
SICStus Prolog Frequently Asked Questions
by the Intelligent Systems Laboratory

Swedish Institute of Computer Science
PO Box 1263

SE-164 29 Kista, Sweden

Release 3.12.3
October 2005

Swedish Institute of Computer Science
sicstus-request@sics.se http://www.sics.se/sicstus/

mailto:sicstus-request@sics.se
http://www.sics.se/sicstus/

i

Table of Contents

1 About This Document . 1

2 Introduction . 2

3 Installation Problems . 4
3.1 Windows Installer Problems . 4
3.2 Corrupted Binary Files . 4
3.3 Linux C Libraries . 4
3.4 Configure Options . 4
3.5 Password Problems . 5
3.6 Problems Getting Started . 5

4 Runtime Problems . 7
4.1 Memory Allocation Problems. 7

5 Generic Prolog Programming 8

6 Interfacing with Other Languages 13
6.1 Interfacing with UNIX . 13
6.2 Interfacing with C++ . 13
6.3 Interfacing with Visual Basic . 13
6.4 Interfacing with Tcl/Tk . 13

6.4.1 Installing the Tcl/Tk Library Module under UNIX
. 14

6.4.2 Configuring the Tcl/Tk Library Module under
Windows . 14

6.4.3 Compiling SICStus with Tcl/Tk Support 16
6.4.4 Generic Tcl/Tk Problems . 17

6.5 Interfacing with Java . 18

7 Standard Prolog Compliance 20

8 Miscellaneous . 21

Chapter 1: About This Document 1

1 About This Document

This is a compilation of frequently asked question related to SICStus Prolog.

It is maintained by the SICStus Prolog support team. Any questions about this FAQ
should be sent to sicstus-support@sics.se. Questions about SICStus Prolog should be
addressed as follows:

• Bug reports and technical support questions to Report bugs through the web interface
http://www.sics.se/sicstus/bugreport/bugreport.html.

or to
sicstus-support@sics.se

• Questions regarding licensing, contracts, etc. to sicstus-request@sics.se.

This FAQ is not intended for questions about the Prolog language in general. There is a
specific Prolog FAQ for that, available at

http://www.cs.kuleuven.ac.be/~remko/prolog/faq/

mailto:sicstus-support@sics.se
http://www.sics.se/sicstus/bugreport/bugreport.html
mailto:sicstus-support@sics.se
mailto:sicstus-request@sics.se
http://www.cs.kuleuven.ac.be/~remko/prolog/faq/

Chapter 2: Introduction 2

2 Introduction

Question: What is SICStus Prolog?

Prolog is a simple but powerful programming language developed at the University of Mar-
seille, as a practical tool for programming in logic. From a user’s point of view the major
attraction of the language is ease of programming. Clear, readable, concise programs can
be written quickly with few errors.

SICStus Prolog is owned and maintained by the Swedish Institute of Computer Science.
Parts of the system were developed by the project “Industrialization of SICStus Prolog”
in collaboration with Ericsson Telecom AB, NobelTech Systems AB, Infologics AB and
Televerket.

in synch SICStus Prolog follows the mainstream Prolog tradition in terms of
syntax and built-in predicates. As of release 3.8, SICStus Prolog provides
two execution modes: the iso mode, which is fully compliant with the In-
ternational Standard ISO/IEC 13211-1 (PROLOG: Part 1—General Core)
(http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITS%2FISO%2FIEC+13211%2D1%2D1995);
and the sicstus mode, which is largely compatible with, e.g., C-Prolog and Quintus
Prolog, supports code written in earlier versions of SICStus Prolog.

Question: Where can I get more information about SICStus Prolog?

The main source of information about SICStus Prolog is the WWW-site at

http://www.sics.se/sicstus/.

and in particular the User’s Manual, Release Notes, and this FAQ list, at

http://www.sics.se/isl/sicstuswww/site/documentation.html

Question: Does SICStus run on platform XYZ?

SICStus runs under most UNIX dialects and under Windows 98/NT/2000. For a current
list of supported platforms, see the release notes.

Question: What do I need to run SICStus?

• Disk space: 100 MB should be enough for packing up the binary installer and perform-
ing the installation. The actual installation will use less than half of that. 100 MB
should also be enough to compile SICStus from the sources.

• Memory usage: At least 8-16 Mb RAM, but more memory is recommended.
• In order to use library(tcltk) you need a Tcl/Tk installation on your machine, see

the release notes for information about what Tcl/Tk version you need and where you
can get it.

• In order to use library(jasper) you need a JNI compatible Java installation. See the
release notes for supported versions and where you can get it.

http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITS%2FISO%2FIEC+13211%2D1%2D1995
http://www.sics.se/sicstus/
http://www.sics.se/isl/sicstuswww/site/documentation.html

Chapter 2: Introduction 3

• In order to use library(bdb) you need a Berkeley DB. See the release notes for sup-
ported versions and where you gan get it.

Question: How can I get SICStus?

SICStus is a commercial product and licensing information can be found on the WWW-site
(http://www.sics.se/sicstus/). Free evaluation licenses are available.

Upon completed license agreement, you will receive a mail containing download instructions
including confidential passwords and encryption keys. Be sure to read the Release Notes
before installation.

If you are a university student, your department may have acquired the right to sub-license
SICStus to its students. If that is the case, your department should provide to you download
instructions and license codes for the relevant distributions. Your professor should know.

Question: How do I report a bug or some other problem?

If you think you’ve discovered a bug or if you have another problem, first read this
FAQ list, the release notes and the list of known bugs, at the Don’t Panic page page
at http://www.sics.se/sicstus/. If these do not address your problem, submit a bug
report by filling in the form:

http://www.sics.se/sicstus/bugreport/bugreport.html.

If you are using an academic license, for example if you are a student, then you should
primarily consult with the maintenance contact at your site.

http://www.sics.se/sicstus/
http://www.sics.se/isl/sicstuswww/site/dontpanic.html
http://www.sics.se/sicstus/
http://www.sics.se/sicstus/bugreport/bugreport.html

Chapter 3: Installation Problems 4

3 Installation Problems

Some of the problems in this sections are UNIX (Windows) specific. These are marked
[UNIX] ([Windows]).

3.1 Windows Installer Problems

Question: [Windows NT 4]
The installer complains that ‘MSIEXEC’ cannot be found.

This happens if the installing user does not have ‘Administrator’ rights. Either install
as the user ‘Administrator’ or ensure that the installing user have these rights during
installation. If this is unclear, please contact your system administrator.

This problem should not happen on other versions of Windows.

3.2 Corrupted Binary Files

Question: [UNIX]
gzip says “stdin not in gzip format”.

This means that the input piped to gzip has been corrupted in some way. The most likely
cause is that the original file file.tar.gz was downloaded incorrectly, typically in ASCII
mode instead of binary mode.

3.3 Linux C Libraries

Question: [UNIX]
I get the message “. . . /sp.exe: no such file or directory” when running SICStus,
even though sp.exe is there.

This error message appears when SICStus has been compiled using a different version of
libc.so than your machine has installed. The message “no such file or directory” does not
refer to sp.exe but to the particular libc.so version that SICStus expects.

SICStus is currently available as binary distributions for libc.so.6, a.k.a. glibc, versions
2.0, 2.1 and 2.2. Make sure to download the correct version.

3.4 Configure Options

These issues are mainly of concern when building SICStus from a source distribution.

Chapter 3: Installation Problems 5

Question: [UNIX]
I’ve changed the arguments to configure, but nothing happens.

The configure script maintains a cache-file called config.cache. This file has to be
removed between configure-runs if you’ve changed the arguments. Alternatively, you can
specify ‘--cache-file=/dev/null’, causing configure to avoid creating a cache-file entirely.

Question: [UNIX]
The configure script seems to ignore some of my options.

Make sure that there is no site-wide configuration file (config.site). If configure finds
one, it will print a message similar to:

loading site script /usr/local/etc/config.site
creating cache ./config.cache
checking SICStus version... 3.8.5
[...]

In this case, configure has found a config.site in /usr/local/etc.

The solution is to either remove the file or to set the environment variable CONFIG_SITE to
an empty file of your choice. For example, assuming csh:

% setenv CONFIG_SITE ./config.site

% echo "# empty config.site" > ./config.site

3.5 Password Problems

Question: [Windows]
When asked for the installation password, I typed it but it doesn’t work.

There are three pieces of information that you must not mix up.

• The password to the FTP/HTTP site containing the SICStus distributions.
• The password required by the installation program.
• Your license code, which comes with a site name and an expiration date.

3.6 Problems Getting Started

Question: I get the message “Failed to locate bootfile”.

The message “Failed to locate bootfile” means that SICStus cannot find either spds.sav
or sprt.sav, depending on whether you are executing a development system or a runtime
system. If you are running a runtime system, you may want to read the chapter “Runtime
Systems” in the User’s Manual. If you want to execute runtime systems on machines that

Chapter 3: Installation Problems 6

do not have SICStus installed (a.k.a. target machines), read the sections “Runtime Systems
on Target Machines”.

If you get this message running a Development System, your installation is probably incon-
sistent. Reinstall SICStus and try again.

Question: ^D doesn’t seem to bring me back a level down after break.

The manual assumes that ^D is the EOF character. Under Windows, however, it’s ^Z
(except when running under Emacs). In most contexts, the term end_of_file terminated
by a full stop (.) can be typed instead of the EOF character.

Question: spld fails with the message:
’rc’ is not recognized as an internal or external command,
operable program or batch file.
! Could not generate .res file for data resources. at spld.pl line 745.

Question: splfr fails with the message:
’cl’ is not recognized as an internal or external command,
operable program or batch file.
! Could not compile spa011160.c: No such file or directory

You need to include Microsoft Visual Studio (or at least its C compiler and linker) in your
PATH environment variable. The easiest way is to run vcvars32.bat from the Visual Studio
distribution. To do it manually (Windows NT/2000/XP):

C:\> set PATH=location of Microsoft Visual Studio;%PATH%

Chapter 4: Runtime Problems 7

4 Runtime Problems

4.1 Memory Allocation Problems

Question: I get the message “Memory allocation failed”

A generic limitation of SICStus Prolog is that it cannot use more than 256 Mb of virtual
memory on 32-bit architectures. This is an artifact of the tagged pointer scheme that we
use. We have plans for replacing the tagging scheme, but it’s a long term project. See the
section “Generic limitations” in the Release Notes for additional details.

Chapter 5: Generic Prolog Programming 8

5 Generic Prolog Programming

Question: How can I split a module into several source code files?

You need a main file for the module, e.g. main.pl and several subfiles, e.g. sub1.pl,
sub2.pl, . . . Lay out the main file as follows:

:- module(ModuleName, ExportList).

... clauses/directives ...

:- ensure_loaded(sub1).

.. clauses/directives ...

:- ensure_loaded(sub2).

The subfiles can contain any clauses and directives, including ensure_loaded/1 directives,
but not module/2 directives.

An alternative is to use an include declaration.

Question: How can I make the compiler abort the compilation if it encounters a syntax
error?

This can be done by defining user:message_hook/3 appropriately:

| ?- [user:user].

% consulting user...
| message_hook(error,_,Lines) :-

print_message_lines(user_error,error,Lines), abort.

| ^D
% consulted user in module user, 0 msec 424 bytes

This will intercept any error message, print the message, and abort:

| ?- [user].

% consulting user...
| p p.

! Syntax error
! operator expected after expression
! in line 39
! p
! <<here>>
! p .
% consulted user in module user, 0 msec -16 bytes
% Execution aborted

Chapter 5: Generic Prolog Programming 9

Question: How can I write access predicates for terms without paying a performance
penalty?

There is support for unfolding predicates at compile time: user:goal_expansion/3. For
example, assume that is_ornode(X) (is_andnode(X)) is true if the shape (principal func-
tor) of X is or/2 (and/2). If you consult the following:

:- multifile
user:goal_expansion/3.

:- dynamic
user:goal_expansion/3.

user:goal_expansion(is_ornode(Term), _, Term=or(_,_)).
user:goal_expansion(is_andnode(Term), _, Term=and(_,_)).

plan_tree([N|_Rest], _GuidanceNodes, _Indent) :-
is_andnode(N).

plan_tree([N|_Rest], _GuidanceNodes, _Indent) :-
is_ornode(N).

then plan_tree/3 becomes transformed to:

plan_tree([A|_], _, _) :- A=and(_,_).
plan_tree([A|_], _, _) :- A=or(_,_).

If you are using fcompile/1, make sure that the definition of user:goal_expansion/3,
and anything else that the compiler needs to know, has been loaded at fcompile time. A
common idiom is:

| ?- ensure_loaded(SetOfFiles), fcompile(SetOfFiles).

Note that fcompile/1 is obsolescent with the introduction of partial saved-states (‘.po’
files).

Note also that plan_tree/3 will not be able to determinately select a matching clause based
on A, as predicates are indexed on the shape of the first argument only, which is a list in
both clauses. Achieving indexing on A is the subject of the next question.

Question: Is SICStus capable of folding unifications across ‘:-’ to determinately select a
matching clause?

Consider the following clauses, with the above goal expansion:

plan_tree([N|_Rest], _GuidanceNodes, _Indent) :-
is_andnode(N).

plan_tree([N|_Rest], _GuidanceNodes, _Indent) :-
is_ornode(N).

Chapter 5: Generic Prolog Programming 10

In SICStus, as in most WAMs, indexing is done on the shape of the first argument. If all
arguments are distinct variables A, B, C, . . . , and the first goal is A = Term, indexing will
be done on the shape of Term.

So to enable indexing on the shape of N, you must transform the clause e.g. to:

plan_tree([N|_Rest], _GuidanceNodes, _Indent) :-
plan_tree_flat(N, _Rest, _GuidanceNodes, _Indent).

plan_tree_flat(N, _Rest, _GuidanceNodes, _Indent) :-
is_andnode(N).

plan_tree_flat(N, _Rest, _GuidanceNodes, _Indent) :-
is_ornode(N).

With the above goal expansion, this code will indeed index on N.

Question: Why doesn’t this Fibonacci program work?

Here’s some code that purports to print all the Fibonacci numbers. The author of the code
expected retract/1 to backtrack forever, finding ever new fibs/2 facts.

print_fibs :-
retractall(fib(_)),
assert(fibs(1,1)),
retract(fibs(F1,F2)),
write(F1), nl,
F3 is F1+F2,
assert(fibs(F2,F3)),
fail.

If you run it:

| ?- print_fibs.

1

no

It doesn’t work because of the semantics for calls to dynamic predicates in the presence of
asserts and retracts. SICStus Prolog complies with the ISO Prolog standard in this respect.
Clause 7.5.4 of the standard reads:

Any change in the database that occurs as the result of executing a goal (for
example, when the activator of a subgoal is a call of assertz/1 or retract/1)
shall affect only an activation whose execution begins afterwards. The change
shall not affect any activation that is currently being executed.

In the above example, the retract/1 goal is unaffected by the subsequent assert, and
only succeeds once.

Chapter 5: Generic Prolog Programming 11

Question: The query X=[97|X], name(A,X). loops. Is it a bug?

It is possible, and sometimes useful, to write programs that unify a variable to a term in
which that variable occurs, thus creating a cyclic term. The usual LP theory forbids the
creation of cyclic terms, dictating that an occurs-check should be done each time a variable
is unified with a term. Unfortunately, an occurs-check would be so expensive as to render
Prolog impractical as a programming language. Thus cyclic terms may be created and may
cause loops trying to print them.

SICStus Prolog mitigates the problem by its ability to unify, compare assert, and copy cyclic
terms without looping. The write_term/[2,3] built-in predicate can optionally handle
cyclic terms. Unification with occurs-check is available as a built-in predicate. Predicates
testing (a)cyclicity are available in a library package. Other predicates usually do not handle
cyclic terms well.

Question: How can I have a predicate definition included when I load my code into Sicstus
3.10.x or earlier, but not when I load my code into Sicstus 3.11.0 or later?

You can use:

| ?- prolog_flag(version,Version).

plus a bit of trivial parsing to determine the version number.

Question: In this query, why is X not 29.51?

| ?- X is 20.66 + 8.85.

X = 29.509999999999998 ?

yes

Floats like 20.66 and 8.85 are represented in the host computer’s native floating-point format
(almost universally, in IEEE 754 format). They are not represented as the precise rational
numbers (2066/100) and (885/100). Rounding errors are bound to pop up whenever you
do floating-point arithmetic, as your query illustrates. The exact same thing happens in C.
The following C program illustrates the point: the floating-point sum (20.66+8.85) differs
from 29.51 in the least significant bit.

Chapter 5: Generic Prolog Programming 12

#include <stdio.h>

unsigned int intone = 1;
double d1 = 20.66;
double d2 = 8.85;
double d3 = 29.51;

main()
{
double d4 = d1+d2;
int mshalf = ((unsigned short *)&intone)[0];
int lshalf = 1-mshalf;

printf("20.66 + 8.85 with 15 decimals, and in hex:\n");
printf("%.15f %0x%0x\n", d4, ((long *)&d4)[mshalf], ((long *)&d4)[lshalf]);
printf("29.51 with 15 decimals, and in hex:\n");
printf("%.15f %0x%0x\n", d3, ((long *)&d3)[mshalf], ((long *)&d3)[lshalf]);
exit(0);

}

Chapter 6: Interfacing with Other Languages 13

6 Interfacing with Other Languages

6.1 Interfacing with UNIX

Question: [UNIX]
How can I turn a Prolog source file into a UNIX script, to be invoked from the
command line or from a Web application, for example?

Wrap the file into an executable Shell script that simply invokes SICStus. Informational
messages can be filtered out by redirecting stderr to /dev/null. For example:

#!/bin/sh
exec sicstus 2> /dev/null -f -a "$@" <<EOF

% Tell SICStus to consult the sources.
% The embedded command invokes main(Args)
% where Args is the script’s arguments passed as a list of atoms.

[user].

main(Args) :-
format(’Hello world!\n\c

Invoked with args = ~q\n’, [Args]).

:-
prolog_flag(argv, Args), main(Args).
EOF

The above script can be invoked as follows:

% ./hw.sh a 236U ka=ka

Hello world!
Invoked with args = [a,’236U’,’ka=ka’]

6.2 Interfacing with C++

See the Don’t Panic page for some examples of how to interface SICStus with C++. The ex-
amples use Microsoft Visual C++, but the same technique can be adapted to other compilers
(e.g. gcc under UNIX).

6.3 Interfacing with Visual Basic

See the manual and the release notes.

http://www.sics.se/isl/sicstuswww/site/dontpanic.html#MSVC

Chapter 6: Interfacing with Other Languages 14

6.4 Interfacing with Tcl/Tk

6.4.1 Installing the Tcl/Tk Library Module under UNIX

Please note: This section applies to UNIX binary distributions only.

As of 3.8, the Tcl/Tk library module is automatically configured by the installation script
(InstallSICStus), after asking a few simple questions.

Question: When InstallSICStus asks for the “Tcl/Tk installation path”, which path
should I specify?

The installation path should be specified such that installation-path/lib contains the Tcl/Tk
libraries (libtcl<version>.so). This is the same as the value of the ‘--prefix’ options
specified to Tcl/Tk’s configure-script.

Question: My Tcl and Tk installation are not in the same directory. What should I do?

Unfortunately, there is no solution to this yet. You need to install Tcl/Tk in the same
directory in order for InstallSICStus to find them.

6.4.2 Configuring the Tcl/Tk Library Module under Windows

Question: I need to use a different Tcl/Tk version from the one SICStus is compiled
against. How do I do?

The symptom of this is that Windows complains about not finding tcl<ver>.dll.

See the release notes for what version of Tcl/Tk was used to build SICStus. If you want to
use another Tcl/Tk version, you need to recompile library(tcltk). You can do this by
following these steps:

(Please do not embark on this unless you are fairly familiar with command-prompts and
compilation procedures).

1. You need MSVC version 6.0 or later. 5.x or 4.x might work but have not been tested.
2. Build a new Tcl/Tk foreign resource (assuming Bash/Cygwin):

$ cd library/x86-win32-nt-4

$ mkdir tcltk_new

$ cd tcltk_new

$ splfr --cflag=-Ic:/path/to/Tcl/include

../../tcltk/*.c ../../tcltk.pl c:/path/to/Tcl/lib/tcl84.lib

c:/path/to/Tcl/lib/tk84.lib

$ cp tcltk.dll ../tcltk.dll

Chapter 6: Interfacing with Other Languages 15

If you do not have a shell that expands “*.c”, you need to replace “../../tcltk/*.c” with
the name of all C source files in ‘../../tcltk’. Also, don’t forget to adjust the actual
paths to your Tcl/Tk installation directory.
The following sample session shows how it may look:

$ splfr --cflag=-
Ih:/MS_Windows_2000/Tcl/include ../../tcltk/*.c ../../tcltk.pl h:/MS_Windows_2000/Tcl/lib/tcl84.lib h:/MS_Windows_2000/Tcl/lib/tk84.lib
SICStus 3.12.3 ...
Licensed to SICS

% tcltk_glue_1084_1044046414.c generated, 20 msec
% tcltk_glue.h generated, 20 msec
tcl.c
../../tcltk/tcl.c(223) : warning C4090: ’function’ : differ-
ent ’const’ qualifiers
../../tcltk/tcl.c(223) : warning C4024: ’sptcl_save_error’ : dif-
ferent types for formal and actual parameter 2
../../tcltk/tcl.c(323) : warning C4090: ’function’ : differ-
ent ’const’ qualifiers
../../tcltk/tcl.c(323) : warning C4024: ’sptcl_save_error’ : dif-
ferent types for formal and actual parameter 2
../../tcltk/tcl.c(374) : warning C4090: ’function’ : differ-
ent ’const’ qualifiers
../../tcltk/tcl.c(374) : warning C4024: ’sptcl_save_error’ : dif-
ferent types for formal and actual parameter 2
tk.c
../../tcltk/tk.c(134) : warning C4090: ’function’ : differ-
ent ’const’ qualifiers
../../tcltk/tk.c(134) : warning C4024: ’sptcl_save_error’ : dif-
ferent types for formal and actual parameter 2
../../tcltk/tk.c(162) : warning C4090: ’function’ : differ-
ent ’const’ qualifiers
../../tcltk/tk.c(162) : warning C4024: ’sptcl_save_error’ : dif-
ferent types for formal and actual parameter 2
tkappini.c
tkterm.c
util.c
tcltk_glue_1084_1044046414.c

Creating library dummy.lib and object dummy.exp
$ cp tcltk.dll ../tcltk.dll

3. Test your new resource:

Chapter 6: Interfacing with Other Languages 16

$ sicstus -i

SICStus 3.12.3 ...
Licensed to SICS
| ?- use_module(library(tcltk)).

% loading c:/program files/sicstus pro-
log 3.10.0/library/tcltk.po...
% module tcltk imported into user
% loading foreign resource c:/program files/sicstus pro-
log 3.10.0/library/x86-win32-nt-4/tcltk.dll in module tcltk
% loaded c:/program files/sicstus prolog 3.10.0/li-
brary/tcltk.po in module tcltk, 10 msec 14744 bytes

6.4.3 Compiling SICStus with Tcl/Tk Support

Please note: This section is only relevant when compiling source distributions
with support for Tcl/Tk.

Most UNIX machines today have Tcl/Tk preinstalled. This reduces the risk of installation
difficulties since the linker and the runtime linker usually finds Tcl/Tk in its default paths.
Most other installation and/or configuration problems related to Tcl/Tk are caused by
improper installation or installation in a path where the linker and runtime linker cannot
find Tcl/Tk.

Tcl/Tk is configured for installation similar to SICStus; by the use of a configure script
generated by GNU Autoconf. The installation directory is specified by the ‘--prefix’
option. The value of this option is referred to as the installation-dir below.

Question: The configure-script complains that it cannot find Tcl_Init and/or Tk_Init.
What should I do?

The following message from configure indicates that it could not link a test program with
the Tcl/Tk libraries.

...
checking for Tcl_Init in -ltcl8.3... no
checking for Tk_Init in -ltk8.3... no
...

The common cause of this is that the compiler cannot find ‘-ltcl8.3’ and/or ‘-ltk8.3’
(or whichever version it tries to find), usually because Tcl/Tk has been installed in a non-
standard directory (i.e. different from /usr/lib, /usr/local/lib, etc.).

If you’ve installed Tcl/Tk in installation-dir, specify the following to configure:

% ./configure --with-tcltk=installation-dir more options

Chapter 6: Interfacing with Other Languages 17

The problem can occur even if the Tcl/Tk shared libraries can be found, but the link-phase
failed due to other reasons. If this occurs, it is often useful to look in config.log, where
output from compilation stages etc. is logged.

Question: I’ve installed Tcl and Tk in different directories. What do I do?

You can use:

% ./configure --with-tcl=tclinstallpath --with-tk=tkinstallpath

Question: There are no shared Tcl/Tk libraries. What has happened?

You need to specify ‘--enable-shared’ when configuring Tcl/Tk. This is not enabled by
default.

6.4.4 Generic Tcl/Tk Problems

Question: I get the message “tcl new/1 - Can’t find a usable init.tcl in the following
directories. . . ”

This means that Tcl/Tk can’t find its libraries of tcl-code needed for operation. This
occurs when Tcl/Tk has been built but not properly installed. You have the option of
stating the location of the libraries by means of the environment variables TCL_LIBRARY
and TK_LIBRARY. See also the Tcl/Tk documentation.

Another reason for this could be if you are not using SICStus 3.8.1 or later. The original
SICStus 3.8 did not initialize Tcl/Tk correctly.

Question: I get the message “tcl eval/3 - can’t read ‘var(Tree)’: no such variable”

This message can appear in Tcl code trying to access Prolog variables. Example:

tk_test :-
tk_new([],Interp),
tcl_eval(Interp,

’
global var
set Tree []
set Children []
set GrandChildren []
prolog {get_tree(Tree),

make_children(Tree, Children),
make_grandChildren(Tree, Children, GrandChildren)}

puts "$var(Tree) $var(Children) $var(GrandChildren) "
’, _),

tk_main_loop,
tcl_delete(Interp).

Chapter 6: Interfacing with Other Languages 18

The problem is that the argument to the prolog function is just a string that is inter-
preted by Prolog as a goal. There is no connection between the Prolog variables Tree,
Children and GrandChildren and the Tcl-variables with the same name. After returning
from prolog, the values that the Prolog variables have been bound to are assigned to the
array variable prolog_variables.

So replacing $var in your example with $prolog_variables, makes it work.

6.5 Interfacing with Java

Question: I’m having basic trouble in getting Java to work.

First try to get a simple "Hello world" program to work that does not use Jasper. A large
portion of the support questions we get are unrelated to the SICStus Java interface. Once
you can compile and run your own Java classes it should be relatively easy to get Jasper to
work.

Read the Release Notes and the User’s Manual and the section in them related to Jasper.

Question: I want to use Jasper from an applet, but my browser won’t let me.

Jasper is built as a layer on top of SICStus’ C-Prolog interface and hence Jasper needs to
be able to call methods declared as native (i.e., C functions). For security reasons, this is
prohibited in applets.

This is a serious restriction, and future versions of Jasper will most likely allow connecting
to the Prolog engine via sockets. In the interim, there are some examples on this at the
Don’t Panic page at http://www.sics.se/sicstus/.

Question: I get the message “Failed to locate bootfile” when running java ClassUsing-

Jasper.

The answer to this (and related questions) can be found in the Jasper chapter of the Release
Notes, section “Getting Started”.

Question: My first test of Java calling SICStus under MacOS X (i.e. calling
se.sics.jasper.SICStus) failed with the following message. Yes, I set the
java.library.path.

http://www.sics.se/isl/sicstuswww/site/dontpanic.html
http://www.sics.se/sicstus/

Chapter 6: Interfacing with Other Languages 19

Exception in thread "main" java.lang.UnsatisfiedLinkError: /Users/ptollinger/bin/powerpc-apple-darwin/lib/libspnative.jnilib:
at java.lang.ClassLoader$NativeLibrary.load(Native Method)
at java.lang.ClassLoader.loadLibrary0(ClassLoader.java:1560)
at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1485)
at java.lang.Runtime.loadLibrary0(Runtime.java:788)
at java.lang.System.loadLibrary(System.java:834)
at se.sics.jasper.SICStus.loadNativeCode(SICStus.java:491)
at se.sics.jasper.SICStus.initSICStus(SICStus.java:749)
at se.sics.jasper.SICStus.<init>(SICStus.java:811)
at se.sics.jasper.SICStus.main(SICStus.java:439)

You need to set DYLD_LIBRARY_PATH to include the SICStus runtime library:

bash> export DYLD_LIBRARY_PATH=location of libsprt312
.dylib

Chapter 7: Standard Prolog Compliance 20

7 Standard Prolog Compliance

SICStus 3.8 supports standard Prolog, adhering to the Interna-
tional Standard ISO/IEC 13211-1 (PROLOG: Part 1—General Core)
(http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITS%2FISO%2FIEC+13211%2D1%2D1995).
At the same time it also supports programs written in earlier versions of SICStus. This is
achieved by introducing two execution modes iso and sicstus. Users can change between
the modes using the Prolog flag language. Main issues:

• The sicstus execution mode is practically identical to 3.7.1, except for minor changes
in error term format.

• The iso mode is fully compliant with ISO standard, but no strict conformance mode
is provided.

• The dual mode system supports the gradual transition from legacy SICStus code to
ISO Prolog compliant programs.

• Note that the built-in predicates, functions and Prolog flags, required by the ISO stan-
dard, are also available in sicstus execution mode, unless they conflict with existing
SICStus predicates or functions. This expansion of the language carries a remote risk
of name clashes with user code.

http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITS%2FISO%2FIEC+13211%2D1%2D1995

Chapter 8: Miscellaneous 21

8 Miscellaneous

Question: [Windows]
How do I save a transcript of my Prolog session under Windows?

As of 3.8.3 the windowed executable (spwin) can save a transcript of the interaction with
the Prolog top-level. The command is under the ‘File’ menu. You may wish to increase
the number of ‘save lines’ in the ‘Windows Settings’ (under the ‘Settings’ menu).

Question: [Windows]
How do increase the number of history lines used by the windowed executable
(spwin)?

See section “The Console Window” in the SICStus Prolog Release Notes.

	About This Document
	Introduction
	Installation Problems
	Windows Installer Problems
	Corrupted Binary Files
	Linux C Libraries
	Configure Options
	Password Problems
	Problems Getting Started

	Runtime Problems
	Memory Allocation Problems

	Generic Prolog Programming
	Interfacing with Other Languages
	Interfacing with UNIX
	Interfacing with C++
	Interfacing with Visual Basic
	Interfacing with Tcl/Tk
	Installing the Tcl/Tk Library Module under UNIX
	Configuring the Tcl/Tk Library Module under Windows
	Compiling SICStus with Tcl/Tk Support
	Generic Tcl/Tk Problems

	Interfacing with Java

	Standard Prolog Compliance
	Miscellaneous

