A. Aggoun and N. Beldiceanu, Time Stamps Techniques for the
Trailed Data in Constraint Logic Programming Systems, Actes du
séminaires Programmation en Logique, Trégastel, France, May 1990.
[Aggoun & Beldiceanu 93]
A. Aggoun and N. Beldiceanu, Extending CHIP in order to Solve
Complex Scheduling and Placement Problems, Mathl. Comput. Modelling,
vol. 17, no. 7, pp. 57–73, Pergamon Press Ltd., 1993.
[Beldiceanu, Carlsson, Flener & Pearson 10]
N. Beldiceanu, M. Carlsson, P. Flener, J. Pearson, On
Matrices, Automata, and Double Counting, Constraints 18(1): 108-140, 2013.
[Beldiceanu, Carlsson & Petit 04]
N. Beldiceanu, M. Carlsson, T. Petit, Deriving Filtering
Algorithms from Constraint Checkers, CP, LNCS 3258, Springer, 2004.
[Beldiceanu, Carlsson & Rampon 05]
N. Beldiceanu, M. Carlsson, J.-X. Rampon, Global Constraint
Catalog, SICS Technical Report T2005-08, 2005.
[Beldiceanu & Contejean 94]
N. Beldiceanu and E. Contejean, Introducing Global
Constraints in CHIP, Mathl. Comput. Modelling, vol. 20, no.
12, pp. 97–123, Pergamon Press Ltd., 1994.
[Bryant 86]
R.E. Bryant, Graph-Based Algorithms for Boolean Function
Manipulation, IEEE Trans. on Computers, August, 1986.
M. Carlsson, Design and Implementation of an OR-Parallel
Prolog Engine, SICS Dissertation Series 02, 1990.
[Carlsson & Beldiceanu 02]
M. Carlsson, N. Beldiceanu, Arc-Consistency for a Chain of
Lexicographic Ordering Constraints, SICS Technical Report T2002-18,
2002.
[Carlsson, Beldiceanu & Martin 08]
M. Carlsson, N. Beldiceanu, J. Martin, A Geometric
Constraint over k-Dimensional Objects and Shapes Subject to Business
Rules, SICS Technical Report T2008-04, 2008.
[Carreiro & Gelernter 89a]
N. Carreiro and D. Gelernter, Linda in Context, CACM, 32(4)
1989.
[Carreiro & Gelernter 89b]
N. Carreiro and D. Gelernter, How to Write Parallel Programs: A
Guide to the Perplexed, ACM Computing Surveys, September 1989.
[Clocksin & Mellish 81]
W.F. Clocksin and C.S. Mellish, Programming in Prolog,
Springer, 1981.
[Colmerauer 90]
Colmerauer A.: An Introduction to Prolog III, CACM, 33(7), 69-90, 1990.
[Diaz & Codognet 93]
D. Diaz and P. Codognet, A Minimal Extension of the WAM for
clp(FD), ICLP, MIT Press, 1993.
[Fruehwirth 98]
Th. Fruehwirth, Theory and Practice of Constraint Handling
Rules, Special Issue on Constraint Logic Programming (P. Stuckey and
K. Marriot, Eds.), Journal of Logic Programming, Vol 37(1-3), pp.
95-138, October 1998.
[Gorlick & Kesselman 87]
M.M. Gorlick and C.F. Kesselman, Timing Prolog Programs Without
Clocks, Symposium on Logic Programming, pp. 426–432, IEEE
Computer Society, 1987.
[Hanak et al. 04]
D. Hanák, T. Szeredi, P. Szeredi: FDBG, the CLPFD Debugger
Library of SICStus Prolog. International Workshop on Logic
Programming Environments (WLPE'04), 2004.
[Heintze et al. 87]
N. Heintze, J. Jaffar, S. Michaylov, P. Stuckey, R. Yap, The CLP(R)
Programmers Manual, Monash University, Clayton, Victoria, Australia,
Department of Computer Science, 1987.
[Holzbaur 92a]
C. Holzbaur, A High-Level Approach to the Realization of CLP
Languages, JICSLP92 Post-Conference Workshop on Constraint Logic
Programming Systems, Washington D.C., 1992.
[Holzbaur 94]
C. Holzbaur, A Specialized, Incremental Solved Form Algorithm
for Systems of Linear Inequalities, Austrian Research Institute for
Artificial Intelligence, Vienna, TR-94-07, 1994.
[Jaffar & Michaylov 87]
J. Jaffar, S. Michaylov, Methodology and Implementation of a
CLP System, ICLP, MIT Press, Cambridge, MA, 1987.
[Kowalski 74]
R.A. Kowalski, Logic for Problem Solving, DCL Memo 75, Dept of
Artificial Intelligence, University of Edinburgh, March, 1974.
[Kowalski 79]
R.A. Kowalski, Artificial Intelligence: Logic for Problem
Solving. North Holland, 1979.
[Lopez-Ortiz 03]
A Lopez-Ortiz, CG Quimper, J Tromp, P van Beek, A fast and simple
algorithm for bounds consistency of the alldifferent constraint, IJCAI
2003.
[Mehlhorn 00]
K. Mehlhorn and Sven Thiel, Faster algorithms for
bound-consistency of the sortedness and the alldifferent constraint,
CP, LNCS 1894, Springer, 2000.
[O'Keefe 90]
R.A. O'Keefe, The Craft of Prolog, MIT Press, 1990.
[Ousterhout 94]
John K. Ousterhout, Tcl and the Tk Toolkit.
Addison-Wesley, 1994.
[Regin 94]
J.-C. Regin, A filtering algorithm for constraints of difference
in CSPs, AAAI, pp. 362–367, 1994
[Regin 96]
J.-C. Regin, Generalized Arc Consistency for Global Cardinality
Constraint, AAAI, 1996.
[Regin 99]
J.-C. Regin, Arc Consistency for Global Cardinality with Costs,
CP, LNCS 1713, pp. 390-404, 1999.
[Schrijvers & Demoen 04]
T. Schrijvers and B. Demoen, The K.U.Leuven CHR System: Implementation
and Application, First Workshop on Constraint Handling Rules: Selected
Contributions (T. Fruehwirth and M. Meister, eds.), pp. 1–5, 2004.
[Sellmann 02]
M. Sellmann, An Arc Consistency Algorithm for the Minimum Weight
All Different Constraint, CP, LNCS 2470, Springer, 2002.
[Razakarison, Carlsson, Beldiceanu & Simonis 13]
N. Razakarison, M. Carlsson, N. Beldiceanu and H. Simonis,
GAC for a linear inequality and an atleast constraint with an
application to learning simple polynomials, Sixth Annual Symposium on
Combinatorial Search, 2013.
[Robinson 65]
J.A. Robinson, A Machine-Oriented Logic Based on the Resolution
Principle, JACM 12:23-44, January 1965.
[Roussel 75]
P. Roussel, Prolog : Manuel de Reference et d'Utilisation, Groupe
d'Intelligence Artificielle, Marseille-Luminy, 1975.
[Schimpf 2002]
J. Schimpf, Logical Loops. ICLP, pp. 224-238, MIT Press, 2002.
[Sterling & Shapiro 86]
L. Sterling and E. Shapiro, The Art of Prolog. The MIT Press,
Cambridge MA, 1986.
[Van Hentenryck 89]
P. Van Hentenryck, Constraint Satisfaction in Logic Programming,
Logic Programming Series, The MIT Press, 1989.
[Van Hentenryck et al. 95]
P. Van Hentenryck, V. Saraswat and Y. Deville, Design,
implementation and evaluation of the constraint language cc(FD). In
A. Podelski, ed., Constraints: Basics and Trends, LNCS 910. Springer,
1995.
[Warren 83]
D.H.D. Warren, An Abstract Prolog Instruction Set, Technical Note
309, SRI International, 1983.