10.35.9.2 Reflection Predicates

The constraint solving method needs access to information about the current domains of variables. This is provided by the following predicates, which are all constant time operations.

fd_var(?X)
Checks that X is currently an unbound variable that is known to the CLPFD solver.
fd_min(?X, ?Min)
where X is a domain variable (or an integer). Min is unified with the smallest value in the current domain of X, i.e. an integer or the atom inf denoting minus infinity.
fd_max(?X, ?Max)
where X is a domain variable (or an integer). Max is unified with the upper bound of the current domain of X, i.e. an integer or the atom sup denoting infinity.
fd_size(?X, ?Size)
where X is a domain variable (or an integer). Size is unified with the size of the current domain of X, if the domain is bounded, or the atom sup otherwise.
fd_set(?X, ?Set)
where X is a domain variable (or an integer). Set is unified with an FD set term denoting the internal representation of the current domain of X; see below.
fd_dom(?X, ?Range)
where X is a domain variable (or an integer). Range is unified with a ConstantRange (see Syntax of Indexicals) denoting the the current domain of X.
fd_degree(?X, ?Degree)
where X is a domain variable (or an integer). Degree is unified with the number of constraints that are attached to X.
Please note: this number may include some constraints that have been detected as entailed. Also, Degree is not the number of neighbors of X in the constraint network.

The following predicates can be used for computing the set of variables that are (transitively) connected via constraints to some given variable(s).

fd_neighbors(+Var, -Neighbors)
Given a domain variable Var, Neighbors is the set of variables that can be reached from Var via constraints posted so far.
fd_closure(+Vars, -Closure)
Given a list Vars of domain variables, Closure is the set of variables (including Vars) that can be transitively reached via constraints posted so far. Thus, fd_closure/2 is the transitive closure of fd_neighbors/2.

Send feedback on this subject.