
SICStus Prolog Release Notes
by the Intelligent Systems Laboratory

Swedish Institute of Computer Science
PO Box 1263

SE-164 29 Kista, Sweden

Release 4.0.0
March 2007

Swedish Institute of Computer Science
sicstus-request@sics.se http://www.sics.se/sicstus/

mailto:sicstus-request@sics.se
http://www.sics.se/sicstus/

Copyright c© 1995-2007 SICS

Swedish Institute of Computer Science
PO Box 1263
SE-164 29 Kista, Sweden

Permission is granted to make and distribute verbatim copies of these notes provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of these notes under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of these notes into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by SICS.

i

Table of Contents

1 Overview . 1

2 Platforms . 2

3 Release Notes and Installation Guide for UNIX
. 3

3.1 Installation . 3
3.1.1 Prerequisites . 3

3.1.1.1 C Compiler and Linker . 3
3.1.2 The Installation Script . 3
3.1.3 The Uninstallation Script . 4

3.2 Platform Specific Notes . 4

4 Release Notes and Installation Guide for
Windows . 6

4.1 Requirements . 6
4.2 Installation . 6
4.3 Windows Notes . 7
4.4 Command Line Editing . 7
4.5 The Console Window . 8

4.5.1 Console Preferences . 8
4.6 Windows Limitations . 9

5 Tcl/Tk Notes. 10

6 Berkeley DB Notes . 11

7 The Emacs Interface . 12
7.1 Installation . 12

7.1.1 Installing On-Line Documentation . 12

8 Revision History . 13
8.1 What Is New In Release 4 . 13

8.1.1 Virtual Machine . 13
8.1.2 Prolog Language . 13

8.1.2.1 Single Language Mode . 13
8.1.2.2 DCG Notation . 13
8.1.2.3 Asserting Terms with Attributed Variables 13
8.1.2.4 Arithmetic . 14
8.1.2.5 Syntax . 14

ii

8.1.2.6 Prolog Flags . 14
8.1.2.7 Stream Properties . 14
8.1.2.8 Statistics Keywords . 14
8.1.2.9 Built-In Predicates . 14
8.1.2.10 Hook Predicates . 17

8.1.3 Library Modules . 18
8.1.4 Input-Output System . 21
8.1.5 Foreign Language APIs . 22

8.1.5.1 Foreign Language Interface . 22
8.1.5.2 C API Functions . 22
8.1.5.3 Java API . 23

8.2 Guide to Porting Code from Release 3 . 23
8.3 Limitations in the Current Release. 25

9 Generic Limitations . 27

10 Contact Information . 28

Chapter 1: Overview 1

1 Overview

These notes summarize the changes in release 4 wrt. previous SICStus Prolog releases as
well as changes introduced by minor releases and their patch releases. Platform specific
information pertaining to certain parts of the system are also documented herein.

Chapter 2: Platforms 2

2 Platforms

Binary distributions of Release 4.0 are available for the following platforms. Addi-
tional platforms are available. If your platform is not listed, please let us know
(sicstus-request@sics.se).

Intel/x86, Windows 2000/XP/Vista, 32 bits
Intel/x86, Linux glibc 2.3, 32/64 bits

Built and tested on Red Hat Enterprise Linux 4

Intel/x86, Linux glibc 2.2, 32 bits
Built and tested on Red Hat Linux 7.2

Intel/x86, Solaris 10, 32/64 bits
Intel/x86, Mac OS X 10.4, 32/64 bits
PowerPC, Mac OS X 10.4, 32 bits
PowerPC, AIX 5.1L, 32/64 bits
Sparc, Solaris 8, 32/64 bits

mailto:sicstus-request@sics.se

Chapter 3: Release Notes and Installation Guide for UNIX 3

3 Release Notes and Installation Guide for UNIX

This chapter assumes that the environment variable PATH includes <prefix>/bin, where
<prefix> points to the SICStus installation directory. The installation directory is specified
during installation; see Section 3.1 [UNIX installation], page 3. For example:

csh,tcsh> setenv PATH "/usr/local/bin:$PATH"
sh,bash,ksh> export PATH="/usr/local/bin:$PATH"

3.1 Installation

Installation of SICStus under UNIX is performed by an installation (Shell) script
InstallSICStus, which interacts with the user to obtain options such as where to install
SICStus. The Java based SICStus Installer Tool is a graphical front-end to the installation
script, which automates downloading and installation. The SICStus Installer Tool is avail-
able from the download page. Use of the SICStus Installer Tool is strictly optional but may
be convenient, especially on platforms such as Mac OS X, that, by default, lack C compiler.

3.1.1 Prerequisites

3.1.1.1 C Compiler and Linker

A full SICStus installation requires a C compiler and a linker to perform final link steps on
the installation machine.

If a C compiler is not available, it is possible to use a pre-built installation on some platforms.

Pre-built installation is only recommended as a last resort; it is available from the SICStus
Installer Tool or by invoking InstallSICStus with the ‘--all-questions’ argument.

A disadvantage with the pre-built installation is that SICStus libraries that interface to
third-party products (Tcl/Tk, Berkeley DB, Java) may not work, or may require environ-
ment variables such as LD_LIBRARY_PATH to be set. Another disadvantage is that spld and
splfr may not work unless you manually adjust the spld configure file. Of course, neither
spld nor splfr will work anyway if you do not have a C compiler.

3.1.2 The Installation Script

Most users will install SICStus from a binary distribution. These are available for all
supported platforms. Information on how to download and unpack the binary distribution
is sent by email when ordering SICStus.

Binary distributions are installed by executing an interactive installation script called
InstallSICStus. Type

% ./InstallSICStus

and follow the instructions on the screen. As an alternative, the SICStus Installer Tool can
be used to download the SICStus files and invoke the installation script.

Chapter 3: Release Notes and Installation Guide for UNIX 4

During installation, you will be required to enter your site-name and license code. These
are included in the download instructions.

The installation program does not only copy files to their destination, it also performs final
link steps for some of the executables and for the library modules requiring third-party
software support (currently library(bdb) and library(tcltk)). This is done in order to
adapt to local variations in installation paths and versions.

Invoke InstallSICStus with the ‘--help’ argument to get a list of options.

Compiling SICStus from the sources requires a source code distribution. Contact sicstus-
support@sics.se for more info.

3.1.3 The Uninstallation Script

To uninstall SICStus the script UnInstallSICStus can be run. It is created during instal-
lation in the same directory as InstallSICStus.

3.2 Platform Specific Notes

This section contains some installation notes that are platform specific under UNIX.

Solaris SPARC 64-bit
You cannot install (or build) the 64 bit version of SICStus using gcc 2.x.
You need to use the Sun Workshop/Forte compiler, version 5.0 or later.
InstallSICStus will try to find it during installation but if that fails, you
can set the environment variable CC to e.g. ‘/opt/SUNWspro/bin/cc’ before in-
voking InstallSICStus. Using gcc 3.x does seem to work but has not yet
received much testing. To install with gcc 3.x, set the environment variable
CC appropriately before invoking InstallSICStus.
The following libraries are not supported: library(bdb), library(tcltk).

Solaris 8 Library timeout does not work with the default thread implementation
in Solaris 8. Instead the “Alternate Thread Library (T2)” must be used.
This is ensured automatically for executables built with the spld tool. See
http://developers.sun.com/solaris/articles/alt_thread_lib.html for
further information.
This problem does not affect Solaris 9 or later.

Mac OS X

An executable built with spld will only work if there is a properly configured
subdirectory ‘sp-4.0.0’ in the same directory as the executable; see section
“Runtime Systems on UNIX Target Machines” in the SICStus Prolog Manual.
Alternatively, the option ‘--wrapper’ can be passed to spld. In this case a
wrapper script is created that will set up various environment variables and
invoke the real executable.
When using third-party products like BDB, you may need to set up DYLD_
LIBRARY_PATH so that the Mac OS X dynamic linker can find them. When

http://developers.sun.com/solaris/articles/alt_thread_lib.html

Chapter 3: Release Notes and Installation Guide for UNIX 5

using the SICStus development executable (sicstus), a wrapper script does
this automatically.
Sometimes, the default limit on the process’s data-segment is unreasonably
small, which may lead to unexpected memory allocation failures. To check this
limit, do

tcsh> limit data

datasize 6144 kbytes
bash> ulimit -d

6144

This indicates that the maximum size of the data-segment is only 6 Mb. To
remove the limit, do

tcsh> limit datasize unlimited

datasize unlimited
bash> ulimit -d unlimited

bash> ulimit -d

unlimited

Please note: limit (ulimit) is a shell built-in in csh/tcsh
(sh/bash). It may have a different name in other shells.
Please note: The limit will also affect SICStus when started from
within Emacs, e.g. with M-x run-prolog. To change the limit used
by Emacs and its sub-processes (such as SICStus) you will need to
change the limit in the shell used to start Emacs. Alternatively you
can create a shell wrapper for the emacs command.

library(timeout) does not work reliably when Mac OS X runs on a multi-
CPU machine. In particular, timeouts tend to happen much later than they
should. This is caused by an OS bug. One workaround is to disable all but one
CPU using the “Processor” control in the “System Preferences” or the hwprefs
command. These utilities are part of “CHUD” which can be installed as part of
Apple XCode. The underlying bug is related to setitimer(ITIMER_VIRTUAL)
and has been observed at least up to Mac OS X 10.4.8 (Darwin 8.8.1).
File names are encoded in UTF-8 under Mac OS X. This is handled correctly
by SICStus.
If SICStus encounters a file name that is not encoded in UTF-8, it will silently
ignore the file or directory. This can happen on file systems where files have
been created by some other OS than Mac OS X, e.g. on network file servers
accessed by other UNIX flavors or Windows.
The default character encoding for the SICStus standard streams is based on
the current locale which is POSIX/C, i.e. US ASCII, by default on Mac OS X.
This will come in conflict with the default character encoding for the Terminal
application which is UTF-8. A clickable launcher for SICStus is optionally in-
stalled in the Applications folder. This launcher will set the character encoding
of the standard streams to UTF-8 for both the Terminal and SICStus.

Chapter 4: Release Notes and Installation Guide for Windows 6

4 Release Notes and Installation Guide for
Windows

This chapter assumes that the environment variable PATH includes %SP_PATH%\bin, where
SP_PATH points to the SICStus installation directory (typically
C:\Program Files\SICStus Prolog 4.0.0. Here, %SP_PATH% is just a place-holder; you
usually do not need to set the environment variable SP_PATH, but see section “CPL Notes”
in the SICStus Prolog Manual. For example:

C:\> set PATH=C:\Program Files\SICStus Prolog 4.0.0\bin;%PATH%

To use splfr and spld, you must also include Microsoft Visual Studio (or at least its
C compiler and linker). The easiest way is to run vsvars32.bat from the Visual Studio
distribution.

To use the respective library modules, you must also include the paths to Tcl/Tk (see
Chapter 5 [Tcl/Tk Notes], page 10) and Berkeley DB (see Chapter 6 [Berkeley DB Notes],
page 11) onto the PATH environment variable if the installer for Berkeley DB and Tcl/Tk
have not done so already.

4.1 Requirements

• Operating environment: Microsoft Windows 2000 SP4, XP SP2 or Vista (including
x64 but not IA64 versions of XP and Vista). Windows XP or later is recommended.

• Available hard drive space: 200 Mbytes (approximate)
• For interfacing with C or C++, or for using spld or splfr: C compiler and related tools

from Microsoft Visual Studio 2005 SP1 (a.k.a. VS 8).
Microsoft offers free editions of its C compilers. It is probably possible to make these
work as well but they may require other tools or downloads.

4.2 Installation

The development system comes in two flavors:

1. A console-based executable suitable to run from a DOS-prompt, from batch files, or
under Emacs. See Section 4.4 [Command Line Editing], page 7.

2. A windowed executable providing command line editing and menus.

The distribution consists of a single, self-installing executable (‘InstallSICStus.exe’) con-
taining development system, runtime support files, library sources, and manuals. Note that
the installer itself asks for a password, when started. This is different from the license code.

Installed files on a shared drive can be reused for installation on other machines.

SICStus Prolog requires a license code to run. You should have received from SICS your
site name, the expiration date and the code. This information is normally entered during
installation:

Chapter 4: Release Notes and Installation Guide for Windows 7

Expiration date: ExpirationDate

Site: Site

License Code: Code

but it can also be entered by starting sicstus from the Start menu (spwin.exe) and selecting
Enter Licence from the Settings menu. Entering the license may require Administrative
rights. Running SICStus should be possible from a limited account.

4.3 Windows Notes

• The file name arguments to splfr and spld should not have embedded spaces. For
file names with spaces, you can use the corresponding short file name.

• Selecting the ‘Manual’ or ‘Release Notes’ item in the ‘Help’ menu may give an error
message similar to ‘... \!Help\100#!Manual.lnk could not be found’. This hap-
pens when Adobe Acrobat Reader is not installed or if it has not been installed
for the current user. Open ‘C:\Program Files\SICStus Prolog 4.0.0\doc\pdf\’
in the explorer and try opening ‘relnotes.pdf’. If this brings up a configuration
dialog for Adobe Acrobat, configure Acrobat and try the ‘Help’ menu again. Al-
ternatively, you may have to obtain Adobe Acrobat. It is available for free from
http://www.adobe.com/.

• We recommend that SICStus be installed by a user with administrative privileges and
that the installation is made ‘For All Users’.
If SICStus is installed for a single user, SICStus will not find the license information
when started by another user. In this case, the windowed version of SICStus (spwin)
will put up a dialog where a license can be entered.

4.4 Command Line Editing

Command line editing supporting Emacs-like commands and IBM PC arrow keys is pro-
vided in the console-based executable. The following commands are available:

^h erase previous char

^d erase next char

^u kill line

^f forward char

^b backward char

^a begin of line

^e end of line

^p previous line

^n next line

^i insert space

^s forward search

^r reverse search

http://www.adobe.com/

Chapter 4: Release Notes and Installation Guide for Windows 8

^v view history

^q input next char blindly

^k kill to end of line

Options may be specified in the file ‘%HOME%\spcmd.ini’ as:

Option Value

on separate lines. Recognized options are:

lines Value is the number of lines in the history buffer. 1-100 is accepted; the default
is 30.

save Value is either 0 (don’t save or restore history buffer) or 1 (save history buffer
in ‘%HOME%\spcmd.hst’ on exit, restore history from the same file on start up.

The command line editing is switched off by giving the option ‘-nocmd’ when starting
SICStus. Command line editing will be automatically turned off if SICStus is run with
piped input (e.g. from Emacs).

4.5 The Console Window

The console window used for the windowed executable is based on code written by Jan
Wielemaker <jan at swi.psy.uva.nl>.

The console comes with a menu access to common Prolog flags and file operations. Most of
these should be self explanatory. The ‘Reconsult’ item in the ‘File’ menu reconsults the
last file consulted with use of the ‘File’ menu. The console will probably be replaced in
the future with something more powerful.

Note that the menus work by simulating user input to the Prolog top level or debugger. For
this reason, it is recommended that the menus only be used when SICStus is waiting for a
goal at the top-level (or in a break level) or when the debugger is waiting for a command.

4.5.1 Console Preferences

The stream-based console window is a completely separate library, using its own configura-
tion info. It will look at the environment variable CONSOLE, which should contain a string
of the form name:value{,name:value} where name is one of the following:

sl The number of lines you can scroll back. There is no limit, but the more you
specify the more memory will be used. Memory is allocated when data becomes
available. The default is 200.

rows The initial number of lines. The default is 24.

cols The initial number of columns. The default is 80.

x The X coordinate of the top-left corner. The default is determined by the
system.

Chapter 4: Release Notes and Installation Guide for Windows 9

y The Y coordinate of the top-left corner. The default is determined by the
system.

Many of these settings are also accessible from the menu ‘Settings’ of the console.

4.6 Windows Limitations

• File paths with both ‘/’ and ‘\’ as separator are accepted. SICStus returns paths using
‘/’. Note that ‘\’, since it is escape character, must be given as ‘\\’.

• All file names and paths are normalized when expanded by absolute_file_name/3.
This is to simulate the case insensitivity used by Windows file systems. This means
that files created by SICStus may have names on disk that differs in case from what
was specified when the file was created.

• Emacs Issues: Running under Emacs has been tried with recent versions of GNU Emacs
and XEmacs. See Chapter 7 [The Emacs Interface], page 12.
− In both GNU Emacs and XEmacs C-c C-c (comint-interrupt-subprocess) will

not interrupt a blocking read from standard input. The interrupt will be noted
as soon as some character is sent to SICStus. The characters typed will not be
discarded but will instead be used as debugger commands, sometimes leading to
undesirable results.

− Choosing ‘Send EOF’ from the menu, i.e. comint-send-eof), closes the connection
to the SICStus process. This will cause SICStus to exit. This problem cannot be
fixed in SICStus; it is a limitation of current versions of FSF Emacs and XEmacs
(at least up to FSF Emacs 20.7 and XEmacs 21.5).
Instead of sending and end of file, you can enter the symbol end_of_file followed
by a period. Alternatively, a C-z can be generated by typing C-q C-z.

• Under Windows, statistics(runtime, ...) measures user time of the thread
running SICStus (the main thread) instead of process user time. This makes
statistics(runtime, ...) meaningful also in a multi-threaded program.

Chapter 5: Tcl/Tk Notes 10

5 Tcl/Tk Notes

Tcl/Tk itself is not included in the SICStus distribution. It must be installed in order to
use the interface. It can be downloaded from the Tcl/Tk primary website:

http://tcl.sourceforge.net

n A better alternative may be to use one of the free installers available from:

http://www.activestate.com

SICStus for Mac OS X uses Aqua Tcl/Tk. The Aqua version of Tcl/Tk uses the native
Aqua user interface. Mac OS 10.4 includes Aqua Tcl/Tk. For earlier versions of Mac OS
X, Aqua Tcl/Tk can be downloaded, for free, from:

http://www.apple.com/downloads/macosx/unix_open_source/

The Tcl/Tk interface module included in SICStus Prolog 4.0.0 (library(tcltk)) is verified
to work with Tcl/Tk 8.4. The current version of the interface is expected to work with
version 8.1 and newer.

Under UNIX, the installation program automatically detects the Tcl/Tk version (if the user
does not specify it explicitly). Except as noted above, the distributed files are compiled for
Tcl/Tk 8.4.

Under Windows, the binary distribution is compiled against Tcl/Tk 8.4. If you need to use
another version of Tcl/Tk, you have to recompile library(tcltk); see section “Configuring
the Tcl/Tk library module under Windows” in the SICStus Prolog FAQ.

Please note: You need to have the Tcl/Tk binaries accessible from your PATH
environment variable, e.g. ‘C:\Program Files\Tcl\bin’.

The GUI version of SICStus spwin, like all Windows non-console applications, lacks the C
standard streams (stdin,stdout,stderr) and the Tcl command puts and others that use
these streams will therefore give errors. The solution is to use sicstus instead of spwin if
the standard streams are required.

http://tcl.sourceforge.net
http://www.activestate.com
http://www.apple.com/downloads/macosx/unix_open_source/

Chapter 6: Berkeley DB Notes 11

6 Berkeley DB Notes

library(bdb) is built on top of Berkeley DB. Berkeley DB can be downloaded from:

http://www.oracle.com/database/berkeley-db

Berkeley DB for Mac OS X can be installed using MacPorts
http://trac.macosforge.org/projects/macports/wiki.

library(bdb) is built using version 4.5.20. It may be possible to recompile it to work with
other versions as well.

When using Berkeley DB under Windows, you should set the PATH environment variable
to contain the path to ‘libdb45.dll’. Consult the Berkeley DB documentation for further
info.

http://www.oracle.com/database/berkeley-db
http://trac.macosforge.org/projects/macports/wiki

Chapter 7: The Emacs Interface 12

7 The Emacs Interface

The Emacs Interface was originally developed for GNU Emacs 19.34 and is presently being
maintained using XEmacs 21.1 and tested with GNU Emacs 21.2. For best performance
and compatibility and to enable all features we recommend that the latest versions of GNU
Emacs or XEmacs be used. For information on obtaining GNU Emacs or XEmacs; see
http://www.gnu.org/software/emacs/ and http://www.xemacs.org, respectively.

7.1 Installation

The Emacs interface is distributed with SICStus and installed by default. The default in-
stallation location for the Emacs files is ‘<prefix>/lib/sicstus-4.0.0/emacs/’ on UNIX
platforms and ‘C:\Program Files\SICStus Prolog 4.0.0\emacs\’ under Windows.

For maximum performance the Emacs Lisp files (extension ‘.el’) should be compiled. This,
completely optional step, can be done from within Emacs with the command M-x byte-

compile-file. See section “Installation” in the SICStus Prolog Manual, for further details.

The easiest way to configure the Emacs interface is to load the file ‘sicstus_emacs_init.el’
from your ‘.emacs’ file. It will find the SICStus executable and do all initialization needed
to use the SICStus Emacs interface.

7.1.1 Installing On-Line Documentation

It is possible to look up the documentation for any built in or library predicate from within
Emacs (using C-c ? or the menu). For this to work Emacs must be told about the location
of the ‘info’-files that make up the documentation.

If you load the file ‘sicstus_emacs_init.el’ from your ‘.emacs’ file then Emacs should
be able to find the SICStus documentation automatically; see section “Installation” in the
SICStus Prolog Manual, for further details.

http://www.gnu.org/software/emacs/
http://www.xemacs.org

Chapter 8: Revision History 13

8 Revision History

This chapter summarizes the changes in release 4 wrt. previous SICStus Prolog releases as
well as changes introduced by patch releases.

8.1 What Is New In Release 4

8.1.1 Virtual Machine

• The internal representation of Prolog terms and code has been redesigned, resulting in
code that runs up to twice as fast as in release 3.

• Certain memory limitations that existed in release 3 have been dropped. All available
virtual memory can be used without any limitations imposed by SICStus Prolog.

• The number of available atoms is four times larger than in release 3 (1M atoms are
available on 32-bit platforms).

• The range of small integers is eight times larger than in release 3. Although the size of
integers is unbounded, small integers are handled more efficiently than other numbers.

• Multifile predicates are compiled by default; in release 3, they could not be compiled.
• Native code compilation has been dropped.
• The profiling data accessible by profile_data/4 and library(gauge) is more precise.

Some of the choices of release 3 have been dropped.

8.1.2 Prolog Language

8.1.2.1 Single Language Mode

Release 3 had the notion of multiple language modes: iso and sicstus. Release 4 does
not have this notion. The syntax and semantics of the Prolog language correspond to the
previous iso language mode.

8.1.2.2 DCG Notation

The exact rules for translating DCG rules to plain Prolog clauses have not been laid down in
a standard, but there is a broad consensus in the Prolog community about what they should
mean. One of the guiding principles is that the translation should be steadfast, in particular
that the translated code should always treat its last argument as an output argument and
not use it “too early”. In some cases, a non-steadfast translation was produced in release
3. This has been corrected in release 4.

8.1.2.3 Asserting Terms with Attributed Variables

In release 3, terms containing attributed variables and blocked goals could be asserted,
copied, and gathered as solutions to findall/3 and similar predicates. The copy would
contain new attributed variables with the attributes copied. This operation could be very
expensive, could yield unexpected results and was not always safe e.g. in the context of
CLPFD constraints. In release 4, the semantics of this operation has changed: in the copy,
an attributed variable is simply replaced by a plain, brand new variable. Of course, if the
same attributed variable occurs more than once, the same plain variable will occur in the
corresponding places in the copy. If the attributes are relevant, the program can obtain
them by using the new built-in predicate copy_term/3 described below.

Chapter 8: Revision History 14

8.1.2.4 Arithmetic

The infix operator ‘#’ (bitwise exclusive or) has been renamed to ‘\’.

8.1.2.5 Syntax

Atoms can now contain the NUL character, i.e. character code zero. It is classified as white
space and must therefore be entered using escapes. As an example ’a\0\a’ is a three
character atom containing two as separated by a NUL.

Internally, atom names and other encoded strings, use the non-shortest form ‘0xC0 0x80’
to encode NUL. This is similar to how NUL is handled by Tcl/Tk and Java.

8.1.2.6 Prolog Flags

The language and wcx Prolog flag have been dropped.

The following Prolog flag is new:

quoted_charset
Controls the character set to use when writing quoted atoms.

8.1.2.7 Stream Properties

The wcx property has been dropped.

The following properties are new:

encoding_signature/1
Specifies whether an encoding signature (such as Unicode “byte order mark”)
was used to determine the character encoding.

encoding/1
Subsumes the wcx/1 option of release 3.

eol/1 Specifies how line endings in the file should be handled if the stream is opened
in text mode.

8.1.2.8 Statistics Keywords

The following keywords are new:

total_runtime
Measures the total CPU time used while executing, including memory manage-
ment such as garbage collection but excluding system calls.

defragmentation
Measures the number of and time spent performing memory defragmentation.

8.1.2.9 Built-In Predicates

The set of built-in predicates has changed slightly. The following predicates have been
removed:

Chapter 8: Revision History 15

’C’/3 This was used in the Prolog translation of DCG rules. It could trivially be
replaced by unifications and served no other reasonable purpose.

get0/[1,2]
put/[1,2]

These used to have an overloaded semantics meaning one thing on binary
streams and another thing on text streams. They have been subsumed by
their ISO counterparts.

get/[1,2]
tab/[1,2]
skip/[1,2]

Although these do not have ISO counterparts, they have been removed for
being in the spirit of get0/[1,2] and put/[1,2]. We have provided skip_
char/[1,2], skip_code/[1,2], and skip_byte/[1,2] as an ISO style replace-
ment for skip/[1,2].

ttyget0/1
ttyget/1
ttynl/0
ttyput/1
ttyskip/1
ttytab/1
ttyflush/0

These used to exist as shorthands for the respective predicate with an additional
user argument. In most cases, the “respective predicate” is one of the non-ISO
style predicate mentioned above, so there was no point in keeping the shorthand.

fileerrors/0
nofileerrors/0

These used to exist as shorthands for set_prolog_flag/2 with specific argu-
ments, and so can be trivially replaced.

call_residue/2
Dropped because it was not possible to ensure the correct behavior in all cir-
cumstances, it relied heavily on copying terms with attributed variables, and
it was not needed by any library module. It has been replaced by a simi-
lar predicate, call_residue_vars/2, which should suffice in most cases where
call_residue/2 was used; see below.

undo/1 Dropped because it was not possible to ensure the correct behavior in all cir-
cumstances. Users that know what they are doing can still call the unsupported
predicate prolog:undo/1. The argument should have a module prefix.

help/0
version/0
version/1

These predicates, managing and displaying messages, can be easily emulated
by feaures of the message system.

Chapter 8: Revision History 16

fcompile/1
load/1 These predicates used to compile Prolog source code into ‘.ql’ files, and load

such files. ‘.ql’ files serve a purpose when boot-strapping the Prolog system,
but offer no advantages over ‘.po’ files, the Prolog object code format used by
other built-in predicates.

load_foreign_files/2
This predicate provided a shorthand for building and loading a temporary for-
eign resource. Working with foreign resources is straightforward, and so the
shorthand was dropped.

require/1
This predicate provided a shorthand for locating and loading library predicates.
This was originally introduced for a compatibility reason that is now obsolete.
It is straightforward to provide the necessary :- use_module/2 directives, and
so the shorthand was dropped.

The following predicates have been added:

call/N Generalizes call/1. For example, call(p(1,2), a, b) is equivalent to
call(p(1,2, a, b)).

skip_char/[1,2]
skip_code/[1,2]
skip_byte/[1,2]

ISO style replacements for the non-ISO style skip/[1,2].

call_residue_vars/2
Called as follows:

call_residue_vars(:Goal, -Vars)

Executes the procedure call Goal, unifying Vars with the list of residual vari-
ables that have blocked goals or attributes attached to them.

copy_term/3
Called as follows:

copy_term(+Term, -Copy, -Body)

Makes a copy of Term in which all variables have been replaced by new variables
that occur nowhere outside the newly created term. If Term contains attributed
variables, Body is unified with a term such that executing Body will reinstate
equivalent attributes on the variables in Copy. Otherwise, Body is unified with
true.

Some predicates have been changed slightly; in most cases, this affects predicates that take
a list of options.

is_mutable/1
The predicate is_mutable/1 has been renamed to mutable/1, in analogy with
integer/1, atom/1 etc.

Chapter 8: Revision History 17

module/1

The predicate module/1 has been renamed to set_module/1, to avoid possible
confusion with the module/2 declaration.

format/[2,3]
For the predicate format/[2,3], the semantics of the ‘~@’ spec has changed
slightly: the goal Arg is called as if by \+ \+ Arg , i.e. any bindings made by
the goal are lost.

close/2

Takes new options:

direction/1
Specifies which directions to close.

open/4

The wcx/1 option has been dropped. Takes new options:

encoding_signature/1
encoding/1
eol/1 Correspond to the respective stream properties.

if_exists/1
Specifies what should happen if the file already exists.

absolute_file_name/3
The ignore_underscores/1 option has been dropped. The file_type/1
option value ql has been dropped. The access/1 option values execute,
executable and search are new. The glob/1 option is new, allowing to match
file names against a pattern.

load_files/2
The load_type/1 option value ql has been dropped. encoding_signature/1,
encoding/1, subsuming the wcx/1 option of release 3, and eol/1, are new
options, corresponding to the respective stream properties.

write_term/3
The quoted_charset/1 option is new, reflecting the value of the Prolog flag
with the same name.

halt/1

The predicate halt/1 now raises an internal exception like halt/0. This gives
surrounding Prolog and C code an opportunity to perform cleanup.

profile_data/4
The Selection argument now takes one of the values: [calls,choice_
points,instructions]. The Resolution argument now takes one of the values:
[predicate,clause].

8.1.2.10 Hook Predicates

The hook user:term_expansion/[2,4] is replaced by the hook:

Chapter 8: Revision History 18

user:term_expansion(Term1, Layout1, Tokens,
Term2, Layout2, [Token|Tokens]).

The purpose of the new argument Tokens is to support multiple, independent expansion
rules. The purpose of the arguments Layout1 and Layout2 is to support source-linked
debugging of term-expanded code. Each expansion rule should have its unique identifying
token Token.

The hook user:goal_expansion/3 is replaced by the following per-module hook:

M:goal_expansion(Term1, Layout1,
Module, Term2, Layout2).

Typically, Module has imported the predicate Term1 from module M. The purpose of the
arguments Layout1 and Layout2 is to support source-linked debugging of goal-expanded
code.

8.1.3 Library Modules

There is no consensus for a core library, portable across Prolog systems, let alone a standard
for such a library. Since SICStus Prolog 3 was first released, SICS has acquired Quintus
Prolog, which has a rather rich library. For release 4, we have decided to make this asset be
available to the SICStus community by providing a library that is a merger of the previous
SICStus and Quintus libraries, which already overlap significantly.

The User’s Manual documents the library of release 4. For the purposes of aiding code
transition to release 4, the following is a list of the release 3 library modules, and their fate
in release 4. See also Section 8.2 [Guide to Porting Code from Release 3], page 23.

atts
comclient
fdbg
gauge
heaps
linda/client
linda/server
pillow
prologbeans
tcltk
timeout
trees
wgraphs
xml As in release 3.

arrays The native release 4 counterpart is called library(logarr). Also available is
a deprecated compatibility module library(arrays3).

assoc The native release 4 counterpart is called library(avl), reflecting the abstract
data type, AVL trees, and with a modified, richer API. Also available is a
deprecated compatibility module library(assoc3).

Chapter 8: Revision History 19

bdb As in release 3, but uses the default Berkeley DB hash function, so all of the
standard Berkeley DB utilites should now work.

charsio Called library(codesio) in release 4. Likewise, the syllable ‘chars’ has been
renamed to ‘codes’ in predicate names.

clpq
clpr As in release 3, unsupported.

clpfd As in release 3, plus the following additions and changes:

automaton/8
is a new constraint capturing any constraint whose checker of
ground instances can be expressed as a finite automaton.

minimum/2
maximum/2

are new constraints, constraining a value to be the minimum (max-
imum) of a list of values.

nvalue/2 is a new constraint, constraining the number of distinct values taken
by a list of values.

cumulative/[1,2]
provides a unified interface, subsuming serialized/[2,3] and
cumulative/[4,5].

table/[2,3]
defines an n-ary constraint by extension, subsuming relation/3.

all_different/[1,2]
all_distinct/[1,2]

Arguments can have unbounded domains.

scalar_product/[4,5]
can optionally be told to maintain arc-consistency. This function-
ality subsumes knapsack/3.

global_cardinality/[2,3]
can optionally be told to use a simple algorithm. This functionality
subsumes count/4.

fd_copy_term/3
is gone. Subsumed by built-in copy_term/3.

jasper The Jasper module is not available in the current release. An alternative for
Java users is PrologBeans.

lists The native release 4 counterpart has a modified, richer API. Also available is a
deprecated compatibility module library(lists3).

ordsets As in release 3, plus several new predicates.

queues The native release 4 counterpart has a modified, richer API. Also available is a
deprecated compatibility module library(queues3).

Chapter 8: Revision History 20

random The native release 4 counterpart has a modified, richer API. Also available is a
deprecated compatibility module library(random3).

sockets The new predicate socket_client_open/3 subsumes socket/2 and socket_
connect/3.
socket_server_open/2 subsumes socket/2, socket_bind/2 and socket_
listen/2.
socket_select/7 can wait for any kind of stream, not just socket streams.
socket_select/7 waits until one unit (character for text streams, byte for
binary streams) can be transferred.
socket_select/7 can wait for streams ready to write.
socket_select/7 does not create streams, you need to explicitly use socket_
server_accept.
Socket streams are binary by default.
Blocking socket operations can be interrupted on both UNIX and Windows.
library(sockets) should work with IPv6.

system Operations on files and directories have been moved to its own module,
library(file_systems). Process primitives have been redesigned and moved
to a new module, library(process). The predicates for creating tempo-
rary files, mktemp/2 and tmpnam/1, have been removed. They used C li-
brary functionality that is broken by design and insecure. Instead, to cre-
ate and open a temporary file use something like open(temp(’foo’), write,
S, [if_exists(generate_unique_name)]), possibly together with stream_
property(S, file_name(Path)) if you need to know the path to the generated
file name.
The (little) remaining functionality is largely as in release 3. Also available is
a deprecated compatibility module library(system3).

terms As in release 3, plus several new predicates. term_hash/2 is not guaranteed to
compute the same hash values as in release 3.

ugraphs As in release 3, plus a couple of deletions.

chr A reimplementation of library(chr), based on the Leuven implementation.

clpb
flinkage
objects
spaceout Not present in release 4.

vbsp Not available in the current release. Visual Basic .NET and other .NET lan-
guages can use PrologBeans .NET.

The following is a list of library modules that are new in release 4.

aggregate
provides an aggregation operator for data-base-style queries.

Chapter 8: Revision History 21

assoc uses unbalanced binary trees to implement “association lists”, i.e. extendible
finite mappings from terms to terms.

bags defines operations on bags, or multisets

between provides some means of generating integers.

file_systems
accesses files and directories.

objects provides a package for object-oriented programming, and can be regarded as a
high-level alternative to library(structs).

process Process creation etc.

rem provides Rem’s algorithm for maintaining equivalence classes.

samsort provides generic sorting.

sets defines operations on sets represented as lists with the elements unordered.

structs provides access to C data structures, and can be regarded as a low-level alter-
native to library(objects).

types Provides type checking.

varnumbers
An inverse of numbervars/3.

8.1.4 Input-Output System

The internals of the I/O subsystem have been completely redesigned. The new version
should be faster while at the same time providing more functionality and more consistent
behavior between operating systems and between stream types.

The semantics of character codes has been fixed as (a superset of) UNICODE. Redefining
the meaning of character codes is no longer supported.

New features and changes to the SICStus streams (SP_stream) include:

• Streams are binary or text also at the lowest level, e.g. in the C API, and there are
separate operations for performing I/O of bytes and characters.

• Streams have a layered design. This makes it possible to add character set translation
and other transformations (compression, encryption, automatic character set detection,
. . .) to any stream.

• All streams provide non-blocking operations and are interruptible, e.g. with ^C
(‘SIGINT’). This is also true for file streams and under Windows.

• Subject to OS limitations, file names can use UNICODE and be of arbitrary length.
In particular, under Windows, the UNICODE API is used for all operations.

• Limits on file size, file time stamps etc have been removed.
• Error handling has been simplified and made more consistent. In the C API all I/O

operations return an error code from a rich set of error codes. Errors during write and
close operations are no longer ignored.

Chapter 8: Revision History 22

• It is possible to wait for I/O ready (both for read and write) on any type of stream. This
works for all platforms, including Windows. Select operations waits for the appropriate
item type, e.g. until a whole (possibly multi-byte) character can be transferred on a
text stream.

Other minor changes

• Now byte_count/2 can be called only on binary streams.

8.1.5 Foreign Language APIs

8.1.5.1 Foreign Language Interface

The conversion specifier (in foreign/[2,3] facts) string(N) has been dropped.

The conversion specifier chars has been renamed to codes, in analogy with the built-in
predicate atom_codes/2, the second argument of which is a list of character codes.

The C header generated by splfr from the foreign/[2,3] facts now uses the const at-
tribute where appopriate.

Foreign resources are no longer unloaded by save_program/[1,2]. For this reason the
deinit function of a foreign resource is no longer called when saving a program so SP_WHEN_
SAVE has been removed.

8.1.5.2 C API Functions

Many functions in the C API has been changed or removed, especially those related to OS
and I/O operations. There are also a number of new C API functions.

Old API Replaced by

SP_make_stream, SP_make_stream_context SP_create_stream

SP_set_tty SP_CREATE_STREAM_OPTION_INTERACTIVE

SP_fgetc SP_get_byte, SP_get_code

SP_fputc SP_put_byte, SP_put_code

SP_fputs SP_put_codes, SP_put_encoded_string

SP_fflush SP_flush_output

SP_chdir SP_set_current_dir

SP_getcwd SP_get_current_dir

SP_set_wcx_hooks Gone

Chapter 8: Revision History 23

SP_wcx_getc, SP_wcx_putc Gone

SP_to_os, SP_from_os Gone

SP_put_number_chars SP_put_number_codes

SP_get_number_chars SP_get_number_codes

Other new functions include

SP_get_stream_user_data
SP_get_stream_counts
SP_put_bytes
SP_fopen

SP_unget_code
SP_unget_byte

in addition many functions take new or changed parameters.

8.1.5.3 Java API

• The Jasper API has not changed from release 3, but the Jasper module is not available
in the current release.

• The PrologBeans API has been extensively revised. See the PrologBeans HTML
(javadoc) documentation.
PrologBeans was built with Java 1.5

•

8.2 Guide to Porting Code from Release 3

Release 4 does not provide a mode in which it is 100% compatible with earlier releases.
However, this section provides guidelines for migrating Prolog code from release 3 to release
4.

1. First of all, make sure that your code runs in ISO execution mode. In release 3, the
command line option ‘--iso’ can be used.

2. A number of built-in predicates have been dropped. They are listed in the table below,
along with their approximate substitutes. Refer to the documentation for each case.
Dropped built-in Replaced by

get0/[1,2], get/[1,2] get_code/[1,2], get_byte/[1,2]

ttyget0/1, ttyget/1 get_code/2, get_byte/2

put/[1,2], tab/[1,2] put_code/[1,2], put_byte/[1,2]

Chapter 8: Revision History 24

ttyput/1, ttytab/1 put_code/2, put_byte/2

skip/[1,2] skip_code/[1,2], skip_byte/[1,2]

ttyskip/1 skip_code/2, skip_byte/2

ttynl/0 nl/1

ttyflush/0 flush_output/1

fileerrors/0, nofileerrors/0 set_prolog_flag/2

’C’/3 unification

call_residue/2 call_residue_vars/2

undo/1 prolog:undo/1

help/0 the message system

version/0 the message system

version/1 the message system

fcompile/1 save_files/2

load/1 load_files/2

load_foreign_files/2 splfr + load_foreign_resource/1

require/1 use_module/2

is_mutable/1 mutable/1

module/1 set_module/1

3. The hook predicates user:term_expansion/[2,4] and user:term_expansion/3 are
now called user:term_expansion/6 and Module:term_expansion/5 and have a mod-
ified API; see section “Term and Goal Expansion” in the SICStus Prolog Manual.

4. The set of library modules has been enriched by incorporating a subset of the Quintus
Prolog library modules that we have deemed useful.
The following library modules are not included in SICStus 4: jasper, clpb, flinkage,
spaceout. library(objects) has been replaced by its Quintus counterpart, with a
completely different API.
The following table lists the affected SICStus 3 library modules.
Affected module Closest equivalent Comment

Chapter 8: Revision History 25

arrays arrays3 a

assoc assoc3 b

charsio codesio c

clpfd clpfd d

lists lists3 e

queues queues3 f

random random3 g

sockets sockets d

system system3 h

Comments to the table:
a. library(arrays3) is a code migration library module; the long-term solution is

to use library(logarrs) instead.
b. library(assoc3) is a code migration library module; the long-term solution is to

use library(avl) instead.
c. The syllable ‘chars’ has been changed to ‘codes’ throughout.
d. Several API changes; see the documentation.
e. library(lists3) is a code migration library module; the long-term solution is to

use library(lists) instead.
f. library(queues3) is a code migration library module; the long-term solution is

to use library(queues) instead.
g. library(random3) is a code migration library module; the long-term solution is

to use library(random) instead.
h. library(system3) is a code migration library module; the long-term solution is to

use library(system), library(file_systems) and library(process) instead.

8.3 Limitations in the Current Release

This section lists features that are missing or incompletely implemented in the current
release of SICStus Prolog (SICStus Prolog 4.0.0) but that may appear in future releases.
Please let us know what features are important to you!

No support for SP_load_sicstus_run_time and releated features for loading multiple SIC-
Stus instances into the same process. This was mainly indended for the the, no longer
supported, Jasper Java interface.

library(tcltk): There is no way to pass non-Latin 1 characters from Tcl/Tk to Prolog.
The Tcl/Tk Terminal is not supported.

Chapter 8: Revision History 26

library(bdb): will not work reliably with non-ASCII file names.

library(jasper): not supported but library(prologbeans) can be used as a partial
replacement; see Section 8.1.3 [Library Modules], page 18.

library(spaceout): not supported; see Section 8.1.3 [Library Modules], page 18.

The Visual Basic 6 module (vbsp) is not supported; see Section 8.1.3 [Library Modules],
page 18.

The Windows “GUI” spwin.exe does not save or read any settings or command history.
It also does not support full Unicode. The console version sicstus.exe fully supports
Unicode when run from a console window.

The Emacs mode may not work reliably when passing Prolog code between Emacs and
SICStus if the code is not written using Latin 1.

Chapter 9: Generic Limitations 27

9 Generic Limitations

The number of arguments of a compound term may not exceed 255.

The number of atoms created may not exceed 1048575 (33554431) on 32-bit (64-bit) archi-
tectures.

The number of bytes making up the characters of an atom may not exceed 65535.

There are 256 “temporary” and 256 “permanent” variables available for compiled clauses.

Saved-states are not portable between 32-bit and 64-bit architectures.

Indexing on large integers or floats is coarse.

Chapter 10: Contact Information 28

10 Contact Information

Current support status for the various platforms as well as a web interface for reporting
bugs can be found at the SICStus Prolog homepage:

http://www.sics.se/sicstus/

Information about and fixes for bugs that have shown up since the latest release can be
found there as well.

The mailing list sicstus-users@sics.se is a mailing list for communication among users
and implementors. To subscribe, write a message to majordomo@sics.se with the following
line in the message body:

subscribe sicstus-users

http://www.sics.se/sicstus/
mailto:sicstus-users@sics.se
mailto:majordomo@sics.se

	Overview
	Platforms
	Release Notes and Installation Guide for UNIX
	Installation
	Prerequisites
	C Compiler and Linker

	The Installation Script
	The Uninstallation Script

	Platform Specific Notes

	Release Notes and Installation Guide for Windows
	Requirements
	Installation
	Windows Notes
	Command Line Editing
	The Console Window
	Console Preferences

	Windows Limitations

	Tcl/Tk Notes
	Berkeley DB Notes
	The Emacs Interface
	Installation
	Installing On-Line Documentation

	Revision History
	What Is New In Release 4
	Virtual Machine
	Prolog Language
	Single Language Mode
	DCG Notation
	Asserting Terms with Attributed Variables
	Arithmetic
	Syntax
	Prolog Flags
	Stream Properties
	Statistics Keywords
	Built-In Predicates
	Hook Predicates

	Library Modules
	Input-Output System
	Foreign Language APIs
	Foreign Language Interface
	C API Functions
	Java API

	Guide to Porting Code from Release 3
	Limitations in the Current Release

	Generic Limitations
	Contact Information

