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Introduction

Prolog is a simple but powerful programming language developed at the University of Mar-
seille [Roussel 75], as a practical tool for programming in logic [Kowalski 74]. From a user’s
point of view the major attraction of the language is ease of programming. Clear, readable,
concise programs can be written quickly with few errors.

For an introduction to programming in Prolog, readers are recommended to consult [Sterling
& Shapiro 86]. However, for the benefit of those who do not have access to a copy of this
book, and for those who have some prior knowledge of logic programming, a summary of
the language is included. For a more general introduction to the field of Logic Programming
see [Kowalski 79]. See Chapter 4 [Prolog Intro], page 43.

This manual describes a Prolog system developed at the Swedish Institute of Computer
Science. Parts of the system were developed by the project “Industrialization of SICStus
Prolog” in collaboration with Ericsson Telecom AB, NobelTech Systems AB, Infologics AB
and Televerket. The system consists of a WA M emulator written in C, a library and runtime
system written in C and Prolog and an interpreter and a compiler written in Prolog. The
Prolog engine is a Warren Abstract Machine (WAM) emulator [Warren 83]. Two modes
of compilation are available: in-core i.e. incremental, and file-to-file. When compiled, a
predicate will run about 8 times faster and use memory more economically. Implementation
details can be found in [Carlsson 90] and in several technical reports available from SICS.

SICStus Prolog follows the mainstream Prolog tradition in terms of syntax

and built-in predicates. As of release 3.8, SICStus Prolog provides two

execution modes: the iso mode, which 1is fully compliant with the In-

ternational ~ Standard ISO/IEC 13211-1 (PROLOG: Part 1—General Core)
(http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITS%2FIS0%2FIEC+13211%2D1%2D1995);|
and the sicstus mode, which is largely compatible with e.g. C-Prolog and Quintus Prolog,

supports code written in earlier versions of SICStus Prolog.


http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITS%2FISO%2FIEC+13211%2D1%2D1995
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1 Notational Conventions

1.1 Keyboard Characters

When referring to keyboard characters, printing characters are written thus: a, while control
characters are written like this: ~A. Thus ~C is the character you get by holding down the
key while you type c. Finally, the special control characters carriage-return, line-feed
and space are often abbreviated to (RET), and respectively.

Throughout, we will assume that ~D is the EOF character (it’s usually ~Z under Windows)
and that ~Cis the interrupt character. In most contexts, the term end_of_file terminated
by a full stop (.) can be typed instead of the EOF character.

1.2 Mode Spec

When introducing a built-in predicate, we shall present its usage with a mode spec, which
has the form name(arg, ..., arg), where each arg denotes how that argument should be
instantiated in goals, and has one of the following forms:

:ArgName This argument should be instantiated to a term denoting a goal or a clause or
a predicate name, or that otherwise needs special handling of module prefixes.
The argument is subject to module name expansion (see Section 5.5 [Meta Exp],
page 61).

+ArgName
This argument should be instantiated to a non-variable term.
-ArgName This argument should be uninstantiated.

?ArgName
This argument may or may not be instantiated.

Mode specs are not only used in the manual, but are part of the syntax of the language as
well. When used in the source code, however, the ArgName part must be omitted. That
is, arg must be either *:’, ‘+’) ‘=’ or ‘7’

1.3 Development and Runtime Systems

The full Prolog system with top-level, compiler, debugger etc. is known as the development
system.

It is possible to link user-written C code with a subset of SICStus Prolog to create runtime
systems. When introducing a built-in predicate, any limitations on its use in runtime
systems will be mentioned.
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1.4 Function Prototypes

Whenever this manual documents a C function as part of SICStus Prolog’s foreign language
interface, the function prototype will be displayed in ANSI C syntax.

1.5 ISO Compliance

SICStus Prolog provides two execution modes: the iso mode, which is fully com-

pliant with the International Standard ISO/IEC 13211-1 (PROLOG: Part 1—General Core)
(http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITS%2FIS0%2FIEC+13211%2D1%2D1995);|
and the sicstus mode, which supports code written in earlier versions of SICStus Prolog.

The execution mode can be changed using the Prolog flag 1language; see Section 8.6 [State

Info], page 175. Note, however, that SICStus Prolog does not offer a strictly conforming

mode that rejects uses of implementation specific features.

To aid programmers who wish to write standard compliant programs, built-in predicates
that are part of the ISO Prolog Standard are annotated with [ISO/ in this manual. If such
a predicate behaves differently in sicstus mode, an appropriate clarification is given. For
the few predicates that have a completely different meaning in the two modes, two separate
descriptions are given. The one for the iso mode is annotated with [ISO only/, while the
sicstus mode version is annotated with [SICStus only].


http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITS%2FISO%2FIEC+13211%2D1%2D1995
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2 Glossary

abolish To abolish a predicate is to retract all the predicate’s clauses and to remove all
information about it from the Prolog system, to make it as if that predicate
had never existed.

advice-point
A special case of breakpoint, the advice breakpoint. It is distinguished from
spypoints in that it is intended for non-interactive debugging, such as checking
of program invariants, collecting information, profiling, etc.

alphanumeric
An alphanumeric character is any of the lowercase characters from ‘a’ to ‘z’, the
uppercase characters from ‘A’ to ‘Z’, the numerals from ‘0’ to ‘9’, or underscore
(=)

ancestors  An ancestor of a goal is any goal that the system is trying to solve when it calls
that goal. The most distant ancestor is the goal that was typed at the top-level
prompt.

anonymous variable
An anonymous variable is one that has no unique name, and whose value is
therefore inaccessible. An anonymous variable is denoted by an underscore
(*2)

argument See predicate, structure, and arity.

arity The arity of a structure is its number of arguments. For example, the structure
customer (jones,85) has an arity of 2.

atom A character sequence used to uniquely denote some entity in the problem do-
main. A number is not an atom. Unless character escapes have been switched
off, examples of legal atoms are:

hello * 1= Y#$%° ’New York’ ’don\’t’

See Section 4.1.1.3 [Atoms], page 44. Atoms are recognized by the built-in
predicate atom/1. Each Prolog atom is represented internally by a unique
integer, represented in C as an SP_atom.

atomic term
Synonym for constant.

backtrace A collection of information on the control flow of the program, gathered by the
debugger. Also the display of this information produced by the debugger. The
backtrace includes data on goals that were called but not exited and also on
goals that exited nondeterminately.

backtracking
The process of reviewing the goals that have been satisfied and attempting to
resatisfy these goals by finding alternative solutions.

binding The process of assigning a value to a variable; used in unification.
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blocked goal
A goal that is suspended because it is not instantiated enough.

4 9

body The body of a clause consists of the part of a Prolog clause following the ‘:-
symbol.

breakpoint

A description of certain invocations in the program where the user wants the
debugger to stop, or to perform some other actions. A breakpoint is specific
if it applies to the calls of a specific predicate, possibly under some condi-
tions; otherwise, it is generic. Depending on the intended usage, breakpoints
can be classified as debugger breakpoints, also known as spypoints, or advice
breakpoints, also called advice-points; see Section 7.6 [Advanced Debugging],
page 86.

breakpoint spec
A term describing a breakpoint. Composed of a test part, specifying the con-
ditions under which the breakpoint should be applied, and an action part,
specifying the effects of the breakpoint on the execution.

buffer A temporary workspace in Emacs that contains a file being edited.

built-in predicate
A predicate that comes with the system and that does not have to be explicitly
loaded before it is used.

callable term
A callable term is either a compound term or an atom. Callable terms are
recognized by the built-in predicate callable/1.

char-list A char-list is a list of one-char atoms.

character code
An integer that is the numeric representation of a character. SICStus Prolog
supports character codes in the range 0..2147483647 (i.e. 2°31-1). However, to
be able to input or output character codes larger than 255, one needs to use
the appropriate wide character external encoding.

character code set
A subset of the set {0, ..., 2731-1} that can be handled by the external encod-
ing. SICStus Prolog assumes that the character code set is an extension of the
ASCII code set, i.e. it includes codes 0..127, and these codes are interpreted as
ASCII characters

character-conversion mapping
SICStus Prolog maintains a character-conversion mapping, which is used while
reading terms and programs. Initially, the mapping prescribes no character
conversions. It can be modified by the built-in predicate char_conversion(In,
Out), following which In will be converted to Out. Character coversion can be
switched off by the char_conversion Prolog flag.

character-type mapping
A function mapping each element of the character code set to one of the char-
acter categories (layout, letter, symbol-char, etc.), required for parsing tokens.
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choicepoints
A memory block representing outstanding choices for some goals or disjunctions.

clause A fact or a rule. A rule comprises a head and a body. A fact consists of a head
only, and is equivalent to a rule with the body true.

code-list A code-list is a list of character codes.

conjunction
A series of goals connected by the connective “and” (that is, a series of goals
whose principal operator is ¢,’).

compactcode
Virtual code representation of compiled code. A reasonable compromise be-
tween performance and space requirement. A valid value for the compiling
Prolog flag.

compile To load a program (or a portion thereof) into Prolog through the compiler.
Compiled code runs more quickly than interpreted code, but you cannot debug
compiled code in as much detail as interpreted code.

compound term
A compound term is a term that is an atom together with one or more argu-
ments. For example, in the term father (X), father is the name, and X is the
first and only argument. The argument to a compound term can be another
compound term, as in father(father(X)). Compound terms are recognized
by the built-in predicate compound/1.

console-based executable
An executable that inherits the standard streams from the process that invoked
it, e.g. a UNIX shell or a DOS-prompt.

constant  An integer (for example: 1, 20, -10), a floating-point number (for exam-
ple: 12.35), or an atom. Constants are recognized by the built-in predicate
atomic/1.

consult To load a program (or a portion thereof) into Prolog through the interpreter.
Interpreted code runs more slowly than compiled code, but you can debug
interpreted code in more detail than compiled code.

creep What the debugger does in trace mode, also known as single-stepping. It goes
to the next port of a procedure box and prints the goal, then prompts you for
input. See Section 7.2 [Basic Debug], page 77.

cursor The point on the screen at which typed characters appear. This is usually
highlighted by a line or rectangle the size of one space, which may or may not
blink.

cut Written as !. A built-in predicate that succeeds when encountered; if back-

tracking should later return to the cut, the goal that matched the head of the
clause containing the cut fails immediately.

database  The Prolog database comprises all of the clauses that have been loaded or
asserted into the Prolog system or that have been asserted, except those clauses
that have been retracted or abolished.
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database reference
A compound term denoting a unique reference to a dynamic clause.

debug A mode of program execution in which the debugger stops to print the current
goal only at predicates that have spypoints set on them (see leap).

debugcode Interpreted representation of compiled code. A valid value for the compiling
Prolog flag.

declaration
A declaration looks like a directive, but is not executed but conveys information
about predicates about to be loaded.

deinit function
A function in a foreign resource that is called prior to unloading the resource.

determinate
A predicate is determinate if it can supply only one answer.

development system
A stand-alone executable with the full programming environment, including
top-level, compiler, debugger etc. The default sicstus executable is a develop-
ment system; new development systems containing pre-linked foreign resources
can also be created.

directive A directive is a goal preceded by the prefix operator ‘:-’, whose intuitive mean-
ing is “execute this as a query, but do not print out any variable bindings.”

disjunction
A series of goals connected by the connective “or” (that is, a series of goals
whose principal operator is ¢;’).

dynamic predicate
A predicate that can be modified while a program is running. The semantics of
such updates is described in Section 8.9 [Modify Prog|, page 189. A predicate
must explicitly be declared to be dynamic or it must be added to the database
via one of the assertion predicates.

encoded string
A sequence of bytes representing a sequence of possibly wide character codes,
using the UTF-8 encoding.

escape sequence
A sequence of characters beginning with ‘\” inside certain syntactic tokens (see
Section 50.5 [Escape Sequences], page 794).

export A module exports a predicate so that other modules can import it.

extended runtime system
A stand-alone executable. In addition to the normal set of built-in runtime
system predicates, extended runtime systems include the compiler. Extended
runtime systems require the extended runtime library, available from SICS as
an add-on product.
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external encoding (of wide characters)
A way of encoding sequences of wide characters as sequences of (8-bit) bytes,
used in stream input and output.

fact A clause with no conditions—that is, with an empty body. A fact is a statement
that a relationship exists between its arguments. Some examples, with possible
interpretations, are:

king(louis, france). 7 Louis was king of France.
have_beaks(birds) . % Birds have beaks.
employee(nancy, data_processing, 55000).
% Nancy is an employee in the
% data processing department.

fastcode  Native code representation of compiled code. The fastest, but also the most
space consuming representation. Only available for Sparc platforms. A valid
value for the compiling Prolog flag.

file specification
An atom or a compound term denoting the name of a file. The rules for mapping
such terms to absolute file names are described in Section 8.1 [Input Output],
page 131.

floundered query
A query where all unsolved goals are blocked.

foreign predicate
A predicate that is defined in a language other than Prolog, and explicitly
bound to Prolog predicates by the Foreign Language Interface.

foreign resource
A named set of foreign predicates.

functor The functor of a compound term is its name and arity. For example, the
compound term foo(a,b) is said to have “the functor foo of arity two”, which
is generally written foo/2.

The functor of a constant is the term itself paired with zero. For example, the
constant nl is said to have “the functor nl of arity zero”, which is generally
written nl/0.

garbage collection
The freeing up of space for computation by making the space occupied by terms
that are no longer available for use by the Prolog system.

generalized predicate spec
A generalized predicate spec is a term of one of the following forms. It is always
interpreted wrt. a given module context:

Name all predicates called Name no matter what arity, where Name is an
atom for a specific name or a variable for all names, or

Name/Arity
the predicate of that name and arity, or
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Name/[Arity,. . ., Arity]
the predicates of that name with one of the given arities, or

Module:Spec
specifying a particular module Module instead of the default mod-
ule, where Module is an atom for a specific module or a variable
for all modules, or

[Spec,. . .,Spec]
the set of all predicates covered by the Specs.

glue code Interface code between the Prolog engine and foreign predicates. Automatically
generated by the foreign language interface as part of building a linked foreign
resource.

goal A simple goal is a predicate call. When called, it will either succeed or fail.

A compound goal is a formula consisting of simple goals connected by connec-
tives such as “and” (‘,’) or “or” (‘;’).
A goal typed at the top-level is called a query.

ground A term is ground when it is free of (unbound) variables. Ground terms are
recognized by the built-in predicate ground/1.

guarded clause
A clause of the form

Head :- Goals, !, Goals.

head The head of a clause is the single goal, which will be satisfied if the conditions
in the body (if any) are true; the part of a rule before the ‘:=’ symbol. The
head of a list is the first element of the list.

extendible predicate
An extendible predicate is a dynamic, multifile predicate, to which new clauses
can be added by the user.

hook predicate
A hook predicate is a predicate that somehow alters or customizes the behavior
of a hookable predicate.

hookable predicate
A hookable predicate is a built-in predicate whose behavior is somehow altered
or customized by a hook predicate.

import Exported predicates in a module can be imported by other modules. Once a
predicate has been imported by a module, it can be called, or exported, as if it
were defined in that module.

There are two kinds of importation: predicate-importation, in which only spec-
ified predicates are imported from a module; and module-importation, in which
all the predicates made exported by a module are imported.

indexing  The process of filtering a set of potentially matching clauses of a predicate given
a goal. For interpreted and compiled code, indexing is done on the principal
functor of the first argument. Indexing is coarse wrt. large integers and floats.
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init function

A function in a foreign resource that is called upon loading the resource.
initialization

An initialization is a goal that is executed when the file in which the initial-

ization is declared is loaded. An initialization is declared as a directive :-
initialization Goal.

instantiation
A variable is instantiated if it is bound to a non-variable term; that is, to an
atomic term or a compound term.

internal encoding (of wide characters)
A way of encoding wide character sequences internally within the Prolog system.
SICStus Prolog uses a technique known as the UTF-8 encoding for this purpose.

interpret  Load a program or set of clauses into Prolog through the interpreter (also known
as consulting). Interpreted code runs more slowly than compiled code, but more
extensive facilities are available for debugging interpreted code.

invocation box
Same as procedure box.

large integer
An integer that is not a small integer.

leap What the debugger does in debug mode. The debugger shows only the ports
of predicates that have spypoints on them. It then normally prompts you for
input, at which time you may leap again to the next spypoint (see trace).

leashing ~ Determines how frequently the debugger will stop and prompt you for input
when you are tracing. A port at which the debugger stops is called a “leashed
port”.

linked foreign resource
A foreign resource that is ready to be installed in an atomic operation, normally
represented as a shared object or DLL.

list A list is written as a set of zero or more terms between square brackets. If there
are no terms in a list, it is said to be empty, and is written as ‘[]’. In this first
set of examples, all members of each list are explicitly stated:

laa, bb,cc] [X, Y] [Name]l I[[x, y], Z]
In the second set of examples, only the first several members of each list are
explicitly stated, while the rest of the list is represented by a variable on the
right-hand side of the “rest of” operator, ‘|’
X 1 Y] [a, b, c | Y] [[x, y] | Restl]
is also known as the “list constructor.” The first element of the list to the
left of *|” is called the head of the list. The rest of the list, including the variable
following ‘|’ (which represents a list of any length), is called the tail of the list.

(l?

load To load a Prolog clause or set of clauses, in source or binary form, from a file
or set of files.
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meta-call The process of interpreting a callable term as a goal. This is done e.g. by the
built-in predicate call/1.

meta-logical predicate
A predicate that performs operations that require reasoning about the current
instantiation of terms or decomposing terms into their constituents. Such op-
erations cannot be expressed using predicate definitions with a finite number
of clauses.

meta-predicate
A meta-predicate is one that calls one or more of its arguments; more generally,
any predicate that needs to assume some module in order to operate is called
a meta-predicate. Some arguments of a meta-predicate are subject to module
name expansion.

mode spec A term name(arg, ..., arg) where each arg denotes how that argument should
be instantiated in goals. See Section 1.2 [Mode Spec|, page 5.

module A module is a set of predicates in a module-file. The name of a module is an
atom. Some predicates in a module are exported. The default module is user.

module name expansion
The process by which certain arguments of meta-predicates get prefixed by the
source module. See Section 5.5 [Meta Exp]|, page 61.

)

module-file
A module-file is a file that is headed with a module declaration of the form:

:- module (ModuleName, ExportedPredList) .

which must appear as the first term in the file.

multifile predicate
A predicate whose definition is to be spread over more than one file. Such
a predicate must be preceded by an explicit multifile declaration in all files
containing clauses for it.

mutable term
A special form of compound term subject to destructive assignment. See Sec-
tion 8.8 [Modify Term|, page 188. Mutable terms are recognized by the built-in
predicate is_mutable/1.

name clash
A name clash occurs when a module attempts to define or import a predicate
that it has already defined or imported.

occurs-check
A test to ensure that binding a variable does not bind it to a term where that
variable occurs.

one-char atom
An atom that consists of a single character.

operator A notational convenience that allows you to express any compound term in a
different format. For example, if 1ikes in
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pair

parent

port

| ?- likes(sue, cider).
is declared an infix operator, the query above could be written:
| ?- sue likes cider.

An operator does not have to be associated with a predicate. However, certain
built-in predicates are declared as operators. For example,

| - =.. (X, Y).
can be written as
| 7- X =.. Y.
because =. . has been declared an infix operator.

Those predicates that correspond to built-in operators are written using infix
notation in the list of built-in predicates at the beginning of the part that
contains the reference pages.

Some built-in operators do not correspond to built-in predicates; for example,
arithmetic operators. See [Standard Operators|, page 797 for a list of built-in
operators.

A compound term K-V. Pairs are used by the built-in predicate keysort/2 and
by many library modules.

The parent of the current goal is a goal that, in its attempt to obtain a successful
solution to itself, is calling the current goal.

One of the seven key points of interest in the execution of a Prolog predicate.
See Section 7.1 [Procedure Box|, page 75 for a definition.

pre-linked foreign resource

precedence

predicate

A linked foreign resource that is linked into a stand-alone executable as part of
building the executable.

A number associated with each Prolog operator, which is used to disambiguate
the structure of the term represented by an expression containing a number
of operators. Operators of lower precedence are applied before those of higher
precedence; the operator with the highest precedence is considered the principal
functor of the expression. To disambiguate operators of the same precedence,
the associativity type is also necessary. See Section 4.6 [Operators], page 54.

A functor that specifies some relationship existing in the problem domain. For
example, < /2 is a built-in predicate specifying the relationship of one number
being less than another. In contrast, the functor + /2 is not (normally used as)
a predicate.

A predicate is either built-in or is implemented by a procedure.

predicate spec

procedure

A compound term name/arity or module:name/arity denoting a predicate.

A set of clauses in which the head of each clause has the same predicate. For
instance, a group of clauses of the following form:
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connects(san_francisco, oakland, bart_train).
connects(san_francisco, fremont, bart_train).
connects(concord, daly_city, bart_train).

is identified as belonging to the predicate connects/3.

procedure box

A way of visualizing the execution of a Prolog procedure, A procedure box is
entered and exited via ports.

profiledcode

profiling

prograrn

PO file

QL file

query

recursion

region

rule

Virtual code representation of compiled code, instrumented for profiling. A
valid value for the compiling Prolog flag.

The process of gathering execution statistics of parts of the program, essentially
counting the times selected program points have been reached.

A set of procedures designed to perform a given task.

A PO (Prolog object) file contains a binary representation of a set of mod-
ules, predicates, clauses and directives. They are portable between different
platforms, except between 32-bit and 64-bit platforms. They are created by
save_files/2, save_modules/2, and save_predicates/2.

A QL (quick load) file contains an intermediate representation of a compiled
source file. They are portable between different platforms, but less efficient
than PO files, and are therefore obsolescent. They are created by fcompile/1.

A query is a question put by the user to the Prolog system. A query is written
as a goal followed by a full-stop in response to the Prolog system prompt. For
example,

| ?- father(edward, ralph).
refers to the predicate father/2. If a query has no variables in it, the system
will respond either ‘yes’ or ‘no’. If a query contains variables, the system will
try to find values of those variables for which the query is true. For example,

| ?- father(edward, X).

X = ralph
After the system has found one answer, the user can direct the system to look
for additional answers to the query by typing ;.

The process in which a running predicate calls itself, presumably with different
arguments and for the purpose of solving some subset of the original problem.

The text between the cursor and a previously set mark in an Emacs buffer.
A clause with one or more conditions. For a rule to be true, all of its conditions
must also be true. For example,

has_stiff_neck(ralph) :-
hacker (ralph) .
This rule states that if the individual ralph is a hacker, then he must also have
a stiff neck. The constant ralph is replaced in
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has_stiff_neck(X) :-
hacker (X).
by the variable X. X unifies with anything, so this rule can be used to prove
that any hacker has a stiff neck.

runtime kernel
A shared object or DLL containing the SICStus virtual machine and other
runtime support for stand-alone executables.

runtime system
A stand-alone executable with a restricted set of built-in predicates and no top-
level. Stand-alone applications containing debugged Prolog code and destined
for end-users are typically packaged as runtime systems.

saved-state

A snapshot of the state of Prolog saved in a file by save_program/[1,2].
The state consists of all predicates and modules except built-in predicates
and clauses of volatile predicates, the current operator declarations, the cur-
rent character-conversion mapping, the values of all writable Prolog flags ex-
cept debug, debugging, double_quotes, char_conversion, informational,
source_info, wcx, and the user_* stream aliases (see Section 8.6 [State Info],
page 175), any blackboard data (see Section 8.11 [Blackboard Primitives],
page 192), database data (see Section 8.10 [Database|, page 191), and profiling
data (see Section 8.16 [Profiling], page 211), but no information for source-
linked debugging.

semantics The relation between the set of Prolog symbols and their combinations (as
Prolog terms and clauses), and their meanings. Compare syntax.

sentence A clause or directive.

side-effect A predicate that produces a side-effect is one that has any effect on the “outside
world” (the user’s terminal, a file, etc.), or that changes the Prolog database.

simple term
A simple term is a constant or a variable. Simple terms are recognized by the
built-in predicate simple/1.

small integer
An integer in the range [-2°25,2725-1] on 32-bit platforms, or [-2756,2°56-
1] on 64-bit platforms.

source code
The human-readable, as opposed to the machine-executable, representation of
a program.

source module
The module that is the context of a file being loaded. For module-files, the
source module is named in the file’s module declaration. For other files, the
source module is inherited from the context.

SP_term_ref
A “handle” object providing an interface from C to Prolog terms.
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spypoint A special case of breakpoint, the debugger breakpoint, intended for interactive
debugging. Its simplest form, the plain spypoint instructs the debugger to stop
at all ports of all invocations of a specified predicate. Conditional spypoints
apply to a single predicate, but are more selective: the user can supply appli-
cability tests and prescribe the actions to be carried out by the debugger. A
generic spypoint is like a conditional spypoint, but not restricted to a single
predicate. See Section 7.6 [Advanced Debugging], page 86.

stand-alone executable
A binary program that can be invoked from the operating system, containing
the SICStus runtime kernel. A stand-alone executable is a development system
(e.g. the default sicstus executable), or a runtime system. Both kinds are
created by the application builder. A stand-alone executable does not itself
contain any Prolog code; all Prolog code must be loaded upon startup.

static predicate
A predicate that can be modified only by being reloaded or by being abolished.
See dynamic predicate.

stream An input/output channel. See Section 8.1 [Input Output], page 131.

stream alias
A name assigned to a stream at the time of opening, which can be referred to
in I/O predicates. Must be an atom. There are also three predefined aliases for
the standard streams: user_input, user_output and user_error.

stream position
A term representing the current position of a stream. This position is deter-
mined by the current byte, character and line counts and line position. Stan-
dard term comparison on stream position terms works as expected. When SP1
and SP2 refer to positions in the same stream, SP1@<SP2 if and only if SP1
is before SP2 in the stream. You should not otherwise rely on their internal
representation.

string A special syntactic notation, which, by default, denotes a code-list, e.g.:
"SICStus"

In iso execution mode, by setting the Prolog flag double_quotes, the meaning
of strings can be changed. With an appropriate setting, a string can be made
to denote a char-list, or an atom. Strings are not a separate data type.

subterm selector
A list of argument positions selecting a subterm within a term (i.e. the subterm
can be reached from the term by successively selecting the argument positions
listed in the selector). Example: within the term q, (r, s; t) the subterm s
is selected by the selector [2, 1, 2].

syntax The part of Prolog grammar dealing with the way in which symbols are put
together to form legal Prolog terms. Compare semantics.

system encoding (of wide characters)
A way of encoding wide character strings, used or required by the operating
system environment.
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term

trace

A basic data object in Prolog. A term can be a constant, a variable, or a
compound term.

A mode of program execution in which the debugger creeps to the next port
and prints the goal.

type-in module

The module that is the context of queries.

unblocked goal

unbound

unification

unit clause

A goal that is not blocked.
A variable is unbound if it has not yet been instantiated.

The process of matching a goal with the head of a clause during the evaluation
of a query, or of matching arbitrary terms with one another during program
execution.

The rules governing the unification of terms are:
e Two constants unify with one another if they are identical.

e A variable unifies with a constant or a compound term. As a result of the
unification, the variable is instantiated to the constant or compound term.

e A variable unifies with another variable. As a result of the unification, they
become the same variable.

e A compound term unifies with another compound term if they have the
same functor and if all of the arguments can be unified.

See fact.

UTF-8 encoding

variable

volatile

See internal encoding

A logical variable is a name that stands for objects that may or may not be
determined at a specific point in a Prolog program. When the object for which
the variable stands is determined in the Prolog program, the variable becomes
instantiated. A logical variable may be unified with a constant, a compound
term, or another variable. Variables become uninstantiated when the predicate
they occur in backtracks past the point at which they were instantiated.

Variables may be written as any sequence of alphanumeric characters starting
with either a capital letter or ‘_"; e.g.:

X Y Z Name Position _c _305 One_stop
See Section 4.1.1.4 [Variables|, page 44.

Predicate property. The clauses of a volatile predicate are not saved in saved-
states.

windowed executable

ZIip

An executable that pops up its own window when run, and that directs the
standard streams to that window.

Same as debug mode, except no debugging information is collected while zip-
ping.
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3 How to Run Prolog

SICStus Prolog offers the user an interactive programming environment with tools for incre-
mentally building programs, debugging programs by following their executions, and modi-
fying parts of programs without having to start again from scratch.

The text of a Prolog program is normally created in a file or a number of files using one of
the standard text editors. The Prolog interpreter can then be instructed to read in programs
from these files; this is called consulting the file. Alternatively, the Prolog compiler can be
used for compiling the file.

3.1 Getting Started

Under UNIX, SICStus Prolog is normally started from one of the shells. On other platforms,
it is normally started by clicking on an icon. However, it is often convenient to run SICStus
Prolog under GNU Emacs instead. A GNU Emacs interface for SICStus Prolog is described
later (see Section 3.11 [Emacs Interface|, page 32). From a shell, SICStus Prolog is started

by typing:
% sicstus [options] [-a argument...]

where options have the following meaning:

~f’ Fast start. Don’t read any initialization file on startup. If the option is omit-
ted and the initialization file exists, SICStus Prolog will consult it on startup
after running any initializations and printing the version banners. The initial-
ization file is ‘.sicstusrc’ or ‘.sicstus.ini’ in the users home directory, i.e.
‘~/.sicstusrc’or ‘“/.sicstus.ini’. See Section 8.1 [Input Output], page 131,
for an explanation of how a file specification starting with =/’ is interpreted.

-i Forced interactive. Prompt for user input, even if the standard input stream
does not appear to be a terminal.

‘--iso’

‘--sicstus’
Set the initial value of the language, i.e. select ISO Prolog or SICStus Prolog
mode respectively. The flag is set before any prolog-file or initialization file is
loaded or any saved-state is restored.

‘~-noinfo’
Start with the informational Prolog flag set to off initially, suppressing in-
formational messages. The flag is set before any prolog-file or initialization file
is loaded or any saved-state is restored.

‘-—nologo’
Start without the initial version message.

-m For compatibility with previous versions. Ignored.
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‘-1 prolog-file’
Ensure that the file prolog-file is loaded on startup. This is done before any
initialization file is loaded. Only one ‘=1’ option is allowed.

‘-r saved-state’
Restore the saved-state saved-state on startup. This is done before any prolog-
file or initialization file is loaded. Only one ‘-r’ option is allowed.

‘--goal Goal’
Read a term from the text Goal and pass the resulting term to call/1 after all
files have been loaded. As usual Goal should be terminated by a full stop (‘.”).
Only one ‘--goal’ option is allowed.

‘-a argument. ..’
where the arguments can be retrieved from Prolog by prolog_flag(argv, Args
), which will unify Args with argument. . . represented as a list of atoms.

‘-Blabspath]’
Creates a saved-state for a development system. This option is not needed
for normal use. If abspath is given, it specifies the absolute pathname for the
saved-state. Please note: There must not be a space before the path, lest it be
interpreted as a separate option.

‘-R[abspath]’
Equivalent to the ‘-B’ option, except that it builds a saved-state for a runtime
system instead.

Under UNIX, a saved-state file can be executed directly by typing:
% file argument...

This is equivalent to:
% sicstus -r file [-a argument...]

Please note: As of release 3.7, saved-states do not store the complete path of
the binary sp.exe. Instead, they call the main executable sicstus, which is
assumed to be found in the shell’s path. If there are several versions of SICStus
installed, it is up to the user to make sure that the correct start-script is found.

Notice that the flags are not available when executing saved-states—all the command-line
arguments are treated as Prolog arguments.

The development system checks that a valid SICStus license exists and, unless the
‘-—nologo’ option was used, responds with a message of identification and the prompt
‘| 7- 7 as soon as it is ready to accept input, thus:

SICStus 3.12.3 ...

Licensed to SICS
| 7-
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At this point the top-level is expecting input of a query. You cannot type in clauses or
directives immediately (see Section 3.3 [Inserting Clauses|, page 25). While typing in a
query, the prompt (on following lines) becomes ¢ ". That is, the ‘| ?- ’ appears only
for the first line of the query, and subsequent lines are indented.

3.1.1 Environment Variables

The following environment variables can be set before starting SICStus Prolog. Some of
these override the default sizes of certain areas. The sizes are given in bytes, but may be
followed by ‘K’ or ‘M’ meaning kilobytes or megabytes respectively.

SP_CSETLEN
Selects the sub-code-set lengths when the EUC character set is used. For the
details, see Section 12.4 [WCX Environment Variables], page 304.

SP_CTYPE Selects the appropriate character set standard: The supported values are euc
(for EUC), ut£8 (for Unicode) and iso_8859_1 (for ISO 8859/1). The latter
is the default. For the details, see Section 12.4 [WCX Environment Variables],
page 304.

SP_PATH  This environment variable can be used to specify the location of the Runtime
Library (corresponding to the third argument to SP_initialize()). In most
cases there is no need to use it, but see Section 9.1 [CPL Notes|, page 217.

TMPDIR If set, indicates the pathname where temporary files should be created. Defaults
to ‘/usr/tmp’.

GLOBALSTKSIZE
Governs the initial size of the global stack.

LOCALSTKSIZE
Governs the initial size of the local stack.

CHOICESTKSIZE
Governs the initial size of the choicepoint stack.

TRAILSTKSIZE
Governs the initial size of the trail stack.

PROLOGINITSIZE
Governs the size of Prolog’s initial memory allocation.

PROLOGMAXSIZE
Defines a limit on the amount of data space that Prolog will use.

PROLOGINCSIZE
Governs the amount of space Prolog asks the operating system for in any given
memory expansion.

PROLOGKEEPSIZE
Governs the size of space Prolog retains after performing some computation.
By default, Prolog gets memory from the operating system as the user program
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executes and returns all free memory back to the operating system when the
user program does not need it any more. If the programmer knows that her
program, once it has grown to a certain size, is likely to need as much memory
for future computations, then she can advise Prolog not to return all the free
memory back to the operating system by setting this variable. Only memory
that is allocated above and beyond PROLOGKEEPSIZE is returned to the OS; the
rest will be kept.

In addition the following environment variables are set automatically on startup.

SP_APP_DIR
The absolute path to the directory that contains the executable. Also available
as the application file search path.

SP_RT_DIR
The full path to the directory that contains the SICStus run-time. If the ap-
plication has linked statically to the SICStus run-time then SP_RT_DIR is the
same as SP_APP_DIR. Also available as the runtime file search path.

SP_LIBRARY_DIR
The absolute path to the directory that contains the SICStus library files. Also
available as the initial value of the library file search path.

Send bug reports to sicstus-support@sics.se or use
the form at http://www.sics.se/sicstus/bugreport/bugreport.html. Bugs tend ac-
tually to be fixed if they can be isolated, so it is in your interest to report them in such a
way that they can be easily reproduced.

The mailing list sicstus-users@sics.se is a mailing list for communication among users
and implementors. To subscribe, write a message to majordomo@sics.se with the following
line in the message body:

subscribe sicstus-users
3.2 Reading in Programs

A program is made up of a sequence of clauses and directives. The clauses of a predicate
do not have to be immediately consecutive, but remember that their relative order may be
important (see Section 4.3 [Procedural], page 50).

To input a program from a file file, just type the filename inside list brackets (followed by
. and ®RET)), thus:

| 7- [file].

This instructs the interpreter to read in (consult) the program. Note that it may be neces-
sary to enclose the filename file in single quotes to make it a legal Prolog atom; e.g.:


mailto:sicstus-support@sics.se
http://www.sics.se/sicstus/bugreport/bugreport.html
mailto:sicstus-users@sics.se
mailto:majordomo@sics.se
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| 7= [’myfile.pl’].
| 7= [’/usr/prolog/somefile’].

The specified file is then read in. Clauses in the file are stored so that they can later be
interpreted, while any directives are obeyed as they are encountered. When the end of
the file is found, the system displays on the standard error stream the time spent. This
indicates the completion of the query.

Predicates that expect the name of a Prolog source file as an argument use absolute_
file_name/3 (see Section 8.1.5 [Stream Pred], page 154) to look up the file. If no explicit
extension is given, this predicate will look for a file with the default extension ‘.pl’ added
as well as for a file without extension. There is also support for libraries.

In general, this query can be any list of filenames, such as:
| ?- [myprog,extras,tests].
In this case all three files would be consulted.

The clauses for all the predicates in the consulted files will replace any existing clauses for
those predicates, i.e. any such previously existing clauses in the database will be deleted.

Note that consult/1 in SICStus Prolog behaves like reconsult/1 in DEC-10 Prolog.

3.3 Inserting Clauses at the Terminal

Clauses may also be typed in directly at the terminal, although this is only recommended
if the clauses will not be needed permanently, and are few in number. To enter clauses at
the terminal, you must give the special query:

| ?- [user].

and the new prompt ‘| ’ shows that the system is now in a state where it expects input of
clauses or directives. To return to top level, type “D. The system responds thus:

% consulted user in module user, 20 msec 200 bytes

3.4 Queries and Directives

Queries and directives are ways of directing the system to execute some goal or goals.

In the following, suppose that list membership has been defined by loading the following
clauses from a file:
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member (X, [X]_1).
member (X, [_|L]) :- member(X, L).

(Notice the use of anonymous variables written ‘_".)

3.4.1 Queries

The full syntax of a query is ‘?-’ followed by a sequence of goals. The top-level expects
queries. This is signaled by the initial prompt ‘| 7- ’. Thus a query at top-level looks like:

| ?- member (b, [a,b,c]).

Remember that Prolog terms must terminate with a full stop (‘.’, possibly followed by
layout text), and that therefore Prolog will not execute anything until you have typed the
full stop (and then RET)) at the end of the query.

If the goal(s) specified in a query can be satisfied, and if there are no variables as in this
example, then the system answers

yes
and execution of the query terminates.

If variables are included in the query, then the final value of each variable is displayed
(except for variables whose names begin with ‘_’). Thus the query

| ?- member (X, [a,b,c]).
would be answered by
X =a

At this point, the development system accepts one-letter commands corresponding to certain
actions. To execute an action simply type the corresponding character (lower or upper case)
followed by RET). The available commands in development systems are:

RET

y “accepts” the solution; the query is terminated and the development system
responds with ‘yes’.

n “rejects” the solution; the development system backtracks (see Section 4.3 [Pro-
cedural], page 50) looking for alternative solutions. If no further solutions can
be found it outputs ‘no’.

b invokes a recursive top-level.

< In the top-level, a global printdepth is in effect for limiting the subterm nesting

level when printing bindings The limit is initially 10.
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This command, without arguments, resets the printdepth to 10. With an ar-
gument of n, the printdepth is set to n, treating 0 as infinity. This command
works by changing the value of the toplevel_print_options Prolog flag (see
Section 8.6 [State Info], page 175).

A local subterm selector, initially [], is maintained. The subterm selector
provides a way of zooming in to some subterm of each binding. For example,
the subterm selector [2,3] causes the 3rd subterm of the 2nd subterm of each
binding to be selected.

This command, without arguments, resets the subterm selector to [J. With an
argument of 0, the last element of the subterm selector is removed. With an
argument of n (> 0), n is added to the back of the subterm selector. With a list
of arguments, the arguments are applied from left to right.

lists available commands.

While the variable bindings are displayed, all variables occurring in the values are replaced
by terms of the form >$VAR’ (N) to yield friendlier variable names. Such names come out
as a sequence of letters and digits preceded by ‘_’. The outcome of some queries is shown

below.

| ?- member (X, [tom,dick,harry]).

sl el
o

no

— N >
-~ I |

X

= tom ;

dick ;

harry ;

- member (X, [a,b,f(Y,c)]), member(X, [f(b,Z),d]).
= f(b,c),

= b,

- member (X, [f(_),gl).

£(_8)

Directives are like queries except that:

1. Variable bindings are not displayed if and when the directive succeeds.

2. You are not given the chance to backtrack through other solutions.



28 SICStus Prolog

3.4.2 Directives

Directives start with the symbol ‘:-’. Any required output must be programmed explicitly;
e.g. the directive:

:- member (3, [1,2,3]), write(ok).

asks the system to check whether 3 belongs to the list [1,2,3]. Execution of a direc-
tive terminates when all the goals in the directive have been successfully executed. Other
alternative solutions are not sought. If no solution can be found, the system prints:

* Goal - goal failed
as a warning.

The principal use for directives (as opposed to queries) is to allow files to contain directives
that call various predicates, but for which you do not want to have the answers printed
out. In such cases you only want to call the predicates for their effect, i.e. you don’t want
terminal interaction in the middle of consulting the file. A useful example would be the use
of a directive in a file that consults a whole list of other files, e.g.:

:- [ bits, bobs, main, tests, data, junk ].

If a directive like this were contained in the file ‘myprog’ then typing the following at top-
level would be a quick way of reading in your entire program:

| 7= [myprog].

When simply interacting with the top-level, this distinction between queries and directives
is not normally very important. At top-level you should just type queries normally. In a
file, queries are in fact treated as directives, i.e. if you wish to execute some goals then the
directive in the file must be preceded by ‘:-’ or ‘?-’; otherwise, it would be treated as a
clause.

3.5 Syntax Errors

Syntax errors are detected during reading. Each clause, directive or in general any term
read in by the built-in predicate read/1 that fails to comply with syntax requirements is
displayed on the standard error stream as soon as it is read, along with its position in the
input stream and a mark indicating the point in the string of symbols where the parser has
failed to continue analysis, e.g.:
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| member (X, X$L).

I Syntax error

I , or ) expected in arguments
I in line 5

! member ( X , X

I <<here>>

I

$ L)
if ‘¢’ has not been declared as an infix operator.

Note that any comments in the faulty line are not displayed with the error message. If you
are in doubt about which clause was wrong you can use the listing/1 predicate to list all
the clauses that were successfully read in, e.g.:

| ?- listing(member/2).

Please note: The built-in predicates read/ [1,2] normally raise an exception on
syntax errors (see Section 8.5 [Exception], page 173). The behavior is controlled
by the Prolog flag syntax_errors.

3.6 Undefined Predicates

There is a difference between predicates that have no definition and predicates that have no
clauses. The latter case is meaningful e.g. for dynamic predicates (see Section 6.2 [Declara-
tions|, page 68) that clauses are being added to or removed from. There are good reasons
for treating calls to undefined predicates as errors, as such calls easily arise from typing
erTors.

The system can optionally catch calls to predicates that have no definition. First the
user defined predicate user:unknown_predicate_handler/3 (see Section 8.5 [Exception],
page 173) is called. If undefined or if the call fails the action is governed by the state of the
unknown Prolog flag, which can be:

trace which causes calls to undefined predicates to be reported and the debugger to
be entered at the earliest opportunity.

error which causes calls to such predicates to raise an exception (the default state).
See Section 8.5 [Exception], page 173.

warning  which causes calls to such predicates to display a warning message and then
fail.

fail which causes calls to such predicates to fail.
Calls to predicates that have no clauses are not caught.

The built-in predicate unknown (?01dState, ?NewState) unifies OldState with the current
state and sets the state to NewState. The built-in predicate debugging/0 prints the value
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of this state along with its other information. This state is also controlled by the unknown
Prolog flag.

3.7 Program Execution And Interruption

Execution of a program is started by giving the system a query that contains a call to one
of the program’s predicates.

Only when execution of one query is complete does the system become ready for another
query. However, one may interrupt the normal execution of a query by typing ~C. This
~C interruption has the effect of suspending the execution, and the following message is
displayed:

Prolog interruption (h or 7 for help) ?

At this point, the development system accepts one-letter commands corresponding to certain
actions. To execute an action simply type the corresponding character (lower or upper case)
followed by ®RET). The available commands in development systems are:

a aborts the current computation.

c continues the execution.

e exits from SICStus Prolog, closing all files.
h

? lists available commands.

invokes a recursive top-level.

¢ N Q T

switch on the debugger. See Chapter 7 [Debug Intro|, page 75.
If the standard input stream is not connected to the terminal, e.g. by redirecting standard

input to a file or a pipe, the above ~C interrupt options are not available. Instead, typing
~C causes SICStus Prolog to exit, and no terminal prompts are printed.

3.8 Exiting From The Top-Level

To exit from the top-level and return to the shell, either type ~D at the top-level, or call the
built-in predicate halt/0, or use the e (exit) command following a ~C interruption.
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3.9 Nested Executions—Break

The Prolog system provides a way to suspend the execution of your program and to enter
a new incarnation of the top-level where you can issue queries to solve goals etc. This is
achieved by issuing the query (see Section 3.7 [Execution], page 30):

| ?- break.

This invokes a recursive top-level, indicated by the message:
% Break level 1

You can now type queries just as if you were at top-level.

If another call of break/0 is encountered, it moves up to level 2, and so on. To close the
break and resume the execution that was suspended, type “D. The debugger state and
current input and output streams will be restored, and execution will be resumed at the
predicate call where it had been suspended after printing the message:

% End break

3.10 Saving and Restoring Program States

Once a program has been read, the system will have available all the information necessary
for its execution. This information is called a program state.

The saved-state of a program may be saved on disk for future execution. To save a program
into a file File, type the following query. On UNIX platforms, the file becomes executable:

| ?- save_program(File).
You can also specify a goal to be run when a saved program is restored. This is done by:
| 7- save_program(File, start).
where start/0 is the predicate to be called.
Once a program has been saved into a file File, the following query will restore the system
to the saved-state:
| ?7- restore(File).

If a saved-state has been moved or copied to another machine, the path names of foreign
resources and other files needed upon restore are typically different at restore time from
their save time values. To solve this problem, certain atoms will be relocated during restore
as follows:
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e Atoms that had ‘$SP_PATH/library’ (the name of the directory containing the Prolog
Library) as prefix at save time will have that prefix replaced by the corresponding
restore time value.

e Atoms that had the name of the directory containing File as prefix at save time will
have that prefix replaced by the corresponding restore time value.

The purpose of this procedure is to be able to build and deploy an application consisting of
a saved-state and other files as a directory tree with the saved-state at the root: as long as
the other files maintain their relative position in the deployed copy, they can still be found
upon restore.

Please note: Foreign resources, see Section 9.2 [Calling C from Prolog],
page 218, are unloaded by save_program/[1,2]. The names and paths of the
resources, typically ‘$SP_PATH/library’ relative, are however included in the
saved-state. After the save, and after restoring a saved-state, this information
is used to reload the foreign resources again. The state of the foreign resource
in terms of global C variables and allocated memory is thus not preserved. For-
eign resources may define init and deinit functions to take special action upon
loading and unloading; see Section 9.2.7 [Init and Deinit Functions|, page 227.

As of SICStus Prolog 3.8, partial saved-states corresponding to a set of source files, modules,
and predicates can be created by the built-in predicates save_files/2, save_modules/2,
and save_predicates/2 respectively. These predicates create files in a binary format,
by default with the prefix ‘.po’ (for Prolog object file), which can be loaded by load_
files/[1,2]. For example, to compile a program split into several source files into a single
object file, type:

| ?- compile(Files), save_files(Files, Object).

For each filename given, the first goal will try to locate a source file with the default suffix
‘.pl’ and compile it into memory. The second goal will save the program just compiled
into an object file whose default suffix is ‘.po’. Thus the object file will contain a partial
memory image.

Please note: Prolog object files can be created with any suffix, but cannot be
loaded unless the suffix is ‘. po’!

3.11 Emacs Interface

This section explains how to use the GNU Emacs interface for SICStus Prolog, and how to
customize your GNU Emacs environment for it.

Emacs is a powerful programmable editor especially suitable for program develop-
ment. It is available for free for many platforms, including various UNIX dialects,
Windows and MacOS X. For information specific to GNU Emacs or XEmacs, see
http://www.gnu.org and http://www.xemacs.org respectively. For information on run-
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ning Emacs under Windows, see the ‘GNU Emacs FAQ For Windows 98/ME/NT/XP and 2000’
at http://wuw.gnu.org/software/emacs/windows/ntemacs.html, much of which applies
to both GNU Emacs and XEmacs.

The advantages of using SICStus in the Emacs environment are source-linked debugging,
auto indentation, syntax highlighting, help on predefined predicates (requires the SICStus
info files to be installed), loading code from inside Emacs, auto-fill mode, and more.

The Emacs interface is not part of SICStus Prolog proper, but is included in the distribution
for convenience. It was written by Emil Astrom and Milan Zamazal, based on an earlier
version of the mode written by Masanobu Umeda. Contributions has also been made by
Johan Andersson, Peter Olin, Mats Carlsson, Johan Bevemyr, Stefan Andersson, and Per
Danielsson, Henrik Bakman, and Taméas Rozméan. Some ideas and also a few lines of code
have been borrowed (with permission) from ‘0z.el’ by Ralf Scheidhauer and Michael Mehl,
the Emacs major mode for the Oz programming language. More ideas and code have been
taken from the SICStus debugger mode by Per Mildner.

3.11.1 Installation

See section “The Emacs Interface” in SICStus Prolog Release Notes, for more information
about installing the Emacs interface.

There are some differences between GNU Emacs and XEmacs. This will be indicated with
Emacs-Lisp comments in the examples.

3.11.1.1 Quick-Start

Assuming the Emacs interface for SICStus Prolog has been installed in the default location,
inserting a single line in your ‘7/.emacs’ will make Emacs use the SICStus Prolog mode
automatically when editing files with a ‘.pl’ extension. It will also ensure Emacs can find
the SICStus executables and on-line documentation, etc.

Note to Windows users: ‘~/.emacs’ denotes a file ‘.emacs’ in whatever Emacs considers

to be your home directory. See ‘GNU Emacs FAQ For Windows 98/ME/NT/XP and 2000’ at
http://www.gnu.org/software/emacs/windows/ntemacs.html, for details.

Under UNIX, assuming SICStus 3.12.3 was installed in ‘/usr/local/’, add the following
line:

(load "/usr/local/lib/sicstus-3.12.3/emacs/sicstus_emacs_init")

Under Windows, assuming SICStus 3.12.3 was installer in ‘C:\Program Files\SICStus
Prolog 3.12.3\’, add the following line:

(load "C:/Program Files/SICStus Prolog
3.12.3/emacs/sicstus_emacs_init")
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No other configuration should be needed to get started. If you want to customize things,
look in the ‘sictus_emacs_init.el’ file and the rest of this section.

3.11.1.2 Customizing Emacs

Version 20 of GNU Emacs and XEmacs introduced a new method for editing and storing
user settings. This feature is available from the menu bar as ‘Customize’ and particular
FEmacs variables can be customized with M-x customize-variable. Using ‘Customize’ is
the preferred way to modify the settings for Emacs and the appropriate customize commands
will be indicated below, sometimes together with the old method of directly setting Emacs
variables.

3.11.1.3 Enabling Emacs Support for SICStus

This section is for reference only; it will let you understand the setup that is performed by
the ‘sictus_emacs_init.el’ file.

Assuming the Emacs interface for SICStus Prolog has been installed in the default location,
inserting the following lines in your ‘~/ . emacs’ will make Emacs use this mode automatically
when editing files with a ‘.pl’ extension:

(setq load-path
(cons (expand-file-name "/usr/local/lib/sicstus-3.12.3/emacs")
load-path))
(autoload ’run-prolog "prolog" "Start a Prolog sub-process." t)
(autoload ’prolog-mode "prolog" "Major mode for editing Prolog programs." t)l
(setq prolog-use-sicstus-sd t)
(setq auto-mode-alist (cons ’("\\.pl$" . prolog-mode) auto-mode-alist))

where the path in the first line is the file system path to ‘prolog.el’ (the generic Prolog
mode) and ‘sicstus-support.el’ (SICStus specific code). For example, ‘~/emacs’ means
that the file is in the user’s home directory, in directory emacs. Windows paths can be
written like ‘C:/Program Files/SICStus Prolog 3.12.3/emacs’.

The last line above makes sure that files ending with ‘.pl’ are assumed to be Prolog files
and not Perl, which is the default Emacs setting. If this is undesirable, remove that line.
It is then necessary for the user to manually switch to prolog mode by typing M-x prolog-
mode after opening a prolog file, for an alternative approach, see Section 3.11.4 [Mode Line],
page 38.

If the shell command sicstus is not available in the default path, then it is necessary to
set the value of the environment variable EPROLOG to a shell command to invoke SICStus
Prolog. This is an example for C Shell:

% setenv EPROLOG /usr/local/bin/sicstus
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3.11.1.4 Enabling Emacs Support for SICStus Documentation

If you follow the steps in Section Quick Start, above, you can skip this section.

It is possible to look up the documentation for any built-in or library predicate from within
Emacs (using C-c ? or the menu). For this to work Emacs must be told about the location
of the ‘info’-files that make up the documentation.

The default location for the ‘info’-files are ‘<prefix>/lib/sicstus-3.12.3/doc/info/’
on UNIX platforms and ‘C:/Program Files/SICStus Prolog 3.12.3/doc/info/’ under
Windows.

Add the following to your ‘~/.emacs’ file, assuming INFO is the path to the info files, e.g.
‘C:/Program Files/SICStus Prolog 3.12.3/doc/info/’

(setq Info-default-directory-list
(append Info-default-directory-list ’("INF0")))

for GNU Emacs, or

(setq Info-directory-list
(append Info-directory-list ’("INF0")))

for XEmacs. You can also use M-x customize-group info if your Emacs is new
enough. You may have to quit and restart Emacs for these changes to take effect.

3.11.2 Basic Configuration

If the following lines are not present in ‘~/.emacs’, we suggest they are added, so that
the font-lock mode (syntax coloring support) is enabled for all major modes in Emacs that
support it.

(global-font-lock-mode t) ; GNU Emacs
(setq font-lock-auto-fontify t) ; XEmacs
(setq font-lock-maximum-decoration t)

These settings and more are also available through M-x customize-group font-lock.

If one wants to add font-locking only to the prolog mode, the two lines above could be
replaced by:

(add-hook ’prolog-mode-hook ’turn-on-font-lock)
Similarly, to turn it off only for prolog mode use:

(add-hook ’prolog-mode-hook ’turn-off-font-lock)
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3.11.3 Usage

A prolog process can be started by choosing Run Prolog from the Prolog menu, by typing
C-c (RET), or by typing M-x run-prolog. It is however not strictly necessary to start a
prolog process manually since it is automatically done when consulting or compiling, if
needed. The process can be restarted (i.e. the old one is killed and a new one is created)

by typing C-u C-c RET).

Programs are run and debugged in the normal way, with terminal I/O via the *prolog*
buffer. The most common debugging predicates are available from the menu or via key-
bindings.

A particularly useful feature under the Emacs interface is source-linked debugging. This is
enabled or disabled using the Prolog/Source level debugging menu entry. It can also be
enabled by setting the Emacs variable prolog-use-sicstus-sd to t in ‘7/.emacs’. Both
these methods set the Prolog flag source_info to emacs. Its value should be emacs while
loading the code to be debugged and while debugging. If so, the debugger will display
the source code location of the current goal when it prompts for a debugger command, by
overlaying the beginning of the current line of code with an arrow. If source_info was off
when the code was loaded, or if it was asserted or loaded from user, the current goal will
still be shown but out of context.

Note that if the code has been modified since it was last loaded, Prolog’s line number
information may be invalid. If this happens, just reload the relevant buffer.

Consultation and compilation is either done via the menu or with the following key-bindings:

C-c C-f Consult file.

C-c C-b  Consult buffer.
C-c C-r  Consult region.
C-c C-p Consult predicate.
C-c C-c £ Compile file.

C-c C-c b Compile buffer.
C-c C-c r Compile region.
C-c C-c p Compile predicate.

The boundaries used when consulting and compiling predicates are the first and last clauses
of the predicate the cursor is currently in.

Other useful key-bindings are:

M-n Go to the next clause.

M-p Go to the previous clause.
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M-a Go to beginning of clause.

M-e Go to end of clause.

M-C-c Mark clause.

M-C-a Go to beginning of predicate.

M-C-e Go to end of predicate.

M-C-h Mark predicate.

M—{ Go to the previous paragraph (i.e. empty line).

M-} Go to the next paragraph (i.e. empty line).

M-h Mark paragraph.

M-C-n Go to matching right parenthesis.

M-C-p Go to matching left parenthesis.

M-; Creates a comment at comment-column. This comment will always stay at this
position when the line is indented, regardless of changes in the text earlier on
the line, provided that prolog-align-comments-flag is set to t.

C-c C-t

C-u C-c C-t
Enable and disable creeping, respectively.

C-c C-d

C-u C-c C-d
Enable and disable leaping, respectively.

C-c C-z

C-u C-c C-z
Enable and disable zipping, respectively.

C-x SPC

C-u C-x SPC
Set and remove a line breakpoint. This uses the advanced debugger features
introduced in SICStus 3.8; see Section 7.6 [Advanced Debugging], page 86.

C-c C-s Insert the PredSpec of the current predicate into the code.

C-c C-n Insert the name of the current predicate into the code. This can be useful
when writing recursive predicates or predicates with several clauses. See also
the prolog-electric-dot-flag variable below.

C-c C-v a Convert all variables in a region to anonymous variables. This can also be done
using the Prolog/Transform/All variables to ’_’ menu entry. See also the
prolog-electric-underscore-flag Emacs variable.

C-c? Help on predicate. This requires the SICStus info files to be installed. If the

SICStus info files are installed in a nonstandard way, you may have to change
the Emacs variable prolog-info-predicate-index.
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3.11.4 Mode Line

If working with an application split into several modules, it is often useful to let files begin
with a “mode line”:

%%tk —*= Mode: Prolog; Module: ModuleName; -*-

The Emacs interface will look for the mode line and notify the SICStus Prolog module
system that code fragments being incrementally reconsulted or recompiled should be im-
ported into the module ModuleName. If the mode line is missing, the code fragment will
be imported into the type-in module. An additional benefit of the mode line is that it tells
FEmacs that the file contains Prolog code, regardless of the setting of the Emacs variable
auto-mode-alist. A mode line can be inserted by choosing Insert/Module modeline in
the Prolog menu.

3.11.5 Configuration

The behavior of the Emacs interface can be controlled by a set of user-configurable settings.
Some of these can be changed on the fly, while some require Emacs to be restarted. To set
a variable on the fly, type M-x set-variable VariableName Value RET). Note
that variable names can be completed by typing a few characters and then pressing (TAB).

To set a variable so that the setting is used every time Emacs is started, add lines of the
following format to ‘~/.emacs’:

(setq VariableName Value)

Note that the Emacs interface is presently not using the ‘Customize’ functionality to edit
the settings.

The available settings are:

prolog-system
The Prolog system to use. Defaults to ’sicstus, which will be assumed for
the rest of this chapter. See the on-line documentation for the meaning of
other settings. For other settings of prolog-system the variables below named
sicstus-something will not be used, in some cases corresponding functionality
is available through variables named prolog-something.

sicstus-version
The version of SICStus that is used. Defaults to > (3 . 8). Note that the spaces
are significant!

prolog-use-sicstus-sd
Set to t (the default) to enable the source-linked debugging extensions by de-
fault. The debugging can be enabled via the Prolog menu even if this variable
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is nil. Note that the source-linked debugging only works if sicstus-version
is set correctly.

pltrace-port-arrow-assoc obsolescent
Only relevant for source-linked debugging, this controls how the various ports
of invocation boxes (see Section 7.1 [Procedure Box]|, page 75) map to arrows
that point into the current line of code in source code buffers. Initialized as:

P(("call™ . ">>>") ("exit" . "+++") ("ndexit" . "7++")
("redo" . "<<<") ("fail" . "---") ("exception" . "==>"))
where ndexit is the nondeterminate variant of the Exit port. Do not rely on
this variable. It will change in future releases.

prolog-indent-width
How many positions to indent the body of a clause. Defaults to tab-width,
normally 8.

prolog-paren-indent
The number of positions to indent code inside grouping parentheses. Defaults
to 4, which gives the following indentation.

p -
( qi
; q2,
q3
).

Note that the spaces between the parentheses and the code are automatically
inserted when is pressed at those positions.

prolog-align-comments-flag
Set to nil to prevent single %-comments from being automatically aligned.
Defaults to t.

Note that comments with one % are indented to comment-column, comments
with two % to the code level, and that comments with three % are never changed
when indenting.

prolog-indent-mline-comments-flag
Set to nil to prevent indentation of text inside /* ... */ comments. Defaults
t.

prolog-object-end-to-0O-flag
Set to nil to indent the closing } of an object definition to prolog-indent-
width. Defaults to t.

sicstus-keywords
This is a list with keywords that are highlighted in a special color when used
as directives (i.e. as :- keyword). Defaults to

> ((sicstus
("block" "discontiguous" "dynamic" "initialization"
"meta_predicate" "mode" "module" "multifile" "public"
"volatile")))
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prolog-electric-newline-flag
Set to nil to prevent Emacs from automatically indenting the next line when
pressing RET). Defaults to t.

prolog-hungry-delete-key-flag
Set to t to enable deletion of all white space before the cursor when pressing
(unless inside a comment, string, or quoted atom). Defaults to nil.

prolog-electric-dot-flag
Set to t to enable the electric dot function. If enabled, pressing . at the end of
a non-empty line inserts a dot and a newline. When pressed at the beginning of
a line, a new head of the last predicate is inserted. When pressed at the end of
a line with only whitespace, a recursive call to the current predicate is inserted.
The function respects the arity of the predicate and inserts parentheses and the
correct number of commas for separation of the arguments. Defaults to nil.

prolog-electric-underscore-flag
Set to t to enable the electric underscore function. When enabled, pressing
underscore (_) when the cursor is on a variable, replaces the variable with the
anynomous variable. Defaults to nil.

prolog-old-sicstus-keys-flag
Set to t to enable the key-bindings of the old Emacs interface. These bind-
ings are not used by default since they violate GNU Emacs recommendations.
Defaults to nil.

prolog-use-prolog-tokenizer-flag
Set to nil to use built-in functions of Emacs for parsing the source code when
indenting. This is faster than the default but does not handle some of the
syntax peculiarities of Prolog. Defaults to t.

prolog-parse-mode
What position the parsing is done from when indenting code. Two possible
settings: *beg-of-line and ’beg-of-clause. The first is faster but may result
in erroneous indentation in /* ... */ comments. The default is beg-of-1line.

prolog-imenu-flag
Set to t to enable a new Predicate menu that contains all predicates of the
current file. Choosing an entry in the menu moves the cursor to the start of
that predicate. Defaults to nil.

prolog-info-predicate-index
The info node for the SICStus predicate index. This is important if the online
help function is to be used (by pressing C-c 7, or choosing the Prolog/Help on
predicate menu entry). The default setting is " (sicstus)Predicate Index".

prolog-underscore-wordchar-flag
Set to nil to not make underscore (_) a word-constituent character. Defaults
to t.
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3.11.6 Tips

Some general tips and tricks for using the SICStus mode and Emacs in general are given
here. Some of the methods may not work in all versions of Emacs.

3.11.6.1 Font-locking

When editing large files, it might happen that font-locking is not done because the file is
too large. Typing M-x lazy-lock-mode results in only the visible parts of the buffer being
highlighted, which is much faster, see its Emacs on-line documentation for details.

If the font-locking seems to be incorrect, choose Fontify Buffer from the Prolog menu.

3.11.6.2 Auto-fill Mode

Auto-fill mode is enabled by typing M-x auto-fill-mode. This enables automatic line
breaking with some features. For example, the following multiline comment was created
by typing M-; followed by the text. The second line was indented and a ‘%’ was added
automatically.

dynamics ([1). % A list of pit furnace
% dynamic instances

3.11.6.3 Speed

There are several things to do if the speed of the Emacs environment is a problem:

e First of all, make sure that ‘prolog.el’ and ‘sicstus-support.el’ are compiled, i.e.
that there is a ‘prolog.elc’ and a ‘sicstus-support.elc’ file at the same location
as the original files. To do the compilation, start Emacs and type M-x byte-compile-
file path (RET), where path is the path to the ‘*.el’ file. Do not be alarmed if
there are a few warning messages as this is normal. If all went well, there should now
be a compiled file, which is used the next time Emacs is started.

e The next thing to try is changing the setting of prolog-use-prolog-tokenizer-flag
to nil. This means that Emacs uses built-in functions for some of the source code
parsing, thus speeding up indentation. The problem is that it does not handle all
peculiarities of the Prolog syntax, so this is a trade-off between correctness and speed.

e The setting of the prolog-parse-mode variable also affects the speed, *beg-of-line
being faster than ’beg-of-clause.

e Font locking may be slow. You can turn it off using customization, available through
M-x customize-group font-lock (RET). An alternative is to enable one of the
lazy font locking modes. You can also turn it off completely; see Section 3.11.2 [Basic
Configuration|, page 35.
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3.11.6.4 Changing Colors

The prolog mode uses the default Emacs colors for font-locking as far as possible. The only
custom settings are in the prolog process buffer. The default settings of the colors may not
agree with your preferences, so here is how to change them.

If your emacs support it, use ‘Customize’, M-x customize-group font-lock will
show the ‘Customize’ settings for font locking and also contains pointers to the ‘Customize’
group for the font lock (type)faces. The rest of this section outlines the more involved
methods needed in older versions of Emacs.

First of all, list all available faces (a face is a combined setting of foreground and background
colors, font, boldness, etc.) by typing M-x list-faces-display.

There are several functions that change the appearance of a face, the ones you will most
likely need are:

e set-face-foreground

e set-face-background

e set-face-underline-p
e make-face-bold

e make-face-bold-italic
e make-face-italic

e make-face-unbold

e make-face-unitalic

These can be tested interactively by typing M-x function-name. You will then be asked
for the name of the face to change and a value. If the buffers are not updated according
to the new settings, then refontify the buffer using the Fontify Buffer menu entry in the
Prolog menu.

Colors are specified by a name or by RGB values. Available color names can be listed with
M-x list-colors-display.

To store the settings of the faces, a few lines must be added to ‘~/.emacs’. For example:

;; Customize font-lock faces
(add-hook ’font-lock-mode-hook
’(lambda ()
(set-face-foreground font-lock-variable-name-face "#OOaOOO")I
(make-face-bold font-lock-keyword-face)
(set-face-foreground font-lock-reference-face "Blue")

)
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4 The Prolog Language

This chapter provides a brief introduction to the syntax and semantics of a certain subset
of logic (definite clauses, also known as Horn clauses), and indicates how this subset forms
the basis of Prolog.

4.1 Syntax, Terminology and Informal Semantics

4.1.1 Terms

The data objects of the language are called terms. A term is either a constant, a variable
or a compound term.

4.1.1.1 Integers

The constants include integers such as
0 1 999 -512

Besides the usual decimal, or base 10, notation, integers may also be written in other base
notations. In sicstus mode, any base from 2 to 36 can be specified, while in iso mode
bases 2 (binary), 8 (octal), and 16 (hex) can be used. Letters ‘A’ through ‘Z’ (upper or
lower case) are used for bases greater than 10. E.g.:

15 271111 8217 16°f Y sicstus mode
15  0bl111  0ol17 O0xf % iso mode

all represent the integer fifteen. Except for the first, decimal, notation, the forms in the
first line are only acceptable in sicstus mode, while those in the second line are only valid
in iso mode.

There is also a special notation for character constants. E.g.:
0’A 0°\x41 0°\101

are all equivalent to 65 (the character code for ‘A’). ‘0’ followed by any character except
‘\’ (backslash) is thus read as an integer. Unless character escapes have been switched off, if
‘0’7 is followed by ‘\’, the ‘\’ denotes the start of an escape sequence with special meaning
(see Section 50.5 [Escape Sequences|, page 794).

4.1.1.2 Floats

Constants also include floats such as
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1.0 -3.141 4.5E7 -0.12e+8 12.0e-9

Note that there must be a decimal point in floats written with an exponent, and that there
must be at least one digit before and after the decimal point.

4.1.1.3 Atoms

Constants also include atoms such as
a wvoid = := ’Algol-68’ (]

Atoms are definite elementary objects, and correspond to proper nouns in natural language.
For reference purposes, here is a list of the possible forms that an atom may take:

1. Any sequence of alphanumeric characters (including ‘_’), starting with a lower case
letter.
2. Any sequence from the following set of characters:
+-*x /\ " <>="1:_.70#$ &
This set can in fact be larger; see Section 50.4 [Token String], page 790 for a precise
definition.

3. Any sequence of characters delimited by single quotes. Unless character escapes have
been switched off, backslashes in the sequence denote escape sequences (see Section 50.5
[Escape Sequences|, page 794), and if the single quote character is included in the
sequence it must be escaped, e.g. can\’t’.

4. Any of:

;o0 {3
Note that the bracket pairs are special: ‘[]’ and ‘{}’ are atoms but ‘[’, ‘]’, ‘{’, and ‘}’
are not. However, when they are used as functors (see below) the form {X} is allowed as
an alternative to {3} (X). The form [X] is the normal notation for lists, as an alternative

to . (X, [1).

4.1.1.4 Variables

Variables may be written as any sequence of alphanumeric characters (including ‘_’) starting
with either a capital letter or ‘_’; e.g.:

X Value A Al _3 _RESULT

If a variable is only referred to once in a clause, it does not need to be named and may be
written as an anonymous variable, indicated by the underline character ‘_’. A clause may
contain several anonymous variables; they are all read and treated as distinct variables.

A variable should be thought of as standing for some definite but unidentified object. This
is analogous to the use of a pronoun in natural language. Note that a variable is not simply
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a writable storage location as in most programming languages; rather it is a local name for
some data object, cf. the variable of pure LISP and identity declarations in Algol68.

4.1.1.5 Compound Terms

The structured data objects of the language are the compound terms. A compound term
comprises a functor (called the principal functor of the term) and a sequence of one or more
terms called arguments. A functor is characterized by its name, which is an atom, and its
arity or number of arguments. For example the compound term whose functor is named
point of arity 3, with arguments X, Y and Z, is written

point(X, Y, Z)
Note that an atom is considered to be a functor of arity 0.

Functors are generally analogous to common nouns in natural language. One may think of
a functor as a record type and the arguments of a compound term as the fields of a record.
Compound terms are usefully pictured as trees. For example, the term

s (np(john) ,vp(v(1likes) ,np(mary)))
would be pictured as the compound term

s
/N
np vp
I / N\
john A\ np
| I

likes mary

Sometimes it is convenient to write certain functors as operators—2-ary functors may be
declared as infix operators and l-ary functors as prefix or postfix operators. Thus it is
possible to write e.g.:

X+Y P;Q) X<Y +X P;
as optional alternatives to
+X, ) @, <X, ) +&X ;@@
The use of operators is described fully below (see Section 4.6 [Operators|, page 54).

Lists form an important class of data structures in Prolog. They are essentially the same as
the lists of LISP: a list either is the atom [] representing the empty list, or is a compound
term with functor . and two arguments, which are respectively the head and tail of the list.
Thus a list of the first three natural numbers is the compound term
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/ \
1 .
/ \
2 .
/ \
3 (]

which could be written, using the standard syntax, as

L(1,.(2,.6, DN
but which is normally written, in a special list notation, as

[1,2,3]

The special list notation in the case when the tail of a list is a variable is exemplified by

[XIL] [a,blL]
representing
/ \ / \
X L a .
/ \
b L
respectively.

Note that this notation does not add any new power to the language; it simply makes it
more readable. e.g. the above examples could equally be written

.(X,L) .(a,.(b,L))

For convenience, a further notational variant is allowed for lists of integers that correspond
to character codes or one-char atoms. Lists written in this notation are called strings. E.g.:

"SICStus"
which, by default, denotes exactly the same list as
[83,73,67,83,116,117,115]

The Prolog flag double_quotes can be used to change the way strings are interpreted. The
default value of the flag is codes, which implies the above interpretation. If the flag is
set to chars, a string is transformed to a char-list. E.g. with this setting the above string
represents the list:

[)SJ,7I),)C7,7S)’t,u,S]
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Finally if double_quotes has the value atom, then the string is made equivalent to the
atom formed from its characters: the above sample string is then the same as the atom
’SICStus’.

Unless character escapes have been switched off, backslashes in the sequence denote escape
sequences (see Section 50.5 [Escape Sequences|, page 794). As for quoted atoms, if a double
quote character is included in the sequence it must be escaped, e.g. "can\"t".

4.1.2 Programs

A fundamental unit of a logic program is the goal or procedure call. E.g.
gives(tom, apple, teacher) reverse([1,2,3], L)  X<Y

A goal is merely a special kind of term, distinguished only by the context in which it appears
in the program. The (principal) functor of a goal identifies what predicate the goal is for. It
corresponds roughly to a verb in natural language, or to a procedure name in a conventional
programming language.

A logic program consists simply of a sequence of statements called sentences, which are
analogous to sentences of natural language. A sentence comprises a head and a body. The
head either consists of a single goal or is empty. The body consists of a sequence of zero
or more goals (i.e. it too may be empty). If the head is not empty, the sentence is called a
clause.

If the body of a clause is empty, the clause is called a unit clause, and is written in the form
p.

where P is the head goal. We interpret this declaratively as
Goals matching P are true.

and procedurally as
Goals matching P are satisfied.

If the body of a clause is non-empty, the clause is called a rule, and is written in the form
P:-Q, R, S.

where P is the head goal and @), R and S are the goals that make up the body. We can
read such a clause either declaratively as

P is true if Q and R and S are true.
or procedurally as

To satisfy goal P, satisfy goals @, R and S.
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A sentence with an empty head is called a directive (see Section 3.4.2 [Directives|, page 28),
and is written in the form

- P, Q.

where P and @ are the goals of the body. Such a query is read declaratively as
Are P and Q true?

and procedurally as
Satisfy goals P and Q.

Sentences generally contain variables. Note that variables in different sentences are com-
pletely independent, even if they have the same name—i.e. the lexical scope of a variable
is limited to a single sentence. Each distinct variable in a sentence should be interpreted
as standing for an arbitrary entity, or value. To illustrate this, here are some examples of
sentences containing variables, with possible declarative and procedural readings:

1. employed(X) :- employs(Y,X).

“Any X is employed if any Y employs X.”

“To find whether a person X is employed, find whether any Y employs X.”
2. derivative(X,X,1).

“For any X, the derivative of X with respect to X is 1.”

“The goal of finding a derivative for the expression X with respect to X itself is satisfied
by the result 1.”

3. 7- ungulate(X), aquatic(X).
“Is it true, for any X, that X is an ungulate and X is aquatic?”

“Find an X that is both an ungulate and aquatic.”

In any program, the predicate for a particular (principal) functor is the sequence of clauses
in the program whose head goals have that principal functor. For example, the predicate
for a 3-ary functor concatenate/3 might well consist of the two clauses

concatenate([], L, L).
concatenate ([X|L1], L2, [XIL3]) :- concatenate(L1, L2, L3).

where concatenate(L1,L2,L3) means “the list L1 concatenated with the list L2 is the list
L3”. Note that for predicates with clauses corresponding to a base case and a recursive
case, the preferred style is to write the base case clause first.

In Prolog, several predicates may have the same name but different arities. Therefore,
when it is important to specify a predicate unambiguously, the form name/arity is used;
e.g. concatenate/3.

Certain predicates are predefined by the Prolog system. Such predicates are called built-in
predicates.
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As we have seen, the goals in the body of a sentence are linked by the operator *,’, which
can be interpreted as conjunction (“and”). It is sometimes convenient to use an additional
operator ‘;’, standing for disjunction (“or”). (The precedence of *;” is such that it dominates
‘,” but is dominated by ‘:-’.) An example is the clause

grandfather(X, Z) :-
(mother (X, Y); father(X, Y)),
father (Y, Z).

which can be read as

For any X, Y and Z, X has Z as a grandfather if either the mother of X is Y or
the father of X is Y, and the father of Y is Z.

Such uses of disjunction can always be eliminated by defining an extra predicate—for in-
stance the previous example is equivalent to

grandfather(X,Z) :- parent(X,Y), father(Y,Z).

parent(X,Y) :- mother(X,Y).
parent (X,Y) :- father(X,Y).

—and so disjunction will not be mentioned further in the following, more formal, description
of the semantics of clauses.

The token ‘|’, when used outside a list, is an alias for ‘;’. The aliasing is performed when
terms are read in, so that

a:-b | c.
is read as if it were
a:-b; c.

Note the double use of the ‘.’ character. On the one hand it is used as a sentence terminator,
while on the other it may be used in a string of symbols making up an atom (e.g. the list
functor ./2). The rule used to disambiguate terms is that a ‘.’ followed by layout-text is
regarded as a sentence terminator (see Section 50.4 [Token String], page 790).

4.2 Declarative Semantics

The semantics of definite clauses should be fairly clear from the informal interpretations
already given. However it is useful to have a precise definition. The declarative semantics
of definite clauses tells us which goals can be considered true according to a given program,
and is defined recursively as follows.

A goal is true if it is the head of some clause instance and each of the goals (if
any) in the body of that clause instance is true, where an instance of a clause
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(or term) is obtained by substituting, for each of zero or more of its variables,
a new term for all occurrences of the variable.

For example, if a program contains the preceding procedure for concatenate/3, then the
declarative semantics tells us that

?- concatenate([a], [b], [a,b]).

is true, because this goal is the head of a certain instance of the first clause for
concatenate/3, namely,

concatenate([a], [b], [a,b]) :- concatenate([], [b], [bl).

and we know that the only goal in the body of this clause instance is true, since it is an
instance of the unit clause that is the second clause for concatenate/3.

4.3 Procedural Semantics

Note that the declarative semantics makes no reference to the sequencing of goals within
the body of a clause, nor to the sequencing of clauses within a program. This sequencing
information is, however, very relevant for the procedural semantics that Prolog gives to
definite clauses. The procedural semantics defines exactly how the Prolog system will exe-
cute a goal, and the sequencing information is the means by which the Prolog programmer
directs the system to execute the program in a sensible way. The effect of executing a goal
is to enumerate, one by one, its true instances. Here then is an informal definition of the
procedural semantics. We first illustrate the semantics by the simple query

?- concatenate(X, Y, [a,b]l).

We find that it matches the head of the first clause for concatenate/3, with X instantiated
to [alX1]. The new variable X1 is constrained by the new query produced, which contains
a single recursive procedure call:

?- concatenate(X1, Y, [bl).

Again this goal matches the first clause, instantiating X1 to [b|X2], and yielding the new
query:

?- concatenate(X2, Y, [1)

Now the single goal will only match the second clause, instantiating both X2 and Y to [].
Since there are no further goals to be executed, we have a solution

X = [a,b]
Y =[]

i.e. a true instance of the original goal is
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concatenate([a,b], [1, [a,b]l)

If this solution is rejected, backtracking will generate the further solutions

X = [a]
Y = [b]
X=1[
Y = [a,b]

in that order, by re-matching, against the second clause for concatenate, goals already
solved once using the first clause.

Thus, in the procedural semantics, the set of clauses

H :- B1, ..., Bm.
H’ :- B1’, ..., Bm’.

are regarded as a procedure definition for some predicate H, and in a query
?- G1, ..., Gn.

each Gi is regarded as a procedure call. To execute a query, the system selects by its
computation rule a goal, Gj say, and searches by its search rule a clause whose head matches
Gj. Matching is done by the unification algorithm (see [Robinson 65]), which computes the
most general unifier, mgu, of Gj and H). The mgu is unique if it exists. If a match is found,
the current query is reduced to a new query

?- (61, ..., Gj-1, B1, ..., Bm, Gj+1, ..., Gn)mgu.

and a new cycle is started. The execution terminates when the empty query has been
produced.

If there is no matching head for a goal, the execution backtracks to the most recent successful
match in an attempt to find an alternative match. If such a match is found, an alternative
new query is produced, and a new cycle is started.

In SICStus Prolog, as in other Prolog systems, the search rule is simple: “search forward
from the beginning of the program”.

The computation rule in traditional Prolog systems is also simple: “pick the leftmost goal
of the current query”. However, SICStus Prolog and other modern implementations have a
somewhat more complex computation rule “pick the leftmost unblocked goal of the current
query”.

A goal can be blocked on one ore more uninstantiated variables, and a variable may block
several goals. Thus binding a variable can cause blocked goals to become unblocked, and
backtracking can cause currently unblocked goals to become blocked again. Moreover, if
the current query is
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?- G1, ..., Gj-1, Gj, Gj+1, ..., Gn.

where Gj is the first unblocked goal, and matching Gj against a clause head causes several
blocked goals in G1, . . ., Gj-1to become unblocked, then these goals may become reordered.
The internal order of any two goals that were blocked on the same variable is retained,
however.

Another consequence is that a query may be derived consisting entirely of blocked goals.
Such a query is said to have floundered. The top-level checks for this condition. If detected,
the outstanding blocked subgoals are printed on the standard error stream along with the
answer substitution, to notify the user that the answer (s)he has got is really a speculative
one, since it is only valid if the blocked goals can be satisfied.

A goal is blocked if certain arguments are uninstantiated and its predicate definition is an-
notated with a matching block declaration (see Section 6.2.5 [Block Declarations|, page 70).
Goals of certain built-in predicates may also be blocked if their arguments are not sufficiently
instantiated.

When this mechanism is used, the control structure resembles that of coroutines, suspending
and resuming different threads of control. When a computation has left blocked goals
behind, the situation is analogous to spawning a new suspended thread. When a blocked
goal becomes unblocked, the situation is analogous to temporarily suspending the current
thread and resuming the thread to which the blocked goal belongs.

4.4 Occurs-Check

It is possible, and sometimes useful, to write programs that unify a variable to a term in
which that variable occurs, thus creating a cyclic term. The usual mathematical theory
behind Logic Programming forbids the creation of cyclic terms, dictating that an occurs-
check should be done each time a variable is unified with a term. Unfortunately, an occurs-
check would be so expensive as to render Prolog impractical as a programming language.
Thus cyclic terms may be created and may cause loops trying to print them.

SICStus Prolog mitigates the problem by its ability to unify, compare (see Section 8.3
[Term Compare|, page 168), assert, and copy cyclic terms without looping. The write_
term/[2,3] built-in predicate can optionally handle cyclic terms; see Section 8.1.3 [Term
1/0], page 142. Unification with occurs-check is available as a built-in predicate; see Sec-
tion 8.17 [Misc Pred], page 213. Predicates testing (a)cyclicity are available in a library
package; see Chapter 21 [Term Utilities], page 367. Other predicates usually do not handle
cyclic terms well.

4.5 The Cut Symbol

Besides the sequencing of goals and clauses, Prolog provides one other very important
facility for specifying control information. This is the cut symbol, written !. It is inserted
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in the program just like a goal, but is not to be regarded as part of the logic of the program
and should be ignored as far as the declarative semantics is concerned.

The effect of the cut symbol is as follows. When first encountered as a goal, cut succeeds
immediately. If backtracking should later return to the cut, the effect is to fail the parent
goal, i.e. the goal that matched the head of the clause containing the cut, and caused the
clause to be activated. In other words, the cut operation commits the system to all choices
made since the parent goal was invoked, and causes other alternatives to be discarded. The
goals thus rendered determinate are the parent goal itself, any goals occurring before the cut
in the clause containing the cut, and any subgoals that were executed during the execution
of those preceding goals.

For example:

member (X, [XI_1).
member (X, [_|L]) :- member(X, L).

This predicate can be used to test whether a given term is in a list. E.g.:
| ?- member (b, [a,b,c]).

returns the answer ‘yes’. The predicate can also be used to extract elements from a list, as
in

| ?- member(X, [d,e,f]).

With backtracking this will successively return each element of the list. Now suppose that
the first clause had been written instead:

member (X, [X|_]1) :- !.

In this case, the above call would extract only the first element of the list (d). On back-
tracking, the cut would immediately fail the whole predicate.

x :-p, !, q.
X - r.

This is equivalent to
x := if p then q else r;
in an Algol-like language.

It should be noticed that a cut discards all the alternatives since the parent goal, even when
the cut appears within a disjunction. This means that the normal method for eliminating
a disjunction by defining an extra predicate cannot be applied to a disjunction containing
a cut.

A proper use of the cut is usually a major difficulty for new Prolog programmers. The usual
mistakes are to over-use cut, and to let cuts destroy the logic. A cut that doesn’t destroy
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the logic is called a green cut; a cut that does is called a red cut. We would like to advise
all users to follow these general rules. Also see Chapter 13 [Writing Efficient Programs],
page 319.

e Write each clause as a self-contained logic rule, which just defines the truth of goals
that match its head. Then add cuts to remove any fruitless alternative computation
paths that may tie up memory.

e Cuts are usually placed right after the head, sometimes preceded by simple tests.

e Cuts are hardly ever needed in the last clause of a predicate.
4.6 Operators

Operators in Prolog are simply a notational convenience. For example, the expression 2+1
could also be written +(2,1). This expression represents the compound term

and not the number 3. The addition would only be performed if the term were passed as an
argument to an appropriate predicate such as is/2 (see Section 8.2 [Arithmetic|, page 164).

The Prolog syntax caters for operators of three main kinds—infix, prefix and postfix. An
infix operator appears between its two arguments, while a prefix operator precedes its single
argument and a postfix operator is written after its single argument.

Each operator has a precedence, which is a number from 1 to 1200. The precedence is used
to disambiguate expressions where the structure of the term denoted is not made explicit
through the use of parentheses. The general rule is that it is the operator with the highest
precedence that is the principal functor. Thus if ‘+” has a higher precedence than ‘/’, then

a+b/c a+(b/c)

are equivalent and denote the term +(a,/(b,c)). Note that the infix form of the term
/(+(a,b),c) must be written with explicit parentheses, i.e.

(at+b)/c

If there are two operators in the subexpression having the same highest precedence, the
ambiguity must be resolved from the types of the operators. The possible types for an infix
operator are

xfx xfy yfx

Operators of type xfx are not associative: it is a requirement that both of the two subexpres-
sions that are the arguments of the operator must be of lower precedence than the operator
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itself, i.e. their principal functors must be of lower precedence, unless the subexpression is
explicitly parenthesized (which gives it zero precedence).

Operators of type xfy are right-associative: only the first (left-hand) subexpression must
be of lower precedence; the right-hand subexpression can be of the same precedence as the
main operator. Left-associative operators (type yfx) are the other way around.

A functor named name is declared as an operator of type type and precedence precedence
by the directive:

:- op(precedence, type, name).
The argument name can also be a list of names of operators of the same type and precedence.

It is possible to have more than one operator of the same name, so long as they are of
different kinds, i.e. infix, prefix or postfix. Note that the ISO Prolog standard contains a
limitation that there should be no infix and postfix operators with the same name, however,
SICStus Prolog lifts this restriction.

An operator of any kind may be redefined by a new declaration of the same kind. This
applies equally to operators that are provided as standard, except for the ’,’ operator.
Declarations of all the standard operators can be found elsewhere (see [Standard Operators],
page 797).

For example, the standard operators + and - are declared by
:= op(500, yfx, [ +, - 1).

so that
a-b+c

is valid syntax, and means
(a-b)+c

i.e.

The list functor ./2 is not a standard operator, but if we declare it thus:
:-= op(900, xfy, .).

then a.b.c would represent the compound term
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/ \
a .
/ \
b C

Contrasting this with the diagram above for a-b+c shows the difference between yfx op-
erators where the tree grows to the left, and xfy operators where it grows to the right.
The tree cannot grow at all for xfx operators; it is simply illegal to combine xfx operators
having equal precedences in this way.

The possible types for a prefix operator are
fx fy

and for a postfix operator they are
xf yf

The meaning of the types should be clear by analogy with those for infix operators. As an
example, if not were declared as a prefix operator of type fy, then

not not P

would be a permissible way to write not(not(P)). If the type were fx, the preceding
expression would not be legal, although

not P
would still be a permissible form for not (P).

If these precedence and associativity rules seem rather complex, remember that you can
always use parentheses when in any doubt.

Note that the arguments of a compound term written in standard syntax must be expres-
sions of precedence below 1000. Thus it is necessary to parenthesize the expression P :- Q
in

| 7- assert((P :- Q)).
4.7 Syntax Restrictions

Note carefully the following syntax restrictions, which serve to remove potential ambiguity
associated with prefix operators.

1. In a term written in standard syntax, the principal functor and its following ‘(’ must
not be separated by any intervening layout-text. Thus

point (X,Y,Z)
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is invalid syntax.

2. If the argument of a prefix operator starts with a ‘(’, this ‘(" must be separated from
the operator by at least one layout-char. Thus
:=(p;q),r.
(where ‘: =" is the prefix operator) is invalid syntax. The system would try to interpret
it as the compound term:

b

/\

P q
That is, it would take ‘:=" to be a functor of arity 1. However, since the arguments
of a compound term are required to be expressions of precedence below 1000, this
interpretation would fail as soon as the ‘;’ (precedence 1100) was encountered.

In contrast, the term:
= (p;q),r.

is valid syntax and represents the following compound term:

b

/\
;T
/ \
p aq

4.8 Comments

Comments have no effect on the execution of a program, but they are very useful for making
programs more readily comprehensible. Two forms of comment are allowed in Prolog:

1. The character ‘%’ followed by any sequence of characters up to end of line.

2. The symbol ‘/*’ followed by any sequence of characters (including new lines) up to

4*/7
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5 The Module System

By making use of the module systems facilities, programs can be divided into different
modules. Each module has its own independent predicate name space. This is an important
feature for the development of larger programs. The module system of SICStus Prolog is
predicate based. This means that only the predicates are local to a module, whereas terms
are global. The module system is flat, not hierarchical, so all modules are visible to one
another. It is non-strict, i.e. the normal visibility rules can be overridden by special syntax.
No overhead is incurred on compiled calls to predicates in other modules. It is modeled
after and compatible with the Quintus Prolog module system. Finally, using the module
system is optional, and SICStus Prolog may be used without the user being aware of the
module system at all.

Modules in SICStus Prolog can also be used for object-oriented programming. See Chap-
ter 37 [Obj Intro], page 547, for details.

5.1 Basic Concepts

Each predicate in the Prolog system, whether built-in or user defined, belongs to a module.
A predicate is generally only visible in the module where it is defined. However a predicate
may be imported by another module. It is thereby made visible in that module too. Built-in
predicates are visible in every module. Predicates declared as public in a module declaration
(see below) are exported. Normally only public predicates may be imported by another
module.

For any given goal, the source module is the module in which the corresponding predicate
must be visible. Similarly, for any given clause, the source module of its head is the module
into which the clause is loaded.

For goals occurring in a source file with a module declaration, the source module is the
declared module. For goals occurring in a source file without a module declaration, the
source module is the module that the file is being loaded into. For goals typed at the top-
level, the source module is the type-in module. The type-in module is by default the user
module but may be changed by the built-in predicate module/1.

The other predefined module is the prolog module where all the built-in predicates reside.
The exported built-in predicates are automatically imported into each new module as it is
created.

5.2 Module Prefixing

Notwithstanding the visibility rules, any predicate can be called from any other module by
prefixing the goal with the module name and the colon operator, thus overriding the source
module of the goal:
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| ?- foo:bar(X).

This feature is intended mainly for debugging purposes, since it defies the purposes of the
module system. If the prefixed goal is a meta-predicate, however, the prefixed module name
may affect the module name expansion of the goal (see Section 5.5 [Meta Exp]|, page 61).
If multiple module prefixes are used, the innermost one has priority.

It is also possible to override the source module of clauses and directives by module prefixing.
For example,

:— dynamic mod:p/1.

p(X) :- mod:(q(X), r(X)).
mod: (q(X) :- r(X)).
mod:s(X) :- t(X).

declares mod:p/1 as dynamic, whatever the source module is; defines p/1 in the source
module as calling mod:q/1 and mod:r/1; defines mod:q/1 as calling mod:r/1; and defines
mod:s/1 as calling t/1 in the source module. The latter technique is particularly useful
when the prefix is user and the predicate is a hook predicate such as user:portray/1,
which must be defined in the user module, but the rest of the file consists of predicates
belonging to some other module.

5.3 Defining Modules

A module is normally defined by putting a module declaration in a source file. A module
declaration has the form:

:- module (ModuleName, ExportList[, Options]).

where ModuleName is an atom, and should precede all other clauses and directives of that
file.

When the file is loaded, all predicates in the file go into ModuleName and the predicates of
the ExportList are exported. When a module declaration is processed, all existing predicates
in the module are erased before the new ones are loaded. A file that contains a module
declaration is henceforth called a module-file.

Options is an optional argument, and should be a list. The only available option is
hidden(Boolean), where Boolean is false (the default) or true. In the latter case, tracing
of the predicates of the module is disabled (although spypoints can be set), and no source
information is generated at compile time.

A module can also be defined dynamically by asserting or loading predicates to it:
| 7- assert(m:p(x)).

creates the module m, if it does not already exists, and asserts p(x) to it.
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| ?- compile(m:f).
creates the module m and loads f into m.

Dynamically created modules have no public predicates.

5.4 Importation

When a module-file is loaded by load_files/[1,2] or one of its shorthands (see Sec-
tion 8.1.1 [Read In|, page 134), by default all the public predicates of the module-file are
imported by the receiving module. An explicit list of predicates to import may also be
specified.

Name clashes with already existing predicates, local or imported from other modules, are
handled in two different ways: If the receiving module is the user module, the user is asked
for redefinition of the predicate. For other receiving modules, a warning is issued and the
importation is canceled. In the first case redefinition silently takes place if the redefine_
warnings Prolog flag has the value off. The binding of an imported predicate remains,
even if the origin is reloaded or deleted. However, abolish/[1,2] break up the importation
binding. When a module-file is reloaded, a check is made that the predicates imported by
other modules are still in the public list. If that is not the case, a warning is issued. Note
that an imported predicate may be re-exported.

5.5 Module Name Expansion

Some predicates take goals as arguments (i.e. meta-predicates). These arguments must
include a module specification stating which module the goal refers. Some other predicates
also need module information i.e. compile/1. The property of needing module information
is declared with a meta-predicate declaration (see Section 5.6 [Meta Decl], page 62). Goals
for these predicates are module name expanded to ensure the module information. Goals
appearing in queries and meta-calls are expanded prior to execution while goals in the
bodies of clauses and directives are expanded at compile time. The expansion is made
by preceding the relevant argument with ‘Module:’. If the goal is prefixed by ‘Module
:’, Module is used for the expansion; otherwise, the source/type-in module is used. An
argument is not expanded if:

e [t already has a module prefix, or

e [t is a variable appearing in an expandable position in the head of the clause.

Some examples:
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?- [user].

:— meta_predicate p(:), q(:).

r(X) :- p(X).

q(X) :- p(X).

°D

% consulted user in module user, O msec 424 bytes

| ?7- listing.

r(A) :-
p(user:A).

qa) :-
p(4).

Here, p/1 and q/1 are declared as meta-predicates while r/1 is not. Thus the clause r(X)
;= p(X) will be transformed to r(X) :- p(M:X), by item 2 above, where M is the type-in
module, whereas q(X) :- p(X) will not.

| ?- m:assert(£f(1)).

Here, assert/1 is called in the module m. However, this does not ensure that f(1) is
asserted into m. The fact that assert/1 is a meta-predicate makes the system module
name expand the goal, transforming it to m:assert(m:f (1)) before execution. This way,
assert/1 is supplied the correct module information.

5.6 Meta-Predicate Declarations

The fact that a predicate needs module name expansion is declared in a meta-predicate
declaration:

:— meta_predicate MetaPredSpec, ..., MetaPredSpec.
where each MetaPredSpec is a mode spec. E.g.:
:- meta_predicate p(:, +).

which means that the first argument of p/2 shall be module name expanded. The arguments
in the mode spec are interpreted as:

An integer
This argument, in any call to the declared predicate, shall be expanded. (Inte-
gers are allowed for compatibility reasons).

Anything else e.g. +, —or ?
This argument shall not be expanded
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A number of built-in predicates have predefined meta-predicate declarations, as indicated
by the mode specs in this manual, e.g. call(:Term).
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6 Loading Programs

Programs can be loaded in three different ways: consulted or compiled from source file,
or loaded from object files. The latter is the fastest way of loading programs, but of
course requires that the programs have been compiled to object files first. Object files
may be handy when developing large applications consisting of many source files, but are
not strictly necessary since it is possible to save and restore entire execution states (see
Section 8.17 [Misc Pred], page 213).

Consulted, or interpreted, predicates are equivalent to, but slower than, compiled ones.
Although they use different representations, the two types of predicates can call each other
freely.

The SICStus Prolog compiler produces compact and efficient code, running about 8 times
faster than consulted code, and requiring much less runtime storage. Compiled Prolog
programs are comparable in efficiency with LISP programs for the same task. However,
against this, compilation itself takes about twice as long as consulting, and tracing of goals
that compile in-line are not available in compiled code.

The compiler operates in four different modes, controlled by the compiling Prolog flag.
The possible states of the flag are:

compactcode
Compilation produces byte-coded abstract instructions. This is the default
unless SICStus Prolog has been installed with support for fastcode compilation.

fastcode Compilation produces native machine instructions. Currently only available for
Sparc platforms. Fastcode runs about 3 times faster than compactcode. This
is the default if SICStus Prolog has been installed with support for fastcode
compilation.

profiledcode
Compilation produces byte-coded abstract instructions instrumented to pro-
duce execution profiling data. See Section 8.16 [Profiling], page 211. Profiling
is not available in runtime systems.

debugcode
Compilation produces interpreted code, i.e. compiling is replaced by consulting.

The compilation mode can be changed by issuing the query:
| ?- prolog_flag(compiling, 0OldValue, NewValue).

A Prolog program consists of a sequence of sentences (see Section 50.2 [Sentence|, page 788).
Directives encountered among the sentences are executed immediately as they are encoun-
tered, unless they can be interpreted as declarations (see Section 6.2 [Declarations|, page 68),
which affect the treatment of forthcoming clauses, or as initializations, which build up a set
of goals to be executed after the program has been loaded. Clauses are loaded as they are
encountered.
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A Prolog program may also contain a list of sentences (including the empty list). This
is treated as equivalent to those sentences occurring in place of the list. This feature
makes it possible to have user:term_expansion/[2,4] (see Section 8.1.2 [Term and Goal
Expansion], page 137) “return” a list of sentences, instead of a single sentence.

6.1 Predicates that Load Code

This section contains a summary of the relevant predicates. For a more precise description,
see Section 8.1.1 [Read In], page 134.

To consult a program, issue the query:
| ?- consult(Files).

where Files is either a filename or a list of filenames, instructs the processor to read in the
program that is in the files. For example:

| ?- consult([dbase,’extras.pl’,user]).

When a directive is read it is immediately executed. Any predicate defined in the files erases
any clauses for that predicate already present. If the old clauses were loaded from a different
file than the present one, the user will be queried first whether (s)he really wants the new
definition. However, if a multifile declaration (see Section 6.2 [Declarations], page 68) is
read and the corresponding predicate exists and has previously been declared as multifile,
new clauses will be added to the predicate, rather than replacing the old clauses. If clauses
for some predicate appear in more than one file, the later set will effectively overwrite the
earlier set. The division of the program into separate files does not imply any module
structure—any predicate can call any other (see Chapter 5 [Module Intro|, page 59).

consult/1, used in conjunction with save_program/[1,2] and restore/1, makes it possi-
ble to amend a program without having to restart from scratch and consult all the files that
make up the program. The consulted file is normally a temporary “patch” file containing
only the amended predicate(s). Note that it is possible to call consult(user) and then
enter a patch directly on the terminal (ending with D). This is only recommended for
small, tentative patches.

| ?- [File|Files].

This is a shorthand way of consulting a list of files. (The case where there is just one
filename in the list was described earlier (see Section 3.2 [Reading In|, page 24).

To compile a program in-core, use the built-in predicate:
| ?- compile(Files).

where Files is specified just as for consult/1.
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The effect of compile/1 is very much like that of consult/1, except all new predicates will
be stored in compiled rather than consulted form. However, predicates declared as dynamic
(see below) will be stored in consulted form, even though compile/1 is used.

Programs can be compiled into an intermediate representation known as ‘.ql’ (for Quick
Load file). As of SICStus Prolog 3.8, this feature is obsolescent with the introduction of
partial saved-states (‘.po’ files; see Section 3.10 [Saving], page 31), which can be handled
much more efficiently.

To compile a program into a ‘.ql’ file, use the built-in predicate:
| ?- fcompile(Files).

where Files is specified just as for consult/1. For each filename in the list, the compiler
will append the suffix ‘.pl’ to it and try to locate a source file with that name and compile
it to a ‘.ql’ file. The filename is formed by appending the suffix ‘.q1l’ to the specified
name. The internal state of SICStus Prolog is not changed as result of the compilation. See
Section 6.4 [Considerations|, page 72.

To load a program from a set of source or object files, use the built-in predicates load_
files/[1,2] (the latter is controlled by an options list):

| ?- load_files(Files).

where Files is either a single filename or a list of filenames, optionally with ‘.pl’ or ‘.po’
or ‘.ql’ extensions. This predicate takes the following action for each File in the list of
filenames:

If the File is user, compile(user) or [user] is performed;

If File cannot be found, not even with an extension, an existence error is signaled;
If a “.po’ file is found, the file is loaded;

If a ©.ql’ file is found, the file is loaded;

If a source file is found, the file is compiled or consulted.

A

If more than one file is found for File, item 3 or 4 or 5 applies depending on which file
was modified most recently.

=

If File cannot be found, not even with an extension, an existence error is signaled.

8. Source files are compiled, unless load_files/1 was called from a directive of a file
being consulted.

Finally, to ensure that some files have been loaded, use the built-in predicate:
| ?- ensure_loaded(Files).

Same as load_files(Files), except if the file to be loaded has already been loaded and has
not been modified since that time, in which case the file is not loaded again. If a source file
has been modified, ensure_loaded/1 does not cause any object file to become recompiled.



68 SICStus Prolog

6.2 Declarations

When a program is to be loaded, it is sometimes necessary to tell the system to treat some of
the predicates specially. This information is supplied by including declarations about such
predicates in the source file, preceding any clauses for the predicates that they concern. A
declaration is written just as a directive, beginning with ‘:=’. A declaration is effective from
its occurrence through the end of file.

Although declarations that affect more than one predicate may be collapsed into a single
declaration, the recommended style is to write the declarations for a predicate immediately
before its first clause.

Operator declarations are not declarations proper, but rather directives that modify the
global table of syntax operators. Operator declarations are executed as they are encountered
while loading programs.

The rest of this section details the available forms of predicate declarations.

6.2.1 Multifile Declarations

A declaration
:— multifile PredSpec, ..., PredSpec. IS0

where each PredSpec is a predicate spec, causes the specified predicates to become multifile.
This means that if more clauses are subsequently loaded from other files for the same
predicate, then the new clauses will not replace the old ones, but will be added at the end
instead. As of release 3, multifile declarations are required in all files from where clauses to
a multifile predicate are loaded.

An example when multifile declarations are particularly useful is in defining hook predicates.
A hook predicate is a user-defined predicate that somehow alters or customizes the behavior
of SICStus Prolog. A number of such hook predicates are described in this manual. Often,
an application needs to combine the functionality of several software modules, some of
which define clauses for such hook predicates. By simply declaring every hook predicates as
multifile, the functionality of the clauses for the hook predicates is automatically combined.
If this is not done, the last software module to define clauses for a particular hook predicate
will effectively supersede any clauses defined for the same hook predicate in a previous
module. By default, hook predicates must be defined in the user module, and only their
first solution is relevant.

If a file containing clauses for a multifile predicate is reloaded, the old clauses from the same
file are removed. The new clauses are added at the end.

If a multifile predicate is loaded from a file with no multifile declaration for it, the predicate
is redefined as if it were an ordinary predicate (i.e. the user is asked for confirmation).
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Clauses of multifile predicates are (currently) always loaded in interpreted form, even if they
were processed by the compiler. If performance is an issue, define the multifile predicates as
unit clauses or as clauses with a single goal that just calls an auxiliary compiled predicate
to perform any time-critical computation.

If a multifile predicate is declared dynamic in one file, it must also be done so in the other
files from where it is loaded. Hook predicates should always be declared as multifile and
dynamic, as this is the convention followed in the library modules.

Multifile declarations must precede any other declarations for the same predicate(s)!

6.2.2 Dynamic Declarations

A declaration
:— dynamic PredSpec, ..., PredSpec. IS0

where each PredSpec is a predicate spec, causes the specified predicates to become dynamic,
which means that other predicates may inspect and modify them, adding or deleting individ-
ual clauses. Dynamic predicates are always stored in consulted form even if a compilation is
in progress. This declaration is meaningful even if the file contains no clauses for a specified
predicate—the effect is then to define a dynamic predicate with no clauses.

The semantics of dynamic code is described in Section 8.9 [Modify Prog], page 189.

6.2.3 Volatile Declarations

A declaration
:— volatile PredSpec, ..., PredSpec.
where each PredSpec is a predicate spec, causes the specified predicates to become volatile.

A predicate should be declared as volatile if it refers to data that cannot or should not be
saved in a saved-state. In most cases a volatile predicate will be dynamic, and it will be used
to keep facts about streams or memory references. When a program state is saved at run-
time, the clauses of all volatile predicates will be left unsaved. The predicate definitions will
be saved though, which means that the predicates will keep all properties, that is volatile
and maybe dynamic or multifile, when the saved-state is restored.

6.2.4 Discontiguous Declarations

A declaration

:— discontiguous PredSpec, ..., PredSpec. IS0
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where each PredSpec is a predicate spec, disables warnings about clauses not being together
for the specified predicates. By default, such warnings are issued in development systems
unless disabled selectively for specific predicates, or globally by setting the discontiguous_
warnings flag to off.

6.2.5 Block Declarations

The declaration
:— block BlockSpec, ..., BlockSpec.

where each BlockSpec is a mode spec, specifies conditions for blocking goals of the predicate
referred to by the mode spec (£/3 say). When a goal for £/3 is to be executed, the mode
specs are interpreted as conditions for blocking the goal, and if at least one condition
evaluates to true, the goal is blocked.

()

A block condition evaluates to true iff all arguments specified as ‘-’ are uninstantiated,
in which case the goal is blocked until at least one of those variables is instantiated. If
several conditions evaluate to true, the implementation picks one of them and blocks the
goal accordingly.

The recommended style is to write the block declarations in front of the source code of the
predicate they refer to. Indeed, they are part of the source code of the predicate, and must
precede the first clause. For example, with the definition:

:- block merge(-,7,-), merge(?7,-,-).

merge([], Y, Y).
merge(X, [1, X).
merge ([HIX], [E|Y], [HIZ]) :- H @< E, merge(X, [EIY], Z).
merge ([HIX], [ElY], [EIZ]) :- H @>= E, merge([HIX], Y, Z).

calls to merge/3 having uninstantiated arguments in the first and third position or in the
second and third position will suspend.

The behavior of blocking goals for a given predicate on uninstantiated arguments cannot
be switched off, except by abolishing or redefining the predicate.

Block declarations generalize the “wait declarations” of earlier versions of SICStus Prolog.
A declaration ‘:- wait £/3’ in the old syntax corresponds to ‘:- block f(-,?,7)’ in the
current syntax. See Section 13.9.6 [Use Of Term Exp], page 340, for a simple way to extend
the system to accept the old syntax.

6.2.6 Meta-Predicate Declarations

A declaration
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:— meta_predicate MetaPredSpec, ..., MetaPredSpec.

where each MetaPredSpec is a mode spec, informs the compiler that certain arguments of
the declared predicates are used for passing goals. To ensure the correct semantics in the
context of multiple modules, clauses or directives containing goals for the declared predicates
may need to have those arguments module name expanded. See Section 5.5 [Meta Exp],
page 61, for details.

6.2.7 Module Declarations

A declaration
:- module (ModuleName, ExportList[, Options]).

where ExportList is a list of predicate specs, declares that the forthcoming predicates should
go into the module named ModuleName and that the predicates listed should be exported.
See Section 5.3 [Def Modules], page 60, for details.

)

6.2.8 Public Declarations

The only effect of a declaration
:— public PredSpec, ..., PredSpec.

where each PredSpec is a predicate spec to give the SICStus cross-referencer (see Sec-
tion 13.10 [The Cross-Referencer|, page 342) a starting point for tracing reachable code. In
some Prologs, this declaration is necessary for making compiled predicates visible. In SIC-
Stus Prolog, predicate visibility is handled by the module system. See Chapter 5 [Module
Intro], page 59.

6.2.9 Mode Declarations

A declaration
:— mode ModeSpec, ..., ModeSpec.

where each ModeSpec is a mode spec, has no effect whatsoever, but is accepted for com-
patibility reasons. Such declarations may be used as a commenting device, as they express
the programmer’s intention of data flow in predicates.

6.2.10 Include Declarations

A declaration
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:— include(Files). IS0

where Files is a file name or a list of file names, instructs the processor to literally embed
the Prolog clauses and directives in Files into the file being loaded. This means that the
effect of the include directive is such as if the include directive itself was replaced by the
text in the Files. Including some files is thus different from loading them in several respects:

e The embedding file counts as the source file of the predicates loaded, e.g. with respect
to the built-in predicate source_file/2; see Section 8.1.1 [Read In], page 134.

e Some clauses of a predicate can come from the embedding file, and some from included
files.

e When including a file twice, all the clauses in it will be entered twice into the program
(although this is not very meaningful).

SICStus Prolog uses the included file name (as opposed to the embedding file name) only in
source-linked debugging and error reporting. Note that source-linked debugging information
is not kept for included files compiled to ‘.ql’ format; in such cases the debugger will show
the include directive itself as the source information.

6.3 Initializations

A directive
:— initialization :Goal. IS0

in a file includes Goal to the set of goals that shall be executed after that file has been
loaded.

initialization/1 is actually callable at any point during loading of a file. Initializations
are saved by save_modules/2 and save_program/[1,2], and so are executed after loading
or restoring such files too.

Goal is associated with the file loaded, and with a module, if applicable. When a file, or
module, is going to be reloaded, all goals earlier installed by that file, or in that module,
are removed first.

6.4 Considerations for File-To-File Compilation

When compiling a source file to a ‘. ql’ file, remember that clauses are loaded and directives
are executed at run time, not at compile time. Only predicate declarations are processed at
compile time. For instance, it does not work to include operator declarations or clauses of
user:term_expansion/[2,4] or user:goal_expansion/3 or any auxiliary predicates that
they might need, and rely on the new transformations to be effective for subsequent clauses
of the same file or subsequent files of the same compilation.
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Any directives or clauses that affect the compile-time environment must be loaded prior
to compiling source files to ‘.ql’ files. This also holds for meta-predicates called by the
source files but defined elsewhere, for module name expansion to work correctly. If this
separation into files is unnatural or inconvenient, one can easily ensure that the compile-
time environment is up to date by doing:

| ?7- ensure_loaded(Files), fcompile(Files).

Since module name expansion takes place at compile time, the module into which the
file is to be loaded must be known when compiling to ‘.ql’ files. This is no problem for
module-files because the module name is picked from the module declaration. When non-
module-files are compiled, the file name may be prefixed with the module name that is to
be used for expansion:

| ?- fcompile(Module:Files).

If a *.q1’ file is loaded into a different module from which it was compiled for, a warning is
issued.
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7 Debugging

This chapter describes the debugging facilities that are available in development systems.
The purpose of these facilities is to provide information concerning the control flow of your
program.

The main features of the debugging package are as follows:

e The Procedure Box model of Prolog execution, which provides a simple way of visualiz-
ing control flow, especially during backtracking. Control flow is viewed at the predicate
level, rather than at the level of individual clauses.

e The ability to exhaustively trace your program or to selectively set spypoints. Spypoints
allow you to nominate interesting predicates at which, for example, the program is to
pause so that you can interact.

e The ability to set advice-points. An advice-point allows you to carry out some actions
at certain points of execution, independently of the tracing activity. Advice-points
can be used, e.g. for checking certain program invariants (cf. the assert facility of the
C programming language), or for gathering profiling or branch coverage information.
Spypoints and advice-points are collectively called breakpoints.

e The wide choice of control and information options available during debugging.

The Procedure Box model of execution is also called the Byrd Box model after its inventor,
Lawrence Byrd.

Much of the information in this chapter is also in Chapter eight of [Clocksin & Mellish 81],
which is recommended as an introduction.

Unless otherwise stated, the debugger prints goals using write_term/3 with the value of
the Prolog flag debugger_print_options (see Section 8.6 [State Info|, page 175).

The debugger is not available in runtime systems and the predicates defined in this chapter
are undefined; see Section 9.8.1 [Runtime Systems], page 255.

7.1 The Procedure Box Control Flow Model

During debugging, the debugger prints out a sequence of goals in various states of instantia-
tion in order to show the state the program has reached in its execution. However, in order
to understand what is occurring it is necessary to understand when and why the debugger
prints out goals. As in other programming languages, key points of interest are predicate
entry and return, but in Prolog there is the additional complexity of backtracking. One
of the major confusions that novice Prolog programmers have to face is the question of
what actually happens when a goal fails and the system suddenly starts backtracking. The
Procedure Box model of Prolog execution views program control flow in terms of movement
about the program text. This model provides a basis for the debugging mechanism in devel-
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opment systems, and enables the user to view the behavior of the program in a consistent

way.

Let us look at an example Prolog predicate :

Call | | Exit
—————— > + descendant(X,Y) :- offspring(X,Y). + -—-——-——--->

| |
| descendant(X,Z) :- |

————————— + offspring(X,Y), descendant(Y,Z). + <-——-—----
Fail | | Redo
K ———m o *
|
______________________________ +
Exception

The first clause states that Y is a descendant of X if Y is an offspring of X, and the second
clause states that Z is a descendant of X if Y is an offspring of X and if Z is a descendant
of Y. In the diagram a box has been drawn around the whole predicate and labeled arrows
indicate the control flow in and out of this box. There are five such arrows, which we shall
look at in turn.

Call

Exit

Redo

This arrow represents initial invocation of the predicate. When a goal of the
form descendant (X,Y) is required to be satisfied, control passes through the
Call port of the descendant box with the intention of matching a component
clause and then satisfying the subgoals in the body of that clause. Note that
this is independent of whether such a match is possible; i.e. first the box is
called, and then the attempt to match takes place. Textually we can imagine
moving to the code for descendant when meeting a call to descendant in some
other part of the code.

This arrow represents a successful return from the predicate. This occurs when
the initial goal has been unified with one of the component clauses and the
subgoals have been satisfied. Control now passes out of the Exit port of the
descendant box. Textually we stop following the code for descendant and go
back to the place we came from.

This arrow indicates that a subsequent goal has failed and that the system is
backtracking in an attempt to find alternatives to previous solutions. Control
passes through the Redo port of the descendant box. An attempt will now be
made to resatisfy one of the component subgoals in the body of the clause that
last succeeded; or, if that fails, to completely rematch the original goal with an
alternative clause and then try to satisfy any subgoals in the body of this new
clause. Textually we follow the code backwards up the way we came looking
for new ways of succeeding, possibly dropping down on to another clause and
following that if necessary.
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Fail This arrow represents a failure of the initial goal, which might occur if no
clause is matched, or if subgoals are never satisfied, or if any solution produced
is always rejected by later processing. Control now passes out of the Fail port
of the descendant box and the system continues to backtrack. Textually we
move back to the code that called this predicate and keep moving backwards
up the code looking for choicepoints.

Exception This arrow represents an exception that was raised in the initial goal, either by
a call to throw/1 or raise_exception/1 or by an error in a built-in predicate.
See Section 8.5 [Exception|, page 173. Control now passes out of the Exception
port of the descendant box and the system continues to pass the exception to
outer levels. Textually we move back to the code that called this predicate
and keep moving backwards up the code looking for a call to catch/3 or on_
exception/3.

In terms of this model, the information we get about the procedure box is only the control
flow through these five ports. This means that at this level we are not concerned with which
clause matches, and how any subgoals are satisfied, but rather we only wish to know the
initial goal and the final outcome. However, it can be seen that whenever we are trying to
satisfy subgoals, what we are actually doing is passing through the ports of their respective
boxes. If we were to follow this, then we would have complete information about the control
flow inside the procedure box.

Note that the box we have drawn round the predicate should really be seen as an invocation
box. That is, there will be a different box for each different invocation of the predicate.
Obviously, with something like a recursive predicate, there will be many different Calls and
Exits in the control flow, but these will be for different invocations. Since this might get
confusing each invocation box is given a unique integer identifier.

In addition to the five basic ports discussed above, there are two more ports for invocations
involving a blocked goal:

Block This port is passed through when a goal is blocked.
Unblock  This port is passed through when a previously blocked goal is unblocked.

7.2 Basic Debugging Predicates

Development systems provide a range of built-in predicates for control of the debugging
facilities. The most basic predicates are as follows:

debug development
Switches the debugger on, and ensures that the next time control reaches a
spypoint, it will be activated. In basic usage this means that a message will be
produced and you will be prompted for a command. In order for the full range
of control flow information to be available it is necessary to have the debugger
on from the start. When it is off the system does not remember invocations
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that are being executed. (This is because it is expensive and not required for
normal running of programs.) You can switch Debug Mode on in the middle of
execution, either from within your program or after a ~C (see trace/0 below),
but information prior to this will be unavailable.

development
Same as debug/0, except no debugging information is being collected, and so
is almost as fast as running with the debugger switched off.

development
Switches the debugger on, and ensures that the next time control enters an
invocation box, a message will be produced and you will be prompted for a
command. The effect of trace/0 can also be achieved by typing t after a ~C
interruption of a program.

At this point you have a number of options. See Section 7.5 [Debug Commands],
page 81. In particular, you can just type to creep (or single-step) into
your program. If you continue to creep through your program you will see every
entry and exit to/from every invocation box, including compiled code, except
for code belonging to hidden modules (see Section 5.3 [Def Modules|, page 60).
You will notice that the debugger stops at all ports. However, if this is not
what you want, the following built-in predicate gives full control over the ports
at which you are prompted:

leash(+Mode) development

Leashing Mode is set to Mode. Leashing Mode determines the ports of invo-
cation boxes at which you are to be prompted when you creep through your
program. At unleashed ports a tracing message is still output, but program
execution does not stop to allow user interaction. Note that 1leash/1 does not
apply to spypoints, the leashing mode of these can be set using the advanced
debugger features; see Section 7.6 [Advanced Debugging], page 86. Block and
Unblock ports cannot be leashed. Mode can be a subset of the following, spec-
ified as a list of the following:

call Prompt on Call.
exit Prompt on Exit.
redo Prompt on Redo.
fail Prompt on Fail.
exception

Prompt on Exception.
The following shorthands are also allowed:

leash(full).
Same as leash([call,exit,redo,fail,exception])..

leash(half).
Same as leash([call,redo])..

leash(none).
Same as leash([])..
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The initial value of Leashing Mode is [call,exit,redo,fail,exception] (full

leashing).
nodebug development
notrace development
nozip development

Switches the debugger off. If there are any spypoints set then they will be kept
but will never be activated.

debugging development
Prints information about the current debugging state. This will show:

1. Whether undefined predicates are being trapped.
2. What breakpoints have been set (see below).

3. What mode of leashing is in force (see above).
7.3 Plain Spypoints

For programs of any size, it is clearly impractical to creep through the entire program.
Spypoints make it possible to stop the program whenever it gets to a particular predicate
of interest. Once there, one can set further spypoints in order to catch the control flow a
bit further on, or one can start creeping.

In this section we discuss the simplest form of spypoints, the plain spypoints. The more
advanced forms, the conditional and generic spypoints will be discussed later; see Section 7.6
[Advanced Debugging], page 86.

Setting a plain spypoint on a predicate indicates that you wish to see all control flow through
the various ports of its invocation boxes, except during skips. When control passes through
any port of an invocation box with a spypoint set on it, a message is output and the user is
asked to interact. Note that the current mode of leashing does not affect plain spypoints:
user interaction is requested on every port.

Spypoints are set and removed by the following built-in predicates. The first two are also
standard operators:

spy :Spec development
Sets plain spypoints on all the predicates given by the generalized predicate
spec Spec.
Examples:

| ?- spy [user:p, m:q/[2,3]].

| ?- spy m:[p/1, q/1].
If you set some spypoints when the debugger is switched off then it will be
automatically switched on, entering zip mode.
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nospy :Spec development
Similar to spy Spec except that all the predicates given by Spec will have all
previously set spypoints removed from them (including conditional spypoints;
see Section 7.6.1 [Creating Breakpoints]|, page 87).

nospyall development
Removes all the spypoints that have been set, including the conditional and
generic ones.

The commands available when you arrive at a spypoint are described later. See Section 7.5
[Debug Commands|, page 81.

7.4 Format of Debugging Messages

We shall now look at the exact format of the message output by the system at a port.
All trace messages are output to the standard error stream, using the print_message/2
predicate; see Section 8.13 [Messages and Queries], page 195. This allows you to trace
programs while they are performing file I/O. The basic format is as follows:

N S 23 6 Call: T foo(hello,there,_123) 7

N is only used at Exit ports and indicates whether the invocation could backtrack and
find alternative solutions. Unintended nondeterminacy is a source of inefficiency, and this
annotation can help spot such efficiency bugs. It is printed as ‘?’, indicating that foo/3
could backtrack and find alternative solutions, or ¢ ’ otherwise.

S is a spypoint indicator. If there is a plain spypoint on foo/3, it is printed as ‘+’. In case
of conditional and generic spypoints it takes the form ‘*” and ‘#’, respectively. Finally, it is
printed as ¢ ’, if there is no spypoint on the predicate being traced.

The first number is the unique invocation identifier. It is increasing regardless of whether
or not debugging messages are output for the invocations (provided that the debugger is
switched on). This number can be used to cross correlate the trace messages for the various
ports, since it is unique for every invocation. It will also give an indication of the number of
procedure calls made since the start of the execution. The invocation counter starts again
for every fresh execution of a command, and it is also reset when retries (see later) are
performed.

The number following this is the current depth; i.e. the number of direct ancestors this goal
has, for which a procedure box has been built by the debugger.

The next word specifies the particular port (Call, Exit, Redo, Fail, or Exception).

(e~

T is a subterm trace. This is used in conjunction with the command (set subterm),
described below. If a subterm has been selected, T is printed as the sequence of commands
used to select the subterm. Normally, however, T is printed as ‘ ’, indicating that no
subterm has been selected.
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The goal is then printed so that you can inspect its current instantiation state.

The final ‘?’ is the prompt indicating that you should type in one of the commands allowed
(see Section 7.5 [Debug Commands|, page 81). If this particular port is unleashed then you
will not get this prompt since you have specified that you do not wish to interact at this
point.

At Exception ports, the trace message is preceded by a message about the pending excep-
tion, formatted as if it would arrive uncaught at the top level.

Note that calls that are compiled in-line and built-in predicates at depth 1 (e.g. those called
directly from the top-level) are not traced.

Block and Unblock ports are exceptions to the above debugger message format. A message
S - - Block: p(_133)

indicates that the debugger has encountered a blocked goal, i.e. one which is temporar-
ily suspended due to insufficiently instantiated arguments (see Section 4.3 [Procedural],
page 50). By default, no interaction takes place at this point, and the debugger simply
proceeds to the next goal in the execution stream. The suspended goal will be eligible for
execution once the blocking condition ceases to exist, at which time a message

S - - Unblock: p(_133)

is printed. Although Block and Unblock ports are unleashed by default in trace mode, you
can make the debugger interact at these ports by using conditional spypoints.

7.5 Commands Available during Debugging

This section describes the particular commands that are available when the system prompts
you after printing out a debugging message. All the commands are one or two letter
mnemonics, some of which can be optionally followed by an argument. They are read from
the standard input stream with any blanks being completely ignored up to the end of the

line (RET)).

The only command that you really have to remember is ‘h’ (followed by ®RET)). This
provides help in the form of the following list of available commands.



82

RET

<c

I+ B & ¢0@®@T Q. K Q0 0 -

Y AN O © M O

-~

SICStus Prolog

r> creep c creep
leap z zip
skip s <i> skip i
out o <n> out n
q-skip q <i> g-skip i
retry r <i> retry i
fail f <i> fail i

<p> jump to port j<p><i>jump to port i
display W write
print p <i> print partial
ancestors g <n> ancestors n
backtrace t <n> Dbacktrace n
blocked goals & <n> nth blocked goal
nodebug = debugging
spy this * spy conditionally
nospy this \ <i> remove brkpoint

<i> disable brkpoint E <i> enable brkpoint

abort b break
command u unify
raise exception . find this
reset printdepth < <n> set printdepth
reset subterm ~ <n> set subterm
help h help

creep causes the debugger to single-step to the very next port and print a
message. Then if the port is leashed (see Section 7.2 [Basic Debug], page 77),
the user is prompted for further interaction. Otherwise, it continues creeping.
If leashing is off, creep is the same as leap (see below) except that a complete
trace is printed on the standard error stream.

leap causes the debugger to resume running your program, only stopping when
a spypoint is reached (or when the program terminates). Leaping can thus be
used to follow the execution at a higher level than exhaustive tracing. All you
need to do is to set spypoints on an evenly spread set of pertinent predicates,
and then follow the control flow through these by leaping from one to the other.
Debugging information is collected while leaping, so when a spypoint is reached,
it is possible to inspect the ancestor goals, or creep into them upon entry to
Redo ports.

zip is like leap, except no debugging information is being collected while zipping,
resulting in significant savings in memory and execution time.

skip is only valid for Call and Redo ports. It skips over the entire execution
of the predicate. That is, you will not see anything until control comes back
to this predicate (at either the Exit port or the Fail port). Skip is particularly
useful while creeping since it guarantees that control will be returned after the
(possibly complex) execution within the box. If you skip then no message at
all will appear until control returns. This includes calls to predicates with spy-
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Jj<p>

points set; they will be masked out during the skip. No debugging information
is being collected while skipping.

If you supply an integer argument, then this should denote an invocation num-
ber of an ancestral goal. The system tries to get you to the Exit or Fail port of
the invocation box you have specified.

out is a shorthand for skipping to the Exit or Fail port of the immediate ancestor
goal. If you supply an integer argument n, it denotes skipping to the Exit or
Fail port of the nth ancestor goal.

quasi-skip is like a combination of zip and skip: execution stops when either
control comes back to this predicate, or a spypoint is reached. No debugging
information is being collected while quasi-skipping.

An integer argument can be supplied as for skip.

retry can be used at any port (although at the Call port it has no effect). It
transfers control back to the Call port of the box. This allows you to restart
an invocation when, for example, you find yourself leaving with some weird
result. The state of execution is exactly the same as when you originally called,
(unless you use side-effects in your program; i.e. asserts etc. will not be undone).
When a retry is performed the invocation counter is reset so that counting
will continue from the current invocation number regardless of what happened
before the retry. This is in accord with the fact that you have, in executional
terms, returned to the state before anything else was called.

If you supply an integer argument, then this should denote an invocation num-
ber of an ancestral goal. The system tries to get you to the Call port of the box
you have specified. It does this by continuously failing until it reaches the right
place. Unfortunately this process cannot be guaranteed: it may be the case
that the invocation you are looking for has been cut out of the search space by
cuts (!) in your program. In this case the system fails to the latest surviving
Call port before the correct one.

fail can be used at any of the four ports (although at the Fail port it has no
effect). It transfers control to the Fail port of the box, forcing the invocation
to fail prematurely.

If you supply an integer after the command, then this is taken as specifying
an invocation number and the system tries to get you to the Fail port of the
invocation box you have specified. It does this by continuously failing until it
reaches the right place. Unfortunately this process cannot be guaranteed: it
may be the case that the invocation you are looking for has been cut out of the
search space by cuts (!) in your program. In this case the system fails to the
latest surviving Fail port before the correct one.

jump to port transfers control back to the prescribed port <p>. Here, <p> is
one of: ‘c’, ‘e’, ‘r’, ‘f’, standing for Call, Exit, Redo and Fail ports. Takes an
optional integer argument, an invocation number.

Jumping to a Call port is the same as retrying it, i.e. ‘jc’ is the same as the ‘r’
debugger command; and similarly ‘jf’ is the same as ‘f’.
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The ‘je’ jump to Exit port command transfers control back to the Exit port
of the box. It can be used at a Redo or an Exit port (although at the latter it
has no effect). This allows you to restart a computation following an Exit port,
which you first leapt over, but because of its unexpected failure you arrived at
the Redo port. When you supply an integer argument, then this should denote
an ezact invocation number of an exited invocation present in the backtrace,
and then the system will get you to the specified Exit port. The debugger
requires here an exact invocation number so that it does not jump too far back
in the execution (if an Exit port is not present in the backtrace, it may be be
a better choice to jump to the preceding Call port, rather than to continue
looking for another Exit port).

The ‘jr’ jump to Redo port command transfers control back to the Redo port of
the box. It can be used at an Exit or a Redo port (although at the latter it has
no effect). This allows you to force the goal in question to try to deliver another
solution. When you supply an integer argument, then this should denote an
eract invocation number of an exited invocation present in the backtrace, and
then the system will get you to the specified Redo port.

display goal displays the current goal using display/1. See Write (below).

print goal displays the current goal using print/1. An argument will override
the default printdepth, treating 0 as infinity.

write goal displays the current goal using writeq/1.

print ancestor goals provides you with a list of ancestors to the current goal, i.e.
all goals that are hierarchically above the current goal in the calling sequence.
You can always be sure of jumping to the Call or Fail port of any goal in the
ancestor list (by using retry etc). If you supply an integer n, then only that
number of ancestors will be printed. That is to say, the last n ancestors will
be printed counting back from the current goal. Each entry is displayed just as
they would be in a trace message.

print backtrace is the same as the above, but also shows any goals that have
exited nondeterminately and their ancestors. This information shows where
there are outstanding choices that the program could backtrack to. If you
supply an integer n, then only that number of goals will be printed.

Ancestors to the current goal are annotated with the ‘Call:’ port, as they have
not yet exited, whereas goals that have exited are annotated with the ‘Exit:’
port. You can always be sure of jumping to the Exit or Redo port of any goal
shown to be exited in the backtrace listing.

The backtrace is a tree rather than a stack: to find the parent of a given goal
with depth indicator d, look for the closest goal above it with depth indicator
d-1.

print blocked goals prints a list of the goals that are currently blocked in the
current debugging session together with the variable that each such goal is
blocked on (see Section 4.3 [Procedural], page 50). The goals are enumerated
from 1 and up. If you supply an integer n, then only that goal will be printed.
Fach entry is preceded by the goal number followed by the variable name.
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n nodebug switches the debugger off. Note that this is the correct way to switch
debugging off at a trace point. You cannot use the @ or b commands because
they always return to the debugger.

= debugging outputs information concerning the status of the debugging package.
See Section 8.15 [Debug Pred], page 209, the built-in predicate debugging/0.

+ spy this sets a plain spypoint on the current goal.

* spy this conditionally sets a conditional spypoint on the current goal. Prompts
for the Conditions, and calls the

spy (Func, Conditions)

goal, where Func is the predicate spec of the current invocation. For spy/2, see
Section 7.7 [Breakpoint Predicates|, page 116.

- nospy this removes all spypoints applicable to the current goal. Equivalent to
nospy Func, where Func is the predicate spec of the current invocation.

\ remove this removes the spypoint that caused the debugger to interact at the
current port. With an argument n, it removes the breakpoint with identifier n.
Equivalent to remove_breakpoints (BID), where BID is the current breakpoint
identifier, or the supplied argument (see Section 7.7 [Breakpoint Predicates],
page 116).

D disable this disables the spypoint that caused the debugger to interact at the
current port. With an argument n, it disables the breakpoint with identi-
fier n. Equivalent to disable_breakpoints(BID), where BID is the current
breakpoint identifier, or the supplied argument (see Section 7.7 [Breakpoint
Predicates], page 116).

E enable this enables all specific spypoints for the predicate at the current port.
With an argument n, it enables the breakpoint with identifier n. Equivalent
to enable_breakpoints(BID), where BID is the breakpoint identifiers for the
current predicate, or the supplied argument (see Section 7.7 [Breakpoint Pred-
icates|, page 116).

find this outputs information about where the predicate being called is defined.

a abort causes an abort of the current execution. All the execution states built
so far are destroyed and you are put right back at the top-level. (This is the
same as the built-in predicate abort/0.)

b break calls the built-in predicate break/0, thus putting you at a recursive top-
level with the execution so far sitting underneath you. When you end the break
("D) you will be reprompted at the port at which you broke. The new execution
is completely separate from the suspended one; the invocation numbers will
start again from 1 during the break. The debugger is temporarily switched
off as you call the break and will be re-switched on when you finish the break
and go back to the old execution. However, any changes to the leashing or to
spypoints will remain in effect.
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© command gives you the ability to call arbitrary Prolog goals. It is effectively
a one-off break (see above). The initial message ‘| :- ’ will be output on the
standard error stream, and a command is then read from the standard input
stream and executed as if you were at top-level. If the term read is of form
Pattern ~ Body, then Pattern is unified with the current goal and Body is
executed.

u unify is available at the Call port and gives you the option of providing a
solution to the goal from the standard input stream rather than executing the
goal. This is convenient e.g. for providing a “stub” for a predicate that has not
yet been written. A prompt will be output on the standard error stream, and
the solution is then read from the standard input stream and unified with the
goal. If the term read in is of the form Head :- Body, then Head will be unified
with the current goal, and Body will be executed in its place.

e raise exception is available at all ports. A prompt will be output on the standard
error stream, and an exception term is then read from the standard input stream
and raised in the program being debugged.

< This command, without arguments, resets the printdepth to 10. With an ar-
gument of n, the printdepth is set to n, treating 0 as infinity. This command
works by changing the value of the debugger_print_options Prolog flag (see
Section 8.6 [State Info], page 175).

While at a particular port, a current subterm of the current goal is maintained.
It is the current subterm that is displayed, printed, or written when prompt-
ing for a debugger command. Used in combination with the printdepth, this
provides a means for navigating in the current goal for focusing on the part of
interest. The current subterm is set to the current goal when arriving at a new
port. This command, without arguments, resets the current subterm to the
current goal. With an argument of n (> 0), the current subterm is replaced by
its n:th subterm. With an argument of 0, the current subterm is replaced by
its parent term. With a list of arguments, the arguments are applied from left
to right.

help displays the table of commands given above.

The user can define new debugger commands or modify the behavior of the above ones
using the debugger_command_hook hook predicate, see Section 7.7 [Breakpoint Predicates]
page 116.

9

7.6 Advanced Debugging — an Introduction

This section gives an overview of the advanced debugger features. These center around the
notion of breakpoint. Breakpoints can be classified as either spypoints (a generalization of
the plain spypoint introduced earlier) or advice-points (e.g. for checking program invariants
independently from tracing). The first five subsections will deal with spypoints only. Nev-



Chapter 7: Debugging 87

ertheless we will use the term breakpoint, whenever a statement is made that applies to
both spypoints and advice-points.

Section 7.8 [Breakpoint Processing|, page 118 describes the breakpoint processing mecha-
nism in full detail. Reference style details of built-in predicates dealing with breakpoints
are given in Section 7.7 [Breakpoint Predicates]|, page 116 and in Section 7.9 [Breakpoint
Conditions|, page 120.

7.6.1 Creating Breakpoints

Breakpoints can be created using the add_breakpoint/2 built-in predicate. Its first argu-
ment should contain the description of the breakpoint, the so called breakpoint spec. It will
return the breakpoint identifier (BID) of the created breakpoint in its second argument.
For example:

| ?7- add_breakpoint (pred(foo/2), BID).
% Plain spypoint for user:foo/2 added, BID=1
BID = 1

Here, we have a simple breakpoint spec, prescribing that the debugger should stop at all
ports of all invocations of the predicate foo/2. Thus the above goal actually creates a plain
spypoint, exactly as 7- spy foo/2. does.

A slightly more complicated example follows:

| ?- add_breakpoint([pred(foo/2),line(’/myhome/bar.pl’,123)], _).
% Conditional spypoint for user:foo/2 added, BID=1

This breakpoint will be activated only for those calls of foo/2 that occur in line 123 of the
Prolog program file > /myhome/bar.pl’. Because of the additional condition, this is called
a conditional spypoint.

The breakpoint identifier (BID) returned by add_breakpoint/2 is an integer, assigned in
increasing order, i.e. more recent breakpoints receive higher identifier values. When looking
for applicable breakpoints, the debugger tries the breakpoints in descending order of BIDs,
i.e. the most recent applicable breakpoint is used. Breakpoint identifiers can be used for
referring to breakpoints to be deleted, disabled or enabled (see later).

Generally, the breakpoint spec is a pair Tests-Actions. Here, the Tests part describes the
conditions under which the breakpoint should be activated, while the Actions part contains
instructions on what should be done at activation. The test part is built from tests, while
the action part from actions and tests. Test, actions and composite constructs built from
these are generally referred to as breakpoint conditions, or simply conditions.

The action part can be omitted, and then the breakpoint spec consists of tests only. For
spypoints, the default action part is [show(print),command(ask)]. This instructs the
debugger to print the goal in question and then ask the user what to do next, exactly as
described in Section 7.4 [Debug Format|, page 80. To illustrate other possibilities let us
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explain the effect of the [show(display),command(proceed)] action part: this will use
display/1 for presenting the goal (just as the ‘4’ debugger command does, see Section 7.5
[Debug Commands], page 81), and will then proceed with execution without stopping (i.e.
the spypoint is unleashed).

7.6.2 Processing Breakpoints

We first give a somewhat simplified sketch of how the debugger treats the breakpoints. This
description will be refined in the sequel.

The debugger allows us to prescribe some activities to be performed at certain points of
execution, namely at the ports of procedure boxes. In principle, the debugger is entered
at each port of each procedure invocation. It then considers the current breakpoints one
by one, most recent first. The first breakpoint for which the evaluation of the test part
succeeds is then activated, and the execution continues according to its action part. The
activated breakpoint “hides” the remaining (older) ones, i.e. those are not tried here. If
none of the current breakpoints is activated, the debugger behaves according to the actual
debugging mode (trace, debug or zip).

Both the test and the action part can be simple or composite. Evaluating a simple test
amounts to checking whether it holds in the current state of execution, e.g. pred(foo/2)
holds if the debugger is at a port of predicate foo/2.

Composite conditions can be built from simple ones by forming lists, or using the *,’; *;’,

‘=>’ and ‘\+’ operators, with the usual meaning of conjunction, disjunction, if-then-else
and negation. A list of conditions is equivalent to a conjunction of the same conditions.
For example, the condition [pred(foo/2), \+port(fail)] will hold for all ports of foo/2,
except for the Fail port.

7.6.3 Breakpoint Tests

This section gives a tour of the most important simple breakpoint tests. In all examples
here the action part will be empty. Note that the examples are independent, so if you want
to try out these you should get rid of the old breakpoints (e.g. using ?- nospyall.) before
you enter a new one.

The goal(...) test is a generalization of the pred(...) test, as it allows us to check the
arguments of the invocation. For example:

| ?- add_breakpoint(goal(foo(1,_)), _).
% Conditional spypoint for user:foo/2 added, BID=1

The goal(G) breakpoint test specifies that the breakpoint should be applied only if the
current goal is an instance of G, i.e. G and the current goal can be unified without sub-
stituting any variables in the latter. This unification is then carried out. The goal(G)
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condition is thus equivalent to the subsumes (G, CurrentGoal) test (subsumes/2 is defined
in library(terms), see Chapter 21 [Term Utilities], page 367).

In the above example the debugger will stop if foo/2 is called with 1 as its first argument,
but not if the first argument is, say, 2, nor if it is a variable.

You can use non-anonymous variables in the goal test, and then put further constraints on
these variables using the true condition:

| ?- add_breakpoint ([goal(foo(X,_)),true(X>1)]1, _).
% Conditional spypoint for user:foo/2 added, BID=1

Here the first test, goal, specifies that we are only interested in invocations of foo/2, and
names the first argument of the goal as X. The second, the true/1 test, specifies a further
condition stated as a Prolog goal: X is greater than 1 (we assume here that the argument is
numeric). Thus this breakpoint will be applicable if and only if the first argument of foo/2
is greater than 1. Generally, an arbitrary Prolog goal can be placed inside the true test:
the test will succeed iff the goal completes successfully.

Any variable instantiations in the test part will be undone before executing the action part,
as the evaluation of the test part is enclosed in a double negation (\+ \+ (...)). This
ensures that the test part has no effect on the variables of the current goal.

Both the pred and the goal tests may include a module name. In fact, the first argument
of add_breakpoint is module name expanded, and the (explicit or implicit) module name
of this argument is then inherited by default by the pred, goal, and true tests. Notice the
module qualification inserted in front of the breakpoint spec of the last example, as shown
in the output of the debugging/0 built-in predicate:

| 7- debugging.
...
Breakpoints:
1 * user:foo/2 if user:[goal(foo(A,B)),true(A>1)]

As no explicit module qualifications were given in the tests, this breakpoint spec is trans-
formed to the following form:

[goal(user:foo(A,B)) ,true(user: (A>1))]

For exported predicates, a pred or goal test will be found applicable for all invocations of the
predicate, irrespective of the module the call occurs in. When you add the breakpoint you
can use the defining or an importing module name, but this information is not remembered:
the module name is “normalized”, i.e. it is changed to the defining module. The example
below shows this: although the spypoint is placed on user:append, the message and the
breakpoint list both mention 1ists:append.
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| ?- use_module(library(lists)).

...
% module lists imported into user
...

| ?- spy user:append.
% Plain spypoint for lists:append/3 added, BID=1
| ?- debugging.
...
Breakpoints:
1 + lists:append/3

Note that the debugger does not stop inside a library predicate when doing an exhaustive
trace. This is because the library modules are declared hidden (cf. Chapter 5 [Module Intro],
page 59), and no trace is produced for calls inside hidden modules that invoke predicates
defined in hidden modules. However, a spypoint is always shown in the trace, even if it
occurs in a hidden module:

+ 1 1 Call: append([1,2],[3,4],_531) ?

+ 2 2 Call: lists:append([2],[3,4],_1182) 7
+ 3 3 Call: lists:append([],[3,4],_1670) ?
+ 3 3 Exit: lists:append([],[3,4],[3,4]) ?
C...)

You can narrow a breakpoint to calls from within a particular module by using the module
test, e.g.

| ?- add_breakpoint ([pred(append/3),module (user)], _).
% The debugger will first zip -- showing spypoints (zip)
% Conditional spypoint for lists:append/3 added, BID=1

% zip
| ?- append([1,2], [3,4], L).
* 1 1 Call: append([1,2],[3,4],_531) 7
X 1 1 Exit: append([1,2],[3,4],[1,2,3,4]1) 7

L = 1[1,2,3,4]

With this spypoint, the debugger will only stop at the invocations of append/3 from the
user module.

Note that calling module information is not kept by the compiler for the built-in predicates,
therefore the module test will always unify its argument with prolog in case of compiled
calls to built-in predicates.

There are two further interesting breakpoint tests related to invocations: inv(Inv) and
depth(Depth). These unify they arguments with the invocation number and the depth,
respectively (the two numbers shown at the beginning of each trace message). Such tests
are most often used in more complex breakpoints, but there may be some simple cases when
they are useful.
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Assume you put a plain spypoint on foo/2, and start leaping through your program. After
some time, you notice some inconsistency at an Exit port, but you cannot go back to the
Call port for retrying this invocation, because of side-effects. So you would like to restart
the whole top-level goal and get back to the Call port of the suspicious goal as fast as
possible. Here is what you can do:

| ?- spy foo/2.

% Plain spypoint for user:foo/2 added, BID=1

| ?- debug, foo(23, X).

% The debugger will first leap -- showing spypoints (debug)

+ 1 1 Call: foo(23,_414) 7 1

...

+ 81 17 Call: foo(7,_9151) 7 1

+ 86 18 Call: foo(6,_9651) 7 1

+ 86 18 Exit: foo(6,8) 7 -

% Plain spypoint for user:foo/2, BID=1, removed (last)
86 18 Exit: foo(6,8) 7 *

Placing spypoint on user:foo/2 with conditions: inv(86).

% Conditional spypoint for user:foo/2 added, BID=1

* 86 18 Exit: foo(6,8) 7 a

% Execution aborted

% source_info

| ?- debug, foo(23, X).

% The debugger will first leap -- showing spypoints (debug)
* 86 18 Call: foo(6,_2480) ?

When you reach the Exit port of the suspicious invocation (number 86), you remove the
plain spypoint (via the - debugger command), and add a conditional one using the ‘*’
debugger command. This automatically includes pred(foo/2) among the conditions and
displays the prompt ‘Placing spypoint ... with conditions:’, requesting further ones.
You enter here the inv test with the invocation number in question, resulting in a breakpoint
with the [pred(foo/2),inv(86)] conditions. If you restart the original top-level goal in
debug mode, the debugger immediately positions you at the invocation with the specified
number.

Note that when the debugger executes a skip or a zip command, no procedure boxes are
built. Consequently, the invocation and depth counters are not incremented. If skip and/or
zip commands were used during the first execution, then the suspicious invocation gets an
invocation number higher than 86 in the second run. Therefore it is better to supply the
inv(I),true(I>=86) condition to the ‘*’ debugger command, which will bring you to the
first call of foo/2 at, or after invocation number 86 (which still might not be the suspicious
invocation).

In the examples, the inv test was used both with a numeric and a variable argument
(inv(86) and inv(I)). This is possible because the debugger unifies the given feature with
the argument of the test. This holds for most tests, we will mention the exceptions.
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Another similar example: if you suspect that a given predicate goes into an infinite recursion,
and would like the execution to stop when entering this predicate somewhere inside the
recursion, then you can do the following:

| ?- add_breakpoint ([pred(foo/2),depth(_D),true(_D>=100)], _).
% Conditional spypoint for user:foo/2 added, BID=1
% zip,source_info
| ?- debug, foo(200, X).
% The debugger will first leap -- showing spypoints (debug)
* 496 100 Call: foo(101,_12156) 7

The above breakpoint spec will cause the debugger to stop at the first invocation of foo/2
at depth 100 or greater. Note again that debug mode has to be entered for this to work (in
zip mode no debugging information is kept, so the depth does not change).

We now continue with tests that restrict the breakpoint to an invocation at a specific place
in the code.

Assume file /home/bob/myprog.pl contains the following Prolog program:

% /home/bob/myprog.pl

p&X, U) :- % line 1
qX, ), % line 2
q(y, 2, % line 3
¢ \+q(Z, D) % line 4
-> q(zZ+1, U) % line 5
;0 q(Z+2, 1) % line 6
). hoo..
qX, Y) :-
X <10, !', Y is X+1. % line 10
q(X, Y) :-
Y is X+2. % line 12

If you are interested only in the last invocation of q/2 within p/2, you can use the following
breakpoint:

| ?- add_breakpoint ([pred(q/2),line(’/home/bob/myprog.pl’,6)1, _).
% Conditional spypoint for user:q/2 added, BID=1

Generally, the test 1line(File,Line) holds if the current invocation was in line number
Line of a file whose absolute name is File. This test (as well as the 1line/1 and file/1
tests, see below) require the presence of source information: the file in question had to
be consulted or compiled with the source_info Prolog flag switched on (i.e. set to on or
emacs).

If e.g. q/2 is called only from a single file, then the file name need not be mentioned and a
line/1 test suffices: 1ine(6). On the other hand, if we are interested in all invocations of
a predicate within a file, then we can omit the line number and use the file(File) test.
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For Prolog programs that are interpreted (consulted or asserted), further positioning in-
formation can be obtained, even in the absence of source information. The test parent_
pred(Pred) unifies the module name expanded Pred with a predicate spec (of form Module
: PredName/Arity) identifying the predicate in which the current invocation resides. The
test parent_pred(Pred,N) will additionally unify N with the serial number of the clause
containing the current goal.

For example, assuming the above myprog.pl file is consulted, the breakpoint below will
cause the execution to stop when the call of is/2 in the second clause of q/2 is reached:

| 7- add_breakpoint ([pred(is/2),parent_pred(q/2,2)1, _).
% Conditional spypoint for prolog:is/2 added, BID=1
* Predicate prolog:is/2 compiled inline, breakable only in inter-
preted code
% zip,source_info
| 7- p(20, X).
in scope of a goal at line 12 in /home/bob/myprog.pl
* 1 1 Call: _579 is 20+2 7

Notice the warning issued by add_breakpoint/2: there are some built-in predicates (e.g.
arithmetic, functor/3, arg/3, etc.), for which the compiler generates specific inline trans-
lation, rather than the generic predicate invocation code. Therefore compiled calls to such
predicates are not visible to the debugger.

More exact positioning information can be obtained for interpreted programs by using the
parent_clause(Cl,Sel,I) test. This unifies C1 with the clause containing the current
invocation, while Sel and I both identify the current invocation within the body of this
clause. Sel is unified with a subterm selector, while I with the serial number of the call.
This test has variants parent_clause/[1,2], in which only the C1 argument, or the C1,Sel
arguments are present.

As an example, two further alternatives of putting a breakpoint on the last call of q/2
within myprog.pl (line 6) are shown below, together with a listing showing the selectors
and call serial numbers for the body of p/2:

| ?- add_breakpoint ([pred(q/2),parent_clause((p(_,_):-_),[2,2,21)],_).

| ?- add_breakpoint ([pred(q/2),parent_clause((p(_,_):-_),_,5)1,_).

pX, U) :- % line % call no. 7% subterm selector
X, V), Y% 2 1 [1]
q(y, 2), % 3 2 [2,1]
( \+a(z, O ho 4 3 [2,2,1,1,1]
-> q(zZ+1, U) h 5 4 [2,2,1,2]
5 q(Z+2, U) % 6 5 [2,2,2]
). hoT

Here, the first argument of the parent_clause test ensures that the current invocation is
in (the only clause of) p/2. If p/2 had more clauses, we would have to use an additional
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test, say parent_pred(user:p/2,1), and then the first argument of parent_clause could
be an anonymous variable.

In the examples so far the breakpoint tests referred only to the goal in question. Therefore,
the breakpoint was found applicable at all ports of the procedure box of the predicate. We
can distinguish between ports using the port breakpoint test:

| ?- add_breakpoint ([pred(foo/2),port(call)], _).

With this breakpoint, the debugger will stop at the Call port of foo/2, but not at other
ports. Note that the port(call) test can be simplified to call — add_breakpoint/2 will
recognize this as a port name, and treat it as if it were enclosed in a port/1 functor.

Here are two equivalent formulations for a breakpoint that will cause the debugger to stop
only at the Call and Exit ports of foo/2:

| ?- add_breakpoint ([pred(foo/2), (call;exit)], _).

| ?-
add_breakpoint ([pred(foo/2),port (P),true((P=call;P=exit(_)))], _).

In both cases we have to use disjunction. In the first example we have a disjunctive break-
point condition of the two simple tests port (call) and port(exit) (with the port functor
omitted). In the second case the disjunction is inside the Prolog test within the true test.

Notice that the two examples refer to the Exit port differently. When you use port (P),
where P is a variable, then, at an exit port, P will be unified with either exit(nondet)
or exit(det), depending on the determinacy of the exited predicate. However, for conve-
nience, the test port (exit) will also succeed at Exit ports. So in the first example above,
exit can be replaced by exit(_), but the exit(_) in the second can not be replaced by
exit.

Finally, there is a subtle point to note with respect to activating the debugger at non Call
ports. Let us look at the following breakpoint:

| ?- add_breakpoint ([pred(foo/2),fail], _).

The intention here is to have the debugger stop at only the Fail port of foo/2. This is very
useful if foo/2 is not supposed to fail, but we suspect that it does. The above breakpoint
will behave as expected when the debugger is leaping, but not while zipping. This is because
for the debugger to be able to stop at a non Call port, a procedure box has to be built at
the Call port of the given invocation. However, no debugging information is collected in zip
mode by default, i.e. procedure boxes are not built. Later we will show how to achieve the
required effect, even in zip mode.
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7.6.4 Specific and Generic Breakpoints

In all the examples so far a breakpoint was put on a specific predicate, described by a goal
or pred test. Such breakpoints are called specific, as opposed to generic ones.

Generic breakpoints are the ones that do not specify a concrete predicate. This can happen
when the breakpoint spec does not contain goal or pred tests at all, or their argument is
not sufficiently instantiated. Here are some examples of generic breakpoints:

| ?- add_breakpoint(line(’/home/bob/myprog.pl’,6), _).

% Generic spypoint added, BID=1

| ?- add_breakpoint (pred(foo/_), _).

% Generic spypoint added, BID=2

| ?- add_breakpoint([goal(G),true((arg(1,G,X),X==bar))], _).
% Generic spypoint added, BID=3

The first breakpoint will stop at all calls in line 6 of the given file, the second at all calls of a
predicate foo, irrespective of the number of arguments, while the third one will stop at any
predicate with bar as its first argument. However, there is an additional implicit condition:
the module name expansion inserts the type-in module as the default module name in the
goal and pred conditions. Consequently, the second and third breakpoint applies only to
predicates in the type-in module (user by default). If you would like the breakpoint to
cover all modules you have to include an anonymous module prefix in the argument of the
goal or pred test:

| ?7- add_breakpoint(pred(_:foo/_), _).

% Generic spypoint added, BID=1

% zip

| ?- add_breakpoint([goal(_:G),true((arg(1,G,X),X==bar))], _).
% Generic spypoint added, BID=2

Generic breakpoints are very powerful, but there is a price to pay: the zip mode is slowed
down considerably.

As said earlier, in principle the debugger is entered at each port of each procedure invocation.
As an optimization, the debugger can request the underlying Prolog engine to run at full
speed and invoke the debugger only when one of the specified predicates is called. This
optimization is used in zip mode, provided there are no generic breakpoints. In the presence
of generic breakpoints, however, the debugger has to be entered at each call, to check their
applicability. Consequently, with generic breakpoints, zip mode execution will not give
much speed-up over debug mode, although its space requirements will still be much lower.

It is therefore advisable to give preference to specific breakpoints over generic ones, whenever
possible. For example, if your program includes predicates foo/2 and foo/3, then it is much
better to create two specific breakpoints, rather than a single generic one with conditions
[pred(foo/_),...].
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spy/2 is a built-in predicate that will create specific breakpoints only. Its first argument is
a generalized predicate spec, much like in spy/1, and the second argument is a breakpoint
spec. spy/2 will expand the first argument to one or more predicate specs, and for each of
these will create a breakpoint, with a pred condition added to the test part of the supplied
breakpoint spec. For example, in the presence of predicates foo/2 and foo/3

| ?7- spy(foo/_, file(...))
is equivalent to:

| ?- add_breakpoint ([pred(foo/2),file(...)], _),
add_breakpoint ([pred(foo/3),file(...)], _).

Note that with spy/[1,2] it is not possible to put a breakpoint on a (yet) undefined
predicate. On the other hand, add_breakpoint/2 is perfectly capable of creating such
breakpoints.

7.6.5 Breakpoint Actions

The action part of a breakpoint spec supplies information to the debugger as to what should
be done when the breakpoint is activated. This is achieved by setting the three so called
debugger action variables. These are listed below, together with their most important
values.
e The show variable prescribes how the debugged goal should be displayed:
print write the goal according to the debugger_print_options Prolog flag.
silent do not display the goal.
e The command variable prescribes what should the debugger do:

ask ask the user.

proceed  continue the execution without stopping, creating a procedure box for the
current goal at the Call port,

flit continue the execution without stopping, without creating a procedure box
for the current goal at the Call port.

e The mode variable prescribes in what mode the debugger should continue the execution:

trace creeping.

debug leaping.

zip zipping.

off without debugging.

For example, the breakpoint below specifies that whenever the Exit port of foo/2 is reached,
no trace message should be output, no interaction should take place and the debugger should
be switched off.
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| ?- add_breakpoint ([pred(foo/2),port(exit)]-
[show(silent),command (proceed) ,mode (off)], _).

Here, the action part consists of three actions, setting the three action variables. This
breakpoint spec can be simplified by omitting the wrappers around the variable values, as
the sets of possible values of the variables are all disjoint. If we use spy/2 then the pred
wrapper goes away, too, resulting in a much more concise, equivalent formulation of the
above breakpoint:

| ?7- spy(foo/2,exit-[silent,proceed,off]).

Let us now revisit the process of breakpoint selection. When the debugger arrives at a
port it first initializes the action variables according to the current debugging and leashing
modes, as shown below:

debugging leashing Action variables

I

mode mode | show command mode

________________________________ e

trace at leashed port | print ask trace
I

trace at unleashed port | print proceed trace
I

debug - | silent proceed debug
I

zip - | silent flit zip

It then considers each breakpoint, most recent first, until it finds a breakpoint whose test
part succeeds. If such a breakpoint is found, its action part is evaluated, normally changing
the action variable settings. A failure of the action part is ignored, in the sense that the
breakpoint is still treated as the selected one. However, as a side-effect, a procedure box will
always be built in such cases. More precisely, the failure of the action part causes the flit
command value to be changed to proceed, all other command values being left unchanged.
This is to facilitate the creation of breakpoints that stop at non-Call ports (see below for
an example).

If no applicable breakpoint is found, then the action variables remain unchanged.

The debugger then executes the actions specified by the action variables. This process,
referred to as the action execution, means the following:

e The current debugging mode is set to the value of the mode action variable.
e A trace message is displayed according to the show variable.

e The program continues according to the command variable.

Specifically, if command is ask, then the user is prompted for a debugger command, which
in turn is converted to new assignments to the action variables. The debugger will then
repeat the action execution process, described above. For example, the ‘c’ (creep) inter-
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active command is converted to [silent,proceed,tracel], the ‘d’ (display) command to
[display,ask] (when command is ask, the mode is irrelevant), etc.

The default values of the action variables correspond to the standard debugger behavior
described in Section 7.2 [Basic Debug], page 77. For example, when an unleashed port is
reached in trace mode, a trace message is printed and the execution proceeds in trace mode,
without stopping. In zip mode, no trace message is shown, and execution continues in zip
mode, without building procedure boxes at Call ports.

Note that a spypoint action part that is empty ([] or not present) is actually treated as
[print,ask]. Again, this is the standard behavior of spypoints, as described in Section 7.2
[Basic Debug]|, page 77.

If an action part is nonempty, but it does not set the action variables, the only effect it will
have is to hide the remaining older spypoints, as the debugger will behave in the standard
way, according to the debugging mode. Still, such breakpoints may be useful if they have
side-effects, e.g.

| ?- spy(foo/2, -[parent_pred(P),
goal(G),
true (format (’~q called from:"w™n’, [G,P]))]).
% The debugger will first zip -- showing spypoints (zip)
% Conditional spypoint for user:foo/2 added, BID=1
true
% zip
| ?- foo(3,X).
foo(2,_701) called from:bar/3
foo(1,_1108) called from:bar/3
f00(0,_1109) called from:bar/3
foo(1,_702) called from:bar/3
X=27;
no

This spypoint produces some output at ports of foo/2, but otherwise will not influence the
debugger. Notice that a breakpoint spec with an empty test part can be written -Actions.

Let us look at some simple examples of what other effects can be achieved by appropriate
action variable settings:

| 7- spy(foo/2, -[print,proceed]).

This is an example of an unleashed spypoint: it will print a trace message passing each port
of foo/2, but will not stop there. Note that because of the proceed command a procedure
box will be built, even in zip mode, and so the debugger will be activated at non-Call ports
of foo/2.

The next example is a variant of the above:

| ?7- spy(foo/2, -[print,flit]).
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This will print a trace message at the Call port of foo/2 and will then continue the execution
in the current debugging mode, without building a procedure box for this call. This means
that the debugger will not be able to notice any other ports of foo/2.

Now let us address the task of stopping at a specific non-Call port of a predicate. For this
to work in zip mode, one has to ensure that a procedure box is built at the Call port. In
the following example, the first spypoint causes a box to be built for each call of foo/2,
while the second one makes the debugger stop when the Fail port of foo/2 is reached.

| ?7- spy(foo/2, call-proceed), spy(foo/2, fail).
% Conditional spypoint for user:foo/2 added, BID=1
% Conditional spypoint for user:foo/2 added, BID=2

You can achieve the same effect with a single spypoint, by putting the fail condition (which
is a shortcut for port(fail)) in the action part, rather than in the test part.

| ?7- spy(foo/2, -[fail,print,ask]).

Here, when the execution reaches the Call port of foo/2, the test part (which contains the
pred(foo/2) condition only) succeeds, so the breakpoint is found applicable. However, the
action part fails at the Call port. This has a side-effect in zip mode, as the default f1it
command value is changed to proceed. In other modes the action variables are unaffected.
The net result is that a procedure box is always built for foo/2, which means that the
debugger will actually reach the Fail port of this predicate. When this happens, the action
part succeeds, and executing the actions print,ask will cause the debugger to stop.

Note that we have to explicitly mention the print,ask actions here, because the action part
is otherwise nonempty (contains the fail condition). It is only the empty or missing action
part, which is replaced by the default [print,ask]. If you want to include a condition in
the action part, you have to explicitly mention all action variable settings you need.

To make this simpler, the debugger handles breakpoint condition macros, which expand
to other conditions. For example leash is a macro that expands to [print,ask]. Conse-
quently, the last example can be simplified to:

| 7- spy(foo/2, -[fail,leash]).

Similarly, the macro unleash expands to [print,proceed], while hide to
[silent,proceed].

We now briefly describe further possible settings to the action variables.

The mode variable can be assigned the values skip (Inv) and qskip(Inv), meaning skipping
and quasi-skipping until a port is reached whose invocation number is less or equal to Inv.
When the debugger arrives at this port it sets the mode variable to trace.

It may be surprising that skip(...) is a mode, rather than a command. This is because
commands are executed and immediately forgotten, but skipping has a lasting effect: the
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program is to be run with no debugging until a specific point, without creating new proce-
dure boxes, and ignoring the existing ones in the meantime.

Here is an example using the skip mode:
| ?7- spy(foo/2,call-[print,proceed,inv(Inv),skip(Inv)]).

This breakpoint will be found applicable at Call ports of foo/2. It will print a trace message
there and will skip over to the Exit or Fail port without stopping. Notice that the number
of the current invocation is obtained in the action part, using the inv condition with a
variable argument. A variant of this example follows:

| 7- spy(foo/2,-[silent,proceed,
(  call -> inv(Inv), skip(Inv)
; true

)1).

This spypoint makes foo/2 invisible in the output of the debugger: at all ports we silently
proceed (i.e. display nothing and do not stop). Furthermore, at the Call port we perform
a skip, so neither foo/2 itself, nor any predicate called within it will be shown by the
debugger.

Notice the use of the true/0 test in the above conditional! This is a breakpoint test that
always succeeds. The debugger also recognizes false as a test that always fails. Note that
while false and fail are synonyms as built-in predicates, they are completely different as
breakpoint conditions: the latter is a shortcut for port (fail).

The show variable has four additional value patterns. Setting it to display, write, or
write_term(Options) will result in the debugged goal G being shown using display (G
), writeq(G), or write_term(G, Options), respectively. The fourth pattern, Method-Sel
, can be used for replacing the goal in the trace message by one of its subterms, the one
pointed to by the selector Sel.

For example, the following spypoint instructs the debugger to stop at each port of foo/2,
and to only display the first argument of foo/2 in the trace message, instead of the complete
goal.

| ?- spy(foo/2, -[print-[1],ask]).
% Conditional spypoint for user:foo/2 added, BID=1
| ?7- foo(5,X).

* 1 1 Call: "1 65 7

The command variable has several further value patterns. The variable can be set to
proceed(01dGoal,NewGoal). At a Call port this instructs the debugger to first build a
procedure box for the current goal, then to unify it with OldGoal and finally execute New-
Goal in its place (cf. the ‘0’ (unify) interactive debugger command). At non-Call ports this
command first goes back to the Call port (cf. the ‘r’ (retry) command), and then does the
above activities.
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A variant of the proceed/2 command is £1it (01dGoal,NewGoal). This has the same effect,
except for not building a procedure box for OldGoal.

We now just briefly list further command values (for the details, see Section 7.9.9 [Action
Variables], page 126). Setting command to exception(E) will raise an exception E, abort
will abort the execution. The values retry(Inv), reexit(Inv), redo(Inv), fail (Inv) will
cause the debugger to go back to an earlier Call, Exit, Redo, or Fail port with invocation
number Inv (cf. the ‘j7 (jump) interactive debugger command).

Sometimes it may be useful to access the value of an action variable. This can be done with
the get condition: e.g. get (mode(M)) will unify M with the current execution mode. The
get(...) wrapper can be omitted in the test part, but not in the action part (since there
a mode (M) action will set, rather than read, the mode action variable). For example:

| ?- spy(foo/2, mode(trace)-show(print-[1])).

This spypoint will be found applicable only in trace mode (and will cause the first argument
of foo/2 to appear in the trace message). (The mode and show wrappers can also be omitted
in the above example, they are used only to help interpreting the breakpoint spec.)

7.6.6 Advice-points

As mentioned earlier, there are two kinds of breakpoints: spypoints and advice-points.
The main purpose of spypoints is to support interactive debugging. In contrast with this,
advice-points can help you to perform non-interactive debugging activities. For example,
the following advice-point will check a program invariant: whether the condition Y-X<3
always holds at exit from foo(X,Y).

| ?- add_breakpoint ([pred(foo/2),advice]
-[exit,goal(foo(X,Y)),\+true(Y-X<3),tracel, _).
% Conditional advice point for user:foo/2 added, BID=1

% advice

| ?- foo(4, Y).

Y =3

% advice

| ?- foo(9, Y).
3 3 Exit: foo(7,13) 7 n
2 2 Exit: foo(8,21) ?

The test part of the above breakpoint contains a pred test, and the advice condition,
making it an advice-point. (You can also include the debugger condition in spypoint specs,
although this is the default interpretation.)

The action part starts with the exit port condition. Because of this the rest of the action
part is evaluated only at Exit ports. By placing the port condition in the action part, we
ensure the creation of a procedure box at the Call port, as explained earlier.
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Next, we get hold of the goal arguments using the goal condition, and use the \+true (Y-
X<3) test to check if the invariant is violated. If this happens, the last condition sets the
mode action variable to trace, switching on the interactive debugger.

Following the add_breakpoint/2 call the above example shows two top-level calls to foo/2.
The invariant holds within the first goal, but is violated within the second. Notice that the
advice mechanism works with the interactive debugger switched off.

You can ask the question, why do we need advice-points? The same task could be imple-
mented using a spypoint. For example:

| ?- add_breakpoint (pred(foo/2)
-[exit,goal(foo(X,Y)),\+true(Y-X<3),leash], _).

% The debugger will first zip -- showing spypoints (zip)

% Conditional spypoint for user:foo/2 added, BID=1

% zip

| ?- foo(4, X).

X =3

% zip

| ?- foo(9, X).

* 3 3 Exit: foo(7,13) 7 z
* 2 2 Exit: foo(8,21) 7

The main reason to have a separate advice mechanism is to be able to perform checks
independently of the interactive debugging. With the second solution, if you happen to
start some interactive debugging, you cannot be sure that the invariant is always checked.
For example, no spypoints will be activated during a skip. In contrast with this, the advice
mechanism is watching the program execution all the time, independently of the debugging
mode.

Advice-points are handled in very much the same way as spypoints are. When arriving
at a port, advice-point selection takes place first, followed by spypoint selection. This can
be viewed as the debugger making two passes over the current breakpoints, considering
advice-points only in the first pass, and spypoints only in the second.

In both passes the debugger tries to find a breakpoint that can be activated, checking the
test and action parts, as described earlier. However, there are some differences between the
two passes:

e Advice processing is performed if there are any (non-disabled) advice-points. Spypoint
processing is only done if the debugger is switched on, and is not doing a skip.

e For advice-points, the action variables are initialized as follows: mode is set to current
debugging mode, command = proceed, show = silent. Note that this is done indepen-
dently of the debugging mode (in contrast with the spypoint search initialization).

e The default action part for advice-points is []. This means that if no action part is
given, then the only effect of the advice-point will be to build a procedure box (because
of the command = proceed initialization).

e If no advice-point was found applicable, then command is set to f1it.
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Having performed advice processing, the debugger inspects the command variable. The
command values different from proceed and flit are called divertive, as they alter the
normal flow of control (e.g. proceed(...,...)), or involve user interaction (ask). If the
command value is divertive, then the prescribed action is performed immediately, without
executing the spypoint selection process. Otherwise, if command = proceed, it is noted
that the advice part requests the building of a procedure box. Next, the second, spypoint
processing pass is carried out, and possible user interaction takes place, as described earlier.
A procedure box is built if either the advice-point or the spypoint search requests this.

Let us conclude this section by another example, a generic advice-point for collecting branch
coverage information:

| ?- add_breakpoint(
(advice,call) -
( line(F,L) -> true(assert(line_reached(F,L))), flit
; flit
), ).
% Generic advice point added, BID=1
% advice,source_info
| ?- foo(4,X).
X=37;
no
% advice,source_info
?- setof (X, line_reached(F,X), S).
> /home/bob/myprog.pl’,
[31,33,34,35,36]

I
F
S

This advice-point will be applicable at every Call port. It will then assert a fact with the
file name and the line number if source information is available. Finally, it will set the
command variable to £1it on both branches of execution. This is to communicate the fact
that the advice-point does not request the building of a procedure box.

It is important to note that this recording of the line numbers reached is performed inde-
pendently of the interactive debugging.

In this example we used the ’,’/2 operator, rather than list notation, for describing the
conjunction of conditions, as this seems to fit better the if-then-else expression used in the
action part. We could have still used lists in the tests part, and in the “then” part of
the actions. Note that if we omit the “else” branch, the action part will fail if no source
information is available for the given call. This will cause a procedure box to be built,
which is an unnecessary overhead. An alternative solution, using the line/2 test twice, is
the following:

| ?- add_breakpoint([advice,call,line(_,_)]-
[1ine(F,L),true(assert(line_reached(F,L))),flit], _).I

Further examples of advice-points are available in 1ibrary(debugger_examples).
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7.6.7 Built-in Predicates for Breakpoint Handling

This section introduces built-in predicates for evaluating breakpoint conditions, and for
retrieving, deleting, disabling and enabling breakpoints.

The breakpoint spec of the last advice-point example was quite complex. And, to be practi-
cal, it should be improved to assert only line numbers not recorded so far. For this you will
write a Prolog predicate for the conditional assertion of file/line information, assert_line_
reached(File,Line), and use it instead of the assert(line_reached(F,L)) condition.

Because of the complexity of the breakpoint spec, it looks like a good idea to move the
if-then-else condition into Prolog code. This requires that we test the line (F,L) condition
from Prolog. The built-in predicate execution_state/1 serves for this purpose. It takes
a simple or a composite breakpoint condition as its argument and evaluates it, as if in the
test part of a breakpoint spec. The predicate will succeed iff the breakpoint condition eval-
uates successfully. Thus execution_state/1 allows you to access debugging information
from within Prolog code. For example, you can write a Prolog predicate, assert_line_
reached/0, which queries the debugger for the current line information and then processes
the line number:

assert_line_reached :-
( execution_state(line(F,L)) -> assert_line_reached(F,L).
; true

).

| ?- add_breakpoint([advice,call]-
[true (assert_line_reached),flit], _).

Arbitrary tests can be used in execution_state/1, if it is called from within a true condi-
tion. It can also be called from outside the debugger, but then only a subset of conditions
is available. Furthermore, the built-in predicate execution_state/2 allows accessing in-
formation from past debugger states (see Section 7.6.8 [Accessing Past Debugger States],
page 105).

The built-in predicates remove_breakpoints(BIDs), disable_breakpoints(BIDs) and
enable_breakpoints(BIDs) serve for removing, disabling and enabling the given break-
points. Here BIDs can be a single breakpoint identifier, a list of these, or one of the atoms
all, advice, debugger.

We now show an application of remove_breakpoints/1 for implementing one-off break-
points, i.e. breakpoints that are removed when first activated.

For this we need to get hold of the currently selected breakpoint identifier. The bid (BID)
condition serves for this purpose: it unifies its argument with the identifier of the breakpoint
being processed. The following is an example of a one-off breakpoint.
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| ?- spy(foo/2, -[bid(BID),true(remove_breakpoints(BID)),leash]).
% Conditional spypoint for user:foo/2 added, BID=1

% zip

| ?- foo(2, X).

% Conditional spypoint for user:foo/2, BID=1, removed (last)
1 1 Call: foo(2,_402) 7 z

X=1

The action part of the above breakpoint calls the bid test to obtain the breakpoint identifier.
It then uses this number as the argument to the built-in predicate remove_breakpoints/1,
which removes the activated breakpoint.

The built-in predicate current_breakpoint(Spec, BID, Status, Kind, Type) enumer-
ates all breakpoints present in the debugger. For example, if we call current_breakpoint/5
before the invocation of foo/2 in the last example, we get this:

| ?- current_breakpoint (Spec, BID, Status, Kind, Type).
Spec = [pred(user:foo/2)]-

[bid(_A) ,true(remove_breakpoints(_A)),leash],

BID = 1,

Status = on,

Kind = conditional (user:foo/2),

Type = debugger

Here Spec is the breakpoint spec of the breakpoint with identifier BID. Status is on
for enabled breakpoints and off for disabled ones. Kind is one of plain(MFunc),
conditional (MFunc) or generic, where MFunc is the module qualified functor of the
specific breakpoint. Finally Type is the breakpoint type: debugger or advice.

The Spec returned by current_breakpoint/5 is exactly the same as the one given in add_
breakpoint/2. If the breakpoint was created by spy/2, then the test part is extended
by a pred condition, as exemplified above. Earlier we described some pre-processing steps
that the spec goes through, such as moving the module qualification of the spec to certain
conditions. These transformations are performed on the copy of the breakpoint used for
testing. Independently of this, the debugger also stores the original breakpoint, which is
returned by current_breakpoint/5.

7.6.8 Accessing Past Debugger States

In this section we introduce the built-in predicates for accessing past debugger states, and
the breakpoint conditions related to these.

The debugger collects control flow information about the goals being executed, more pre-
cisely about those goals, for which a procedure box is built. This collection of information,
the backtrace, includes the invocations that were called but not exited yet, as well as those
that exited nondeterminately. For each invocation, the main data items present in the
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backtrace are the following: the goal, the module, the invocation number, the depth and
the source information, if any.

Furthermore, as you can enter a new break level from within the debugger, there can be
multiple backtraces, one for each active break level.

You can access all the information collected by the debugger using the built-in predicate
execution_state(Focus, Tests). Here Focus is a ground term specifying which break
level and which invocation to access. It can be one of the following:

e break_level(BL) selects the current invocation within the break level BL.
e inv(Inv) selects the invocation number Inv within the current break level.

e A list containing the above two elements, selects the invocation with number Inv within
break level BL.

Note that the top-level counts as break level 0, while the invocations are numbered from 1
upwards.

The second argument of execution_state/2, Tests, is a simple or composite breakpoint
condition. Most simple tests can appear inside Tests, with the exception of the port,
bid, advice, debugger, and get tests. These tests will be interpreted in the context of
the specified past debugger state. Specifically, if a true/1 condition is used, then any
execution_state/1 queries appearing in it will be evaluated in the past context.

To illustrate the use of execution_state/2, we now define a predicate last_call_
arg(ArgNo, Arg), which is to be called from within a break, and which will look at the last
debugged goal of the previous break level, and return in Arg the ArgNoth argument of this
goal.

last_call_arg(ArgNo, Arg) :-
execution_state(break_level(BL1)),
BL is BL1-1,
execution_state(break_level(BL), goal(Goal)),
arg(ArgNo, Goal, Arg).

We see two occurrences of the term break_level(...) in the above example. Although
these look very similar, they have different roles. The first one, in execution_state/1, is a
breakpoint test, which unifies the current break level with its argument. Here it is used to
obtain the current break level and store it in BL1. The second use of break_level(...),
in the first argument of execution_state/2, is a focus condition, whose argument has to
be instantiated, and which prescribes the break level to focus on. Here we use it to obtain
the goal of the current invocation of the previous break level.

Note that the goal retrieved from the backtrace is always in its latest instantiation state.
For example, it not possible to get hold of the goal instantiation at the Call port, if the
invocation in question is at the Exit port.

Here is an example run, showing how last_call_arg/2 can be used:
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5 2 Call: _937 is 13+8 7 b
% Break level 1
%1
| 7- last_call_arg(2, A).
A = 13+8

There are some further breakpoint tests that are primarily used in looking at past execution
states.

The test max_inv(MaxInv) returns the maximal invocation number within the current (or
selected) break level. The test exited(Boolean) unifies Boolean with true if the invocation
has exited, and with false otherwise.

The following example predicate lists those goals in the backtrace, together with their
invocation numbers, that have exited. These are the invocations that are listed by the t
interactive debugger command (print backtrace), but not by the g command (print ancestor
goals). Note that the predicate between (N, M, I) enumerates all integers such that N <
I<M.

exited_goals :-
execution_state(max_inv(Max)),
between(1, Max, Inv),
execution_state(inv(Inv), [exited(true),goal(G)]),
format(’~t~d"6| “p\n’, [Inv,G]l),
fail.
exited_goals.

...

7x 41 11 Exit: foo(2,1) 7 @
| :- exited_goals.

26 foo0(3,2)

28 bar(3,1,1)

31 foo(2,1)

33 bar(2,1,0)

36 foo(1,1)

37 f00(0,0)

39 foo(1,1)

41 foo(2,1)

43 bar(2,1,0)

46 foo(1,1)

47 fo00(0,0)
7x 41 11 Exit: foo(2,1) 7

Note that similar output can be obtained by entering a new break level and calling exited_
goals from within an execution_state/2:

%1
| ?- execution_state(break_level(0), true(exited_goals)).
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The remaining two breakpoint tests allow you to find parent and ancestor invocations
in the backtrace. The parent_inv(Inv) test unifies Inv with the invocation number of
the youngest ancestor present in the backtrace, called debugger-parent for short. The test
ancestor (AncGoal, Inv) looks for the youngest ancestor in the backtrace that is an instance
of AncGoal. Tt then unifies the ancestor goal with AncGoal and its invocation number with
Inv.

Assume you would like to stop at all invocations of foo/2 that are somewhere within bar/1,
possibly deeply nested. The following two breakpoints achieve this effect:

| 7- spy(bar/1, advice), spy(foo/2, ancestor(bar(_),_)).
% Plain advice point for user:bar/1 added, BID=3
% Conditional spypoint for user:foo/2 added, BID=4

We added an advice-point for bar/1 to ensure that all calls to it will have procedure boxes
built, and so become part of the backtrace. Advice-points are a better choice than spypoints
for this purpose, as with 7- spy(bar/1, -proceed) the debugger will not stop at the call
port of bar/1 in trace mode. Note that it is perfectly all right to create an advice-point
using spy/2, although this is a bit of terminological inconsistency.

Further examples of accessing past debugger states can be found in library(debugger_
examples).

7.6.9 Storing User Information in the Backtrace

The debugger allows the user to store some private information in the backtrace. It al-
locates a Prolog variable in each break level and in each invocation. The breakpoint test
private(Priv) unifies Priv with the private information associated with the break level,
while the test goal_private(GPriv) unifies GPriv with the Prolog variable stored in the
invocation.

Both variables are initially unbound, and behave as if they were passed around the program
being debugged in additional arguments. This implies that any variable assignments done
within these variables are undone on backtracking.

The private condition practically gives you access to a Prolog variable shared by all invo-
cations of a break level. This makes it possible to remember a term and look at it later, in
a possibly more instantiated form, as shown by the following example.
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memory (Term) :-
execution_state(private(P)),
memberchk (myterm(Term), P).

| ?- trace, append([1,2,3,4], [5,6], L).

1 1 Call: append([1,2,3,4],[5,6],_514) 7 @
| :- append(_,_,L) memory(L).

1 1 Call: append([1,2,3,4],[5,6],_514) ? ¢

2 2 Call: append([2,3,4],[5,6],_2064) ? c

3 3 Call: append([3,4],[5,6],_2422) ? ¢

4 4 Call: append([4],[5,6],_2780) 7 @

| :- memory(L), write(L), nl.
[1,2,3]_2780]
4 4 Call: append([4],[5,6],_2780) 7

The predicate memory/1 receives the term to be remembered in its argument. It gets hold
of the private field associated with the break level in variable P, and calls memberchk/2 (see
Chapter 20 [Lists|, page 363), with the term to be remembered, wrapped in myterm, as the
list element, and the private field, as the list. Thus the latter, initially unbound variable,
is used as an open-ended list. For example, when memory/1 is called for the first time, the
private field gets instantiated to [myterm(Term)|_]. If later you call memory/1 with an
uninstantiated argument, it will retrieve the term remembered earlier and unify it with the
argument.

The above trace excerpt shows how this utility predicate can be used to remember an
interesting Prolog term. Within invocation number 1 we call memory/1 with the third,
output argument of append/3, using the ‘@’ command (see Section 7.5 [Debug Commands],
page 81). A few tracing steps later, we retrieve the term remembered and print it, showing
its current instantiation. Being able to access the instantiation status of some terms of
interest can be very useful in debugging. In library(debugger_examples) we describe
new debugger commands for naming Prolog variables and providing name-based access to
these variables, based on the above technique.

We could have avoided the use of memberchk/2 in the example by simply storing
the term to be remembered in the private field itself (memory(Term) :- execution_
state(private(Term)).). But this would have made the private field unusable for other
purposes. For example, the finite domain constraint debugger (see Chapter 36 [FDBG],
page 519) would stop working, as it relies on the private fields.

There is only a single private variable of both kinds within the given scope. Therefore the
convention of using an open ended list for storing information in private fields, as shown
in the above example, is very much recommended. The different users of the private field
are distinguished by the wrapper they use (e.g. myterm/1 above, fdbg/1 for the constraint
debugger, etc.). Future SICStus Prolog releases may enforce this convention by providing
appropriate breakpoint tests.

We now present an example of using the goal private field. Earlier we have shown a spypoint
definition that made a predicate invisible in the sense that its ports are silently passed
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through and it is automatically skipped over. However, with that earlier solution, execution
always continues in trace mode after skipping. We now improve the spypoint definition:
the mode in which the Call port was reached is remembered in the goal private field, and
the mode action variable is reset to this value at the Exit port.

mode_memory(Mode) :-—
execution_state(goal_private(GP)),
memberchk (mymode (Mode) , GP).

| ?- spy(foo/2, -[silent,proceed,
true (mode_memory (MM)),
(  call -> get(mode(MM)), inv(Inv), skip(Inv)
;  exit -> mode(MM)
5 true

)1).

Here, we first define an auxiliary predicate mode_memory/1, which uses the open list con-
vention for storing information in the goal private field, applying the mymode/1 wrapper.
We then create a spypoint for foo/2, whose action part first sets the print and command
action variables. Next, the mode_memory/1 predicate is called, unifying the mode memory
with the MM variable. We then branch in the action part: at Call ports the uninstantiated
MM is unified with the current mode, and a skip command is issued. At Exit ports MM holds
the mode saved at the Call port, so the mode (MM) action re-activates this mode. At all
other ports we just silently proceed without changing the debugger mode.

7.6.10 Hooks Related to Breakpoints

There are two hooks related to breakpoints.

The hook breakpoint_expansion(Macro,Body) makes it possible for the user to extend
the set of allowed conditions. This hook is called, at breakpoint addition time, with each
simple test or action within the breakpoint spec, as the Macro argument. If the hook
succeeds, then the term returned in the Body argument is substituted for the original test
or action. Note that Body can not span both the test and the action part, i.e. it cannot
contain the - /2 operator. The whole Body will be interpreted either as a test or as an
action, depending on the context of the original condition.

We now give a few examples for breakpoint macros. The last example defines a condition
making a predicate invisible, a reformulation of the last example of the previous subsection.
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:- multifile user:breakpoint_expansion/2.
user:breakpoint_expansion(
skip, [inv(I),skip(I)]).

user:breakpoint_expansion(
gpriv(Value),
[goal_private(GP) ,true(memberchk(Value,GP))]1).

user:breakpoint_expansion(
invisible,
[silent,proceed,
( call -> get(mode(M)), gpriv(mymode(M)), skip
; exit -> gpriv(mymode(MM)), mode(MM)
; true

)1).
| ?- spy(foo/2, -invisible).

We first define the skip macro, instructing the debugger to skip the current invocation.
This macro is only meaningful in the action part.

The second clause defines the gpriv/2 macro, a generalization of the earlier
mode_memory/1 predicate. For example, gpriv(mymode(M)) expands to goal_
private (GP) ,true (memberchk (mymode (M) ,GP)). This embodies the convention of using
open-ended lists for the goal private field.

Finally, the last clause implements the action macro invisible/0, which makes the pred-
icate in question to disappear from the trace. The last line shows how this macro can be
used to make foo/2 invisible.

Below is an alternative implementation of the same macro. Here we use a Prolog predicate
that returns the list of action variable settings to be applied at the given port. Notice that
a variable can be used as a breakpoint condition, as long as this variable gets instantiated
to a (simple or composite) breakpoint condition by the time it is reached in the process of
breakpoint evaluation.

user:breakpoint_expansion(invisible,
[true(invisible(Settings)),Settings]).

invisible([proceed,silent,NewMode]) :-
execution_state([mode (M) ,port(P),inv(Inv),goal_private(GP)]),
memberchk (mymode (MM) , GP),
(P ==call -> MM = M, NewMode = skip(Inv)
;P = exit(_) -> NewMode = MM
; NewMode = M
).
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The second hook related to breakpoints is debugger_command_hook (DCommand, Actions).
This hook serves for customizing the behavior of the interactive debugger, i.e. for introducing
new interactive debugger commands. The hook is called for each debugger command read
in by the debugger. DCommand contains the abstract format of the debugger command
read in, as returned by the query facility (see Section 8.13.3 [Query Processing], page 200).
If the hook succeeds, it should return in Actions an action part to be evaluated as the result
of the command.

If you want to redefine an existing debugger command, you should study library(’SU_
messages’) to learn the abstract format of this command, as returned by the query facility.
If you want to add a new command, it suffices to know that unrecognized debugger com-
mands are returned as unknown (Line,Warning). Here, Line is the cude-list typed in, with
any leading layout removed, and Warning is a warning message.

The following example defines the ‘S’ interactive debugger command to behave as skip at
Call and Redo ports, and as creep otherwise:

:- multifile user:debugger_command_hook/2.
user:debugger_command_hook (unknown ([0°S|_],_), Actions) :-
execution_state([port(P),inv(I)]),
Actions = [Mode,proceed,silent],
(P = call -> Mode = skip(I)
;P = redo -> Mode = skip(I)
; Mode = trace

).

Note that the silent action is needed above; otherwise, the trace message will be printed
a second time, before continuing the execution.

library(debugger_examples) contains some of the above hooks, as well as several others.

7.6.11 Programming Breakpoints

We will show two examples using the advanced features of the debugger.

The first example defines a hide_exit (Pred) predicate, which will hide the Exit port for
Pred (i.e. it will silently proceed), provided the current goal was already ground at the
Call port, and nothing was traced inside the given invocation. The hide_exit (Pred) goal
creates two spypoints for predicate Pred:

:- meta_predicate hide_exit(:).
hide_exit(Pred) :-
add_breakpoint ([pred (Pred) ,call]-
true(save_groundness), _),
add_breakpoint ([pred(Pred) ,exit,true(hide_exit)]-hide, _).
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The first spypoint is applicable at the Call port, and it calls save_groundness to check
if the given invocation was ground, and if so, it stores a term hide_exit (ground) in the
goal_private attribute of the invocation.

save_groundness :-—
execution_state([goal(_:G),goal_private(Priv)]),
ground(G), !, memberchk(hide_exit(ground), Priv).
save_groundness.

The second spypoint created by hide_exit/1 is applicable at the Exit port and it checks
whether the hide_exit/0 condition is true. If so, it issues a hide action, which is a
breakpoint macro expanding to [silent,proceed].

hide_exit :-
execution_state([inv(I) ,max_inv(I),goal_private(Priv)]),
memberchk (hide_exit(Ground), Priv), Ground == ground.

Here, hide_exit encapsulates the tests that the invocation number is the same as the last
invocation number used (max_inv), and that the goal_private attribute of the invocation
is identical to ground. The first test ensures that nothing was traced inside the current
invocation.

If we load the above code, as well as the small example below, then the following interaction
can take place. Note that the hide_exit predicate is called with the _:_ argument, resulting
in generic spypoints being created.

| ?- [user].
| cnt(0) :- !.
| cnt(N) :-
N > 0, N1 is N-1, cnt(N1).
| °D
% consulted user in module user, O msec 424 bytes

| ?- hide_exit(_:_), trace, cnt(1).

% The debugger will first zip -- showing spypoints (zip)

% Generic spypoint added, BID=1

% Generic spypoint added, BID=2

% The debugger will first creep -- showing everything (trace)

# 1 1 Call: cnt(1) ? ¢

# 2 2 Call: 1>0 7 ¢

# 3 2 Call: _2019 is 1-1 7 ¢
3 2 Exit: 0 is 1-1 7 ¢

# 4 2 Call: cnt(0) 7 ¢
1 1 Exit: cnt(1) ? ¢

% trace

| 7-
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Invocation 1 is ground, its Exit port is not hidden, because further goals were traced inside
it. On the other hand, Exit ports of ground invocations 2 and 4 are hidden.

Our second example defines a predicate call_backtrace(Goal, BTrace), which will ex-
ecute Goal and build a backtrace showing the successful invocations executed during the
solution of Goal.

The advantages of such a special backtrace over the one incorporated in the debugger are
the following:

e it has much lower space consumption;

e the user can control what is put on and removed from the backtrace (e.g. in this example
all goals are kept, even the ones that exited determinately);

e the interactive debugger can be switched on and off without affecting the “private”
backtrace being built.

The call_backtrace/2 predicate is based on the advice facility. It uses the variable acces-
sible via the private(_) condition to store a mutable holding the backtrace (see Section 8.7
[Meta Logic|, page 183). Outside the call_backtrace predicate the mutable will have the
value off.

The example is a module-file, so that internal invocations can be identified by the module
name. We load the lists library, because memberchk/2 will be used in the handling of the
private field.

:— module(backtrace, [call_backtrace/2]).
:- use_module(library(lists)).

:— meta_predicate call_backtrace(:, 7).
call_backtrace(Goal, BTrace) :-

Spec = [advice,call]

-[true((goal (M:G),store_goal (M,G))),flit],

(  current_breakpoint(Spec, _, on, _, _) -> B = []

; add_breakpoint (Spec, B)

),

call_cleanup(call_backtracel(Goal, BTrace),

remove_breakpoints(B)).

call_backtrace(Goal, BTrace) is a meta-predicate, which first sets up an appropriate
advice-point for building the backtrace. The advice-point will be activated at each Call
port, will call the store_goal/2 predicate with arguments containing the module and the
goal in question. Note that the advice-point will not build a procedure box (cf. the f1it
command in the action part).

The advice-point will be added just once: any further (recursive) calls to call_backtrace/2
will notice the existence of the breakpoint and will skip the add_breakpoint/2 call.
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Having ensured the appropriate advice-point exists, call_backtrace/2 calls call_
backtracel/2 with a cleanup operation that removes the breakpoint added, if any.

:- meta_predicate call_backtracel(:, 7).
call_backtracel(Goal, BTrace) :-

execution_state(private(Priv)),

memberchk (backtrace_mutable (Mut), Priv),

(  is_mutable(Mut) -> get_mutable(0ld, Mut),

update_mutable([], Mut)

; create_mutable([], Mut), 01d = off

),

call(Goal),

get_mutable(BTrace, Mut), update_mutable(0ld, Mut).

The predicate call_backtracel/2 retrieves the private field of the execution state and uses
it to store a mutable, wrapped in backtrace_mutable. When first called within a top-level
the mutable is created with the value []. In later calls the mutable is re-initialized to [].
Having set up the mutable, Goal is called. In the course of the execution of the Goal the
debugger will accumulate the backtrace in the mutable. Finally, the mutable is read, its
value is returned in BTrace, and it is restored to its old value (or off).

store_goal(M, G) :-
M \== backtrace,
G \= call()),
execution_state(private(Priv)),
memberchk (backtrace_mutable(Mut), Priv),
is_mutable(Mut),
get_mutable(BTrace, Mut),
BTrace \== off, !,
update_mutable([M:G|BTrace], Mut).
store_goal(_, _).

store_goal/2 is the predicate called by the advice-point, with the module and the goal
as arguments. We first ensure that calls from within the backtrace module and those of
call/1 get ignored. Next, the module qualified goal term is prepended to the mutable value
retrieved from the private field, provided the mutable exists and its value is not off.

Below is an example run, using a small program:



116 SICStus Prolog

| ?- [user].
| ecnt(N):- N =< 0, !.
| ent(N) :-
N > 0, N1 is N-1, cnt(N1).
| °D
% consulted user in module user, O msec 424 bytes

| ?- call_backtrace(cnt(1), B).
% Generic advice point added, BID=1
% Generic advice point, BID=1, removed (last)

B = [user:(0=<0),user:cnt(0),user: (0 is 1-1),user:(1>0),user:cnt(1)]
| 7-

Note that the backtrace produced by call_backtrace/2 can not contain any information
regarding failed branches. For example, the very first invocation within the above execution,
1 =< 0, is first put on the backtrace at its Call port, but this is immediately undone because
the goal fails. If you would like to build a backtrace that preserves failed branches, you
have to use side-effects, e.g. dynamic predicates.

Further examples of complex breakpoint handling are contained in library(debugger_
examples).

This concludes the tutorial introduction of the advanced debugger features.
7.7 Breakpoint Handling Predicates

This section describes the advanced built-in predicates for creating and removing break-
points.

add_breakpoint (:Spec, ?BID) development
Adds a breakpoint with a spec Spec, the breakpoint identifier assigned is unified
with BID. Spec is one of the following;:

Tests—-Actions
Tests standing for Tests-[]

-Actions  standing for []1-Actions

Here, both Tests and Actions are either a simple Condition, see Section 7.9
[Breakpoint Conditions], page 120, or a composite Condition. Conditions can
be composed by forming lists, or by using the ,’; *;’, *=>’, and ‘\+’ operators,
with the usual meaning of conjunction, disjunction, if-then-else, and negation,
respectively. A list of conditions is equivalent to a conjunction of the same
conditions ([A|B] is treated as (4,B)).

The add_breakpoint/2 predicate performs some transformations and checks
before adding the breakpoint. All condition macros invoked are expanded into
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their bodies, and this process is repeated for the newly introduced bodies. The
goal and pred conditions are then extracted from the outermost conjunctions
of the test part and moved to the beginning of the conjunction. If these are
inconsistent, a consistency error is signalled. Module name expansion is per-
formed for certain tests, as described below.

Both the original and the transformed breakpoint spec is recorded by the debug-
ger. The original is returned in current_breakpoint/5, while the transformed
spec is used in determining the applicability of breakpoints.

There can only be a single plain spypoint for each predicate. If a plain spypoint
is added, and there is already a plain spypoint for the given predicate, then:

a. the old spypoint is deleted and a new added as the most recent breakpoint,
if this change affects the breakpoint selection mechanism.

b. otherwise, the old spypoint is kept and enabled if needed.

spy ( :PredSpec, :Spec) development
Adds a conditional spypoint with a breakpoint spec formed by adding
pred(Pred) to the test part of Spec, for each predicate Pred designated by
the generalized predicate spec PredSpec.

current_breakpoint (:Spec, ?BID, ?Status, ?Kind, ?Type) development
There is a breakpoint with breakpoint spec Spec, identifier BID, status Status,
kind Kind, and type Type. Status is one of on or off, referring to enabled
and disabled breakpoints. Kind is one of plain(MFunc), conditional (MFunc
) or generic, where MFunc is the module qualified functor of the specific
breakpoint. Type is the breakpoint type: debugger or advice.

current_breakpoint/5 enumerates all breakpoints on backtracking.

The Spec as returned by current_breakpoint/5 is exactly the same as supplied
at the creation of the breakpoint,

remove_breakpoints (+BIDs) development
disable_breakpoints (+BIDs) development
enable_breakpoints (+BIDs) development

Removes, disables or enables the breakpoints with identifiers specified by BIDs.
BIDs can be a number, a list of numbers or one of the atoms: all, debugger,
advice. The atoms specify all breakpoints, debugger type breakpoints and
advice type breakpoints, respectively.

execution_state(:Tests) development
Tests are satisfied in the current state of the execution. Arbitrary tests can be
used in this predicate, if it is called from inside the debugger, i.e. from within a
true condition. Otherwise only those tests can be used, which query the data
stored in the backtrace. An exception is raised if the latter condition is violated,
i.e. a non-backtraced test (see Section 7.9 [Breakpoint Conditions], page 120)
occurs in a call of execution_state/1 from outside the debugger.

execution_state(+FocusConditions, :Tests) development
Tests are satisfied in the state of the execution pointed to by FocusConditions
(see Section 7.9.7 [Past States|, page 126). An exception is raised if there is a
non-backtraced test among Tests.
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Note that the predicate arguments holding a breakpoint spec (Spec or Tests above) are sub-
ject to module name expansion. The first argument within simple tests goal(_), pred(_),
parent_pred(_), parent_pred(_,_), ancestor(_,_), and true(_) will inherit the module
name from the (module name expanded) breakpoint spec/tests predicate argument, if there
is no explicit module qualification within the simple test. Within the proceed(01d, New)
and £1it(01d,New) command value settings, Old will get the module name from the goal
or pred condition by default, while New from the whole breakpoint spec argument.

The following hook predicate can be used to customize the behavior of the interactive
debugger.

debugger_command_hook (+DCommand, 7Actions) hook,development

user:debugger_command_hook (+DCommand, ?Actions)
This predicate is called for each debugger command SICStus Prolog reads in.
The first argument is the abstract format of the debugger command DCom-
mand, as returned by the query facility (see Section 8.13.3 [Query Processing],
page 200). If it succeeds, Actions is taken as the list of actions (see Section 7.9.6
[Action Conditions], page 125) to be done for the given debugger command. If
it fails, the debugger command is interpreted in the standard way.

Note that if a line typed in in response to the debugger prompt can not be
parsed as a debugger command, debugger_command_hook/2 is called with the
term unknown(Line,Warning). Here, Line is the code-list typed in, with any
leading layout removed, and Warning is a warning message. This allows the
user to define new debugger commands, see Section 7.6.10 [Hooks Related to
Breakpoints|, page 110 for an example.

7.8 The Processing of Breakpoints

This section describes in detail how the debugger handles the breakpoints. For the purpose
of this section disabled breakpoints are not taken into account: whenever we refer to the
existence of some breakpoint(s), we always mean the existence of enabled breakpoint(s).

The Prolog engine can be in one of the following three states with respect to the debugger:

no debugging
if there are no advice-points and the debugger is either switched off, or doing a
skip;

full debugging
if the debugger is in trace or debug mode (creeping or leaping), or there are
any generic breakpoints;

selective debugging

in all other cases.

In the selective debugging state only those predicate invocations are examined, for which
there exists a specific breakpoint. In the full debugging state all invocations are examined,
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except those calling a predicate of a hidden module (but even these will be examined, if
there is a specific breakpoint for them). In the no debugging state the debugger is not
entered at predicate invocations.

Now we describe what the debugger does when examining an invocation of a predicate, i.e.
executing its Call port. The debugger activities can be divided into three stages: advice-
point processing, spypoint processing and interaction with the user. The last stage may be
repeated several times before program execution continues.

The first two stages are similar, as they both search for an applicable breakpoint (spypoint
or advice-point). This common breakpoint search is carried out as follows. The debugger
considers all breakpoints of the given type, most recent first. For each breakpoint, the test
part of the spec is evaluated, until one successful is found. Any variable bindings created in
this successful evaluation are then discarded (this is implemented by enclosing it in double
negation). The first breakpoint, for which the evaluation of the test part succeeds is selected.
If such a breakpoint can be found, then the breakpoint search is said to have completed
successfully, otherwise it is said to have failed.

If a breakpoint has been selected then its action part is evaluated, normally setting some
debugger action variables. If the action part fails, then, as a side-effect, it is ensured that a
procedure box will be built. This is achieved by changing the value of the command action
variable from f1it to proceed.

Having described the common breakpoint search, let us look at the details of the first
stage, advice-point processing. This stage is executed only if there are any advice-points
set. First, the debugger action variables are initialized: mode is set to the current debugger
mode, command to proceed and show to silent. Next, advice-point search takes place. If
this fails, command is set to £1it, otherwise its value is unchanged.

After completing the advice-point search the command variable is examined. If its value is
divertive, i.e. different from proceed and f1it, then the spypoint search stage is omitted,
and the debugger continues with the third stage. Otherwise, it is noted if the advice-point
processing has requested the building of a procedure box (i.e. command = proceed), and the
debugger continues with the second stage.

The second stage is spypoint processing. This stage is skipped if the debugger is switched
off or doing a skip (mode is off or skip(_)). First the the show and command variables are
re-assigned, based on the hiddenness of the predicate being invoked, the debugger mode and
the leashing status of the port. If the predicate is both defined in, and called from a hidden
module, then their values will be silent and f1it. An example of this is when a built-in
predicate is called from a hidden module, e.g. from a library. Otherwise, in trace mode,
their values are print and ask for leashed ports, and print and proceed for unleashed
ports. In debug mode, the variables are set to silent and proceed, while in zip mode to
silent and flit (Section 7.6.5 [Breakpoint Actions|, page 96 contains a tabulated listing
of these initialization values).
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Having initialized the debugger action variables, the spypoint search phase is performed. If
an empty action part has been selected in a successful search, then show and command are
set to print and ask. The failure of the search is ignored.

The third stage is the interactive part. First, the goal in question is displayed according to
the value of show. Next, the value of command is checked: if it is other than ask, then the
interactive stage ends. Otherwise, (it is ask), the variable show is re-initialized to print, or
to print-Sel, if its value was of form Method-Sel. Next, the debugger prompts the user for
a command, which is interpreted either in the standard way, or through user:debugger_
command_hook/2. In both cases the debugger action variables are modified as requested,
and the interactive part is repeated.

After the debugger went through all the three stages, it decides whether to build a procedure
box. This will happen if either the advice-point stage or the other two stages require it.
The latter is decided by checking the command variable: if that is f1it or £1it(01d, New
), then no procedure box is required by the spypoint part. If the advice-point does require
the building of a procedure box, then the above command values are replaced by proceed
and proceed(01d, New), respectively.

At the end of the process the value of mode will be the new debugging mode, and command
will determine what the debugger will do; see Section 7.9.9 [Action Variables|, page 126.

A similar three-stage process is carried out when the debugger arrives at a non-Call port of
a predicate. The only difference is that the building of a procedure box is not considered
(f1it is equivalent to proceed), and the hiddenness of the predicate is not taken into
account.

While the Prolog system is executing the above three-stage process for any of the ports, it
is said to be inside the debugger. This is relevant, because some of the conditions can only
be evaluated in this context.

7.9 Breakpoint Conditions

This section describes the format of simple breakpoint conditions. We first list the tests that
can be used to enquire the state of execution. We then proceed to describe the conditions
usable in the action part and the options for focusing on past execution states. Finally, we
describe condition macros and the format of the values of the debugger action variables.

We distinguish between two kinds of tests, based on whether they refer to information
stored in the backtrace or not. The latter category, the non-backtraced tests, contains
the conditions related to the current port (port, bid, mode, show, command, get) and
the breakpoint type selection conditions (advice and debug). All remaining tests refer to
information stored in the backtrace.

Non-backtraced tests will raise an exception, if they appear in calls to execution_state/1
from outside the debugger, or in queries about past execution state, in execution_state/2.
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Backtraced tests are allowed both inside and outside the debugger. However such tests
can fail if the given query is not meaningful in the given context, e.g. if execution_
state(goal(G)) is queried before any breakpoints were encountered.

Note that if a test is used in the second argument of execution_state/2, then the term
current, in the following descriptions, should be interpreted as referring to the execution
state focused on (described by the first argument of execution_state/2).

7.9.1 Tests Related to the Current Goal

The following tests give access to basic information about the current invocation.

inv(Inv) The invocation number of the current goal is Inv. Invocation numbers start
from 1.

depth(Depth)
The current execution depth is Depth.

goal (MGoal)
The current goal is an instance of the module name expanded MGoal tem-
plate. The current goal and MGoal are unified. This condition is equiv-
alent to the subsumes(MGoal,CurrentGoal) test (subsumes/2 is defined in
library(terms), see Chapter 21 [Term Utilities], page 367).

pred (MFunc)
The module name expanded MFunc template matches (see notes below) the
functor (M: F/N) of the current goal. The unification required for matching is
carried out.

module (Module)
The current goal is invoked from module Module. For compiled calls to built-in
predicates Module will always be prolog.

goal_private(GoalPriv)
The private information associated with the current goal is GoalPriv. This is
initialized to an unbound variable at the Call port. It is strongly recommended
that GoalPriv be used as an open ended list, see Section 7.6.9 [Storing User
Information in the Backtrace], page 108.

exited(Boolean)
Boolean is true if the the current invocation has exited, and false otherwise.
This condition is mainly used for looking at past execution states.

parent_inv(Inv)
The invocation number of the debugger-parent (see notes below) of the current
goal is Inv.

ancestor (AncGoal, Inv)
The youngest debugger-ancestor of the current goal, which is an instance of the
module name expanded AncGoal template, is at invocation number Inv. The
unification required for matching is carried out.
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Notes:

The debugger-parent of a goal is the youngest ancestor of the goal present on the backtrace.
This will differ from the ordinary parent if not all goals are traced, e.g. if the goal in
question is reached in zip mode. A debugger-ancestor of a goal is any of its ancestors on
the backtrace.

In the goal and ancestor tests above, there is a given module qualified goal template, say
ModT': GoalT, and it is matched against a concrete goal term Mod: Goal in the execution
state. This matching is carried out as follows:

a. It is checked that Goal is an instance of GoalT.
b. Goal and GoalT are unified.

c. It is checked that Mod and ModT are either unifiable (and are unified), or name
such modules in which Goal has the same meaning, i.e. either one of Mod: Goal and
ModT: Goal is an exported variant of the other, or both are imported from the same
module.

Similar matching rules apply for predicate functors, in the pred condition. In this test the
argument holds a module qualified functor template, say ModT': Name/ Arity, and this is
matched against a concrete goal term Mod: Goal in the execution state.

a. It is checked that the functor of Goal unifies with Name/Arity, and this unification is
carried out.

b. It is checked that Mod and ModT are either unifiable (and are unified), or name such
modules in which Goal has the same meaning.

7.9.2 Tests Related to Source Information

These tests provide access to source related information. The file and line tests will fail if
no source information is present. The parent_clause and parent_pred tests are available
for interpreted code only, they will fail in compiled code.

file(File)
The current goal is invoked from a file whose absolute name is File.

line(File,Line)
The current goal is invoked from line Line, from within a file whose absolute
name is File.

line(Line)
The current goal is invoked from line Line.

parent_clause(CI)
The current goal is invoked from clause CL

parent_clause(C1,Sel)
The current goal is invoked from clause CI and within its body it is pointed to
by the subterm selector Sel.
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parent_clause(C1,Sel,I)
The current goal is invoked from clause CI, it is pointed to by the subterm
selector Sel within its body, and it is the Ith goal within it. The goals in the
body are counted following their textual occurrence.

parent_pred(Pred)
The current goal is invoked from predicate Pred.

parent_pred(Pred,N)
The current goal is invoked from predicate Pred, clause number N.

The parent_pred tests match their first argument against the functor of the parent predi-
cate in the same way as the pred test does, see the notes in the previous section (Section 7.9.1
[Goal Tests|, page 121).

7.9.3 Tests Related to the Current Port

These tests can only be used inside the debugger and only when focused on the current
invocation. If they appear in execution_state/2 or in execution_state/1 called from
outside the debugger, an exception will be raised.

The notion of port in breakpoint handling is more general than outlined earlier in Section 7.1
[Procedure Box], page 75. Here, the following terms are used to describe a port:

call, exit(nondet), exit(det), redo, fail,
exception(Exception), block, unblock

Furthermore, the atoms exit and exception can be used in the port condition (see below),
to denote any of the two exit ports and an arbitrary exception port, respectively.

port (Port)

The current execution port matches Port in the following sense: either Port
and the current port unify, or Port is the functor of the current port (e.g.
port (exit) holds for both exit(det) and exit(nondet) ports).

As explained earlier, the port condition for a non Call port is best placed in
the action part. This is because the failure of the action part will cause the
debugger to pass through the Call port silently, and to build a procedure box,
even in zip mode. The following idiom is suggested for creating breakpoints at
non Call ports:

add_breakpoint (Tests- [port (Port) ,Actions], BID).

bid(BID) The breakpoint being examined has a breakpoint identifier BID. (BID = none
if no breakpoint was selected.)

mode (Mode)
Mode is the value of the mode variable, which normally reflects the current
debugger mode.
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command (Command)
Command is the value of the command variable, which is the command to be
executed by default, if the breakpoint is selected.

show (Show)
Show is the value of the show variable, i.e. the default show method (the method
for displaying the goal in the trace message).

The last three of the above tests access the debugger action wvariables. These break-
point conditions have a different meaning in the action part. For example, the condition
mode (trace), if it occurs in the tests, checks if the current debugger mode is trace. On
the other hand, if the same term occurs within the action part, it sets the debugger mode
to trace.

To support the querying of the action variables in the action part, the following breakpoint
condition is provided:

get (ActVar)
Equivalent to ActVar, where this is an action variable test, i.e. one of the
terms mode (Mode), command (Command), show(Show). It has this meaning in
the action part as well.

For the port, mode, command and show conditions, the condition can be replaced by its
argument, if that is not a variable. For example the condition call can be used instead
of port(call). Conditions matching the terms listed above as valid port values will be
converted to a port condition. Similarly, any valid value for the three debugger action
variables is converted to an appropriate condition. These valid values are described in
Section 7.9.9 [Action Variables|, page 126.

7.9.4 Tests Related to the Break Level

These tests can be used both inside and outside the condition evaluation process, and also
can be used in queries about past break levels.

break_level (IV)
We are at (or focused on) break level N (N = 0 for the outermost break level).

max_inv(MaxInv)
The last invocation number used within the current break level is MaxInv. Note
that this invocation number may not be present in the backtrace (because the
corresponding call exited determinately).

private(Priv)
The private information associated with the break level is Priv. Similarly to
goal_private/1, this condition refers initially to an unbound variable and can
be used to store an arbitrary Prolog term. However, it is strongly recommended
that Priv be used as an open ended list, see Section 7.6.9 [Storing User Infor-
mation in the Backtrace|, page 108.
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7.9.5 Other Conditions

The following conditions are for prescribing or checking the breakpoint type. They cause
an exception if used outside the debugger or in execution_state/2.

advice The breakpoint in question is of advice type.

debugger The breakpoint in question is of debugger type.
The following construct converts an arbitrary Prolog goal into a condition.

true (Cond)
The Prolog goal Cond is true, i.e. once(Cond) is executed and the condition is
satisfied iff this completes successfully. If an exception is raised during execu-
tion, then an error message is printed and the condition fails.

The substitutions done on executing Cond are carried out. Cond is subject to
module name expansion. If used in the test part of spypoint conditions, the
goal should not have any side-effects, as the test part may be evaluated several
times.

The following conditions represent the Boolean constants.

true
] A condition that is always true. Useful e.g. in conditionals.
false A condition that is always false.

7.9.6 Conditions Usable in the Action Part

The meaning of the following conditions, if they appear in the action part, is different from
their meaning in the test part.

mode (Mode)
Set the debugger mode to Mode.

command (Command)
Set the command to be executed to Command.

show (Show)
Set the show method to Show.

The values admissible for Mode, Command and Show are described in Section 7.9.9 [Action
Variables], page 126.

Furthermore, any other condition can be used in the action part, except for the ones spec-
ifying the breakpoint type (advice and debugger). Specifically, the get condition can be
used to access the value of an action variable.
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7.9.7 Options for Focusing on a Past State

The following ground terms can be used in the first argument of execution_state/2 (see
Section 7.7 [Breakpoint Predicates], page 116). Alternatively, a list containing such terms
can be used. If a given condition occurs multiple times, only the last one is considered. The
order of conditions within the list does not matter.

break_level (BL)
Focus on the current invocation of break level BL. BL is the break level num-
ber, the top-level being break_level(0). For past break levels, the current
invocation is the one from which the next break level was entered.

inv(Inv) Focus on the invocation number Inv of the currently focused break level.

7.9.8 Condition Macros

There are a few condition macros expanding to a list of other conditions:

unleash  Expands to [show(print),command(proceed)]
hide Expands to [show(silent) ,command(proceed)]

leash Expands to [show(print) ,command(ask)]
The user can also define condition macros using the hook predicate below.

breakpoint_expansion(+Macro, -Body) hook,development
user:breakpoint_expansion(+Macro, -Body)
This predicate is called with each (non-composite) breakpoint test or action, as
its first argument. If it succeeds, then the term returned in the second argument
(Body) is substituted for the original condition. The expansion is done at the
time the breakpoint is added.

Note that Body can be composite, but it cannot be of form Tests-Actions.
This means that the whole Body will be interpreted as being in either the test
or the action part, depending on the context.

The built-in breakpoint conditions can not be redefined using this predicate.

7.9.9 The Action Variables

In this section we list the possible values of the debugger action variables, and their meaning.

Note that the Prolog terms, supplied as values, are copied when a variable is set. This is
relevant primarily in case of the proceed/2 and £1it/2 values.

Values allowed in the show condition:
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print
silent
display

write
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Write using options stored in the debugger_print_options Prolog flag.
Display nothing.
Write using display.

Write using writeq.

write_term(Options)

Write using options Options.

Method-Sel

Display only the subterm selected by Sel, using Method. Here, Method is one
of the methods above, and Sel is a subterm selector.

Values allowed in the command condition:

ask
proceed

flit

Ask the user what to do next.
Continue the execution without interacting with the user (cf. unleashing).

Continue the execution without building a procedure box for the current goal
(and consequently not encountering any other ports for this invocation). Only
meaningful at Call ports, at other ports it is equivalent to proceed.

proceed(Goal, New)

Unless at call port, first go back to the call port (retry the current invocation,
see the retry(Inv) command value below). Next, unify the current goal with
Goal and execute the goal New in its place. Create (or keep) a procedure box
for the current goal.

This construct is used by the ‘u’ (unify) interactive debugger command.

Both the Goal and New arguments are module name expanded when the break-
point is added: the module of Goal defaults to the module of the current goal,
while that of New to the module name of the breakpoint spec. If the command
value is created during run time, then the module name of both arguments
defaults to the module of the current goal.

The term proceed(Goal, New) will be copied when the command action variable
is set. Therefore breakpoint specs of form

Tests - [goal(foo(X)),...,proceed(_,bar(X))]
should be avoided, and

Tests - [goal(foo(X)),...,proceed(foo(Y),bar(Y))
should be used instead. The first variant will not work as expected if X is non-
ground, as the variables in the bar/1 call will be detached from the original

ones in foo/1. Even if X is ground, the first variant may be much less efficient,
as it will copy the possibly huge term X.

f1it (Goal, New)

Same as proceed(Goal,New), but do not create (or discard) a procedure box
for the current goal. (Consequently no other ports will be encountered for this
invocation.)
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Notes for proceed/2, on module name expansion and copying, also apply to
flit/2.

exception(E)
Raise the exception E.

abort Abort the execution.

retry(Inv)
Retry the the most recent goal in the backtrace with an invocation number
less or equal to Inv (go back to the Call port of the goal). This is used by the
interactive debugger command ‘r’, retry; see Section 7.5 [Debug Commands|,
page 81.

reexit (Inv)
Re-exit the the invocation with number Inv (go back to the Exit port of the
goal). Inv must be an exact reference to an exited invocation present in the
backtrace (exited nondeterminately, or currently being exited). This is used
by the interactive debugger command ‘je’, jump to Exit port; see Section 7.5
[Debug Commands|, page 81.

redo (Inv)
Redo the the invocation with number Inv (go back to the Redo port of the
goal). Inv must be an exact reference to an exited invocation present in the
backtrace. This is used by the interactive debugger command ‘jr’, jump to
Redo port; see Section 7.5 [Debug Commands], page 81.

fail(Inv)
Fail the most recent goal in the backtrace with an invocation number less or
equal to Inv (transfer control back to the Fail port of the goal). This is used by
the interactive debugger command ‘f’, fail; see Section 7.5 [Debug Commands],
page 81.

Values allowed in the mode condition:

gskip(Inv)
Quasi-skip until the first port with invocation number less or equal to Inv
is reached. Having reached that point, mode is set to trace. Valid only if
Inv > 1 and furthermore Inv < Currlnv for entry ports (Call, Redo), and
Inv < Currlnv for all other ports, where Currlnv is the invocation number of
the current port.

skip(Inv)
Skip until the first port with invocation number less or equal to Inv is reached,
and set mode to trace there. Inv should obey the same rules as for gskip.

trace Creep.
debug Leap.
zip Zip.

off Continue without debugging.
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7.10 Consulting during Debugging

It is possible, and sometimes useful, to consult a file whilst in the middle of program
execution. Predicates that have been successfully executed and are subsequently redefined
by a consult and are later reactivated by backtracking, will not notice the change of their
definitions. In other words, it is as if every predicate, when called, creates a copy of its
definition for backtracking purposes.

7.11 Catching Exceptions

Usually, exceptions that occur during debugging sessions are displayed only in trace mode
and for invocation boxes for predicates with spypoints on them, and not during skips.
However, it is sometimes useful to make exceptions trap to the debugger at the earliest
opportunity instead. The hook predicate user:error_exception/1 provides such a possi-
bility:

error_exception(+Exception) hook
user:error_exception(+Exception)
This predicate is called at all Exception ports. If it succeeds, the debugger enters
trace mode and prints an exception port message. Otherwise, the debugger
mode is unchanged and a message is printed only in trace mode or if a spypoint
is reached, and not during skips.

Note that this hook takes effect when the debugger arrives at an Exception port. For this
to happen, procedure boxes have to be built, e.g. by running (the relevant parts of) the
program in debug mode.
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8 Built-In Predicates

SICStus Prolog provides a wide range of built-in predicates to perform all kinds of tasks;
see the Table of Contents.

It is not possible to redefine built-in predicates. An attempt to do so will raise an exception.
See [Pred Summary], page 769.

When introducing a built-in predicate, we shall present its usage with a mode spec, and
optionally with an annotation containing one or more of:
1SO The predicate complies with the ISO Prolog Standard.

ISO only  The predicate variant described complies with the ISO Prolog Standard and is
valid in the iso execution mode only.

SICStus only
The predicate variant described is valid in the sicstus execution mode only.

declaration
A declaration that can’t be redefined as a predicate.

development
The predicate is not available in runtime systems.

extendible The predicate is an extendible predicate.
hook The predicate is a hook predicate.
hookable  The predicate is a hookable predicate.

obsolescent
The predicate is obsolescent and should be avoided in new code.

reserved A reserved construct that can’t be defined as a predicate.

The following descriptions of the built-in predicates are grouped according to the above
categorization of their tasks.

8.1 Input / Output

There are two sets of file manipulation predicates in SICStus Prolog. One set is inherited
from DEC-10 Prolog. These predicates always refer to a file by specification. The other
set of predicates is modeled after Quintus Prolog and refer to files as streams. Streams
correspond to the file pointers used at the operating system level.

This second set of file manipulation predicates, the one involving streams, is supported by
the ISO Prolog standard. Note that the notion of file is used here in a generalized sense;
it may refer to a named file, the user’s terminal, or some other device. The ISO Prolog
standard refers to this generalized notion of file using the term source/sink.
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A stream can be opened and connected to a file specification or file descriptor for input or
output by calling the predicates open/[3,4]. These predicates will return a reference to a
stream, which may then be passed as an argument to various I/O predicates. Alternatively,
a stream can be assigned an alias at the time of opening, and referred to by this alias
afterwards. The predicate close/1 is used for closing a stream.

There are two types of streams, binary or text. Binary streams are seen as a sequence of
bytes, i.e. integers in the range 0-255. Text streams, on the other hand, are considered
a sequence of characters, represented by their character codes. SICStus Prolog handles
wide characters, i.e. characters with codes larger than 255. The WCX (Wide Character
eXtension) component of SICStus Prolog allows selecting various encoding schemes via
environment variables or hook predicates; see Chapter 12 [Handling Wide Characters]
page 301.

)

The predicates current_stream/3 and stream_property/2 are used for retrieving infor-
mation about a stream, and for finding the currently existing streams.

Prolog streams can be accessed from C functions as well. See Section 9.6 [SICStus Streams],
page 248, for details.

The possible formats of a stream are:

>$stream’ (X)
A stream connected to some file. X is an integer.

Atom A stream alias. Aliases can be associated with streams using the alias(Atom)
option of open/4. There are also three predefined aliases:

user_input
An alias initially referring to the UNIX stdin stream. The alias
can be changed with prolog_flag/3 and accessed by the C variable
SP_stdin.

user_output
An alias initially referring to the UNIX stdout stream. The alias
can be changed with prolog_flag/3 and accessed by the C variable
SP_stdout.

user_error
An alias initially referring to the UNIX stderr stream. The alias
can be changed with prolog_flag/3 and accessed by the C variable
SP_stderr.

This stream is used by the Prolog top-level and debugger, and for
system messages.

Certain I/O predicates manipulate streams implicitly, by maintaining the notion of a current
input stream and a current output stream. The current input and output streams are set to
the user_input and user_output initially and for every new break (see Section 3.9 [Nested],
page 31). The predicate see/1 (tell/1) can be used for setting the current input (output)
stream to newly opened streams for particular files. The predicate seen/0 (told/0) closes
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the current input (output) stream, and resets it to the standard input (output) stream.
The predicate seeing/1 (telling/1) is used for retrieving the file name associated with
the current input (output) streams.

The file specification user stands for the standard input or output stream, depending on
context. Terminal output is only guaranteed to be displayed if the output stream is explicitly
flushed.

A file specification FileSpec other than user must be an atom or a compound term. It is
subject to syntactic rewriting. Depending on the operation, the resulting absolute filename
is subject to further processing. Syntactic rewriting is performed wrt. a context directory
Context, in the follows steps:

e If FileSpec has the form Path(File), it is rewritten by first looking up a clause of the
hook predicate user:file_search_path(Path,Expansion). If such a clause is found,
and Expansion can be rewritten to the atomic file name FirstPart, and File can be
rewritten to the atomic file name SecondPart, then FileSpec is rewritten to FirstPart
/SecondPart.

e Under Windows, all ‘\’ characters are converted to ‘/’.
e If FileSpec is a relative file name, Context is prepended to it.

e FileSpec is normalized by dividing it into components and processing these components.
A component is defined to be those characters:

1. Between the beginning of the file name and the end of the file name if there are
no ‘/’s in the file name.

2. Between the beginning of the file name and the first */’.

3. Between any two successive ‘/’-groups (where a ‘/’-group is defined to be a sequence
of one or more ‘/’s with no non-‘/’ character interspersed.) Each ‘/’-group is
replaced by a single ‘//°. Under Windows, however, a ‘//’ prefix is not replaced by
a single ‘/’.

4. Between the last ‘/’ and the end of the file name.

To give the absolute file name, the following rules are applied to each component of
FileSpec.

1. The component ‘“user’, if encountered as the first component of FileSpec, is re-
placed by the absolute path of the home directory of user. If user doesn’t exist, a
permission error is raised. Not yet applicable under Windows.

2. The component ‘7, if encountered as the first component of FileSpec, is replaced by
the absolute path of the home directory of the current user. Under Windows, ‘™’ is
replaced by the user’s home directory using the environment variables HOMEDRIVE

and HOMEPATH.

3. The component ‘$var’, if encountered as the first component of FileSpec, is re-
placed by the value of the environment variable var. If var doesn’t exist, a permis-
sion error is raised.

4. The component ‘.’ is deleted.

5. The component ‘..’ is deleted together with the directory name syntactically pre-
ceding it. For example, ‘a/b/../c’ is rewritten as ‘a/c’.
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6. Any trailing ‘/’ is deleted.

7. Under Windows, the normalization process ensures that the absolute file name is
either a network path ‘//hostname/sharename/. ..’ or begins with a drive letter
followed by “:.

For example, asssuming the user’s home directory is ‘/users/clyde’ and given the clauses

file_search_path(home, ’$HOME’).
file_search_path(demo, home(prolog(demo))).
file_search_path(prolog, prolog).

the file specification demo (mydemo) would
be rewritten to ’/users/clyde/prolog/demo/mydemo’, since $HOME is interpreted as an
environment variable (Under UNIX, this is the user’s home directory).

Failure to open a file normally causes an exception to be raised. This behavior can be turned
off and on by of the built-in predicates nofileerrors/0 and fileerrors/0 described below.

8.1.1 Reading-in Programs

When the predicates discussed in this section are invoked, file specifications are treated as
relative to the current working directory. While loading code, however, file specifications
are treated as relative to the directory containing the file being read in. This has the effect
that if one of these predicates is invoked recursively, the file specification of the recursive
load is relative to the directory of the enclosing load. See Chapter 6 [Load Intro|, page 65,
for an introduction to these predicates.

Directives will be executed in order of occurrence. Be aware of the rules governing relative
file specifications, as they could have an effect on the semantics of directives. Only the first
solution of directives is produced, and variable bindings are not displayed. Directives that
fail or raise exceptions give rise to warning or error messages, but do not terminate the load.
However, these warning or error messages can be intercepted by the hook user:portray_
message/2, which can call abort/0 to terminate the load, if that is the desired behavior.

Predicates loading source code are affected by the character-conversion mapping, cf. char_
conversion/2; see Section 8.1.3 [Term I/O], page 142.

Most of the predicates listed below take an argument Files, which is a single file specification
or a list of file specifications. Source, object and QL files usually end with a ‘.pl’, ‘.po’ and
.ql’ suffix respectively. These suffixes are optional. Each file specification may optionally
be prefixed by a module name. The module name specifies where to import the exported
predicates of a module-file, or where to store the predicates of a non-module-file. The
module is created if it doesn’t exist already.

absolute_file_name/3 (see Section 8.1.5 [Stream Pred], page 154) is used for resolving the
file specifications. The file specification user is reserved and denotes the standard input
stream.
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These predicates are available in runtime systems with the following limitations:

e The compiler is not available, so compiling is replaced by consulting.

135

e The Prolog flags discontiguous_warnings, redefine_warnings and single_var_

warnings have no effect.

e The informational Prolog flag is off by default, suppressing informational messages.

e The user is not prompted in the event of name clashes etc.

load_files(:Files)
load_files(:Files, +Options)

A generic predicate for loading the files specified by Files with a list of options
to provide extra control. This predicate in fact subsumes the other predicates
except use_module/3, which also returns the name of the loaded module, or
imports a set of predicates from an existing module. Options is a list of zero or
more of the following:

if (X) true (the default) to always load, or changed to load only if the file
has not yet been loaded or if it has been modified since it was last
loaded. A non-module-file is not considered to have been previously
loaded if it was loaded into a different module. The file user is never
considered to have been previously loaded.

when (When)
always (the default) to always load, or compile_time to load only if
the goal is not in the scope of another load_files/[1,2] directive
occurring in a ‘.po’ or ‘.ql’ file.
The latter is intended for use when the file only defines predicates
that are needed for proper term or goal expansion during compila-
tion of other files.

load_type(LoadType)
source to load source files only, object to load object (‘.po’) files
only, q1 (obsolescent) to load ‘.ql’ files only, or latest (the de-
fault) to load any type of file, whichever is newest. If the file is
user, source is forced.

imports (Imports)
all (the default) to import all exported predicates if the file is a
module-file, or a list of predicates to import.

compilation_mode (Mode)
compile to translate into compiled code, consult to translate into
static, interpreted code, or assert_all to translate into dynamic,
interpreted code.

The default is the compilation mode of any ancestor load_
files/[1,2] goal, or compile otherwise. Note that Mode has no
effect when a *.po’ or ‘. ql’ file is loaded, and that it is recommended
to use assert_all in conjunction with load_type (source), to en-
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sure that the source file will be loaded even in the presence of a ‘. po’
or ‘.ql’ file.

wcx (Wex) To pass the term Wex to the wide character extension component;
see Section 12.3 [Prolog Level WCX Features], page 303.

consult(:Files)
reconsult(:Files) obsolescent
(]
[:File|+Files]
Consults the source file or list of files specified by File and Files. Same as
load_files(Files, [load_type(source),compilation_mode(consult)]).

compile(:Files)
Compiles the source file or list of files specified by Files. The compiled code
is placed in-core, i.e. is added incrementally to the Prolog database. Same as
load_files(Files, [load_type(source),compilation_mode(compile)]).

load(:Files) obsolescent
Loads the ‘.ql’ file or list of files specified by Files. Same as load_
files(Files, [load_type(ql)]).

ensure_loaded(:Files) IS0
Compiles or loads the file or files specified by Files that have been modified
after the file was last loaded, or that have not yet been loaded. The rec-
ommended style is to use this predicate for non-module-files only, but if any
module-files are encountered, their public predicates are imported. Same as
load_files(Files, [if(changed)]).

use_module(:File)
Compiles or loads the module-file specified by File if it has been modified after
it was last loaded, or not yet been loaded. Its public predicates are imported.
The recommended style is to use this predicate for module-files only, but any
non-module-files encountered are simply compiled or loaded. Same as load_
files(File, [if (changed)]).

use_module(:File, +Imports)
Loads the module-file File like ensure_loaded/1 and imports the predicates in
Imports. If any of these are not public, a warning is issued. Imports may also
be set to the atom all in which case all public predicates are imported. Same
as load_files(File, [if (changed),imports(Imports)]).

use_module(-Module, :File, +Imports)

use_module (+Module, :File, +Imports)
If used with +Module, and that module has already been loaded, this merely
imports Imports from that module. Otherwise, this is equivalent to use_
module(File, Imports) with the addition that Module is unified with the
loaded module.

fcompile(:Files) development ,obsolescent
Compiles the source file or list of files specified by Files. If Files are prefixed
by a module name, that module name will be used for module name expansion
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during the compilation (see Section 6.4 [Considerations|, page 72). The suffix
‘.pl’ is added to the given file names to yield the real source file names. The
compiled code is placed on the ‘.ql’ file or list of files formed by adding the
suffix ©.ql’ to the given file names.

source_file(?7File)
File is the absolute name of a source file currently in the system.

source_file(:Head, 7File)
source_file(-Head, ?File)
Head is the most general goal for a predicate loaded from File.

require(:PredSpecOrSpecs) development
PredSpecOrSpecs is a predicate spec or a list or a conjunction of such. The
predicate will check if the specified predicates are loaded and if not, will try
to load or import them using use_module/2. The file containing the predicate
definitions will be located in the following way:
e The directories specified with user:1ibrary_directory/1 are searched for
a file ‘INDEX.pl’. This file is taken to contain relations between all exported
predicates of the module-files in the library directory and its subdirectories.
If an ‘INDEX.pl’ is not found, require/1 will try to create one by load-
ing the library package mkindex and calling make_index:make_library_
index(Directory) (see Chapter 15 [The Prolog Library|, page 347).
e The first index entry for the requested predicate will be used to determine
the file to load. An exception is raised if the predicate can’t be located.

e Once an ‘INDEX.pl’ is read, it is cached internally for use in subsequent
calls to require/1.

e Not available in runtime systems.

8.1.2 Term and Goal Expansion

When a program is being read in, SICStus Prolog provides hooks that enable the terms
being read in to be source-to-source transformed before the usual processing of clauses or
directives. The hooks consist in user-defined predicates that define the transformations.
One transformation is always available, however: definite clause grammars, a convenient
notation for expressing grammar rules. See [Colmerauer 75| and [Pereira & Warren 80).

Definite clause grammars are an extension of the well-known context-free grammars. A
grammar rule in Prolog takes the general form

head --> body.

meaning “a possible form for head is body”. Both body and head are sequences of one or
more items linked by the standard Prolog conjunction operator °,’.

Definite clause grammars extend context-free grammars in the following ways:

1. A non-terminal symbol may be any Prolog term (other than a variable or number).
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2. A terminal symbol may be any Prolog term. To distinguish terminals from non-
terminals, a sequence of one or more terminal symbols is written within a grammar rule
as a Prolog list. An empty sequence is written as the empty list ‘[]’. If the terminal
symbols are character codes, such code-lists can be written (as elsewhere) as strings.
An empty sequence is written as the empty list, ‘[]’ or ‘"""

3. Extra conditions, in the form of Prolog procedure calls, may be included in the right-
hand side of a grammar rule. Such procedure calls are written enclosed in ‘{}’ brackets.

4. The left-hand side of a grammar rule consists of a non-terminal, optionally followed by
a sequence of terminals (again written as a Prolog list).

5. Disjunction, if-then, if-then-else, and not-provable may be stated explicitly in the right-
hand side of a grammar rule, using the operators ‘;’ (‘17), ‘=>’, and ‘\+’ as in a Prolog
clause.

6. The cut symbol may be included in the right-hand side of a grammar rule, as in a
Prolog clause. The cut symbol does not need to be enclosed in ‘{}’ brackets.

As an example, here is a simple grammar that parses an arithmetic expression (made up of
digits and operators) and computes its value.

expr(Z) --> term(X), "+", expr(Y), {Z is X + Y}.
expr(Z) --> term(X), "-", expr(Y), {Z is X - Y}.
expr(X) --> term(X).

term(Z) --> number(X), "x", term(Y), {Z is X * Y}.
term(Z) --> number(X), "/", term(Y), {Z is X / Y}.
term(Z) —--> number(Z).

number (C) --> "+", number(C).
number (C) --> "-", number(X), {C is -X}.
number (X) --> [C], {"0"=<C, C=<"9", X is C - "O"}.

In the last rule, C is the character code of some digit.
The query
| 7- expr(Z, "-2+#3x5+1", []).
will compute Z=14. The two extra arguments are explained below.

Now, in fact, grammar rules are merely a convenient “syntactic sugar” for ordinary Pro-
log clauses. Each grammar rule takes an input string, analyses some initial portion, and
produces the remaining portion (possibly enlarged) as output for further analysis. The ar-
guments required for the input and output strings are not written explicitly in a grammar
rule, but the syntax implicitly defines them. We now show how to translate grammar rules
into ordinary clauses by making explicit the extra arguments.

A rule such as

p(X) --> qX).
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translates into
p(X, S0, 8) :- q(X, SO, S).
If there is more than one non-terminal on the right-hand side, as in

pX, Y) -—>
q(X),
rX, Y),
s(Y).

then corresponding input and output arguments are identified, as in

pX, Y, S0, 8) :-
q(X, S0, S1),
r(X, Y, St, S2),
r(Y, S2, S).

Terminals are translated using the built-in predicate *C’ (S1, X, S2), read as “point S1 is
connected by terminal X to point S27, and defined by the single clause

*C2([XIs], X, S).

(This predicate is not normally useful in itself; it has been given the name upper-case ‘c’
simply to avoid using up a more useful name.) Then, for instance

p(X) --> [go,to]l, q(X), [stop].
is translated by

p(X, S0, S) :-
’C7 (S0, go, S1),
’C’(S1, to, S2),
q(X, S2, S$3),
’C? (83, stop, 9).

Extra conditions expressed as explicit procedure calls naturally translate as themselves,
e.g.:
p(X) --> [X], {integer(X), X>0}, q(X).

translates to

p(X, SO, S) :-
’C’ (S0, X, S1),
integer (X),
X>0,
qQX, s1, ).

Similarly, a cut is translated literally.
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Terminals are translated using the built-in predicate >C’ (S1, X, S2), read as “point S1 is
connected by terminal X to point S2”, and defined by the single clause

Terminals on the left-hand side of a rule are also translated using ’C’/3, connecting them
to the output argument of the head non-terminal, e.g.:

is(N), [not] --> [aint].
becomes

is(N, SO, S) :-
’C’ (S0, aint, S1),
’C’ (S, not, S1).

Disjunction has a fairly obvious translation, e.g.:

args(X, Y) -—>
( dir(X), [to]l, indir(Y)
; indir(Y), dir(X)
).

translates to

args(X, Y, SO, S) :-
( dir(X, SO, S1),
’C’ (81, to, S2),
indir(Y, 82, S)
. indir(Y, SO, S1),
dir(X, Si, S)
).

Similarly for if-then, if-then-else, and not-provable.

The built-in predicates that are concerned with grammar rules and other compile/consult
time transformations are as follows:

expand_term(+Terml, ?Term2)

If Terml1 is a term that can be transformed, Term?2 is the result. Otherwise
Term?2 is just TermI unchanged. This transformation takes place automatically
when grammar rules are read in, but sometimes it is useful to be able to perform
it explicitly. Grammar rule expansion is not the only transformation available;
the user may define clauses for the predicate user:term_expansion/[2,4]
to perform other transformations. user:term_expansion(Terml[,Layoutl
1,Term2[,Layout2]) is called first, and only if it fails is the standard expansion
used.
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term_expansion(+Terml, ?TermOrTerms) hook
term_expansion(+Terml,+Layoutl, ?TermOrTerms, ?Layout2) hook
user:term_expansion(+Terml, ?TermOrTerms)
user:term_expansion(+Terml,+Layoutl, ?TermOrTerms, ?Layout2)
Defines transformations on terms read while a program is consulted or compiled.
It is called for every Terml read, including at end of file, represented as the
term end_of_file. If it succeeds, TermOrTerms is used for further processing;
otherwise, the default grammar rule expansion is attempted. It is often useful
to let a term expand to a list of directives and clauses, which will then be
processed sequentially.

The 4 arguments version also defines transformations on the layout of the term
read, so that the source-linked debugger can display accurate source code lines if
the transformed code needs debugging. Layoutl is the layout corresponding to
Term1, and Layout2 should be a valid layout of TermOrTerms (see Section 8.1.3
[Term 1/0], page 142).

For accessing aspects of the load context, e.g. the name of the file being
compiled, the predicate prolog_load_context/2 (see Section 8.6 [State Info],
page 175) can be used.

user:term_expansion/[2,4] may also be used to transform queries entered
at the terminal in response to the ‘| ?- ’ prompt. In this case, it will be
called with Terml = 7-(Query) and should succeed with TermOrTerms = 7-
(ExpandedQuery).

goal_expansion(+Goal,+Module, ?NewGoal) hook

user:goal_expansion(+Goal,+Module, ?NewGoal)
Defines transformations on goals while clauses are being consulted, compiled
or asserted, after any processing by user:term_expansion/[2,4] of the terms
being read in. It is called for every simple Goal in the calling context Module
found while traversing the clause bodies. If it succeeds, Goal is replaced by
NewGoal; otherwise, Goal is left unchanged. NewGoal may be an arbitrarily
complex goal, and user:goal_expansion/3 is recursively applied to its sub-
goals.

Please note: the arguments of built-in meta-predicates such as
call/1, setof/3 and on_exception/3 are not subject to such
compile-time processing.
This predicate is also used to resolve any meta-calls to Goal at runtime via
the same mechanism. If the transformation succeeds, NewGoal is simply called
instead of Goal. Otherwise, if Goal is a goal of an existing predicate, that
predicate is invoked. Otherwise, error recovery is attempted by user:unknown_
predicate_handler/3 as described below.

user:goal_expansion/3 can be regarded as a macro expansion facility. It
is used for this purpose to support the interface to attributed variables in
library(atts), which defines the predicates M: get_atts/2 and M:put_atts/2
to access module-specific variable attributes. These “predicates” are actually
implemented via the user:goal_expansion/3 mechanism. This has the effect
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that calls to the interface predicates are expanded at compile time to efficient
code.

For accessing aspects of the load context, e.g. the name of the file being
compiled, the predicate prolog_load_context/2 (see Section 8.6 [State Infol,
page 175) can be used.

phrase(:Phrase, 7List)

phrase(:Phrase, 7List,+Remainder)
The list List is a phrase of type Phrase (according to the current grammar
rules), where Phrase is either a non-terminal or more generally a grammar rule
body. Remainder is what remains of the list after a phrase has been found. If
called with 2 arguments, the remainder has to be the empty list.

’C’ (781, ?Terminal, 7S2)
Not normally of direct use to the user, this built-in predicate is used in the
expansion of grammar rules (see above). It is defined as if by the clause
’C’ ([XI8], X, s).

8.1.3 Input and Output of Terms

Most of the following predicates come in two versions, with or without a stream argument.
Predicates without a stream argument operate on the current input or output stream,
depending on context. Predicates with a stream argument can take stream reference or an
alias in this argument position, the alias being replaced by the stream it was associated
with.

Some of these predicates support a notation for terms containing multiple occurrences of
the same subterm (cycles and DAGs). The notation is @ (Template, Substitution) where
Substitution is a list of Var=Term pairs where the Var occurs in Template or in one of
the Terms. This notation stands for the instance of Template obtained by binding each
Var to its corresponding Term. The purpose of this notation is to provide a finite printed
representation of cyclic terms. This notation is not used by default, and @/2 has no special
meaning except in this context.

read(?Term) IS0

read (+Stream, ?Term) IS0
The next term, delimited by a full-stop (i.e. a ‘.’ possibly followed by layout
text), is read from Stream and is unified with Term. The syntax of the term
must agree with current operator declarations. If a call read(Stream, Term)
causes the end of Stream to be reached, Term is unified with the term end_of _
file. Further calls to read/2 for the same stream will then raise an exception,
unless the stream is connected to the terminal. The characters read are subject
to character-conversion, see below.

read_term(?Term,+0Options) IS0

read_term(+Stream, ?Term,+0Options) IS0
Same as read/[1,2] with a list of options to provide extra control or informa-
tion about the term. Options is a list of zero or more of:
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syntax_errors (+Val)
Controls what action to take on syntax errors. Val must be one of
the values allowed for the syntax_errors Prolog flag. The default
is set by that flag.

variables(?Vars)
Vars is bound to the list of variables in the term input, in left-to-
right traversal order.

variable_names (?Names)
Names is bound to a list of Name=Var pairs, where each Name is
an atom indicating the name of a non-anonymous variable in the
term, and Var is the corresponding variable.

singletons(?Names)
Names is bound to a list of Name= Var pairs, one for each variable
appearing only once in the term and whose name does not begin
with _".

cycles(+Boolean)
Boolean must be true or false. If selected, any occurrences of
@/2 in the term read in are replaced by the potentially cyclic terms
they denote as described above. Otherwise (the default), Term is
just unified with the term read in.

layout ( ?Layout)
Layout is bound to a layout term corresponding to Term. The
layout Y of a term X is one of:

e If X is a variable or atomic term, Y is the number of the line
where X occurs.

e If Xisacompound term, Yis a list whose head is the number of
the line where the first token of X occurs, and whose remaining
elements are the layouts of the arguments of X.

e [], if no line number information is available for X.

consume_layout (+Boolean)

Boolean must be true or false. If this option is true, read_
term/ [2,3] will consume the layout-text-item that follows the ter-
minating ‘.” (this layout-text-item can either be a layout-char or a
comment starting with a ‘%’). If the option is false, the layout-
text-item will remain in the input stream, so that subsequent char-
acter input predicates will see it. The default of the consume_
layout option is true in sicstus execution mode, and it is false
in iso execution mode.



144

| ?7- read_term(T, [layout(L), vari-
able_names(Va), singletons(S)]).

l: [
foo(X),
X =Y
1.

[35,[36,36],[36,[37,37,37]1,3811],
— [’Y,=_A] R

[foo(_B),_B=_A],

Va = [’X’=_B,’Y’=_A]

= wn -
|

SICStus Prolog

| 7- read_term(T, [consume_layout(false)]), get_code(C).

[: 1.

c =10,
T=1

| ?- read_term(T, [consume_layout (true)]), get_code(C).

[: 1.
|: a

Q
I

97,
T=1

char_conversion(+InChar, +0OutChar)

current_char_conversion(?InChar, 7?0utChar)

write (?Term)

write (+Stream, ?Term)

IS0

InChar and OutChar should be one-char atoms. If they are not the same, then
the mapping of InChar to OutChar is added to the character-conversion map-
ping. This means that in all subsequent term and program input operations any
unquoted occurrence of InChar will be replaced by OutChar. The rationale for
providing this facility is that in some extended character sets (such as Japanese
JIS character sets) the same character can appear several times and thus have
several codes, which the users normally expect to be equivalent. It is advisable
to always quote the arguments of char_conversion/2.

If InChar and OutChar are the same, the effect of char_conversion/2 is to
remove any mapping of InChar from the character-conversion mapping.

IS0

The character of one-char atom InChar is mapped to that of the one-char atom
OutChar in the current character-conversion mapping. Enumerates all such
pairs on backtracking.

IS0
IS0

The term Term is written onto Stream according to current operator declara-
tions. Same as write_term([Stream,] Term, [numbervars(true)]).
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display(?Term)
The term Term is displayed onto the standard output stream (which is not nec-
essarily the current output stream) in standard parenthesized prefix notation.
Same as write_term(user, Term, [ignore_ops(true)]).

write_canonical (?Term) IS0
write_canonical (+Stream, ?Term) IS0
Similar to write(Stream,Term). The term will be written according

to the standard syntax. The output from write_canonical/2 can be
parsed by read/2 even if the term contains special characters or if op-
erator declarations have changed. Same as write_term([Stream,] Term,
[quoted(true) ,ignore_ops(true)]).

writeq(?Term) IS0

writeq(+Stream, ?Term) IS0
Similar to write(Stream,Term), but the names of atoms and functors are
quoted where necessary to make the result acceptable as input to read/2,
provided the same operator declarations are in effect. Same as write_
term([Stream,] Term, [quoted(true) ,numbervars(true)]).

print (?Term) hookable
print (+Stream, ?Term) hookable
Prints Term onto Stream. This predicate provides a handle for user defined
pretty printing:
e If Term is a variable then it is output using write (Stream, Term).

e If Term is non-variable then a call is made to the user defined predicate
user:portray/1. If this succeeds then it is assumed that Term has been
output.

e Otherwise, print/2 is called recursively on the components of Term, unless
Term is atomic in which case it is written via write/2.

In particular, the debugging package prints the goals in the tracing messages,
and the top-level prints the final values of variables. Thus you can vary the
forms of these messages if you wish.

Note that on lists ([_1_]), print/2 will first give the whole list to
user:portray/1, but if this fails it will only give each of the (top-level) el-
ements to user:portray/1. That is, user:portray/1 will not be called on all
the tails of the list.

Same as write_term([Stream,] Term,
[portrayed(true) ,numbervars(true)]).

portray (+Term) hook
user:portray (+Term)
This should either print the Term and succeed, or do nothing and fail. In the
latter case, the default printer (write/1) will print the Term.

portray_clause(?Clause)

portray_clause (+Stream, ?Clause)
Writes the clause Clause onto Stream exactly as 1listing/[0,1] would have
written it. Same as write_term([Stream,] Term,
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[quoted(true) ,numbervars(true) ,indented(true)]) followed by a period
and a newline and binding variables to terms of the form ’$VAR’ (V) yielding
friendlier variable names.

write_term(+Term,+0Options) IS0

write_term(+Stream,+Term,+0Options) IS0
Same as write/[1,2] etc. with a list of options to provide extra control.
This predicate in fact subsumes the above output predicates except portray_
clause/[1,2], which additionally prints a period and a newline, and removes
module prefixes that are redundant wrt. the current type-in module. Options
is a list of zero or more of the following, where Boolean must be true or false
(false is the default).

quoted (+Boolean)
If selected, functors are quoted where necessary to make the result
acceptable as input to read/1. write_canonical/l, writeq/1,
and portray_clause/1 select this.

ignore_ops(+Boolean)
If selected, Term is written in standard parenthesized notation in-
stead of using operators. write_canonical/1 and display/1 se-
lect this.

portrayed(+Boolean)
If selected, user:portray/1 is called for each subterm. print/1
selects this.

numbervars (+Boolean)
If selected, terms of the form ’>$VAR’ (N) where N is an integer >=
0, an atom, or a code-list, are treated specially (see numbervars/3).
print/1, write/1, writeq/1, and portray_clause/1 select this.

cycles(+Boolean)
If selected, the potentially cyclic term is printed in finite @/2 nota-
tion, as discussed above.

indented (+Boolean)
If selected, the term is printed with the same indentation as is used
by portray_clause/1 and listing/[0,1].

max_depth (+Depth)
Depth limit on printing. Depth is an integer. 0 (the default) means
no limit.

character_escapes(+Boolean)
If selected, quoted atoms containing special characters will be
printed using escape sequences (see Section 50.5 [Escape Se-
quences|, page 794). The default value depends on the character_
escapes Prolog flag.
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float_format (+Spec)
How to print floats. Spec should be an atom of the form ‘“NC’, like
one of the format/[2,3] character sequences for printing floats.
The default is ‘"H’.

priority(+Prio)
The term is printed as if in the context of an associative operator
of precedence Prio, where Prio is an integer. The default is 1200.
See Section 4.6 [Operators]|, page 54.

format (+Format, : Arguments)

format (+Stream,+Format, : Arguments)
Prints Arguments onto Stream according to format Format. Format is an atom
or a code-list of formatting characters. If Format is an atom, it will be converted
to a code-list. Thus:

| ?- format("Hello world!\n", []).
has the same effect as
| ?- format(’Hello world!\n’, []).
no matter which value the double_quotes Prolog flag has.
format/[2,3] is the Prolog equivalent to the C stdio function printf ().

Arguments is a list of items to be printed. If there are no items then an empty
list should be supplied.

(~)

The default action on a format character is to print it. The character
introduces a control sequence. To print a ‘~’ repeat it:

| ?- format(’Hello ~~world!\mn’, []).
Hello “world!

Unless character escapes have been switched off, the escape sequence (see Sec-
tion 50.5 [Escape Sequences], page 794) ‘\¢’ (c for continue) is useful when
formatting a string for readability. It causes all characters up to, but not in-
cluding, the next non-layout character to be ignored.
| ?- format(’Hello \c
world!\n’, []).
Hello world!

The general format of a control sequence is ‘"NC’. The character C determines
the type of the control sequence. N is an optional numeric argument. An
alternative form of N is ‘*’. ‘¥’ implies that the next argument in Arguments
should be used as a numeric argument in the control sequence. Example:

| ?- format(’Hello~4cworld!\n’, [0°’x]).

Helloxxxxworld!

| ?- format(’Hello™*cworld!\n’, [4,0°x]).
Helloxxxxworld!
The following control sequences are available.

(~ 0

a The argument is an atom. The atom is printed without quoting.
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‘"N’ (Print character.) The argument is a number that will be inter-
preted as a character code. N defaults to one and is interpreted as
the number of times to print the character.

4~Ne7

‘TNE (Print float in exponential notation.) The argument is a float, which
will be printed in exponential notation with one digit before the
decimal point and N digits after it. If N is zero, one digit appears
after the decimal point. A sign and at least two digits appear in
the exponent, which is introduced by the letter used in the control
sequence. N defaults to 6. Examples:

| 7- Pi=3.14159265, for-
mat(’~e ~2E ~OE\n’, [Pi,Pi,Pi]).
3.141593e+00 3.14E+00 3.0E+00

C"'Nf?

‘“NF’ (Print float in fixed-point notation.) The argument is a float, which
will be printed in fixed-point notation with N digits after the dec-
imal point. N may be zero, in which case a zero appears after the
decimal point. At least one digit appears before it and at least one
after it. N defaults to 6. Examples:

| ?- Pi=3.14159265, for-
mat (’~f, “2F, “OF\n’, [Pi,Pi,Pi]).
3.141593, 3.14, 3.0

L~Ng7
‘NG’ (Print float in generic notation.) The argument is a float, which
will be printed in ‘f’ or ‘e’ (or ‘E’ if ‘G’ is used) notation with N
significant digits. If N is zero, one significant digit is printed. ‘E’
notation is used if the exponent from its conversion is less than
-4 or greater than or equal to N, otherwise ‘f’ notation. Trailing
zeroes are removed from the fractional part of the result. A decimal
point and at least one digit after it always appear. N defaults to 6.
Examples:
| ?- for-
mat(’~“g “2G “0G\n’, [1.23456789e+10, 3.14159265, 0.0123]) .}
1.23457e+10 3.1 0.01

C"'Ml?

“NH (Print float precisely.) The argument is a float, which will be
printed in ‘f’ or ‘e’ (or ‘E’ if ‘H’ is used) notation with d signifi-
cant digits, where d is the smallest number of digits that will yield
the same float when read in. ‘E’ notation is used if N<0 or if the ex-
ponent is less than -N-1 or greater than or equal to N+d, otherwise
‘f” notation. N defaults to 3. Examples:

| 7= F = 123000.0, G = 0.000123,
format(’“h “h “2h “2H ~-
1H\n’, [F,G,F,G,3.14]).
123000.0 0.000123 1.23e+05 1.23E-04 3.14E+00
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(~Nd7

<~ND7

(~Nr7

4~NR7

(~NS7

L~k7

The intuition is that for numbers like 123000000.0, at most N con-
secutive zeroes before the decimal point are allowed in ‘f’ notation.
Similarly for numbers like 0.000000123.

‘E’ notation is forced by using ‘“-1H’. ‘F’ is forced by using ‘~999H’.

(Print decimal.) The argument is an integer. N is interpreted as
the number of digits after the decimal point. If N is 0 or missing,
no decimal point will be printed. Example:

| ?- format(’Hello ~1d world!\m’, [42]).

Hello 4.2 world!

| ?- format(’Hello ~d world!\mn’, [42]).
Hello 42 world!

(Print decimal.) The argument is an integer. Identical to ‘~Nd’
except that ‘,” will separate groups of three digits to the left of the
decimal point. Example:

| ?- format(’Hello ~1D world!\n’, [12345]).

Hello 1,234.5 world!

(Print radix.) The argument is an integer. N is interpreted as a
radix, 2 < N < 36. If N is missing the radix defaults to 8. The
letters ‘a-z’ will denote digits larger than 9. Example:

| ?- format(’Hello ~2r world!\m’, [15]).

Hello 1111 world!

| ?- format(’Hello ~16r world!\n’, [15]).
Hello f world!

(Print radix.) The argument is an integer. Identical to ‘“Nr’ except
that the letters ‘A-Z’ will denote digits larger than 9. Example:

| ?- format(’Hello ~16R world!\n’, [15]).

Hello F world!

(Print string.) The argument is a code-list. Exactly N characters
will be printed. N defaults to the length of the string. Example:
| ?- format(’Hello “4s “4s!\n’, ["new","world"]).
Hello new worl!

| ?- format(’Hello ~s world!\n’, ["new"]).
Hello new world!

(Ignore.) The argument, which may be of any type, is ignored.
Example:
| ?- format(’Hello “i~s world!\n’, ["old","new"]).
Hello new world!

(Print canonical.) The argument may be of any type. The argu-
ment will be passed to write_canonical/1 (see Section 8.1.3 [Term
1/0], page 142). Example:
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(~@7

[Radiadd)

(~Nn7

L~N7

SICStus Prolog

| ?- format(’Hello “k world!\n’, [[a,b,cl]).
Hello .(a,.(b,.(c,[1))) world!

(Print.) The argument may be of any type. The argument will
be passed to print/1 (see Section 8.1.3 [Term I/O], page 142).
Example:

| 7- assert((portray([X|Y]) :- print(cons(X,Y)))).

| ?- format(’Hello “p world!\n’, [[a,b,c]]).

Hello cons(a,cons(b,cons(c,[1))) world!

(Print quoted.) The argument may be of any type. The argument
will be passed to writeq/1 (see Section 8.1.3 [Term I/O], page 142).
Example:
| ?- format(’Hello ~q world!\n’, [[’A’,’B’]]).
Hello [’A’,’B’] world!

(Write.) The argument may be of any type. The argument will
be passed to write/1 (see Section 8.1.3 [Term I/O], page 142).
Example:
| ?- format(’Hello “w world!\m’, [[’A’,’B’]]).
Hello [A,B] world!

(Call.) The argument is a goal, which will be called and expected to
print on the current output stream. If the goal performs other side-
effects or does not succeed determinately, the behavior is undefined.
Example:
| ?- format(’Hello ~@ world!\n’, [write(new)]).
Hello new world!

(Print tilde.) Takes no argument. Prints ‘~’. Example:

| ?- format(’Hello ~~ world!\n’, []).

Hello ™ world!
(Print newline.) Takes no argument. Prints N newlines. N defaults
to 1. Example:

| ?- format(’Hello ~n world!\n’, []).
Hello
world!

(Print Newline.) Prints a newline if not at the beginning of a line.

The following control sequences set column boundaries and specify padding.
A column is defined as the available space between two consecutive column
boundaries on the same line. A boundary is initially assumed at line position
0. The specifications only apply to the line currently being written.

When a column boundary is set (‘|” or ‘“+’) and there are fewer characters
written in the column than its specified width, the remaining space is divided
equally amongst the pad sequences (‘“t’) in the column. If there are no pad
sequences, the column is space padded at the end.

If <7 |” or "+ specifies a position preceding the current position, the boundary
is set at the current position.
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Nl Set a column boundary at line position N. N defaults to the current
position.
TN+ Set a column boundary at N positions past the previous column

boundary. N defaults to 8.

NG Specify padding in a column. N is the fill character code. N may
also be specified as ‘C where C'is the fill character. The default fill
character is (SPC). Any (‘"t’) after the last column boundary on a
line is ignored.

Example:

| 7- format (’~ ‘*t NICE TABLE ~ ‘*t~61|~n’, []),

format (’*~t*x~61|"n’, []),

format (’*~t~a~20| " t~a~t~20+~a"t~ 20+~ t*"61|"n’,
[’Right aligned’,’Centered’, ’Left aligned’]),

format (’*~t~d~20| "t d "t~ 20+~d"t~ 20+~ t*"61|"n’,
[123,45,678]),

format (’*~t~d~ 20|~ t~d "t~ 20+~d"t~ 20+~ t*"61|"n’,
[1,2345,6789]),

format (’~ ‘*t~61|"n’, []).

sokokokokokokkokokokkokskokskokkokkokkokk - NICE TA-
BLE  sokskokskoskokokskok sk ok sk ok skok ok ok ok ok

* *
* Right aligned Cen-

tered Left aligned *

* 123 45 678 *
* 1 2345 6789 *

3k 3k 3k 3k >k 3k 5k 3k 5k 5k 3k >k 3k 3k 5k 5k %k 3k >k 5k 5k 5k 5k >k 3k >k 5k 5k 5k 3k >k 3k 5k 5k 5k >k 3k >k 3k 5k >k 5k >k 3k >k 5k 5k 5k 5k >k 3k >k %k 5k %k 5k %k >k k k k

8.1.4 Character Input/Output

Most of character I/O predicates have several variants:

bytes vs. characters
There are separate predicates for binary 1/O, which work on bytes, and for
text I/O, which work on characters. The former have the suffix ‘_byte’; e.g.
put_byte.

character codes vs. one-char atoms
The text I/O predicates come in two variants, those that use character codes
(suffix ‘_code’, e.g. put_code), and those using one-char atoms (suffix ‘_char’,
e.g. put_char).

SICStus compatibility predicates
The SICStus compatibility predicates work on both binary and text streams
and use character codes or bytes, depending on the stream type. They normally
have no suffix (e.g. put), with the exception of peek_char.
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explicit vs. implicit stream
Each of the above predicates comes in two variants: with an explicit first
argument, which is the stream or alias to which the predicate applies (e.g.
put_byte(Stream, Byte)), or without the stream argument, in which case the
current input or output stream is used, depending on the context (e.g. put_
byte (Byte)).

I/0 on standard streams
These are variants of SICStus compatibility predicates that always work on
the standard input or output. These predicates have the prefix tty, e.g.
ttyput (Code).

nl IS0

nl (+Stream) IS0
A new line is started on the text stream Stream by printing a LED). If Stream
is connected to the terminal, its buffer is flushed.

get_code(?Code) IS0

get_code (+Stream, ?Code) IS0
Code is the character code of the next character read from text stream Stream.
If all characters of Stream have been read, Code is -1, and further calls to get_
code/2 for the same stream will normally raise an exception, unless the stream
is connected to the terminal (but see the eof _action option of open/4; see
Section 8.1.5 [Stream Pred], page 154).

get_char (?Char) IS0

get_char (+Stream, ?Char) IS0
Char is the one-char atom naming the next character read from text stream
Stream. If all characters of Stream have been read, Char is end_of_file,
and further calls to get_char/2 for the same stream will normally raise an
exception, unless the stream is connected to the terminal (but see the eof _
action option of open/4; see Section 8.1.5 [Stream Pred], page 154).

get_byte(?Byte) IS0

get_byte(+Stream, ?Byte) IS0
Byte is the next byte read from the binary stream Stream. It has the same
behavior at the end of stream as get_code.

get0(?Code) obsolescent

get0(+Stream, ?Code) obsolescent
A combination of get_code and get_byte: Code is the next character code or
byte read from the arbitrary stream Stream.

get (?7N) obsolescent
get (+Stream, 7N) obsolescent
Same as get0/2, except N is the character code of the next character that is
not a layout-char (see Section 50.4 [Token String|, page 790) read from Stream.
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peek_code (?Code) IS0

peek_code (+Stream, ?Code) IS0
Code is the character code of the next character from text stream Stream, or
-1, if all characters of Stream have been read. The character is not actually
read; it is only looked at and is still available for subsequent input.

peek_char (?Char) IS0 only

peek_char (+Stream, ?Char) IS0 only
Char is the one-char atom naming the next character from text stream Stream,
or end_of_file, if all characters of Stream have been read. The character is
not actually read.

peek_char (?Code) SICStus only

peek_char (+Stream, ?Code) SICStus only
Identical to peek_code.

peek_byte (?Byte) IS0

peek_byte (+Stream, ?Byte) IS0

Byte is the next byte from binary stream Stream, or -1, if all bytes of Stream
have been read. The byte is not actually read.

skip(+Code) obsolescent

skip(+Stream,+Code) obsolescent
Skips just past the next character code Code from Stream. Code may be an
arithmetic expression.

skip_line
skip_line(+Stream)
Skips just past the next from the text stream Stream.

read_line(-Line)

read_line(+Stream, -Line)
Reads one line of input from Stream, and returns the code-list Line. When the
end of file is reached, Line is the atom end_of_file, and on subsequent calls
an exception is raised.

put_code (+Code) IS0

put_code (+Stream,+Code) IS0
Character code Code is output onto text stream Stream.

put_char (+Char) IS0

put_char (+Stream,+Char) Is0
The character named by the one-char atom Char is output onto text stream
Stream.

put_byte(+Byte) IS0

put_byte(+Stream,+Byte) IS0
Byte Byte is output onto binary stream Stream.

put (+Code) obsolescent

put (+Stream,+Code) obsolescent

A combination of put_code and put_byte: Code is output onto (an arbitrary
stream) Stream. Code may be an arithmetic expression.
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tab (+N) obsolescent

tab(+Stream, +N) obsolescent
N spaces are output onto text stream Stream. N may be an arithmetic expres-
sion.

The above predicates are the ones that are the most commonly used, as they can refer to
any streams. The predicates listed below always refer to the standard input and output
streams. They are provided for compatibility with DEC-10 character 1/O, and are actually
redundant and easily recoded in terms of the above predicates.

ttynl obsolescent
Same as nl(user_output).

ttyflush obsolescent
Same as flush_output (user_output).

ttyget0(7N) obsolescent
Same as getO(user_input, N).

ttyget (?N) obsolescent
Same as get (user_input, N).

ttyput (+N) obsolescent
Same as put (user_output, N).

ttyskip (+N) obsolescent
Same as skip(user_input, N).

ttytab(+N) obsolescent
Same as tab(user_output, N).

8.1.5 Stream I/0

The following predicates are relevant to stream I/O. Character, byte and line counts are
maintained per stream. All streams connected to the terminal, however, share the same set
of counts. For example, writing to user_output will advance the counts for user_input, if
both are connected to the terminal. Bidirectional streams use the same counters for input
and output.

Wherever a stream argument appears as input (+Stream), a stream alias can be used instead.

absolute_file_name(+FileSpec,-AbsFileName)

absolute_file_name(+FileSpec, -AbsFileName,+0Options)
If FileSpec is user, then AbsFileName is unified with user; this “file name”
stands for the standard input or output stream, depending on context. Other-
wise, unifies AbsFileName with the first absolute file name that corresponds to
the relative file specification FileSpec and that satisfies the access modes given
by Options. Options is a list of zero or more of the following, the default being
the empty list:
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ignore_underscores (+Boolean)
Boolean must be true or false. If true, when constructing an
absolute file name that matches the given access modes, two names
are tried: First the absolute file name derived directly from File-
Spec, and then the file name obtained by first deleting all under-
scores from FileSpec. If false (default), suppresses any deletion of
underscores.

extensions (+Ext)

Has no effect if FileSpec contains a file extension. Ext is an atom
or a list of atoms, each atom representing an extension (e.g. ’.pl?)
that should be tried when constructing the absolute file name. The
extensions are tried in the order they appear in the list. Default
value is Ext = [”], i.e. only the given FileSpec is tried, no extension
is added. To specify extensions(’’) or extensions([]) is equal
to not giving any extensions option at all.

file_type (+Type)
Picks an adequate extension for the operating system currently
running, which means that programs using this option instead of
extensions (Ext) will be more portable between operating sys-
tems. This extension mechanism has no effect if FileSpec contains
a file extension. Type must be one of the following atoms:

text implies extensions([”]). FileSpec is a file without any
extension. (Default)

source implies extensions([.pl’,”]). FileSpec is a Prolog source
file, maybe with a ‘.pl’ extension.

object implies extensions([".po’]). FileSpec is a Prolog object
file.

ql implies extensions([’.ql’]). FileSpec is a QL file. Obso-
lescent.

saved_state
implies extensions([".sav’,”]). FileSpec is a saved-state,
maybe with a ‘.sav’ extension.

foreign_file
FileSpec is a foreign language object file, maybe with
a system dependent extension.

foreign_resource
FileSpec is a foreign language shared object file, maybe
with a system dependent extension.

directory
implies extensions([’]). FileSpec is a directory, not
a regular file. Only when this option is present
can absolute_file_name/3 access directories without
raising an exception.
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access (+Mode)
Mode must be an atom or a list of atoms. If a list is given, Abs-
FileName must obey every specified option in the list. This makes
it possible to combine a read and write, or write and exist check,
into one call. Each atom must be one of the following;:

read AbsFileName must be readable.

write
append If AbsFileName exists, it must be writable. If it doesn’t
exist, it must be possible to create.

exist The file represented by AbsFileName must exist.

none The file system is not accessed. The first absolute file
name that is derived from FileSpec is returned. Note
that if this option is specified, no existence exceptions
can be raised. (Default)

file_errors(+Val)

fileerrors(+Val)
Val is one of the following, where the default is determined by the
current value of the fileerrors Prolog flag:

error Raise an exception if a file derived from FileSpec has
the wrong permissions, that is, can’t be accessed at all,
or doesn’t satisfy the the access modes specified with
the access option.

fail Fail if a file derived from FileSpec has the wrong per-
missions. Normally an exception is raised, which might
not always be a desirable behavior, since files that do
obey the access options might be found later on in the
search. When this option is given, the search space is
guaranteed to be exhausted.

solutions(+Val)
Val is one of the following:

first As soon as a file derived from FileSpec is found, commit
to that file. Makes absolute_file_name/3 determinate.
(Default)

all Return each file derived from FileSpec that is found.

The files are returned through backtracking. This op-
tion is probably most useful in combination with the
option file_errors(fail).

relative_to(+FileOrDirectory)
FileOrDirectory should be an atom, and controls how to resolve
relative filenames. If it is ’’, file names will be treated as relative
to the current working directory. If a regular, existing file is given,
file names will be treated as relative to the directory containing
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FileOrDirectory. Otherwise, file names will be treated as relative
to FileOrDirectory.

If absolute_file_name/3 is called from a goal in a file being
loaded, the default is the directory containing that file. Otherwise,
the default is the current working directory.

The functionality of absolute_file_name/3 is most easily described as a four
phase process, in which each phase gets an infile from the preceding phase, and
constructs one or more outfiles to be consumed by the succeeding phases. The
phases are:

1. Syntactic rewriting
2. Underscore deletion
3. Extension expansion

4. Access checking

Each of the three first phases modifies the infile and produces variants that will
be fed into the succeeding phases. The functionality of all phases but the first
are decided with the option list. The last phase checks if the generated file exists,
and if not asks for a new variant from the preceding phases. If the file exists,
but doesn’t obey the access mode option, a permission exception is raised. If
the file obeys the access mode option, absolute_file_name/3 commits to that
solution, subject to the solutions option, and unifies AbsFileName with the
file name. For a thorough description, see below.

Note that the relative file specification FileSpec may also be of the form
Path(FileSpec), in which case the absolute file name of the file FileSpec in
one of the directories designated by Path is returned (see the description of
each phase below).

Phase 1 This phase translates the relative file specification given by FileSpec
into the corresponding absolute file name. See Section 8.1 [Input
Output|, page 131, for a description of syntactic rewriting. The
rewrite is done wrt. the value of the relative_to option. There
can be more than one solution, in which case the outfile becomes
the solutions in the order they are generated. If the succeeding
phase fails, and there are no more solutions, an existence exception

is raised.
Phase 2 See the ignore_underscores option.
Phase 3 See the extensions and file_type options.

Phase 4 See the access option.

Comments:

e If an option is specified more than once the rightmost option takes prece-
dence. This provides for a convenient way of adding default values by
putting these defaults at the front of the list of options.

o If absolute_file_name/3 succeeds, and the file access option was one of
{read, write, append}, it is guaranteed that the file can be opened with
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open/[3,4]. If the access option was exist, the file does exist, but might
be both read and write protected.

o If file_type(directory) is not given, the file access option is other than
none, and a specified file refers to a directory, then absolute_file_name/3
signals a permission error.

e absolute_file_name/[2,3] is sensitive to the fileerrors Prolog flag,
which determines whether the predicate should fail or raise permission
errors when encountering files with the wrong permission. Failing has the
effect that the search space always is exhausted.

e If FileSpec contains a ‘..’ component, the constructed absolute file name
might be wrong. This occurs if the parent directory is not the same as the
directory preceding ‘..’ in the relative file specification, which only can
happen if a soft link is involved.

e This predicate is used for resolving file specification by the built-in predi-
cates:

— open/[3,4]

— see/1

— tell/1

— consult/1

— reconsult/1

— compile/1

— fcompile/1

— load/1

— ensure_loaded/1

— use_module/[1,2,3]

— load_files/[1,2]

— load_foreign_files/2

— load_foreign_resource/1

— unload_foreign_resource/1

— save_modules/2

— save_predicates/2

— save_files/2

— restore/1

— save_program/[1,2]
To check whether the file ‘my_text’ exists in the home directory, with one of
the extensions ‘.text’ or ‘.txt’, and is both writable and readable:

| ?- absolute_file_name(’~/my_text’, File,

[extensions([’.text’,’.txt’]),
access([read,write])]).

To check if the Prolog file ‘same_functor’ exists in some library, and also check
if it exists under the name ‘samefunctor’:
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| ?- absolute_file_name (library(same_functor), File,
[file_type(source), access(exist),
ignore_underscores (true)]).

file_search_path(+Path,-Expansion) hook
user:file_search_path(+Path,-Expansion)
Specifies how to rewrite compound file specifications to atomic file names, as
described in Section 8.1 [Input Output], page 131. Path should be an atom and
Expansions a file name. The predicate may succeed nondeterminately in this
search for an atomic file name.

The predicate is undefined at startup, but behaves as if it were a dynamic, mul-
tifile predicate with the following clauses. See Section 8.6 [State Infol, page 175
for more info on the Prolog flag host_type. The environment variables SP_APP_
DIR and SP_RT_DIR expand respectively to the absolute path of the directory
that contains the executable and the directory that contains the SICStus run-
time.

file_search_path(library, Path) :-
library_directory(Path) .
file_search_path(system, Platform) :-
prolog_flag(host_type, Platform).
file_search_path(application, ’$SP_APP_DIR’).
file_search_path(runtime, ’$SP_RT_DIR’).

library_directory(-Directory) hook

user:library_directory(-Directory)
Specifies a directory to be searched when a file specification of the form
library (Name) is used. The predicate is undefined at startup, but behaves
as if it were a dynamic, multifile predicate with a single clause defining the
location of the Prolog library. The initial value is the same as the value of the
environment variable SP_LIBRARY_DIR. The predicate may succeed nondeter-
minately in this search for a library directory.

open(+FileName,+Mode, -Stream) IS0

open(+FileName,+Mode,-Stream,+0ptions) IS0
If FileName is a valid file specification, the file that it denotes is opened in mode
Mode (invoking the UNIX function fopen) and the resulting stream is unified
with Stream. Mode is one of:

read Open the file for input.

write Open the file for output. The file is created if it does not already
exist, the file will otherwise be truncated.

append Open the file for output. The file is created if it does not already
exist, the file will otherwise be appended to.

If FileName is an integer, it is assumed to be a file descriptor passed to Prolog
from C. The file descriptor is connected to a Prolog stream (invoking the POSIX
function fdopen) which is unified with Stream.

Options is a list of zero or more of:
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type (+T) Specifies whether the stream is a text or binary stream. Default
is text.

reposition(+Boolean)
Specifies whether repositioning is required for the stream (true),
or not (false). The latter is the default.

alias(+4)
Specifies that the atom A is to be an alias for the stream.

eof _action(+Action)
Specifies what action is to be taken when the end of stream has
already been reported (by returning -1 or end_of_file), and a
further attempt to input is made. Action can have the following
values:

error An exception is raised. This is the default.

eof_code An end of stream indicator (-1 or end_of_file) is re-
turned again.

reset The stream is considered not to be at end of stream
and another attempt is made to input from it.

wex (Wex)  Specifies to pass the term Wex to the wide character extension com-
ponent; see Section 12.3 [Prolog Level WCX Features|, page 303.

close(+X) IS0

close(+X, +Options) IS0
If X is a stream or alias, the stream is closed. If X is the name of a file opened by
see/1 or tell/1, the corresponding stream is closed. Options is a list possibly
containing the following element:

force(Boolean)
Specifies whether SICStus Prolog is to close the stream forcefully,
even in the presence of errors (true), or not (false). The latter is
the default. Currently this option has no effect.

current_input ( ?Stream) IS0
Stream is the current input stream. The current input stream is also accessed
by the C variable SP_curin.

current_output ( ?Stream) Is0
Stream is the current output stream. The current output stream is also accessed
by the C variable SP_curout.

current_stream(?FileName, ?Mode, ?Stream)
Stream is a stream that was opened in mode Mode and that is connected to the
absolute file name Filename (an atom) or to the file descriptor Filename (an
integer). This predicate can be used for enumerating all currently open streams
through backtracking.

set_input (+Stream) IS0
Sets the current input stream to Stream.
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set_output (+Stream) IS0
Sets the current output stream to Stream.

flush_output IS0

flush_output (+Stream) IS0
Flushes all internally buffered characters or bytes for Stream to the operating
system.

open_null_stream(-Stream)
Opens a text output stream. Everything written to this stream will be thrown
away.

character_count (+Stream, ?N)
N is the number of characters read/written on text stream Stream. The count
is reset by set_stream_position/2.

byte_count (+Stream, 7N)
N is the number of bytes read/written on stream Stream. Meaningful for both
binary and text streams. In the latter case it will differ from the number
returned by character_count/2 in the presence of wide characters. The count
is reset by set_stream_position/2.

line_count (+Stream, 7N)
N is the number of lines read/written on text stream Stream. The count is
reset by set_stream_position/2.

line_position(+Stream, 7N)
N is the number of characters read/written on the current line of text stream
Stream. The count is reset by set_stream_position/2.

stream_position(+Stream, 7Position)
Position is a term representing the current stream position of Stream. This
operation is available for any Prolog stream. You can retrieve certain data
from a stream position term using stream_position_data/3.

stream_position_data(?Field, +Pos, 7Data)
The Field field of the Pos term is Data. Pos is a stream position; Field is one
of: line_count, character_count, line_position, byte_count.

stream_property(?Stream, 7Property)) IS0
Stream Stream has property Property. Enumerates through backtracking all
currently open streams, including the standard input/output/error streams,
and all their properties.

Property can be one of the following;:

file_name (?F)
F is the file name associated with the Stream.

mode (?M) Stream has been opened in mode M.
input Stream is an input stream.

output Stream is an output stream.
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alias(74)
Stream has an alias A.

position(?P)
P is a term representing the current stream position of Stream.
Same as stream_position(Stream, P).

end_of_stream(?E)
E describes the position of the input stream Stream, with respect
to the end of stream. If not all characters have been read, then E
is unified with not; otherwise, (all characters read) but no end of
stream indicator (-1 or end_of_file) was reported yet, then E is
unified with at; otherwise, E is unified with past.

eof _action(?4)
A is the end-of-file action applicable to Stream, cf. the eof _action
option of open/4.

type(?T) Stream is of type T.

wex (PWex)
Wide character extension information Wex was supplied at opening
Stream; see Section 12.3 [Prolog Level WCX Features|, page 303.

set_stream_position(+Stream,+Position) IS0
Position is a term representing a new stream position of Stream, which is
then set to the new position. This operation is only available for Prolog
streams connected to “seekable devices” (disk files, usually). If the option
reposition(true) was supplied at the successful opening of the stream, then
set_stream_position/2 is guaranteed to be successful.

seek (+Stream,+0ffset,+Method, -NewLocation)
True if the stream Stream can be set to the byte offset Offset relative to Method,
and NewLocation is the new byte offset from the beginning of the file after the
operation. Method must be one of:

bof Seek from the beginning of the file stream.
current  Seek from the current position of the file stream.
eof Seek from the end of the file stream.

This operation is only available for Prolog streams connected to “seekable de-
vices” (disk files, usually) and is an interface to the stdio functions fseek and
ftell. After applying this operation, the character count, line count and line
position aspects of the stream position of Stream will be undefined.

at_end_of_stream IS0
at_end_of_stream(+Stream) IS0
The end of stream has been reached for the input stream Stream. An input
stream reaches end of stream when all characters (except ‘EOF’, i.e. -1) of the
stream have been read. These predicates peek ahead for next input character
if there is no character available on the buffer of Stream. Unless the stream
is to be treated as connected to the terminal (see SP_force_interactive(),
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Section 9.8.4.1 [Initializing the Prolog Engine|, page 276), a stream remains at
end of stream after ‘EOF’ has been read, and any further attempt to read from
the stream will raise an existence error (see Section 8.5 [Exception], page 173).

at_end_of_line

at_end_of_line(+Stream)
The end of stream or end of line has been reached for the input stream Stream.
An input stream reaches end of line when all the characters except of
the current line have been read. These predicates peek ahead for next input
character if there is no character available on the buffer of Stream.

fileerrors
Undoes the effect of nofileerrors/0.

nofileerrors
After a call to this predicate, failure to locate or open a file will cause the
operation to fail instead of the default action, which is to raise an exception.

8.1.6 DEC-10 Prolog File I/0

The following predicates manipulate files.

see(+File)
The file File becomes the current input stream. File may be a stream previously
opened by see/1 or a file specification. In the latter case, the following action
is taken: If there is a stream opened by see/1 associated with the same file
already, then it becomes the current input stream. Otherwise, the file denoted
by File is opened for input and made the current input stream.

seeing(?FileName)
FileName is unified with the name of the current input file, if it was opened by
see/1, with the current input stream, if it is not user_input; otherwise, with

user.
seen
Closes the current input stream, and resets it to user_input.
tell(+File)
The file File becomes the current output stream. File may be a stream previ-
ously opened by tell/1 or a file specification. In the latter case, the following
action is taken: If there is a stream opened by tell/1 associated with the same
file already, then it becomes the current output stream. Otherwise, the file
denoted by File is opened for output and made the current output stream.
telling(?FileName)

FileName is unified with the name of the current output file, if it was opened
by tell/1, with the current output stream, if it is not user_output; otherwise,
with user.

told
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Closes the current output stream, and resets it to user_output.

8.1.7 An Example

Here is an example of a common form of file processing;:

process_file(F) :-

seeing(01dInput),
see(F), % Open file F
repeat,
read(T), % Read a term
process_term(T), % Process it
T == end_of_file, % Loop back if not at end of file
!
seen, % Close the file
see(01dInput).

The above is an example of a repeat loop. Nearly all sensible uses of repeat/0 follow the
above pattern. Note the use of a cut to terminate the loop.

8.2 Arithmetic

Arithmetic is performed by built-in predicates, which take as arguments arithmetic expres-
sions and evaluate them. An arithmetic expression is a term built from numbers, variables,
and functors that represent arithmetic functions. At the time of evaluation, each variable
in an arithmetic expression must be bound to a non-variable expression. An expression
evaluates to a number, which may be an integer or a float.

The range of integers is [-272147483616, 2°2147483616). Thus for all practical purposes,
the range of integers can be considered infinite.

The range of floats is the one provided by the C double type, typically [4.9e-324,
1.8e+308] (plus or minus). In case of overflow or division by zero, iso execution mode
will raise an evaluation error exception. In sicstus execution mode no exceptions will be
raised, instead appropriate infinity values, as defined by the IEEE standard, will be used.

Only certain functors are permitted in an arithmetic expression. These are listed below,
together with an indication of the functions they represent. X and Y are assumed to be
arithmetic expressions. Unless stated otherwise, the arguments of an expression may be any
numbers and its value is a float if any of its arguments is a float; otherwise, the value is an
integer. Any implicit coercions are performed with the integer/1 and float/1 functions.

The arithmetic functors are annotated with [ISO/, [ISO only/, or [SICStus only], with the
same meaning as for the built-in predicates; see Section 1.5 [ISO Compliance|, page 6.
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+(X) The value is X.

-X The value is the negative of X. ISO
X+Y The value is the sum of X and Y. ISO
X-Y The value is the difference of X and Y. ISO
X*xY The value is the product of X and Y. 1SO
X/Y The value is the float quotient of X and Y. 1SO

X//Y IS0 The value is the integer quotient of X and Y. The result is always truncated
towards zero. In iso execution mode X and Y have to be integers.

XremY IS0
The value is the integer remainder after dividing X by Y, i.e. integer(X)-
integer (Y)*(X//Y). The sign of a nonzero remainder will thus be the same as
that of the dividend. In iso execution mode X and Y have to be integers.

Xmod Y IS0 only
The value is X modulo Y, i.e. integer (X)-integer (Y)*floor(X/Y). The sign
of a nonzero remainder will thus be the same as that of the divisor. X and Y
have to be integers.

Xmod Y SICStus only
The value is the same as that of X rem Y.

integer (X)
The value is the closest integer between X and 0, if X is a float; otherwise, X
itself.

float_integer_part (X) IS0

The same as float (integer(X)). In iso execution mode, X has to be a float.

float_fractional_part(X) IS0
The value is the fractional part of X, i.e. X - float_integer_part(X). In iso
execution mode, X has to be a float.

float (X) IS0
The value is the float equivalent of X, if X is an integer; otherwise, X itself.

X/\Y IS0 The value is the bitwise conjunction of the integers X and Y. In iso execution
mode X and Y have to be integers.

X\/Y IS0 The value is the bitwise disjunction of the integers X and Y. In iso execution
mode X and Y have to be integers.

X#Y The value is the bitwise exclusive or of the integers X and Y.

\(X) IS0 The value is the bitwise negation of the integer X. In iso execution mode X
has to be an integer.

X<<Y IS0 The value is the integer X shifted left by Y places. In iso execution mode X
and Y have to be integers.

X>>Y IS0 The value is the integer X shifted right by Y places. In iso execution mode X
and Y have to be integers.
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[x] A list of just one number X evaluates to X. Since a quoted string is just a list
of integers, this allows a quoted character to be used in place of its character
code; e.g. "A" behaves within arithmetic expressions as the integer 65.

SICStus Prolog also includes an extra set of functions listed below. These may not be
supported by other Prologs. All trigonometric and transcendental functions take float
arguments and deliver float values. The trigonometric functions take arguments or deliver
values in radians.

abs (X) IS0
The value is the absolute value of X.

sign(X) IS0
The value is the sign of X, i.e. -1, if X is negative, 0, if X is zero, and 1, if X is
positive, coerced into the same type as X (i.e. the result is an integer, iff X is
an integer).

gcd(X,Y) The value is the greatest common divisor of the two integers X and Y. In iso
execution mode X and Y have to be integers.

min(X,Y) The value is the lesser value of X and Y.
max(X,Y) The value is the greater value of X and Y.

msb (X) The value is the position of the most significant nonzero bit of the integer X,
counting bit positions from zero. It is equivalent to, but more efficient than,
integer (log(2,X)). X must be greater than zero, and in iso execution mode,
X has to be an integer.

round (X) IS0 only
The value is the closest integer to X. X has to be a float. If X is exactly half-way
between two integers, it is rounded up (i.e. the value is the least integer greater
than X).

round (X) SICStus only
The value is the float that is the closest integral value to X. If X is exactly
half-way between two integers, it is rounded to the closest even integral value.

truncate (X) IS0 only
The value is the closest integer between X and 0. X has to be a float.

truncate (X) SICStus only
The value is the float that is the closest integer between X and 0.

floor (X) IS0 only
The value is the greatest integer less or equal to X. X has to be a float.

floor(X) SICStus only
The value is the float that is the greatest integral value less or equal to X.

ceiling(X) IS0 only
The value is the least integer greater or equal to X. X has to be a float.

ceiling(X) SICStus only
The value is the float that is the least integral value greater or equal to X.
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sin(X)

The value is the sine of X.
cos(X)

The value is the cosine of X.
tan (X) The value is the tangent of X.
cot (X) The value is the cotangent of X.
sinh(X)  The value is the hyperbolic sine of X.
cosh(X)  The value is the hyperbolic cosine of X.
tanh(X)  The value is the hyperbolic tangent of X.
coth(X)  The value is the hyperbolic cotangent of X.
asin(X)  The value is the arc sine of X.
acos(X)  The value is the arc cosine of X.
atan(X)

The value is the arc tangent of X.
atan2(X,Y)

The value is the four-quadrant arc tangent of X and Y.
acot(X)  The value is the arc cotangent of X.
acot2(X,Y)

The value is the four-quadrant arc cotangent of X and Y.
asinh(X) The value is the hyperbolic arc sine of X.
acosh(X) The value is the hyperbolic arc cosine of X.
atanh(X) The value is the hyperbolic arc tangent of X.
acoth(X) The value is the hyperbolic arc cotangent of X.
sqrt (X)

The value is the square root of X.
log(X)

The value is the natural logarithm of X.
log(Base, X)

The value is the logarithm of X in the base Base.
exp (X)

The value is the natural exponent of X.
X xx Y
exp(X,Y) The value is X raised to the power of Y.
inf

The value is infinity as defined in the IEEE standard.
nan

The value is not-a-number as defined in the IEEE standard.
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IS0

IS0

IS0

IS0

IS0

IS0

IS0

SICStus only

SICStus only
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Variables in an arithmetic expression to be evaluated may be bound to other arithmetic
expressions rather than just numbers, e.g.:

evaluate (Expression, Answer) :- Answer is Expression.

| 7- evaluate(24*9, Ans).
Ans = 216

Arithmetic expressions, as described above, are just data structures. If you want one eval-
uated you must pass it as an argument to one of the built-in predicates listed below. Note
that is/2 only evaluates one of its arguments, whereas all the comparison predicates eval-
uate both of theirs. In the following, X and Y stand for arithmetic expressions, and Z for
some term.

Zis X IS0
X, which must be an arithmetic expression, is evaluated and the result is unified
with Z.

X=:=Y IS0
The numeric values of X and Y are equal.

X=\=Y IS0

The numeric values of X and Y are not equal.

X<y IS0
The numeric value of X is less than the numeric value of Y.

X>Y IS0

The numeric value of X is greater than the numeric value of Y.

X=<Y IS0
The numeric value of X is less than or equal to the numeric value of Y.

X>=Y IS0
The numeric value of X is greater than or equal to the numeric value of Y.

8.3 Comparison of Terms

These built-in predicates are meta-logical. They treat uninstantiated variables as objects
with values that may be compared, and they never instantiate those variables. They should
not be used when what you really want is arithmetic comparison (see Section 8.2 [Arith-
metic|, page 164) or unification.

The predicates make reference to a standard total ordering of terms, which is as follows:

e Variables, by age (oldest first—the order is not related to the names of variables).
e Floats, in numeric order (e.g. -1.0 is put before 1.0).

e Integers, in numeric order (e.g. -1 is put before 1).
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e Atoms, in alphabetical (i.e. character code) order.

e Compound terms, ordered first by arity, then by the name of the principal functor,
then by age for mutables and by the arguments in left-to-right order for other terms.
Recall that lists are equivalent to compound terms with principal functor . /2.

For example, here is a list of terms in standard order:
[ X, -1.0, -9, 1, fie, foe, X =Y, foe(0,2), fie(1,1,1) 1]

Please note: the standard order is only well-defined for finite (acyclic) terms.
There are infinite (cyclic) terms for which no order relation holds. Furthermore,
blocking goals (see Section 4.3 [Procedural|, page 50) on variables or modifying
their attributes (see Chapter 18 [Attributes|, page 355) does not preserve their
order.

These are the basic predicates for comparison of arbitrary terms:

Terml == Term2 IS0
The terms currently instantiating Terml and Term?2 are literally identical (in
particular, variables in equivalent positions in the two terms must be identical).
For example, the query

| 7- X == Y.
fails (answers ‘no’) because X and Y are distinct uninstantiated variables. How-
ever, the query

| 7= X =Y, X == Y.
succeeds because the first goal unifies the two variables (see Section 8.17 [Misc
Pred], page 213).

Terml \== Term2 IS0
The terms currently instantiating Term1 and Term?2 are not literally identical.

Terml @< Term2 IS0
The term Terml is before the term Term?2 in the standard order.
Terml @> Term2 IS0

The term Terml is after the term Term?2 in the standard order.

Terml @=< Term2 IS0
The term Terml1 is not after the term Term?2 in the standard order.

Terml @>= Term2 IS0
The term Terml is not before the term Term?2 in the standard order.

Some further predicates involving comparison of terms are:
?7=(7X,?Y)
X and Y are either syntactically identical or syntactically non-unifiable.

compare (?0p, ?Term1, ?Term2)
The result of comparing terms Terml and Term?2 is Op, where the possible

values for Op are:
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= if Term1 is identical to Term2,
< if Term1 is before Term?2 in the standard order,
> if Term1 is after Term?2 in the standard order.

Thus compare (=,Terml,Term2) is equivalent to Terml == Term2.

sort(+Listl1,?7List2)

The elements of the list List] are sorted into the standard order (see Section 8.3
[Term Compare|, page 168) and any identical elements are merged, yielding the
list List2. (The time and space complexity of this operation is at worst O(N Ig
N) where N is the length of List1.)

keysort(+Listl, ?List2)

The list Listl must consist of pairs of the form Key-Value. These items are
sorted into order according to the value of Key, yielding the list List2. No
merging takes place. This predicate is stable, i.e. if K-A occurs before K-B in
the input, then K-A will occur before K-B in the output. (The time and space
complexity of this operation is at worst O(N Ig N) where N is the length of
List1.)

8.4 Control

+P, +Q

+P 5 +0Q

\+ +P

IS0
P and Q.
IS0
Por Q.
IS0
See Section 4.5 [Cut], page 52.
IS0

Fails if the goal P has a solution, and succeeds otherwise. This is not real nega-
tion (“P is false”), but a kind of pseudo-negation meaning “P is not provable”.
It is defined as if by

\+(P) :- P, !, fail.

\+(2).
In sicstus execution mode no cuts are allowed in P. In iso execution mode
cuts are allowed in P and their scope is the goal P.

Remember that with prefix operators such as this one it is necessary to be
careful about spaces if the argument starts with a ‘(’. For example:

I ?_ \+ (P, Q).
is this operator applied to the conjunction of P and @, but
| 72— \+(P,Q).

would require a predicate \+ /2 for its solution. The prefix operator can however
be written as a functor of one argument; thus
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+P =>+Q ;

+P > +Q

| 7= \+((P,Q)).

is also correct.

+R IS0

Analogous to

if P then Q else R
and defined as if by

(p->Q; R :- P, ', Q.

(P -> Q; R) :- R.
except the scope of any cut in @ or R extends beyond the if-then-else construct.
In sicstus execution mode no cuts are allowed in P. In iso execution mode
cuts are allowed in P and their scope is the goal P.

Note that this form of if-then-else only explores the first solution to the goal P.

Note also that the ¢;’ is not read as a disjunction operator in this case; instead,
it is part of the if-then-else construction.

The precedence of ‘=>’ is less than that of *;’ (see Section 4.6 [Operators],
page 54), so the expression is read as

5 (_>(P, Q) ;R)
IS0
When occurring as a goal, this construction is read as equivalent to
(P -> @; fail)

if (+P,+Q,+R)

once (+P)

otherwise
true

false
fail

Analogous to
if P then Q else R

but differs from P -> Q ; R in that if (P, Q, R) explores all solutions to the
goal P. There is a small time penalty for this—if P is known to have only one
solution of interest, the form P -> Q ; R should be preferred.

In sicstus execution mode no cuts are allowed in P. In iso execution mode
cuts are allowed in P and their scope is the goal P.

IS0
Finds the first solution, if any, of goal P. Fails if no solutions are found. Will
not explore further solutions on backtracking. Equivalent to

(P -> true; fail)

IS0

These always succeed. Use of otherwise/0 is discouraged, because it is not as
portable as true/0, and because the former may suggest a completely different
semantics than the latter.

IS0

These always fail. Use of false/0 is discouraged, because it is not as portable
as fail/0, and because the latter has a more procedural flavor to it.
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repeat IS0
Generates an infinite sequence of backtracking choices. In sensible code,
repeat/0 is hardly ever used except in repeat loops. A repeat loop has the
structure
Head :-
save_state(01dState),
repeat,
generate(Datum) ,
action(Datum),
test(Datum),
!,
restore_state(0ldState),
The purpose is to repeatedly perform some action on elements that are somehow
generated, e.g. by reading them from a stream, until some test becomes true.
Usually, generate, action, and test are all determinate. Repeat loops cannot
contribute to the logic of the program. They are only meaningful if the action
involves side-effects.
The only reason for using repeat loops instead of a more natural tail-recursive
formulation is efficiency: when the test fails back, the Prolog engine immediately
reclaims any working storage consumed since the call to repeat/0.
call(:Term) 180
incore(:Term) obsolescent
:Term

If Term is instantiated to a term that would be acceptable as the body of a
clause, then the goal call(Term) is executed exactly as if that term appeared
textually in its place, except that any cut (!) occurring in Term only cuts
alternatives in the execution of Term. Use of incore/1 is not recommended.

If Term is not instantiated as described above, an exception is raised.

call_cleanup(:Goal, : Cleanup)

This construction can be used to ensure that Cleanup is executed as soon as
Goal has completed execution, no matter how it finishes. In more detail:

When call_cleanup/2 with a continuation C'is called or backtracked into, first
Goal is called or backtracked into. Then there are four possibilities:

1. Goal succeeds determinately, possibly leaving some blocked subgoals.
Cleanup is executed with continuation C.

2. Goal succeeds with some alternatives outstanding. FExecution proceeds
to C. If a cut that removes the outstanding alternatives is encountered,
Cleanup is executed with continuation to proceed after the cut. Also, if
an exception E that will be caught by an ancestor of the call_cleanup/2
Goal is raised, Cleanup is executed with continuation raise_exception(E

).

3. Goal fails. Cleanup is executed with continuation fail.
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4. Goal raises an exception E. Cleanup is executed with continuation raise_
exception(E).

In a typical use of call_cleanup/2, Cleanup succeeds determinately after per-
forming some side-effect; otherwise, unexpected behavior may result.

Note that the Prolog top-level operates as a read-execute-fail loop, which back-
tracks into or cuts the query when the user types ; or respectively. Also,
the predicates halt/0 and abort/0 are implemented in terms of exceptions.
All of these circumstances can trigger the execution of Cleanup.

8.5 Error and Exception Handling

The built-in predicates described in this section are used to alter the control flow to meet
exception and error conditions. The equivalent of a raise_exception/1 is also executed
by the built-in predicates when errors occur.

catch(:ProtectedGoal, ?Pattern, :Handler) IS0
on_exception(?Pattern, :ProtectedGoal, :Handler)
throw(+Exception) IS0

raise_exception(+Exception)

catch/3 is the same as on_exception/3 (but note different argument order),
and throw/1 is the same as raise_exception/1. on_exception/3 calls Pro-
tectedGoal. If this succeeds or fails, so does the call to on_exception/3.
If however, during the execution of ProtectedGoal, there is a call to raise_
exception(Exception), then Exception is copied and the stack is unwound
back to the call to on_exception/3, whereupon the copy of Exception is uni-
fied with Pattern. If this unification succeeds, then on_exception/3 calls the
goal Handler in order to determine the success or failure of on_exception/3.
Otherwise, the stack keeps unwinding, looking for an earlier invocation of on_
exception/3. Exception may be any term.

In a development system, any previously uncaught exception is caught and an appropriate
error message is printed before returning to the top level. In recursive calls to Prolog
from C, uncaught exceptions are returned back to C instead. The printing of these and
other messages in a development system is handled by the predicate print_message/2 (see
Section 8.13 [Messages and Queries], page 195).

The format of the exception raised by the built-in predicates depends on the execution
mode. In iso execution mode the format is

error (ISO_Error, SICStus_Error)

where ISO_Error is the error term prescribed by the ISO Prolog standard, while SICS-
tus_Error is the part defined by the standard to be implementation dependent. In case
of SICStus Prolog this is the SICStus error term, which normally contains additional in-
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formation, such as the goal and the argument number causing the error. Arguments are
numbered from 1 upwards.

In sicstus execution mode, the SICStus error term is used when raising an exception in a
built-in predicate.

The list below itemizes the error terms, showing the ISO_Error and SICStus_Error form of
each one, in that order. Note that the SICStus and ISO error terms do not always belong
to the same error class, and that the context and consistency error classes are extensions
to the ISO Prolog standard.

The goal part of the error term may optionally have the form $@(Callable,PC) where PC
is an internal encoding of the line of code containing the culprit goal or one of its ancestors.

instantiation_error
instantiation_error(Goal, Argho)
Goal was called with insufficiently instantiated variables.

type_error (TypeName,Culprit)

type_error(Goal, Argho, TypeName, Culprit)
Goal was called with the wrong type of argument(s). TypeName is the expected
type and Culprit what was actually found.

domain_error(Domain,Culprit)

domain_error(Goal,ArgNo,Domain,Culprit)
Goal was called with argument(s) of the right type but with illegal value(s).
Domain is the expected domain and Culprit what was actually found.

existence_error(ObjectType,Culprit)

existence_error(Goal, ArgNo,0ObjectType,Culprit,Reserved)
Something does not exist as indicated by the arguments. If the unknown Prolog
flag is set to error, this error is raised with ArgNo set to 0 when an undefined
predicate is called.

permission_error (Operation,ObjectType,Culprit)
permission_error(Goal,Operation,ObjectType,Culprit,Reserved)
The Operation is not permitted on Culprit of the ObjectType.

context_error(ContextType, CommandType)
context_error(Goal,ContextType, CommandType)
The CommandType is not permitted in ContextType.

syntax_error (Message)

syntax_error(Goal,Position,Message, Tokens,AfterError)
A syntax error was found when reading a term with read/[1,2] or assembling
a number from its characters with number_chars/2. In the former case this
error is raised only if the syntax_errors flag is set to error.

evaluation_error (ErrorType,Culprit)
evaluation_error(Goal,ArgNo,ErrorType,Culprit)
An incorrect arithmetic expression was evaluated. Only occurs in iso execution
mode.
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representation_error (ErrorType)

representation_error (Goal,ArgNo,ErrorType)
A representation error occurs when the program tries to compute some well-
defined value that cannot be represented, such as a compound term with arity
> 255.

consistency_error(Culpritl,Culprit2,Message)
consistency_error(Goal,Culpritl,Culprit2,Message)
A consistency error occurs when two otherwise valid values or operations have
been specified that are inconsistent with each other.

resource_error (ResourceType)

resource_error (Goal,ResourceType)
A resource error occurs when SICStus Prolog has insufficient resources to com-
plete execution. The only value for ResourceType that is currently in use is
memory.

system_error
system_error (Message)
An error occurred while dealing with the operating system.

It is possible to handle a particular kind of existence errors locally: calls to undefined
predicates. This can be done by defining clauses for:

unknown_predicate_handler(+Goal,+Module, -NewGoal) hook
user:unknown_predicate_handler(+Goal,+Module, -NewGoal)
Called as a result of a call to an undefined predicate. Goal is bound to the
goal of the undefined predicate and Module to the module where the call was
made. If this predicate succeeds, Module:NewGoal is called; otherwise, the
action taken is governed by the unknown Prolog flag.

The following example shows an auto-loader for library packages:

user:unknown_predicate_handler(Goal, Module, Goal) :-
functor(Goal, Name, Arity),
require (Module: (Name/Arity)) .

8.6 Information about the State of the Program

listing
Lists onto the current output stream all the clauses in the database (in the

type-in module; see Section 5.2 [Module Spec], page 59). Clauses listed onto a
file can be consulted back.

listing(:Spec)
Lists all interpreted predicates covered by the generalized predicate spec Spec.
For example:

| ?- listing([concatenate/3, reverse, m:go/[2,3], bar:_]).
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current_atom(?Atom) meta-logical
Atom is an atom known to SICStus Prolog. Can be used to enumerate (through
backtracking) all currently known atoms, and return each one as Atom.

current_predicate(?Name, :Head)

current_predicate(?Name, -Head)
Name is the name of a user defined or library predicate, and Head is the most
general goal for that predicate, possibly prefixed by a module name. This
predicate can be used to enumerate all user defined or library predicates through
backtracking.

current_predicate(?Name/?Arity) IS0
Name is the name of a user defined or library predicate, possibly prefixed by a
module name and Arity is its arity. This predicate can be used to enumerate
all user defined or library predicates through backtracking.

predicate_property(:Head, ?Property)

predicate_property(-Head, ?Property)
Head is the most general goal for an existing predicate, possibly prefixed by a
module name, and Property is a property of that predicate, where the possible
properties are

e one of the atoms built_in (for built-in predicates) or compiled or
interpreted (for user defined predicates) or £d_constraint for FD pred-
icates see Section 34.9 [Defining Primitive Constraints|, page 479.

e the atom dynamic for predicates that have been declared dynamic (see
Section 6.2.2 [Dynamic Declarations], page 69),

e the atom multifile for predicates that have been declared multifile (see
Section 6.2.1 [Multifile Declarations], page 68),

e the atom volatile for predicates that have been declared volatile (see
Section 6.2.3 [Volatile Declarations], page 69),

e one or more terms (block Term) for predicates that have block declarations
(see Section 6.2.5 [Block Declarations], page 70),

e the atom exported or terms imported_from(ModuleFrom) for predi-
cates exported or imported from modules (see Chapter 5 [Module Intro],
page 59),

e the term (meta_predicate Term) for predicates that have meta-predicate
declarations (see Section 5.6 [Meta Decl|, page 62).

This predicate can be used to enumerate all existing predicates and their prop-
erties through backtracking.

current_module (?Module)
Module is a module in the system. It can be used to backtrack through all
modules present in the system.

current_module (?Module, ?File)
Module is the module defined in File.

module (+Module)
The type-in module is set to Module.
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set_prolog_flag(+FlagName,+NewValue) IS0
prolog_flag(+FlaglName, 701dValue, ?NewValue)
OldValue is the value of the Prolog flag FlagName, and the new value of
FlagName is set to NewValue. The possible Prolog flag names and values are:

agc_margin
An integer Margin. The atoms will be garbage collected when Mar-
gin new atoms have been created since the last atom garbage col-
lection. Initially 10000.

argv A read-only flag. The value is a list of atoms of the program ar-
guments supplied when the current SICStus Prolog process was
started. For example, if SICStus Prolog were invoked with:

% sicstus -a hello world 2001
then the value will be [hello,world,’2001°].

bounded IS0
A read-only flag, one of the flags defining the integer type. For
SICStus, its value is false, indicating that the domain of integers
is practically unbounded.

char_conversion IS0
If this flag is on, unquoted characters in terms and programs read
in will be converted, as specified by previous invocations of char_
conversion/2. If the flag is off no conversion will take place. The
default value is on.

compiling
Governs the mode in which compile/1 and fcompile/1 operate
(see Chapter 6 [Load Intro], page 65).

compactcode
Compilation produces byte-coded abstract instructions
(the default).

fastcode Compilation produces native machine instructions.
Currently only available for Sparc platforms.

profiledcode
Compilation produces byte-coded abstract instructions
instrumented to produce execution profiling data.

debugcode
Compiling is replaced by consulting.

debugging
Corresponds to the predicates debug/0, nodebug/0, tracee/0,
notrace/0, zip/0, nozip/0 (see Section 8.15 [Debug Pred],
page 209). The flag describes the mode the debugger is in, or
is required to be switched to:

trace Trace mode (the debugger is creeping).
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debug Debug mode (the debugger is leaping).
zip Zip mode (the debugger is zipping).
off The debugger is switched off (the default).
debug IS0 The flag debug, prescribed by the ISO Prolog standard, is a
simplified form of the debugging flag:
off The debugger is switched off (the default).
on The debugger is switched on (to trace mode, if previ-

ously switched off).
(The flags debugging and debug have no effect in runtime systems.)

double_quotes IS0 only
Governs the interpretation of double quoted strings (see Sec-
tion 4.1.1.5 [Compound Terms], page 45):

codes Code-list comprising the string.

chars Char-list comprising the string.

atom The atom composed of the same characters as the
string.

character_escapes
on or off. If this flag is on, a backslash occurring inside integers in
‘0’ notation or inside quoted atoms or strings has special mean-
ing, and indicates the start of an escape sequence (see Section 50.5
[Escape Sequences|, page 794). This flag is relevant when reading
as well as when writing terms, and is initially on.

debugger_print_options
The value is a list of options for write_term/3 (see Section 8.1.3
[Term I/0], page 142), to be used in the debugger’s messages. The

initial value is
[quoted(true) ,numbervars(true) ,portrayed(true) ,max_
depth(10)].

discontiguous_warnings
on or off. Enable or disable warning messages when clauses are
not together in source files. Initially on. (This warning is always
disabled in runtime systems.)

fileerrors
on or off. Enables or disables raising of file error exceptions.
Equivalent to fileerrors/0 and nofileerrors/0, respectively
(see Section 8.1.5 [Stream Pred], page 154). Initially on (enabled).

gc on or off. Enables or disables garbage collection of the global
stack. Initially on (enabled).
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gc_margin
Margin: At least Margin kilobytes of free global stack space are
guaranteed to exist after a garbage collection. Also, no garbage
collection is attempted unless the global stack is at least Margin
kilobytes. Initially 1000.

gc_trace Governs global stack garbage collection trace messages.
verbose  Turn on verbose tracing of garbage collection.
terse Turn on terse tracing of garbage collection.
off Turn off tracing of garbage collection (the default).

host_type
A read-only flag. The value is an atom identifying the platform on
which SICStus was compiled, such as ’x86-1inux-glibc2.1’ or
’sparc-solaris-5.7".

informational
on or off. Enables or disables the printing of informational mes-
sages. Initially on (printing enabled) in development systems, un-
less the ‘-—noinfo’ command line option was used; off (printing
disabled) in runtime systems.

integer_rounding_function IS0
A read-only flag, one of the flags defining the integer type. In
SICStus Prolog its value is toward_zero, indicating that the in-
teger division ((//)/2) and integer remainder (rem/2) arithmetic
functions use rounding toward zero; see Section 8.2 [Arithmetic],
page 164.

language iso or sicstus. Selects the execution mode specified. Initially
sicstus, unless the ‘--iso’ command line option was used.

max_arity IS0
A read-only flag, specifying the maximum arity allowed for a com-
pound term. In SICStus Prolog this is 255.

max_integer IS0
A read-only flag, specifying the largest possible integer value. As
in SICStus Prolog the range of integers in not bounded, prolog_
flag/3 and current_prolog_flag/2 will fail, when accessing this
flag.

min_integer IS0
A read-only flag, specifying the smallest possible integer value. As
in SICStus Prolog the range of integers in not bounded, prolog_
flag/3 and current_prolog_flag/2 will fail, when accessing this
flag.

redefine_warnings
on or off. Enable or disable warning messages when :
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e a module or predicate is being redefined from a different file
than its previous definition. Such warnings are currently not
issued when a ‘.po’ file is being loaded.

e a predicate is being imported while it was locally defined al-
ready.

e a predicate is being redefined locally while it was imported
already.

e a predicate is being imported while it was imported from an-
other module already.

Initially on. (This warning is always disabled in runtime systems.)

single_var_warnings

on or off. Enable or disable warning messages when a clause con-
taining variables not beginning with ‘_’ occurring once only is com-
piled or consulted. Initially on.

source_info

emacs or on or off. If not off while source code is being loaded,
information about line numbers and file names are stored with the
loaded code. If the value is on while debugging, this information
is used to print the source code location while prompting for a
debugger command. If the value is on while printing an uncaught
error exception message, the information is used to print the source
code location of the culprit goal or one of its ancestors, as far as it
can be determined. If the value is emacs in any of these cases, the
appropriate line of code is instead highlighted, and no extra text
is printed. The value is off initially, and that is its only available
value in runtime systems.

syntax_errors

Controls what action is taken upon syntax errors in read/[1,2].
dec10 The syntax error is reported and the read is repeated.

error An exception is raised. See Section 8.5 [Exception],
page 173. (the default).

fail The syntax error is reported and the read fails.

quiet The read quietly fails.

system_type

A read-only flag. The value is development in development systems
and runtime in runtime systems.

toplevel_print_options

The value is a list of options for write_term/3 (see Sec-
tion 8.1.3 [Term I/O], page 142), to be used when the top-
level displays variable bindings, answer constraints. It is
also used when messages are displayed. The initial value is
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[quoted(true) ,numbervars(true) ,portrayed(true) ,max_
depth(10)].

typein_module
Permitted values are atoms. Controls the current type-in module
(see Section 5.2 [Module Spec|, page 59). Corresponds to the pred-
icate module/1.

unknown IS0
Corresponds to the predicate unknown/2 (see Section 8.15 [Debug
Pred], page 209).

trace Causes calls to undefined predicates to be reported and
the debugger to be entered at the earliest opportunity.
(This setting is not possible in runtime systems.)

fail Causes calls to such predicates to fail.

warning  Causes calls to such predicates to display a warning
message and then fail.

error Causes calls to such predicates to raise an exception
(the default). See Section 8.5 [Exception], page 173.

user_input
Permitted values are any stream opened for reading. Controls
which stream is referenced by user_input and SP_stdin. It is
initially set to a stream connected to UNIX stdin.

user_output
Permitted values are any stream opened for writing. Controls which
stream is referenced by user_output and SP_stdout. It is initially
set to a stream connected to UNIX stdout.

user_error
Permitted values are any stream opened for writing. Controls which
stream is referenced by user_error and SP_stderr. It is initially
set to a stream connected to UNIX stderr.

version A read-only flag. The value is an atom containing the ban-
ner text displayed on startup, such as >SICStus 3 #0: Wed Mar 15
12:29:29 MET 1995°.

wex The value of the flag is the default term to be passed to the
wide character extension component; see Section 12.3 [Prolog Level
WCX Features], page 303.

prolog_flag(?FlagName, ?Value)

current_prolog_flag(?FlagName, ?Value) IS0
Value is the current value of the Prolog flag FlagName. Can be used to enu-
merate all Prolog flags and their values by backtracking.

prolog_load_context (7Key, ?Value)
This predicate gives access to context variables during compilation and loading
of Prolog files. It unifies Value with the value of the variable identified by Key.
Possible keys are:
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source

file

directory

module

stream

SICStus Prolog

The absolute path name of the file being compiled. During load-
ing of a ‘.po’ or ‘.ql’ file, the corresponding source file name is
returned.

4

Outside included files (see Section 6.2.10 [Include Declarations],
page 71) this is the same as the source key. In included files this
is the absolute path name of the file being included.

The absolute path name of the directory of the file being com-
piled/loaded. In included files this is the directory of the file being
included.

The source module (see Section 5.5 [Meta Expl|, page 61). This
is useful for example if you are defining clauses for user:term_
expansion/[2,4] and need to access the source module at compile
time.

The stream being compiled or loaded from.

term_position

statistics

A term representing the stream position of the last clause read.

Displays on the standard error stream statistics relating to memory usage, run
time, garbage collection of the global stack and stack shifts. The printing is han-
dled by print_message/2; see Section 8.13 [Messages and Queries], page 195.

statistics(?Key, ?Value)
This allows a program to gather various execution statistics. For each of the
possible keys Key, Value is unified with a list of values, as follows:

global_stack

[size used, freel

This refers to the global stack, where compound terms are stored.
The values are gathered before the list holding the answers is allo-
cated.

local_stack

trail

choice

core
memory

[size used, freel
This refers to the local stack, where recursive predicate environ-
ments are stored.

[size used, freel
This refers to the trail stack, where conditional variable bindings
are recorded.

[size used, freel
This refers to the choicepoint stack, where partial states are stored
for backtracking purposes.

[size used,0]
These refer to the amount of memory actually allocated by the
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trimcore

Prolog engine. The zero is there for compatibility with other Prolog
implementations.

heap

program  [size used,size free]
These refer to the amount of memory allocated for the database,
symbol tables, and the like.

runtime [since start of Prolog,since previous statistics] These re-
fer to CPU time used while executing, excluding time spent garbage
collecting, stack shifting, or in system calls. The second element is
the time since the last call to statistics/2 with this key. It is not
affected by calls to statistics/0.

walltime [since start of Prolog,since previous statistics] These re-
fer to absolute time elapsed. The second element is the time since
the last call to statistics/2 with this key. It is not affected by
calls to statistics/0.

garbage_collection
[no. of GCs,bytes freed, time spent]

stack_shifts
[no. of global shifts,no. of local/trailtrail shifts,time
spent]

atoms [no. of atoms,bytes used,atoms free] The number of atoms
free is the number of atoms allocated (the first element in the
list) subtracted from the maximum number of atoms, i.e. 262143
(33554431) on 32-bit (64-bit) architectures. Note that atom
garbage collection may be able to reclaim some of the allocated
atoms.

atom_garbage_collection
[no. of AGCs,bytes freed, time spent]

Times are in milliseconds, sizes of areas in bytes.

Trims the stacks, reclaims any dead clauses and predicates, defragmentizes
Prolog’s memory, and attempts to return any unused memory to the operating
system. It is called automatically at every top-level query, except the stacks
are not trimmed then.

8.7 Meta-Logic

The predicates in this section are meta-logical and perform operations that require reasoning
about the current instantiation of terms or decomposing terms into their constituents. Such
operations cannot be expressed using predicate definitions with a finite number of clauses.
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var (7X) IS0,meta-logical
Tests whether X is currently uninstantiated (var is short for variable). An unin-
stantiated variable is one that has not been bound to anything, except possibly
another uninstantiated variable. Note that a compound term with some com-
ponents that are uninstantiated is not itself considered to be uninstantiated.
Thus the query

| ?- var(foo(X, Y)).
always fails, despite the fact that X and Y are uninstantiated.

nonvar ( 7X) IS0,meta-logical
Tests whether X is currently instantiated. This is the opposite of var/1.

ground ( 7X) meta-logical
Tests whether X is completely instantiated, i.e. free of unbound variables. In
this context, mutable terms are treated as nonground, so as to make ground/1
a monotone predicate.

atom(7X) IS0,meta-logical
Checks that X is currently instantiated to an atom (i.e. a non-variable term of
arity 0, other than a number).

float (?7X) IS0,meta-logical
Checks that X is currently instantiated to a float.

integer (7X) IS0,meta-logical
Checks that X is currently instantiated to an integer.

number ( 7X) IS0,meta-logical
Checks that X is currently instantiated to a number.

atomic (7X) IS0,meta-logical
Checks that X is currently instantiated to an atom or number.

simple (7X) meta-logical
Checks that X is currently uninstantiated or instantiated to an atom or number.

compound ( 7X) IS0,meta-logical
Checks that X is currently instantiated to a compound term.

callable(?7X) meta-logical
Checks that X is currently instantiated to a term valid as a goal i.e. a compound
term or an atom.

is_mutable (?X) meta-logical
Checks that X is currently instantiated to a mutable term (see Section 8.8
[Modify Term], page 188).

functor (+Term, ?Name, ?Arity) IS0,meta-logical
functor(?Term,+Name,+Arity) IS0,meta-logical
The principal functor of Term has name Name and arity Arity, where Name is
either an atom or, provided Arity is 0, a number. Initially, either Term must
be instantiated, or Name and Arity must be instantiated to, respectively, either
an atom and an integer in [0,255] or an atomic term and 0. In the case where
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Term is initially uninstantiated, the result of the call is to instantiate Term to
the most general term having the principal functor indicated.

arg(+ArglNo,+Term, 7Arg) IS0,meta-logical
Arg is the argument ArgNo of the compound term Term. The arguments are
numbered from 1 upwards, ArgNo must be instantiated to a positive integer
and Term to a compound term.

+Term =.. 7?List IS0

?Term =.. +List IS0
List is a list whose head is the atom corresponding to the principal functor of
Term, and whose tail is a list of the arguments of Term. e.g.

| ?- product(0, n, n-1) =.. L.
L = [product,0,n,n-1]

| - n-1 =.. L.

L =[-,n,1]

| ?- product =.. L.

L = [product]

If Term is uninstantiated, then List must be instantiated either to a list of
determinate length whose head is an atom, or to a list of length 1 whose head is a
number. Note that this predicate is not strictly necessary, since its functionality
can be provided by arg/3 and functor/3, and using the latter two is usually
more efficient.

name (+Const, ?CharList) obsolescent

name ( ?Const,+CharList) obsolescent
If Const is an atom or number, CharList is a code-list of the characters com-
prising the name of Const. e.g.
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| ?- name(product, L).

—
I

[112,114,111,100,117,99,116]

| ?- name(product, "product").

-~

- name (1976, L).

=
I

[49,57,55,54]

| ?- name(’1976°, L).

L = [49,57,55,54]
| ?- name((:-), L).
L = [58,45]

If Const is uninstantiated, CharList must be instantiated to a code-list. If
CharList can be interpreted as a number, Const is unified with that number;
otherwise, with the atom whose name is CharList. E.g.:

| ?- name(X, [58,45]).
X=:-

| ?7- name(X, ":-").

| ?- name(X, [49,50,51]).

X =123
Note that there are atoms for which name (Const,CharList) is true, but which
will not be constructed if name/2 is called with Const uninstantiated. One such
atom is the atom ’1976°. It is recommended that new programs use atom_
codes/2 or number_codes/2, as these predicates do not have this inconsistency.

atom_codes (+Const, ?CodeList) IS0
atom_codes (?Const,+CodelList) IS0

The same as name (Const, CodeList), but Const is constrained to be an atom.
number_codes (+Const, ?CodeList) IS0
number_codes (?Const,+CodeList) IS0

The same as name (Const, CodeList), but Const is constrained to be a number.
atom_chars(+Const, ?CharList) IS0 only
atom_chars(?Const,+CharList) IS0 only

Analogous to atom_codes/2, but CharList is a char-list instead of a code-list.
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atom_chars(+Const, ?CodeList) SICStus only

atom_chars(?Const,+CodeList) SICStus only
The same as atom_codes(Const,CharList).

number_chars (+Const, ?CharList) IS0 only

number_chars(?Const,+CharList) IS0 only
Analogous to number_codes/2, but CharList is a char-list instead of a code-list.

number_chars (+Const, ?CodeList) SICStus only

number_chars(?Const,+CodeList) SICStus only
The same as number_codes (Const,CharList).

char_code (+Char, ?Code) IS0

char_code(?Char,+Code) IS0
Code is the character code of the one-char atom Char.

atom_length(+Atom, ?Length) IS0
Length is the number of characters of the atom Atom.

atom_concat (+Atoml,+Atom2, 7Atom12) IS0

atom_concat(?Atoml, ?PAtom2,+Atom12) IS0

The characters of the atom Atoml concatenated with those of Atom2 are the
same as the characters of atom Atoml12. If the last argument is instantiated,
nondeterminately enumerates all possible atom-pairs that concatenate to the
given atom, e.g.:

| ?- atom_concat(4, B, ’ab’).

A= 2 s
B =ab 7 ;
A = a,
B=Db7;
A = ab,
B="2"7;
no
sub_atom(+Atom, ?Before, ?Length, PAfter, ?SubAtom) IS0

The characters of SubAtom form a sublist of the characters of Atom, such that
the number of characters preceding SubAtom is Before, the number of charac-
ters after SubAtom is After, and the length of SubAtom is Length. Capable of
nondeterminately enumerating all sub-atoms and their all possible placements,

e.g.
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| ?- sub_atom(abrakadabra, Before, _, After, ab).

After = 9,
Before = 0 7 ;

After = 2,
Before =7 ? ;

no

copy_term(?Term, ?Copy0fTerm) IS0,meta-logical
CopyOfTerm is a renaming of Term, such that brand new variables have been
substituted for all variables in Term. If any of the variables of Term have goals
blocked on them, the copied variables will have copies of the goals blocked on
them as well. Similarly, independent copies are substituted for any mutable
terms in term. It behaves as if defined by:

copy_term(X, Y) :-
assert (’copy of’ (X)),
retract (’copy of’ (Y)).
The implementation of copy_term/2 conserves space by not copying ground
subterms.

8.8 Modification of Terms

One of the tenets of logic programming is that terms are immutable objects of the Herbrand
universe, and the only sense in which they can be modified is by means of instantiating
non-ground parts. There are, however, algorithms where destructive assignment is essential
for performance. Although alien to the ideals of logic programming, this feature can be
defended on practical grounds.

SICStus Prolog provides an abstract datatype and three operations for efficient backtrackable
destructive assignment. In other words, any destructive assignments are transparently
undone on backtracking. Modifications that are intended to survive backtracking must be
done by asserting or retracting dynamic program clauses instead. Unlike previous releases
of SICStus Prolog, destructive assignment of arbitrary terms is not allowed.

A mutable term is represented as a compound terms with a reserved functor:
>$mutable’ (Value, Timestamp) where Value is the current value and Timestamp is re-
served for bookkeeping purposes [Aggoun & Beldiceanu 90).

Any copy of a mutable term created by copy_term/2, assert, retract, a database pred-
icate, or an all solutions predicate, is an independent copy of the original mutable term.
Any destructive assignment done to one of the copies will not affect the other copy.

The following operations are provided:
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create_mutable (+Datum, -Mutable)
Mutable is a new mutable term with initial value Datum. Datum must not be
an unbound variable.

get_mutable(?7Datum,+Mutable)
Datum is the current value of the mutable term Mutable.

update_mutable (+Datum,+Mutable)
Updates the current value of the mutable term Mutable to become Datum.
Datum must not be an unbound variable.

is_mutable(?Mutable)
Checks that Mutable is currently instantiated to a mutable term.

Please note: the effect of unifying two mutables is undefined.
8.9 Modification of the Program

The predicates defined in this section allow modification of dynamic predicates. Dynamic
clauses can be added (asserted) or removed from the program (retracted).

SICStus Prolog implements the “logical” view in updating dynamic predicates. This means
that the definition of a dynamic predicate that is visible to a call is effectively frozen when
the call is made. A predicate always contains, as far as a call to it is concerned, exactly the
clauses it contained when the call was made.

A useful way to think of this is to consider that a call to a dynamic predicate makes a virtual
copy of its clauses and then runs the copy rather than the original clauses. Any changes to
the predicate made by the call are immediately reflected in the Prolog database, but not
in the copy of the predicate being run. Thus, changes to a running predicate will not be
visible on backtracking. A subsequent call, however, makes and runs a copy of the modified
Prolog database. Any changes to the predicate that were made by an earlier call will now
be visible to the new call.

For the predicates of this section, the argument Head must be instantiated to an atom
or a compound term, with an optional module prefix. The argument Clause must be
instantiated either to a term Head :- Body or, if the body part is empty, to Head, with an
optional module prefix. An empty body part is represented as true.

Note that a term Head :- Body must be enclosed in parentheses when it occurs as an
argument of a compound term, as ‘:-’ is a standard infix operator with precedence greater
than 1000 (see Section 4.6 [Operators|, page 54), e.g.:

| 7- assert((Head :- Body)).

Like recorded terms (see Section 8.10 [Database]|, page 191), the clauses of dynamic predi-
cates have a unique implementation-defined identifier. Some of the predicates below have
an additional argument, which is this identifier. This identifier makes it possible to access
clauses directly instead of requiring a normal database (hash-table) lookup.
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assert(:Clause)

assert(:Clause, -Ref)
The current instance of Clause is interpreted as a clause and is added to the
database. The predicate concerned must currently be dynamic or undefined
and the position of the new clause within it is implementation-defined. Ref is
a database reference to the asserted clause. Any uninstantiated variables in
the Clause will be replaced by new private variables, along with copies of any
subgoals blocked on these variables (see Section 4.3 [Procedural], page 50).

asserta(:Clause) IS0
asserta(:Clause, -Ref)
Like assert/2, except that the new clause becomes the first clause for the
predicate concerned.

assertz(:Clause) IS0
assertz(:Clause, -Ref)
Like assert/2, except that the new clause becomes the last clause for the
predicate concerned.

clause(:Head, ?Body) IS0

clause( :Head, ?Body, 7Ref)

clause (7Head, 7Body,+Ref)
The clause (Head :- Body) exists in the database, and its database reference is
Ref. The predicate concerned must currently be dynamic. At the time of call,
either Ref must be instantiated, or Head must be instantiated to an atom or a
compound term. Thus clause/3 can have two different modes of use.

retract(:Clause) IS0
The first clause in the database that matches Clause is erased. The predicate
concerned must currently be dynamic. retract/1 may be used in a nondeter-
minate fashion, i.e. it will successively retract clauses matching the argument
through backtracking.

retractall (:Head)
Erases all clauses whose head matches Head, where Head must be instantiated
to an atom or a compound term. The predicate concerned must currently be
dynamic. The predicate definition is retained.

Please note: all predicates mentioned above first look for a predicate that is
visible in the module in which the call textually appears. If no predicate is
found, a new dynamic predicate (with no clauses) is created automatically.
It is recommended to declare as dynamic predicates for which clauses will be
asserted.

abolish(:Spec) IS0
abolish(:Name,+Arity)
Abolishes the predicates specified by the generalized predicate spec Spec or
Name/Arity. Name may be prefixed by a module name (see Section 5.2 [Mod-
ule Spec|, page 59). In iso execution mode only dynamic predicates can be
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abolished. In sicstus execution mode only built-in predicates cannot be abol-
ished, the user-defined ones always can be, even when static.

erase (+Ref)
The dynamic clause or recorded term (see Section 8.10 [Database|, page 191)
whose database reference is Ref is effectively erased from the database.

instance (+Ref, ?Term)
A (most general) instance of the dynamic clause or recorded term whose
database reference is Ref is unified with Term.

8.10 Internal Database

The predicates described in this section were introduced in early implementations of Prolog
to provide efficient means of performing operations on large quantities of data. The intro-
duction of indexed dynamic predicates have rendered these predicates obsolete, and the sole
purpose of providing them is to support existing code. There is no reason whatsoever to
use them in new code.

These predicates store arbitrary terms in the database without interfering with the clauses
that make up the program. The terms that are stored in this way can subsequently be
retrieved via the key on which they were stored. Many terms may be stored on the same
key, and they can be individually accessed by pattern matching. Alternatively, access can
be achieved via a special identifier, which uniquely identifies each recorded term and which
is returned when the term is stored.

recorded(?Key, ?Term, 7Ref) obsolescent
The database is searched for terms recorded under the key Key. These terms are
successively unified with Term in the order they occur in the database. At the
same time, Refis unified with the database reference to the recorded item. If the
key is instantiated to a compound term, only its principal functor is significant.
If the key is uninstantiated, all terms in the database are successively unified
with Term in the order they occur.

recorda(+Key, ?Term, -Ref) obsolescent
The term Term is recorded in the database as the first item for the key Key,
where Ref is its database reference. The key must be given, and only its prin-
cipal functor is significant. Any uninstantiated variables in the Term will be
replaced by new private variables, along with copies of any subgoals blocked on
these variables (see Section 4.3 [Procedural], page 50).

recordz(+Key, ?Term, -Ref) obsolescent
Like recorda/3, except that the new term becomes the last item for the key
Key.

current_key(7KeyName, ?KeyTerm) obsolescent

KeyTerm is the most general form of the key for a currently recorded term, and
KeyName is the name of that key. This predicate can be used to enumerate in
undefined order all keys for currently recorded terms through backtracking.
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8.11 Blackboard Primitives

The predicates described in this section store arbitrary terms in a per-module repository
known as the “blackboard”. The main purpose of the blackboard was initially to provide a
means for communication between branches executing in parallel, but the blackboard works
equally well during sequential execution. The blackboard implements a mapping from keys
to values. Keys are restricted to being atoms or small integers, whereas values are arbitrary
terms. In contrast to the predicates described in the previous sections, a given key can map
to at most a single term.

Each Prolog module maintains its own blackboard, so as to avoid name clashes if different
modules happen to use the same keys. The “key” arguments of these predicates are subject
to module name expansion, so the module name does not have to be explicitly given unless
multiple Prolog modules are supposed to share a single blackboard.

The predicates below implement atomic blackboard actions.

bb_put (:Key, +Term)
A copy of Term is stored under Key. Any previous term stored under the same
Key is simply deleted.

bb_get (:Key, ?Term)
If a term is currently stored under Key, a copy of it is unified with Term.
Otherwise, bb_get/2 silently fails.

bb_delete(:Key, ?Term)
If a term is currently stored under Key, the term is deleted, and a copy of it is
unified with Term. Otherwise, bb_delete/2 silently fails.

bb_update (:Key, ?01dTerm, 7NewTerm)
If a term is currently stored under Key and unifies with OldTerm, the term is
replaced by a copy of NewTerm. Otherwise, bb_update/3 silently fails. This
predicate provides an atomic swap operation.

The following example illustrates how these primitives may be used to implement a “maxof”
predicate that finds the maximum value computed by some nondeterminate goal, which may
execute in parallel. We use a single key max. Note the technique of using bb_update/3 in a
repeat-fail loop, since other execution branches may be competing for updating the value,
and we only want to store a new value if it is greater than the old value.

We assume that Goal does not produce any “false” solutions that would be eliminated by
cuts in a sequential execution. Thus, Goal may need to include redundant checks to ensure
that its solutions are valid, as discussed above.
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maxof (Value, Goal, _) :-

bb_put (max, -1), % initialize max-so-far
call(Goal),
update_max (Value),
fail.
maxof (_, _, Max) :-
bb_delete(max, Max),
Max > 1.

update_max (New) : -
repeat,
bb_get (max, 01d),
compare(C, 01d, New),
update_max(C, 01d, New), !.

update_max (<, 0ld, New) :- bb_update(max, 01d, New).
update_max(=, _, _).
update_max(>, _, _).

8.12 All Solutions

When there are many solutions to a problem, and when all those solutions are required to be
collected together, this can be achieved by repeatedly backtracking and gradually building
up a list of the solutions. The following built-in predicates are provided to automate this
process.

Note that the Goal argument to the predicates listed below is called as if by call/1 at run-
time. Thus if Goal is complex and if performance is an issue, define an auxiliary predicate,
which can then be compiled, and let Goal call it.

setof (?Template, :Goal, 7?Set) IS0
Read this as “Set is the set of all instances of Template such that Goal is
satisfied, where that set is non-empty”. The term Goal specifies a goal or goals
as in call(Goal) (see Section 8.4 [Control], page 170). Set is a set of terms
represented as a list of those terms, without duplicates, in the standard order
for terms (see Section 8.3 [Term Compare], page 168). If there are no instances
of Template such that Goal is satisfied then the predicate fails.

The variables appearing in the term Template should not appear anywhere else
in the clause except within the term Goal. Obviously, the set to be enumerated
should be finite, and should be enumerable by Prolog in finite time. It is possible
for the provable instances to contain variables, but in this case the list Set will
only provide an imperfect representation of what is in reality an infinite set.

If there are uninstantiated variables in Goal, which do not also appear in Tem-
plate, then a call to this built-in predicate may backtrack, generating alternative
values for Set corresponding to different instantiations of the free variables of
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Goal. (It is to cater for such usage that the set Set is constrained to be non-
empty.) Two instantiations are different iff no renaming of variables can make
them literally identical. For example, given the clauses:

likes(bill, cider).

likes(dick, beer).

likes(harry, beer).

likes(jan, cider).

likes(tom, beer).

likes(tom, cider).
the query

| ?- setof(X, likes(X,Y), S).
might produce two alternative solutions via backtracking:

S = [dick,harry,tom],

Y = beer 7 ;

S = [bill,jan,tom],

Y = cider 7 ;

The query:

| 7- setof((Y,S), setof(X, likes(X,Y), S), SS).
would then produce:

SS = [(beer, [dick,harry,tom]), (cider, [bill, jan,tom])]
Variables occurring in Goal will not be treated as free if they are explicitly
bound within Goal by an existential quantifier. An existential quantification is
written:

Y qQ
meaning “there exists a Y such that Q is true”, where Y is some Prolog variable.
For example:

| ?7- setof (X, Y (likes(X,Y)), S).
would produce the single result:

S = [bill,dick,harry, jan,tom]

in contrast to the earlier example.
Note that in iso execution mode, only outermost existential quantification
is accepted, i.e. if the Goal argument is of form V1 ~ ... ~ N~ SubGoal. In
sicstus execution mode existential quantification is handled also deeper inside
Goal.

bagof (?Template, :Goal, ?Bag) IS0
This is exactly the same as setof/3 except that the list (or alternative lists)
returned will not be ordered, and may contain duplicates. The effect of this
relaxation is to save a call to sort/2, which is invoked by setof/3 to return
an ordered list.

7X":P

The all solution predicates recognize this as meaning “there exists an X such
that P is true”, and treats it as equivalent to P (see Section 8.4 [Control]

?
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page 170). The use of this explicit existential quantifier outside the setof/3
and bagof/3 constructs is superfluous and discouraged.

findall(?Template, :Goal, 7Bag) IS0
Bag is a list of instances of Template in all proofs of Goal found by Prolog. The
order of the list corresponds to the order in which the proofs are found. The list
may be empty and all variables are taken as being existentially quantified. This
means that each invocation of findall/3 succeeds ezxactly once, and that no
variables in Goal get bound. Avoiding the management of universally quantified
variables can save considerable time and space.

findall(?Template, :Goal, ?Bag, 7TRemainder)
Same as findall/3, except Bag is the list of solution instances appended with
Remainder, which is typically unbound.

8.13 Messages and Queries

This section describes the two main aspects of user interaction, displaying messages and
querying the user. We will deal with these two issues in turn.

8.13.1 Message Processing

Every message issued by the Prolog system is displayed using a single predicate:
print_message(+Severity, +Message)

Message is a term that encodes the message to be printed. The format of message terms
is subject to change, but can be inspected in the file ‘library(’SU_messages’)’ of the
SICStus Prolog distribution.

The atom Severity specifies the type (or importance) of the message. The following table
lists the severities known to the SICStus Prolog system, together with the line prefixes used
in displaying messages of the given severity:

error e for error messages

warning ’x 7 for warning messages

informational % ’> for informational messages

help 20 for help messages

query ’0 for query texts (see Section 8.13.3 [Query Processing], page 200)
silent ?0 a special kind of message, which normally does not produce any

output, but can be intercepted by hooks

print_message/2 is a built-in predicate, so that users can invoke it to have their own
messages processed in the same way as the system messages.
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The processing and printing of the messages is highly customizable. For example, this
allows the user to change the language of the messages, or to make them appear in dialog
windows rather than on the terminal.

8.13.1.1 Phases of Message Processing

Messages are processed in two major phases. The user can influence the behavior of each
phase using appropriate hooks, described later.

The first phase is called the message generation phase: it determines the text of the message
from the input (the abstract message term). No printing is done here. In this phase the
user can change the phrasing or the language of the messages.

The result of the first phase is created in the form of a format-command list. This is a
list whose elements are format-commands, or the atom nl denoting the end of a line. A
format-command describes a piece of text not extending over a line boundary and it can be
one of the following:

FormatString-Args
format (FormatString, Args)
This indicates that the message text should appear as if printed by

format (FormatString, Args).

write_term(Term, Options)
This indicates that the message text should appear as if printed by

write_term(Term, Options) .

write_term(Term)
Equivalent to write_term(Term, Options) where Options is the actual value
of the Prolog flag toplevel_print_options.

As an example, let us see what happens in case of the toplevel call _ =:= 3. An instantia-
tion error is raised by the Prolog system, which is caught, and the abstract message term
instantiation_error(_=:=3,1) is generated (assuming sicstus execution mode)—the
first argument is the goal, and the second argument is the position of the uninstantiated
variable within the goal. In the first phase of message processing this is converted to the
following format-command list:

[’Instantiation error’-[],’ in argument “d of ~“q’-[1,=:= /2],nl,
’goal: ’-[],write_term(_=:=3),nl]

A minor transformation, so-called line splitting is performed on the message text before it
is handed over to the second phase. The format-command list is broken up along the nl
atoms into a list of lines, where each line is a list of format-commands. We will use the
term format-command lines to refer to the result of this transformation.

In the example above, the result of this conversion is the following:
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[[’Instantiation error’-[],’ in argument ~d of “q’-[1,=:= /2]],
[’goal: ’-[],write_term(_=:=3)]]

The above format-command lines term is the input of the second phase of message process-
ing.

The second phase is called the message printing phase, this is where the message is actually
displayed. The severity of the message is used here to prefix each line of the message with
some characters indicating the type of the message, as listed above.

The user can change the exact method of printing (e.g. redirection of messages to a stream,
a window, or using different prefixes, etc.) through appropriate hooks.

In our example the following lines are printed by the second phase of processing:

! Instantiation error in argument 1 of =:= /2
I goal: _=:=3

The user can override the default message processing mechanism in the following two ways:

e A global method is to define the hook predicate portray_message/2, which is the first
thing called by message processing. If this hook exists and succeeds, then it overrides
all other processing—mnothing further is done by print_message/2.

e If a finer method of influencing the behavior of message processing is needed, then there
are several further hooks provided, which affect only one phase of the process. These
are described in the following paragraphs.

8.13.1.2 Message Generation Phase

The default message generation predicates are located in the ‘library(’SU_messages’)’
file, in the >SU_messages’ module, together with other message and query related pred-
icates. This is advantageous when these predicates have to be changed as a whole (for
example when translating all messages to another language), because this can be done
simply by replacing the file ‘1ibrary(’SU_messages’)’ by a new one.

In the message generation phase three alternative methods are tried:

e First the hook predicate generate_message_hook/3 is executed, if it succeeds, it is
assumed to deliver the output of this phase.

e Next the default message generation is invoked via °’SU_messages’:generate_
message/3.

e In the case that neither of the above methods succeed, a built-in fall-back message
generation method is used.

The hook predicate generate_message_hook/3 can be used to override the default behav-
ior, or to handle new messages defined by the programmer, which do not fit the default
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message generation schemes. The latter can also be achieved by adding new clauses to the
extendible ’SU_messages’ :generate_message/3 predicate.

If both the hook and the default method refuses to handle the message, then the following
simple format-command list is generated from the abstract message term Message:

[’~q’-[Message] ,nl]
This will result in displaying the abstract message term itself, as if printed by writeq/1.

For messages of the severity silent the message generation phase is skipped, and the []
format-command list is returned as the output.

8.13.1.3 Message Printing Phase

By default this phase is handled by the built-in predicate print_message_lines/3. Each
line of the message is prefixed with a string depending on the severity, and is printed to
user_error. The query severity is special—no newline is printed after the last line of the
message.

This behavior can be overridden by defining the hook predicate message_hook/3, which
is called with the severity of the message, the abstract message term and its translation
to format-command lines. It can be used to make smaller changes, for example by calling
print_message_lines/3 with a stream argument other than user_error, or to implement
a totally different display method such as using dialog windows for messages.

For messages of the severity silent the message printing phase consists of calling the hook
predicate message_hook/3 only. Even if the hook fails, no printing is done.

8.13.2 Message Handling Predicates

print_message(+Severity, +Message) hookable
Prints a Message of a given Severity. The behavior can be customized using
the hooks user:portray_message/2, user:generate_message_hook/3 and
user:message_hook/3.
All messages from the system are printed by calling this predicate.
First print_message/2 calls user:portray_message/2 with the same argu-
ments. If this does not succeed, the message is processed in the following
phases:

e Message generation phase: the abstract message term Message is format-
ted, i.e. converted to a format-command list. First the hook predicate
user:generate_message_hook/3 is tried, then if it does not succeed, >SU_
messages’ :generate_message/3 is called. If that also fails or gives an
exception, then the built-in default conversion is used, which gives the
following result:

[’~q’-[Message] ,nl]
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e Line splitting transformation: the format-command list is converted to
format-command lines—the list is broken up into a list of lists, each list
containing format-commands for one line.

e Message printing phase: The text of the message (format-command lines
generated in the previous stage) is printed. First the hook predicate
user:message_hook/3 is tried, then, if it does not succeed, the built-in
predicate print_message_lines/3 is called for the user_error stream.

portray_message(+Severity, +Message) hook
user:portray_message (+Severity, +Message)
Called by print_message/2 before processing the message. If this succeeds, it
is assumed that the message has been processed and nothing further is done.

generate_message_hook (+Message, -LO, -L) hook
user:generate_message_hook(+Message, -LO, -L)
A way for the user to override the call to >SU_messages’ :generate_message/3
in the message generation phase in print_message/2.

’SU_messages’ :generate_message (+Message, -LO, -L) extendible
Defines how to transform a message term Message to a format-command list.
For a given Message, generates a format-command list in the form of the dif-
ference list LO-L; this means, that LO is the generated list with L appended to
it. This list will be translated into format-command lines, which will be passed
to the message printing phase.

message_hook(+Severity, +Message, +Lines) hook
user :message_hook(+Severity, +Message, +Lines)
Overrides the call to print_message_lines/3 in the message printing phase
of print_message/2. A way for the user to intercept the abstract message
term Message of type Severity, whose translation into format-command lines is
Lines, before it is actually printed.

print_message_lines(+Stream, +Severity, +Lines)

Print the Lines to Stream, preceding each line with a prefix defined by Severity.
Lines must be a valid format-command lines, Severity can be an arbitrary atom.
If it is one of the predefined severities, the corresponding prefix is used in
printing the message lines. Otherwise the Severity itself is interpreted as the
prefix (this is for Quintus Prolog compatibility, where print_message_lines/3
takes the prefix as its second argument). In case of the query severity no newline
is written after the last line.

goal_source_info(+AGoal, ?Goal, 7?SourcelInfo)
Decompose the AGoal annotated goal into a Goal proper and the Sourcelnfo
descriptor term, indicating the source position of the goal.
Annotated goals occur in most of error message terms, and carry information
on the Goal causing the error and its source position. The Sourcelnfo term,
retrieved by goal_source_info/3 will be one of the following:

(] The goal has no source information associated with it.

fileref (File,Line)
The goal occurs in file File, line Line.
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clauseref (File,MFunc,ClauseNo,CallNo,Line)

The goal occurs in file File, within predicate MFunc, clause number
ClauseNo, call number CallNo and virtual line number Line. Here,
MFunc is of form Module: Name/Arity, calls are numbered textually
and the virtual line number shows the position of the goal within the
listing of the predicate MFunc, as produced by 1isting/1. Such a
term is returned for goals occurring in interpreted predicates, which
do not have “real” line number information, e.g. because they were
entered from the terminal, or created dynamically.

8.13.3 Query Processing

All user input in the Prolog system is handled by a single predicate:
ask_query(+QueryClass, +Query, +Help, -Answer)

QueryClass, described below, specifies the form of the query interaction. Query is an
abstract message term specifying the query text, Help is an abstract message term used as
a help message in certain cases, and Answer is the (abstract) result of the query.

ask_query/4 is a built-in predicate, so that users can invoke it to have their own queries
processed in the same way as the system queries.

The processing of queries is highly customizable. For example, this allows changing the
language of the input expected from the user, or to make queries appear in dialog windows
rather than on the terminal.

8.13.3.1 Query Classes

Queries posed by the system can be classified according to the kind of input they expect,
the way the input is processed, etc. Queries of the same kind form a query class.

For example, queries requiring a yes/no answer form a query class with the following char-
acteristics:

e the text * (y or n) ’is used as the prompt;
e 4 single line of text is input;

e if the first non-whitespace character of the input is y or n (possibly in capitals), then
the query returns the atom yes or no, respectively, as the abstract answer;

e otherwise a help message is displayed and the query is repeated.

There are built-in query classes for reading in yes/no answers, toplevel queries, debugger
commands, etc.
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A query class is characterized by a ground Prolog term, which is supplied as the first
argument to the query processing predicate ask_query/4. The characteristics of a query
class are normally described by the extendible predicate

’SU_messages’ :query_class(+QueryClass, -Prompt, -InputMethod,
-MapMethod, -FailureMode) .

The arguments of the query_class predicate have the following meaning:

e Prompt: an atom to be used for prompting the user.
e InputMethod: a non-variable term, which specifies how to obtain input from the user.

For example, a built-in input method is described by the atom line. This requests
that a line is input from the user, and the code-list is returned. Another built-in input
method is term(Options); here, a Prolog term is read and returned.

The input obtained using InputMethod is called raw input, as it may undergo further

processing.

In addition to the built-in input methods, the user can define his/her own extensions.
e MapMethod: a non-variable term, which specifies how to process the raw input to get

the abstract answer to the query.

For example, the built-in map method char ([yes-"yY", no-"nN"]) expects a code-list
as raw input, and gives the answer term yes or no depending on the first non-whitespace
character of the input. As another example, the built-in map method = requests that
the raw input itself is returned as the answer term—this is often used in conjunction
with the input method term(Options).

In addition to the built-in map methods the user can define his/her own extensions.
e FailureMode

This is used only when the mapping of raw input fails, and the query must be repeated.
This happens for example if the user typed a character other than y or n in case of the
yes_or_no query class. FailureMode determines what to print before re-querying the
user. Possible values are:

e help_query: print a help message, then print the text of the query again
e help: only print the help message
e query: only print the text of the query

e nomne: do not print anything

8.13.3.2 Phases of Query Processing

Query processing is done in several phases, described below. We will illustrate what is done
in each phase through a simple example: the question put to the user when the solution to
the toplevel query ‘X is 1+1’ is displayed, requesting a decision whether to find alternative
answers or not:
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| 7- X is 1+1.

X =27 no
Please enter ";" for more choices; otherwise, <return>
?

We focus on the query ‘X = 2 7’ in the above script.

The example query belongs to the class next_solution, its text is described by the message
term solutions([binding("X",2)]), and its help text by the message term bindings_
help. Accordingly, such a query is executed by calling:

ask_query (next_solution, /* QueryClass */
solutions([binding("X",2)]1), /* Query */
bindings_help, /* Help */
Answer)

In general, execution of ask_query(+QueryClass, +Query, +Help, —-Answer) consists of
the following phases:

e Preparation phase: The abstract message terms Query (for the text of the query) and
Help (for the help message) are converted to format-command lines via the message
generation and line splitting phases (see Section 8.13.1 [Message Processing], page 195).
Let us call the results of the two conversions QueryLines and HelpLines, respectively.
The text of the query, QueryLines is printed immediately (via the message printing
phase, using query severity). HelpLines may be printed later, and QueryLines printed
again, in case of invalid user input.

The characteristics of QueryClass (described in the previous subsubsection) are re-
trieved to control the exact behavior of the further phases.

In our example, the following parameters are sent in the preparation phase:

QueryLines = [, s="-["X"],write_term(2)]]
HelpLines =

[[’Please enter ";" for more choices; otherwise, <return>’-[]1]]
Prompt = 277
InputMethod = 1line
MapMethod = char([yes-";", no-[0’\n]])
FailureMode = help
QueryLines is displayed immediately, printing:

X =2

(Note that the first element of QueryLines is [], therefore the output is preceded by a
newline. Also note that no newline is printed at the end of the last line, because the
query severity is used.)

The subsequent phases will be called repeatedly until the mapping phase succeeds in
generating an answer.

e [Input phase: By default, the input phase is implemented by the extendible predicate
’SU_messages’ :query_input (+InputMethod, +Prompt, -RawInput) .
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This phase uses the Prompt and InputMethod characteristics of the query class. In-
putMethod specifies the method of obtaining input from the user. This method is
executed, and the result (Rawlnput) is passed on to the next phase.

The use of Prompt may depend on InputMethod. For example, the built-in input
method line prints the prompt unconditionally, while the input method term(_)
passes Prompt to prompt/2.

In the example, first the ¢ ? * prompt is displayed. Next, because InputMethod is 1ine,
a line of input is read, and the code-list is returned in Rawlnput. Supposing that the
user typed no@RET), Rawlnput becomes " no" = [32,110,111].

e Mapping phase: By default, the mapping phase is implemented by the extendible pred-
icate

’SU_messages’ :query_map (+MapMethod, +RawInput,
-Result, —-Answer).
This phase uses the MapMethod parameter to control the method of converting the
raw input to the abstract answer.

In some cases Rawlnput is returned as it is, but otherwise it has to be processed
(parsed) to generate the answer.

The conversion process may have two outcomes indicated in the Result returned:

e success, in which case the query processing is completed with the Answer term
returned;

e failure, the query has to be repeated.

In the latter case a message describing the cause of failure may be returned, to be
printed before the query is repeated.

In our example, the map method is char([yes-";", no-[0’\n]]). The mapping
phase fails for the RawInput passed on by the previous phase of the example, as the
first non-whitespace character is n, which does not match any of the given characters.

o Query restart phase: This phase is executed only if the mapping phase returned with
failure.

First, if a message was returned by the mapping, then it is printed. Subsequently, if
requested by the FailureMode parameter, the help message HelpLines and/or the text
of the query QueryLines is printed.

The query is then repeated—the input and mapping phase will be called again to try
to get a valid answer.

In the above example, the user typed an invalid character, so the mapping failed. The
char (_) mapping does not return any message in case of failure. The FailureMode of
the query class is help, so the help message HelpLines is printed, but the query is not
repeated:

Please enter ";" for more choices; otherwise, <return>
Having completed the query restart phase, the example script continues by re-entering
the input phase: the prompt ¢ 7 ’ is printed, another line is read, and is processed by

the mapping phase. If the user types the character ; this time, then the mapping phase
returns successfully and gives the abstract answer term yes.
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8.13.3.3 Hooks in Query Processing

As explained above, the major parts of query processing are implemented in the ’>SU_
messages’ module in the file ‘1ibrary (’SU_messages’)’ through the following extendible
predicates:

e ’SU_messages’:query_class(+QueryClass, -Prompt, —-InputMethod,
-MapMethod, -FailureMode)

e ’SU_messages’:query_input (+InputMethod, +Prompt, -RawInput)
e ’SU_messages’:query_map(+MapMethod, +RawInput, -Result, -Answer)

This is to enable the user to change the language used, the processing done, etc., simply by
changing or replacing the ‘library(’SU_messages’)’ file.

To give more control to the user and to make the system more robust (for example if the >SU_
messages’ module is corrupt) the so-called four step procedure is used in the above three
cases—obtaining the query class parameters, performing the query input and performing
the mapping. The four steps of this procedure, described below, are tried in the given order
until the first one that succeeds. Note that if an exception is raised within the first three
steps, then a warning is printed and the step is considered to have failed.

e First a hook predicate is tried. The name of the hook is derived from the name of the
appropriate predicate by appending ‘_hook’ to it, e.g. user:query_class_hook/5 in
case of the query class. If this hook predicate exists and succeeds, then it is assumed
to have done all necessary processing, and the following steps are skipped.

e Second, the predicate in the ’SU_messages’ module is called (this is the default case,
these are the predicates listed above). Normally this should succeed, unless the mod-
ule is corrupt, or an unknown query-class/input-method /map-method is encountered.
These predicates are extendible, so new classes and methods can be added easily by
the user.

e Third, as a fall-back, a built-in minimal version of the predicates in the original ’>SU_
messages’ is called. This is necessary because the ‘library(’SU_messages’)’ file is
modifiable by the user, therefore vital parts of the Prolog system (e.g. the toplevel
query) could be damaged.

e If all the above steps fail, then nothing more can be done, and an exception is raised.

8.13.3.4 Default Input Methods

The following InputMethod types are implemented by the default ’SU_messages’ :query_
input (+InputMethod, +Prompt, -RawInput) (and these are the input methods known to
the third, fall-back step):

line The Prompt is printed, a line of input is read using read_line/2 and the
code-list is returned as Rawlnput.
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term(Options)
Prompt is set to be the prompt (cf. prompt/2), and a Prolog term is read by
read_term/2 using the given Options, and is returned as RawlInput.

FinalTerm~term(Term,Options)
A Prolog term is read as above, and is unified with Term. FinalTerm is returned
as Rawlnput. For example, the T-Vs~term(T, [variable_names(Vs)]) input
method will return the term read, paired with the list of variable names.

8.13.3.5 Default Map Methods

The following MapMethod types are known to ’SU_messages’:query_map (+MapMethod,
+RawInput, -Result, -Answer) and to the built-in fall-back mapping:

char(Pairs)
In this map method Rawlnput is assumed to be a code-list.

Pairs is a list of Name-Abbreviations pairs, where Name is a ground term,
and Abbreviations is a code-list. The first non-layout character of RawlInput
is used for finding the corresponding name as the answer, by looking it up in
the abbreviation lists. If the character is found, then Result is success, and
Answer is set to the Name found; otherwise, Result is failure.

= No conversion is done, Answer is equal to Rawlnput and Result is success.

debugger This map method is used when reading a single line debugger command. It
parses the debugger command and returns the corresponding abstract com-
mand term. If the parse is unsuccessful, the answer unknown(Line,Warning)
is returned. This is to allow the user to extend the debugger command language
via debugger_command_hook/2, see Section 7.5 [Debug Commands|, page 81.

The  details of this mapping can be obtained from the
‘library(’SU_messages’)’ file.

Note that the fall-back version of this mapping is simplified, it only accepts
parameterless debugger commands.

8.13.3.6 Default Query Classes

Most of the default query classes are designed to support some specific interaction with
the user within the Prolog development environment. The full list of query classes can be
inspected in the file ‘library(’SU_messages’)’. Here, we only describe the two classes
defined by ’SU_messages’ :query_class/5 that may be of general use:

QueryClass yes_or_no yes_no_proceed
Prompt > (yorm)”’ > (y, n, p, s, a, or?)’
InputMethod line line

MapMethod char([yes-"yY", char([yes-"yY", no-"nN", proceed-"pP",
no-"nN"]) suppress-"sS", abort-"aA"])
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help_query help_query

8.13.4 Query Handling Predicates

ask_query(+QueryClass, +Query, +Help, -Answer) hookable
Prints the question Query, then reads and processes user input according to
QueryClass, and returns the result of the processing, the abstract answer term
Answer. The Help message may be printed in case of invalid input.

All queries made by the system are handled by calling this predicate.

First ask_query/4 calls query_hook/6 with the same arguments plus the Query
and Help arguments converted to format-command lines. If this call succeeds,
then it overrides all further processing done by ask_query/4. Otherwise, the
query is processed in the following way:

e Preparation phase: The parameters of the query processing, defined by

QueryClass (Prompt, InputMethod, MapMethod and FailureMode) are
retrieved using the four step procedure described above. That is, the fol-
lowing alternatives are tried:

— user:query_class_hook/5;
— ’SU_messages’ :query_class/5;
— the built-in copy of query_class/5.

Input phase: The user is prompted with Prompt, input is read according
to InputMethod, and the result is returned in Rawlnput.

The four step procedure is used for performing this phase, the predicates
tried are the following:

— user:query_input_hook/3;

— ’SU_messages’ :query_input/3;

— the built-in copy of query_input/3.
Mapping phase: The Rawlnput returned by the input phase is mapped
to the Answer of the query. This mapping is defined by the MapMethod

parameter, and the result of the conversion is returned in Result, which
can be:

— success—the mapping was successful, Answer is valid;

— failure—the mapping was unsuccessful, the query has to be repeated;

— failure(Warning)—same as failure, but first the given warning

message has to be printed.

The four step procedure is used for performing this phase, the predicates
tried are the following;:

— user:query_map_hook/4;

— ’SU_messages’ :query_map/4;

— the built-in copy of query_map/4.

If the mapping phase succeeds, then ask_query/4 returns with the Answer
delivered by this phase.
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e If the mapping does not succeed, then the query has to be repeated. If
the Result returned by the mapping contains a warning message, then it
is printed using print_message/2. FailureMode specifies whether to print
the help message and whether to re-print the query text. Subsequently,
the input and mapping phases are called again, and this is repeated until
the mapping is successful.

query_hook (+QueryClass, +Query, +QueryLines, +Help, +HelpLines, —-Answer) hook

user:query_hook(+QueryClass, +Query, +QueryLines, +Help, +HelpLines, —Answer)
Called by ask_query/4 before processing the query. If this predicate succeeds,
it is assumed that the query has been processed and nothing further is done.

query_class_hook(+QueryClass, -Prompt, —InputMethod, -MapMethod,
-FailureMode) hook
user:query_class_hook(+QueryClass, -Prompt, -InputMethod, -MapMethod,
-FailureMode)
Provides the wuser with a method of overriding the call to °’SU_
messages’ :query_class/5 in the preparation phase of query processing. This
way the default query class characteristics can be changed.

’SU_messages’ :query_class (+QueryClass, -Prompt, —-InputMethod, -MapMethod,
-FailureMode) extendible
Returns the parameters of the given QueryClass:

e Prompt - an atom to be used as prompt;

e InputMethod - a ground term, which specifies how to obtain input from
the user;

e MapMethod - a ground term, which specifies how to process the input to
get the abstract answer to the query;

e FailureMode - an atom determining what to print in case of an input error,
before re-querying the user. Possible values are:

— help_query - print the help message and print the query text again;
— help - only print the help message;
— query - only print the query text;
— mnone - do not print anything.
For the list of default input- and map methods, see the “Default Input Methods”

and “Default Map Methods” subsections in Section 8.13.3 [Query Processing]
page 200.

9

’SU_messages’ :query_abbreviation(+QueryClass, -Prompt, -Pairs) extendible
This extendible predicate provides a shortcut for defining query classes with
some fixed characteristics, where

e QueryClass is the query class being defined;
e Prompt is the prompt to be used;

e Pairs is the list of pairs defining the characters accepted and the corre-
sponding abstract answers.
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This defines a query class with the given prompt, the 1ine input method, the
char(Pairs) map method and help_query failure mode. The predicate is
actually implemented by the first clause of ’SU_messages’ :query_class/5:
query_class(QueryClass, Prompt, line,
char(Pairs), help_query) :-
query_abbreviation(QueryClass, Prompt, Pairs), !.

query_input_hook (+InputMethod, +Prompt, -RawInput) hook
user:query_input_hook (+InputMethod, +Prompt, -RawInput)
Provides the wuser with a method of overriding the call to °’SU_
messages’ :query_input/3 in the input phase of query processing. This way
the implementation of the default input methods can be changed.

’SU_messages’ :query_input (+InputMethod, +Prompt, —-RawInput) extendible
Implements the input phase of query processing. The user is prompted with
Prompt, input is read according to InputMethod, and the result is returned in
Rawlnput.

See Section 8.13.3 [Query Processing], page 200, for details.

query_map_hook (+MapMethod, +RawInput, -Result, -Answer) hook
user:query_map_hook (+MapMethod, +RawInput, -Result, -Answer)
Provides the wuser with a method of overriding the call to °’SU_
messages’ :query_map/4 in the mapping phase of query processing. This way
the implementation of the default map methods can be changed.

’SU_messages’ :query_map (+MapMethod, +RawInput, -Result, —-Answer) extendible
Implements the mapping phase of query processing. The Rawlnput, received
from query_input/3, is mapped to the abstract answer term Answer. The map-
ping is defined by the MapMethod parameter, and one of the terms success,
failure and failure(Warning), describing the result of the conversion is re-
turned in Result.

See Section 8.13.3 [Query Processing], page 200, for details.
8.14 Coroutining

The coroutining facility can be accessed by a number of built-in predicates. This makes it
possible to use coroutines in a dynamic way, without having to rely on block declarations:

when(+Condition, :Goal)
Blocks Goal until the Condition is true, where Condition is a goal with the
restricted syntax:

nonvar (X)

ground (X)

7=(X,Y)
Condition,Condition
Condition;Condition
For example:
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| ?- when(((nonvar (X);?=(X,Y)),ground(T)), process(X,Y,T)).

freeze(7X, :Goal)
Blocks Goal until nonvar (X) (see Section 8.7 [Meta Logic|, page 183) holds.
This is defined as if by:
freeze(X, Goal) :- when(nonvar(X), Goal).
or
:— block freeze(-, 7).
freeze(_, Goal) :- Goal.

frozen(-Var, ?Goal)
If some goal is blocked on the variable Var, or Var has attributes that can be
interpreted as a goal (see Chapter 18 [Attributes|, page 355), then that goal is
unified with Goal. If no goals are blocked, Goal is unified with the atom true.
If more than one goal is blocked, a conjunction is unified with Goal.

dif (?X, 7Y)
Constrains X and Y to represent different terms i.e. to be non-unifiable. Calls
to dif/2 either succeed, fail, or are blocked depending on whether X and Y are
sufficiently instantiated. It is defined as if by:
dif (X, Y) :- when(?=(X,Y), X\==Y).

call_residue(:Goal, 7Residue)
The Goal is executed as if by call/1. If during the execution some attributes
or blocked goals were attached to some variables, then Residue is unified with a
list of VariableSet-Goal pairs, and those variables no longer have attributes or
blocked goals attached to them. Otherwise, Residue is unified with the empty
list [J.
VariableSet is a set of variables such that when any of the variables is bound,
Goal gets unblocked. Usually, a goal is blocked on a single variable, in which
case VariableSet is a singleton.
Goal is an ordinary goal, sometimes module prefixed. For example:

| ?- call_residue((dif(X,f(Y)), X=f(Z)), Res).

X = £(2),
Res = [[Y,Z]-(prolog:dif (£(Z),f(Y)))]

8.15 Debugging

Debugging predicates are not available in runtime systems.

unknown (701dState, ?NewState) development
OldState is the current state of the “Action on unknown predicates” flag, and
sets the flag to NewState. This flag determines whether or not the system is
to catch calls to undefined predicates (see Section 3.6 [Undefined Predicates],
page 29), when user:unknown_predicate_handler/3 cannot handle the goal.
The possible states of the flag are:



210 SICStus Prolog

trace Causes calls to undefined predicates to be reported and the debug-
ger to be entered at the earliest opportunity.

fail Causes calls to such predicates to fail.

warning  Causes calls to such predicates to display a warning message and
then fail.

error Causes calls to such predicates to raise an exception (the default).
See Section 8.5 [Exception], page 173.

debug development
The debugger is switched on in debug mode. See Section 7.2 [Basic Debug],
page 77.

trace development
The debugger is switched on in trace mode. See Section 7.2 [Basic Debug],
page 77.

zip development
The debugger is switched on in zip mode. See Section 7.2 [Basic Debug],
page 77.

nodebug development

notrace

nozip

The debugger is switched off. See Section 7.2 [Basic Debug], page 77.

leash(+Mode) development
Leashing Mode is set to Mode. See Section 7.2 [Basic Debug], page 77.

spy :Spec development
Plain spypoints are placed on all the predicates given by Spec. See Section 7.3
[Plain Spypoint|, page 79.

spy (:Spec, :Conditions) development
Spypoints with condition Conditions are placed on all the predicates given by
Spec. See Section 7.7 [Breakpoint Predicates], page 116.

nospy :Spec development
All spypoints (plain and conditional) are removed from all the predicates given
by Spec. See Section 7.3 [Plain Spypoint|, page 79.

nospyall development
Removes all the spypoints (including the generic ones) that have been set.

debugging development
Displays information about the debugger. See Section 7.2 [Basic Debug],
page 77.

add_breakpoint (:Conditions, 7BID) development

Creates a breakpoint with Conditions and with identifier BID. See Section 7.7
[Breakpoint Predicates], page 116.
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current_breakpoint (:Conditions, 7BID, ?Status, 7Kind, 7Type) development
There is a breakpoint with conditions Conditions, identifier BID, enabledness
Status, kind Kind, and type Type. See Section 7.7 [Breakpoint Predicates],
page 116.

remove_breakpoints (+BIDs) development
disable_breakpoints (+BIDs)
enable_breakpoints (+BIDs)
Removes, disables or enables the breakpoints specified by BIDs. See Section 7.7
[Breakpoint Predicates], page 116.

execution_state(:Tests) development
Tests are satisfied in the current state of the execution.

execution_state(+FocusConditions, :Tests) development
Tests are satisfied in the state of the execution pointed to by FocusConditions.

debugger_command_hook (+DCommand, 7Actions) hook,development
user:debugger_command_hook (+DCommand, ?Actions)
Allows the interactive debugger to be extended with user-defined commands.
See Section 7.5 [Debug Commands], page 81.

error_exception(+Exception) hook,development
user:error_exception(+Exception)
Tells the debugger to enter trace mode on certain exceptions. See Section 7.6
[Advanced Debugging], page 86.

8.16 Execution Profiling

Execution profiling is a common aid for improving software performance. The SICStus
Prolog compiler has the capability of instrumenting compiled code with counters, which
are initially zero and incremented whenever the flow of control passes a given point in the
compiled code. This way the number of calls, backtracks, choicepoints created, etc., can be
counted for the instrumented predicates, and an estimate of the time spent in individual
clauses and disjuncts can be calculated.

Gauge is a graphical user interface for inspecting execution profiles. It is available as a
library module (see Chapter 41 [Gauge|, page 687).

The original version of the profiling package was written by M.M. Gorlick and C.F. Kessel-
man at the Aerospace Corporation [Gorlick & Kesselman 87].

Only compiled code can be instrumented. To get an execution profile of a program, the
compiler must first be told to produce instrumented code. This is done by issuing the query:

| ?- prolog_flag(compiling,_,profiledcode) .

after which the program to be analyzed can be compiled as usual. Any new compiled code
will be instrumented while the compiling Prolog flag has the value profiledcode.
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The profiling data is generated by simply running the program. The predicate profile_
data/4 (see below) makes available a selection of the data as a Prolog term. The predicate
profile_reset/1 zeroes the profiling counters for a selection of the currently instrumented
predicates.

profile_data(:Spec, ?Selection, 7Resolution,-Data) development
Data is profiling data collected from the predicates covered by the generalized
predicate spec Spec.

The Selection argument determines the kind of profiling data to be collected. If
uninstantiated, the predicate will backtrack over its possible values, which are:

calls All instances of entering a clause by a procedure call are counted.
This is equivalent to counting all procedure calls that have not been
determined to fail by indexing on the first argument.

backtracks
All instances of entering a clause by backtracking are counted.

choice_points
All instances of creating a choicepoint are counted. This occurs,
roughly, when the implementation determines that there are more
than one possibly matching clauses for a procedure call, and when
a disjunction is entered.

shallow_fails
Failures in the “if” part of if-then-else statements, and in the
“guard” part of guarded clauses, are counted as shallow failures.
See Section 13.8 [Conditionals and Disjunction], page 336.

deep_fails
Any failures that do not classify as shallow as above are counted
as deep failures. The reason for distinguishing shallow and deep
failures is that the former are considerably cheaper to execute than
the latter.

execution_time
The execution time for the selected predicates, clauses, or disjuncts
is estimated in