This package defines operations on ordered sets. Ordered sets are sets
represented as lists with the elements ordered in a standard order.
The ordering is defined by the @<
family of term comparison
predicates and it is the ordering produced by the built-in predicate
sort/2
(see section Comparison of Terms).
To load the package, enter the query
| ?- use_module(library(ordsets)).
is_ordset(+Set)
list_to_ord_set(+List, ?Set)
| ?- list_to_ord_set([p,r,o,l,o,g], P). P = [g,l,o,p,r] ? yes
ord_add_element(+Set1, +Element ?Set2)
| ?- ord_add_element([a,c,d,e,f], b, N). N = [a,b,c,d,e,f] ? yes
ord_del_element(+Set1, +Element, ?Set2)
ord_disjoint(+Set1, +Set2)
ord_intersect(+Set1, +Set2)
ord_intersection(+Set1, +Set2, ?Intersect)
ord_intersection(+Set1, +Set2, ?Intersect, ?Diff)
ord_intersection(+Sets, ?Intersection)
| ?- ord_intersection([[1,2,3],[2,3,4],[3,4,5]], I). I = [3] ? yes
ord_member(+Elt, +Set)
ord_seteq(+Set1, +Set2)
ord_setproduct(+Set1, +Set2, ?SetProduct)
| ?- ord_setproduct([1,2,3], [4,5,6], P). P = [1-4,1-5,1-6,2-4,2-5,2-6,3-4,3-5,3-6] ? yes
ord_subset(+Set1, +Set2)
ord_subtract(+Set1, +Set2, ?Difference)
| ?- ord_subtract([1,2,3,4], [3,4,5,6], S). S = [1,2] ? yes
ord_symdiff(+Set1, +Set2, ?Difference)
| ?- ord_symdiff([1,2,3,4], [3,4,5,6], D). D = [1,2,5,6] ? yes
ord_union(+Set1, +Set2, ?Union)
ord_union(+Set1, +Set2, ?Union, ?New)
ord_union(+Sets, ?Union)
| ?- ord_union([[1,2,3],[2,3,4],[3,4,5]], U). U = [1,2,3,4,5] ? yes
Go to the first, previous, next, last section, table of contents.