOT_IMPLEMENTED;
goto barf;
}



Chapter 6: Mixing C/C++ and Prolog 311

Calling stdio_open_c("foo", "read", &stream) will open the file ‘foo’ as binary stream
that can be read by all SICStus stream operations.

There are several stream implementions in the SICStus Prolog library that can serve as
sample, e.g. library(codesio) and library(tcltk).

See Section 12.3.9 [cpg-ref-SP_create_stream]|, page 1222 for details.
6.6.2.1 Low Level I/O Functions

For each new stream the appropriate low level I/O functions have to be defined. Error
handling, prompt handling and character counting is handled in a layer above these func-
tions. They all operate on a user defined private data structure specified when the stream
is created.

user_read()
Should fill a buffer with data available from the stream. See Section 12.3.107
[cpg-ref-user_read], page 1338.

user_write()
Should write data from a buffer to the stream. See Section 12.3.108 [cpg-ref-
user_write], page 1340.

user_flush_output()
Should flush the (output) stream.

user_close()
Should close the stream in the specified directions. Note that bi-directional
streams can be closed one direction at a time.

Please note: A foreign resource that defines user defined streams must ensure that all its
streams are closed when the foreign resource is unloaded. Failure to do this will lead to
crashes when SICStus tries to close the stream using a user_close method that is no longer
present.

The easiest way to ensure that all user defined streams of a particular class is closed is to use
SP_fclose with the SP_FCLOSE_OPTION_USER_STREAMS. Another way is to use SP_next_
stream and SP_get_stream_user_data to find all your streams and close them one by one.
See Section 12.3.18 [cpg-ref-SP _fclose], page 1236, Section 12.3.60 [cpg-ref-SP_next_stream],
page 1284 and Section 12.3.41 [cpg-ref-SP_get_stream_user_data], page 1263.

6.6.3 Hookable Standard Streams

The standard I/O streams (input, output, and error) are hookable, i.e. the streams can
be redefined by the user by calling SP_set_user_stream_hook() and/or SP_set_user_
stream_post_hook (). These hook functions must be called before SP_initialize() (see
Section 6.7.4.1 [Initializing the Prolog Engine|, page 324). In custom built systems, they
may be called in the hook function SU_initialize(). See Section 6.7.3 [The Application
Builder|, page 317.
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6.6.3.1 Writing User-stream Hooks

The user-stream hook is, if defined, called during SP_initialize(). It has the following
prototype:

SP_stream *user_stream_hook(void *user_data, int which)

If the hook is not defined, SICStus will attempt to open the standard TTY /console ver-
sions of these streams. If they are unavailable (such as for non-console executables under
Windows), the result is undefined.

It is called once for each stream. The which argument indicates which stream it is called
for. The value of which is one of the following:

SP_STREAMHOOK_STDIN
Create stream for standard input.

SP_STREAMHOOK_STDOUT
Create stream for standard output.

SP_STREAMHOOK_STDERR
Create stream for standard error.

The set of possible values for which may be expanded in the future.

The hook should return a standard SICStus I/O stream, as described in Section 6.6.2
[Defining a New Stream], page 307.

See Section 12.3.94 [cpg-ref-SP _set_user_stream_hook|, page 1322 for details.

6.6.3.2 Writing User-stream Post-hooks

If defined, the user-stream post-hook is called after all the streams have been defined, once
for each of the standard streams. It has a slightly different prototype:

void user_stream_post_hook(void *user_data, int which, SP_stream *str)

where str is a pointer to the corresponding SP_stream structure. There are no requirements
as to what this hook must do; the default behavior is to do nothing at all.

The post-hook is intended to be used to do things that may require that all streams have
been created.

See Section 12.3.95 [cpg-ref-SP_set_user_stream_post_hook], page 1323 for details.

6.7 Stand-Alone Executables

So far, we have only discussed foreign code as pieces of code loaded into a Prolog executable.
This is often not the desired situation. Instead, one often wants to create stand-alone
executables, i.e. an application where Prolog is used as a component, accessed through the
API described in the previous sections.
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6.7.1 Runtime Systems

Stand-alone applications containing debugged Prolog code and destined for end-users are
typically packaged as runtime systems. No SICStus license is needed by a runtime system.
A runtime system has the following limitations:

e No top-level. The executable will restore a saved-state and/or load code, and call
user:runtime_entry(start). Alternatively, you may supply a main program and
explicitly initialize the Prolog engine with SP_initialize(). break/0 and require/1
are unavailable.

e No debugger. debugging, debug and debugger_print_options have no effect. Pred-
icates annotated as [development] in the reference pages are unavailable.

e Except in extended runtime systems: no compiler; compiling is replaced by consulting.
Extended runtime systems do provide the compiler.

e The discontiguous_warnings, single_var_warnings, redefine_warnings, and
informational Prolog flags are off by default, suppressing warnings about clauses
not being together, singleton variables, queries and warnings about name clashes and
redefinitions, and informational messages. Note that they can be switched on though,
to enable such warnings, queries and messages.

e No profiler or coverage analysis. The predicates profile_reset/0, profile_data/1,
print_profile/[0,1] coverage_data/l, and print_coverage/[0,1] are unavail-
able. The Prolog flag profiling is unavailable.

e No signal handling except as installed by SP_signal().

It is possible to tell a runtime system to start a development system instead, for debugging
purposes. See Section 6.9 [Debugging Runtime Systems], page 335 for details.

6.7.2 Runtime Systems on Target Machines

When a runtime system is delivered to the end user, chances are that the user does not
have an existing SICStus installation. To deliver such an executable, you need:

the executable
This is your executable program, usually created by spld (see Section 6.7.3
[The Application Builder], page 317).

the runtime kernel
This is a shared object or a DLL, usually ‘libsprt4-3-1.so’ under UNIX, or
‘sprt4-3-1.d11’ under Windows.

the (extended) runtime library
The saved-state ‘sprt.sav’ contains the built-in predicates written in Prolog.
It is restored into the program at runtime by the function SP_initialize().
Extended runtime systems restore ‘spre.sav’ instead, which requires a license,
available from SICS as an add-on product. See also Section “Managing Ex-
tended Runtime License Information” in SICStus Prolog Release Notes.
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your Prolog code
As a saved-state, ‘.po’ files, or source code (‘.pl’ files). They must be explicitly
loaded by the program at runtime (see Section 6.7.4.2 [Loading Prolog Code],
page 324).

your linked foreign resources
Any dynamically linked foreign resources, including any linked foreign resources
for library modules located in ‘$SP_PATH/library’.

The following two sections describe how to package the above components for UNIX and
Windows target machines, i.e. machines that don’t have SICStus Prolog installed, respec-
tively. It is also possible to package all the above components into a single executable file,
an all-in-one executable. See Section 6.7.3.2 [All-in-one Executables|, page 318.

6.7.2.1 Runtime Systems on UNIX Target Machines

In order to build a runtime system for distribution on a target machine, the option
‘--moveable’ must be passed to spld. This option prevents spld from hardcoding any
(absolute) paths into the executable. As of release 4.2, ‘--moveable’ is the default on most
platforms, including Linux, Mac OS X and Solaris.

Next, in order for SICStus to be able to locate all relevant files, the following directory
structure should be used.

myapp.exe
sp-4.3.1/
+--- libsprt4-3-1.so

+--- sicstus-4.3.1/
+--- bin/
| +--- sprt.sav
+--- library/
+--- <files from $SP_PATH/library>

If support for multiple SICStus instances is needed, the runtimes named e.g.
‘libsprt4-3-1_instance_01_.so’ need to be available as well, in the same place as
‘1libsprt4-3-1.so’.

If SICStus Prolog is installed on the target machine, a symbolic link named ‘sp-4.3.1’
can be used, in which case it should point to the directory of the SICStus installation that
contains the ‘libsprt4-3-1.so’ (or equivalent).

If the runtime system needs to be debugged then the above file system layout should be
complemented as follows: The file ‘spds.sav’ from the development system should be
copied and placed in the same folder as ‘sprt.sav’ and the license information must be
made available. See Section 6.9 [Debugging Runtime Systems], page 335 for details.

‘myapp.exe’ is typically created by a call to spld:

% spld --main=user --moveable [...] -o ./myapp.exe
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On most platforms, the above directory layout will enable the executable to find the SICStus
runtime (e.q., ‘libsprt4-3-1.s0’) as well as the boot file ‘sprt.sav’ (‘spre.sav’). In
addition, application specific files, e.g. a ‘.sav’ file, can be found using the automatically
set system properties SP_APP_DIR or SP_RT_DIR. On some platforms a wrapper script,
generated by spld, is needed to ensure that the files are found.

Unless the ‘--static’ option is passed to spld, it might also be necessary to set LD_
LIBRARY_PATH (or equivalent) to ‘/home/joe/1ib’ (in the example above) in order for the
dynamic linker to find ‘libsprt4-3-1.so’. If the ‘--static’ option is used, this is not
necessary. Setting LD_LIBRARY_PATH is not recommended unless it is really needed.

When a runtime system is redistributed to third parties, only the following files may be
included in the distribution. All filenames are relative to ‘<prefix>/1lib/sicstus-4.3.1"

‘../*.{a,s0,sl,dylib}’

‘bin/sprt.sav’

‘bin/spre.sav’

‘pbin/jasper.jar’

‘bin/prologbeans. jar’

‘library/*.{tcl,po,pl}’
Except ‘license.pl’!

‘library/*/*.{s.o,so0,sl,dylib}’
‘library/*/*.{po,pl}’
‘sp_platform’

(Located with InstallSICStus)

Please note: you can’t redistribute ‘spds.sav’ or ‘license.pl’.

6.7.2.2 Runtime Systems on Windows Target Machines

In order to locate all relevant files, the following directory structure should be used:

myapp.exe
sprt4-3-1.4d11

sp-4.3.1\
+--- bin\
[ +--- sprt.sav

+--- library\
+--- <files from %SP_PATH/\library>

If support for multiple SICStus instances is needed, the runtimes named e.g.
‘sprt4-3-1_instance_01_.d11" need to be available as well, in the same place as
‘sprt4-3-1.411’.

If the runtime system needs to be debugged then the above file system layout should be
complemented as follows: The file ‘spds.sav’ from the development system should be
copied and placed in the same folder as ‘sprt.sav’ and the license information must be
made available. See Section 6.9 [Debugging Runtime Systems], page 335 for details.
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‘myapp.exe’ is typically created by a call to spld:
% spld --main=user [...] -o ./myapp.exe

If the directory containing ‘sprt4-3-1.d11’ contains a directory called sp-4.3.1, SICS-
tus assumes that it is part of a runtime system as described in the picture below. The
(extended) runtime library, ‘sprt.sav’ (‘spre.sav’), is then looked up in the directory
(‘sp-4.3.1/bin’), as in the picture. Furthermore, the initial library_directory/1 fact
will be set to the same directory with sp-4.3.1/library appended.

The directory structure under library/ should look like in a regularly installed SICStus,
including the platform-specific subdirectory (x86-win32-nt-4 in this case). If your applica-
tion needs to use library(timeout) and library(random), your directory structure may
look like:

myapp.exe
sprt4-3-1.411

sp-4.3.1\
+--- bin\
[ +--- sprt.sav
+-—- library\
+--- random.po
+--- timeout.po
+--- x86-win32-nt-4 \
+--- random.dll
+--- timeout.dll

The sp* files can also be put somewhere else in order to be shared by several applications
provided the ‘sprt4-3-1.d11’ can be located by the DLL search.

Naming the files with version number enables applications using different SICStus versions
to install the sp* files in the same directory.

When a runtime system is redistributed to third parties, only the following files may be
included in the distribution. All filenames are relative to ‘%SP_PATHY,’:

‘bin\sprt.sav’

‘bin\spre.sav’

‘bin\jasper. jar’

‘pin\prologbeans. jar’

‘bin\*.d11l’

‘bin\*.po’

‘library\*.{tcl,po,pl,bas}’
Except ‘license.pl’!
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‘library\*\*.d1l’
‘library\*\*.{po,pl}’

Please note: you can’t redistribute ‘spds.sav’ or ‘license.pl’.

6.7.3 The Application Builder

The application builder, spld, is used for creating stand-alone executables. spld takes the
files specified on the command line and combines them into an executable file, much like
the UNIX 1d or the Windows 1link commands.

Note that no pathnames passed to spld should contain spaces. Under Windows, this can
be avoided by using the short version of pathnames as necessary.

See Section 13.5 [too-spld], page 1350 for detailed information about spld options etc.

6.7.3.1 Customizing spld

The spld tool reads a configuration file at start-up that contains default values for many
configurable parameters. It is sometimes useful to modify these in order to adapt to local
variations.

The following methods can be used also with the splfr command, Section 6.2.5 [The Foreign
Resource Linker], page 292.

There are two methods

e Override some parameters with ‘-——conf’ VAR=VALUE.

This is useful when only a few parameters need to be changed, e.g. the C compiler.
You can override multiple parameters by specified ‘--—conf’ more than once.

For instance, to wuse a non-default C compiler you can pass --conf
CC=/home/joe/bin/mycc.

The option ‘--conf’ was introduced in release 4.0.3.
e Use a modified configuration file with ‘--config'=File.

It may sometimes be convenient to use a separate, possibly modified, configuration file.
This should seldom be needed, use ‘--conf’ instead.

To use a modified configuration file, follow these instructions:

1. Locate the configuration file spconfig-version. It should be located in the same
directory as spld.

2. Make a copy for spconfig-version; let’s call it hacked_spld.config. Don’t edit
the original file.

3. The configuration file contains lines on the form CFLAGS=-g -02. Edit these ac-
cording to your needs. Don’t add or remove any options.

4. You may now use the modified spconfig-version together with spld like this:
% spld [...] --config=/path/to/hacked_spld.config
5. Replace ‘/path/to’ with the actual path to the hacked configuration file.
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6.7.3.2 All-in-one Executables

It is possible to embed saved-states into an executable. Together with static linking, this
gives an all-in-one executable, an executable that does not depend on external SICStus files.

In the simplest case, creating an all-in-one executable ‘main.exe’ from a saved-state
‘main.sav’ can be done with a command like:

% spld --output=main.exe --static main.sav

This will automatically embed the saved-state, any foreign resources needed by the saved-
state as well the SICStus runtime and its runtime saved-state.

The keys to this feature are:

e Static linking. By linking an application with a static version of the SICStus runtime,
you avoid any dependency on e.g. ‘sprt4-3-1.d11’ (Windows) or ‘1libsprt4-3-1.so’
(UNIX).

If the application needs foreign resources (predicates written in C code), as used for
example by library(timeout) and library(clpfd), these foreign resources can be
linked statically with the application as well.

The remaining component is the Prolog code itself; see the next item.

e Data Resources (in-memory files). It is possible to link an application with data re-
sources that can be read directly from memory. In particular, saved-states can be
embedded in an application and used when restoring the saved-state of the applica-
tion.

An application needs two saved-states:
1. The SICStus runtime system (sprt.sav).

This is added automatically when spld is invoked with the ‘--static’ (or ‘-S’)
option unless the spld-option ‘--no-embed-rt-sav’ is specified. It can also be
added explicitly with the option ‘~-embed-rt-sav’.

2. The user written code of the application as well as any SICStus libraries.

This saved-state is typically created by loading all application code using
compile/1 and then creating the saved-state with save_program/2.

Data resources are added by specifying their internal name and the path to a file as part
of the comma separated list of resources passed with the spld option ‘--resources’. Each
data resource is specified as file=name where file is the path to the file containing the data
(it must exist during the call to spld) and name is the name used to access the content
of file during runtime. A typical choice of name would be the base name, i.e. without
directories, of file, preceded by a slash (/). name should begin with a slash (/) and look
like an ordinary lowercase file path made up of ‘/’-separated, non-empty, names consisting
of ‘a’ to ‘z’, underscore (‘_’, period (‘.”), and digits.

Typically, you would use spld --main=restore, which will automatically restore the
first ‘.sav’ argument. To manually restore an embedded saved-state you should
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use the syntax URL:x-sicstus-resource:name, e.g. SP_restore("URL:x-sicstus-
resource:/main.sav").

An example will make this clearer. Suppose we create a runtime system that consists of a
single file ‘main.pl’ that looks like:

% main.pl
:— use_module(library(random)) .
:— use_module(library(clpfd)).

% This will be called when the application starts:
user:runtime_entry(start) :-
%% You may consider putting some other code here...
write(’hello world’),nl,
write(’Getting a random value:’),nl,

random(1,10,R), % from random
write(R) ,nl,
( all_different([3,9]) -> % from clpfd

write(’3 '= 9’),nl
; otherwise —>
write(’3 = 9!7’),nl

).

Then create the saved-state ‘main.sav’, which will contain the compiled code of ‘main.pl’
as well as the Prolog code of library(random) and library(clpfd) and other Prolog
libraries needed by library(clpfd):

% sicstus -i -f
SICStus 4.3.1
Licensed to SICS

| ?- compile(main).

% compiling .../main.pl...

% ... loading several library modules
| ?- save_program(’main.sav’).

% .../main.sav created in 201 msec

| 7- halt.

Finally, tell spld to build an executable statically linked with the SICStus runtime and
the foreign resources needed by library(random) and library(clpfd). Also, embed the
Prolog runtime saved-state and the application specific saved-state just created. Note that
the ‘timeout’ foreign resource is needed since it is used by library(clpfd).

As noted above, it is possible to build the all-in-one executable with the command line:

% spld --output=main.exe --static main.sav
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but for completeness the example below uses all options as if no options were added auto-

matically.

The example is using Cygwin bash (http://www.cygwin.com) under Windows but would
look much the same on other platforms. The command should be given on a single line; it
is broken up here for better layout:

% spld

—--output=main.exe

--static

—-—embed-rt-sav
—--main=restore
--resources=main.sav=/main.sav,clpfd, timeout,random

The arguments are as follows:

‘-—output=main.exe’

This tells spld where to put the resulting executable.

‘——static’

Link statically with the SICStus runtime and foreign resources (clpfd, timeout,
and random in this case).

‘——embed-rt-sav’

This option embeds the SICStus runtime .sav’ file (‘sprt.sav’). This option
is not needed since it is added automatically by ‘--static’.

‘—-—main=restore’

Start the application by restoring the saved-state and calling user:runtime_
entry(start). This is not strictly needed in the above example since it is the
default if any file with extension ‘.sav’ or a data resource with a name where
the extension is ‘.sav’ is specified.

‘——resources=...’

This is followed by comma-separated resource specifications:

main.sav=/main.sav

clpfd
timeout
random

This tells spld to make the content (at the time spld is invoked) of
the file ‘main.sav’ available at runtime in a data resource named
‘/main.sav’. That is, the data resource name corresponding to
"URL:x-sicstus-resource:/main.sav".

Alternatively, spld can create a default data resource spec-
ification when passed a ‘.sav’ file argument and the option
‘~-embed-sav-file’ (which is the default with ‘--static’).

These tell spld to link with the foreign resources (that is, C-
code) associated with library(clpfd), library(timeout), and
library(random). Since ‘--static’ was specified the static ver-
sions of these foreign resources will be used.


http://www.cygwin.com

Chapter 6: Mixing C/C++ and Prolog 321

Alternatively, spld can extract the information about the required
foreign resources from the saved-state (‘main.sav’). This feature
is enabled by adding the option ‘--resources-from-sav’ (which
is the default with ‘--static’). Using ‘--resources-from-sav’
instead of an explicit list of foreign resources is preferred since it
is hard to know what foreign resources are used by the SICStus
libraries.

Since both ‘—--embed-sav-file’ and ‘--resources-from-sav’ are the default
when ‘--static’ is used the example can be built simply by doing:

% spld --output=main.exe --static main.sav

Finally, we may run this executable on any machine, even if SICStus is not installed:

bash-2.04$ ./main.exe
hello world
Getting a random value:

4
3 1=9
bash-2.04$

6.7.3.3 Setting up the C compiler on Windows

spld (and splfr) are command line tools and need to have access to a working C compiler
and linker. This is typically not a problem on UNIX-like systems but on Windows there
are some special steps needed in order to set up the environment so that the C compiler
can be used.

The easiest way to get a command prompt where the C compiler works is to open the ‘Visual
Studio 2005 Command Prompt’ from the Start menu. On Windows Vista this is located un-
der ‘A1l Programs/Microsoft Visual Studio 2005/Visual Studio Tools/’. This opens
up a command prompt where cl.exe (the C compiler) can be found via the PATH environ-
ment variable.

An alternative is to run the Visual Studio set up script from the command prompt, some-
thing like:

C:\>"C:\Program Files\Microsoft Visual Studio 8\VC\vcvarsall.bat" x86
This is in fact what the ‘Visual Studio 2005 Command Prompt’ shortcut does.

Similar steps will work for other versions of Visual Studio. Note that there are different
versions of SICStus Prolog for different versions of Visual Studio. This is necessary since
each version of Visual Studio comes with its own version of the C library.

Once the environment is set up for using the C compiler you should be able to use the spld
(and splfr) tools without problem.
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6.7.3.4 Extended Runtime Systems

An extended runtime system is a variant of a runtime system with additional capabilities,
including the presence of the Prolog compiler. Extended runtime systems are created with
spld in a way similar to how ordinary runtime systems are created. An extended runtime
system requires a license; see Section “Managing Extended Runtime License Information”
in SICStus Prolog Release Notes for details about managing such license information.

6.7.3.5 Examples

1. The character-based SICStus development system executable (sicstus) can be created
using:

% spld --main=prolog -o sicstus

This will create a development system that is dynamically linked and has no prelinked
foreign resources.

% spld --static -D --resources=random -o main

This will create a statically linked executable called main that has the resource random
prelinked (statically).

3. An all-in-one executable with a home-built foreign resource.

This example is similar to the example in Section 6.7.3.2 [All-in-one Executables],
page 318, with the addition of a foreign resource of our own.
% bar.pl
:— use_module(library(random)) .
:— use_module(library(clpfd)).

% This will be called when the application starts:
user:runtime_entry(start) :-
%% You may consider putting some other code here...
write(’hello world’),nl,
write(’Getting a random value:’),nl,
random(1, 10, R), % from random
write(R),nl,
( all_different([3,9]) -> % from clpfd
write(’3 != 97),nl
; otherwise —->
write(’3 = 9!7’) ,nl
),

>$pint’ (4711). % from our own foreign resource ’bar’

foreign(print_int, ’$pint’(+integer)).
foreign_resource(bar, [print_int]).
:- load_foreign_resource(bar).
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/* bar.c */
#include <sicstus/sicstus.h>
#include <stdio.h>
/* bar_glue.h is generated by splfr from the foreign/[2,3] facts.
Always include the glue header in your foreign resource code.
*/
#include "bar_glue.h"

extern void print_int(SP_integer a);

void print_int(SP_integer a)
{
/* Note the use of SPRIAINTEGER to get a format specifier corresponding
to the SP_integer type. For most platforms this corresponds
to "1d" and long, respectively. */
printf ("a=%" SPRIAINTEGER "\n", (SP_integer)a);
}
To create the saved-state bar.sav we will compile the file ‘bar.pl’ and save it with
save_program(’bar.sav’). When compiling the file the directive : - load_foreign_
resource (bar) . is called so a dynamic foreign resource must be present.

Thus, first we build a dynamic foreign resource.

% splfr bar.c bar.pl
Then, we create the saved-state.

% sicstus --goal "compile(bar), save_program(’bar.sav’), halt."
We also need a static foreign resource to embed in our all-in-one executable.

% splfr --static bar.c bar.pl

Finally, we build the all-in-one executable with spld. We don’t need to list the foreign
resources needed. spld will extract their names from the ‘.sav’ file. Adding the
‘-—verbose’ option will make spld output lots of progress information, among which
are the names of the foreign resources that are needed. Look for “Found resource
name” in the output.

% spld --verbose --static --main=restore --respath=. --
resources=bar.sav=/mystuff/bar.sav --output=bar

In this case four foreign resource names are extracted from the ‘.sav’ file: bar, clpfd,
random and timeout. The source file ‘bar.pl’ loads the foreign resource named bar. It
also uses library(random) module, which loads the foreign resource named random,
and library(clpfd) module, which loads the foreign resources named clpfd and
timeout.

By not listing foreign resources when running spld, we avoid the risk of omitting a
required resource.

6.7.4 User-defined Main Programs

Runtime systems may or may not have an automatically generated main program. This
is controlled by the ‘--main’ option to spld. If ‘--main=user’ is given, a function user_
main() must be supplied:
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int user_main(int argc, char *argv([])

user_main() is responsible for initializing the Prolog engine, loading code, and issuing any
Prolog queries. An alternative is to use ‘--main=none’ and write your own main() function.

6.7.4.1 Initializing the Prolog Engine

The Prolog Engine is initialized by calling SP_initialize(). This must be done before
any interface functions are called, except those marked ‘preinit’ in this manual.

The function will allocate data areas used by Prolog and load the Runtime Library.

It will also initialize command line arguments so that they can be accessed by the argv
Prolog flag but it may be preferable to use SP_set_argv () for this.

To unload the SICStus emulator, SP_deinitalize() can be called.

You may also call SP_force_interactive() before calling SP_initialize(). This will
force the I/O built-in predicates to treat the standard streams as a interactive, even if
they don’t appear to be connected to a terminal or console. Same as the ‘-i’ option in
development systems (see Section 3.1 [Start], page 21).

You may also call SP_set_memalloc_hooks() before calling SP_initialize(). This will
define one layer of Prolog’s memory manager, in case your application has special require-
ments.

The SICStus Prolog memory manager has a two-layer structure. The top layer has roughly
the same functionality as the standard UNIX functions malloc and free, whereas the
bottom layer is an interface to the operating system. It’s the bottom layer that can be
customized by setting these hooks.

6.7.4.2 Loading Prolog Code
You can load your Prolog code with the call SP_load (). This is the C equivalent of the
Prolog predicate load_files/1.

Alternatively, you can restore a saved-state with the call SP_restore(), which is the C
equivalent of the Prolog predicate restore/1.

6.7.5 Generic Runtime Systems

There are three ready-made runtime systems provided with the distributions, ‘sprt.exe’,
‘sprti.exe’, and (only on Windows) ‘sprtw.exe’. These have been created using spld:

$ spld --main=restore ’$SP_APP_DIR/main.sav’ -o sprt.exe
$ spld --main=restore ’$SP_APP_DIR/main.sav’ -i -o sprti.exe
$ spld --main=restore ’$SP_APP_DIR/main.sav’ --window -o sSprtw.exe

These are provided for users who don’t have a C-compiler available. Each program launches
a runtime system by restoring the saved-state ‘main.sav’ (located in the same folder as the
program).
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The saved-state is created by save_program/[1,2]. If it was created by save_program/2,
the given startup goal is run. Then, user:runtime_entry(start) is run. The program
exits with 0 upon normal temination and with 1 on failure or exception.

The program sprti.exe assumes that the standard streams are connected to a terminal,
even if they don’t seem to be (useful under Emacs, for example). On Windows only,
sprtw.exe is a windowed executable, corresponding to spwin.exe.

6.8 Mixing C and Prolog Examples

6.8.1 Train Example (connections)

This is an example of how to create a runtime system. The Prolog program ‘train.pl’
will display a route from one train station to another. The C program ‘train.c’ calls the
Prolog code and writes out all the routes found between two stations:

% train.pl

connected(From, From, [From], _):- !.
connected(From, To, [From| Way], Been):-

( no_stop(From, Through)

no_stop(Through, From)

),

not_been_before(Been, Through),

connected(Through, To, Way, Been).

no_stop(’Stockholm’, ’Katrineholm’).
no_stop(’Stockholm’, ’Vasteras’).
no_stop(’Katrineholm’, ’Hallsberg’).
no_stop(’Katrineholm’, ’Linkoping’).
no_stop(’Hallsberg’, ’Kumla’).
no_stop(’Hallsberg’, ’Goteborg’).
no_stop(’0Orebro’, ’Vasteras’).
no_stop(’0Orebro’, ’Kumla’).

not_been_before(Way, _) :- var(Way),!'.

not_been_before([Been| Wayl, Am) :-
Been \== Am,
not_been_before(Way, Am).
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/* train.c */
#include <stdio.h>
#include <stdlib.h>
#include <sicstus/sicstus.h>

static void write_path(SP_term_ref path)
{
char const *text = NULL;
SP_term_ref
tail = SP_new_term_ref(),
via = SP_new_term_ref();

SP_put_term(tail,path);

while (SP_get_list(tail,via,tail)) {
if (text)
printf (" -> ");

SP_get_string(via, &text);
printf ("%s",text);

}

printf ("\n");

int user_main(int argc, char **argv)
{

int rval;

SP_pred_ref pred;

SP_qid goal;

SP_term_ref from, to, path;

/* Initialize Prolog engine. The third arg to SP_initialize is
an option block and can be NULL, for default options. */
if (SP_FAILURE == SP_initialize(argc, argv, NULL)) {
fprintf(stderr, "SP_initialize failed: %s\n",
SP_error_message (SP_errno)) ;
exit(1);
b

rval = SP_restore("train.sav");

if (rval == SP_ERROR || rval == SP_FAILURE) {
fprintf(stderr, "Could not restore \"train.sav\".\n");
exit(1);

}
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/* train.c */
/* Look up connected/4. */
if (!(pred = SP_predicate("connected",4,"user"))) {
fprintf(stderr, "Could not find connected/4.\n");
exit(1);
}

/* Create the three arguments to connected/4. */
SP_put_string(from = SP_new_term_ref(), "Stockholm");
SP_put_string(to = SP_new_term_ref(), "Orebro");
SP_put_variable(path = SP_new_term_ref());

/* Open the query. In a development system, the query would look like:
*
* | ?7- connected(’Stockholm’,’0Orebro’,X).
*/
if (!(goal = SP_open_query(pred,from,to,path,path))) {
fprintf(stderr, "Failed to open query.\n");
exit(1);
}

/*
* Loop through all the solutioms.
*/
while (SP_next_solution(goal)==SP_SUCCESS) {
printf ("Path: ");
write_path(path);
}

SP_close_query(goal) ;

exit (0);
}

Create the saved-state containing the Prolog code:

% sicstus

SICStus 4.3.1

Licensed to SICS

| ?- compile(train),save_program(’train.sav’).

% compiling [...]/train.pl...

% compiled [...]/train.pl in module user, 10 msec 2848 bytes
% [...]/train.sav created in 0 msec

| 7- halt.

Create the executable using the application builder:
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% spld --main=user train.c -o train.exe
And finally, run the executable:

% ./train
Path: Stockholm -> Katrineholm -> Hallsberg -> Kumla -> Orebro
Path: Stockholm -> Vasteras -> Orebro

6.8.2 Building for a Target Machine

The following example shows how to build an application with a dynamically loaded foreign
resource in such a way that it can be deployed into an arbitrary folder on a target system
that does not have SICStus installed. The example is run on Linux but it would be very
similar on other platforms.

The example consists of three source files, one toplevel file (‘main.pl’) which in turn loads
a module-file (‘.pl’). The latter also loads a foreign resource (‘b.c’).

The initial directory structure, and the contents of the source files can be seen from the
following transcript:
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$ find build/

build/

build/myfiles
build/myfiles/main.pl
build/myfiles/b.pl
build/myfiles/b.c

$ cat build/myfiles/main.pl
:— module(main, [main/0]).

:— use_module (b,
[b_foreign/1]).

main :-
b_foreign(X),
write(X), nl.

user:runtime_entry(start) :-
main.

$ cat build/myfiles/b.pl
:- module(b, [b_foreign/1]).

foreign(b_foreign_c, b_foreign([-string]l)).

foreign_resource(b, [
b_foreign_c]).

:— load_foreign_resource(b).

$ cat build/myfiles/b.c

#include <sicstus/sicstus.h>

/* b_glue.h is generated by splfr from the foreign/[2,3] facts.
Always include the glue header in your foreign resource code.

*/

#include "b_glue.h"

char const * SPCDECL b_foreign_c(void)
{

return "Hello World!";

}

The following transcript shows how the foreign resource and the SICStus runtime executable
is built:
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$ cd build/myfiles/

$ splfr b.pl b.c

$ cd ..

$ sicstus --nologo

% optional step for embedding source info in saved-state.

| 7- set_prolog_flag(source_info, on).

yes

% source_info

| ?- compile(’myfiles/main.pl’).

% compiling .../build/myfiles/main.pl...

% module main imported into user

% compiling .../build/myfiles/b.pl...

% module b imported into main

%  loading foreign resource .../build/myfiles/b.so in module b

%» compiled .../build/myfiles/b.pl in module b, 0 msec 3104 bytes
% compiled .../build/myfiles/main.pl in module main, O msec 5344 bytes
yes

% source_info

| ?- save_program(’main.sav’).

% .../build/main.sav created in 20 msec
yes

% source_info

| ?- halt.

$ spld ’$SP_APP_DIR/main.sav’ -o main.exe
Created "main.exe"

(instead of creating ‘main.exe’ you could use the generic runtime system ‘sprt.exe’ pro-
vided as part of the installation (see Section 6.7.5 [Generic Runtime Systems|, page 324)).

Please note: it is important that ‘main.sav’ be saved to a folder that is the “root” of
the folder tree. The folder in which the saved-state is created (‘.../build/’ above) is
treated specially by save_program/[1,2] and by restore/1. This special handling ensures
that myfiles/b.so will be found relative to the location of ‘main.sav’ when ‘main.sav’ is
restored on the target system. See Section 3.10 [Saving], page 27 for details.

Next, the necessary runtime files must be copied from the SICStus installation:

$ mkdir -p sp-4.2.0/sicstus-4.2.0/bin

$ cp /usr/local/sicstus4.2.0/1ib/libsprt4-2-0.so sp-4.2.0/

$ cp /usr/local/sicstus4.2.0/1ib/sicstus-4.2.0/bin/sprt.sav \
sp-4.2.0/sicstus-4.2.0/bin/sprt.sav

The resulting folder contents can be seen by running the find command:
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$ find . -print

./sp-4.2.0
./sp-4.2.0/1ibsprt4-2-0.s0
./sp-4.2.0/sicstus-4.2.0
./sp-4.2.0/sicstus-4.2.0/bin
./sp-4.2.0/sicstus-4.2.0/bin/sprt.sav
./myfiles

./myfiles/b.so
./myfiles/main.pl
./myfiles/b.pl

./myfiles/b.c

./main.sav

./main.exe

It is possible to run the program from its current location:

$ ./main.exe
Hello World!

The folder ‘build/myfiles/’ contains some files that don’t need to be present on the target
machine, i.e. the source files. The following transcript shows how a new folder, target/, is
created that contains only the files that need to be present on the target system.

$ cd ..

$ mkdir target

$ mkdir target/myfiles

$ cp build/main.sav target

$ cp build/main.exe target

$ cp build/myfiles/b.so target/myfiles/
$ cp -R build/sp-4.2.0 target

$ find target/ -print

target/

target/myfiles

target/myfiles/b.so

target/main.sav

target/main.exe

target/sp-4.2.0
target/sp-4.2.0/sicstus-4.2.0
target/sp-4.2.0/sicstus-4.2.0/bin
target/sp-4.2.0/sicstus-4.2.0/bin/sprt.sav
target/sp-4.2.0/libsprt4-2-0.so0

$ target/main.exe

Hello World!

Note that ‘target/myfiles/b.so’ was found since its location relative the directory con-
taining the saved-state (‘main.sav’) is the same on the target system as on the build system.
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The folder ‘target/’ can now be moved to some other system and ‘target/main.exe’ will

not depend on any files of the build machine.

As a final example, the following transcripts show how the runtime system can be debugged
on the build machine. It is possible to do this on the target system as well, if the necessary
files are made available. See Section 6.9 [Debugging Runtime Systems]|, page 335 for more

information.

First, the development system files and the license file must be made available:

$ mkdir sp-4.2.0/sicstus-4.2.0/library

$ cp /usr/local/sicstus4.2.0/1ib/sicstus-

4.2.0/1ibrary/SU_messages.po \
sp-4.2.0/sicstus-4.2.0/1library/

$ cp /usr/local/sicstus4.2.0/1ib/sicstus-4.2.0/bin/spds.sav \

sp-4.2.0/sicstus-4.2.0/bin/

$ cp /usr/local/sicstus4.2.0/1ib/sicstus-4.2.0/library/license.pl \

sp-4.2.0/sicstus-4.2.0/1ibrary/

As before, the resulting folder contents can be seen by running the find command:

$ find .

./sp-4.
./sp-4.
./sp-4.
./sp-4.
./sp-4.
./sp-4.
./sp-4.
./sp-4.
./sp-4.
./myfiles

2
2
2
2
2
2
2
2

2

-print

.0
.0/1ibsprt4-2-0.so0
.0/sicstus-4.
.0/sicstus-4.
.0/sicstus-4.
.0/sicstus-4.
.0/sicstus-4
.0/sicstus-4.
.0/sicstus-4.

./myfiles/b.so
./myfiles/main.pl
./myfiles/b.pl
./myfiles/b.c
./main.sav
./main.exe

$

To tell the runtime system to start a development system. you can set the SP_USE_DEVSYS
environment variable as shown below. You could also set SP_ATTACH_SPIDER and debug in
the SICStus IDE (see Section 6.9 [Debugging Runtime Systems], page 335).

2.
2.0/1library
2.0/library/SU_messages.po
2.0/1library/license.pl

L2,
2
2

0

0/bin

.0/bin/spds.sav
.0/bin/sprt.sav

SICStus Prolog
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$ SP_USE_DEVSYS=yes
$ export SP_USE_DEVSYS
$ ./main.exe
% The debugger will first creep -- showing everything (trace)
1 1 Call: restore(’$SP_APP_DIR/main.sav’) 7 RET
% restoring .../build/main.sav...
% .../build/main.sav restored in 10 msec 5600 bytes
1 1 Exit: restore(’$SP_APP_DIR/main.sav’) 7 RET
2 1 Call: runtime_entry(start) 7 RET
in scope of a goal at line 12 in .../build/myfiles/main.pl
3 2 Call: main:main 7 RET
in scope of a goal at line 7 in .../build/myfiles/main.pl
4 3 Call: main:b_foreign(_2056) 7 RET
in scope of a goal at line 7 in .../build/myfiles/main.pl
4 3 Exit: main:b_foreign(’Hello World!’) 7 v

Local variables (hit RET to return to debugger)

X = ’Hello World!’ 7 RET

in scope of a goal at line 7 in .../build/myfiles/main.pl
4 3 Exit: main:b_foreign(’Hello World!’) ? n

Hello World!

$

Please note: source info is available, since we used set_prolog_flag(source_info, on)
before we compiled ‘main.pl’ and created the saved-state main.sav.

6.8.3 Exceptions from C

Consider, for example, a function returning the square root of its argument after checking
that the argument is valid. If the argument is invalid, the function should raise an exception
instead.
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/* math.c */
#include <math.h>
#include <stdio.h>
#include <sicstus/sicstus.h>
/* math_glue.h is generated by splfr from the foreign/[2,3] facts.
Always include the glue header in your foreign resource code.
*/
#include "math_glue.h"

extern double sqrt_check(double d);
double sqrt_check(double d)
{
if (d < 0.0) { /* build a domain_error/4 exception term */
SP_term_ref culprit=SP_new_term_ref();
SP_term_ref argno=SP_new_term_ref();
SP_term_ref expdomain=SP_new_term_ref();
SP_term_ref t1=SP_new_term_ref();

SP_put_float(culprit, d);

SP_put_integer (argno, 1);

SP_put_string(expdomain, ">=0.0");

SP_cons_functor(tl, SP_atom_from_string("sqrt"), 1, culprit);

SP_cons_functor(tl, SP_atom_from_string("domain_error"), 4,
tl, argno, expdomain, culprit);

SP_raise_exception(tl); /* raise the exception */

return 0.0;

+
return sqrt(d);

}

The Prolog interface to this function is defined in a file ‘math.pl’. The function uses the
sqrt O library function, and so the math library ‘~1m’ has to be included:

% math.pl
foreign_resource(math, [sqrt_check]).

foreign(sqrt_check, c, sqrt(+float, [-float])).

:— load_foreign_resource(math).
A linked foreign resource is created:
% splfr math.pl math.c -Im

A simple session using this function could be:
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$ sicstus
SICStus 4.3.1
Licensed to SICS

| ?- [math].

% compiling .../math.pl...

% loading foreign resource .../math.so in module user
% compiled .../math.pl in module user, O msec 2400 bytes
yes

| 7- sqrt(5.0,X).

X = 2.23606797749979 7
yes

| ?- sqrt(a,X).

| Type error in argument 1 of user:sqrt/2

| expected a number, but found a

! goal: user:sqrt(a,_110)

| 7= sqrt(-5,X).

! Domain error in argument 1 of user:sqrt/1
I expected ’>=0.0’, but found -5.0

I goal: sqrt(-5.0)

6.8.4 Stream Example

See Section 6.6.2 [Defining a New Stream|, page 307 for a simple example of defining a
stream that reads from a C FILE stream.

For a more realistic example, library(codesio) implements a stream that can return
a list of all characters written to it. The source code for this library is located in
‘library/codesio.pl’ and ‘library/codesio.c’ and can serve as a useful sample for user
defined streams both for input and output. That code also illustrates other important fea-
tures of user defined streams, for instance ensuring that all the streams have been closed
when the foreign resource is unloaded.

6.9 Debugging Runtime Systems

A runtime system does not contain the Prolog debugger by default. This makes it hard to
troubleshoot problems that only occur when the code is embedded in some other application.

As of release 4.2, it is possible to tell a runtime system to start the full development system
instead. This way, the Prolog debugger, compiler etc. can be used to debug the application,
either from the command line or by attaching to the SICStus Prolog IDE (SPIDER). In
the simplest case, this feature is enabled by setting the system property (or environment
variable) SP_USE_DEVSYS to yes before starting the runtime system. This will cause the
runtime system to become a development system and it will start the debugger, as if by a
call to trace/0. See Section 6.8.2 [Building for a Target Machine], page 328 for a complete
example.

For best effect, you should ensure that any compiled prolog code (‘.sav’ and ‘.po’ files)
has been compiled with the Prolog flag source_info enabled, i.e. with set_prolog_
flag(source_info, on).
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When the runtime system is started as a development system in this way, it needs to be
able to find the file that makes up an ordinary development system, i.e. ‘spds.sav’; see
Section 6.7.2.1 [Runtime Systems on UNIX Target Machines|, page 314 and Section 6.7.2.2
[Runtime Systems on Windows Target Machines|, page 315, above. It also needs to find
the license information for the development system; see Section 6.9.1 [Locating the License
Information|, page 336, below.

6.9.1 Locating the License Information

The license information for debugged runtime systems can be provided in several ways.
Most of them can also be used as alternative ways for providing the license information to
extended runtime systems (see Section “Managing Extended Runtime License Information”
in SICStus Prolog Release Notes).

On Windows only, if you have installed the SICStus Prolog development system on the
machine where the runtime system is to be debugged, then the license information will be
found in the Windows registry and no extra steps need to be performed. This method cannot
be used for providing an extended runtime system license since the license information for
the full development system is not the same as for an extended runtime system.

If you have the license in a file ‘license.pl’, i.e. you are using a UNIX platform or have
manually created a ‘license.pl’ file on Windows, then you can make this file available to
the debugged runtime system in one of two ways:

e Set the system property or environment variable SP_LICENSE_FILE to the absolute
path of the ‘license.pl’ file of a SICStus Prolog installation, or

e Copy the ‘license.pl’ file into the appropriate location relative to the runtime sys-
tem executable, i.e. to ‘sp-4.3.1/sicstus-4.3.1/library/license.pl’ on UNIX or
‘sp~4.3.1\1library\license.pl’ on Windows.

Please note: you can’t redistribute ‘license.pl’.

The final alternative, available on all platforms, is to set the following system properties or
environment variables

SP_LICENSE_SITE
Set to the site name part of your license.

SP_LICENSE_CODE
Set to the code part of your license, e.g. something like a111-b222-c333-d444-
edds.

SP_LICENSE_EXPIRATION
Set to the expiration part of your license, e.g. permanent if you have a perma-
nent (non-evaluation) license.

6.9.2 Customizing the Debugged Runtime System

It is possible to fine-tune the behavior of the debugged runtime system in various ways,
both at compile time (setting C preprocessor symbols and passing system properties to
SP_initialize()) and at runtime (passing system properties as environment variables).
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The system properties and environment variables that affect the debugged runtime system
are:

SP_USE_DEVSYS
if set to yes, the runtime system will try to start a development system, as
described above.

SP_ATTACH_SPIDER
if set to yes, has the same effect as SP_USE_DEVSYS=yes and in addition tries
to attach to the SICStus Prolog IDE (SPIDER). You have to tell SPIDER
to ‘Attach to Prolog Process’, i.e. listen for an incoming connection. This
command is available from the SICStus top-level view menu in SPIDER.

SP_DEVSYS_NO_TRACE
if set to yes, will prevent the runtime system from calling trace/0 at initial-
ization. This is useful if you prefer to manually enable the debugger later from
your C or Prolog code.

SP_ALLOW_DEVSYS
if set to no, will prevent the runtime system from starting as a development
system. This may be useful in order to prevent inheriting SP_USE_DEVSYS or
SP_ATTACH_SPIDER from the environment. The same effect can be obtained by
passing the option ‘--no-allow-devsys’ to spld when building the runtime
system.

SP_LICENSE_FILE

SP_LICENSE_SITE

SP_LICENSE_CODE

SP_LICENSE_EXPIRATION
These are described in Section 6.9.1 [Locating the License Information],
page 336, above.

If your C code calls SP_initialize() you can pass these system properties in the call
to SP_initialize() (see Section 12.3.44 [SP_initialize|, page 1267). You can also pass
these options to SP_initialize() by setting the SPLD_DSP C macro. See the definition of
SP_initialize() in the header file ‘sictus/sicstus.h’ for details.

6.9.3 Examples of Debugging Runtime Systems

The following examples show how to start Prolog debugging when SICStus is run from
within Java via Jasper. The examples assume that the SICStus files are part of a develop-
ment system installation.

The first example initializes the SICStus system property SP_USE_DEVSYS by setting the en-
vironment variable with the same name. This method of passing SICStus system properties
also works well when SICStus is embedded in some other, non-Java, program.
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$ SP=/usr/local/sicstus4.3.1

$ SP_USE_DEVSYS=yes
$ export SP_USE_DEVSYS
$ java -jar \
"$SP/lib/sicstus-4.3.1/bin/jasper. jar"
Trying to load SICStus.
% The debugger will first creep -- showing everything (trace)
1 1 Call: write(’If you see this message, you have suc-
cessfully’) ? RET
If you see this message, you have successfully
1 1 Exit: write(’If you see this message, you have suc-
cessfully’) 7 n

initialized the SICStus Prolog engine.
$ unset SP_USE_DEVSYS

The second example initializes the SICStus system property SP_USE_DEVSYS by setting
the Java system property se.sics.sicstus.property.SP_USE_DEVSYS. This method of
passing SICStus system properties is specific to Jasper.

$ SP=’/usr/local/sicstus4.3.1’
$ java -Dse.sics.sicstus.property.SP_USE_DEVSYS=yes \
-jar "$SP/1ib/sicstus-4.3.1/bin/jasper. jar"
Trying to load SICStus.
% The debugger will first creep -- showing everything (trace)
1 1 Call: write(’If you see this message, you have suc-
cessfully’) ? n
If you see this message, you have successfully
initialized the SICStus Prolog engine.

$
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7 Interfacing .NET and Java

SICStus Prolog supports two different ways of interfacing a Prolog program with a Java
client, and one for interfacing with a .NET client.

SICStus Prolog provides a uniform way of interfacing to Java and .NET clients via the Pro-
logBeans (see Section 10.28 [lib-prologbeans], page 688) interface. This is a loosely coupled
interface, which means that the client code runs in a different process from the Prolog code.
In fact, the client program and the Prolog program can run on separate machines, since the
communication is done via TCP /IP sockets. This design has the following advantages over
a tightly coupled interface, where they run in the same process:

e There is no competition for memory or other process-wide resources between the virtual
machines of the client ((NET or JVM) and of Prolog.

e Distribution over a network is trivial when using PrologBeans. The application is
distributable from the beginning.

e PrologBeans has support for user session handling both at the Java level (with support
for HTTP sessions and JNDI lookup) and at the Prolog level. This makes it easy to
integrate Prolog applications into applications based on Java servers.

The main limitation of the design is that callbacks from Prolog to the client is not provided
for.

PrologBeans is the recommended package unless you have special needs and are interfacing
with Java in which case you may consider using Jasper.

For interfacing to Java clients SICStus Prolog also provides Jasper (see Section 10.18 [lib-
jasper|, page 549), a “tightly coupled” interface. This means that everything runs in the
same process (the necessary code is loaded at runtime via dynamic linking).

Advantages of Jasper:

e Jasper is bi-directional. Callbacks are possible (limited in levels only by memory), and
queries can backtrack.
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8 Multiple SICStus Runtimes in a Process

It is possible to have more than one SICStus runtime in a single process. These are com-
pletely independent (except that they dynamically load the same foreign resources; see
Section 8.3 [Foreign Resources and Multiple SICStus Runtimes], page 343).

Even though the SICStus runtime can only be run in a single thread, it is now possible to
start several SICStus runtimes, optionally each in its own thread.

SICStus runtimes are rather heavy weight and you should not expect to be able to run more
than a handful.

8.1 Multiple SICStus Runtimes in Java

In Java, you can now create more than one se.sics.jasper.SICStus object. Each will
correspond to a completely independent copy of the SICStus runtime. Note that a SICStus
runtime is not deallocated when the corresponding SICStus object is no longer used. Thus,
the best way to use multiple SICStus objects is to create them early and then re-use them
as needed.

It is probably useful to create each in its own separate thread. One reason would be to gain
speed on a multi-processor machine.

8.2 Multiple SICStus Runtimes in C

Unless otherwise noted, this section documents the behavior when using dynamic linking
to access a SICStus runtime.

The key implementation feature that makes it possible to use multiple runtimes is that all
calls from C to the SICStus API (SP_query(), etc.) go through a dispatch vector. Two
runtimes can be loaded at the same time since their APIs are accessed through different
dispatch vectors.

By default, there will be a single dispatch vector, referenced from a global variable (sp_
GlobalSICStus). A SICStus API functions, such as SP_query (), is then defined as a macro
that expands to something similar to sp_GlobalSICStus->SP_query_pointer. The name
of the global dispatch vector is subject to change without notice; it should not be referenced
directly. If you need to access the dispatch vector, use the C macro SICStusDISPATCHVAR
instead; see below.

8.2.1 Using a Single SICStus Runtime

When building an application with spld, by default only one SICStus runtime can be
loaded in the process. This is similar to what was the case before release 3.9. For most
applications built with spld, the changes necessary to support multiple SICStus runtimes
should be invisible, and old code should only need to be rebuilt with spld.

In order to maintain backward compatibility, the global dispatch vector is automatically set
up implicitly by SP_initialize() and explicitly by SP_setup_dispatch(). Other SICS-
tus API functions will not set up the dispatch vector, and will therefore lead to memory
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access errors if called before SP_initialize(). Currently, hook functions such as SP_
set_memalloc_hooks () also set up the dispatch vector to allow them to be called before
SP_initialize(). However, only SP_initialize() and SP_setup_dispatch() are guar-
anteed to set up the dispatch vector. The hook installation functions may change to use
a different mechanism in the future. The SICStus API functions that perform automatic
setup of the dispatch vector are marked with SPEXPFLAG_PREINIT in ‘sicstus.h’.

8.2.2 Using More than One SICStus Runtime

Using more than one SICStus runtime in a process is only supported when the dynamic
library version of the SICStus runtime is used (e.g. sprt4-3-1.d11, libsprt4-3-1.so).

An application that wants to use more than one SICStus runtime needs to be built using
the ‘~-multi-sp-aware’ option to spld. C-code compiled by spld —-multi-sp-aware will
have the C preprocessor macro MULTI_SP_AWARE defined and non-zero.

Unlike the single runtime case described above, an application  built
with ‘--multi-sp-aware’ will not have a global variable that holds the dispatch vector.
Instead, your code will have to take steps to ensure that the appropriate dispatch vector is
used when switching between SICStus runtimes.

There are several steps needed to access a SICStus runtime from an application built with
‘-—multi-sp-aware’.

1. You must obtain the dispatch vector of the initial SICStus runtime using SP_get_

2.

dispatch(). Note that this function is special in that it is not accessed through
the dispatch vector; instead, it is exported in the ordinary manner from the SICStus
runtime dynamic library (sprt4-3-1.d11 under Windows and, typically, 1libsprt4-
3-1.so under UNIX).

You must ensure that SICStusDISPATCHVAR expands to something that references the
dispatch vector obtained in step 1.

The C preprocessor macro SICStusDISPATCHVAR should expand to a SICSTUS_API_
STRUCT_TYPE *, that is, a pointer to the dispatch vector that should be used. When
‘--multi-sp-aware’ is not used SICStusDISPATCHVAR expands to sp_GlobalSICStus
as described above. When using
SICStusDISPATCHVAR expand to a local variable.

Once you have access to the SICStus API of the initial SICStus runtime you can call
the SICStus API function SP_load_sicstus_run_time() to load additional runtimes.

4

--multi-sp-aware’ it is probably best to let

SICSTUS_API_STRUCT_TYPE *SP_get_dispatch(void *reserved) ;

SP_get_dispatch() returns the dispatch vector of the SICStus runtime. The argument
reserved should be NULL. This function can be called from any thread.

typedef SICSTUS_API_STRUCT_TYPE *SP_get_dispatch_type(void *);

int SP_load_sicstus_run_time(SP_get_dispatch_type **ppfunc, void *reserved);
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SP_load_sicstus_run_time() loads a new SICStus runtime. If a new runtime could be
loaded a positive value is returned and the address of the SP_get_dispatch() function of
the newly loaded SICStus runtime is stored at the address ppfunc. The second argument,
phandle, is reserved and should be NULL.

As a special case, if SP_load_sicstus_run_time() is called from a SICStus runtime that
has not been initialized (with SP_initialize()) and that has not previously been loaded
as the result of calling SP_load_sicstus_run_time (), no new runtime is loaded. Instead,
the SP_get_dispatch() of the runtime itself is returned. In particular, the first time SP_
load_sicstus_run_time() is called on the initial SICStus runtime, and if this happens
before the initial SICStus runtime is initialized, no new runtime is loaded.

Calling SP_load_sicstus_run_time() from a particular runtime can be done from any
thread.

An application that links statically with the SICStus runtime should not call SP_load_
sicstus_run_time().

You should not use prelinked foreign resources when using multiple SICStus runtimes in
the same process.

For an example of loading and using multiple
SICStus runtimes, see ‘library/jasper/spnative.c’ that implements this functionality
for the Java interface Jasper.

8.3 Foreign Resources and Multiple SICStus Runtimes

Foreign resources access the SICStus C API in the same way as an embedding application,
that is, through a dispatch vector. As for applications, the default and backward compatible
mode is to only support a single SICStus runtime. An alternative mode makes it possible
for a foreign resource to be shared between several SICStus runtimes in the same process.

Unless otherwise noted, this section documents the behavior when using dynamically linked
foreign resources. That is, shared objects (e.g.: .so-files) under UNIX, dynamic libraries
(DLLs) under Windows.

8.3.1 Foreign Resources Supporting Only One SICStus Runtime

A process will only contain one instance of the code and data of a (dynamic) foreign resource
even if the foreign resource is loaded and used from more than one SICStus runtime.

This presents a problem in the likely event that the foreign resource maintains some state,
e.g. global variables, between invocations of functions in the foreign resource. The global
state will probably need to be separate between SICStus runtimes. Requiring a foreign re-
source to maintain its global state on a per SICStus runtime basis would be an incompatible
change. Instead, by default, only the first SICStus runtime that loads a foreign resource
will be allowed to use it. If a subsequent SICStus runtime (in the same process) tries to
load the foreign resource, an error will be reported to the second SICStus runtime.
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When splfr builds a foreign resource, it will also generate glue code. When the foreign
resource is loaded, the glue code will set up a global variable pointing to the dispatch vector
used in the foreign resource to access the SICStus API. This is similar to how an embedding
application accesses the SICStus API.

The glue code will also detect if a subsequent SICStus runtime in the same process tries to
initialize the foreign resource. In this case, an error will be reported.

This means that pre 3.9 foreign code should only need to be rebuilt with splfr to work with
the latest version of SICStus. However, a recommended change is that all C files of a foreign
resource include the header file generated by splfr. Inclusion of this generated header file
may become mandatory in a future release. See Section 6.2.5 [The Foreign Resource Linker],
page 292.

8.3.2 Foreign Resources Supporting Multiple SICStus Runtimes

A foreign resource that wants to be shared between several SICStus runtimes must somehow
know which SICStus runtime is calling it so that it can make callbacks using the SICStus
API into the right SICStus runtime. In addition, the foreign resource may have global
variables that should have different values depending on which SICStus runtime is calling
the foreign resource.

A header file is generated by splfr when it builds a foreign resource (before any C code
is compiled). This header file provides prototypes for any foreign-declared function, but
it also provides other things needed for multiple SICStus runtime support. This header
file must be included by any C file that contains code that either calls any SICStus API
function or that contains any of the functions called by SICStus. See Section 6.2.5 [The
Foreign Resource Linker|, page 292.

8.3.2.1 Full Support for Multiple SICStus Runtimes

To fully support multiple SICStus runtimes, a foreign resource should be built with splfr
--multi-sp-aware.

C code compiled by splfr --multi-sp-aware will have the C preprocessor macro MULTI_
SP_AWARE defined to a non-zero value.

Full support for multiple SICStus runtimes means that more than one SICStus runtime can
execute code in the foreign resource at the same time. This rules out the option to use
any global variables for information that should be specific to each SICStus runtime. In
particular, the SICStus dispatch vector cannot be stored in a global variable. Instead, the
SICStus dispatch vector is passed as an extra first argument to each foreign function.

To ensure some degree of link time type checking, the name of each foreign function will be
changed (using #define in the generated header file).

The extra argument is used in the same way as when using multiple SICStus runtimes from

an embedding application. It must be passed on to any function that needs access to the
SICStus API.
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To simplify the handling of this extra argument, several macros are defined so that the same
foreign resource code can be compiled both with and without support for multiple SICStus
runtimes:

SPAPI_ARGO
SPAPI_ARG
SPAPI_ARG_PROTO_DECLO
e SPAPI_ARG_PROTO_DECL

Their use is easiest to explain with an example. Suppose the original foreign code looked
like:

static int f1(void)

{
some SICStus API calls
}
static int f2(SP_term_ref t, int x)
{
some SICStus API calls
}
/* :- foreign(foreign fun, c, foreign_pred(+integer)). */
void foreign_fun(SP_integer x)
{
. some SICStus API calls ...
£10;
f2(SP_new_term_ref (), 42);
}

Assuming no global variables are used, the following change will ensure that the SICStus
API dispatch vector is passed around to all functions:
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static int f1(SPAPI_ARG_PROTO_DECLO) // _DECL<ZERO> for no-arg functions

{
some SICStus API calls
}
static int f2(SPAPI_ARG_PROTO_DECL SP_term_ref t, int x) // Note: no comma
{
some SICStus API calls
}
/* :— foreign(foreign_fun, c, foreign_pred([-integer])). */
void foreign_fun(SPAPI_ARG_PROTO_DECL SP_integer x) // Note: no comma
{
. some SICStus API calls ...
£1(SPAPI_ARGO) ; // ARG<ZERO> for no-arg functions
f2(SPAPI_ARG SP_new_term_ref(), 42); // Note: no comma
}

If MULTI_SP_AWARE is not defined, i.e. ‘--multi-sp-aware’ is not specified to splfr, all
these macros expand to nothing, except SPAPI_ARG_PROTO_DECLO, which will expand to
void.

You can use SP_foreign_stash() to get access to a location, initially set to NULL, where
the foreign resource can store a void*. Typically this would be a pointer to a C struct that
holds all information that need to be stored in global variables. This struct can be allocated
and initialized by the foreign resource init function. It should be deallocated by the foreign
resource deinit function. See Section 6.4.7.3 [OS Threads|, page 301 for details.

Most foreign resources that come with SICStus fully support multiple SICStus runtimes.
For a particularly simple example, see the code for library(random). For an example
that hides the passing of the extra argument by using the C preprocessor, see the files in
‘library/clpfd/’.

8.4 Multiple Runtimes and Threads

Perhaps the primary reason to use more than one SICStus runtime in a process is to have
each runtime running in a separate thread. To this end, a few mutual exclusion primitives
are available. See Section 6.4.7 [Operating System Services|, page 300 for details on mutual
exclusion locks.

Please note: the SICStus runtime is not thread safe in general. See Section 6.5.3
[Calling Prolog Asynchronously], page 304 for ways to safely interact with a
running SICStus from arbitrary threads.
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9 Writing Efficient Programs

9.1 Overview

This chapter gives a number of tips on how to organize your programs for increased efficiency.
A lot of clarity and efficiency is gained by sticking to a few basic rules. This list is necessarily
very incomplete. The reader is referred to textbooks such as [O’Keefe 90] for a thorough
exposition of the elements of Prolog programming style and techniques.

e Don’t write code in the first place if there is a library predicate that will do the job.
e Write clauses representing base case before clauses representing recursive cases.

e Input arguments before output arguments in clause heads and goals.

e Use pure data structures instead of database changes.

e Use cuts sparingly, and only at proper places (see Section 4.2.3.1 [ref-sem-ctr-cut],
page 64). A cut should be placed at the exact point that it is known that the current
choice is the correct one: no sooner, no later.

e Make cuts as local in their effect as possible. If a predicate is intended to be determinate,
define it as such; don’t rely on its callers to prevent unintended backtracking.

e Binding output arguments before a cut is a common source of programming errors. If
a predicate is not steadfast, it is usually for this reason.

e Replace cuts by if-then-else constructs if the test is simple enough (see Section 9.10
[Conditionals and Disjunction], page 365).

e Use disjunctions sparingly, always put parentheses around them, never put parentheses
around the individual disjuncts, never put the ‘;” at the end of a line.

e Write the clauses of a predicate so that they discriminate on the principal functor of
the first argument (see below). For maximum efficiency, avoid “defaulty” programming
(“catch-all” clauses).

e Don’t uselists ([...]), “round lists” ((...)), or braces ({...}) to represent compound
terms, or “tuples”, of some fixed arity. The name of a compound term comes for free.

e Before trying to optimize your program for speed, use execution profiling to get an idea
of where most of the time is being spent, and, more importantly, why.

9.2 Execution Profiling

Execution profiling is a common aid for improving software performance. As of release 4.2,
execution profiling is available for compiled as well as interpreted code. Execution profiling
requires no recompilation with instrumentation. Execution profiling is either globally on or
globally off for all compiled code. This is reflected by the profiling Prolog flag. When
the flag is on, the information gathered depends on the execution mode:

compiled code
Execution profiling counts the number of calls per caller-callee pair, the number
of instructions executed, and the number of choicepoint accesses per predicate.
Calls that succeed nondeterminately are detected. Compiled codes runs 2-10
times slower with execution profiling than without.
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interpreted code
Execution profiling counts the number of calls per caller-callee pair if the
source_info Prolog flag was on when the code was loaded; otherwise, the
number of calls per predicate. Calls that succeed nondeterminately are de-
tected.

A typical query pattern is:

| ?- [Load some code.]

| ?- prolog_flag(profiling,_,on).
| ?- [Run some queries.]

| ?- prolog_flag(profiling,_,off).
| ?- print_profile.

The predicate profile_data/1 makes the accumulated data available as a Prolog term. The
predicate print_profile/0 prints the execution profile in a format similar to gprof (1). It
can also be given an argument which should be of the same type as the output of profile_
data/1. The predicate profile_reset/0 clears all profiling data. For the details, see
the respective reference page. See also the Gauge graphical user interface for inspecting
execution profiles (see Section 10.16 [lib-gauge], page 545) and the SICStus Prolog IDE (see
Section 3.11 [SPIDER], page 29) which both can visualize the profiling information.

profile_reset since release 4.2, development
Resets all profiling data. See Section 11.3.166 [mpg-ref-profile_reset], page 1094.

profile_data(-Data) since release 4.2,development
Data is the profiling data accumulated so far. See Section 11.3.165 [mpg-ref-
profile_datal, page 1093.

print_profile since release 4.2,development

print_profile(+Data) since release 4.2,development
The profiling data Data is displayed in a format similar to gprof (1). Data
defaults to the profiling data accumulated so far. See Section 11.3.164 [mpg-
ref-print_profile], page 1092.

9.3 Coverage Analysis

Coverage analysis is the gathering of information about which points in the code, or coverage
sites, were executed, and how many times, during a particular run if the program. It
is available as of release 4.2, for compiled as well as interpred code, provided that such
code was loaded with the source_info Prolog flag switched on. In fact, it uses the same
underlying support as execution profiling: while the program is running with execution
profiling switched on, the data accumulated can be used for both purposes. Roughly,
coverage sites correspond to points in the code at which the debugger would stop in trace
mode, plus one site at entry to every clause. A typical query pattern is:
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| ?- [Load some code.]

| ?- prolog_flag(profiling,_,on).
| ?- [Run some queries.]

| ?- prolog_flag(profiling,_,off).
| ?- print_coverage.

The predicate coverage_data/1 makes the accumulated data available as a Prolog term.
The predicate print_coverage/0 prints the execution coverage in a hierarchical format. It
can also be given an argument which should be of the same type as the output of coverage_
data/1. The Emacs interface has commands for code coverage highlighting of source code
buffers (see Section 3.12.3 [Usage|, page 34). For the details, see the respective reference

page.

profile_reset since release 4.2,development
Resets all profiling and coverage data. See Section 11.3.166 [mpg-ref-
profile_reset], page 1094.

coverage_data(-Data) since release 4.2,development
Data is the coverage data accumulated so far. See Section 11.3.45 [mpg-ref-
coverage_datal, page 938.

print_coverage since release 4.2,development

print_coverage (+Data) since release 4.2,development
The coverage data Data is displayed in a hierarchical format. Data defaults
to the profiling data accumulated so far. See Section 11.3.161 [mpg-ref-
print_coverage], page 1087.

9.4 The Cut

9.4.1 Overview

One of the more difficult things to master when learning Prolog is the proper use of the cut.
Often, when beginners find unexpected backtracking occurring in their programs, they try
to prevent it by inserting cuts in a rather random fashion. This makes the programs harder
to understand and sometimes stops them from working.

During program development, each predicate in a program should be considered indepen-
dently to determine whether or not it should be able to succeed more than once. In most
applications, many predicates should at most succeed only once; that is, they should be
determinate. Having decided that a predicate should be determinate, it should be verified
that, in fact, it is. The debugger can help in verifying that a predicate is determinate (see
Section 9.7 [The Determinacy Checker|, page 355).

9.4.2 Making Predicates Determinate

Consider the following predicate, which calculates the factorial of a number:
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fac(0, 1).

fac(N, X) :-
N1 is N - 1,
fac(N1, Y),
X is N x Y.

The factorial of 5 can be found by typing:

| ?- fac(5, X).

X =120

However, backtracking into the above predicate by typing a semicolon at this point, causes
an infinite loop because the system starts attempting to satisfy the goals fac(-1, X).,
fac(-2, X)., etc. The problem is that there are two clauses that match the goal fac(0,

F).,

but the effect of the second clause on backtracking has not been taken into account.

There are at least three possible ways of fixing this:

1.

3.

Efficient solution: rewrite the first clause as
fac(0,1) :- !.

Adding the cut essentially makes the first solution the only one for the factorial of 0
and hence solves the immediate problem. This solution is space-efficient because as
soon as Prolog encounters the cut, it knows that the predicate is determinate. Thus,
when it tries the second clause, it can throw away the information it would otherwise
need in order to backtrack to this point. Unfortunately, if this solution is implemented,
typing ‘fac(-1, X)’ still generates an infinite search.

Robust solution: rewrite the second clause as

fac(N, X) :-
N > o0,
N1 is N - 1,
fac(N1, Y),
X is N x Y.

This also solves the problem, but it is a more robust solution because this way it is
impossible to get into an infinite loop.

This solution makes the predicate logically determinate—there is only one possible
clause for any input—but the Prolog system is unable to detect this and must waste
space for backtracking information. The space-efficiency point is more important than
it may at first seem; if fac/2 is called from another determinate predicate, and if the
cut is omitted, Prolog cannot detect the fact that fac/2 is determinate. Therefore,
it will not be able to detect the fact that the calling predicate is determinate, and
space will be wasted for the calling predicate as well as for fac/2 itself. This argument
applies again if the calling predicate is itself called by a determinate predicate, and so
on, so that the cost of an omitted cut can be very high in certain circumstances.

Preferred solution: rewrite the entire predicate as the single clause
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fac(N, X) :-

( N>0 -
N1 is N - 1,
fac(N1, Y),
X is N * Y

; N =:=0->
X=1

).

This solution is as robust as solution 2, and more efficient than solution 1, since it
exploits conditionals with arithmetic tests (see Section 9.10 [Conditionals and Disjunc-
tion], page 365 for more information on optimization using conditionals).

9.4.3 Placement of Cuts

Programs can often be made more readable by the placing of cuts as early as possible in
clauses. For example, consider the predicate p/0 defined by

p:-a, b, !, c, d
p :— e, f.

Suppose that b/0 is a test that determines which clause of p/0 applies; a/0 may or may
not be a test, but ¢/0 and d/0 are not supposed to fail under any circumstances. A cut
is most appropriately placed after the call to b/0. If in fact a/0 is the test and b/0 is not
supposed to fail, it would be much clearer to move the cut before the call to b/0.

A tool to aid in determinacy checking is included in the distribution. It is described in
depth in Section 9.7 [The Determinacy Checker|, page 355.

9.4.4 Terminating a Backtracking Loop

Cut is also commonly used in conjunction with the generate-and-test programming para-
digm. For example, consider the predicate find_solution/1 defined by

find_solution(X) :-
candidate_solution(X),

test_solution(X),
.

where candidate_solution/1 generates possible answers on backtracking. The intent is
to stop generating candidates as soon as one is found that satisfies test_solution/1. If
the cut were omitted, a future failure could cause backtracking into this clause and restart
the generation of candidate solutions. A similar example is shown below:
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process_file(F) :-
see(F),
repeat,
read(X),

process_and_fail(X),
I

*

seen.

process_and_fail(end_of_file) :- !.
process_and_fail(X) :-

process (X),

fail.

The cut in process_file/1 is another example of terminating a generate-and-test loop. In
general, a cut should always be placed after a repeat/0 so that the backtracking loop is
clearly terminated. If the cut were omitted in this case, on later backtracking Prolog might
try to read another term after the end of the file had been reached.

The cut in process_and_fail/1 might be considered unnecessary because, assuming the
call shown is the only call to it, the cut in process_file/1 ensures that backtracking into
process_and_fail/1 can never happen. While this is true, it is also a good safeguard to
include a cut in process_and_fail/1 because someone may unwittingly change process_
file/1 in the future.

9.5 Indexing

9.5.1 Overview

In SICStus Prolog, predicates are indexed on their first arguments. This means that when
a predicate is called with an instantiated first argument, a hash table is used to gain fast
access to only those clauses having a first argument with the same primary functor as the
one in the predicate call. If the first argument is atomic, only clauses with a matching first
argument are accessed. Indexes are maintained automatically by the built-in predicates
manipulating the Prolog database (for example, assert/1, retract/1, and compile/1.

Keeping this feature in mind when writing programs can help speed their execution. Some
hints for program structuring that will best use the indexing facility are given below. Note
that dynamic predicates as well as static predicates are indexed. The programming hints
given in this section apply equally to static and dynamic code.

9.5.2 Data Tables

The major advantage of indexing is that it provides fast access to tables of data. For
example, a table of employee records might be represented as shown below in order to gain
fast access to the records by employee name:
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% employee(LastName,FirstNames,Department,Salary,Date0fBirth)

employee(’Smith’, [’John’], sales, 20000, 1-1-59).
employee(’Jones’, [’Mary’], engineering, 30000, 5-28-56).

If fast access to the data via department is also desired, the data can be organized little
differently. The employee records can be indexed by some unique identifier, such as employee
number, and additional tables can be created to facilitate access to this table, as shown in
the example below. For example,

% employee(Id,LastName,FirstNames,Department,Salary,Date0fBirth)

employee (1000000, ’Smith’, [’John’], sales, 20000, 1-1-59).
employee (1000020, ’Jones’, [’Mary’], engineering, 30000, 5-28-56).

% employee_name(LastName,EmpId)

employee_name (’Smith’, 1000000) .
employee_name(’Jones’, 1000020) .

% department_member (Department ,EmpId)

department_member (sales, 1000000) .
department_member (engineering, 1000020) .

Indexing would now allow fast access to the records of every employee named Smith, and
these could then be backtracked through looking for John Smith. For example:

| ?- employee_name(’Smith’, Id),
employee(Id, ’Smith’, [’John’], Dept, Sal, DoB).

Similarly, all the members of the engineering department born since 1965 could be efficiently
found like this:

| 7- department_member (engineering, Id),
employee (Id, LN, FN, engineering, _, M-D-Y),
Y > 65.

9.5.3 Determinacy Detection

The other advantage of indexing is that it often makes possible early detection of deter-
minacy, even if cuts are not included in the program. For example, consider the following
simple predicate, which joins two lists together:
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concat([], L, L).
concat ([X|L1], L2, [XI|L3]) :- concat(L1l, L2, L3).

If this predicate is called with an instantiated first argument, the first argument indexing
of SICStus Prolog will recognize that the call is determinate—only one of the two clauses
for concat/3 can possibly apply. Thus, the Prolog system knows it does not have to store
backtracking information for the call. This significantly reduces memory use and execution
time.

Determinacy detection can also reduce the number of cuts in predicates. In the above
example, if there was no indexing, a cut would not strictly be needed in the first clause
as long as the predicate was always to be called with the first argument instantiated. If
the first clause matched, the second clause could not possibly match; discovery of this fact,
however, would be postponed until backtracking. The programmer might thus be tempted
to use a cut in the first clause to signal determinacy and recover space for backtracking
information as early as possible.

With indexing, if the example predicate is always called with its first argument instantiated,
backtracking information is never stored. This gives substantial performance improvements
over using a cut rather than indexing to force determinacy. At the same time greater
flexibility is maintained: the predicate can now be used in a nondeterminate fashion as
well, as in

| ?- concat(L1l, L2, [a,b,c,d]).

which will generate on backtracking all the possible partitions of the list [a,b,c,d] on
backtracking. If a cut had been used in the first clause, this would not work.

9.6 Last Clause Determinacy Detection

Even if the determinacy detection made possible by indexing is unavailable to a predicate
call, SICStus Prolog still can detect determinacy before determinate exit from the predicate.
Space for backtracking information can thus be recovered as early as possible, reducing
memory requirements and increasing performance. For instance, the predicate member/2

(found in the SICStus Prolog library) could be defined by:

member (Element, [Element|_]).
member (Element, [_|Rest]) :-
member (Element, Rest).

member/2 might be called with an instantiated first argument in order to check for mem-
bership of the argument in a list, which is passed as a second argument, as in

| ?- member(4, [1,2,3,4]).

The first arguments of both clauses of member/2 are variables, so first argument indexing
cannot be used. However, determinacy can still be detected before determinate exit from
the predicate. This is because on entry to the last clause of a nondeterminate predicate, a
call becomes effectively determinate; it can tell that it has no more clauses to backtrack to.
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Thus, backtracking information is no longer needed, and its space can be reclaimed. In the
example, each time a call fails to match the first clause and backtracks to the second (last)
clause, backtracking information for the call is automatically deleted.

Because of last clause determinacy detection, a cut is never needed as the first subgoal in
the last clause of a predicate. Backtracking information will have been deleted before a cut
in the last clause is executed, so the cut will have no effect except to waste time.

Note that last clause determinacy detection is exploited by dynamic code as well as static
code in SICStus Prolog.

9.7 The Determinacy Checker

Please note: the Determinacy Checker tool is mostly superseeded by the analysis performed
by the SICStus Prolog IDE, SPIDER (see Section 3.11 [SPIDER], page 29). SPIDER will
analyze the source code fully automatically and will annotate the edited source code to
highlight unwanted non-determinism. The analysis performed by SPIDER is more precise
than the analysis implemented by the determinism checker described below.

The determinacy checker can help you spot unwanted nondeterminacy in your programs.
This tool examines your program source code and points out places where nondeterminacy
may arise. It is not in general possible to find exactly which parts of a program will be
nondeterminate without actually running the program, best with the execution profiler,
which endeavors to find exactly those parts. However, this tool can find most unwanted
nondeterminacy. Unintended nondeterminacy should be eradicated because:

1. it may give you wrong answers on backtracking

2. it may cause a lot of memory to be wasted

9.7.1 Using the Determinacy Checker

There are two different ways to use the determinacy checker, either as a stand-alone tool, or
during compilation. You may use it whichever way fits best with the way you work. Either
way, it will discover the same nondeterminacy in your program.

The stand-alone determinacy checker is called spdet, and is run from the shell prompt,
specifying the names of the Prolog source files you wish to check.

The determinacy checker can also be integrated into the compilation process, so that you
receive warnings about unwanted nondeterminacy along with warnings about singleton vari-
ables or discontiguous clauses. To make this happen, simply insert the line

:- load_files(library(detcheck),
[when(compile_time), if(changed)]).

Once this line is added, every time that file is loaded, it will be checked for unwanted
nondeterminacy.
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9.7.2 Declaring Nondeterminacy

Some predicates are intended to be nondeterminate. By declaring intended nondeterminacy,
you avoid warnings about predicates you intend to be nondeterminate. Equally importantly,
you also inform the determinacy checker about nondeterminate predicates. It uses this
information to identify unwanted nondeterminacy.

Nondeterminacy is declared by putting a declaration of the form
:- name/arity is nondet.
using the is/2-declarations introduced in SICStus Prolog 4.2.1,
or the legacy form
:— nondet name/arity.

in your source file. This is similar to a dynamic or discontiguous declaration. You may
have multiple nondet declarations, and a single declaration may mention several predicates,
separating them by commas.

Similarly, a predicate P/N may be classified as nondeterminate by the checker, whereas in
reality it is determinate. This may happen e.g. if P/N calls a dynamic predicate that in
reality never has more than one clause. To prevent false alarms arising from this, you can
inform the checker about determinate predicates by declarations of the form:

:- name/arity is det.
using the is/2-declarations introduced in SICStus Prolog 4.2.1,
or the legacy form

:- det name/arity.

If you wish to include the legacy det and nondet declarations in your file and you plan to
use the stand-alone determinacy checker, you must include the line

:- load_files(library(nondetdecl),
[when(compile_time), if(changed)]).

near the top of each file that contains such declarations. If you instead use the recommended
is/2-declarations, or the integrated determinacy checker, you don’t need (and should not
have) this line.

9.7.3 Checker Output

The output of the determinacy checker is quite simple. For each clause containing unex-
pected nondeterminacy, a single line is printed showing the module, name, arity, and clause
number (counting from 1). The form of the information is:

* Non-determinate: module:name/arity (clause number)



Chapter 9: Writing Efficient Programs 357

A second line for each nondeterminate clause indicates the cause of the nondeterminacy.
The recognized causes are:

e The clause contains a disjunction that is not forced to be determinate with a cut or by
ending the clause with a call to fail/0 or raise_exception/1.

e The clause calls a nondeterminate predicate. In this case the predicate is named.

e There is a later clause for the same predicate whose first argument has the same prin-
cipal functor (or one of the two clauses has a variable for the first argument), and this
clause does not contain a cut or end with a call to fail/0 or raise_exception/1. In
this case, the clause number of the other clause is mentioned.

e If the predicate is multifile, clause indexing is not considered sufficient to ensure deter-
minacy. This is because other clauses may be added to the predicate in other files, so
the determinacy checker cannot be sure it has seen all the clauses for the predicate. It
is good practice to include a cut (or fail) in every clause of a multifile predicate.

The determinacy checker also occasionally prints warnings when declarations are made
too late in the file or not at all. For example, if you include a dynamic, nondet, or
discontiguous declaration for a predicate after some clauses for that predicate, or if you
put a dynamic or nondet declaration for a predicate after a clause that includes a call to
that predicate, the determinacy checker may have missed some nondeterminacy in your
program. The checker also detects undeclared discontiguous predicates, which may also
have undetected nondeterminacy. Finally, the checker looks for goals in your program that
indicate that predicates are dynamic; if no dynamic declaration for those predicates exists,
you will be warned.

These warnings take the following form:

! warning: predicate module:name/arity is property.
! Some nondeterminacy may have been missed.
! Add (or move) the directive

! :— property module:name/arity.

! near the top of this file.

9.7.4 Example

Here is an example file:

:- load_files(library(detcheck),
[when(compile_time), if (changed)]).

parent (abe, rob).
parent (abe, sam).
parent (betty, rob).
parent (betty, sam).

is_parent (Parent) :- parent(Parent, _).
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The determinacy checker notices that the first arguments of clauses 1 and 2 have the same
principal functor, and similarly for clauses 3 and 4. It reports:

* Non-determinate: user:parent/2 (clause 1)
* Indexing cannot distinguish this from clause 2.
* Non-determinate: user:parent/2 (clause 3)
* Indexing cannot distinguish this from clause 4.

In fact, parent/2 should be nondeterminate, so we should add the declaration
:— parent/2 is nondet.

before the clauses for parent/2. If run again after modifying file, the determinacy checker
prints:

* Non-determinate: user:is_parent/1 (clause 1)
* This clause calls user:parent/2, which may be nondeterminate.

It no longer complains about parent/2 being nondeterminate, since this is declared. But
now it notices that because parent/2 is nondeterminate, then so is is_parent/1.

9.7.5 Options

When run from the command line, the determinacy checker has a few options to control its
workings.

The ‘-r’ option specifies that the checker should recursively check files in such a way that it
finds nondeterminacy caused by calls to other nondeterminate predicates, whether they are
declared so or not. Also, predicates that appear to be determinate will be treated as such,
whether declared nondet or not. This option is quite useful when first running the checker
on a file, as it will find all predicates that should be either made determinate or declared
nondet at once. Without this option, each time a nondet declaration is added, the checker
may find previously unnoticed nondeterminacy.

For example, if the original example above, without any nondet declarations, were checked
with the ‘-r’ option, the output would be:

Non-determinate: user:parent/2 (clause 1)

Indexing cannot distinguish this from clause 2.
Non-determinate: user:parent/2 (clause 3)

Indexing cannot distinguish this from clause 4.
Non-determinate: user:is_parent/1 (clause 1)

Calls nondet predicate user:parent/2.

¥ ¥ X X X ¥

The ‘-=d’ option causes the tool to print out the needed nondet declarations. These can be
readily pasted into the source files. Note that it only prints the nondet declarations that
are not already present in the files. However, these declarations should not be pasted into
your code without each one first being checked to see if the reported nondeterminacy is
intended.
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The ‘-D’ option is like ‘-d’, except that it prints out all nondet declarations that should
appear, whether they are already in the file or not. This is useful if you prefer to replace
all old nondet declarations with new ones.

Your code will probably rely on operator declarations and possibly term expansion. The
determinacy checker handles this in the following way: you must supply an initialization
file, using the ‘=i’ ifile option. spdet will execute any operator declaration it encounters.

9.7.6 What is Detected

As mentioned earlier, it is not in general possible to find exactly which places in a pro-
gram will lead to nondeterminacy. The determinacy checker gives predicates the benefit
of the doubt: when it’s possible that a predicate will be determinate, it will not be re-
ported. The checker will only report places in your program that will be nondeterminate
regardless of which arguments are bound. Despite this, the checker catches most unwanted
nondeterminacy in practice.

The determinacy checker looks for the following sources of nondeterminacy:

e Multiple clauses that can’t be distinguished by the principal functor of the first ar-
guments, and are not made determinate with an explicit cut, fail/0, false/0, or
raise_exception/1. First argument indexing is not considered for multifile predi-
cates, because another file may have a clause for this predicate with the same principal
functor of its first argument.

e A clause with a disjunction not forced to be determinate by a cut, fail/0, false/O0,
or raise_exception/1 in each arm of the disjunction but the last, or where the whole
disjunction is followed by a cut, fail/0, false/0, or raise_exception/1.

e A clause that calls something known to be nondeterminate, other than when it is
followed by a cut, fail/0, false/0, or raise_exception/1, or where it appears in the
condition of an if-then-else construct. Known nondeterminate predicates include hooks
and those declared nondeterminate or dynamic (since they can be modified, dynamic
predicates are assumed to be nondeterminate), plus the following built-in predicates:

— absolute_file_name/3, when the options list contains solutions(all).

— atom_concat/3, when the first two arguments are variables not appearing earlier
in the clause (including the clause head).

— bagof/3, when the second argument contains any variables not appearing earlier
in the clause (including the clause head).

— clause/[2,3].

— current_op/3, when any argument contains any variables not appearing earlier
in the clause (including the clause head).

— current_key/2, when the second argument contains any variables not appearing
earlier in the clause (including the clause head).

— current_predicate/2, when the second argument contains any variables not ap-
pearing earlier in the clause (including the clause head).

— length/2, when both arguments are variables not appearing earlier in the clause
(including the clause head).
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— predicate_property/2, when either argument contains any variables not appear-
ing earlier in the clause (including the clause head).

— recorded/3.
— repeat/0.
— retract/1.

— setof/3, when the second argument contains any variables not appearing earlier
in the clause (including the clause head).

— source_file/[1,2] when the last argument contains any variables not appearing
earlier in the clause (including the clause head).

— sub_atom/5, when at least two of the second, fourth and fifth arguments are
variables not appearing earlier in the clause (including the clause head).

9.8 Last Call Optimization

Another important efficiency feature of SICStus Prolog is last call optimization. This is a
space optimization technique, which applies when a predicate is determinate at the point
where it is about to call the last goal in the body of a clause. For example,

% for(Int, Lower, Upper)

% Lower and Upper should be integers such that Lower =< Upper.

% Int should be uninstantiated; it will be bound successively on
% backtracking to Lower, Lower+1, ... Upper.

for(Int, Int, _Upper).
for(Int, Lower, Upper) :-
Lower < Upper,
Next is Lower + 1,
for(Int, Next, Upper).

This predicate is determinate at the point where the recursive call is about to be made,
since this is the last clause and the preceding goals (<) /2 and is/2) are determinate. Thus
last call optimization can be applied; effectively, the stack space being used for the current
predicate call is reclaimed before the recursive call is made. This means that this predicate
uses only a constant amount of space, no matter how deep the recursion.

9.8.1 Accumulating Parameters

To take best advantage of this feature, make sure that goals in recursive predicates are
determinate, and whenever possible put the recursive call at the end of the predicate.

This isn’t always possible, but often can be done through the use of accumulating param-
eters. An accumulating parameter is an added argument to a predicate that builds up the
result as computation proceeds. For example, in our factorial example, the last goal in the
body of the recursive case is is/2, not the recursive call to fac/2.
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fac(N, X) :-

( N>0 -
N1 is N - 1,
fac(N1, Y),
X is N * Y

; N =:=0 ->
X=1

).

This can be corrected by adding another argument to fac/2 to accumulate the factorial.

fac(N, X) :- fac(N, 1, X).

% fac(+N, +M, -X)
% X is M * the factorial of N.

fac(N, M, X) :-

( N>0 -
N1 is N - 1,
M1 is N *x M,
fac(N1, M1, X)

s N =:=0->
X =M

).

Here, we do the multiplication before calling fac/3 recursively. Note that we supply the
base case, 1, at the start of the computation, and that we are multiplying by decreasing
numbers. In the earlier version, fac/2, we multiply after the recursive call, and so we
multiply by increasing numbers. Effectively, the new version builds the result backwards.
This is correct because multiplication is associative.

9.8.2 Accumulating Lists

This technique becomes much more important when extended to lists, as in this case it can
save much building of unneeded lists through unnecessary calls to append sublists together.
For example, the naive way to reverse a list is:

nreverse([], [1).

nreverse([H|T], L) :-
nreverse(T, L1),
append(L1, [H], L).

This is very wasteful, since each call to append/3 copies the initial part of the list, and adds
one element to it. Fortunately, this can be very easily rewritten to use an accumulating
parameter:
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reverse(L1l, L2) :- reverse(L1, [], L2).

% reverse(+X, +Y, -Z)

% Z is X reversed, followed by Y

reverse([], Z, Z).

reverse([H|T], LO, L) :-
reverse(T, [HILO], L).

This version of reverse is many times faster than the naive version, and uses much less
memory. The key to understanding the behavior of this predicate is the observation made
earlier: using an accumulating parameter, we build the result backwards.

Don’t let this confuse you. Building a list forward is easy. For example, a predicate returning
a list L of consecutive numbers from 1 to N could be written in two different ways: counting
up and collecting the resulting list forward, or counting down and accumulating the result
backward.

iotal(N, L) :- iotal(l, N, L).
iotal(N, Max, L) :-
( N > Max ->

L =[]
. N1 is N+1,
L = [NIL].],

iotal (N1, Max, L1)

or,

iota2(N, L) :- iota2(N, [1, L).
iota2(N, LO, L) :-
( N =<0 ->
L =10
;N1 is N-1,
iota2(N1, [N|LO], L)
).

Both versions generate the same results, and neither waste any space. The second version
is slightly faster. Choose whichever approach you prefer.

9.9 Building and Dismantling Terms

The built-in predicate (=..)/2 is a clear way of building terms and taking them apart.
However, it is almost never the most efficient way. functor/3 and arg/3 are generally
much more efficient, though less direct. The best blend of efficiency and clarity is to write a
clearly-named predicate that implements the desired operation and to use functor/3 and
arg/3 in that predicate.
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Here is an actual example. The task is to reimplement the built-in predicate (==)/2. The
first variant uses (=..)/2 (this symbol is pronounced “univ” for historical reasons). Some
Prolog textbooks recommend code similar to this.

ident_univ(X, Y) :-

var (X), %
I
var (Y), %
samevar (X, Y). %
ident_univ(X, Y) :- %
nonvar (Y), %
X =.. [FIL], yA
Y =.. [FIM], %
ident_list(L, M). %

ident_list([], [1).

ident_list([H1|T1], [H2]T2]) :-
ident_univ(H1, H2),
ident_1list(T1, T2).

samevar (29, Y) :- yA
var(Y), %
', yA
fail. yA
samevar(_, _). %

If X is a variable,

so must Y be, and

they must be the same.

If X is not a variable,
neither may Y be;

they must have the

same function symbol F

and identical arguments

If binding X to 29
leaves Y unbound,

they were not the same
variable.

Otherwise they were.

This code performs the function intended; however, every time it touches a non-variable
term of arity N, it constructs a list with N+1 elements, and if the two terms are identical,
these lists are reclaimed only when backtracked over or garbage collected.

Better code uses functor/3 and arg/3
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ident_farg(X, Y) :-

( var (X) -> % If X is a variable,
var(Y), % so must Y be, and
samevar (X, Y) % they must be the same;

; nonvar (Y), % otherwise Y must be nonvar

functor (X, F, N), % The principal functors of X
functor (Y, F, N), % and Y must be identical,
ident_farg(N, X, Y) % including the last N args.

).

ident_farg(0, _, _) := I.

ident_farg(N, X, Y) :- % The last N arguments are
arg(N, X, Xn), % identical
arg(N, Y, Yn), % if the Nth arguments
ident_farg(Xn, Yn), % are identical,
M is N-1, % and the last N-1 arguments
ident_farg(M, X, Y). % are also identical.

This approach to walking through terms using functor/3 and arg/3 avoids the construction
of useless lists.

The pattern shown in the example, in which a predicate of arity K calls an auxiliary
predicate of the same name of arity K+1 (the additional argument denoting the number of
items remaining to process), is very common. It is not necessary to use the same name for
this auxiliary predicate, but this convention is generally less prone to confusion.

In order to simply find out the principal function symbol of a term, use

| ?- the_term_is (Term),
| functor(Term, FunctionSymbol, _).

The use of (=..)/2, as in

| ?- the_term_is (Term),
[ Term =.. [FunctionSymbol|_]J.

is wasteful, and should generally be avoided. The same remark applies if the arity of a term
is desired.

(=..)/2 should not be used to locate a particular argument of some term. For example,
instead of

Term =.. [_F,_,ArgTwol_]
you should write

arg(2, Term, ArgTwo)
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It is generally easier to get the explicit number “2” right than to write the correct number
of anonymous variables in the call to (=..)/2. Other people reading the program will find
the call to arg/3 a much clearer expression of the program’s intent. The program will also
be more efficient. Even if several arguments of a term must be located, it is clearer and
more efficient to write

arg(l, Term, First),
arg(3, Term, Third),
arg(4, Term, Fourth)

than to write
Term =.. [_,First,_,Third,Fourth|_]

Finally, (=..)/2 should not be used when the functor of the term to be operated on is
known (that is, when both the function symbol and the arity are known). For example, to
make a new term with the same function symbol and first arguments as another term, but
one additional argument, the obvious solution might seem to be to write something like the
following:

add_date(01ldItem, Date, NewItem) :-
0ldItem =.. [item,Type,Ship,Seriall,
NewItem =.. [item,Type,Ship,Serial,Date].

However, this could be expressed more clearly and more efficiently as

add_date(0ldItem, Date, NewItem) :-
0ldItem = item(Type,Ship,Serial),
NewItem = item(Type,Ship,Serial,Date).

or even

add_date(item(Type,Ship,Serial),
Date,
item(Type,Ship,Serial,Date)
).

9.10 Conditionals and Disjunction

There is an efficiency advantage in using conditionals whose test part consists only of arith-
metic comparisons or type tests. Consider the following alternative definitions of