SICStus Prolog User’s Manual

Mats Carlsson et al.

Swedish Institute of Computer Science
PO Box 1263
SE-164 29 Kista, Sweden

Release 4.0.8
September 2009

Swedish Institute of Computer Science
sicstus-request@sics.se http://www.sics.se/sicstus/

mailto:sicstus-request@sics.se
http://www.sics.se/sicstus/

Copyright ¢ 1995-2009 SICS

Swedish Institute of Computer Science
PO Box 1263
SE-164 29 Kista, Sweden

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by SICS.

Table of Contents

Introduction ::::: ;i oo 1
Acknowledgments :::::iiiiiiiiiiiiiiiiiiiiiiiiiiiin 3
1 Notational Conventions :::::::::::::iiiii::000 5
1.1 Keyboard Characters:::::::i i iiiiiiiiiiiiiiiiiiiiiiiiiiiii b
1.2 Mode Spec:::iiiir i b
1.3 Development and Runtime Systems:::::::iiiiriiiiiiiiiiiiiiiin
1.4 Function Prototypes::::::iiiirirrriiiiiiiiiiiiiiiiiiiiiiiiiiinh
1.5 ISO Compliance:: i 6
2 Glossary::ZZZZZZZZZZZZZZZZZZZZZZZZZZIZZZZZZZZZZZZ7
3 How to Run Prolog ::: i 21
3.1 Getting Started :::::iicrriiinrriiiiiiininiin 21
3.2 Reading in Programs:::::iiiiiiiiiriiiiiiiiiiiiiiiiiiiiiiiiin 22
3.3 Inserting Clauses at the Terminal :::::iiirrrriiirriiiiiiiiiin: 22
3.4 Queries and Directives :::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinn 23
3.4.1 Queries::iiiiiriin 23
3.4.2 Directives: i 24
3.5 Syntax Errors:::iiin 25
3.6 Undefined Predicates::::::iiiiiiiiiiiririiiiiiiiiiiiiiiiiiii 26
3.7 Program Execution And Interruption:::::::i::iiriiiiiiiiiiiii 26
3.8 Exiting From The Top-Level t:::rrioirrrrrirrriirrininnn 27
3.9 Nested Executions—Break :::::iiiiiiiiiiiiiiiiiiiiiiiiiiiin 27
3.10 Saving and Restoring Program States ::::::iiiiiiriiiiiiiiiin 27
3.11 Emacs Interface::::::: oo 29
3.11.1 Imstallation ::::::iiiiiiiooooiiiinrrririnnniiiiiiis 29
3.11.1.1 Quick-Start :::iiiioioriiirririiiiiiiiinnnn 29
3.11.1.2 Customizing Emacs :::: oo 30
3.11.1.3 Enabling Emacs Support for SICStus::::::::::000000 30
3.11.1.4 Enabling Emacs Support for SICStus Documentation
L Iiiion 3l
3.11.2 Basic Configuration :::::rriiirrrrirrrriinrniiiriinis 31
3.11.3 Usage:::::iin 32
3.11.4 Mode Line:::::rriiiiooiiiiiiiiriiiiiiiiiiiiiiiins 34
3.11.5 Configuration ::::: i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 34
3.11.6 Tips:iioriiiioooiiiinirrrrrnniiniiins 36
3.11.6.1 Font-locking:::::iirrrrrrrrrrnnrrrynnnrrnnnnnnnn 37
3.11.6.2 Auto-fill Mode @i 37
3.11.6.3 Speed::::iin 37

3.11.6.4 Changing Colors ::::rriiiirrrriirrrriiirrnnniinn 37

ii SICStus Prolog

4 The Prolog Language :::::::::::iiiiiiiiiiiiis 39
4.1 Synmtax:::iin 39
4.1.1 Overview:: i 39
4.1.2 Terms:::irrrrooiiooiirrrrrrrrnnnnnyyrrrnnnnnnnnnnin 39
4.1.2.1 Overview:::iiiiiiiiiiiiiiiiiiiiiiiinnnnn 39
4.1.2.2 Imtegers:::iiiiriiiirrriiiiriiiiiiiiiiiiiiiiiiiiiiiin 39
4.1.2.3 Floating-point Numbers :::::iiirrriiiiriiiiiiiiiii 40
4.1.2.4 Atoms ::iiin 40
4.1.2.5 Variables:::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiin 40
4.1.2.6 Foreign Terms:::::i:iiiiiiirriiiiiiiiiiiiiiiiiiiiiii 41
4.1.3 Compound Terms::::iiirrriiiirriiiriiniriiiinii 41
4.1.3.1 Lists oo 42
4.1.3.2 Strings As Lists::iiriiorroiriiriiiriiniiiiiiiiinn 42
4.1.4 Character Escaping ::::iiiiiiiiiiiriiiiiiiiiiiiiiiiin 43
4.1.5 Operators and their Built-in Predicates::::::::iiiiiiiiii 43
4.1.5.1 Overview
4.1.5.2 Manipulating and Inspecting Operators::::::::::ii:0 46
4.1.5.3 Syntax Restrictions:::::iiiirrriiirriiiiiiiiiiiiiiil 46
4.1.5.4 Built-in Operators:::: i iiiiiiiiiiriiiiiiiiiiiiiin 47
4.1.6 Commenting ::::::iiiiiiriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 48
4.1.7 Formal Syntax :::::iiiiriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 48
4.1.7.1 Overview:::iin 48
4.1.7.2 Notation :::iiiiirrrrrrrriiiiiiiiiiiiiiiiiiiiiiiiin 48
4.1.7.3 Syntax of Sentences as Terms:::::::iiiiiiiiiiiiiiii 49
4.1.7.4 Syntax of Terms as Tokens ::::::iiriiiriiiiiiiiiiii: 50
4.1.7.5 Syntax of Tokens as Character Strings:::::::::00000:0 51
4.1.7.6 Escape Sequences :::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin bb
4177 Notes:irrririiiiiiiiiiiiiiiriiiiiiiiiiiiiiiiiiiiiii by
4.1.8 Summary of Predicates:::::ii:iiiiiiiiiiiiiiiiiiiiiiiiiii b6
4.2 Semantics:::::iiin b6
4.2.1 Programs ::::ii b6
4.2.2 Types of Predicates Supplied with SICStus Prolog:::::::: 58
4.2.2.1 Hook Predicates::::::: i iiiiiiiiiiiiiiiiiiiiiiiiiiis b8
4.2.2.2 Extendible Predicates :::::::iiiiiiiiiiiiiiiiiiiiiiin b8
4.2.3 Control Structures :::::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiin b8
4.2.3.1 The Cut:::rrrrrooioiinnririiiiiniinnn b9
4.2.3.2 Disjunction:::: i iiiiiiiirriiiiiiiiiiiiiiiiiiiiiiiin 61
4.2.3.3 If-Then-Else:: i 62
4.2.3.4 Negation as Failure:::::iirrriirrriiiriiiiiiiiiiiin 63
4.2.3.5 Other Control Structures::::::::iiiiiiiiiiiiiiiiiii: 63
4.2.4 Declarative and Procedural Semantics::::::::::::ii00000 63
4.2.5 Meta-Calls:::irrrrrrmiiiiiiiiiiiiiiiiiiiiiiiiiiiin 66
4.2.6 Exceptions Related to Procedure Calls:::::::::iiiii000: 66
4.2.7 Occurs-Check @i 67
4.2.8 Summary of Control Predicates:::::iiiiiiriiiiiiiiiiiiiil 67
4.3 Loading Programs :::::::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 68
4.3.1 Overview:::iin 68

4.3.2 The Load Predicates ::::::::iiiioiiiiiiiiiiiiiiiiiin 69

4.3.3 Redefining Procedures during Program Execution::::::::: 71
4.3.4 Declarations and Initializations:::::::i:iiiiiiiiiiiiiiii:
4.3.4.1 Multifile Declarations:::::: i oo
4.3.4.2 Dynamic Declarations ::::i::iiiiirriiiiiriiiiiiiiii
4.3.4.3 Volatile Declarations @i i i iioiiiiiiiiiiiiiiiiii
4.3.4.4 Discontiguous Declarations @i
4.3.4.5 Block Declarations @ :::i:iiiiiiiii i
4.3.4.6 Meta-Predicate Declarations::::::ii oo
4.3.4.7 Module Declarations:::::: i oo
4.3.4.8 Public Declarations::::::iiiiiiiiiiiiiiii i
4.3.4.9 Mode Declarations @ .. ::ioiiiioiiiiiiiiiiiiiiinn
4.3.4.10 Include Declarations::::::::iiiioiioiiiiiiiiiini
4.3.4.11 Imitializations :::::i:iiiiiiiiorri i
4.3.5 Term and Goal Expansion:::i::iiiiirriiiiiriiiiiiiiiii:
4.3.6 Predicate List::::: oo oo
4.4 Saving and Loading the Prolog Database :::::iiriiiriiiiiiii:
4.4.1 Overview of PO Files::::: oo
4.4.2 Saved-States ::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin
4.4.3 Selective Saving and Loading of PO Files::::i:rriiiiiiiii
4.4.4 Predicate List::::o oo
4.5 Files and Directories :::::: oo
4.5.1 The File Search Path Mechanism :::::::::iiiiiiiiiiiii:
4.5.1.1 Defining File Search Paths::::::iirrriiirriiiiiiiii
4.5.1.2 Frequently Used File Specifications :::::iiiiirriiiis:
4.5.1.3 Predefined File Search Paths :::::iiiiiiiioiiiiiii:
4.5.2 Syntactic Rewriting ::::i:riirrirriiirinriiniiiniiini
4.5.3 List of Predicates :::::iiiii i
4.6 Input and Output:::::::iiiiiioiiiiirrrrrriiin
4.6.1 Introduction ::::::iiiiioiiiiiiiiiiiiiii
4.6.2 About Streams::::::iiiiiiiiiiiiiiiiiiiiii
4.6.2.1 Programming Note::::::iiiiiiiiiiiriiiiiiiiiiiiii
4.6.2.2 Stream Categories::::iiiiiiiiiiriiiiiiiiiiiiiiiiii
4.6.3 Term Input oo
4.6.3.1 Reading Terms: The "Read" Predicates i
4.6.3.2 Changing the Prompt ::::iiiiiriiriiirininiiiiii
4.6.4 Term Output:::::::iirriiiiomii
4.6.4.1 Writing Terms: the "Write" Predicates
4.6.4.2 Common Characteristics: . :iiiiiiiiiiiiiiiiiiiin
4.6.4.3 Distinctions Among the "write" Predicates :::::::::: 90
4.6.4.4 Displaying Terms::::::iriiiiiiiiiiiiiiiiiin 91
4.6.4.5 Using the Portray Hook :::::iirrrrinirrrrnirriiini 91
4.6.4.6 Portraying a Clause ::::::rriiiirriiiiriiiiniiiiii 91
4.6.5 Byte and Character Input:::::iirriirrriiirriiiiiiiiis 91
4.6.5.1 Overview: . ::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 92
4.6.5.2 Reading Bytes and Characters:::::iiiiiiiiiiiiiiiiin 92
4.6.5.3 Peeking:::i:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 92
4.6.5.4 Skipping ::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 92

4.6.5.5 Finding the End of Line and End of File::::::::::0:000 92

iii

SICStus Prolog

4.6.6 Byte and Character Output ::::::iiiriiiriiiiiiiriiiii
4.6.6.1 Writing Bytes and Characters ::::iiiririiiiiriiiii:
4.6.6.2 New Line:::::iiirriiiirrriiiiiriiiiiiiiiiiiiiiin:
4.6.6.3 Formatted Output::::::riiiirrriiiirriiiiriiiiii:

4.6.7 Stream and File Handling :::::rrroirrrrnrrrrninrnnn:
4.6.7.1 Stream Objects: i irriiiriiriiiriiiriiiiiiiiiii:
4.6.7.2 Exceptions Related to Streams ::::::::iiiiiiiiiiiin
4.6.7.3 Suppressing Error Messages ©:::iiiiiiiiiiiiiiiiiiin
4.6.7.4 Opening a Stream :::iiiiiiiiiiiiiiiiiiiiiiiiiiiiinn
4.6.7.5 Text Stream Encodings:::::iiiirriiiirriiiiiiiiii
4.6.7.6 Finding the Current Input Stream ::::::::::iiiiiiii
4.6.7.7 Finding the Current Output Stream
4.6.7.8 Finding Out About Open Streams:::::::::
4.6.7.9 Closing a Stream ::::iiiiiiiiiriiiiiiiiiiiiiiiiiiin
4.6.7.10 Flushing Output ::::oiirrriirrrnnrrinnonni

4.6.8 Reading the State of Opened Streams :::::::::i:iiiiiiiiiie
4.6.8.1 Stream Position Information for Terminal I/O ::::::: 99

4.6.9 Random Access to Files::::iiiorrrriorrrniirriinniiiiin 99

4.6.10 Summary of Predicates and Functions:::::::r:iiiiiiiii 100

4.7 Arithmetic::::iiirriirriirriirriiiniinniiiniiniiiniiniiinn 103

4.7.1 Overview :::iinn 103

4.7.2 Evaluating Arithmetic Expressions ::::::iiiiriiiiiiiiii: 104

4.7.3 Exceptions Related to Arithmetic ::::::iiriiiiiiiiii: 104

4.7.4 Arithmetic Comparison :::::iiiriiiriiiriiiiiiiiiiiiiii 104

4.7.5 Arithmetic Expressions:::::::iiiiiiiriiiiiiiiiiiiiiiin 105

4.7.6 Predicate Summary ::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiinn 108

4.8 Looking at Terms:::::rriiorrrroiirrrnorrrnnnrrnniriinn 109

4.8.1 Meta-logical Predicates:::::i:rrriiiirrrniirriiiiiiiiii 109
4.8.1.1 Type Checking:::::rrroirrrriirrriirniiiininiinn 109
4.8.1.2 Unification::::irriirrrirrirriiniinniinniinniinnn 110

4.8.2 Analyzing and Constructing Terms:::::::iiiiiiiiriiii 110

4.8.3 Analyzing and Constructing Lists ::::iirriirririiiinin 111

4.8.4 Converting between Constants and Text:::::::iiiirriiir 111

4.8.5 Atom Operations::::iiiiiiiiiiiriiiiiiiiiiiiiiiiiiiiii

4.8.6 Assigning Names to Variables

4.8.7 Copying Terms: i iiiiiiiiiriiiiriiiiiiiii

4.8.8 Comparing Terms::::iiirriiiorriiiiiiiiiiiiiiiiiiiii
4.8.8.1 Introduction ::::i::riiiiirriiiiiiiiiiiiiiiiiiiiiinn
4.8.8.2 Standard Order of Terms
4.8.8.3 Sorting Terms:::i::iiiriiiriiiriiiiiiiiiiiiiiiiiiin

4.8.9 Mutable Terms:: i

4.8.10 Summary of Predicates:::::i:rriiiirriiiiiiiiiiiiiiii

4.9 Looking at the Program State::::::iiirrriiirrriiiiiiiiiii:

4.9.1 Overview ::iiiiiiiiiiiriiiiiiiiiiiiiiiiniiiiiinnn

4.9.2 Associating Predicates with their Properties::::::::::000 118

4.9.3 Associating Predicates with Files:::::::iiiirrriiiiiiiiin 119

4.94 Prolog Flags::::oiorrrrorrrrnnnnrrnnnnynnnnnnnnnn 119

4.95 Load Context::::iiirriiiiirrriiiiriiiirriiiiiiiniiin 124

4.9.6 Predicate Summary ::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 125

4.10 Memory Use and Garbage Collection:::::iiriiiriiiiiiiiiii: 126
4.10.1 Overview :::iiiiirriiiiiriiiiiiiiiiiiiiiiiiiiiiiiiiiiii 126
4.10.1.1 Reclaiming Space ::::iiirrriiiiiriiiiiiiiiiiinn 127
4.10.1.2 Displaying Statistics ::::iiiirrrriirrriiiirriiiiin 128
4.10.2 Garbage Collection and Programming Style ::::::::::0:00 130
4.10.3 Enabling and Disabling the Garbage Collector:::::::::: 132
4.10.4 Monitoring Garbage Collections::::::iiiirrriiiiiiiiii: 132
4.10.5 Interaction of Garbage Collection and Heap Expansion:: 133
4.10.6 Invoking the Garbage Collector Directly:::::::iiiriiii 134
4.10.7 Atom Garbage Collection :::::::iiiiiiiiiiiiiiiiiiiii: 134
4.10.7.1 The Atom Garbage Collector User Interface ::::::: 135
4.10.7.2 Protecting Atoms in Foreign Memory::::::::::::0: 136
4.10.7.3 Permanent Atoms::::ii:iiiiiiiiiiiiiiiiiiiiiiiin 138
4.10.7.4 Details of Atom Registration::::::iirriirriiiiiin: 138
4.10.8 Summary of Predicates::::::i:::iiiirriiiiiiiiiiiiiiiiin 139
411 Modules::::riioirrriiirrininrriiiiiiiiiiniiiiiiiiin 139
4.11.1 Overview :::iiiirirriiiirriiiiirriiiniiiiiiiiiiiiiiin 139
4.11.2 Basic Concepts ::iiiiiiiiirrriiiinriiiiniiiinnniiiin 140
4.11.3 Defining a Module ::::irrrrrrirrriiirriirniiiinin 140
4.11.4 Converting Non-module-files into Module-files ::::::::::0 141
4.11.5 Loading a Module:::::riiirrrrnnrrrrnirrrnnnnnnnin 141
4.11.6 Visibility Rules t:::oorrrrrorrrrrnirrrnnnnronnnnnnn 143
4.11.7 The Source Module :::::rrrriiirrrniirrninriiiiins 143
4.11.8 The Type-in Module:::::irrrriirrrriirrriiiiiiinn: 144
4.11.9 Creating a Module Dynamically ::::::iirriiriiiiiiiii: 145
4.11.10 Module Prefixes on Clauses :::::::iiirriiiiiiiiiiiiin: 145
4.11.10.1 Current Modules::::::iiirrrriirrriiiriiiiiiin: 146
4.11.11 Debugging Code in a Module :::::rrriirrriiiiiiiiiin: 146
4.11.12 Name Clashes ::::iiriiirriiriiiriinriiniiniiiiiiiins 146
4.11.13 Obtaining Information about Loaded Modules::::::::: 147
4.11.13.1 Predicates Defined in a Module :::::::iiirriiinr 147
4.11.13.2 Predicates Visible in a Module :::::iiirrriiiiiiis 148
4.11.14 Importing Dynamic Predicates::::::iiiirrriiiiiiiiiir 148
4.11.15 Module Name Expansion::::::iiiiiiiiiiiiiiiiiiiiiiis 149
4.11.16 The meta_predicate Declaration::::::i:iiiiirriiiiii: 149
4.11.17 Semantics of Module Name Expansion ::::::i:i::ii0i00 151
4.11.18 Predicate Summary:::::iiiiiriiiiiiiiiiiiiiiiiiiiiiin 163
4.12 Modification of the Database:::::::iiirrriirrriiiiiiiiiii 1563
4.12.1 Introduction ::::::i:rriiiirriiiiiiiiiiiiiiiiiiiiiiiiiin 163
4.12.2 Dynamic and Static Procedures :::::i:iiiriiiiiiiiiiii: 154
4.12.3 Database References ::::::iiiirrriiiirriiiiiiiiiiinis 165
4.12.4 Adding Clauses to the Database:::::::iiiriiiriiiiiiin: 156
4.12.5 Removing Clauses from the Database :::::::iiiriiiiiir 156
4.12.5.1 A Note on Efficient Use of retract/1::::::::::::0 157
4.12.6 Accessing Clauses::::i:iiiiiiiirriiiiiiriiiiiiiiiiiii 168
4.12.7 Modification of Running Code: Examples ::::::::::0000 158

4.12.7.1 Example: assertz:::::i:iiiiiriiiiiiiiiiiiiiiiiiiin 168

vi SICStus Prolog

4.12.7.2 Example: retract::::iriiiiiiiiiiiiiiiiiiiiiiiiiiin 159
4.12.7.3 Example: abolish ::::iiiirrrrrrrrrriiiiiiiiiiiiiii 160
4.12.8 The Internal Database :::::i:rrrrrrrrrrininiiiiiiiiiiin 160
4.12.9 Blackboard Primitives :::::riiiirriiiiirriiiiiiiiiiiin 161
4.12.10 Summary of Predicates :::::riiiirrriiiirriiiiiiiiiiin 162
4.13 Sets and Bags: Collecting Solutions to a Goal :::::::ii:ii000 163
4.13.1 Introduction::::::::iiiiirrriiiiiiiiiiiiiiiiiiiiiiiii 163
4.13.2 Collecting a Sorted List::::riiiirrrriiirriiiiiiiiiiii: 164
4.13.2.1 Existential Quantifier :::::iiirrrriiiiriiiiiiiiiiin 165
4.13.3 Collecting a Bag of Solutions::::::iiirrriiiiiiiiiiiiii 165
4.13.3.1 Collecting All Instances :::::::iiiiiiiiiiiiiiiii 165
4.13.4 Predicate Summary ::::iiiiiiiiiiiiiiiiiiiiiiiiiiiniin 166
4.14 Grammar Rules::::i:rriiiirrroiorrininrininriiiiiniiin 166
4.14.1 Definite Clause Grammars ::::::iiiiiiiiiiiiiiiiiiiiii 166
4.14.2 How to Use the Grammar Rule Facility:::::::i000iii 167
4.14.3 An Example::::iiiriiiiiiiiiiiiiiiiiiiiiiiniiiiiiiin 168
4.14.4 Semantics of Grammar Rules::::::i:riiiiiriiiiiiiiiiii: 169
4.14.5 Summary of Predicates:::::i:irriiiirrriiirriiiiiiiiiin 173
4.15 Errors and Exceptions t::iiiirrrriiirriiiiiniiiiniiiiiiin 174
4.15.1 Overview ::iiiiirriiiiiriiiiiiiiiiiiiniiiiiiiiiniiiinn 174
4.15.2 Raising Exceptions::::iiiiiiiiiirriiiiiiiiiiiiiiiiin 174
4.15.3 Handling Exceptions::::iiirriiirrrrnirrrnnirnininn 175
4.15.3.1 Protecting a Particular Goal ::::::irrriiiiriiiiin 175
4.15.3.2 Handling Unknown Predicates::::::::iiiiriiiiiii: 176
4.15.4 FError Classes t:::i:iiiiiiiiriiiriiiniiiiiiiiiiiiiiiiin 176
4.15.4.1 Instantiation Errors:::::::iiiiiiiiiiiiiiiiiiiiiinn 179
4.15.4.2 Type Errors:::i:iirriiiirrriiirrrnirnnnninininn 179
4.15.4.3 Domain Errors::::iiiiiiiiiiirrrrrrrrriiiiiiin 180
4.15.4.4 Evaluation Errors::::i:rriiiirrriiirriiiiriiiiin 181
4.15.4.5 Representation Errors:::iiiiiiiiiriiiiiiiiiiiiiinn 181
4.15.4.6 Existence Errors:::::iiiiiiiiiiiiiiiiiiiiiiiiiin 181
4.15.4.7 Permission Errors::::iiiiirrriiiiiiiiiiiiiiiiiiiin 182
4.15.4.8 Context Frrors:::i:rriiiirrriiiiriiiiiiiiiii piin 182
4.15.4.9 Consistency Errors ciin 183
4.15.4.10 Syntax Errors::::iiriiiriiiiiiiiiiiiiiiiiiiiiiin 183
4.15.4.11 Resource Errors::::::iiiiiiiiiiiiiiiiiiiiiiiiiin 184
4.15.4.12 System Errors ::::iiirriiiiiiiiiiiiiiiiiiiiiiiinn 184
4.15.5 An Example:::::iiiriiiriiiiiiiiiiiiiiiiiiiiiiiiiiin 184
4.15.6 Interrupting Execution::::::irrrrriiiiiiiiiiiiiiiiiiii 185
4.15.7 Summary of Predicates::::::iiriiiriiiriiiiiiiiiiiiiii 186
4.16 Messages and Queries::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 186
4.16.1 Message Processing ::::iiiirrrriiiiiiiiiiiiiiiiiiiiiii 186
4.16.1.1 Phases of Message Processing :::::iirrriiiiiiiiii: 187
4.16.1.2 Message Generation Phase :::::iiiiiirrriiiiiiii 188
4.16.1.3 Message Printing Phase :::::iiiiiiiiiiiiiiiiiiii 189
4.16.2 Message Handling Predicates::::::iiiirrriniirriziiii: 189
4.16.3 Query Processing ::::iiirriiiirriiiiiiiiiiiiiiiiiiiiin 190

4.16.3.1 Query Classes::::iiirriiiiirriiiiriiinniniinnn 190

4.16.3.2 Phases of Query Processing :::::iiriiiriiiiiiiiiin 191
4.16.3.3 Hooks in Query Processing::::::iiriiiriiiiiiiiii 193
4.16.3.4 Default Input Methods:::::iiiirrriirriiiiiiiiis 194
4.16.3.5 Default Map Methods:::::riiiirrrriirriiiiiiiiis 194
4.16.3.6 Default Query Classes::::iiiiriiiirrriiiiiiiiiii 195
4.16.4 Query Handling Predicates:::::::iiiiirriiiiiiiiiiiiin 195
4.16.5 Predicate Summary ::::iiiiiiiiiiiiiiiiiiiiiiiiiiiniin 196
5 Debugging::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 199
5.1 The Procedure Box Control Flow Model::::::::iiirrriiiiiin: 199
5.2 Basic Debugging Predicates:::::i:riiiiirriiiirriiiiiiiiiiiin 201
5.3 Plain Spypoints::::iiiriiiriiriiiiiiiiiiniiiniiiiiiiiiiinn 203
5.4 Format of Debugging Messages::::i:iiitiiiiiiiiiiiiiiiiiiii: 204
5.5 Commands Available during Debugging ::::::iiriiiriiiiiiii: 205
5.6 Advanced Debugging — an Introduction ::::::::iiiriiiiiii: 210
5.6.1 Creating Breakpoints::::iiirrriirrrriinrriiiiiiin:
5.6.2 Processing Breakpoints::::iiiiiriiiiiiiiiiiiiiiiiiiiii
5.6.3 Breakpoint Tests: i
5.6.4 Specific and Generic Breakpoints
5.6.5 Breakpoint Actions ::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiinn
5.6.6 Advice-points::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin
5.6.7 Built-in Predicates for Breakpoint Handling :::::::000000 227
5.6.8 Accessing Past Debugger States::::i:iiiiiiiiiiiiiiiiii

5.6.9 Storing User Information in the Backtrace

5.6.10 Hooks Related to Breakpoints::::iiirriiirrriiiiiiiii

5.6.11 Programming Breakpoints
5.7 Breakpoint Handling Predicates

5.8 The Processing of Breakpoints ::::i:iiiriiirriiiriiiiiiiiiii:
5.9 Breakpoint Conditions ::::iiirriiiirrriiirriiiiiiiiiiiiiil
5.9.1 Tests Related to the Current Goal
5.9.2 Tests Related to Source Information::::::iiiiiiiiiiiii:
5.9.3 Tests Related to the Current Port::::::i i
5.9.4 Tests Related to the Break Level :::::iiiiiioiiiiiiiiii:
5.9.5 Other Conditions :::::::irrrrroiiiiiii oo
5.9.6 Conditions Usable in the Action Part:::::::::::iiiiiiii:
5.9.7 Options for Focusing on a Past State::::::iiirriiiiiii
5.9.8 Condition Macros::::iiiiii i
5.9.9 The Action Variables::::::iiiiiiiirioi i
5.10 Consulting during Debugging ::::::iiirrriiirriiiiiiiiiii
5.11 Catching Exceptions:: i

5.12 Predicate Summary::::iiiiriiiiiiiiiiiiiiiiiiiiiiiiiin

vii

viii SICStus Prolog

6 Mixing C/C++ and Prolog::::::::i:i::iiii: 255
6.1 Notes::::iiiiiiriiiiirriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 255
6.2 Calling C from Prolog::::iriiiriiririiriiniiiiiiiiniiin: 256

6.2.1 Foreign Resources::::iiiriiiiirriiiiiiiiiiiiiiiiiiiinn 257
6.2.2 Conversion Declarations:::::iiiirrriiirriiiiiiiiiiiiin: 258
6.2.3 Conversions between Prolog Arguments and C Types:::: 259
6.2.4 Interface Predicates:::::::i:iiiiiirriiiiiriniiiiiiiiiin 261
6.2.5 The Foreign Resource Linker :::::i:rriiiirrriniiriiiniin: 262
6.2.5.1 Customizing splfr.:::iiirriiiirriiiiiiiiiiiiiiiil 262
6.2.5.2 Customizing splfr under UNIX::::irrrirriiiiiiis: 262
6.2.5.3 Creating Dynamic Linked Foreign Resources Manually
under UNIX::orrrrooooorooorrrrrrnnnniinoniiin 262
6.2.5.4 Windows-specific splfr issues:::::iiiirriiiiiiiiiiii: 262
6.2.6 Init and Deinit Functions::::irrrriiiorriiirriiiiiiiiiil 262
6.2.7 Creating the Linked Foreign Resource ::::::iiriiiiiiiii: 263
6.3 Calling C++ from Prolog::::iiiiiiiiiiiiiiiiiiiiiiiiiiiii 264
6.4 Support Functions::::i::iiiiirrriiiirriiiiiiiiiiiiiiiiiiiiiil 264
6.4.1 Creating and Manipulating SP_term_refs::::::::iii00000 264
6.4.2 Atomsin C::iiirriirriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 265
6.4.3 Creating Prolog Terms ::::iriiiiirrrriiiiriiiiiiiiiiiin: 266
6.4.4 Accessing Prolog Terms ::::iiiiiiiriiiriiiiiiiiiiiiiiin 267
6.4.5 Testing Prolog Terms ::::iiirrriiirrriiirriniiiiiiin 267
6.4.6 Unifying and Comparing Terms :::::irriiiiiiiiiiiiiiiin 268
6.4.7 Operating System Services :::iiiiiiiiiiriiiiiiiiiiiiiiin 268
6.4.7.1 Memory Management ::::::iiiiriiiiiiiiiiiiiiiiiin 268
6.4.7.2 File System ::::iiiirriiiiiiiiiiiiiiiiiiiiiiiiiiiiin 269
6.4.7.3 Threads:::::iiiiiiirrrriiiiiiiiiiiiiiiiiiiiiiiiii 269
6.5 Calling Prolog from C::iicrrrriirrriiirriiiiiiiiiiiiiiiiin: 269
6.5.1 Finding One Solution of a Call ::::::iirrriirrriiiiiin: 270
6.5.2 Finding Multiple Solutions of a Call ::::::iiriiiriiiiiii: 270
6.5.3 Calling Prolog Asynchronously ::::::iriiiriiiiiiiiiiii: 270
6.5.3.1 Signal Handling :::::irrrirrirrinninninninninn 271
6.5.4 Exception Handling in C:::rrrriirrrniirriniiiiininns 271
6.5.5 Reading a goal from a string :::::iiirrriiirriiiiiiiiiin 272
6.6 SICStus Streams:::::iiiiiiiiiiiriiiiiiiiiiiiiiiiiiiiiiiiiii 272
6.6.1 Prolog Streams:::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinn 272
6.6.2 Defining a New Stream::::::iiiiiiriiiriiiiiiiiiiiiiiin: 274
6.6.2.1 Low Level I/O Functions::::iziiiiiiiiiiiiiiiiiin: 278
6.6.3 Hookable Standard Streams:::::i:iiiiiirriiiiiiiiiiinn 278
6.6.3.1 Writing User-stream Hooks::::i:riiiiiirriiiriiiin: 279
6.6.3.2 Writing User-stream Post-hooks :::::iiiiirriiiiiiii: 279
6.7 Stand-Alone Executables:::::i:rriiiirriiirrriiiiiiiiiiiiiiin 279
6.7.1 Runtime Systems :::::i:iiiiiirriiiiiiiiiiiiiiiiiiiiiiiin 280
6.7.2 Runtime Systems on Target Machines ::::::iirriiiiiir 280
6.7.2.1 Runtime Systems on UNIX Target Machines:::::::: 281
6.7.2.2 Runtime Systems on Windows Target Machines::::: 282
6.7.3 The Application Builder:::::i:rrioirrrriirrriiiiiiiin: 283

6.7.3.1 Customizing spld:::::iiiiiiiiiiiiiiiiiiiiiiiiiiiii: 283

6.7.3.2 Customizing spld under UNIX :::::iirirririiiiiin: 284

6.7.3.3 All-in-one Executables::::::iirriiiiiriiiiiiiiiiiii 284
6.7.3.4 Setting up the C compiler on Windows ::::::::::::00 288
6.7.3.5 Examples::::iiiirrriiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 288
6.7.4 User-defined Main Programs :::::iiiriiiirrriiiiiiiiis 290
6.7.4.1 Initializing the Prolog Engine:::::::iiiiiiiiiiiiiii 290
6.7.4.2 Loading Prolog Code:::::iirriiriiriirniiiiiiiis 291
6.7.5 Generic Runtime Systems under Windows ::::::::::00000 291
6.8 Examples::iiirriiiirriiiiiiiiiiiiiiiiiiiiiiininiiininiinn 291
6.8.1 Train Example (connections) ::::i:iiiziziziriziiiiiiiiiis 291
6.8.2 Exceptions from C:::riiiriiiriiiriiiriiiiiiiiiiiiiiiii 295
6.8.3 Stream Example :::::iiiirrriiiiriiiiiiiiiiiiiiiiiiiii 298
7 Interfacing .NET and Java:::::::::::i0000 299
8 Multiple SICStus Run-Times in a Process
e {0 |
8.1 Multiple SICStus Run-Times in Java:::::::iiiiiiiiiiiiiii: 301
8.2 Multiple SICStus Run-Times in C::::ooirrrriiiiiiiiiiin: 301
8.2.1 Using a Single SICStus Run-Time:::::iirrriiirriiiiin: 301
8.2.2 Using More than One SICStus Run-Time::::::::iiiiiiir 302
8.3 Foreign Resources and Multiple SICStus Run-Times:::::::::: 303
8.3.1 Foreign Resources Supporting Only One SICStus Run-Time
TIIiin 303
8.3.2 Foreign Resources Supporting Multiple SICStus Run-Times
b 0 I
8.3.2.1 Simplified Support for Multiple SICStus Run-Times
CIIIIiiiiIiiin 304
8.3.2.2 Full Support for Multiple SICStus Run-Times :::::: 305
8.4 Multiple Run-Times and Threads ::::::iiriiirrrniiiiiiiis 307
9 Writing Efficient Programs:::::::::::::::0000 309
9.1 Overview :::iiiiiiiiriiiiriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 309
9.2 Execution Profiling ::::iiirriiiirrioiirriiinriiiinnniiiinn 309
9.3 The Cut:::irrrriorrrroirrrninrrnnnnrnnnnnnnnnnonnnns 310
9.3.1 Overview :::iiirrriiiirrriiirriiinrniiinoninnnninnn 310
9.3.2 Making Predicates Determinate ::::::i:riiiirrriiiiiiiis 310
9.3.3 Placement of Cuts ::::i:riirrrirrirrinninninniinnns 312
9.3.4 Terminating a Backtracking Loop :::::iiiiirrriiiiriiin 312
9.4 Indexing:::::i::riiiirriiiiiriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 313
9.4.1 Overview :::iiirriiiiirrriiiirriiiirniiinoininininnn 313
9.4.2 Data Tables::::riiiirrrriirrrrinrrinrnninnninnnn 313
9.4.3 Determinacy Detection:::::iiirrriiirriiirriiiiiiiiii 314
9.5 Last Clause Determinacy Detection ::::::iriiiiriiiiiiiiii: 315
9.6 The Determinacy Checker:::::i:rriiiirrriirrriiiiiiiiiiiiii: 316
9.6.1 Using the Determinacy Checker :::::irrriiiiiriiiiiiiii 316

9.6.2 Declaring Nondeterminacy ::::::iiiirrriiiirriiiiiiiiii 316

X SICStus Prolog

9.6.3 Checker Output::::iiriiirirrirriririniniinn 317
9.6.4 Example
9.6.5 Options::i:iirriiiirrriiiirriiiiriiiiiiiiiiiiiiiiiiii
9.6.6 What is Detected ::::iirrrriirrrnnirrininnnniiininn 319
9.7 Last Call Optimization::::::iiirrrriirrrirrriirriiiinin 320
9.7.1 Accumulating Parameters:::::::::iiiiiiiiiiiiiiiiiinin 321
9.7.2 Accumulating Lists:::iiriiirrrrrriririinniiniinniin 321
9.8 Building and Dismantling Terms :::::rrrrrrriiiiiiiiiiiiin: 323
9.9 Conditionals and Disjunction::::::iiiirrriiirriiiiiiiiiiii: 325
9.10 Programming Examples::::iiirrriiirriiiiriiiiiiiiiiiiin 327
9.10.1 Simple List Processing ::::: oo 327
9.10.2 Family Example (descendants) :::::iiiriririiiiiiiiin: 327
9.10.3 Association List Primitives:::::rriiirrrriiirriiiiiiiiin 328
9.10.4 Differentiation ::::rriiirrriiiiriiiiiiiiiiiiiiiiiiiinn 328
9.10.5 Use of Meta-Logical Predicates:::::iirrriiiirriiiiiii: 329
9.10.6 Prolog in Prolog :::::irrrrrnirrrrnirrrnnirnniiiinn 329
9.10.7 Translating English Sentences into Logic Formulae:::::: 330
9.11 The Cross-Referencer ::::iirriiriniriirinniriiiinin 331
9.11.1 Introduction:::::::rriiirrrrriirrriiirrnniniiiiiin 331
9.11.2 Practice and Experience::::::: i iiiiiiiiiiiiiiiiiiiii 331
10 The Prolog Library ::::::::iiiiiiiiiiiiiiiis 333
10.1 An Aggregation Operator for Data-Base-Style
Queries—1library(aggregate) i:iiiiiiiiiriiiiiiiiiiiiiiiii 336
10.2 Association Lists—1library(assoc) :::iiiiiiiiiiiiiiiiiiiiit 339
10.3 Attributed Variables—1library(atts) :::i:iiiiiiiiiiiiiiiiin 341
10.4 AVL Trees—1library(avl) ::::iiiiiiiiiiiiiiiiiiiiiiiiiiiis 348
10.5 Bags, or Multisets—1library(bags) :::::irriirriiiriiiiiiiin 3561
10.6 External Storage of Terms (Berkeley DB)—1library(bdb) ::: 354
10.6.1 Basics::iiirrriiiirriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 3564
10.6.2 Current Limitations:::::iirrroirrrriirrriiiiiiiiini 3565
10.6.3 Berkeley DB i ioooiiiirrrrrrrrrryiniiiiiiiiiiiin 355
10.6.4 The DB-Spec—Informal Description::::::i:::iiiiiiiiii: 355
10.6.5 Predicates ::::iiirrriiiirriiiiiiiiiiiiiiiiiiiiiiiiiiiin 366
10.6.5.1 Conventions::::iiirriiiirrriiiiiriiiiiiiiiiiiiiii 356
10.6.5.2 The Environment :::::riiiirrriiiirrriiiiiiiiiiins 357
10.6.5.3 Memory Leaks ::::riiiirrrriirrrrnirrnniiiiiiiin 357
10.6.5.4 The Predicates:::::iiiiirrrrrrrrrrnnnniiniiiiii 357
10.6.6 An Example Session ::::iiiiiriiiiiiiiiiiiiiiiiiiiiiiin 360
10.6.7 The DB-Spec:::iiirrrriirrrniirrrninrrnnnnnniinn 361
10.6.8 Exporting and importing a database ::::::iiiiiiiiiiiiin 362
10.7 Generating Integers—library(between) :::::::iiiiiiiiiiii 362
10.8 I/O on Lists of Character Codes—1library(codesio) ::::::: 363
10.9 Accessing Files And Directories—1library(file_systems) :: 364
10.10 Heap Operations—1library(heaps) ::::iiiiiiiiiiiiiiiiiis: 369
10.11 List Operations—1library(lists) :::i:iiiiiiiiriiiiiiiiniis 371
10.12 Array Operations—1library(logarr) ::::iiiiiiiiiiiiiiiiis 382

10.13 The Objects Package—1library(objects) ::::iiiiiiiriiii: 382

10.13.1 Introduction::::::i:iiiirrrrrrrrriiiiiiiiiiiiiiiiiiiis 383
10.13.1.1 Using SICStus Objects:::iirriiriiriiiiiiiiiiin: 383
10.13.1.2 Defining Classes ::::iiiiiriiiiiiiiiiiiiiiiiiin 384
10.13.1.3 Using Classes ::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiii: 385
10.13.1.4 Looking Ahead:::::::i:riiriiiriiiriiiiiiiiiin: 386

10.13.2 Simple Classes:::::iiiiiiiiiiiriiiiiiiiiiiiiiiiiin: 386
10.13.2.1 Scope of a Class Definition :::::::iiiirriiiiiiiii 386
10.13.2.2 Slots:::orrrrrroiiniiiniiiiriiiiiiiinn 387
10.13.2.3 Methods i 389

10.13.3 Imheritance ::::::iiiiiiiiiiiiiiiriiiiiiiiiiiiiiinn 398
10.13.3.1 Single Inheritance:::::::iiiiiiiiiiiiiiiiiiiiiiii 398
10.13.3.2 Multiple Inheritance ::::::iiiiiiiiirrirrriiiiiins 401
10.13.3.3 Asking About Classes and Objects ::::::i:iiiiiiir 404

10.13.4 Term Classes ::::iiiiiiiiiiiiiiiiiyiiiiiiiiiiiiiiiiin 406
10.13.4.1 Simple Term Classes : ;i 407
10.13.4.2 Restricted Term Classes:::::::::iiiiiiiiiiiiiii 407
10.13.4.3 Specifying a Term Class Essence :::::i::iiiiiiiii0 408

10.13.5 Technical Details :::::irrriiiiniiiiiiiiiiiiiiiiin 409
10.13.5.1 Syntax of Class Definitions:::::iirrriiiiiiiiiiis: 409
10.13.5.2 Limitations ::::iiiiiiirrrrrrrrrinnniiiiiiiiiiiin 411

10.13.6 Exported Predicates
10.13.6.1
10.13.6.2
10.13.6.3
10.13.6.4 class/1\hfill declaration:::::::::::iiiiiiiiiiiii: 416
10.13.6.5 class_ancestor/2: ... iiiiiiiiiiiiiiiiiiiiiiiiin 419
10.13.6.6 class_method/1\hfill declaration :::::::::::::::0 420
10.13.6.7 class_superclass/2::::iiiiiiiiiiiiiiiiiiiiiiin 421
10.13.6.8 class_of/2:::i i iiiiiiiiiiiiiiiiiiiiiiiiiiiiin 422
10.13.6.9 create/2:::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 423
10.13.6.10 current_class/1::::ii:iiiiiiiiiiiiiiiiiiiiiinn 425
10.13.6.11 debug_message/O\hfill declaration::::::::::::0:: 426

10.13.6.12 define_method/3
10.13.6.13 descendant_of/2

10.13.6.14 destroy/1l::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinn
10.13.6.15 direct_message/4 ::::::iiiiiiiiiiiiiiiiiiiiiin 430
10.13.6.16 end_class/[0,1]\hfill declaration:::::::::::::: 431
10.13.6.17 fetch_slot/2::: i :iiiiiiiiiiiioioiiiiiiiiin 432
10.13.6.18 inherit/1\hfill declaration:::::::::::::::000000 433
10.13.6.19 instance_method/1\hfill declaration:::::::::::: 435
10.13.6.20 message/4::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 436
10.13.6.21 nodebug_message/O\hfill declaration:::::::::::: 437
10.13.6.22 pointer_object/2 ::::iiiiiiiiiiiiiiiiiiiiiiiil 438
10.13.6.23 store_slot/2: ... i: i iiiiiiiiiiiiiiiiiiiiiiin 439
10.13.6.24 undefine_method/3::::::::::::iiiiiiiiiiiiiii 440
10.13.6.25 uninherit/1\hfill declaration::::::::::::::00000 441
10.13.7 Glossary::::ziiiirriiiiirriiiiiiiiiiiiiiiniiiiiiin 441

10.14 Ordered Set Operations—1library(ordsets) ::::iiiiiiiiii: 444

xi

xii SICStus Prolog

10.15 Process Utilities—1ibrary(process) :i:iiiiiiiiiiiiiiiiii: 446
10.16 Queue Operations —library(queues) :::::iiiiiiiiiiiiiii: 450
10.17 Random Number Generator—1library(random):::::::::::: 453
10.18 Rem’s Algorithm—1library(rem) ::::i:iiiiiiiriiriiiiiii: 454
10.19 Generic Sorting—1library(samsort)::::::iiiiiiiiiiiiiiii: 455
10.20 Unordered Set Operations—1library(sets) :::::::iiiiiii:: 455
10.21 Socket I/O—1library(sockets) :i:iiiiiiiiiiiiiiiiiiiiini: 457
10.22 The Structs Package—1library(structs) :::::iiiiiiiiiiii: 460
10.22.1 Foreign Types :::iiiiiiirrrrrrrrrinnniiiiiniiiiiiinn 461
10.22.1.1 Declaring Types t::iiiirrriiirriiiiiiiiiiiiiiiil 462
10.22.2 Checking Foreign Term Types:::::::iiiiiiiiiiiiiiii: 463
10.22.3 Creating and Destroying Foreign Terms :::::::iiiiiii: 463
10.22.4 Accessing and Modifying Foreign Term Contents :::::: 463
10.22.5 Casting:::irrriiirrriiiiriiiriiiiiiiiiiiiiiiiii 464
10.22.6 Null Foreign Terms :::::rriiiirrriirrriiiiiiiiiiiin 464
10.22.7 Interfacing with Foreign Code:::::iiiiiiriiiiiiiiiiii: 465
10.22.8 Examining Type Definitions at Runtime:::::::::::0000 465
10.22.9 Mips::iicrrriiirrriiiiriiiiiiiiiiiiiiiiiiiiiiiiiiin 466
10.22.10 Example:::iorrriiirrriiiriiiiiiiiiiiiiiiiiiiiiiiinn 467
10.23 Operating System Utilities—1library(system) ::::::::ii::0 469
10.24 Term Utilities—1ibrary(terms):::::iiiiiiiiiiiiiiiiiiiiii: 470
10.25 Meta-Call with Limit on Execution Time—1library(timeout)
CIIIiIiiIIiin A5
10.26 Updatable Binary Trees—1library(trees) ::i:::iiiiiiiiiii: 475
10.27 Type Checking—1ibrary(types)::iiiiiiiiiiiiiiiiiiiiiii: 476
10.28 Unweighted Graph Operations—1ibrary(ugraphs) :::::::: 478
10.29 An Inverse of numbervars/3—1library(varnumbers) ::::::: 480
10.30 Weighted Graph Operations—1library(wgraphs) :::::::::: 481
10.31 Parsing and Generating XML—1library(xml) ::::::i:iiii0 483
10.32 Process Communication—1library(linda/[server,client])
llIIIiiiIIIiiin 485
10.32.1 Linda Server:::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin: 486
10.32.2 Linda Client::::riiiirrrroiirrniorrniinrniniinns 487
10.33 Constraint Handling Rules—1library(chr) ::::i:iiiiiiiiiin 489
10.33.1 Introduction:::::iiicrrriiirrrriiririiiiiiiiiiiiiiiii 489
10.33.2 Syntax and Semantics::::i:i:iiiiiiiiiiiiiiiiiiiiiiiinn 490
10.33.2.1 Syntax:::i::iiiiiriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 490
10.33.2.2 Semantics:::iiirriiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 491
10.33.3 CHR in Prolog Programs ::::::iiirriiiiiiiiiiiiiiiis 492
10.33.3.1 Embedding in Prolog Programs ::::::::::iiiii000 492
10.33.3.2 Constraint Declaration:::::::iiirriiiiiiiiiiiii 492
10.33.3.3 Compilation :::iiirrrriirrrriiirriiiiiiiiiiii 494
10.33.4 Debugging::::iirrriiiirriiiiiiiiiiiiiiiiiiiiiiiini 494
10.33.4.1 Ports::iiiiiiioooiiirrrrriiiiiiiiiiiiiiiiiiiiin 494
10.33.4.2 Tracing::::riiiirrrniirrininrniinnnniiiiiiin 495
10.33.4.3 Debugging Predicates::::::irrrrrrrriiiiiiiiiiiii: 496
10.33.5 Examples::::iiiirririirrriiirriiiiiriiiiiiiiiiiiiiin 496

10.33.6 Guidelines ::: iy 497

10.34 Constraint Logic Programming over Finite

Domains—1ibrary(clpfd) :::iirriiirroiroiroirniriniiinis 498
10.34.1 Introduction:::::::iiiiiioiiiiiiiiiiiiiiiiiiiiiiiiin 498
10.34.1.1 Referencing this Software :::::i::iiiiirriiiiiiiiin 499
10.34.1.2 Acknowledgments::::i:riiiriiiriiiiiiiiiiiiiiin 499
10.34.2 Solver Interface:::::::iiiiiiiiriiiinnonniiiiiiiiin 499
10.34.2.1 Posting Constraints ::::::iiiiirriiiiiiiiiiiiiiiin 500
10.34.2.2 A Constraint Satisfaction Problem ::::::::::::::: 501
10.34.2.3 Reified Constraints::::::::iiiiiiiiiiiiiiiiiiiiiiis 502
10.34.3 Available Constraints ::::::ioiiiiiiiiiiiiiiiiiiiiii 503
10.34.3.1 Arithmetic Constraints:::::::::iiiiiiiiiiiiiiii 503
10.34.3.2 Membership Constraints :::::iiiiiiiiiiiiiiiiin: 504
10.34.3.3 Propositional Constraints :::::iirrriiiiiiiiiiiiz: 505
10.34.3.4 Combinatorial Constraints :::::::::::iiiiiiiiiii: 505
10.34.3.5 User-Defined Constraints::::::::::iiiiiiiiiiiii 521
10.34.4 Enumeration Predicates::::::::iii oo 522
10.34.5 Statistics Predicates :::::::iiiiiiiiiiiiiiiiiiiiiiiiiin b25
10.34.6 Answer Constraints::::::::::iiiiiiiiiiiiiiiiiiiiiiiin b25
10.34.7 The Constraint System ::::::riiirrriiiiiiiiiiiiiiiiin 526
10.34.7.1 Definitions: . iiioo oot b26
10.34.7.2 Pitfalls of Interval Reasoning::::::iiiiiiiiiiiiii: 526
10.34.8 Defining Global Constraints::::::::iiirriiiiiiiiiiiin: 527

10.34.8.1 The Global Constraint Programming Interface:::: 527
10.34.8.2 Reflection Predicates:::::::iiiiiiiiiiiiiiiiiii:

10.34.8.3 FD Set Operations:::::iiiiiiiiiiiiiiiiiiiiiii
10.34.8.4 A Global Constraint Example:::::iiiiiiiiiiiiii
10.34.9 Defining Primitive Constraints :::::iiriiiriiiiiiiiii:
10.34.9.1 Indexicals:::i:iirriiiiirrriiiirriiioriiiiiiiie
10.34.9.2 Range Expressions:::iiiiiiiiiriiiiiiiiiiiiiii
10.34.9.3 Term Expressions::::iiiiiiiiirriiiiiiiiiiiiiiii
10.34.9.4 Monotonicity of Indexicals :::::iriiiriiriiiiiii:
10.34.9.5 FD Predicates ::::rrrirrrioiiiiiiirririiiiiiiil
10.34.9.6 Execution of Propagating Indexicals
10.34.9.7 Execution of Checking Indexicals:::::iiirriiiiis:
10.34.9.8 Goal Expanded Constraints :::::ii:iiiiiiiiiiiii:
10.34.10 Example Programs :::::iirrriiiiiriiiiiiiiiiiiiiii
10.34.10.1 Send More Money ::::i:rriiiiirriiiiiiiiiiiiiiis
10.34.10.2 N Queens:::::riiiiirriiiiirriiiiiriiiiiiiiiii
10.34.10.3 Cumulative Scheduling:::::i:rrriirrrriirriii:
10.34.11 Syntax Summary ::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiin
10.34.11.1 Syntax of Indexicals ::::i:riirriirrirriiiiiin
10.34.11.2 Syntax of Arithmetic Expressions :::::::::ii0000 546
10.34.11.3 Operator Declarations :::::iiirriiiiiriiiiiiiis b47
10.35 Constraint Logic Programming over Booleans—1ibrary (clpb)
S o 2 ¥
10.35.1 Imtroduction::::::iiirriiiirrriiiiiiiiiiiiiiiiiiiiinn bav
10.35.2 Solver Interface:::::i:rrriiirrrriirrriiirriiiiiiiiiii: 548

10.35.3 Examples:::iiit ba8

xiii

xiv SICStus Prolog

10.35.3.1 Example 1 548
10.35.3.2 Example 2 11549
10.35.3.3 Example 3 550
10.35.3.4 Example 4:::ioiirrriiiirriiiiiiiiiiiiiiiiiiiiin 50
10.36 Constraint Logic Programming over Rationals or

Reals—1ibrary([clpq,clpr]) i:iiiiiiiiiirrrniirriiiiiiiit 551
10.36.1 Imtroductionm::::::iiirriiiirrriiiiiriiiiiiiiiiiiiiii: bhl
10.36.1.1 Referencing this Software :::::::iiiiirriiiiiiiiin 552
10.36.1.2 Acknowledgments::::::riiiriiiriiiiiiiiiiiiiiin 552
10.36.2 Solver Interface:::::i:rriiiirrriirrriiiiiriiiiiiiiiii 552
10.36.2.1 Notational Conventions ::::::::iiiiiiiiiiiiiiiiis 552
10.36.2.2 Solver Predicates::::::iiiiiiiiiiiiiiiiiiiiiiiii bb3
10.36.2.3 Unification::::irrrroorrrriirrriiirriiiiiiiii b7
10.36.2.4 Feedback and Bindings:::::irrriiiirriiiiiiiiiii 558
10.36.3 Linearity and Nonlinear Residues ::::::iiiiiiiiiiiiiir 558
10.36.3.1 How Nonlinear Residues Are Made to Disappear:: 559
10.36.3.2 Isolation Axioms::::::iiiiiiiiiiiiiiiiiiiiiiiiii 560
10.36.4 Numerical Precision and Rationals :::::::iiiirriiiiiir 561
10.36.5 Projection and Redundancy Elimination ::::::::::00:00 565
10.36.5.1 Variable Ordering::::::iiirrriiiriiiiiiiiiiiiii: 566
10.36.5.2 Turning Answers into Terms :::::iiiiiiiiiiiiiin: 567
10.36.5.3 Projecting Inequalities :::::rriiiirrrniiriiiiiii b67
10.36.6 Why Disequations :::::riiiirrrriiirriiiiiiiiiiiiiiin 570
10.36.7 Monash Examples :::::iiiirrriiiirriiiiiiiiiiiiiiiin 572
10.36.8 A Mixed Integer Linear Optimization Example:::::::: 573
10.36.9 Implementation Architecture::::::::::iiiiiiiiiiiiiiis 575
10.36.9.1 Fragments and Bits::::iiiiirrriiiiiiiiiiiiiiiiin A75
10.36.9.2 Bugs:::iirrriiiiiriiiiiiiiiiiiiiiiiiiiiiiiiiiiiin B75
10.37 Finite Domain Constraint Debugger—1library(fdbg) :::::: 576
10.37.1 Introduction::::::iirrriiiirrriiiriiiiiiiiiiiiiiiiiiin 576
10.37.2 Concepts ::iiin b76
10.37.2.1 Events:::iiirrriiiirriiiiiiiiiiiiiiiiiiiiiiiiiiii B76
10.37.2.2 Labeling Levels ::::icrrrooirrrniorriiioiiiiiins b77
10.37.2.3 Visualizers::::iiiiirrriiiiiiiiiniiiiiiiiiiiiiii b7
10.37.2.4 Names of Terms:::::iiiriiiriiriiiiiiiiiiiiiiin: 578
10.37.2.5 Selectors::::i:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii b8
10.37.2.6 Name Auto-Generation ::::::i::iiiiiiriiiiiiiiiil 578
10.37.2.7 Legend ::::ziiiirrriiiirriiiiiiiiiiiiiiiiiiiiiiin 79
10.37.2.8 The fdbg_output Stream ::::::::i::iiiiiiiiiiiiil 579
10.37.3 Basics::iiiirriiiiiriiiiiiiiiiiiiiiiiiiiiiininiiiiinn 979
10.37.3.1 FDBG Options :::::iiirriiiiiriiiiiiiiiiiiiiin 579
10.37.3.2 Naming Terms:::::rrrrrririiiiiiirrrriiiiiiiiis b8l
10.37.3.3 Built-In Visualizers ::::irriiiirrriiiiriiiiiiiiin 581
10.37.3.4 New Debugger Commands :::::iiiiiiiiiiiiiiiii: 582
10.37.3.5 Annotating Programs ::::::i:iiiiiiiiiiiiiiiiiii 83
10.37.3.6 An Example Session :::::iiiiiiiiiiiiiiiiiiiiiiil b84
10.37.4 Advanced Usage:::::::iiiriiiiirriiiiiiiiiiiiiiiiiin: 586

10.37.4.1 Customizing Output ::::iiirriiiirriiiiiiiiiiiii: 586

10.37.4.2 Writing Visualizers:::::iiiiiiiiiriiiiiiiiiiiiiiis b8T
10.37.4.3 Writing Legend Printers::::::irriiiiirriiiiiiiiil 589
10.37.4.4 Showing Selected Constraints (simple version) :::: 589
10.37.4.5 Showing Selected Constraints (advanced version)

bbb 1° |
10.37.4.6 Debugging Global Constraints:::::::ii:iiiiiiiii 594
10.37.4.7 Code of the Built-In Visualizers:::::::::::::00000 599
10.38 Zinc Interface—1library(zinc) ::::iiiiiiiiiiiiiiiiiiiiiii 600
10.38.1 Notes::::iiiiiiiirrrriiioiiiiiyiiiriiniiiiin 600
10.38.2 FlatZinc:::::i oo oo 601
10.38.2.1 Exported Predicates ::::::iiiiiiiiiiiiiiiiiiiiin 602
10.38.3 MiniZinc::::iiiiiiii i 608
10.38.3.1 Prerequisites::::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiin 608
10.38.3.2 Exported Predicates :::::riiiiiriiiiiiiiiiiiiiiin 608
10.38.4 Zinc Errors ... i oot 613

10.39 The PiLLoW Web Programming Library—1library(pillow)

10.40 Tecl/Tk Interface—library (tcltk)

10.40.1 Inmtroduction::::::iirrrriiirrrriiiriiiiiiiiiiiiiiiiiin 615
10.40.1.1 What Is Tel/Tk? trriririiiiiiiiiiiiiiiiiiiiin: 615
10.40.1.2 What Is Tcl/Tk Good For? :::::iiiriiiiiiiiiiii: 615
10.40.1.3 What Is Tcl/Tks Relationship to SICStus Prolog?

TIIIIIIiiIIIiiiIiiiiiiIiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiino6le
10.40.1.4 A Quick Example of Tcl/Tk in Action:::::::::::: 616
10.40.1.5 Outline of This Tutorial

10.40.2 Tel:irrrroirrrinrriinrii i
10.40.2.1 Syntax::::iiiiirriiiiiiiiiiiiiiiiiiiiiiiiiiiiiLL
10.40.2.2 Variables t:::iiirrrriiorrriiiiiiiiiiiiiiiiiiii
10.40.2.3 Commands :::iiiriiiiirriiiiriiiiiiiiiiiiiii
10.40.2.4 What We Have Left Out

10.40.3 Tkerrioooirrroiorriinrnii
10.40.3.1 Widgets t:rrriiiirrroniiriiiriiiiiiiiiiiin
10.40.3.2 Types of Widget 1z iirrrroirrriiirrniiiiiii:
10.40.3.3 Widgets Hierarchies::::::iiorrroiorrnirrnni:
10.40.3.4 Widget Creation::::i:iiiiriiiriiiriiiiiiiiiiin
10.40.3.5 Geometry Managers:::::iiiiiiiiiiiiiiiiiiiiiiin
10.40.3.6 Event Handling :::::irrrriorrrrninrrnnrnnni:
10.40.3.7 Miscellaneous ::::riiiiirrriiirriiiiiiiiiiiiiii
10.40.3.8 What We Have Left Out o
10.40.3.9 Example pure Tcl/Tk program:::::::::iiiiiiiii: 667

10.40.4 The Tcl/Tk Prolog Library :::::iiiiiiiiiiiiiiiniiiii: 671
10.40.4.1 How it Works - An Overview::::ii:iiiiiiiiiiiiii: 672
10.40.4.2 Basic Functions::::rrrrriiooiiiiiirrrriiiiiiiinil 673
10.40.4.3 Evaluation Functions::::::iiiiirriiiiiiiiiiiiiil 674
10.40.4.4 Event Functions :::::iirrriiiiiriiiiiiiiiiiiiiiiin 679
10.40.4.5 Servicing Tcl and Tk events::::iriiiriiiiiiiiiii: 682
10.40.4.6 Passing Control to Tk::::ziiirrrriiirriiiiiiiiil 684

10.40.4.7 Housekeeping functions :::::iirriiiiiiiiiiiiiiiil 684

xvi SICStus Prolog

10.40.4.8 Summary:::i:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 685
10.40.5 Putting It All Together :::::riiirirriirinniiiiiiiin: 687
10.40.5.1 Tecl The Master, Prolog The Slave::::::i:i:iiiiii: 688
10.40.5.2 Prolog The Master, Tk The Slave ::::::i:::iiiiii: 692
10.40.5.3 Prolog And Tcl Interact through Prolog Event Queue
B P 010 151
10.40.5.4 The Whole 8-Queens Example :::::ii:iiiiiiiiiin 697
10.40.6 Quick Reference ::::irriiiirrriinrriiiiiiiiiiiiiin 703
10.40.6.1 Command Format Summary :::::i::iiiiiiiiiiiiz: 703
10.40.6.2 Predicates for Prolog to Interact with Tcl Interpreters
B P 0151
10.40.6.3 Predicates for Prolog to Interact with Tcl Interpreters
with Tk Extensions::::::iiiirrriiiirrriiiiriiiiiiiiiin 705
10.40.6.4 Commands for Tcl Interpreters to Interact with The
Prolog System::::iiirrrriirrriiiiriiininiiiiiiiiiin 706
10.40.7 Resources:::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinn 707
10.40.7.1 Web Sites:::iiirriiiiirriiiiiriiiiiiiiiiiiiiiinn 707
10.40.7.2 Books::::iiirriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 707
10.40.7.3 Manual Pages:::::iiirrriiirriiinrriiininiiinn 707
10.40.7.4 Usenet News Groups::::::iiiiiiiiiiiiiiiiiiiii 707
10.41 The Gauge Profiling Tool-—1ibrary(gauge) :::::::i::iiiii: 707
10.42 Jasper Interface—1library(jasper):::::::iiiiiiiiiiiiiiiin 710
10.42.1 Jasper Overview ::::::iiiiirriiiirririiiiiiiiniiiiiin 710
10.42.2 Getting Started:::::iiiirriiirriiiiiiiiiiiniiiiiiinnn 710
10.42.3 Calling Prolog from Java:::::::itiiiriiiriiiiiiiniin 710
10.42.3.1 Single Threaded Example ::::::iiriiriiiiiiiiin 711
10.42.3.2 Multi Threaded Example:::::iiiirrrrrrrrrriiiiin 712
10.42.3.3 Another Multi Threaded Example (Prolog Top Level)
R 1
10.42.4 Jasper Package Class Reference 1z i iiiiiriiiiiiiin: 718
10.42.5 Java Exception Handling::::::iiirrrnirrrrninrninnin 721
10.42.6 SPTerm and Memory ::::::iiiiiirriiiiiiiiiiiiiiiiin 721
10.42.6.1 Lifetime of SPTerms and Prolog Memory::::::::: 721
10.42.6.2 Preventing SPTerm Memory Leaks::::i::iiiiiiir: 722
10.42.7 Java Threads:::::i:iiiiiirrriirrrniirniniiiiiiiiin 723
10.42.8 The Jasper Library ::::iirriiiirrriiirriniiiiiiiiiin 724
10.42.8.1 Jasper Method Call Example::::::iiirriiiiiiiii: 724
10.42.8.2 Jasper Library Predicates ::::::iiiiirriiiiiiiiinn 727
10.42.8.3 Conversion between Prolog Arguments and Java
Types::iiirrriirrriirrnrnnnnnnnnnnnnnnnnn 730
10.42.8.4 Global vs. Local References::::::iiiiiiiiiiiiiii 734
10.42.8.5 Handling Java Exceptions:::::iiiiirrrrriiiiiiiin 735
10.42.8.6 Deprecated Jasper APL::::irriiroiriiiiiiiiiin 737
10.42.8.7 Deprecated Argument Conversions ::::::::ii1i000 737
10.42.8.8 Deprecated Jasper Predicates :::::::iiiiiiiiiiii 737
10.43 PrologBeans Interface—1library(prologbeans) :::::::::i::: 738
10.43.1 Imtroductionm::::::iirrriiiirrrriiirriiiiiiiiiiiiiiiiin 738

10.43.2 Features::::::: i iiiiiiiiiiiiiiiiiiiiiiiiiiiiioiiiin 740

11

10.43.3 A First Example:::::iirrrirrirrinriiniiiiiiiiin
10.43.4 Prolog Server Interface
10.43.5 Java Client Interface::::::iiirriiirrriiiinriiiiiiiiii
10.43.6 Java Examples:::iiirrriiirrriiiiiiiiiiiiiiiiiiiiin
10.43.6.1 Embedding Prolog in Java Applications :::::::::: 746
10.43.6.2 Application Servers :::i:iiiiiiiiiiiiiiiiiiiiiiinn 747
10.43.6.3 Configuring Tomcat for PrologBeans ::::::::::0000 749
10.43.7 .NET Client Interface::::::iiirriiiirrriiiiiiiiiiiiiin 750
10.43.8 .NET Examples::::iirrroiirrriiirriiiiriiiiiniiinin 751
10.43.8.1 CH# Examples::::iiirrriiirriiirniiiiiiiiinn 751
10.43.8.2 Visual Basic Example:::::iiiiiiiiiiiiiiiiiiiii 752
10.44 COM Client—1ibrary(comclient) :::::iiiiiiirriiiiiiiiiir 7562
10.44.1 Preliminaries ::::iiiiiirrrrrrriiiiiiiiiiiiiiiiiiiiin 762
10.44.2 Terminology :::::iiirriiiirriiiiiiiiiiiiiiiiiiiiiiii 752
10.44.3 Predicate Reference::::::iiiiirrriiirriiiiiiiiiiiii 753
10.44.4 Examples:::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 7hh
Prolog Reference Pages :::::::::::::iii0000 757
11.1 Reading the Reference Pages:::::iiiiriiirirrioriiiiiiin 167
11.1.1 Overview :::iiiiiirriiiiirriiioiiiioioiiiniiiiiiiy 757
11.1.2 Mode Annotations :::::iiiiiiiriiiriiiiiiiiiiiiiiiiiiin 757
11.1.3 Predicate Annotation :::::ii:iiiiriiiriiiiiiiiiiiiiiin 758
11.1.4 Argument Types::::iiiiiiiiiiiriiiiiiiiiiiiiiiiiiiiiil 759
11.1.4.1 Simple Types :::iiiirrriiiirriiiiiiiiiiiiiiiiiiii 760
11.1.4.2 Extended Types:::::iiiiirriiiiiriiiiiiiiiiiiniiin 760
11.1.5 Exceptions:::iiiiirrriirriririiiiiiiiiiiiiiiiiiiiiiiiiiil 760
11.1.6 Other Fields::::irrooroironriiniiniiniiniiiinii 761
11.2 Topical List of Prolog Built-Ins :::::iiiriiriniriiiiiiiiiin 761
11.2.1 All Solutions::::iiirrrriiirrrriiirroiinriniiiiiiii 761
11.2.2 Arithmetic::::iiirriiroiririnrnrininnninniin 761
11.2.3 Character I/O :ziriririiiiiiiiininiiiiininin 761
J R 0703 1171 0] E Y 131
11.2.5 Database ::::iiiiiiioiiiirrrrrrrrriinniiiiiiiiiiiiii 764
11.2.6 Debugging:::::iiiioiiiiirrrrririiiiiiiiiiiiiiiiiiii 765
11.2.7 Errors and Exceptions ::::iiririiiirriiiiiiiiiiiiiiiiin 766
11.2.8 Filename Manipulation:::::iirrriiirrriiiirriiiiiiiiil 767
11.2.9 File and Stream Handling:::::iooiioriioriiiiniiiiin 767
11.2.10 Foreign Interface::::::iiiiriiiiirriiiiriiiiiiiiiinn: 768
11.2.11 Grammar Rules::::i:irriiiiirriiirriiiiiiiiiiiniiiiin 769
11.2.12 Hook Predicates :::::iiirrriiirrriiiriiiiiniiiiiiii 769
11.2.13 List Processing
11.2.14 Loading Programs :::::::riiiirrriniirrrniniiiiiiin 771
11.2.15 Memory t:i:iiiiiiriiiiiiriiiiiiiiiiiiiiiiiiiiin 172
11.2.16 Messages and Queries:::::iiiirriiiiiriiiiiiiiiiiiii 772
11.2.17 Modules::iiirrrrriirrriinrniinnninnniinnniinn 74
11.2.18 Program State::::::iirriiiiiiiiiiiiiiiiiiiiiiiiiiiiin 74
11.2.19 Saving Programs:::::::iiiiiiiiiiiiiiiiiiiiiiiiiiiin 775

11.2.20 Term Comparison::::i:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 775

xvii

xviii SICStus Prolog

11.2.21 Term Handling ::::irrriiirrriniirrrniirniiinniiinn 776
11.2.22 Term I/O:::i:iciciiiriininnnnn ir
11.2.23 Type Tests i iioooiirirrrrrrrrrrrnnninnnnrrnniinnnnn 778
11.3 Built-In Predicates:::::riiirrrrniirrrninrrininrninnnnnn 779
11.3.1 abolish/[1,2] \hfill [ISO]:::::::oirrrirsiriiiiiiiil 780
11.3.2 abort/0:::iii o782
11.3.3 absolute_file_name/[2,3] \hfill [hookable]::::::::::: 783
11.3.4 add_breakpoint/2 \hfill [development] ::::::::::i:iiir 790
11.3.5 /2 \hfill [ISO] ::::crvirrirnnrnnnnnnnnnnnnnn 791
11.3.6 append/3::iiinov92
11.3.7 arg/3 \hfill [ISO]:::: oo 795
11.3.8 ask_query/4 \hfill [nookable] :::::::iriiririiiiiiin: 796
11.3.9 assert/[1,2] ::iirrriioorrrooiiooooiioooiiiniiiniil 798
11.3.10 asserta/[1,2] \hfill [ISO] :::::iriorroiriiiiiiiiis 800
11.3.11 assertz/[1,2] \hfill [ISO] :::::irrorrnirniriiiiii 802
11.3.12 at_end_of_line/[0,1] 1o 804
11.3.13 at_end_of_stream/[0,1] \hfill [ISO]:::::::::iiiiii: 805
11.3.14 atom/1 \hfill [ISO]:::: i 806
11.3.15 atom_chars/2 \hfill [ISO] 807
11.3.16 atom_codes/2 \hfill [ISO] : 808
11.3.17 atom_concat/3 \hfill [ISO] :::::::riririiiiiiins 809
11.3.18 atom_length/2 \hfill [ISO] :::::::ririiiiiiiiiis 810
11.3.19 atomic/1 \hfill [ISO] :::: oo 811
11.3.20 bagof/3 \hfill [ISO] :::::riorrrorrnnrnnrnnrnnnins 812
11.3.21 bb_delete/2:::iiiiiiiiiiiiiriniiriiininiiiiin 813
11.3.22 Dbb_get/2:::i:iiiiiiiiiiiiiiiiiiniiniiniiniiniiniiniin 814
11.3.23 bb_put/2::::iiirriiiiiriiiiiiiiiiiiiiiiiiiiiiiiinn 815
11.3.24 bb_update/3:::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 816
11.3.25 Dblock/1 \hfill [declaration] ::::::::ioirriiriiiiiiin 817
11.3.26 break/0 \hfill [development]:::::::::iiriiiiiiiiii: 819
11.3.27 breakpoint_expansion/2 \hfill [development,hook]::: 820
11.3.28 Dbyte_count/2::::iiriiiriiiiiiiiiiiiiiiiiiiiiiiiiiinn 821
11.3.29 call/[1,2,...,255] \hfill [ISO]::: i orriiiiiiiii: 822
11.3.30 call_cleanup/2:::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 823
11.3.31 call_residue_vars/2:::::iiiiiiiiiiiiiiiiiiiiiiiiiin 824
11.3.32 callable/1::::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 825
11.3.33 catch/3 \hfill [ISO] :::::irririoirnrnrnininns 826
11.3.34 char_code/2 \hfill [ISO]::::: oo 827
11.3.35 char_conversion/2 \hfill [ISO] 11 828
11.3.36 character_count/2:::::iiiiiiiiiiiiiiiiiiiiiiiiiiiin 829
11.3.37 clause/[2,3] \hfill [ISO]:::::rrirririirnriniii: 830
11.3.38 close/[1,2] \hfill [ISO]:::::riirririiriririniioins 832
11.3.39 compare/3 11 834
11.3.40 compile/1 835
11.3.41 compound/1 \hfill [ISO]:::::: oo 836
11.3.42 comsult/1::::riiiirriiiiirooiiiiniiiiniiiiini 837
11.3.43 copy_term/[2,3] \hfill [ISO] ::::::iriiriiriiiiiii: 838

11.3.44 create_mutable/2 :::::::iii:iiiiiiiiiiiiiiiiiiiiiiii 840

11.3.45
11.3.46
11.3.47
11.3.48
11.3.49
11.3.50
11.3.51
11.3.52
11.3.53
11.3.54
11.3.55
11.3.56
11.3.57
11.3.58
11.3.59
11.3.60
11.3.61
11.3.62
11.3.63
11.3.64
11.3.65
11.3.66
11.3.67
11.3.68
11.3.69
11.3.70
11.3.71
11.3.72
11.3.73
11.3.74
11.3.75
11.3.76
11.3.77
11.3.78
11.3.79
11.3.80
11.3.81
11.3.82
11.3.83
11.3.84
11.3.85
11.3.86
11.3.87
11.3.88
11.3.89
11.3.90
11.3.91
11.3.92

current_atom/1::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 841
current_breakpoint/5 \hfill [development]::::::::::: 842
current_char_conversion/2 \hfill [ISO] ::::::::i0i00: 843
current_input/1 \hfill [ISO]:::::::iriiriiiiiii: 844
current_key/2::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 845
current_module/[1,2] r:iriirrirriririiriiiiiiiis 846
current_op/3 \hfill [ISO]:: i 847
current_output/1 \hfill [ISO]:::::iiriiriiriiriiiir: 848
current_predicate/[1,2] \hfill [ISO]::::: i 849
current_prolog_flag/2 \hfill [ISO]::::: it 851
current_stream/3 :iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 852
1/0 \hfill [ISO] :::rrorrirriinrnnnaninio: 853
debug/0 \hfill [development] :::::::iirririiiiiiiiiii: 854
debugger_command_hook/2 \hfill [development,hook]:: 855
debugging/0 \hfill [development] :::::::iiiiiiiiiiiii: 856
dif/2 i:iin 8B7
disable_breakpoints/1 \hfill [development] ::::::::: 858
discontiguous/1 \hfill [ISO,declaration]:::::::::::::: 859
display/1l::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin
dynamic/1 \hfill [ISO,declaration] i
enable_breakpoints/1 \hfill [development]::::::::::: 862
ensure_loaded/1 \hfill [ISO] ::::: i 863
=:=/2 \hfill [ISO]:::: i 864
erase/l:iin 865
error_exception/1 \hfill [development,hook]::::::::: 866
execution_state/[1,2] \hfill [development] ::::::::: 867
C/2iinn
expand_term/2 \hfill [hookable]

fail/0O \hAll [ISO]::::crriorrrrrr
false/O::iiiiiiiiiiiirioiiiiiiiiiiiiiiiiiiiiiiiiiin
file_search_path/2 \hfill [hooK]::::::::iriiriiriio: 872
findall/[3,4] \hfill [ISO] ::::::riririiiiii: 874
float/1 \hfill [ISO] ::::::riorrviryonnnnnnnnnn 877
flush_output/[0,1] \hfill [ISO]::::: oo 878
foreign/[2,3] \hfill [hooK] :::::::riirriiriiiiiiis 879
foreign_resource/2 \hfill [hook]::::::::iriiriiriiii: 880
format/[2,3] ::iiiiiriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 881
freeze/2:::iin 887
frozen/2::ii 888
functor/3 \hfill [ISO] ::::::icrirririririiiiiini: 889
garbage_collect/0:::::iiiiiiiiiiiiiiiiiiiiiiiiiiiin 891
garbage_collect_atoms/O :::iiiiriiiriiiriiiiiiiiiin 892
generate_message/3 \hfill [extendible] :::::::iiiriir 893
generate_message_hook/3 \hfill [hook]:::::::::::0i: 895
get_byte/[1,2] \hfill [ISO] :::::iririrririiiiiinini 897
get_char/[1,2] \hfill [ISO] ::::::iriorioionoioi: 898
get_code/[1,2] \hfill [ISO] :::::riorooriooioniii: 899

ge‘t_mutable/2:::::::::ZZZZZZZZZZZZZZZZZZZZZZIZZZZIZZ 900

Xix

XX

11.3.93

11.3.94

11.3.95

11.3.96

11.3.97

11.3.98

11.3.99

11.3.100
11.3.101
11.3.102
11.3.103
11.3.104
11.3.105
11.3.106
11.3.107
11.3.108
11.3.109
11.3.110
11.3.111
11.3.112
11.3.113
11.3.114
11.3.115
11.3.116
11.3.117
11.3.118
11.3.119
11.3.120
11.3.121
11.3.122
11.3.123
11.3.124
11.3.125
11.3.126
11.3.127
11.3.128
11.3.129
11.3.130
11.3.131
11.3.132
11.3.133
11.3.134
11.3.135
11.3.136
11.3.137
11.3.138
11.3.139
11.3.140

SICStus Prolog

goal_expansion/5 \hfill [hook]:::::::riiriiriiriiiii: 901
goal_source_info/3::::iiiiiiiiiiiiiiiiiiiiiiiiiiiin 903
>/2 \hfill [ISO] ::::rorrrrirnnrinnnnnnnnnn 904
ground/1:::iiin 905
halt/[0,1] \hfill [ISO]::::::rrorrnrrnnriiiiiiniii 906
if/3 i 907
=>/2 \hfll [ISO] i 908
include/1 \hfill [ISO,declaration]:::::::::i:riiiiii 909
initialization/1 \hfill [ISO,declaration] ::::::::::: 910
instance/2 ::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 911
integer/1 \hfill [ISO]:::: i oo 913
is/2 \hfill [ISO]::::rocrirririririinininiinii 914
keysort/2::iin 916
leash/1 \hfill [development]:::::::iirroirriiiiin 917
length/2:::iiiiiiiiiiriirrinininininininiiiiin 918
</2 \hfill [ISO] :::crvirirrnn i 920
library_directory/1 \hfill [hook] ::::::::iiririiiir 921
line_count/2:::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 922
line_position/2 :::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 923
listing/[0,1] :iiriororornnnnnnnnnnnniini 924
load_files/[1,2] ::iiiciinriiiininii 925
load_foreign_resource/1 \hfill [hookable]:::::::::: 927
member/2::Iiin 928
memberchk/2 ::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 929
message_hook/3 \hfill [hook] ::::::iirriiriiiriiiiiis 930
meta_predicate/1 \hfill [declaration]::::::::::0i00: 931
mode/1 \hfill [declaration] ::::::::iiriiriiriiiiiii 932
module/ [2,3] \hfill [declaration] ::::::::ixiizriiiz: 933
multifile/1 \hfill [ISO,declaration]::::::::::::00000 934
mutable/1::iiiiiiiiiiiiiiiiiiiiiiiiiiniiniiiiiiiin 936
name/2:iin 937
nl/[0,1] \hfill [ISO] :::::riririrnnnanininois 939
nodebug/0 \hfill [development]:::::::iiriiiiiiiiii: 940
nonmember/2 :Iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 941
nonvar/1 \hfill [ISO] ;oo 942
nospy/1l:iii 943
nospyall/O \hfill [development] ::::::iciiriiriiiiis: 944
=\=/2 \hfill [ISO]::: iz 945
=</2 \hfilll [ISO]::: oo 946
>=/2 \hfill [ISO]::::crirriiririiriniinin 947
\+/1 \hfill [ISO]::::rrorrrririririrnririiinis 948
\=/2 \hfill [ISO]::: i irrrrrrrrnrnrnrnininis 949
notrace/0 \hfill [development]:::::::iiriiiiiiiiiii 950
nozip/0 \hfill [development]::::::::iiiriiiriiiiiiin: 951
number/1 \hfill [ISO] :::::riiriiriirinrnriiiiniiiiis 952
number_chars/2 \hfill [ISO] ::::::irirririiiiiiini 953
number_codes/2 \hfill [ISO] ::::::iriiriiriiiiiiiiii: 954

numbervars/3 \hfill [meta_logic] ::::::::iiiriiiiiiir 956

11.3.141
11.3.142
11.3.143
11.3.144
11.3.145
11.3.146
11.3.147
11.3.148
11.3.149
11.3.150
11.3.151
11.3.152
11.3.153
11.3.154
11.3.155
11.3.156
11.3.157
11.3.158
11.3.159
11.3.160
11.3.161
11.3.162
11.3.163
11.3.164
11.3.165
11.3.166
11.3.167
11.3.168
11.3.169
11.3.170
11.3.171
11.3.172
11.3.173
11.3.174
11.3.175
11.3.176
11.3.177
11.3.178
11.3.179
11.3.180
11.3.181
11.3.182
11.3.183
11.3.184
11.3.185
11.3.186
11.3.187
11.3.188

on_exception/3::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 957
once/1 \hfill [ISO):::::rirrirornrnrnniininii: 958
op/3 \hfill [ISO]::::rrirrrririrrrirnriiiiiiiii 959
open/[3,4] \hfill [ISO]:::::irriirriiriiiiiiiiiiniil 960
open_null_stream/1::::i:iiiiiiiiiiiiiiiiiiiiiiiiin 965
;/2 \hfll [ISO):::riirirrnrnrnrnnininiiniins 966
otherwise/O0 :iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 967
peek_byte/[1,2] \hfill [ISO]:::::ririririiiiiiiis 968
peek_char/[1,2] \hfill [ISO]::::::riiriiiriiiiii: 969
peek_code/[1,2] \hfill [ISO]::::::riirriiiriiiiiin 970
phrase/[2,3] @i iiiiriiriiiiriiiiiininiiii
portray/1 \hfill [hook]

portray_clause/[1,2] i
portray_message/2 \hfill [hook]::::: i 975
predicate_property/2:::iiiiiiiiiiiiiiiiiiiiiiiiii 976
print/[1,2] \hfill [hookable]::::::::irrirririiiii: 978
print_message/2 \hfill [hookable] ::::::::iiriiiiiis 979
print_message_lines/3::::i:iiiiiiiiiiiiiiiiiiiiiin 981
profile_data/4 \hfill [development]::::::::::iriiiii: 982
profile_reset/1 \hfill [development] ::::::::::0:0:0 984
prolog_flag/[2,3] r::iiriirrrirrnnrnirnininiiin 985
prolog_load_context/2 ::::iii:iiiiiiiiiiiiiiiiiiiiii 987
prompt/2::iiin 988
public/1 \hfill [declaration] :::::::::irroirriiiiiii: 989
put_byte/[1,2] \hfill [ISO] ::: i iirrririiiiiiiiis 990
put_char/[1,2] \hfill [ISO] ::::::irviririiiiiii 991
put_code/[1,2] \hfill [ISO] :::::xirrirriririiiiiiis 992
query_abbreviation/3 \hfill [extendible]:::::::::::: 993
query_class/5 \hfill [extendible] ::::::iiriiriiiiiiis 994
query_class_hook/5 \hfill [nook] ::::::iriiriiriiiis 995
query_hook/6 \hfill [nooK]:::::::iririrriririiiiiiiii: 996
query_input/3 \hfill [extendible] :::: i 997
query_input_hook/3 \hfill [nook] ::::::::iiriiriii 998
query_map/4 \hfill [extendible] ::::::iiiriiriiiiiiin 999
query_map_hook/4 \hfill [nook]::::::::::iriiiiiiii: 1000
raise_exception/1:::iiiiiiiiiiiiiiiiiiiiiiiiiiiin 1001
read/[1,2] \hfill [ISO]::::: oo 1002
read_line/[0,1] ::::ooirrroornnnnrnnnnnnnnns 1003
read_term/[2,3] \hfill [ISO]::::::iriiriiiiiii 1004
reconsult/1:iiiiiiiiiiiiiiiiiiiiiiiiiniiniiiiinii 1007
recorda/3 iin 1008
recorded/3 :::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 1009
recordz/3 iin 1010
remove_breakpoints/1 \hfill [development] :::::::: 1011
repeat/0 \hfill [ISO]:::::iriirirnrnrinnniinins 1012
restore/1 iin 1014
retract/1 \hfill [ISO]:::::irrirririririiinini 1015

retractall/1:::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnn 1017

xx1

xxii SICStus Prolog

11.3.189 save_files/2:::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 1018
11.3.190 save_modules/2:::::::iiiiiiiiiiiiiiiiiiiiiiiiiiiin 1019
11.3.191 save_predicates/2:::::iiiiiiiiiiiiiiiiiiiiiiiiin 1020
11.3.192 save_program/[1,2] :::i:iiiiiiiriirriiniiniiinn 1021
11.3.193 see/1::iiiiiiiiiiiirriiiiriiiiiiiiiiiiiiiiiiiiiiinn 1022
11.3.194 seeing/1:::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 1023
11.3.195 seek/4:::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 1025
11.3.196 seen/O::::i:iiiirriiiicrriiiiririiiiirriiiiiiiiiiiinn 1027
11.3.197 set_input/1 \hfill [ISO]:::: oo 1028
11.3.198 set_module/1:::::iiiiiiriiiirririiiiiiiiiiiiiiiiin 1029
11.3.199 set_output/1 \hfill [ISO] :::::::irririiiiiiiiiis 1030
11.3.200 set_prolog_flag/2 \hfill [ISO] :::::::iriiriiiiiii: 1031
11.3.201 set_stream_position/2 \hfill [ISO]:::: i 1032
11.3.202 setof/3 \hfill [ISO] :::::rorrirrnoronrinriiiniis 1033
11.3.203 simple/1:::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 1035
11.3.204 skip_byte/[1,2] t::icriiiriiirinriiiiniiiiiiiii 1036
11.3.205 skip_char/[1,2] r:iiirrrroonrrnninrrnnnnnnnni 1037
11.3.206 skip_code/[1,2] :::iirrrioirooniiirooniiiiiiinns 1038
11.3.207 skip_line/[0,1] :::icrrriiirorniirrnniniiiii 1039
11.3.208 sort/2:::iin 1040
11.3.209 source_file/[1,2] :::iiiiiirroioiiiiiiiiiiii: 1041
11.3.210 spy/[1,2] \hfill [development] ::::: i 1042
11.3.211 statistics/[0,2] :i:iiooiiiooinnioiiiiin 1043
11.3.212 stream_code/2::::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 1044
11.3.213 stream_position/2:::::iiiiiiiiiiiiiiiiiiiiiiiiiin 1045
11.3.214 stream_position_data/3::::::iiiiiiiiiiiiiiiiiii 1046
11.3.215 stream_property/2 \hfill [ISO] ::::::iiriiririii: 1047
11.3.216 sub_atom/5 \hfill [ISO]::::::rriirrririirriiiiin: 1049
11.3.217 tell/1:cccciiiirrniirrnninrnnnnnnninnnniinn 1051
11.3.218 telling/1 :::iiiiiiiirriiiirironiironninoiiiiinys 1052
11.3.219 ==/2 \hfill [ISO]::::::irrirririririninininiin 1054
11.3.220 term_expansion/6 \hfill [nook]:::::: i 1055
11.3.221 @>/2 \hfill [ISO]:::::rvoororrninrinnooi 1057
11.3.222 @</2 \hfill [ISO]:::::rvoinirrrinniriiiiiiiiin: 1058
11.3.223 \==/2 \hfill [ISO]:::::: oo 1059
11.3.224 @=</2 \hfill [ISO]:::::: oo 1060
11.3.225 @>=/2 \hfill [ISO]:::::: i 1061
11.3.226 7=/2 ::iiicrriiiiioriiiiiiiiiiiiiiniinininiiiinn 1062
11.3.227 throw/1 \hfill [ISO] ::::::oorrirrnorniiiiniiiiiiis 1063
11.3.228 told/0::::iiiiirrriiirrriiinriniiiiiiiniiiiiiin 1064
11.3.229 trace/0 \hfill [development]::::::::iiriiiiiiiiin: 1065
11.3.230 trimcore/O ::::::iiiiiiiriiiiiiiiiiiiiiiiiiiiiiiiin 1066
11.3.231 true/0 \hfill [ISO] ::::: oo 1067
11.3.232 =/2 \hfill [ISO] ::::zioorirnnrrnnrnnrnnninniin 1068
11.3.233 unify_with_occurs_check/2 \hfill [ISO]::::::::::: 1069
11.3.234 =../2 \hfill [ISO]::: oo 1070
11.3.235 unknown/2 \hfill [development] ::::::::iriiriiiiiiis 1072

11.3.236 unknown_predicate_handler/3 \hfill [hook]:::::::: 1073

12

11.3.237 update_mutable/2::::::iiiiiiiiiriiiiiiiiiiiiiiiiin 1074
11.3.238 wuse_module/[1,2,3]::::iriiiirooiniiiiiiini 1075
11.3.239 wvar/1 \hfill [ISO]:: oo 1077
11.3.240 volatile/1 \hfill [declaration]::::::::::iiriiiiiin: 1078
11.3.241 when/2::::iiiiirriiirrriiinrrninrniiiniiiiinnn 1079
11.3.242 write/[1,2] \hfill [ISO]::::: iriiriiririiiiiiiiii 1080
11.3.243 write_canonical/[1,2] \hfill [ISO]::::::::iriiiii: 1081
11.3.244 write_term/[2,3] \hfill [ISO,hookable] :::::::::::: 1082
11.3.245 writeq/[1,2] \hfll [ISO] ::::::xoirraiiiiiiiii 1085
11.3.246 zip/0 \hfill [development] ::::::::xiirriiiiiiiiiis: 1086
C Reference Pages:::::::::iiiiiiiiiiiiiiin 1087
12.1 Return Values and Errors::::iiiiiirrrrrrrrrrininiiiiiin 1087
12.2 Topical List of C Functions :::::iiirrrriirrriiiiriiiiiiis 1087
1221 CErrors::iiiiiirriiiiiriiiiiiiiiiiiiiiiiiiiiiiiii
12.2.2 CIIiIiIIiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiioiLn
12.2.3 Exceptions:::iiiiirriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin
12.2.4 Files and Streams
12.2.5 Foreign Interface
12.2.6 Initialization:::::iiiirrrroiirrriiirriinniiin:
12.2.7 Memory Management:::::::iiiiiiiiiiiiiiiiiiiiiiiii 1091
12.2.8 Signal Handling:::::ooooroorrnnrnnrinnnnnnnniiin 1092
12.2.9 Termsin C:iirriioiiriiiirriiiiiriiiiiniiniiiiin 1092
12.2.10 Type Testst:riioirrrriiirrrniirriinriiinoiiiin 1092
12.3 API Functions::::::i:iiiirioirioorinrinninrinninnin: 1093
12.3.1 SP_atom_from_string()::::iiiiiriiiiiiiiiiiiiiiiiiin 1094
12.3.2 SP_atom_length() :::::iiiiriiiriiiriiiriiiiiiiiiiint 1095
12.3.3 SP_calloc() ::::i:irriiiiorriiiirroiiiiooniiiiiiiiis 1096
12.3.4 SP_close_query() :::i:iiiiiiiiirriiiiriiiiiiiiiiiiiii 1097
12.3.5 SP_compare() ::::i:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 1098
12.3.6 SP_cons_functor() :::iiiiriiiiiiiiiiiiiiiiiiiiiiiiin 1099
12.3.7 SP_cons_functor_array() ::::iiiiiiiiiiiiiiiiiiiiii 1100
12.3.8 SP_cons_list()::::iirrriiiirriioiirrroninrinniiiiint 1101
12.3.9 SP_create_stream() :::::iiiirriiiiiiiiiiiiiiiiiiiiin 1102
12.3.10 SP_cut_query () :::iiirrriiiiirriiiiiiiiiiiiiiiiiii 1104
12.3.11 SP_define_c_predicate() :::iiiiiiiiriiriiriiiiiiiir 1105
12.3.12 SP_deinitialize() :::::iiiirrriiiirriiiiiiiiiiiiiiin 1107
12.3.13 SP_error_message() :::iiiiiiiiiiiiiiiiiiiiiiiiiiiin 1108
12.3.14 SP_event() ::::irriiiirrziiiiiiiiiiiiiiiiiiiiiiiiiii 1109
12.3.15 SP_exception_term() ::::iiiiiiiiriiiiiiiiiiiiiiiiin 1112
12.3.16 SP_expand_file_name() :@::::iiiiiiiiiiiiiiiiiiiiiin 1113
12.3.17 SP_fail()::iiioirriiiiiyiiinrinnininiiiinin 1115
12.3.18 SP_fclose() :riiiiirrriiirrrynnirrrninrrnnirrnnin 1116
12.3.19 SP_flush_output() :::::iorrrrioirrrroiioooooiioin 1118
12.3.20 SP_fopen() :::riiiriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiio 1119
12.3.21 SP_foreign_stash() \hfill [macro] :::::::i:iiiriiin: 1121
12.3.22 SP_fprintf () rriiiriiiriiiriniriiniiiiiniiiiiiin 1122
12.3.23 SP_free()::::iiirriiiirrriiooirrriiiirooiiiioiiiiin 1123

xx1il

xXxiv SICStus Prolog

12.3.24 SP_get_address() :::i:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 1124
12.3.25 SP_get_arg() @iriiiiiiriiiiiiiiiiiiiiiiiiiiiiiiiii 1125
12.3.26 SP_get_atom() :::iiriiirriiiiiiiiiiiiiiiiiiiiiiiiiin 1126
12.3.27 SP_get_byte() ::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinn 1127
12.3.28 SP_get_code() ::iiiiiiiiriiiiiiiiiiiiiiiiiiiiiiiiiin 1128
12.3.29 SP_get_current_dir():::iiiiiiiiiriiiriiiiiiiiiiinn 1129
12.3.30 SP_get_dispatch() :::iiiirrrrinirriniirrniiininn 1130
12.3.31 SP_get_float():::iiirriicriiirriirninrnnnnininins 1131
12.3.32 SP_get_functor () :::i:iiiiiiriiiiiiiiiiiiiiiiiiiiiiin 1132
12.3.33 SP_get_integer () :::i:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 1133
12.3.34 SP_get_integer_bytes() ::i:iiiiiiiiiiiiiiiiiiiiiin 1134
12.3.35 SP_get_list()::::rriiiirrrriiirrroninrinniiiiiiii 1136
12.3.36 SP_get_list_codes() :::iiiiiiiiiriiiriniriiiiiin 1137
12.3.37 SP_get_list_n_bytes() :::iiiiiiiriiiiriiiiiiiiiiii: 1138
12.3.38 SP_get_list_n_codes() @::iiiiiiiriiiiiiiiiiiiiiiit 1139
12.3.39 SP_get_number_codes() ::::i:iiiiiiriiiiiiiiiiiiiiiir 1140
12.3.40 SP_get_stream_counts() :::iiiiiriiiiiriiiiiiiiiiin 1141
12.3.41 SP_get_stream_user_data()::::i:iiiriiiiiiiiiiiin: 1143
12.3.42 SP_get_string() :::iiiiiiiiiiiriiiiiiiniiiniiiniiin 1145
12.3.43 SP_initialize() \hfill [macro]::::::::iiiriiiiiiii: 1146
12.3.44 SP_is_atom() :::rriiiiriiiiiiiiiiiiiiiiiiiiiiiiiiin 1147
12.3.45 SP_is_atomic():i:iiirrriiirrriiiiiiiiiiiiiiiiiiiiin 1148
12.3.46 SP_is_compound () ::::iiriiiiiiiiiiiiiiiiiiiiiiiiiiin 1149
12.3.47 SP_is_float()::iiiiiiirriiiriiiiiiiriiriiiniiini 1150
12.3.48 SP_is_integer () :::i:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 1151
12.3.49 SP_is_list():irrriiiorrriiirrrnniiriooiiniiniiiins 1162
12.3.,50 SP_is_number () :::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 1153
12.3.,51 SP_is_variable() ::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiii 1164
12,352 SP_load()::::iiiiiriiiriiiriiiiriiiiiiiiiiiiiiiiiiii 1155
12.3.53 SP_load_sicstus_run_time() :::::iiiiiiiiiiiiiiiil 1156
12.3.54 SP_malloc() ::riiiirrriiiirrrroiironinrnoninin

12.3.55 SP_mutex_lock() B
12.3.56 SP_mutex_unlock()
12.3.57 SP_new_term_ref ()

12.3.58 SP_next_solution() ::::i:iiriiiriiiriiiriiiiiiiiiiin 1161
12.3.59 SP_next_stream() ::::iiriiiiiiriiiiiiiiiiiiiiiiiinn 1162
12.3.60 SP_open_query() @::irriiiiiriiiiiiiiiiiiiiiiiiiiiin 1163
12.3.61 SP_pred()::::iriiirriiriiiriiiiiiiiiiiiiiiiiiiiiiii 1164
12.3.62 SP_predicate():::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiny 1165
12.3.63 SP_printf() :i:iriiiriiiriiiiiiiiiiiiiiiiiiiiiiiiii 1166
12.3.64 SP_put_address() :::iiirriiiiiiiiiiiiiiiiiiiiiiiinn 1167
12.3.65 SP_put_atom() ::::irriiiiriiiiiiiiiiiiiiiiiiiiiiiLn
12.3.66 SP_put_byte() ::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin
12.3.67 SP_put_bytes()

12.3.68 SP_put_code() :iiiiiiiiiriiiiiiiiiiiiiiiiiiiiiiinIn
12.3.69 SP_put_codes()

12.3.70 SP_put_encoded_string() r::i:riiiriiiriiiriiiiiiiinn 1173

12.3.71 SP_put_float()::::iiiiiiriiiiiriiiiiiiriniininiinn 1174

12.3.72 SP_put_functor()
12.3.73 SP_put_integer ()
12.3.74 SP_put_integer_bytes() r::iiiirriiiiiriiiiiiiiiiin 1177
12.3.75 SP_put_list():iiiiiiiiiriiiriiiriniinniiiniin
12.3.76 SP_put_list_codes() ::iiiiiiiiiiiiiiiiiiiiiiiiiiin
12.3.77 SP_put_list_n_bytes()
12.3.78 SP_put_list_n_codes()
12.3.79 SP_put_number_codes()
12.3.80 SP_put_string() :::iiiiiiiiiiiiiiiiiiiiiiiiiiiin
12.3.81 SP_put_term() ::i:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinIn
12.3.82 SP_put_variable() @::iiiiiiiiiiiiiiiiiiiiiiiiiiii
12.3.83 SP_query() :::iiirriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin
12.3.84 SP_query_cut_fail()::iiiirrrioiirrrioiiriiiiiiins
12.3.85 SP_raise_exception():::iiiiiiiiiiriiiiiiiiiiiiiiin
12.3.86 SP_read_from_string()
12.3.87 SP_realloc() ::rriiiiiriiiiiirriiiiriiiiiiiiiiiiiin
12.3.88 SP_register_atom() ::iiiiiriiiiiiiiiiiiiiiiiiiiiiln
12.3.89 SP_restore()
12.3.90 SP_set_argv():iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinn
12.3.91 SP_set_current_dir()::iiiiiiiiiiiiiiiiiiiiiiiiiin
12.3.92 SP_set_memalloc_hooks() \hfill [preinit]:::::::::::0 1197
12.3.93 SP_set_user_stream_hook() \hfill [preinit] ::::::::: 1200
12.3.94 SP_set_user_stream_post_hook() \hfill [preinit]:::: 1201
12.3.95 SP_signal () :::iriiiriiiriiiiiiiiiiiiiiiiiiiiiiiiiin 1202
12.3.96 SP_strdup() :::iiiiiriiiriiiiiiiiiiiiiiiiiiiiiiiiin 1204
12.3.97 SP_string_from_atom() :::::iiriiiiiiiiiiiiiiiiiiiir 1205
12.3.98 SP_term_type() :::iiiriiiiiiiiiiiiiiiiiiiiiiiiiiiin 1206
12.3.99 SP_unget_byte() :::iiriiiiiiiiiiiiiiiiiiiiiiiiiiinn 1207
12.3.100 SP_unget_code() :::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin 1208
12.3.101 SP_unify () ricrriorrrirriiirnnnininiinniiiniiiiiin 1209
12.3.102 SP_unregister_atom() :::::iiiiiiiiiiriiiiiiiiiiiin 1210
12.3.103 SU_initialize() \hfill [hook]::::::::iriiririoioo: 1211
12.3.104 wuser_close() ::i:iiiiiiriiiriiiiiiiiiiiiiiiiiiiiiiin 1212
12.3.105 wuser_flush_output():::::iiiriiiriiiriiiiiiiiiiii: 1214
12.3.106 wuser_read() :::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 1216
12.3.107 wuser_write() @:irriiiiiriiiiiiiiiiiiiiiiiiiiiiiiiin 1218
13 Command Reference Pages::::::::::::::: 1221
13.1 sicstus — SICStus Prolog Development System:::::::::::0 1222
13.2 spdet — Determinacy Checker ::::iriiiriiirriiriiiiiiiis: 1226
13.3 spld — SICStus Prolog Application Builder :::::::iriii 1227
13.4 splfr — SICStus Prolog Foreign Resource Linker:::::::::: 1234
13.5 splm — SICStus Prolog License Manager :::::::iiiiiiiii: 1238
13.6 spxref — Cross Referencer:::::iiiiiiriiriiriiiriiininn 1239

References:::::: ;i 1241

XXV

xXxXVi SICStus Prolog
Predicate Index::::::::ororiiininiiininiis 1245

Keystroke Index ::::::iiiiiiioiriiiiiiiiiiiiins 1257

Book Index ;oo 1259

Introduction 1

Introduction

Prolog is a simple but powerful programming language developed at the University of Mar-
seille [Roussel 75], as a practical tool for programming in logic [Kowalski 74]. From a user’s
point of view the major attraction of the language is ease of programming. Clear, readable,
concise programs can be written quickly with few errors.

For an introduction to programming in Prolog, readers are recommended to consult [Sterling
& Shapiro 86]. However, for the benefit of those who do not have access to a copy of this
book, and for those who have some prior knowledge of logic programming, we include a
summary of the language. For a more general introduction to the field of Logic Programming
see [Kowalski 79]. See Chapter 4 [Prolog Intro], page 39.

This manual describes a Prolog system developed at the Swedish Institute of Computer
Science. Parts of the system were developed by the project “Industrialization of SICStus
Prolog” in collaboration with Ericsson Telecom AB, NobelTech Systems AB, Infologics AB
and Televerket. The system consists of a WAM emulator written in C, a library and runtime
system written in C and Prolog and an interpreter and a compiler written in Prolog. The
Prolog engine is a Warren Abstract Machine (WAM) emulator [Warren 83]. Two modes
of compilation are available: in-core i.e. incremental, and file-to-file. When compiled, a
predicate will run about 8 times faster and use memory more economically. Implementation
details can be found in [Carlsson 90] and in several technical reports available from SICS.

SICStus Prolog follows the mainstream Prolog tradition in terms of syntax
and built-in predicates. As of release 4, SICStus Prolog is fully compliant
with the International Standard ISO/IEC 13211-1 (PROLOG: Part 1—General Core)
(http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITSY2FIS0%2FIEC+13211%2D1%2D1995).

http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITS%2FISO%2FIEC+13211%2D1%2D1995

Acknowledgments 3

Acknowledgments

The following people have contributed to the development of SICStus Prolog:

Jonas Almgren, Johan Andersson, Stefan Andersson, Nicolas Beldiceanu,
Tamaés Benkd, Kent Boortz, Dave Bowen, Per Brand, Goran Bage, Vicki Car-
leson, Mats Carlsson, Per Danielsson, Joakim Eriksson, Jesper Eskilson, Niklas
Finne, Lena Flood, Gyorgy Gyaraki, David Handk, Seif Haridi, Ralph Hay-
good, Christian Holzbaur, Tom Howland, Key Hyckenberg, Péter Laszld, Per
Mildner, Richard O’Keefe, Greger Ottosson, Dan Sahlin, Peter Schachte, Rob
Scott, Thomas Sjoland, Péter Szeredi, Tamas Szeredi, Peter Van Roy, David
Warren, Johan Widén, Magnus Agren, and Emil Astrom.

The Industrialization of SICStus Prolog (1988-1991) was funded by

Ericsson Telecom AB, NobelTech Systems AB, Infologics AB, and Televerket,
under the National Swedish Information Technology Program 1T4.

The development of release 3 (1991-1995) was funded in part by
Ellemtel Utvecklings AB
This manual is based on DECsystem-10 Prolog User’s Manual by
D.L. Bowen, L. Byrd, F.C.N. Pereira, L.M. Pereira, D.H.D. Warren

See Section 10.33 [lib-chr|, page 489, for acknowledgments relevant to the CHR constraint
solver.

See Section 10.36 [lib-clpqr|, page 551, for acknowledgments relevant to the clp(Q,R) con-
straint solver.

UNIX is a trademark of Bell Laboratories. MSDOS and Windows are trademarks of Mi-
crosoft Corp. OS/2 is a trademark of IBM Corp.

Chapter 1: Notational Conventions 5)

1 Notational Conventions

1.1 Keyboard Characters

When referring to keyboard characters, printing characters are written thus: a, while control
characters are written like this: ~A. Thus ~C is the character you get by holding down the
CTL key while you type €. Finally, the special control characters carriage-return, line-feed
and space are often abbreviated to RET, LFD and SPC respectively.

Throughout, we will assume that ~D is the EOF character (it’s usually ~Z under Windows)
and that ~C is the interrupt character. In most contexts, the term end_of_file terminated
by a full stop (.) can be typed instead of the EOF character.

1.2 Mode Spec

When describing a predicate, we present its usage with a mode spec, which has the form
name(arg, . .., arg), where each arg denotes how that argument is used by the predicate,
and has one of the following forms:

:ArgName The argument is used as a term denoting a goal or a clause or a predicate name,
or that otherwise needs special handling of module prefixes. It is is subject to
module name expansion (see Section 4.11.15 [ref-mod-mne], page 149).

+ArgName
The argument is an input argument. Usually, but not always, this implies that
the argument should be instantiated.

-ArgName The argument is an output argument. Usually, but not always, this implies
that the argument should be uninstantiated.

?ArgName

The argument may be used for both input and output.

Please note: The reference pages for built-in predicate use slightly different mode specs.

1.3 Development and Runtime Systems

The full Prolog system with top-level, compiler, debugger etc. is known as the development
system.

It is possible to link user-written C code with a subset of SICStus Prolog to create runtime
systems. When introducing a built-in predicate, any limitations on its use in runtime
systems will be mentioned.

1.4 Function Prototypes

Whenever this manual documents a C function as part of SICStus Prolog’s foreign language
interface, the function prototype will be displayed in ANSI C syntax.

6 SICStus Prolog

1.5 ISO Compliance

SICStus Prolog is fully compliant with the International Stan-
dard ISO/IEC 13211-1 (PROLOG: Part 1—General Core)
(http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITSY2FIS0%2FIEC+13211%2D1%2D1995).

To aid programmers who wish to write standard compliant programs, built-in predicates
and arithmetic functors that are part of the ISO Prolog Standard are annotated with [ISO/
in this manual.

http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITS%2FISO%2FIEC+13211%2D1%2D1995

Chapter 2: Glossary 7

2 Glossary

abolish To abolish a predicate is to retract all the predicate’s clauses and to remove all
information about it from the Prolog system, to make it as if that predicate
had never existed.

advice-point
A special case of breakpoint, the advice breakpoint. It is distinguished from
spypoints in that it is intended for non-interactive debugging, such as checking
of program invariants, collecting information, profiling, etc.

alphanumeric
An alphanumeric character is any of the lowercase characters from ‘a’ to ‘z’, the
uppercase characters from ‘A’ to ‘Z’, the numerals from ‘0’ to ‘9’, or underscore
((_7).

ancestors An ancestor of a goal is any goal that the system is trying to solve when it calls
that goal. The most distant ancestor is the goal that was typed at the top-level
prompt.

anonymous variable
An anonymous variable is one that has no unique name, and whose value is
therefore inaccessible. An anonymous variable is denoted by an underscore
(4 7).

argument See predicate, structure, and arity.

arity The arity of a structure is its number of arguments. For example, the structure
customer (jones,85) has an arity of 2.

atom A character sequence used to uniquely denote some entity in the problem do-
main. A number is not an atom. Examples of legal atoms are:
hello * 1= T #$%’ ’New York’ ’don\’t’
See Section 4.1.2.4 [ref-syn-trm-ato], page 40. Atoms are recognized by the

built-in predicate atom/1. Each Prolog atom is represented internally by a
unique integer, represented in C as an SP_atom.

atomic term
Synonym for constant.

backtrace A collection of information on the control flow of the program, gathered by the
debugger. Also the display of this information produced by the debugger. The
backtrace includes data on goals that were called but not exited and also on
goals that exited nondeterminately.

backtracking
The process of reviewing the goals that have been satisfied and attempting to
resatisfy these goals by finding alternative solutions.

binding The process of assigning a value to a variable; used in unification.

blocked goal
A goal that is suspended because it is not instantiated enough.

8 SICStus Prolog

body The body of a clause consists of the part of a Prolog clause following the *:-’
symbol.

breakpoint

A description of certain invocations in the program where the user wants the
debugger to stop, or to perform some other actions. A breakpoint is specific
if it applies to the calls of a specific predicate, possibly under some condi-
tions; otherwise, it is generic. Depending on the intended usage, breakpoints
can be classified as debugger breakpoints, also known as spypoints, or advice
breakpoints, also called advice-points; see Section 5.6 [Advanced Debugging],
page 210.

breakpoint spec
A term describing a breakpoint. Composed of a test part, specifying the con-
ditions under which the breakpoint should be applied, and an action part,
specifying the effects of the breakpoint on the execution.

byte-list A byte-list is a list of bytes, i.e. integers in [0,. . .,255].
bu er A temporary workspace in Emacs that contains a file being edited.

built-in predicate
A predicate that comes with the system and that does not have to be explicitly
loaded before it is used.

callable term
A callable term is either a compound term or an atom. Callable terms are
recognized by the built-in predicate callable/1.

character code
An integer that is the numeric representation of a character in the character
code set.

character code set
A subset of the set {0, ..., 2°31-1} that can be handled in input/output.
SICStus Prolog fixes the character code set to a superset of Unicode, which
includes the ASCII code set, i.e. codes 0..127, and these codes are interpreted
as ASCII characters

character-conversion mapping
SICStus Prolog maintains a character-conversion mapping, which is used while
reading terms and programs. Initially, the mapping prescribes no character
conversions. It can be modified by the built-in predicate char_conversion(lIn,
Out), following which In will be converted to Out. Character coversion can be
switched off by the char_conversion Prolog flag.

character-type mapping
A function mapping each element of the character code set to one of the char-
acter categories (layout, letter, symbol-char, etc.), required for parsing tokens.

choicepoints
A memory block representing outstanding choices for some goals or disjunctions.

Chapter 2: Glossary 9

clause A fact or a rule. A rule comprises a head and a body. A fact consists of a head
only, and is equivalent to a rule with the body true.

code-list A code-list is a list of character codes.

compactcode
Virtual code representation of compiled code. A reasonable compromise be-
tween performance and space requirement. A valid value for the compiling
Prolog flag.

compile To load a program (or a portion thereof) into Prolog through the compiler.

Compiled code runs more quickly than interpreted code, but you cannot debug
compiled code in as much detail as interpreted code.

compound term

conjunction

A compound term is a term that is an atom together with one or more argu-
ments. For example, in the term father (X), father is the name, and X is the
first and only argument. The argument to a compound term can be another
compound term, as in father(father(X)). Compound terms are recognized
by the built-in predicate compound/1.

A series of goals connected by the connective “and” (that is, a series of goals
whose principal operator is *,”).

console-based executable

constant

consult

An executable that inherits the standard streams from the process that invoked
it, e.g. a UNIX shell or a DOS-prompt.

An integer (for example: 1, 20, -10), a floating-point number (for exam-
ple: 12.35), or an atom. Constants are recognized by the built-in predicate
atomic/1.

To load a program (or a portion thereof) into Prolog through the interpreter.
Interpreted code runs more slowly than compiled code, but you can debug
interpreted code in more detail than compiled code.

control structure

creep

cursor

cut

A built-in predicate that is “part of the language” in the sense that it is treated
specially in certain language features. The set of such control structures and
language features is enuemrated in Section 4.2.3 [ref-sem-ctr], page 58.

What the debugger does in trace mode, also known as single-stepping. It goes
to the next port of a procedure box and prints the goal, then prompts you for
input. See Section 5.2 [Basic Debug], page 201.

The point on the screen at which typed characters appear. This is usually
highlighted by a line or rectangle the size of one space, which may or may not
blink.

Written as !'. A built-in predicate that succeeds when encountered; if back-
tracking should later return to the cut, the goal that matched the head of the
clause containing the cut fails immediately.

10 SICStus Prolog

database = The Prolog database comprises all of the clauses that have been loaded or
asserted into the Prolog system or that have been asserted, except those clauses
that have been retracted or abolished.

db_reference
A compound term denoting a unique reference to a dynamic clause.

debug A mode of program execution in which the debugger stops to print the current
goal only at predicates that have spypoints set on them (see leap).

debugcode
Interpreted representation of compiled code. A valid value for the compiling
Prolog flag.

declaration
A declaration looks like a directive, but is not executed but rather conveys
information about predicates about to be loaded.

deinit function
A function in a foreign resource that is called prior to unloading the resource.

determinate
A predicate is determinate if it can supply only one answer.

development system
A stand-alone executable with the full programming environment, including
top-level, compiler, debugger etc. The default sicstus executable is a develop-
ment system; new development systems containing pre-linked foreign resources
can also be created.

directive A directive is a goal preceded by the prefix operator ‘:-’, whose intuitive mean-
ing is “execute this as a query, but do not print out any variable bindings.”

disjunction
A series of goals connected by the connective “or” (that is, a series of goals
whose principal operator is ¢;’).

dynamic predicate
A predicate that can be modified while a program is running. The semantics of
such updates is described in Section 4.12.1 [ref-mdb-bas], page 153. A predicate
must explicitly be declared to be dynamic or it must be added to the database
via one of the assertion predicates.

encoded string
A sequence of bytes representing a sequence of possibly wide character codes,
using the UTF-8 encoding.

€sCape sequence
A sequence of characters beginning with ‘\” inside certain syntactic tokens (see
Section 4.1.7.6 [ref-syn-syn-esc|, page 55).

export A module exports a predicate so that other modules can import it.

extended runtime system
A stand-alone executable. In addition to the normal set of built-in runtime
system predicates, extended runtime systems include the compiler. Extended

Chapter 2: Glossary 11

runtime systems require the extended runtime library, available from SICS as
an add-on product.

fact A clause with no conditions—that is, with an empty body. A fact is a statement
that a relationship exists between its arguments. Some examples, with possible
interpretations, are:
king(louis, france). % Louis was king of France.
have_beaks(birds) . % Birds have beaks.
employee (nancy, data_processing, 55000) .
% Nancy is an employee in the
% data processing department.

le speci cation

An atom or a compound term denoting the name of a file. The rules for mapping
such terms to absolute file names are described in Section 4.5 [ref-fdi], page 81.

oundered query
A query where all unsolved goals are blocked.

foreign predicate
A predicate that is defined in a language other than Prolog, and explicitly
bound to Prolog predicates by the Foreign Language Interface.

foreign resource
A named set of foreign predicates.

functor The functor of a compound term is its name and arity. For example, the
compound term foo(a,b) is said to have “the functor foo of arity two”, which
is generally written foo/2.
The functor of a constant is the term itself paired with zero. For example, the
constant nl is said to have “the functor nl of arity zero”, which is generally
written nl/0.

garbage collection
The freeing up of space for computation by making the space occupied by terms
that are no longer available for use by the Prolog system.

generalized predicate spec

A generalized predicate spec is a term of one of the following forms. It is always
interpreted wrt. a given module context:

Name all predicates called Name no matter what arity, where Name is an
atom for a specific name or a variable for all names, or

Name/Arity
the predicate of that name and arity, or

Name/[Arity,. . . ,Arity]
the predicates of that name with one of the given arities, or

Module:Spec
specifying a particular module Module instead of the default mod-
ule, where Module is an atom for a specific module or a variable
for all modules, or

12 SICStus Prolog

[Spec,. . .,Spec]
the set of all predicates covered by the Specs.

glue code Interface code between the Prolog engine and foreign predicates. Automatically
generated by the foreign language interface as part of building a linked foreign
resource.

goal A simple goal is a predicate call. When called, it will either succeed or fail.

A compound goal is a formula consisting of simple goals connected by connec-

tives such as “and” (*,’) or “or” (‘;’).

A goal typed at the top-level is called a query.

ground A term is ground when it is free of (unbound) variables. Ground terms are
recognized by the built-in predicate ground/1.

guarded clause
A clause of the form

Head :- Goals, !, Goals.

head The head of a clause is the single goal, which will be satisfied if the conditions
in the body (if any) are true; the part of a rule before the ‘:-" symbol. The
head of a list is the first element of the list.

extendible predicate
An extendible predicate is a dynamic, multifile predicate, to which new clauses
can be added by the user.

hook predicate
A hook predicate is a predicate that somehow alters or customizes the behavior
of a hookable predicate.

hookable predicate
A hookable predicate is a built-in predicate whose behavior is somehow altered
or customized by a hook predicate.

import Exported predicates in a module can be imported by other modules. Once a
predicate has been imported by a module, it can be called, or exported, as if it
were defined in that module.

There are two kinds of importation: predicate-importation, in which only spec-
ified predicates are imported from a module; and module-importation, in which
all the predicates exported by a module are imported.

indexing The process of filtering a set of potentially matching clauses of a predicate given
a goal. For interpreted and compiled code, indexing is done on the principal
functor of the first argument. Indexing is coarse wrt. large integers and floats.

init function

A function in a foreign resource that is called upon loading the resource.
initialization

An initialization is a goal that is executed when the file in which the initial-

ization is declared is loaded. An initialization is declared as a directive :-
initialization Goal.

Chapter 2: Glossary 13

instantiation
A variable is instantiated if it is bound to a non-variable term; that is, to an
atomic term or a compound term.

interpret Load a program or set of clauses into Prolog through the interpreter (also known
as consulting). Interpreted code runs more slowly than compiled code, but more
extensive facilities are available for debugging interpreted code.

invocation box
Same as procedure box.

large integer
An integer that is not a small integer.

layout term
In the context of handling line number information for source code, a source
term Source gets associated to a layout term Layout, which is one of the fol-
lowing;:
[1, if no line number information is available for Source.

If Source is a simple term, Layout is the number of the line where Source
occurs.

If Source is a compound term, Layout is a list whose head is the number
of the line where the first token of Source occurs, and whose remaining
elements are the layouts of the arguments of Source.

leap What the debugger does in debug mode. The debugger shows only the ports
of predicates that have spypoints on them. It then normally prompts you for
input, at which time you may leap again to the next spypoint (see trace).

leashing Determines how frequently the debugger will stop and prompt you for input
when you are tracing. A port at which the debugger stops is called a “leashed
port”.

linked foreign resource
A foreign resource that is ready to be installed in an atomic operation, normally
represented as a shared object or DLL.

list A list is written as a set of zero or more terms between square brackets. If there
are no terms in a list, it is said to be empty, and is written as ‘[]’. In this first
set of examples, all members of each list are explicitly stated:

[aa, bb,cc] [X, Y] [Namel [[x, yl, 2]
In the second set of examples, only the first several members of each list are
explicitly stated, while the rest of the list is represented by a variable on the
right-hand side of the “rest of” operator, ‘|’
X 1 vl [a, b, c| Y] [[x, yl | Rest]
is also known as the “list constructor.” The first element of the list to the
left of <]’ is called the head of the list. The rest of the list, including the variable
following ‘|’ (which represents a list of any length), is called the tail of the list.

(l?

load To load a Prolog clause or set of clauses, in source or binary form, from a file
or set of files.

14 SICStus Prolog

meta-call The process of interpreting a callable term as a goal. This is done e.g. by the
built-in predicate call/1.

meta-logical predicate
A predicate that performs operations that require reasoning about the current
instantiation of terms or decomposing terms into their constituents. Such op-
erations cannot be expressed using predicate definitions with a finite number
of clauses.

meta-predicate
A meta-predicate is one that calls one or more of its arguments; more generally,
any predicate that needs to assume some module in order to operate is called
a meta-predicate. Some arguments of a meta-predicate are subject to module
name expansion.

module A module is a set of predicates in a module-file. The name of a module is an
atom. Some predicates in a module are exported. The default module is user.

module name expansion
The process by which certain arguments of meta-predicates get prefixed by the
source module. See Section 4.11.15 [ref-mod-mne|, page 149.

module- le
A module-file is a file that is headed with a module declaration of the form:

:— module (ModuleName, ExportedPredList).

which must appear as the first term in the file.

multi le predicate
A predicate whose definition is to be spread over more than one file. Such
a predicate must be preceded by an explicit multifile declaration in all files
containing clauses for it.

mutable term
A special form of compound term subject to destructive assignment. See
Section 4.8.9 [ref-lte-mut]|, page 115. Mutable terms are recognized by the
built-in predicate mutable/1.

name clash
A name clash occurs when a module attempts to define or import a predicate
that it has already defined or imported.

occurs-check
A test to ensure that binding a variable does not bind it to a term where that
variable occurs.

one-char atom
An atom that consists of a single character.

operator A notational convenience that allows you to express any compound term in a
different format. For example, if 1ikes in
| 7- likes(sue, cider).

is declared an infix operator, the query above could be written:

Chapter 2: Glossary 15

pair

parent

port

| ?- sue likes cider.

An operator does not have to be associated with a predicate. However, certain
built-in predicates are declared as operators. For example,

| 7- =..(X, Y).
can be written as
| 7= X =.. Y.
because =. . has been declared an infix operator.

Those predicates that correspond to built-in operators are written using infix
notation in the list of built-in predicates at the beginning of the part that
contains the reference pages.

Some built-in operators do not correspond to built-in predicates; for example,
arithmetic operators. See Section 4.1.5.4 [ref-syn-ops-bop]|, page 47 for a list of
built-in operators.

A compound term K-V. Pairs are used by the built-in predicate keysort/2 and
by many library modules.

The parent of the current goal is a goal that, in its attempt to obtain a successful
solution to itself, is calling the current goal.

One of the seven key points of interest in the execution of a Prolog predicate.
See Section 5.1 [Procedure Box], page 199 for a definition.

pre-linked foreign resource

precedence

predicate

A linked foreign resource that is linked into a stand-alone executable as part of
building the executable.

A number associated with each Prolog operator, which is used to disambiguate
the structure of the term represented by an expression containing a number
of operators. Operators of lower precedence are applied before those of higher
precedence; the operator with the highest precedence is considered the principal
functor of the expression. To disambiguate operators of the same precedence,
the associativity type is also necessary. See Section 4.1.5 [ref-syn-ops]|, page 43.

A functor that specifies some relationship existing in the problem domain. For
example, < /2 is a built-in predicate specifying the relationship of one number
being less than another. In contrast, the functor + /2 is not (normally used as)
a predicate.

A predicate is either built-in or is implemented by a procedure.

predicate spec

procedure

A compound term name /arity or module :name /arity denoting a predicate.
A set of clauses in which the head of each clause has the same predicate. For
instance, a group of clauses of the following form:

connects(san_francisco, oakland, bart_train).
connects(san_francisco, fremont, bart_train).
connects(concord, daly_city, bart_train).

is identified as belonging to the predicate connects/3.

16 SICStus Prolog

procedure box
A way of visualizing the execution of a Prolog procedure, A procedure box is
entered and exited via ports.

pro ledcode
Virtual code representation of compiled code, instrumented for profiling. A
valid value for the compiling Prolog flag.

pro ling The process of gathering execution statistics of parts of the program, essentially
counting the times selected program points have been reached.

program A set of procedures designed to perform a given task.

PO le A PO (Prolog object) file contains a binary representation of a set of mod-
ules, predicates, clauses and directives. They are portable between different
platforms, except between 32-bit and 64-bit platforms. They are created by
save_files/2, save_modules/2, and save_predicates/2.

query A query is a question put by the user to the Prolog system. A query is written
as a goal followed by a full-stop in response to the Prolog system prompt. For
example,

| 7- father(edward, ralph).
refers to the predicate father/2. If a query has no variables in it, the system
will respond either ‘yes’ or ‘no’. If a query contains variables, the system will
try to find values of those variables for which the query is true. For example,

| 7- father(edward, X).

X = ralph
After the system has found one answer, the user can direct the system to look
for additional answers to the query by typing ;.

recursion The process in which a running predicate calls itself, presumably with different
arguments and for the purpose of solving some subset of the original problem.

region The text between the cursor and a previously set mark in an Emacs buffer.

rule A clause with one or more conditions. For a rule to be true, all of its conditions
must also be true. For example,
has_stiff_neck(ralph) :-
hacker (ralph) .
This rule states that if the individual ralph is a hacker, he must also have a
stiff neck. The constant ralph is replaced in
has_stiff_neck(X) :-
hacker (X).

by the variable X. X unifies with anything, so this rule can be used to prove
that any hacker has a stiff neck.

runtime kernel
A shared object or DLL containing the SICStus virtual machine and other
runtime support for stand-alone executables.

Chapter 2: Glossary 17

runtime system
A stand-alone executable with a restricted set of built-in predicates and no top-
level. Stand-alone applications containing debugged Prolog code and destined
for end-users are typically packaged as runtime systems.

saved-state
A snapshot of the state of Prolog saved in a file by save_program/[1,2].

semantics The relation between the set of Prolog symbols and their combinations (as
Prolog terms and clauses), and their meanings. Compare syntax.

sentence A clause or directive.

side-e ect A predicate that produces a side-effect is one that has any effect on the “outside
world” (the user’s terminal, a file, etc.), or that changes the Prolog database.

simple term
A simple term is a constant or a variable. Simple terms are recognized by the
built-in predicate simple/1.

skeletal goal
A compound term name (arg, ..., arg) or module :name (arg, ..., arg)
denoting a predicate.

small integer
An integer in the range [-2°28,2728-1] on 32-bit platforms, or [-2760,27 60~
1] on 64-bit platforms.

source code
The human-readable, as opposed to the machine-executable, representation of
a program.

source module
The module that is the context of a file being loaded. For module-files, the
source module is named in the file’s module declaration. For other files, the
source module is inherited from the context.

SP_term_ref
A “handle” object providing an interface from C to Prolog terms.

spypoint A special case of breakpoint, the debugger breakpoint, intended for interactive
debugging. Its simplest form, the plain spypoint instructs the debugger to stop
at all ports of all invocations of a specified predicate. Conditional spypoints
apply to a single predicate, but are more selective: the user can supply appli-
cability tests and prescribe the actions to be carried out by the debugger. A
generic spypoint is like a conditional spypoint, but not restricted to a single
predicate. See Section 5.6 [Advanced Debugging], page 210.

stand-alone executable
A binary program that can be invoked from the operating system, containing
the SICStus runtime kernel. A stand-alone executable is a development system
(e.g. the default sicstus executable), or a runtime system. Both kinds are
created by the application builder. A stand-alone executable does not itself
contain any Prolog code; all Prolog code must be loaded upon startup.

18

SICStus Prolog

static predicate

steadfast

stream

stream alias

A predicate that can be modified only by being reloaded or by being abolished.
See dynamic predicate.

A predicate is steadfast if it refuses to give the wrong answer even when the
query has an unexpected form, typically with values supplied for arguments
intended as output.

An input/output channel. See Section 4.6 [ref-iou], page 87.

A name assigned to a stream at the time of opening, which can be referred to
in I/O predicates. Must be an atom. There are also three predefined aliases for
the standard streams: user_input, user_output and user_error. Although
not a stream alias proper, the atom user also stands for the standard input or
output stream, depending on context.

stream object

A term denoting an open Prolog stream. See Section 4.6 [ref-iou], page 87.

stream position

A term representing the current position of a stream. This position is deter-
mined by the current byte, character and line counts and line position. Stan-
dard term comparison on stream position terms works as expected. When SP1
and SP2 refer to positions in the same stream, SP1@<SP2 if and only if SP1
is before SP2 in the stream. You should not otherwise rely on their internal
representation.

stream property

string

A term representing the property of an open Prolog stream. The possible forms

of this term are defined in Section 4.6.7.8 [ref-iou-sth-bos], page 98.

A special syntactic notation, which, by default, denotes a code-list, e.g.:
"SICStus"

By setting the Prolog flag double_quotes, the meaning of strings can be

changed. With an appropriate setting, a string can be made to denote a char-
list, or an atom. Strings are not a separate data type.

subterm selector

syntax

term

trace

A list of argument positions selecting a subterm within a term (i.e. the subterm
can be reached from the term by successively selecting the argument positions
listed in the selector). Example: within the term q, (r, s; t) the subterm s
is selected by the selector [2, 1, 2].

The part of Prolog grammar dealing with the way in which symbols are put
together to form legal Prolog terms. Compare semantics.

A basic data object in Prolog. A term can be a constant, a variable, or a
compound term.

A mode of program execution in which the debugger creeps to the next port
and prints the goal.

Chapter 2: Glossary 19

type-in module

The module that is the context of queries.

unblocked goal

unbound

uni cation

unit clause

variable

volatile

A goal that is not blocked.
A variable is unbound if it has not yet been instantiated.

The process of matching a goal with the head of a clause during the evaluation
of a query, or of matching arbitrary terms with one another during program
execution.

The rules governing the unification of terms are:
Two constants unify with one another if they are identical.
A variable unifies with a constant or a compound term. As a result of the
unification, the variable is instantiated to the constant or compound term.

A variable unifies with another variable. As a result of the unification, they
become the same variable.

A compound term unifies with another compound term if they have the
same functor and if all of the arguments can be unified.

See fact.

A logical variable is a name that stands for objects that may or may not be
determined at a specific point in a Prolog program. When the object for which
the variable stands is determined in the Prolog program, the variable becomes
instantiated. A logical variable may be unified with a constant, a compound
term, or another variable. Variables become uninstantiated when the predicate
they occur in backtracks past the point at which they were instantiated.

Variables may be written as any sequence of alphanumeric characters starting
with either a capital letter or ‘_’; e.g.:

X Y Z Name Position c _305 O0One_stop

See Section 4.1.2.5 [ref-syn-trm-var], page 40.

Predicate property. The clauses of a volatile predicate are not saved in saved-
states.

windowed executable

zip

An executable that pops up its own window when run, and that directs the
standard streams to that window.

Same as debug mode, except no debugging information is collected while zip-
ping.

Chapter 3: How to Run Prolog 21

3 How to Run Prolog

SICStus Prolog offers the user an interactive programming environment with tools for incre-
mentally building programs, debugging programs by following their executions, and modi-
fying parts of programs without having to start again from scratch.

The text of a Prolog program is normally created in a file or a number of files using one of
the standard text editors. The Prolog interpreter can then be instructed to read in programs
from these files; this is called consulting the file. Alternatively, the Prolog compiler can be
used for compiling the file.

3.1 Getting Started

Under UNIX, SICStus Prolog is normally started from one of the shells. On other platforms,
it is normally started by clicking on an icon. However, it is often convenient to run SICStus
Prolog under GNU Emacs instead. A GNU Emacs interface for SICStus Prolog is described
later (see Section 3.11 [Emacs Interface|, page 29). From a UNIX shell, SICStus Prolog is
started by invoking the sicstus command-line tool.

Under UNIX, a saved-state le can be executed directly by typing:
% File argument...

This is equivalent to:
% sicstus -r file [-a argument...]

Please note: As of release 3.7, saved-states do not store the complete path of
the binary sp.exe. Instead, they call the main executable using the version
specific name sicstus-4.0.8, which is assumed to be found in the shell’s path.
If there are several versions of SICStus installed, it is up to the user to make
sure that the correct start-script is found.

Notice that the flags are not available when executing saved-states—all the command-line
arguments are treated as Prolog arguments.

The development system checks that a valid SICStus license exists and, unless the
‘-—nologo’ option was used, responds with a message of identification and the prompt
‘| 7- 7 as soon as it is ready to accept input, thus:

SICStus 4.0.8 ...

Licensed to SICS
| ?-

At this point the top-level is expecting input of a query. You cannot type in clauses or
directives immediately (see Section 3.3 [Inserting Clauses|, page 22). While typing in a
query, the prompt (on following lines) becomes ¢ ’. That is, the ‘| 7- ’ appears only
for the first line of the query, and subsequent lines are indented.

22 SICStus Prolog

3.2 Reading in Programs

A program is made up of a sequence of clauses and directives. The clauses of a predicate
do not have to be immediately consecutive, but remember that their relative order may be
important (see Section 4.2 [ref-sem]|, page 56).

To input a program from a file le, issue a query of the form:
| 7- consult(file).

This instructs the interpreter to read in (consult) the program. Note that it may be neces-
sary to enclose the filename le in single quotes to make it a legal Prolog atom; e.g.:

| 72— consult(’myfile.pl”).
| ?- consult(’/usr/prolog/somefile”).

The specified file is then read in. Clauses in the file are stored so that they can later be
interpreted, while any directives are obeyed as they are encountered. When the end of
the file is found, the system displays on the standard error stream the time spent. This
indicates the completion of the query.

Predicates that expect the name of a Prolog source file, or more generally a file specification,
use the facilities described in Section 4.5 [ref-fdi], page 81 to resolve the file name. File
extensions are optional. There is also support for libraries.

This query can also take any list of filenames, such as:
| 7- consult([myprog,extras,tests]).
In this case all three files would be consulted.

The clauses for all the predicates in the consulted files will replace any existing clauses for
those predicates, i.e. any such previously existing clauses in the database will be deleted.

3.3 Inserting Clauses at the Terminal

Clauses may also be typed in directly at the terminal, although this is only recommended
if the clauses will not be needed permanently, and are few in number. To enter clauses at
the terminal, you must give the special query:

| 7- consult(user).
I

and the new prompt ‘| ’ shows that the system is now in a state where it expects input of
clauses or directives. To return to top level, type “D. The system responds thus:

% consulted user in module user, 20 msec 200 bytes

Chapter 3: How to Run Prolog 23

3.4 Queries and Directives

Queries and directives are ways of directing the system to execute some goal or goals.

In the following, suppose that list membership has been defined by loading the following
clauses from a file:

member (X, [X|_]1).
member (X, [_|L]) :- member(X, L).

(Notice the use of anonymous variables written ‘_’.)

3.4.1 Queries

The full syntax of a query is ‘?-’ followed by a sequence of goals. The top-level expects
queries. This is signaled by the initial prompt ‘| 7- ’. Thus a query at top-level looks like:

| 7- member(b, [a,b,c])-

Remember that Prolog terms must terminate with a full stop (‘.’, possibly followed by
layout text), and that therefore Prolog will not execute anything until you have typed the
full stop (and then RET) at the end of the query.

If the goal(s) specified in a query can be satisfied, and if there are no variables as in this
example, the system answers

yes
and execution of the query terminates.

If variables are included in the query, the final value of each variable is displayed (except
for variables whose names begin with ‘_"). Thus the query

| 7- member(X, [a,b,c])-
would be answered by
X =a

At this point, the development system accepts one-letter commands corresponding to certain
actions. To execute an action simply type the corresponding character (lower or upper case)
followed by RET. The available commands in development systems are:

RET

y “accepts” the solution; the query is terminated and the development system
responds with ‘yes’.

n “rejects” the solution; the development system backtracks (see Section 4.2 [ref-

sem]|, page 56) looking for alternative solutions. If no further solutions can be
found it outputs ‘no’.

b invokes a recursive top-level.

24

=y

SICStus Prolog

In the top-level, a global printdepth is in effect for limiting the subterm nesting
level when printing bindings. The limit is initially 10.

This command, without arguments, resets the printdepth to 10. With an ar-
gument of n, the printdepth is set to n, treating 0 as infinity. This command
works by changing the value of the toplevel_print_options Prolog flag.

A local subterm selector, initially [], is maintained. The subterm selector
provides a way of zooming in to some subterm of each binding. For example,
the subterm selector [2,3] causes the 3rd subterm of the 2nd subterm of each
binding to be selected.

This command, without arguments, resets the subterm selector to [J. With an
argument of 0, the last element of the subterm selector is removed. With an
argument of n (> 0), n is added to the end of the subterm selector. With a list
of arguments, the arguments are applied from left to right.

lists available commands.

While the variable bindings are displayed, all variables occurring in the values are replaced
by terms of the form ’$VAR’ (N) to yield friendlier variable names. Such names come out
as a sequence of letters and digits preceded by ‘_’. The outcome of some queries is shown

below.

| 7- member(X, [tom,dick,harry]).

sl el
nonon

no

-~

< >
[I|

-~

X

t

om ;

dick ;
harry ;

= f
=Db

C

f

member(X, [a,b,f(Y,c)]), member(X, [f(b,2),.d]).
(b,c),

3

member(X, [F(),q])-

(_B)

Directives are like queries except that:

1. Variable bindings are not displayed if and when the directive succeeds.

2. You are not given the chance to backtrack through other solutions.

3.4.2 Directives

Directives start with the symbol ‘:=’. Any required output must be programmed explicitly;
e.g. the directive:

Chapter 3: How to Run Prolog 25

:- member (3, [1,2,3]), write(ok).

asks the system to check whether 3 belongs to the list [1,2,3]. Execution of a direc-
tive terminates when all the goals in the directive have been successfully executed. Other
alternative solutions are not sought. If no solution can be found, the system prints:

x Goal - goal failed
as a warning.

The principal use for directives (as opposed to queries) is to allow files to contain directives
that call various predicates, but for which you do not want to have the answers printed
out. In such cases you only want to call the predicates for their effect, i.e. you don’t want
terminal interaction in the middle of consulting the file. A useful example would be the use
of a directive in a file that consults a whole list of other files, e.g.:

:— consult([bits, bobs, main, tests, data, junk]).

If a directive like this were contained in the file ‘myprog’, typing the following at top-level
would be a quick way of reading in your entire program:

| ?- [myprog].

When simply interacting with the top-level, this distinction between queries and directives
is not normally very important. At top-level you should just type queries normally. In a file,
queries are in fact treated as directives, i.e. if you wish to execute some goals, the directive
in the file must be preceded by ‘:-" or ‘?-’; otherwise, it would be treated as a clause.

3.5 Syntax Errors

Syntax errors are detected during reading. Each clause, directive or, in general, any term
read in by the built-in predicate read/1 that fails to comply with syntax requirements is
displayed on the standard error stream as soon as it is read, along with its position in the
input stream and a mark indicating the point in the string of symbols where the parser has
failed to continue analysis, e.g.:

| member (X, X$L).

I Syntax error

I , or) expected in arguments
! in line 5

| member (X , X

I <<here>>

I

$L)
if ‘¢’ has not been declared as an infix operator.

Note that any comments in the faulty line are not displayed with the error message. If you
are in doubt about which clause was wrong you can use the listing/1 predicate to list all
the clauses that were successfully read in, e.g.:

26 SICStus Prolog

| 7- listing(member/2).

Please note: The built-in predicates read/ [1,2] normally raise an exception on
syntax errors (see Section 4.15 [ref-ere], page 174). The behavior is controlled
by the Prolog flag syntax_errors.

3.6 Undefined Predicates

There is a difference between predicates that have no definition and predicates that have
no clauses. The latter case is meaningful e.g. for dynamic predicates (see Section 4.3.4
[ref-lod-dcl], page 72) that clauses are being added to or removed from. There are good
reasons for treating calls to undefined predicates as errors, as such calls easily arise from
typing errors.

The system can optionally catch calls to predicates that have no definition. First the user de-
fined predicate user:unknown_predicate_handler/3 (see Section 4.15 [ref-ere], page 174)
is called. If undefined or if the call fails the action is governed by the state of the unknown
Prolog flag, which can be:

trace which causes calls to undefined predicates to be reported and the debugger to
be entered at the earliest opportunity.

error which causes calls to such predicates to raise an exception (the default state).
See Section 4.15 [ref-ere|, page 174.

warning which causes calls to such predicates to display a warning message and then
fail.

fail which causes calls to such predicates to fail.

Calls to predicates that have no clauses are not caught.

The built-in predicate unknown (OldState, NewState) unifies OldState with the current
state and sets the state to NewState. The built-in predicate debugging/0 prints the value
of this state along with its other information. This state is also controlled by the unknown
Prolog flag.

3.7 Program Execution And Interruption

Execution of a program is started by giving the system a query that contains a call to one
of the program’s predicates.

Only when execution of one query is complete does the system become ready for another
query. However, one may interrupt the normal execution of a query by typing ~C. This
~C interruption has the effect of suspending the execution, and the following message is
displayed:

Prolog interruption (h or ? for help) 7

Chapter 3: How to Run Prolog 27

At this point, the development system accepts one-letter commands corresponding to certain
actions. To execute an action simply type the corresponding character (lower or upper case)
followed by RET. The available commands in development systems are:

aborts the current computation.
continues the execution.

exits from SICStus Prolog, closing all files.

lists available commands.

invokes a recursive top-level.

~ NO T O35 ® O 9

switch on the debugger. See Chapter 5 [Debug Intro|, page 199.

If the standard input stream is not connected to the terminal, e.g. by redirecting standard
input to a file or a pipe, the above ~C interrupt options are not available. Instead, typing
~C causes SICStus Prolog to exit, and no terminal prompts are printed.

3.8 Exiting From The Top-Level

To exit from the top-level and return to the shell, either type ~D at the top-level, or call the
built-in predicate halt/0, or use the e (exit) command following a ~C interruption.

3.9 Nested Executions—Break

The Prolog system provides a way to suspend the execution of your program and to enter
a new incarnation of the top-level where you can issue queries to solve goals etc. This is
achieved by issuing the query (see Section 3.7 [Execution], page 26):

| ?- break.

This invokes a recursive top-level, indicated by the message:
% Break level 1

You can now type queries just as if you were at top-level.

If another call of break/0 is encountered, it moves up to level 2, and so on. To close the
break and resume the execution that was suspended, type “D. The debugger state and
current input and output streams will be restored, and execution will be resumed at the
predicate call where it had been suspended after printing the message:

% End break

3.10 Saving and Restoring Program States

Once a program has been read, the system will have available all the information necessary
for its execution. This information is called a program state.

28 SICStus Prolog

The saved-state of a program may be saved on disk for future execution. To save a program
into a file File, type the following query. On UNIX platforms, the file becomes executable:

| 7- save_program(File).
You can also specify a goal to be run when a saved program is restored. This is done by:
| 7- save_program(File, start).

where start/0 is the predicate to be called.

Once a program has been saved into a file File, the following query will restore the system
to the saved-state:

| ?- restore(File).

If a saved-state has been moved or copied to another machine, the path names of foreign
resources and other files needed upon restore are typically different at restore time from
their save time values. To solve this problem, certain atoms will be renamed during restore
as follows:

Atoms that had ‘$SP_PATH/library’ (the name of the directory containing the Prolog
Library) as prefix at save time will have that prefix replaced by the corresponding
restore time value.

Atoms that had the name of the directory containing File as prefix at save time will
have that prefix replaced by the corresponding restore time value.

The purpose of this procedure is to be able to build and deploy an application consisting of
a saved-state and other files as a directory tree with the saved-state at the root: as long as
the other files maintain their relative position in the deployed copy, they can still be found
upon restore.

Please note: When creating a saved state with save_program/[1,2], the names
and paths of foreign resources, are included in the saved-state. After restoring
a saved-state, this information is used to reload the foreign resources again.
The state of the foreign resource in terms of global C variables and allocated
memory is thus not preserved. Foreign resources may define init and deinit
functions to take special action upon loading and unloading; see Section 6.2.6
[Init and Deinit Functions], page 262.

As of SICStus Prolog 3.8, partial saved-states corresponding to a set of source files, modules,
and predicates can be created by the built-in predicates save_files/2, save_modules/2,
and save_predicates/2 respectively. These predicates create files in a binary format, by
default with the prefix ‘. po’ (for Prolog object), which can be loaded by load_files/[1,2].
For example, to compile a program split into several source files into a single PO file, type:

| 72— compile(Files), save files(Files, Object).

Chapter 3: How to Run Prolog 29

For each filename given, the first goal will try to locate a source file and compile it into
memory. The second goal will save the program just compiled into a PO file whose default
suffix is ‘.po’. Thus the PO file will contain a partial memory image.

Please note: PO files can be created with any suffix, but cannot be loaded
unless the suffix is ‘. po’!

3.11 Emacs Interface

This section explains how to use the GNU Emacs interface for SICStus Prolog, and how to
customize your GNU Emacs environment for it.

FEmacs is a powerful programmable editor especially suitable for program develop-
ment. It is available for free for many platforms, including various UNIX dialects,
Windows and Mac OS X. For information specific to GNU Emacs or XEmacs, see
http://www.gnu.org and http://www.xemacs.org respectively. For information on run-
ning Emacs under Windows, see the ‘GNU Emacs FAQ For Windows 98/ME/NT/XP and 2000’
at http://wuw.gnu.org/software/emacs/windows/ntemacs.html, much of which applies
to both GNU Emacs and XEmacs.

The advantages of using SICStus in the Emacs environment are source-linked debugging,
auto indentation, syntax highlighting, help on predefined predicates (requires the SICStus
info files to be installed), loading code from inside Emacs, auto-fill mode, and more.

The Emacs interface is not part of SICStus Prolog proper, but is included in the distribution
for convenience. It was written by Emil Astrom and Milan Zamazal, based on an earlier
version of the mode written by Masanobu Umeda. Contributions have also been made by
Johan Andersson, Peter Olin, Mats Carlsson, Johan Bevemyr, Stefan Andersson, and Per
Danielsson, Henrik Bakman, and Tamas Rozméan. Some ideas and also a few lines of code
have been borrowed (with permission) from ‘0z.el’, by Ralf Scheidhauer and Michael Mehl,
the Emacs major mode for the Oz programming language. More ideas and code have been
taken from the SICStus debugger mode by Per Mildner.

3.11.1 Installation

See Section “The Emacs Interface” in SICStus Prolog Release Notes, for more information
about installing the Emacs interface.

There are some differences between GNU Emacs and XEmacs. This will be indicated with
Emacs-Lisp comments in the examples.

3.11.1.1 Quick-Start

Assuming the Emacs interface for SICStus Prolog has been installed in the default location,
inserting a single line in your ‘~/.emacs’ will make Emacs use the SICStus Prolog mode
automatically when editing files with a ‘.pro’ or ‘.pl’ extension. It will also ensure Emacs
can find the SICStus executables and on-line documentation, etc.

Note to Windows users: ‘~/.emacs’ denotes a file ‘.emacs’ in whatever Emacs considers

to be your home directory. See ‘GNU Emacs FAQ For Windows 98/ME/NT/XP and 2000’ at
http://www.gnu.org/software/emacs/windows/ntemacs.html, for details.

http://www.gnu.org
http://www.xemacs.org
http://www.gnu.org/software/emacs/windows/ntemacs.html
http://www.gnu.org/software/emacs/windows/ntemacs.html

30 SICStus Prolog

Under UNIX, assuming SICStus 4.0.8 was installed in ‘/usr/local/’, add the following
line:

(load "/usr/local/lib/sicstus-4.0.8/emacs/sicstus_emacs_init")

Under Windows, assuming SICStus 4.0.8 was installer in ‘C:\Program Files\SICStus
Prolog 4.0.8\’, add the following line:

(load "C:/Program Files/SICStus Prolog
4.0.8/emacs/sicstus_emacs_init")

No other configuration should be needed to get started. If you want to customize things,
look in the ‘sictus_emacs_init.el’ file and the rest of this section.

3.11.1.2 Customizing Emacs

Version 20 of GNU Emacs and XEmacs introduced a new method for editing and storing
user settings. This feature is available from the menu bar as ‘Customize’ and particular
Emacs variables can be customized with M-x customize-variable. Using ‘Customize’ is
the preferred way to modify the settings for Emacs and the appropriate customize commands
will be indicated below, sometimes together with the old method of directly setting Fmacs
variables.

3.11.1.3 Enabling Emacs Support for SICStus

This section is for reference only, it can safely be skipped; it will let you understand the
setup that is performed by the ‘sictus_emacs_init.el’ file.

Assuming the Emacs interface for SICStus Prolog has been installed in the default location,
inserting the following lines in your ‘~/.emacs’ will make Emacs use this mode automatically
when editing files with a ‘.pro’ or ‘.pl’ extension:

(setq load-path

(cons (expand-file-name "/usr/local/lib/sicstus-4.0.8/emacs")

load-path))
(autoload ’run-prolog "prolog" "Start a Prolog sub-process." t)
(autoload ’prolog-mode "prolog" "Major mode for editing Prolog programs." t)
(setq prolog-use-sicstus-sd t)
(setq auto-mode-alist (append ’ (("\\.pro$" . prolog-mode)
("\\.pl$" . prolog-mode))
auto-mode-alist))

where the path in the first line is the file system path to ‘prolog.el’ (the generic Prolog
mode) and ‘sicstus-support.el’ (SICStus specific code). For example, ‘~/emacs’ means
that the file is in the user’s home directory, in directory emacs. Windows paths can be
written like ‘C:/Program Files/SICStus Prolog 4.0.8/emacs’.

3

The last line above makes sure that files ending with ‘.pro’ or ‘.pl’ are assumed to be
Prolog files and not Perl, which is the default Emacs setting for ‘.pl’. If this is undesirable,
remove that line. It is then necessary for the user to manually switch to Prolog mode

Chapter 3: How to Run Prolog 31

by typing M-x prolog-mode after opening a Prolog file; for an alternative approach, see
Section 3.11.4 [Mode Line|, page 34.

If the shell command sicstus is not available in the default path, it is necessary to set the
value of the environment variable EPROLOG to a shell command to invoke SICStus Prolog.
This is an example for C Shell:

% setenv EPROLOG Zusr/local/bin/sicstus

3.11.1.4 Enabling Emacs Support for SICStus Documentation
If you follow the steps in Section Quick Start, above, you can skip this section.
It is possible to look up the documentation for any built-in or library predicate from within

Emacs (using C-c ? or the menu). For this to work Emacs must be told about the location
of the ‘info’-files that make up the documentation.

The default location for the ‘info’-files are ‘<prefix>/1ib/sicstus-4.0.8/doc/info/’ on
UNIX platforms and ‘C:/Program Files/SICStus Prolog 4.0.8/doc/info/’ under Win-
dows.

Add the following to your ‘~/.emacs’ file, assuming INFO is the path to the info files, e.g.
‘C:/Program Files/SICStus Prolog 4.0.8/doc/info/’

(setq Info-default-directory-list
(append Info-default-directory-list ’("INF0")))

for GNU Emacs, or

(setq Info-directory-list
(append Info-directory-list ’("INF0")))

for XEmacs. You can also use M-x customize-group RET info RET if your Emacs is new
enough. You may have to quit and restart Emacs for these changes to take effect.
3.11.2 Basic Configuration

If the following lines are not present in ‘~/.emacs’, we suggest they are added, so that
the font-lock mode (syntax coloring support) is enabled for all major modes in Emacs that
support it.

(global-font-lock-mode t) ; GNU Emacs
(setq font-lock-auto-fontify t) ; XEmacs
(setq font-lock-maximum-decoration t)

These settings and more are also available through M-x customize-group RET font-lock.

If one wants to add font-locking only to the Prolog mode, the two lines above could be
replaced by:

(add-hook ’prolog-mode-hook ’turn-on-font-lock)

32 SICStus Prolog

Similarly, to turn it off only for Prolog mode use:
(add-hook ’prolog-mode-hook ’turn-off-font-lock)

3.11.3 Usage

A Prolog process can be started by choosing Run Prolog from the Prolog menu, by typing
C-c RET, or by typing M-x run-prolog. It is however not strictly necessary to start a prolog
process manually since it is automatically done when consulting or compiling, if needed.
The process can be restarted (i.e. the old one is killed and a new one is created) by typing
C-u C-c RET.

Programs are run and debugged in the normal way, with terminal I/O via the *prolog
buffer. The most common debugging predicates are available from the menu or via key-
bindings.

A particularly useful feature under the Emacs interface is source-linked debugging. This is
enabled or disabled using the Prolog/Source level debugging menu entry. It can also be
enabled by setting the Emacs variable prolog-use-sicstus-sd to t in ‘7/.emacs’. Both
these methods set the Prolog flag source_info to emacs. Its value should be emacs while
loading the code to be debugged and while debugging. If so, the debugger will display
the source code location of the current goal when it prompts for a debugger command, by
overlaying the beginning of the current line of code with an arrow. If source_info was off
when the code was loaded, or if it was asserted or loaded from user, the current goal will
still be shown but out of context.

Note that if the code has been modified since it was last loaded, Prolog’s line number
information may be invalid. If this happens, just reload the relevant buffer.

Consultation and compilation is either done via the menu or with the following key-bindings:

C-c C-f Consult file.

C-c C-b Consult buffer.
C-c C-r Consult region.
C-cC-p Consult predicate.
C-c C-c T Compile file.

C-c C-c b Compile buffer.
C-c C-c r Compile region.
C-c C-c p Compile predicate.

The boundaries used when consulting and compiling predicates are the first and last clauses
of the predicate the cursor is currently in.

Other useful key-bindings are:

M-n Go to the next clause.

Chapter 3: How to Run Prolog 33

M-p Go to the previous clause.
M-a Go to beginning of clause.
M-e Go to end of clause.

M-C-c Mark clause.

M-C-a Go to beginning of predicate.

M-C-e Go to end of predicate.

M-C-h Mark predicate.

M-{ Go to the previous paragraph (i.e. empty line).

M-3 Go to the next paragraph (i.e. empty line).

M-h Mark paragraph.

M-C-n Go to matching right parenthesis.

M-C-p Go to matching left parenthesis.

M-; Creates a comment at comment-column. This comment will always stay at this

position when the line is indented, regardless of changes in the text earlier on
the line, provided that prolog-align-comments-flag is set to t.

C-c C-t
C-u C-c C-t

Enable and disable creeping, respectively.

C-c C-d
C-u C-c C-d
Enable and disable leaping, respectively.

C-cC-z
C-uC-cC-z
Enable and disable zipping, respectively.

C-x SPC

C-u C-x SPC
Set and remove a line breakpoint. This uses the advanced debugger features
introduced in SICStus 3.8; see Section 5.6 [Advanced Debugging], page 210.

C-c C-s Insert the PredSpec of the current predicate into the code.

C-c C-n Insert the name of the current predicate into the code. This can be useful
when writing recursive predicates or predicates with several clauses. See also
the prolog-electric-dot-flag variable below.

C-c C-va Convert all variables in a region to anonymous variables. This can also be done
using the Prolog/Transform/All variables to ’_’ menu entry. See also the
prolog-electric-underscore-flag Emacs variable.

C-c? Help on predicate. This requires the SICStus info files to be installed. If the
SICStus info files are installed in a nonstandard way, you may have to change
the Emacs variable prolog-info-predicate-index.

34 SICStus Prolog

3.11.4 Mode Line

If working with an application split into several modules, it is often useful to let files begin
with a “mode line”:

%% —*- Mode: Prolog; Module: ModuleName; —*-

The Emacs interface will look for the mode line and notify the SICStus Prolog module
system that code fragments being incrementally reconsulted or recompiled should be im-
ported into the module ModuleName. If the mode line is missing, the code fragment will
be imported into the type-in module. An additional benefit of the mode line is that it tells
Emacs that the file contains Prolog code, regardless of the setting of the Emacs variable
auto-mode-alist. A mode line can be inserted by choosing Insert/Module modeline in
the Prolog menu.

3.11.5 Configuration

The behavior of the Emacs interface can be controlled by a set of user-configurable settings.
Some of these can be changed on the fly, while some require Emacs to be restarted. To
set a variable on the fly, type M-x set-variable RET VariableName RET Value RET. Note
that variable names can be completed by typing a few characters and then pressing TAB.

To set a variable so that the setting is used every time Emacs is started, add lines of the
following format to ‘~/.emacs’:

(setq VariableName Value)

Note that the Emacs interface is presently not using the ‘Customize’ functionality to edit
the settings.

The available settings are:

prolog-system
The Prolog system to use. Defaults to ’sicstus, which will be assumed for
the rest of this chapter. See the on-line documentation for the meaning of
other settings. For other settings of prolog-system the variables below named
sicstus-something will not be used, in some cases corresponding functionality
is available through variables named prolog-something.

sicstus-version
The version of SICStus that is used. Defaults to > (4 . 0). Note that the spaces
are significant!

prolog-use-sicstus-sd
Set to t (the default) to enable the source-linked debugging extensions by de-
fault. The debugging can be enabled via the Prolog menu even if this variable
is nil. Note that the source-linked debugging only works if sicstus-version
is set correctly.

Chapter 3: How to Run Prolog 35

pltrace-port-arrow-assoc obsolescent
Only relevant for source-linked debugging, this controls how the various ports
of invocation boxes (see Section 5.1 [Procedure Box], page 199) map to arrows
that point into the current line of code in source code buffers. Initialized as:
) (("C&ll" . ||>>>") (||exit" . ll+++||) (llndexitll . ||?++ll)
(nredon . ||<<<n) ("fail" X u___u) ("exception" X u==>||))
where ndexit is the nondeterminate variant of the Exit port. Do not rely on
this variable. It will change in future releases.

prolog-indent-width
How many positions to indent the body of a clause. Defaults to tab-width,
normally 8.

prolog-paren-indent
The number of positions to indent code inside grouping parentheses. Defaults
to 4, which gives the following indentation.

p -
(q1
; q2,
q3
).

Note that the spaces between the parentheses and the code are automatically
inserted when TAB is pressed at those positions.

prolog-align-comments-flag
Set to nil to prevent single %-comments from being automatically aligned.
Defaults to t.

Note that comments with one 7% are indented to comment-column, comments
with two % to the code level, and that comments with three % are never changed
when indenting.

prolog-indent-mline-comments—-flag
Set to nil to prevent indentation of text inside /* ... */ comments. Defaults
t.

prolog-object-end-to-0-flag
Set to nil to indent the closing } of an object definition to prolog-indent-
width. Defaults to t.

sicstus-keywords
This is a list with keywords that are highlighted in a special color when used
as directives (i.e. as :- keyword). Defaults to

> ((sicstus
("block" "discontiguous" "dynamic" "initialization"
"meta_predicate" "mode" "module" "multifile" "public"
"volatile")))

prolog-electric—newline-flag
Set to nil to prevent Emacs from automatically indenting the next line when
pressing RET. Defaults to t.

36 SICStus Prolog

prolog-hungry-delete-key-flag
Set to t to enable deletion of all white space before the cursor when pressing
DEL (unless inside a comment, string, or quoted atom). Defaults to nil.

prolog-electric-dot-flag
Set to t to enable the electric dot function. If enabled, pressing . at the end of
a non-empty line inserts a dot and a newline. When pressed at the beginning of
a line, a new head of the last predicate is inserted. When pressed at the end of
a line with only whitespace, a recursive call to the current predicate is inserted.
The function respects the arity of the predicate and inserts parentheses and the
correct number of commas for separation of the arguments. Defaults to nil.

prolog-electric-underscore-flag
Set to t to enable the electric underscore function. When enabled, pressing
underscore (_) when the cursor is on a variable, replaces the variable with the
anynomous variable. Defaults to nil.

prolog-old-sicstus-keys—-flag
Set to t to enable the key-bindings of the old Emacs interface. These bind-
ings are not used by default since they violate GNU Emacs recommendations.
Defaults to nil.

prolog-use-prolog-tokenizer-flag
Set to nil to use built-in functions of Emacs for parsing the source code when
indenting. This is faster than the default but does not handle some of the
syntax peculiarities of Prolog. Defaults to t.

prolog-parse-mode
What position the parsing is done from when indenting code. Two possible
settings: *beg-of-line and ’beg-of-clause. The first is faster but may result
in erroneous indentation in /* ... */ comments. The default is *beg-of-1line.

prolog-imenu-flag
Set to t to enable a new Predicate menu that contains all predicates of the
current file. Choosing an entry in the menu moves the cursor to the start of
that predicate. Defaults to nil.

prolog-info-predicate-index
The info node for the SICStus predicate index. This is important if the online
help function is to be used (by pressing C-c ?, or choosing the Prolog/Help on
predicate menu entry). The default setting is " (sicstus)Predicate Index".

prolog-underscore-wordchar-flag
Set to nil to not make underscore (_) a word-constituent character. Defaults
to t.

3.11.6 Tips

Some general tips and tricks for using the SICStus mode and Emacs in general are given
here. Some of the methods may not work in all versions of Emacs.

Chapter 3: How to Run Prolog 37

3.11.6.1 Font-locking

When editing large files, it might happen that font-locking is not done because the file is
too large. Typing M-x lazy-lock-mode, which is much faster, results in only the visible
parts of the buffer being highlighted; see its Emacs on-line documentation for details.

If the font-locking seems to be incorrect, choose Fontify Buffer from the Prolog menu.

3.11.6.2 Auto-fill Mode

Auto-fill mode is enabled by typing M-x auto-fill-mode. This enables automatic line
breaking with some features. For example, the following multiline comment was created
by typing M-; followed by the text. The second line was indented and a ‘%’ was added
automatically.

dynamics([1). % A list of pit furnace
% dynamic instances

3.11.6.3 Speed

There are several things to do if the speed of the Emacs environment is a problem:

First of all, make sure that ‘prolog.el’ and ‘sicstus-support.el’ are compiled, i.e.
that there is a ‘prolog.elc’ and a ‘sicstus-support.elc’ file at the same location
as the original files. To do the compilation, start Emacs and type M-x byte-compile-
file RET path RET, where path is the path to the ‘*.el’ file. Do not be alarmed if
there are a few warning messages as this is normal. If all went well, there should now
be a compiled file, which is used the next time Emacs is started.

The next thing to try is changing the setting of prolog-use-prolog-tokenizer-flag
to nil. This means that Emacs uses built-in functions for some of the source code
parsing, thus speeding up indentation. The problem is that it does not handle all
peculiarities of the Prolog syntax, so this is a trade-off between correctness and speed.

The setting of the prolog-parse-mode variable also affects the speed, >beg-of-line
being faster than ’beg-of-clause.

Font locking may be slow. You can turn it off using customization, available through
M-x customize-group RET font-lock RET. An alternative is to enable one of the
lazy font locking modes. You can also turn it off completely; see Section 3.11.2 [Basic
Configuration|, page 31.

3.11.6.4 Changing Colors

The Prolog mode uses the default Emacs colors for font-locking as far as possible. The only
custom settings are in the Prolog process buffer. The default settings of the colors may not
agree with your preferences, so here is how to change them.

If your Emacs supports it, use ‘Customize’. M-x customize-group RET font-lock RET
will show the ‘Customize’ settings for font locking and also contains pointers to the
‘Customize’ group for the font lock (type)faces. The rest of this section outlines the more
involved methods needed in older versions of Emacs.

38 SICStus Prolog

First of all, list all available faces (a face is a combined setting of foreground and background
colors, font, boldness, etc.) by typing M-x list-faces-display.

There are several functions that change the appearance of a face, the ones you will most
likely need are:

set-face-foreground
set-face-background
set-face-underline-p
make-face-bold
make-face-bold-italic
make-face-italic
make-face-unbold

make-face-unitalic

These can be tested interactively by typing M-x function-name. You will then be asked
for the name of the face to change and a value. If the buffers are not updated according to
the new settings, refontify the buffer using the Fontify Buffer menu entry in the Prolog
mentu.

Colors are specified by a name or by RGB values. Available color names can be listed with
M-x list-colors-display.

To store the settings of the faces, a few lines must be added to ‘~/.emacs’. For example:

;; Customize font-lock faces
(add-hook ’font-lock-mode-hook
> (lambda ()
(set-face-foreground font-lock-variable-name-face "#00a000")
(make-face-bold font-lock-keyword-face)
(set-face-foreground font-lock-reference-face "Blue")

))

Chapter 4: The Prolog Language 39

4 The Prolog Language

This chapter describes the syntax and semantics of the Prolog language, and introduces
the central built-in predicates and other important language constructs. In many cases, an
entry in a list of built-in predicates, will be annotated with keywords. These annotations
are defined in Section 11.1.3 [mpg-ref-cat], page 758.

4.1 Syntax
4.1.1 Overview

This section describes the syntax of SICStus Prolog.

4.1.2 Terms
4.1.2.1 Overview

The data objects of the language are called terms. A term is either a constant, a variable,
or a compound term.

A constant is either a number (integer or floating-point) or an atom. Constants are definite
elementary objects, and correspond to proper nouns in natural language.

Variables and compound terms are described in Section 4.1.2.5 [ref-syn-trm-var|, page 40,
and Section 4.1.3 [ref-syn-cpt|, page 41, respectively.

Foreign data types are discussed in the context of library(structs); see Section 10.22
[lib-structs|, page 460.

4.1.2.2 Integers

The printed form of an integer consists of a sequence of digits optionally preceded by a
minus sign (‘-’). These are normally interpreted as base 10 integers. It is also possible to
enter integers in base 2 (binary), 8 (octal), and 16 (hexadecimal); this is done by preceding
the digit string by the string ‘0b’, ‘00’, or ‘0x’ respectively. The characters A-F or a-f stand
for digits greater than 9. For example, the following tokens all represent the integer fifteen:

15 Ob1111 Ool7 Oxf

Note that
+525

is not a valid integer.

There is also a special notation for character constants. E.g.:
0’A 0°\x41\ 0°\101\

are all equivalent to 65 (the character code for ‘A’). ‘0°’ followed by any character except
‘\” (backslash) is thus read as an integer. If ‘0°’ is followed by ‘\’, the ‘\’ denotes the start
of an escape sequence with special meaning (see Section 4.1.7.6 [ref-syn-syn-esc|, page 55).

40 SICStus Prolog

4.1.2.3 Floating-point Numbers

A floating-point number (float) consists of a sequence of digits with an embedded decimal
point, optionally preceded by a minus sign (-), and optionally followed by an exponent
consisting of upper- or lowercase ‘E’ and a signed base 10 integer. Examples of floats are:

1.0 -23.45 187.6E12 -0.0234e15 12.0E-2
Note that there must be at least one digit before, and one digit after, the decimal point.

4.1.2.4 Atoms

An atom is identified by its name, which is a sequence characters, and can be written in
any of the following forms:

(S

Any sequence of alphanumeric characters (including ‘_’), starting with a lowercase
letter. Note that an atom may not begin with an underscore. The characters that are
allowed to occur in such an unquoted atom are restricted to a subset of Unicode; see
Section 4.1.7.5 [ref-syn-syn-tok], page 51.

Any sequence from the following set of characters (except ‘/*’, which begins a com-
ment):

+-%x /\"<>=":,.70#$ &

Any sequence of characters delimited by single quotes. Backslashes in the sequence
denote escape sequences (see Section 4.1.7.6 [ref-syn-syn-esc|, page 55), and if the single
quote character is included in the sequence it must be escaped, e.g. >can\’t’. The
characters that are allowed to occur in such a quoted atom are restricted to a subset of

Unicode; see Section 4.1.7.5 [ref-syn-syn-tok|, page 51. Backquotes are allowed as an
alternative to quotes.

Any of:

v 0 {3
Note that the bracket pairs are special: ‘[]’ and ‘{}’ are atoms but ‘[’; ‘1°, ‘{’, and ‘}’
are not. The form [X] is a special notation for lists (see Section 4.1.3.1 [ref-syn-cpt-lis],
page 42) as an alternative to . (X, [1), and the form {X} is allowed as an alternative

to {3(X).

Examples of atoms are:
a wvoid = := ’Anything in quotes’ []

Please note: It is recommended that you do not invent atoms beginning with
the character ‘§’, since it is possible that such names may conflict with the
names of atoms having special significance for certain built-in predicates.

4.1.2.5 Variables

Variables may be written as any sequence of alphanumeric characters (including ‘_’) begin-
ning with either a capital letter or ‘_’. For example:

X Value A A1 -3 _RESULT

Chapter 4: The Prolog Language 41

If a variable is referred to only once in a clause, it does not need to be named and may be
written as an anonymous variable, represented by the underline character ‘_’ by itself. Any
number of anonymous variables may appear in a clause; they are read as distinct variables.
Anonymous variables are not special at runtime.

4.1.2.6 Foreign Terms

Pointers to C data structures can be handled using the Structs package.

4.1.3 Compound Terms

The structured data objects of Prolog are compound terms. A compound term comprises
a functor (called the principal functor of the term) and a sequence of one or more terms
called arguments. A functor is characterized by its name, which is an atom, and its arity or
number of arguments. For example, the compound term whose principal functor is ‘point’
of arity 3, and which has arguments X, Y, and Z, is written

point(X, Y, Z)

When we need to refer explicitly to a functor we will normally denote it by the form
Name /Arity. Thus, the functor ‘point’ of arity 3 is denoted

point/3
Note that a functor of arity 0 is represented as an atom.

Functors are generally analogous to common nouns in natural language. One may think of
a functor as a record type and the arguments of a compound term as the fields of a record.
Compound terms are usefully pictured as trees. For example, the (compound) term

s(np(john), vp(v(likes), np(mary)))
would be pictured as the following tree:

S

np vp

john v np

likes mary

The principal functor of this term is s/2. Its arguments are also compound terms. In
illustration, the principal functor of the first argument is np/1.

Sometimes it is convenient to write certain functors as operators; binary functors (that is,
functors of two arguments) may be declared as in X operators, and unary functors (that is,
functors of one argument) may be declared as either pre X or post x operators. Thus it is
possible to write

X+Y P;Q X<y +X P;

42 SICStus Prolog

as optional alternatives to

+X,Y) (P, <&E,) +X ;®
The use of operators is described fully in Section 4.1.5 [ref-syn-ops], page 43.
4.1.3.1 Lists

Lists form an important class of data structures in Prolog. They are essentially the same as
the lists of Lisp: a list is either the atom [], representing the empty list, or else a compound
term with functor . and two arguments, which are the head and tail of the list respectively,
where the tail of a list is another list. Thus a list of the first three natural numbers is the
structure

/ \
1 .
/ \
2 .
/ \
3 0
which could be written using the standard syntax, as (A) but which is normally written in

a special list notation, as (B). Two examples of this list notation, as used when the tail of
a list is a variable, are (C), which represent the structure in (D).

.(1,.02,.@8,1HON (A)
[1,2,3] (B)
[XIL] [a,b|L] (9]
/ \ / \
X L a .
/ \
b L (D)

Note that the notation [X|L] does not add any new power to the language; it simply
improves readability. These examples could be written equally well as (E).

-X,L) .(a,.(,L)) (E)

4.1.3.2 Strings As Lists

For convenience, a further notational variant is allowed for lists of integers that correspond
to character codes. Lists written in this notation are called strings. E.g.:

"SICStus"

which, by default, denotes exactly the same list as

Chapter 4: The Prolog Language 43

[83,73,67,83,116,117,115]

The Prolog flag double_quotes can be used to change the way strings are interpreted. The
default value of the flag is codes, which implies the above interpretation. If the flag is set
to chars, a string is transformed to a list of character atoms. E.g. with this setting the
above string represents the list:

[!S),JI),JC7’7SJ,t,u’S]

Finally if double_quotes has the value atom, the string is made equivalent to the atom
formed from its characters: the above sample string is then the same as the atom >SICStus’.

Please note: Most code assumes that the Prolog flag double_quotes has its default value
(codes). Changing this flag is not recommended.

Backslashes in the sequence denote escape sequences (see Section 4.1.7.6 [ref-syn-syn-esc],
page 55). As for quoted atoms, if a double quote character is included in the sequence it
must be escaped, e.g. "can\"t".

The built-in predicates that print terms (see Section 4.6.4 [ref-iou-tou], page 89) do not use
string syntax even if they could.

The characters that are allowed to occur within double quotes are restricted to a subset of
Unicode; see Section 4.1.7.5 [ref-syn-syn-tok], page 51.
4.1.4 Character Escaping

The character escaping facility is prescribed by the ISO Prolog standard, and allows escape
sequences to occur within strings and quoted atoms, so that programmers can put non-
printable characters in atoms and strings and still be able to see what they are doing.

Strings or quoted atoms containing escape sequences can occur in terms obtained by
read/[1,2], compile/1, and so on. The ‘0’’ notation for the integer code of a charac-
ter is also affected by character escaping.

The only characters that can occur in a string or quoted atom are the printable charac-
ters and SPC. All other layout characters must be expressed with escape sequences (see
Section 4.1.7.6 [ref-syn-syn-esc|, page 55).

4.1.5 Operators and their Built-in Predicates

4.1.5.1 Overview

Operators in Prolog are simply a notational convenience. For example, ‘+’ is an infix
operator, so

2 +1

is an alternative way of writing the term +(2, 1). That is, 2 + 1 represents the data
structure

44 SICStus Prolog

and not the number 3. (The addition would only be performed if the structure were passed
as an argument to an appropriate procedure, such as is/2; see Section 4.7.2 [ref-ari-eae],
page 104.)

Prolog syntax allows operators of three kinds: in X, pre X, and post X. An infix operator
appears between its two arguments, while a prefix operator precedes its single argument
and a postfix operator follows its single argument.

Each operator has a precedence, which is a number from 1 to 1200. The precedence is used
to disambiguate expressions in which the structure of the term denoted is not made explicit
through the use of parentheses. The general rule is that the operator with the highest
precedence is the principal functor. Thus if ‘+’ has a higher precedence than ‘/’, then

a+b/c a+(b/c)

are equivalent, and denote the term +(a,/(b,c)). Note that the infix form of the term
/(+(a,b),c) must be written with explicit parentheses:

(a+b)/c

If there are two operators in the expression having the same highest precedence, the am-
biguity must be resolved from the types of the operators. The possible types for an infix
operator are

xfx
xfy
yfx

Operators of type ‘xfx’ are not associative: it is required that both of the arguments of the
operator be subexpressions of lower precedence than the operator itself; that is, the principal
functor of each subexpression must be of lower precedence, unless the subexpression is
written in parentheses (which gives it zero precedence).

Operators of type ‘xfy’ are right-associative: only the first (left-hand) subexpression must
be of lower precedence; the right-hand subexpression can be of the same precedence as the
main operator. Left-associative operators (type ‘yfx’) are the other way around.

An atom named Name is declared as an operator of type Type and precedence Precedence
by the command

:-op(Precedence, Type, Name).

An operator declaration can be cancelled by redeclaring the Name with the same Type, but
Precedence 0.

Chapter 4: The Prolog Language 45

The argument Name can also be a list of names of operators of the same type and precedence.

It is possible to have more than one operator of the same name, so long as they are of
different kinds: infix, prefix, or postfix. Note that the ISO Prolog standard contains the
restriction that there should be no infix and postfix operators with the same name, however,
SICStus Prolog lifts this restriction.

An operator of any kind may be redefined by a new declaration of the same kind. This
applies equally to operators that are provided as standard, except for the ’>,’ operator.
Declarations for all these built-in operators can be found in Section 4.1.5.4 [ref-syn-ops-
bop]|, page 47.

For example, the built-in operators ‘+’ and ‘-’ are as if they had been declared by (A) so
that (B) is valid syntax, and means (C) or pictorially (D).

:-op(500, yfx, [+,-1). (»)
a-b+c (B
(a-b)+c ©
+
/ 0\
- c
/ \
a b (D)

The list functor ./2 is not a standard operator, but we could declare it to be (E) and then
(F) would represent the structure (G).

:-op(600, xfy, .). (E)
a.b.c €]
/\
a .
/' \
b ¢ (®

Contrasting this with the diagram above for a-b+c shows the difference between ‘yfx’ oper-
ators where the tree grows to the left, and ‘xfy’ operators where it grows to the right. The
tree cannot grow at all for ‘xfx’ operators; it is simply illegal to combine ‘xfx’ operators
having equal precedences in this way.

The possible types for a prefix operator are:

fx
fy

46 SICStus Prolog

and for a postfix operator they are:

xf
yf

The meaning of the types should be clear by analogy with those for infix operators. As an
example, if not were declared as a prefix operator of type fy, then

not not P

would be a permissible way to write not(not(P)). If the type were fx, the preceding
expression would not be legal, although

not P
would still be a permissible form for not (P).

If these precedence and associativity rules seem rather complex, remember that you can
always use parentheses when in any doubt.
4.1.5.2 Manipulating and Inspecting Operators

To add or remove an operator, use op(Precedence, Type, Name). op/3 declares the atom
Name to be an operator of the stated Type and Precedence. If Precedence is 0, the operator
properties of Name (if any) are cancelled.

To examine the set of operators currently in force, use current_op(Precedence, Type,
Name).

4.1.5.3 Syntax Restrictions

Note carefully the following syntax restrictions, which serve to remove potential ambiguities
associated with prefix operators.

1. The arguments of a compound term written in standard syntax must be expressions
of precedence less than 1000. Thus it is necessary to write the expression P:-Q in

parentheses
assert ((P:-Q))
because the precedence of the infix operator ‘:-’, and hence of the expression P:-Q, is

1200. Enclosing the expression in parentheses reduces its precedence to 0.

2. Similarly, the elements of a list written in standard syntax must be expressions of prece-
dence less than 1000. Thus it is necessary to write the expression P->Q in parentheses

[(P—>Q)]

because the precedence of the infix operator ‘=>’, and hence of the expression P->Q, is
1050. Enclosing the expression in parentheses reduces its precedence to 0.

3. In a term written in standard syntax, the principal functor and its following ‘(" must
not be separated by any intervening spaces, newlines, or other characters. Thus

point (X,Y,Z)

is invalid syntax.

Chapter 4: The Prolog Language 47

4. If the argument of a prefix operator starts with a ‘(’, this ‘(" must be separated from
the operator by at least one space or other layout character. Thus
:=(p;q),r.
(where ‘: =" is the prefix operator) is invalid syntax. The system would try to interpret
it as the structure:

p q
That is, it would take ‘: -’ to be a functor of arity 1. However, since the arguments of a
functor are required to be expressions of precedence less than 1000, this interpretation
would fail as soon as the ¢;’ (precedence 1100) were encountered.
In contrast, the term:
= (p;q),r.
is valid syntax and represents the following structure:

/ \
; r
/ \
P 4q

4.1.5.4 Built-in Operators

:— op(1200, xfx, [:-, ——> 1).

:- op(1200, fx, [:=, 7= 1).

:- op(1150, fx, [mode, public, dynamic, volatile, discontiguous,
multifile, block, meta_predicate,
initialization J]).

:= op(1100, xfy, [; 1).

:= op(1050, xfy, [-> 1).

:- op(1000, xfy, [’,” 1).

:- op(900, fy, [\+, spy, nospy 1).

:- op(700, xfx, [=, \=, is, =.., ==, \==, 0K, @, 0=<, ©O>=,
=:=, =\=, <, >, =<, >=]).

:- op(550, xfy, [: 1).

:— op(500, yfx, [+, -, \, /\, \/ D).

:- op(400, yfx, [*, /, //, mod, rem, <<, >>]).

:= op(200, xfx, [*x]1).

:= op(200, xfy, [-~ 1).

:= op(200, fy, [+, -, \ D.

48 SICStus Prolog

the above operators are as in the ISO Prolog standard, except the following, which are not
present in ISO Prolog at all:

op(1150, fx, [mode, public, dynamic, volatile, discontiguous,
multifile, block, meta_predicate,
initialization J]).

:= op(900, fy, [spy, nospy 1).

:— op(550, xfy, [: 1).

:— op(500, yfx, [\ 1.

:- op(200, fy, [+

4.1.6 Commenting

Comments have no effect on the execution of a program, but they are very useful for making
programs more comprehensible. T'wo forms of comments are allowed:

1. The character ‘%’ followed by any sequence of characters up to the end of the line.

2. The symbol ‘/#’ followed by any sequence of characters (including newlines) up to the
symbol ‘x/’.

4.1.7 Formal Syntax
4.1.7.1 Overview

A Prolog program consists of a sequence of sentences. Each sentence is a Prolog term. How
sentences are interpreted as terms is defined in Section 4.1.7.3 [ref-syn-syn-sen|, page 49,
below. Note that a term representing a sentence may be written in any of its equivalent
syntactic forms. For example, the functor :-/2 could be written in standard prefix notation
instead of as the usual infix operator.

Terms are written as sequences of tokens. Tokens are sequences of characters, which are
treated as separate symbols. Tokens include the symbols for variables, constants, and
functors, as well as punctuation characters such as parentheses and commas.

The interpretation of sequences of tokens as terms is defined in Section 4.1.7.4 [ref-syn-syn-
trm]|, page 50. Each list of tokens that is read in (for interpretation as a term or sentence)
must be terminated by a full-stop (a period followed by a layout character such as newline
or space) token. Two tokens must be separated by a space if they could otherwise be
interpreted as a single token. Both spaces and comments are ignored when interpreting the
token list as a term. A comment may appear at any point in a token list (separated from
other tokens by spaces where necessary).

The interpretation of sequences of characters as tokens is defined in Section 4.1.7.5 [ref-syn-
syn-tok|, page 51. The next section describes the notation used in the formal definition of
Prolog syntax.

4.1.7.2 Notation

Syntactic categories (or nonterminals) are printed in italics, for example query. De-
pending on the section, a category may represent a class of either terms, token lists, or
character strings.

Chapter 4: The Prolog Language 49

A syntactic rule takes the general form
C ::=F1
| F2
| F3

which states that an entity of category C may take any of the alternative forms F1,
F2, or F3.

Certain definitions and restrictions are given in ordinary English, enclosed in braces
(4F).

A category written as ‘C..." denotes a sequence of one or more Cs.

A category written as ‘?C’ denotes an optional C. Therefore ‘?C..." denotes a sequence
of zero or more Cs.

A few syntactic categories have names with arguments, and rules in which they appear
may contain meta-variables in the form of italicized capital letters. The meaning of

such rules should be clear from analogy with the definite clause grammars described in
Section 4.14 [ref-gru|, page 166.

In Section 4.1.7.4 [ref-syn-syn-trm]|, page 50, particular tokens of the category Name (a
name beginning with a capital letter) are written as quoted atoms, while tokens that
are individual punctuation characters are written literally.

4.1.7.3 Syntax of Sentences as Terms

sentence ::= module : sentence
| list { where list is a list of sentence }
| clause
| directive
| query
| grammar-rule
clause = rule | unit-clause
rule ::= head :- body
unit-clause ::= head { where head is not otherwise a
sentence }
directive == :- body
query = 7- body
head ::= module : head
| goal { where goal is not a variable }
body ::= module : body
| body -> body disj body
| body -> body
| \+ body
| body disj body
| body , body

| goal

50

goal

grammar-rule
gr-head

gr-body

non-terminal

terminals
gr-condition
module

disj

4.1.7.4 Syntax

term-read-in
subterm(N)

term(N)

term(1100)

term(1000)
term(0)

= term

::= gr-head --> gr-body
::= module : gr-head

| gr-head , terminals

| non-terminal

::= module : gr-body
| gr-body -> gr-body disj gr-
body

| gr-body -> gr-body
| \+ gr-body

| gr-body disj gr-body
| gr-body , gr-body

| non-terminal

| terminals

| gr-condition

= term

= list | string
=1 | {body}
;.= atom

=
of Terms as Tokens

::= subterm(1200) full-stop
== term(M)

= op(N,fx) subterm(N-1)

| op(N,fy) subterm(N)

| subterm(N-1)
subterm(N-1)

| subterm(N-1) op(N,xfy) sub-
term(N)

| subterm(N)
subterm(N-1)

| subterm(N-1) op(N,xf)

| subterm(N) op(N,yf)

n= subterm(1099) |
subterm(1100)

::= subterm(999) , subterm(1000)
::= functor (arguments)

op(N,xfx)

op(N,yfx)

SICStus Prolog

{ where term is not otherwise a

body }

{ where non-terminal is not a vari-
able }

{ where term is not otherwise a

gr-body

{read as ; }

{ where M is less than or equal to
N

{ except in the case of a number if
subterm starts with a ‘(’, op must
be followed by layout-text }

{ if subterm starts with a ‘(’, op
must be followed by layout-text }

{ term with functor ;/2 }

{ term with functor ’>,’/2 }
{ provided there is no layout-text
between the functor and the ‘(" }

Chapter 4: The Prolog Language 51

| (subterm(1200))
| { subterm(1200) }
| list
| string
| constant
| variable
op(N,T) = name { where name has been declared
as an operator of type T and
precedence N }
arguments ::= subterm(999)
| subterm(999) , arguments
list a= [
| [listexpr]
listexpr ::= subterm(999)
| subterm(999) , listexpr
| subterm(999) | subterm(999)

constant ::= atom | number
number ::= unsigned-number
| sign unsigned-number
| sign inf
| sign nan
unsigned-number ::= natural-number | unsigned-
oat
atom ::= name
functor ;1= name

4.1.7.5 Syntax of Tokens as Character Strings

SICStus Prolog supports wide characters (up to 31 bits wide), interpreted as a superset of
Unicode.

Each character in the code set has to be classified as belonging to one of the character
categories, such as small-letter, digit, etc. This classification is called the character-type
mapping, and it is used for defining the syntax of tokens.

Only character codes 0..255, i.e. the ISO 8859/1 (Latin 1) subset of Unicode, can be
part of unquoted tokens', unless the Prolog flag legacy_char_classification is set; see
Section 4.9.4 [ref-lps-flg], page 119. This restriction may be lifted in the future.

For quoted tokens, i.e. quoted atoms and strings, almost any sequence of code points as-
signed to non-private abstract characters in Unicode 5.0 is allowed. The disallowed charac-
ters are those in the layout-char category except that space (character code 32) is allowed
despite it being a layout-char.

An additional restriction is that the sequence of characters that makes up a quoted token
must be in Normal Form C (NFC) http://www.unicode.org/reports/tri5/. This is

L Characters outside this range can still be included in quoted atoms and strings by using escape sequences
(see Section 4.1.7.6 [ref-syn-syn-esc|, page 55).

http://www.unicode.org/reports/tr15/

52 SICStus Prolog

currently (SICStus Prolog 4.0.3) not enforced. A future version of SICStus Prolog may
enforce this restriction or perform this normalization automatically.

NFC is the normalization form used on the web (http://www.w3.org/TR/charmod/) and
what most software can be expected to produce by default. Any sequence consisting of only
characters from Latin 1 is already in NFC.

Note: Any output produced by write_term/2 with the option quoted(true) will be in
NFC. This includes output from writeq/[1,2] and write_canonical/[1,2].

layout-char
These are character codes 0..32, 127..160, 8206..8207, and 8232..8233. This
includes ASCII characters such as TAB, LFD, and SPC, as well as all characters
with Unicode property “Pattern_-Whitespace” including the Unicode-specific
LINE SEPARATOR (8232).

small-letter

These are character codes 97..122, i.e. the letters ‘a’ through ‘z’, as well as the
non-ASCII character codes 170, 186, 223..246, and 248..255.

If the Prolog flag legacy_char_classification (see Section 4.9.4 [ref-Ips-flg],
page 119) is set then the small-letter set will also include almost every code
point above 255 assigned to non-private abstract characters in Unicode 5.0.

capital-letter
These are character codes 65..90, i.e. the letters ‘A’ through ‘Z’; as well as the
non-ASCII character codes 192..214, and 216..222.

digit These are character codes 48..57, i.e. the digits ‘0’ through ‘9’.

symbol-char
These are character codes 35, 36, 38, 42, 43, 45..47, 58, 60..64, 92, 94, and 126,
i.e. the characters:

+-%x/\N"<>=":_.70#$%¢&
In addition, the non-ASCII character codes 161..169, 171..185, 187..191, 215,
and 247 belong to this character type?.
solo-char These are character codes 33 and 59 i.e. the characters ‘!’ and *;’ .
punctuation-char
These are character codes 37, 40, 41, 44, 91, 93, and 123..125, i.e. the characters:
hCHY, L1 L1}

guote-char

These are character codes 34, 39, and 96 i.e. the characters ‘", *>’, and ‘¢’.

underline This is character code 95 i.e. the character ‘_’ .

Other characters are unclassified and may only appear in comments and to some extent, as
discussed above, in quoted atoms and strings.

2 In SICStus Prolog 4.0.0 and in SICStus 3 the lower case characters 170 and 186 were incorrectly classified
as symbol-char. This was corrected in SICStus Prolog 4.0.1.

http://www.w3.org/TR/charmod/

Chapter 4: The Prolog Language

token

name

word
symbol

natural-number

unsigned- oat

simple- oat
exp
exponent
sign
variable

string
string-item

quoted-atom
quoted-item

backquoted-atom
backquoted-item

layout-text

1= nName

| natural-number
| unsigned- oat

| variable

| string

| punctuation-char
| layout-text

| full-stop

::= quoted-name

| word

| symbol

| solo-char

| [?layout-text]
| { ?layout-text }

::= small-letter ?alpha. ..

= symbol-char. ..

= digit. . .

| base-pre x alpha. ..

| 0’ char-item

= simple- oat

| simple- oat exp exponent
== digit. .. . digit. .

n=¢e | E

= digit. .. | sign digit. ..
n=— |+

::= underline ?alpha. .

| capital-letter ’?alpha

= " ?string-item. .. "
::= quoted-char

| \ escape-sequence

=’ ?quoted-item. ..’
::= quoted-char

|))

| \ escape-sequence

= ¢ ?backquoted-item. ..
::= quoted-char

|t{

| \ escape-sequence
= layout-text-item. . .

93

{ except in the case of a full-stop
or where the first 2 chars are ‘/*’

}

{ where each alpha must be
digits of the base indicated by
base-pre X, treating a,b,... and
AB,...as10,11,... }

{ yielding the character code for
char }

{ other than ‘"’ or ‘\’ }
{ other than ‘*’

or ‘\’}

{ other than ‘¢’ or ‘\’ }

54

layout-text-item
comment

full-stop
char

printing-char

alpha

escape-sequence

quoted-name

base-pre x

char-item
other-escape-
sequence

guoted-char

::= layout-char | comment
= /* ?char... x/

| % 2?char... LFD

::= layout-char

| printing-char
::= alpha

| symbol-char

| solo-char

| punctuation-char
| quote-char

::= capital-letter | small-letter |
digit | underline
=D

| t

H Hh < B

e

d

a
other-escape-sequence
::= quoted-atom

| backquoted-atom
= 0b

| 0o

| Ox

::= quoted-item
m=xalpha... \

| o digit... \

FD

4

= SPC
| printing-char

SICStus Prolog

{ where ?char... must not con-
tain ‘*/’ }
{ where ?char. ..
tain LFD }
{ the following token, if any, must

be layout-text}

must not con-

{ backspace, character code 8 }

{ horizontal tab, character code 9
}

{ newline, character code 10 }

{ vertical tab, character code 11 }
{ form feed, character code 12 }
{ carriage return, character code
13}

{ escape, character code 27 }

{ delete, character code 127 }

{ alarm, character code 7 }

{ indicates base 2 }
{ indicates base 8 }
{ indicates base 16 }

{treating a,b,... and A,B,... as
10,11,... } in the range [0..15],
hex character code }

{ in the range [0..7], octal charac-
ter code }

{ ignored }

{ stands for itself }

{ stands for itself }

{ stands for itself }

{ stands for itself }

Chapter 4: The Prolog Language 55

4.1.7.6 Escape Sequences

A backslash occurring inside integers in ‘0’’ notation or inside quoted atoms or strings
has special meaning, and indicates the start of an escape sequence. The following escape
sequences exist:

\b backspace (character code 8)

\t horizontal tab (character code 9)
\n newline (character code 10)

\v vertical tab (character code 11)

\f form feed (character code 12)

\r carriage return (character code 13)
\e escape (character code 27)

\d delete (character code 127)

\a alarm (character code 7)

\xhex-digit...\
the character code represented by the hexadecimal digits

\octal-digit...\
the character code represented by the octal digits.

\LFD A backslash followed by a single newline character is ignored. The purpose of
this is to allow a string or quoted-name to be spread over multiple lines.
AV

Stand for the character following the ‘\’.

4.1.7.7 Notes

1. The expression of precedence 1000 (i.e. belonging to syntactic category term(1000)),
which is written

X,Y
denotes the term *,’ (X,Y) in standard syntax.
2. The parenthesized expression (belonging to syntactic category term(0))
X)
denotes simply the term X.
3. The curly-bracketed expression (belonging to syntactic category term(0))
{X}
denotes the term {}(X) in standard syntax.

4. Note that, for example, -3 denotes a number whereas -(3) denotes a compound term
that has - /1 as its principal functor.

5. The character ‘"’ within a string must be written duplicated: ‘""’. Similarly for the
character ‘’’ within a quoted atom and for the character ‘“’ in a backquoted atom.

)y

56 SICStus Prolog

6. Backslashes in strings, quoted atoms, and integers written in ‘0’’ notation denote
escape sequences.

7. A name token declared to be a prefix operator will be treated as an atom only if no
term-read-in can be read by treating it as a prefix operator.

8. A name token declared to be both an infix and a postfix operator will be treated as a
postfix operator only if no term-read-in can be read by treating it as an infix operator.

9. The layout following the full stop is not considered part of the full stop, and so it
remains in the input stream.

4.1.8 Summary of Predicates

Detailed information is found in the reference pages for the following:

current_op(P,T,A) 1SO
atom A is an operator of type T with precedence P

op(P,T,A) 1S0
make atom A an operator of type T with precedence P

4.2 Semantics
This section gives an informal description of the semantics of SICStus Prolog.

4.2.1 Programs
A fundamental unit of a logic program is the goal or procedure call for example:

gives(tom, apple, teacher)
reverse([1,2,3], L)

X<Y

A goal is merely a special kind of term, distinguished only by the context in which it appears
in the program. The principal functor of a goal is called a predicate. It corresponds roughly
to a verb in natural language, or to a procedure name in a conventional programming
language.

A logic program consists simply of a sequence of statements called sentences, which are
analogous to sentences in natural language.

A sentence comprises a head and a body. The head either consists of a single goal or is
empty. The body consists of a sequence of zero or more goals (it may be empty). If the
head is not empty, the sentence is called a clause.

If the body of a clause is empty, the clause is called a unit clause, and is written in the
form (A) where P is the head goal. We interpret this declaratively as (B) and procedurally
as (C).

P. (A)

Chapter 4: The Prolog Language 57

“P is true.” (B)

“Goal P is satisfied.” (C)

If the body of a clause is non-empty, the clause is called a non-unit clause, and is written
in the form (D) where P is the head goal and Q, R, and S are the goals that make up the
body. We can read such a clause either declaratively as (E) or procedurally as (F).

P:-QR,S. (D)
“P is true if Q and R and S are true.” (E)
“To satisfy goal P, satisfy goals Q, R, and S.” (F)

A sentence with an empty head is called a directive, of which the most important kind is
called a query and is written in the form (G). Such a query is read declaratively as (H),
and procedurally as (I).

7P, Q. (G)
“Are P and Q true?” (H)
“Satisfy goals P and Q.” (I)

Sentences generally contain variables. A variable should be thought of as standing for
some definite but unidentified object. This is analogous to the use of a pronoun in nat-
ural language. Note that a variable is not simply a writable storage location as in most
programming languages; rather it is a local name for some data object, like the variable
of pure Lisp. Note that variables in different sentences are completely independent, even
if they have the same name—the lexical scope of a variable is limited to a single sentence.
To illustrate this, here are some examples of sentences containing variables, with possible
declarative and procedural readings:

employed(X) :- employs(Y, X).

“Any X is employed if any Y employs X.”

“To find whether a person X is employed, find whether any Y employs X.”
derivative(X, X, 1).

“For any X, the derivative of X with respect to X is 1.”

“The goal of finding a derivative for the expression X with respect to X itself
is satisfied by the result 1.”

58 SICStus Prolog

?7- ungulate(X), aquatic(X).
“Is it true, for any X, that X is an ungulate and X is aquatic?”

“Find an X that is both an ungulate and aquatic.”

In any program, the procedure for a particular predicate is the sequence of clauses in
the program whose head goals have that predicate as principal functor. For example, the
procedure for a predicate concatenate of three arguments might well consist of the two
clauses shown in (J) where concatenate (L1, L2, L3) means “the list L1 concatenated with
the list L2 is the list L3”.

concatenate([], L, L). (@))
concatenate ([X|L1], L2, [X|L3]) :-
concatenate (L1, L2, L3). (X)

In Prolog, several predicates may have the same name but different arities. Therefore,
when it is important to specify a predicate unambiguously, the form Name /Arity is used,
for example concatenate/3.

4.2.2 Types of Predicates Supplied with SICStus Prolog

Certain predicates are predefined by the Prolog system. Most of these cannot be changed
or retracted. Such predicates are called built-in predicates.

Certain ones, however, can be modified or totally redefined. These are the hook predicates
and the extendible predicates used in message and query handling.

4.2.2.1 Hook Predicates

Hook predicates are called by the system. They enable you to modify SICStus Prolog’s
behavior. They are undefined by default. The idea of a hook predicate is that its clauses
are independent of each other, and it makes sense to spread their definitions over several files
(which may be written by different people). In other words, a hook predicate is typically
declared to be multifile (see Section 4.3.4.1 [Multifile Declarations]|, page 72). Often, an
application needs to combine the functionality of several software modules, among which
some define clauses for such hook predicates. By simply declaring every hook predicate as
multifile, the functionality of the clauses for the hook predicate is automatically combined.
If this is not done, the last software module to define clauses for a particular hook predicate
will effectively supersede any clauses defined for the same hook predicate in a previous
module. Most hook predicates must be defined in the user module, and only their first
solution is relevant.

4.2.2.2 Extendible Predicates

Extendible predicates exist to enable you to extend or modify SICStus Prolog’s message
and query handling. These predicates are all defined in the file library (’SU_messages’).

4.2.3 Control Structures

As we have seen, the goals in the body of a sentence are linked by the operator *,’, which
can be interpreted as conjunction (and). The Prolog language provides a number of other
operators, known as control structures, for building complex goals. Apart from being built-

Chapter 4: The Prolog Language 59

in predicates, these control structures play a special role in certain language features, namely
Grammar Rules (see Section 4.14 [ref-gru], page 166), and when code is loaded or asserted in
the context of modules (see Section 4.11 [ref-mod], page 139). The set of control structures
is described in this section, and consists of:

P, :Q 1SO
prove P and Q

:P;:0 1SO
prove P or Q

+M: P 1S0
call P in module M

:P->:0;:R 1SO
if P succeeds, prove Q; if not, prove R

:P->:0 1S0

if P succeeds, prove Q; if not, fail

I 1SO
cut any choices taken in the current procedure

\+ :P 1S0
goal P is not provable

?X =~ P there exists an X such that P is provable (used in setof/3 and bagof/3)
if(:P,:Q,:R)
for each solution of P succeeds, prove Q; if none, prove R

once(:P) 1SO
Find the first solution, if any, of goal P.

4.2.3.1 The Cut

Besides the sequencing of goals and clauses, Prolog provides one other very important
facility for specifying control information. This is the cut, written ‘!’. It is inserted in the
program just like a goal, but is not to be regarded as part of the logic of the program and
should be ignored as far as the declarative semantics is concerned.

The effect of the cut is as follows. When first encountered as a goal, cut succeeds imme-
diately. If backtracking should later return to the cut, the effect is to fail the parent goal,
i.e. the goal that matched the head of the clause containing the cut, and caused the clause
to be activated. In other words, the cut operation commits the system to all choices made
since the parent goal was invoked, and causes other alternatives to be discarded. The goals
thus rendered determinate are the parent goal itself, any goals occurring before the cut in
the clause containing the cut, and any subgoals that were executed during the execution of
those preceding goals.

For example, the procedure

member (X, [X|L]).
member (X, [YIL]) :-
member (X, L).

60 SICStus Prolog

can be used to test whether a given term is in a list:
| ?- member(b, [a,b,c]).

returns the answer ‘yes’. The procedure can also be used to extract elements from a list,
as in

| 7- member(X, [d,e,f])-

With backtracking this will successively return each element of the list. Now suppose that
the first clause had been written instead:

member (X, [X|L]) :- !.

In this case, the second call above would extract only the first element of the list (‘d’). On
backtracking, the cut would immediately fail the entire procedure.

Another example:

x :-p, !, q.
X = r.

This is analogous to “if p then ¢ else r” in an Algol-like language.

Note that a cut discards all the alternatives subsequent to the parent goal, even when the
cut appears within a disjunction. This means that the normal method for eliminating a
disjunction—by defining an extra predicate—cannot be applied to a disjunction containing
a cut.

A proper use of the cut is usually a major difficulty for new Prolog programmers. The usual
mistakes are to over-use cut, and to let cuts destroy the logic. A cut that doesn’t destroy
the logic is called a green cut; a cut that does is called a red cut. We would like to advise
all users to follow these general rules. Also see Chapter 9 [Writing Efficient Programs],
page 309.

Write each clause as a self-contained logic rule, which just defines the truth of goals
that match its head. Then add cuts to remove any fruitless alternative computation
paths that may tie up memory.

Cuts are hardly ever needed in the last clause of a predicate.

Use cuts sparingly, and only at proper places. A cut should be placed at the exact
point that it is known that the current choice is the correct one; no sooner, no later,
usually placed right after the head, sometimes preceded by simple tests.

Make cuts as local in their effect as possible. If a predicate is intended to be determinate,
define it as such; do not rely on its callers to prevent unintended backtracking.

Binding output arguments before a cut is a common source of programming errors. If
a predicate is not steadfast, it is usually for this reason.

To illustrate the last issue, suppose that you want to write a predicate max/3 that finds the
greater of two numbers. The pure version is:

Chapter 4: The Prolog Language 61

max(X, Y, X) - X >= Y.
max(X, Y, Y) :- X < Y.

Now since the two conditions are mutually exclusive, we can add a green cut to the first
clause:

max(X, Y, X) :- X >=Y, !.
max(X, Y, Y) :- X < Y.

Furthermore, if the X >= Y test fails we know that X < Y must be true, and therefore it is
tempting to turn the green cut into a red one and drop the X < Y test:

max(X, Y, X) (= X >=Y, !.
max(X, Y, Y).

Unfortunately, this version of max/3 can give wrong answers, for example:

| 7- max(10, 0, 0).

yes

The reason is that the query doesn’t match the head of the first clause, and so we never
executed the X >= Y test. When we dropped the X < Y test, we made the mistake of assuming
that the head of the first clause would match any query. This is an example of a predicate
that is not steadfast. A steadfast version is:

max(X, Y, Z) (- X>=Y, !, Z = X.
max(X, Y, Y).

4.2.3.2 Disjunction

It is sometimes convenient to use an additional operator ‘|’, standing for disjunction (or).
(The precedence of ‘|’ is such that it dominates ¢,’ but is dominated by ‘:-’.) An example
is the clause (A), which can be read as (B).

4|7

grandfather (X, Z) :-
(mother(X, Y)
| father(X, Y)
),
father (Y, Z). (A)

“For any X, Y, and Z,
X has 7Z as a grandfather if
either the mother of X is Y
or the father of X is Y,
and the father of Y is Z.” (B)

Such uses of disjunction can usually be eliminated by defining an extra predicate. For
instance, (A) is equivalent to (C)

62 SICStus Prolog

grandfather (X, Z) :- parent(X, Y), father(Y, Z).
parent (X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y). (9]

[

For historical reasons, the token ‘|’, when used outside a list, is actually an alias for ;.
The aliasing is performed when terms are read in, so that (D) is read as if it were (E) thus
you can use ‘; instead of ‘|’ for disjunction if you like.

a:-b | c. (D)
a:-b; c. (E)

4.2.3.3 If-Then-Else

As an alternative to the use of cuts, and as an etension to the disjunction syntax, Prolog
provides the construct:

(If -> Then ; Else)

This is the same as the if-then-else construct in other programming languages. Procedurally,
it calls the If goal, committing to it if it succeeds, then calling the Then goal, otherwise
calling the Else goal. Then and Else, but not If, can produce more solutions on backtracking.

Cuts inside of If do not make much sense and are not recommended. If you do use them,
their scope is limited to If itself.

The if-then-else construct is often used in a multiple-branch version:

(If1 -> Then 1
; If 2 -> Then 2

; /* otherwise -> *x/
WhenAllElseFails
)

In contexts other than as the first argument of ;/2, the following two goals are equivalent:

(If -> Then)

(If -=> Then ; fail)

That is, the ‘=>” operator has nothing to do with, and should not be confused with, logical
implication.

once/1 is a control construct that provides a “local cut”. That is, the following three goals
are equivalent:

Chapter 4: The Prolog Language 63

once(If)
(If —> true)

(If => true ; fail)
Finally, there is another version of if-then-else of the form:
if (1f,Then,Else)

which differs from (1T -> Then ; Else) in that if/3 explores all solutions to If. This
feature is also known as a “soft cut”. There is a small time penalty for this—if If is known
to have only one solution of interest, the form (I -> Then ; Else) should be preferred.
4.2.3.4 Negation as Failure

The following construct provides a kind of pseudo-negation meaning “P is not provable”.

This is not real negation (“P is false”). The following two goals are equivalent:

\+ P

(P -> fail ; true)

4.2.3.5 Other Control Structures

The “all solution” predicates recognize the following construct as meaning “there exists an
X such that P is true”, and treats it as equivalent to P. The use of this explicit existential
quantifier outside the setof/3 and bagof/3 constructs is superfluous and discouraged.
Thus, the following two goals are equivalent:

X~P
p

The following construct is meaningful in the context of modules (see Section 4.11 [ref-mod],
page 139), meaning “P is true in the context of the M module”:

M:P

4.2.4 Declarative and Procedural Semantics

The semantics of definite clauses should be fairly clear from the informal interpretations
already given. However, it is useful to have a precise definition. The declarative semantics
of definite clauses tells us which goals can be considered true according to a given program,
and is defined recursively as follows:

A goal is true if it is the head of some clause instance and each of the goals (if
any) in the body of that clause instance is true, where an instance of a clause
(or term) is obtained by substituting, for each of zero or more of its variables,
a new term for all occurrences of the variable.

64 SICStus Prolog

For example, if a program contains the procedure for concatenate/3, declared in
Section 4.2.1 [ref-sem-pro], page 56, the declarative semantics tells us that (A) is true, be-
cause this goal is the head of a certain instance of the second clause (K) for concatenate/3,
namely (B), and we know that the only goal in the body of this clause instance is true,
because it is an instance of the unit clause that is the first clause for concatenate/3.

concatenate([al, [bl, [a,bl)

concatenate([al], [b]l, [a,b]l):-
concatenate([], [bl, [bl).

Note that the declarative semantics makes no reference to the sequencing of goals within
the body of a clause, nor to the sequencing of clauses within a program. This sequencing
information is, however, very relevant for the procedural semantics that Prolog gives to defi-
nite clauses. The procedural semantics defines exactly how the Prolog system will execute a
goal, and the sequencing information is the means by which the Prolog programmer directs
the system to execute his program in a sensible way. The effect of executing a goal is to
enumerate, one by one, its true instances. Here is an informal definition of the procedural
semantics.

To execute a goal, the system searches forwards from the beginning of the
program for the first clause whose head matches or uni es with the goal. The
uni cation process [Robinson 65] finds the most general common instance of
the two terms, which is unique if it exists. If a match is found, the matching
clause instance is then activated by executing in turn, from left to right, each
of the goals (if any) in its body. If at any time the system fails to find a match
for a goal, it backtracks; that is, it rejects the most recently activated clause,
undoing any substitutions made by the match with the head of the clause. Next
it reconsiders the original goal that activated the rejected clause, and tries to
find a subsequent clause that also matches the goal.

For example, if we execute the goal expressed by the query (A) we find that it matches
the head of the second clause for concatenate/3, with X instantiated to [alX1]. The new
variable X1 is constrained by the new goal produced, which is the recursive procedure call
(B) and this goal matches the second clause, instantiating X1 to [b|X2], and yielding the
new goal (C).

| ?- concatenate(X, Y, [a,b]). (A)
concatenate(X1, Y, [bl) (B)
concatenate(X2, Y, []) (9

Now this goal will only match the first clause, instantiating both X2 and Y to []. Since
there are no further goals to be executed, we have a solution

X = [a,b]
Y =[]

Chapter 4: The Prolog Language 65

That is, the following is a true instance of the original goal:
concatenate([a,b]l, [1, [a,b])

If this solution is rejected, backtracking will generate the further solutions

X = [a]
Y = [b]
X =1
Y = [a,b]

in that order, by re-matching goals already solved once using the first clause of
concatenate/3, against the second clause.

Thus, in the procedural semantics, the set of clauses

H :-B1, ..., Bm.
H* :- B1”, ..., Bm”.

are regarded as a procedure de nition for some predicate H, and in a query
?- G1l, ..., Gn.

each Gi is regarded as a procedure call. To execute a query, the system selects by its
computation rule a goal, Gj say, and searches by its search rule a clause whose head matches
Gj. Matching is done by the uni cation algorithm (see [Robinson 65]), which computes the
most general unifier, mgu, of Gj and H). The mgu is unique if it exists. If a match is found,
the current query is reduced to a new query

7- (61, ..., Gj-1, B1, ..., Bm, Gj+1, ..., Gn)mgu.

and a new cycle is started. The execution terminates when the empty query has been
produced.

If there is no matching head for a goal, the execution backtracks to the most recent successful
match in an attempt to find an alternative match. If such a match is found, an alternative
new query is produced, and a new cycle is started.

In SICStus Prolog, as in other Prolog systems, the search rule is simple: “search forward
from the beginning of the program”.

The computation rule in traditional Prolog systems is also simple: “pick the leftmost goal
of the current query”. However, SICStus Prolog and other modern implementations have a
somewhat more complex computation rule “pick the leftmost unblocked goal of the current
query”.

A goal can be blocked on one ore more uninstantiated variables, and a variable may block
several goals. Thus binding a variable can cause blocked goals to become unblocked, and

66 SICStus Prolog

backtracking can cause currently unblocked goals to become blocked again. Moreover, if
the current query is

?- G1, ..., Gj-1, Gj, Gj+1, ..., Gn.

where Gj is the first unblocked goal, and matching Gj against a clause head causes several
blocked goals in G1, ..., Gj-1 to become unblocked, these goals may become reordered.
The internal order of any two goals that were blocked on the same variable is retained,
however.

Another consequence is that a query may be derived consisting entirely of blocked goals.
Such a query is said to have oundered. The top-level checks for this condition. If detected,
the outstanding blocked subgoals are printed on the standard error stream along with the
answer substitution, to notify the user that the answer (s)he has got is really a speculative
one, since it is only valid if the blocked goals can be satisfied.

A goal is blocked if certain arguments are uninstantiated and its predicate definition is anno-
tated with a matching block declaration (see Section 4.3.4.5 [Block Declarations|, page 73).
Goals of certain built-in predicates may also be blocked if their arguments are not sufficiently
instantiated.

When this mechanism is used, the control structure resembles that of coroutines, suspending
and resuming different threads of control. When a computation has left blocked goals
behind, the situation is analogous to spawning a new suspended thread. When a blocked
goal becomes unblocked, the situation is analogous to temporarily suspending the current
thread and resuming the thread to which the blocked goal belongs.

4.2.5 Meta-Calls

If X is instantiated to a term that would be acceptable as the body of a clause, the goal
call(X) is executed exactly as if that term appeared textually in place of the call(X),
except the scope of any cut occurring in X is limited to the execution of X. That is, the
cut does not “propagate” into the clause in which call(X) occurs. If X is not properly
instantiated, an error exception is raised as described in Section 4.2.6 [ref-sem-exc], page 66.

In SICStus 4, call/1 has been generalized to call/N of any arity N between 1 and 255:
the first argument is treated as template, which should be augmented by the remaining
arguments, giving the goal to call. For example, the goal call(p(X),Y,Z) is equivalent to
the goal p(X,Y,Z). Note in particular that the first argument does not need to be an atom.

4.2.6 Exceptions Related to Procedure Calls

All predicates that take a call argument will raise the following exceptions:
instantiation_error
Module prefix or goal uninstantiated.

type_error
Goal not a callable.

Chapter 4: The Prolog Language 67

existence_error
Procedure does not exist.

context_error
Declaration or clause construct called as procedure.

The reference page for such predicates will simply refer to these as “Call errors” and will
go on to detail other exceptions that may be raised for a particular predicate.

4.2.7 Occurs-Check

Prolog’s unification does not have an occurs-check; that is, when unifying a variable against
a term, the system does not check to see if the variable occurs in the term. When the
variable occurs in the term, unification should fail, but the absence of the check means
that the unification succeeds, producing a cyclic term. Operations such as trying to print
a cyclic term will cause a loop.

The absence of the occurs-check is not a bug or a design oversight, but a conscious design
decision. The reason for this decision is that unification with the occurs-check is at best
linear on the sum of the sizes of the terms being unified, whereas unification without the
occurs-check is linear on the size of the smallest of the terms being unified. For any pro-
gramming language to be practical, basic operations should take constant time. Unification
against a variable may be thought of as the basic operation of Prolog, and this can take
constant time only if the occurs-check is omitted. Thus the absence of an occurs-check is
essential to Prolog’s practicality as a programming language. The inconvenience caused by
this restriction is, in practice, very slight.

SICStus Prolog unifies, compares (see Section 4.8.8 [ref-lte-cte], page 113), asserts, and
copies cyclic terms without looping. The write_term/[2,3] built-in predicate can option-
ally handle cyclic terms. Unification with occurs-check is available as a built-in predicate;
see Section 4.8.1.2 [ref-lte-met-usu], page 110. Predicates for subsumption and testing
(a)cyclicity are available in a library package; see Section 10.24 [lib-terms], page 470. Other
predicates usually do not handle cyclic terms well.

4.2.8 Summary of Control Predicates

P, :Q 1SO
prove P and Q

:P;:Q 1SO
prove P or Q

+M: P 1SO
call P in module M

P->:0;:R 1SO
if P succeeds, prove Q; if not, prove R

:P->:0 1S0

if P succeeds, prove Q; if not, fail

I 1SO
cut any choices taken in the current procedure

68 SICStus Prolog

\+ :P 1S0
goal P is not provable

?X ~ P there exists an X such that P is provable (used in setof/3 and bagof/3)

block :P declaration
declaration that predicates specified by P should block until sufficiently instan-
tiated

call(:P) 1SO

call(:P,...)

execute P or P(...)

call_cleanup(:Goal, :Cleanup)
Executes the procedure call Goal. When Goal succeeds determinately, is cut,
fails, or raises an exception, Cleanup is executed.

call_residue_vars(:Goal,?Vars)
Executes the procedure call Goal. Vars is unified with the list of new vari-
ables created during the call that remain unbound and have blocked goals or
attributes attached to them.

fail 1S0
fail (start backtracking)

false same as fail

freeze(+Var, :Goal)
Blocks Goal until nonvar (Var) holds.
if(:P,:0Q,:R)
for each solution of P that succeeds, prove Q; if none, prove R

once(:P) 1SO
Find the first solution, if any, of goal P.

otherwise
same as true

repeat 1SO
succeed repeatedly on backtracking

true 1SO
succeed

when (+Cond, :Goal)
block Goal until Cond holds

4.3 Loading Programs

4.3.1 Overview

There are two ways of loading programs into Prolog—loading source files and loading pre-
compiled PO files. Source files can be compiled into virtual machine code, as well as
consulted for interpretation. Dynamic predicates are always stored in interpreted form,
however.

Chapter 4: The Prolog Language 69

Virtual machine code runs about 8 times faster than interpreted code, and requires less
runtime storage. Compiled code is fully debuggable, except certain constructs compile
in-line and cannot be traced.

The compiler operates in three different modes, controlled by the compiling Prolog flag.
The possible states of the flag are:

compactcode
Compilation produces byte-coded abstract instructions. The default.

profiledcode
Compilation produces byte-coded abstract instructions instrumented to pro-
duce execution profiling data. See Section 9.2 [Execution Profiling], page 309.
Profiling is not available in runtime systems.

debugcode
Compilation produces interpreted code, i.e. compiling is replaced by consulting.

This section contains references to the use of the module system. These can be ignored if
the module system is not being used (see Section 4.11 [ref-mod], page 139 for information
on the module system).

4.3.2 The Load Predicates

Loading a program is accomplished by one of these predicates

(]
[:File |+Files]
load_files(:Files)
load_files(:Files, +Options)
loads source or PO file(s), whichever is the more recent, according to Options.

compile(:File)
loads source file into virtual machine code.

consult (:File)
reconsult(:File)
loads source file into interpreted representation.

ensure_loaded(:File)
loads a source and PO file, whichever is more recent, unless the file has already
been loaded and it has not been modified since it was loaded.

The following notes apply to all the Load Predicates:

1. The File argument must be one of the following:

an atom that is the name of a file containing Prolog code; a ‘.pro’, ‘.pl’ or a ‘. po’
suffix to a filename may be omitted (see Section 4.5.1 [ref-fdi-fsp]|, page 81)

a list of any atom listed above;

the atom user

70

SICStus Prolog

These predicates resolve relative file names in the same way as absolute_file_name/2.
For information on file names refer to Section 4.5 [ref-fdi], page 81.

The above predicates raise an exception if any of the files named in File does not exist,
unless the fileerrors flag is set to off.

Errors detected during compilation, such as an attempt to redefine a built-in predi-
cate, also cause exceptions to be raised. However, these exceptions are caught by the
compiler, and an appropriate error message is printed.

There are a number of style warnings that may appear when a file is compiled. These
are designed to aid in catching simple errors in your programs and are initially on, but
can be turned off if desired by setting the appropriate flags, which are:

single_var_warnings

If on, warnings are printed when a sentence (see Section 4.1.7.3 [ref-syn-
syn-sen|, page 49) containing variables not beginning with ‘_’ occurring
once only is compiled or consulted.

The Prolog flag legacy_char_classification (see Section 4.9.4 [ref-Ips-
flg], page 119) expands the set of variable names for which warnings are
printed. When legacy_char_classification is in effect warnings are
printed also for variables that occur only once and whose name begin with
‘_’ followed by a character that is not an uppercase Latin 1 character.

redefine_warnings
This flag can take more values; see Section 4.9.4 [ref-lps-flg], page 119. If
on, the user is asked what to do when:

a module or predicate is being redefined from a different file than its
previous definition.

a predicate is being imported whilst it was locally defined already.
a predicate is being redefined locally whilst it was imported already.

a predicate is being imported whilst it was imported from another
module already.

discontiguous_warnings
If on, warnings are printed when clauses are not together in source files,
and the relevant predicate has not been declared discontiguous.

By default, all clauses for a predicate are required to come from just one file. A
predicate must be declared multifile if its clauses are to be spread across several
different files. See the reference page for multifile/1.

If a file being loaded is not a module-file, all the predicates defined in the file are
loaded into the source module. The form load_files(Module:File) can be used to
load the file into the specified module. See Section 4.11.3 [ref-mod-def], page 140, for
information about module-files. If a file being loaded is a module-file, it is first loaded
in the normal way, the source module imports all the public predicates of the module-
file except for use_module/[1,2,3] and load_files/[1,2] if you specify an import
list.

If there are any directives in the file being loaded, that is, any terms with principal
functor :-/1 or 7-/1, these are executed as they are encountered. Only the first

Chapter 4: The Prolog Language 71

10.

11.

12.

solution of directives is produced, and variable bindings are not displayed. Directives
that fail or raise exceptions give rise to warning or error messages, but do not terminate
the load. However, these warning or error messages can be intercepted by the hook
user:portray_message/2, which can call abort/0 to terminate the load, if that is the
desired behavior.

A common type of directive to have in a file is one that loads another file, such as
:— [otherfile].

In this case, if otherfile is a relative filename it is resolved with respect to the directory
containing the file that is being loaded, not the current working directory of the Prolog
system.

Any legal Prolog goal may be included as a directive. There is no difference between a
‘:=/1" and a ‘?7-/1’ goal in a file being compiled.

If File is the atom user, or File is a list, and during loading of the list user is en-
countered, procedures are to be typed directly into Prolog from user_input, e.g. the
terminal. A special prompt, ‘| ’, is displayed at the beginning of every new clause
entered from the terminal. Continuation lines of clauses typed at the terminal are
preceded by a prompt of five spaces. When all clauses have been typed in, the last
should be followed by an end-of-file character, or the atom end_of_file followed by a
full-stop.

During loading of source code, all terms being read in are subject to term expansion.
Grammar rules is a special, built-in case of this mechanism. By defining the hook pred-
icates user:term_expansion/6 and goal_expansion/5, you can specify any desired
transformation to be done as clauses are loaded.

The current load context (module, file, stream, directory) can be queried using prolog_
load_context/2.

Predicates loading source code are affected by the character-conversion mapping, cf.
char_conversion/2.

4.3.3 Redefining Procedures during Program Execution

You can redefine procedures during the execution of the program, which can be very useful
while debugging. The normal way to do this is to use the ‘break’ option of the debugger
to enter a break state (see break/0, Section 4.15.6 [ref-ere-int|, page 185), and then load
an altered version of some procedures. If you do this, it is advisable, after redefining the
procedures and exiting from the break state, to wind the computation back to the first call
to any of the procedures you are changing: you can do this by using the ‘retry’ option with
an argument that is the invocation number of that call. If you do not wind the computation
back like this, then:

if you are in the middle of executing a procedure that you redefine, you will find that
the old definition of the procedure continues to be used until it exits or fails;

if you should backtrack into a procedure you have just redefined, alternative clauses in
the old definition will still be used.

72 SICStus Prolog

4.3.4 Declarations and Initializations

When a program is to be loaded, it is sometimes necessary to tell the system to treat some of
the predicates specially. This information is supplied by including declarations about such
predicates in the source file, preceding any clauses for the predicates that they concern. A
declaration is written just as a directive is, beginning with ‘:-’. A declaration is effective
from its occurrence through the end of file.

Although declarations that affect more than one predicate may be collapsed into a single
declaration, the recommended style is to write the declarations for a predicate immediately
before its first clause.

Operator declarations are not declarations proper, but rather directives that modify the
global table of syntax operators. Operator declarations are executed as they are encountered
while loading programs.

The rest of this section details the available forms of predicate declarations.

4.3.4.1 Multifile Declarations

A declaration
:- multifile :PredSpec, ..., :PredSpec. 1SO

where each PredSpec is a predicate spec, causes the specified predicates to become multi le.
This means that if more clauses are subsequently loaded from other files for the same
predicate, the new clauses will not replace the old ones, but will be added at the end
instead. As of release 3, multifile declarations are required in all files from which clauses to
a multifile predicate are loaded.

An example where multifile declarations are particularly useful is in defining hook predi-
cates. A hook predicate is a user-defined predicate that somehow alters or customizes the
behavior of SICStus Prolog. A number of such hook predicates are described in this manual.
See also Section 4.2.2.1 [ref-sem-typ-hok], page 58.

If a file containing clauses for a multifile predicate is reloaded, the old clauses from the same
file are removed. The new clauses are added at the end.

If a multifile predicate is loaded from a file with no multifile declaration for it, the predicate
is redefined as if it were an ordinary predicate (i.e. the user is asked for confirmation).

If a multifile predicate is declared dynamic in one file, it must also be done so in the other
files from which it is loaded. Hook predicates should always be declared as multifile, as this
is the convention followed in the library modules.

Multifile declarations must precede any other declarations for the same predicate(s)!

4.3.4.2 Dynamic Declarations

A declaration

:— dynamic -PredSpec, ..., :PredSpec. 1SO

Chapter 4: The Prolog Language 73

where each PredSpec is a predicate spec, causes the specified predicates to become dynamic,
which means that other predicates may inspect and modify them, adding or deleting individ-
ual clauses. Dynamic predicates are always stored in interpreted form even if a compilation
is in progress. This declaration is meaningful even if the file contains no clauses for a
specified predicate—the effect is then to define a dynamic predicate with no clauses.

The semantics of dynamic code is described in Section 4.12.1 [ref-mdb-bas], page 153.
4.3.4.3 Volatile Declarations

A declaration
:- volatile :PredSpec, ..., :PredSpec.
where each PredSpec is a predicate spec, causes the specified predicates to become volatile.

A predicate should be declared as volatile if it refers to data that cannot or should not be
saved in a saved-state. In most cases a volatile predicate will be dynamic, and it will be
used to keep facts about streams or memory references. When a program state is saved at
run-time, the clauses of all volatile predicates will be left unsaved. The predicate definitions
will be saved though, which means that the predicates will keep all its properties such as
volatile, dynamic or multifile when the saved-state is restored.

4.3.4.4 Discontiguous Declarations
By default, the development system issues warnings if it encounters clauses that are not
together for some predicate. A declaration:

:- discontiguous :PredSpec, ..., :PredSpec. 1S0

disables such warnings for the predicates specified by each PredSpec. The warnings can
also be disabled globally by setting the discontiguous_warnings flag to off.

4.3.4.5 Block Declarations

The declaration
:- block :BlockSpec, ..., :BlockSpec.

where each BlockSpec is a skeletal goal, specifies conditions for blocking goals of the pred-
icate referred to by the skeletal goal (£/3 say). The arguments of the skeletal goal can
be:

see below
(77

‘anything else’
ignored

When a goal for £/3 is to be executed, the mode specs are interpreted as conditions for
blocking the goal, and if at least one condition evaluates to true, the goal is blocked.

74 SICStus Prolog

A block condition evaluates to true if and only if all arguments specified as ‘=’ are uninstan-
tiated, in which case the goal is blocked until at least one of those variables is instantiated.
If several conditions evaluate to true, the implementation picks one of them and blocks the
goal accordingly.

The recommended style is to write the block declarations in front of the source code of the
predicate they refer to. Indeed, they are part of the source code of the predicate, and must
precede the first clause. For example, with the definition:

:- block merge(-,7,-), merge(?7,-,-).

merge([], Y, Y).
merge(X, [1, X).
merge ([HIX], [E|Y], [HIZ]) :- H @< E, merge(X, [EIY], Z).
merge ([HIX], [ElY], [EIZ]) :- H @= E, merge([HIX], Y, Z).

calls to merge/3 having uninstantiated arguments in the first and third position or in the
second and third position will suspend.

The behavior of blocking goals for a given predicate on uninstantiated arguments cannot
be switched off, except by abolishing or redefining the predicate.

4.3.4.6 Meta-Predicate Declarations

To ensure correct semantics in the context of multiple modules, some predicates are subject
to module name expansion. Clauses or directives containing goals for such predicates need
to have certain arguments annotated by a module prefix. A declaration:

:- meta_predicate :MetaPredSpec, ..., :MetaPredSpec.

where each MetaPredSpec is a skeletal goal, informs the compiler which predicates and
which of its arguments should be subject to such annotations. See Section 4.11.16 [ref-mod-
met], page 149 and Section 4.11.15 [ref-mod-mne|, page 149 for details.

4.3.4.7 Module Declarations

One of the following declarations:

:- module (+ModuleName, +ExportList).

:— module (+ModuleName, +ExportList, +Options).

where ExportList is a list of predicate specs, declares that the forthcoming predicates should
go into the module named ModuleName and that the predicates listed should be exported.
See Section 4.11 [ref-mod], page 139, for details.

4.3.4.8 Public Declarations

The only effect of a declaration

:- public :PredSpec, ..., :PredSpec.

Chapter 4: The Prolog Language 75

where each PredSpec is a predicate spec, is to give the SICStus cross-referencer (see
Section 9.11 [The Cross-Referencer|, page 331) a starting point for tracing reachable code.
In some Prologs, this declaration is necessary for making compiled predicates visible. In
SICStus Prolog, predicate visibility is handled by the module system. See Section 4.11
[ref-mod], page 139.

4.3.4.9 Mode Declarations

A declaration
:- mode :ModeSpec, ..., :ModeSpec.

where each ModeSpec is a skeletal goal, has no effect whatsoever, but is accepted for
compatibility reasons. Such declarations may be used as a commenting device, as they
express the programmer’s intention of data flow in predicates.

4.3.4.10 Include Declarations

A directive
:— include(+Files). 1SO

where Files is a file name or a list of file names, instructs the processor to literally embed
the Prolog clauses and directives in Files into the file being loaded. This means that the
effect of the include directive is as if the include directive itself were being replaced by
the text in the Files. Including some files is thus different from loading them in several
respects:

The embedding file counts as the source file of the predicates loaded, e.g. with respect
to the built-in predicate source_file/2; see Section 4.9.3 [ref-Ips-apf], page 119.

Some clauses of a predicate can come from the embedding file, and some from included
files.

When including a file twice, all the clauses in it will be entered twice into the program
(although this is not very meaningful).

SICStus Prolog uses the included file name (as opposed to the embedding file name) only
in source-linked debugging and error reporting.

4.3.4.11 Initializations

A directive
:— initialization :Goal. 1SO

in a file includes Goal to the set of goals that shall be executed after that file has been
loaded.

initialization/1 is actually callable at any point during loading of a file. Initializations
are saved by save_modules/2 and save_program/[1,2], and so are executed after loading
or restoring such files too.

76 SICStus Prolog

Goal is associated with the file loaded, and with a module, if applicable. When a file, or
module, is going to be reloaded, all goals earlier installed by that file, or in that module,
are removed first.

4.3.5 Term and Goal Expansion

During loading of source code, all terms being read in are subject to term expansion. Gram-
mar rules is a special, built-in case of this mechanism. By defining the hook predicates
user:term_expansion/6 and goal_expansion/5, you can specify any desired transforma-
tion to be done as clauses are loaded.

Term expansions are added by defining clauses for the following hook predicate. Such
clauses should follow the pattern:

:- multifile user:term_expansion/6.
user:term_expansion(Terml, Layoutl, Ids, Term2, Layout2, [to-
ken|Ids]) :- ...

nonmember (token, Ids),

token_expansion (Terml, Layoutl, Term2, Layout2), !.

where token_expansion/4 should be a predicate defining how to transform a given Terml
into Term2. The hook is called for every Terml read, including at end of file, represented
as the term end_of_file. If it succeeds, Term2 is used for further processing; otherwise,
the default grammar rule expansion is attempted. It is often useful to let a term expand to
a list of directives and clauses, which will then be processed sequentially.

A key idea here is Ids, which is used to look up what expansions have already been ap-
plied. The argument is supposed to be a list of tokens, each token uniquely identifying an
expansion. The tokens are arbitrary atoms, and are simply added to the input list, before
expansions recursively are applied. This token list is used to avoid cyclic expansions.

The other arguments are for supporting source-linked debugging; see the reference page for
details.

Goal expansions are added by defining the hook predicate:
M:goal_expansion(Goall, Layoutl, Module, Goal2, Layout2) :- ...

which should define how to transform a given Goall into Goal2. Expansions are per module
and should be defined in the module M in which Goall is locally defined. It is called for
every goal occurring in a clause being loaded, asserted, or meta-called. If it succeeds, Goal2
is used for further processing, and may be arbitrarily complex.

The other arguments are for supporting source-linked debugging and passing the source
module; see the reference page for details.

To invoke term expansion from a program, use:

7- expand_term(Terml, Term2).

Chapter 4: The Prolog Language 77

which transforms Terml into Term2 using the built-in (for grammar rules) as well as user-
defined term expansion rules.

4.3.6 Predicate List

Detailed information is found in the reference pages for the following:

]
[:F|+Fs] same as load_files([F|Fs])

block :P declaration
predicates specified by P should block until sufficiently instantiated

user:term_expansion(+Terml, +Layoutl, +Tokensl, -Term2, -Layout2, -Tokens2)
hook
Overrides or complements the standard transformations to be done by expand_
term/2.

compile(:F)
load compiled clauses from files F
consult (:F)

reconsult (:F)
load interpreted clauses from files F

expand_term(+T,-X) hookable
term T expands to term X using user:term_expansion/6 or grammar rule
expansion

goal_expansion(+Terml, +Layoutl, +Module, -Term2, -Layout2) hook

Defines transformations on goals while clauses are being compiled or asserted,
and during meta-calls.

discontiguous :P declaration, I1SO
clauses of predicates P do not have to appear contiguously

dynamic :P declaration, 1SO
predicates specified by P are dynamic

ensure_loaded(:F) 1SO
load F if not already loaded

include (+F) declaration, 1SO
include the source file(s) F verbatim

initialization :G declaration, IS0
declares G to be run when program is started

load_files(:F)
load_files(:F,+0)
load files according to options O

meta_predicate :P declaration

declares predicates P that are dependent on the module from which they are
called

78 SICStus Prolog

mode :P declaration
NO-OP: document calling modes for predicates specified by P

module (+M,+L) declaration

module (+M,+L,+0) declaration

module M exports predicates in L, options O

multifile :P declaration, 1SO
the clauses for P are in more than one file

public :P declaration
NO-OP: declare predicates specified by P public

restore(+F)
restore the state saved in file F

use_module (:F)
use_module(:F,+1)
import the procedure(s) | from the module-file F

use_module(?M, :F,+1)
import | from module M, loading module-file F if necessary

volatile :P declaration
predicates specified by P are not to be included in saves

4.4 Saving and Loading the Prolog Database
4.4.1 Overview of PO Files

A PO le (Prolog object file) contains a binary representation of a set of modules, predicates,
clauses and directives. They are portable between different platforms, except between 32-bit
and 64-bit platforms.

PO files are created by save_files/2, save_modules/2, and save_predicates/2, which
all save a selected set of code and data from the running application. They can be loaded
by the predicates described in Section 4.3 [ref-lod], page 68.

PO files provide tremendous flexibility that can be used for many purposes, for example:

precompiling Prolog libraries for fast loading;

packaging Prolog code for distribution;

generating precompiled databases of application data;

selectively loading particular application databases (and rule bases);
saving Prolog data across application runs;

building and saving new application databases from within applications;

The facilities for saving and loading PO files are more than just a convenience when devel-
oping programs; they are also a powerful tool that can be used as part of the application
itself.

Chapter 4: The Prolog Language 79

4.4.2 Saved-States

Saved-states are just a special case of PO files. The save_program/[1,2] predicate will save
the execution state in a file. The state consists of all predicates and modules except built-in
predicates and clauses of volatile predicates, the current operator declarations, the current
character-conversion mapping, the values of all writable Prolog flags except those marked
as volatile in Section 4.9.4 [ref-Ips-flg], page 119, any blackboard data (see Section 4.12.9
[ref-mdb-bbd], page 161), database data (see Section 4.12.1 [ref-mdb-bas], page 153), and
profiling data (see Section 9.2 [Execution Profiling], page 309); but no information for
source-linked debugging.

A saved-state, can be restored using the restore/1 predicate from within Prolog:
| 7- restore(File).

which will replace the current program state by the one in File.

A saved-state can also be given as an option to the sicstus command:
% sicstus -r File

which will start execution by restoring File.

The save_program/2 predicate can be used to specify an initial goal that will be run when
the saved-state is restored. For example:

| 7- save_program(saved_state, initial_goal([a,b,c]))-

When ‘saved_state’ is loaded initial_goal/1 will be called. This allows saved-states to
be generated that will immediately start running the user’s program when they are restored.
In addition to this save_program/2 facility, see also the initialization/1 facility to
declare goal to be executed upon loading (see Section 4.3.4.11 [Initializations|, page 75).

4.4.3 Selective Saving and Loading of PO Files

The save_program/[1,2] and restore/1 predicates discussed in the previous section are
used for saving and restoring the entire Prolog database. To save selected parts of a Prolog
database, the predicates save_files/2, save_modules/2, and save_predicates/2 are
used.

To save everything that was loaded from the files ‘src1.pl’ and ‘src2.pl’ into ‘filel.po’
(extensions optional), you would use:

| 7- save_files([srcl,src2],filel).

Any module declarations, predicates, multifile clauses, or directives encountered in those
files will be saved. Source file information as provided by source_file/[1,2] for the
relevant predicates and modules is also saved.

To save the modules user and special into ‘file2.po’ you would use:

| 7- save_modules([Juser,special],file2).

80 SICStus Prolog

The module declarations, predicates, multifile clauses and initializations belonging to those
modules will be saved. Source file information and embedded directives (except initializa-
tions) are not saved.

To just save certain predicates into ‘file3.po’ you would use:
| 7- save_predicates([person/2,dept/4],Tile3).

This will only save the predicates specified. When the PO file is loaded the predicates will
be loaded into the same module they were in originally.

Any PO file, however generated, can be loaded into Prolog with load_files/[1,2]:
| 7- load_files(filel).

or, equivalently:
| 7- [filel].

The information from each PO file loaded is incrementally added to the database. This
means that definitions from later loads may replace definitions from previous loads.

The predicates load_files/[1,2] are used for compiling and loading source files as well
as PO files. If ‘filel.po’ and ‘filel.pl’ both exist (and ‘filel’ does not), load_
files(filel) will load the source (‘.pl’) or the PO, whichever is the most recent. Refer
to Section 4.3 [ref-lod], page 68 for more information on loading programs, and also to the
reference page for load_files/[1,2].

4.4.4 Predicate List

Detailed information is found in the reference pages for the following:

initialization :G declaration, 1SO
declares G to be run when program is started

user:runtime_entry(+S) hook
entry point for a runtime system

save_files(+L,+F)
Saves the modules, predicates and clauses and directives in the given files L
into file F

save_modules (+L,+F)
save the modules specifed in L into file F

save_predicates(:L,+F)
save the predicates specified in L into file F

save_program(+F)
save_program(+F, :G)
save all Prolog data into file F with startup goal G

volatile :P declaration
declares predicates specified by P to not be included in saves.

Chapter 4: The Prolog Language 81

4.5 Files and Directories
4.5.1 The File Search Path Mechanism

As a convenience for the developer and as a means for extended portability of the final
application, SICStus Prolog provides a flexible mechanism to localize the definitions of the
system dependent parts of the file and directory structure a program relies on, in such a
way that the application can be moved to a different directory hierarchy or to a completely
new file system, with a minimum of effort.

This mechanism, which can be seen as a generalization of the user:1library_directory/1
scheme available in previous releases, presents two main features:

1. An easy way to create aliases for frequently used directories, thus localizing to one
single place in the program the physical directory name, which typically depends on
the file system and directory structure.

2. A possibility to associate more than one directory specification with each alias, thus
giving the developer full freedom in sub-dividing libraries, and other collections of
programs, as it best suits the structure of the external file system, without making the
process of accessing files in the libraries any more complicated. In this case, the alias
can be said to represent a file search path, not only a single directory.

The directory aliasing mechanism, together with the additional file search capabilities of
absolute_file_name/3, can effectively serve as an intermediate layer between the external
world and a portable program. For instance, the developer can hide the directory repre-
sentation by defining directory aliases, and he can automatically get a proper file extension
added, dependent on the type of file he wants to access, by using the appropriate options
to absolute_file_name/3.

A number of directory aliases and file search paths, are predefined in the SICStus Prolog
system. The most important of those is the 1ibrary file search path, giving the user instant
access to the SICStus library, consisting of several sub-directories and extensive supported
programs and tools.

Specifying a library file, using the alias, is possible simply by replacing the explicit file (and
directory) specification with the following term:

library(file)

The name of the file search path, in this case 1ibrary, is the main functor of the term, and
indicates that le is to be found in one of the library directories.

The association between the alias library (the name of the search path) and the library
directories (the definitions of the search path), is extended by Prolog facts, user:library_
directory/1, which are searched in sequence to locate the file. Each of these facts specifies
a directory where to search for le, whenever a file specification of the form library(file)
is encountered.

The library mechanism discussed above, which can be extended with new directories associ-
ated with the alias 1ibrary, has become subsumed by a more general aliasing mechanism,

82 SICStus Prolog

in which arbitrary names can be used as aliases for directories. The general mechanism also
gives the possibility of defining path aliases in terms of already defined aliases.

In addition to library, the following aliases are predefined in SICStus Prolog: runtime,
system, application, temp, and path. The interpretation of the predefined aliases are
explained below.

4.5.1.1 Defining File Search Paths
The information about which directories to search when an alias is encountered is extended

by clauses for the hook predicate user:file_search_path/2, of the following form:

user:file_search_path(PathAlias, DirectorySpec).

PathAlias must be an atom. It can be used as an alias for DirectorySpec.

DirectorySpec
Can either be an atom, spelling out the name of a directory, or a compound
term using other path aliases to define the location of the directory.

The directory path may be absolute, as in (A) or relative as in (B), which defines a path
relative to the current working directory.

Then, files may be referred to by using file specifications of the form similar to
library(file). For example, (C), names the file ‘/usr/jackson/.login’, while (D) spec-
ifies the path ‘etc/demo/my_demo’ relative to the current working directory.

user:file_search_path(home, ’/usr/jackson’). (a)
user:file_search_path(demo, ’etc/demo’). (B)
home(’.login’) (©
demo (my_demo) D

As mentioned above, it is also possible to have multiple definitions for the same alias. If
clauses (E) and (F) define the home alias, to locate the file specified by (G) each home
directory is searched in sequence for the file ‘. login’. If ‘/usr/jackson/.login’ exists, it
is used. Otherwise, ‘/u/jackson/.login’ is used if it exists.

user:file_search_path(home, ’/usr/jackson’). (E)
user:file_search_path(home, ’/u/jackson’). (F)
home(’.login’) (®

The directory specification may also be a term of arity 1, in which case it specifies that the
argument of the term is relative to the user:file_search_path/2 defined by its functor.
For example, (H) defines a directory relative to the directory given by the home alias.
Therefore, the alias sp_directory represents the search path ‘/usr/jackson/prolog/sp’

Chapter 4: The Prolog Language 83

followed by ‘/u/jackson/prolog/sp’. Then, the file specification (I) refers to the file (J),
if it exists. Otherwise, it refers to the file (K), if it exists.

user:file_search_path(sp_directory, home(’prolog/sp’)). (H)
sp_directory(test) (I
/usr/jackson/prolog/sp/test (@))
/u/jackson/prolog/sp/test X

Aliases such as home or sp_directory are useful because even if the home directory changes,
or the sp_directory is moved to a different location, only the appropriate user:file_
search_path/2 facts need to be changed. Programs relying on these paths are not af-
fected by the change of directories because they make use of file specifications of the form
home (File) and sp_directory(file).

All built-in predicates that take file specification arguments allow these specifications to
include path aliases defined by user:file_search_path/2 facts. These predicates are:

absolute_file_name/[2,3]
compile/1

consult/1
ensure_loaded/1
load_files/[1,2]
load_foreign_resource/1
open/[2,3]

reconsult/1

restore/1

save_files/2
save_module/2
save_predicates/2
save_program/ [1,2]
see/1

tell/1
use_module/[1,2,3]

Note: The user:file_search_path/2 database may contain directories that do not exist
or are syntactically invalid (as far as the operating system is concerned). If an invalid
directory is part of the database, the system will fail to find any files in it, and the directory
will effectively be ignored.

4.5.1.2 Frequently Used File Specifications

Frequently used user:file_search_path/2 facts are best defined using the initialization
file "/ .sicstusrc’ or ‘“/sicstus.ini’, which is consulted at startup time by the Develop-

84 SICStus Prolog

ment System. Therefore, with reference to the examples from Section 4.5.1.1 [ref-fdi-fsp-def],
page 82, clauses like the one following should be placed in the initialization file so that they
are automatically available to user programs after startup:

:- multifile user:file_search_path/2.
user:file_search_path(home, ’/usr/jackson’).
user:file_search_path(sp_directory, home(’prolog/sp’)).
user:file_search_path(demo, ’etc/demo’).

4.5.1.3 Predefined File Search Paths

user:file_search_path/2 is undefined at startup, but behaves as if it were a multifile
predicate with the following clauses. See Section 4.9.4 [ref-Ips-flg], page 119 for more info
on the Prolog flag host_type. The environment variables SP_APP_DIR and SP_RT_DIR
expand respectively to the absolute path of the directory that contains the executable and
the directory that contains the SICStus run-time. The environment variable SP_TEMP_DIR
expands to a directory suitable for storing temporary files, it is particularly useful with the
open/4 option if _exists(generate_unique_name).

file_search_path(library, Path) :-
library_directory(Path).
file_search_path(system, Platform) :-
prolog_flag(host_type, Platform).
file_search_path(application, ’$SP_APP_DIR’).
file_search_path(runtime, ’$SP_RT_DIR’).
file_search_path(temp, ’$SP_TEMP_DIR’).
file_search_path(path, Path) :-
%% enumerate all directories in $PATH

user:library_directory/1 is undefined at startup, but behaves as if it were a multifile
predicate with a single clause defining the location of the Prolog library. The initial value
is the same as the value of the environment variable SP_LIBRARY_DIR. The predicate may
succeed nondeterminately in this search for a library directory.

4.5.2 Syntactic Rewriting

A file specification must be an atom or a compound term with arity 1. Such compound
terms are transformed to atoms as described in Section 4.5.1 [ref-fdi-fsp|, page 81. Let
FileSpec be the given or transformed atomic file specification.

The file specification user stands for the standard input or output stream, depending on
context.

A file specification FileSpec other than user is subject to syntactic rewriting. Depending
on the operation, the resulting absolute filename is subject to further processing. Syntactic
rewriting is performed wrt. a context directory Context (an absolute path), in the following
steps:

Under Windows, all ‘\’ characters are converted to ‘/’.

Chapter 4: The Prolog Language 85

A ‘$var’ in the beginning of FileSpec, followed by ¢/’ or the end of the path, is replaced
by the absolute path of the value of the environment variable var. In addition, under
Windows, all ‘\’ characters are converted to ‘/’. If var doesn’t exist or its value is
empty, a permission error is raised.

A relative path that does not begin with ‘/’ is made absolute by prepending Context
followed by a ‘/’. Note that, under UNIX, all paths that begin with ‘/’ are absolute.

Under Windows only, a relative path that begins with a ‘/’ is made absolute by prepend-
ing the root (see below) of Context.

A ‘~“user’ in the beginning of FileSpec, followed by ‘/’ or the end of the path, is
replaced by the absolute path of the home directory of user. If the home directory of
user cannot be determined, a permission error is raised.

Under Windows this has not been implemented, instead a permission error is raised.

If the home directory of user is a relative path, it is made absolute using Context if
needed.

A *77 in the beginning of FileSpec, followed by ¢/’ or the end of the path, is replaced
by the absolute path of the home directory of the current user. If the home directory
of the current user cannot be determined, a permission error is raised.

The the home directory of the current user is a relative path it is made absolute using
Context if needed. In addition, under Windows, all ‘\’ characters are converted to ‘/’.

Under Windows, the home directory of the current user is determined using the envi-
ronment variables HOMEDRIVE and HOMEPATH.

If FileSpec is a relative file name, Context is prepended to it.

The root of the file name is determined. Under UNIX this is simply the initial /7, if
any. Under Windows there are several variants of roots, as follows.
driveletter : / where driveletter is a a single upper or lower case character in the
range ‘a’ to ‘z’. For example, ‘C:/’.
//7/driveletter : / This is transformed to driveletter: /.

//host/share/ (a ‘UNC’ path, also known as a network path) where host and share
are non-empty and do not contain /.

//7?/unc/host/share/ This is transformed to //host/share/

If no root can be determined a permission error is raised.
A path is absolute if and only if it is begins with a root, as above.

The following steps are repeatedly applied to the last ‘/’ of the root and the characters
that follow it repeatedly until no change occurs.

1. Repeated occurrences of / are replaced by a single /.

2. /.7, followed by ¢/’ or the end of the path, is replaced by ‘/’.

3. /parent/. ., followed by ‘/’ or the end of the path, is replaced by ‘/’.
If the path still contains /. ., followed by ‘/’ or the end of the path, a permission error
is raised.

Any trailing ‘/’ is deleted unless it is part of the root.

86 SICStus Prolog

Finally, under Windows, the path is normalized as follows: All Latin 1 characters
(i.e. character codes in [0..255]) are converted to lower case. All other characters are
converted to upper case.

File systems under Windows are generally case insensitive. This step ensures that two
file names that differ only in case, and therefore would reference the same file in the
file system, will normalize to identical atoms.

A downside to this normalization is that you cannot choose the case used for files
created by SICStus Prolog on file systems such as NTFS that are case-preserving (but
case-insensitive). For instance, you cannot create a file that has a mixed-case name in
the file system, such as ‘MyClass.java’. Such a file would instead have a file system
name ‘myclass.java’.

This seldom matters, except for aesthetics, since any Windows application that tries
to open a file named ‘MyClass.java’ will also find ‘myclass.java’.

The following UNIX examples assumes that Context is ‘/usr/’; that the environment vari-
ables VAR1, VAR2, VAR3 have the values ‘/opt/bin’, ‘foo’ and ‘~/temp’ respectively and that
the home directory of the current user, ‘joe’, is ‘/home/joe’.

/foo/bar
A /foo/bar

/foo/.//bar/../blip///
A /foo/blip

/foo//../bar/../../blip
A error

$VAR1/../local/
A /opt/local

$VAR2/misc/.
A /usr/foo/misc

$VAR3/misc/.
A /home/joe/temp/misc

“joe/../jenny/bin.
A /home/jenny/bin

The following Windows examples assume that Context is ‘C:/Source/projl’; that the
environment variables VAR1, VAR2, VAR3 have the values ‘\\server\docs\brian’, ‘foo’ and
‘~/temp’ respectively and that the home directory of the current user is ‘C:/home’.

/foo/bar

Chapter 4: The Prolog Language 87

A C:/foo/bar

foo//../../blip
A c:/source/blip

$VAR1/../local/
A //server/docs/local

$VAR2/misc/.
A c:/source/projl/foo/misc

$VAR3/misc/.
‘A c:/home/temp/misc

“joe/../jenny/bin.
A error

4.5.3 List of Predicates

Detailed information is found in the reference pages for the following:

absolute_file_name (+R,-A) hookable
absolute_file_name(+R,-A,+0) hookable
expand relative filename R to absolute file name A using options specified in O

user:file_search_path(+F,-D) hook
directory D is included in file search path F

user:library_directory(-D) hook
D is a library directory that will be searched

4.6 Input and Output
4.6.1 Introduction

Prolog provides two classes of predicates for input and output: those that handle individual
bytes or characters, and those that handle complete Prolog terms.

Input and output happen with respect to streams. Therefore, this section discusses pred-
icates that handle files and streams in addition to those that handle input and output of
bytes, characters and terms.

4.6.2 About Streams

A Prolog stream can refer to a file or to the user’s terminal®. Each stream is used either for
input or for output, but typically not for both. A stream is either text, for character and
term I/0, or binary, for byte I/O. At any one time there is a current input stream and a
current output stream.

3 At the C level, you can define more general streams, e.g. referring to pipes or to encrypted files.

88 SICStus Prolog

Input and output predicates fall into two categories:

1. those that use the current input or output stream;

2. those that take an explicit stream argument;

Initially, the current input and output streams both refer to the user’s terminal. Each input
and output built-in predicate refers implicitly or explicitly to a stream. The predicates that
perform byte, character and term I/O operations come in pairs such that (A) refers to the
current stream, and (B) specifies a stream.

predicate_name/n (»)
predicate_name/n+1 (B)

4.6.2.1 Programming Note

Deciding which version to use involves a trade-off between speed and readability of code: in
general, version (B), which specifies a stream, runs slower than (A). So it may be desirable
to write code that changes the current stream and uses version (A). However, the use of
(B) avoids the use of global variables and results in more readable programs.

4.6.2.2 Stream Categories

SICStus Prolog streams are divided into two categories, those opened by see/1 or tell/1
and those opened by open/[3,4]. A stream in the former group is referred to by its le spec-
i cation, while a stream in the latter case is referred to by its stream object (see the figure
“Categorization of Stream Handling Predicates”). For further information about file spec-
ifications, see Section 4.5 [ref-fdi], page 81. Stream objects are discussed in Section 4.6.7.1
[ref-iou-sfh-sob], page 94. Reading the state of open streams is discussed in Section 4.6.8
[ref-iou-sos], page 99.

Each operating system permits a different number of streams to be open.

4.6.3 Term Input

Term input operations include:

reading a term and

changing the prompt that appears while reading.

4.6.3.1 Reading Terms: The "Read" Predicates
The “Read” predicates are

read(-Term)

read (+Stream, -Term)
read_term(-Term, +Options)
read_term(+Stream, -Term, +Options)

read_term/[2,3] offers many options to return extra information about the term.

Chapter 4: The Prolog Language 89

When Prolog reads a term from the current input stream the following conditions must
hold:

The term must be followed by a full-stop. See Section 4.1.7.1 [ref-syn-syn-ove], page 48.
The full-stop is removed from the input stream but is not a part of the term that is
read.

read/[1,2] does not terminate until the full-stop is encountered. Thus, if you type at
top level

| ?- read(X)
you will keep getting prompts (first ‘| : ’, and five spaces thereafter) every time you
type RET, but nothing else will happen, whatever you type, until you type a full-stop.

The term is read with respect to current operator declarations. See Section 4.1.5 [ref-
syn-ops|, page 43, for a discussion of operators.

When a syntax error is encountered, an error message is printed and then the “read”

predicate tries again, starting immediately after the full-stop that terminated the erro-
neous term. That is, it does not fail on a syntax error, but perseveres until it eventually
manages to read a term. This behavior can be changed with prolog_flag/3 or using
read_term/[2,3].

If the end of the current input stream has been reached, read (X) will cause X to be
unified with the atom end_of_file.

4.6.3.2 Changing the Prompt

To query or change the sequence of characters (prompt) that indicates that the system is
waiting for user input, call prompt/2.

This predicate affects only the prompt given when a user’s program is trying to read from
the terminal (for example, by calling read/1 or get_code/1). Note also that the prompt
is reset to the default ‘| : ’ on return to the top level.

4.6.4 Term Output

Term output operations include:

writing to a stream (various “write” Predicates)

displaying, usually on the user’s terminal (display/1)

changing the effects of print/[1,2] (user:portray/1)

writing a clause as listing/[0,1] does. (portray_clause/[1,2])

4.6.4.1 Writing Terms: the "Write" Predicates
write (+Stream, +Term)
write(+Term)
writeq(+Stream, +Term)
writeq(+Term)
write_canonical (+Term)

write_canonical (+Stream, +Term)

90

SICStus Prolog

write_term(+Stream, +Term, +Options)
write_term(+Term, +Options)

write_term/[2,3] is a generalization of the others and provides a number of options.

4.6.4.2 Common Characteristics

The output of the “Write” predicates is not terminated by a full-stop; therefore, if you want
the term to be acceptable as input to read/[1,2], you must send the terminating full-stop
to the output stream yourself. For example,

| ?- write(a), put_code(0’.), nl.

If Term is uninstantiated, it is written as an anonymous variable (an underscore followed
by a non-negative integer).

write_canonical/[1,2] is provided so that Term, if written to a file, can be read back by
read/ [1,2] regardless whether there are special characters in Term or prevailing operator
declarations.

4.6.4.3 Distinctions Among the "write" Predicates

For write and writeq, the term is written with respect to current operator declarations
(See Section 4.1.5 [ref-syn-ops]|, page 43, for a discussion of operators).
write_canonical(Term) writes Term to the current or specified output stream in
standard syntax (see Section 4.1 [ref-syn|, page 39 on Prolog syntax), and quotes atoms
and functors to make them acceptable as input to read/[1,2]. That is, operator
declarations are not used and compound terms are therefore always written in the
form:

predicate_name (argl, ..., argn)
Atoms output by write/[1,2] cannot in general be read back using read/[1,2]. For
example,

| 7- write(CCa b?).

ab
If you want to be sure that the atom can be read back by read/[1,2], you should
use writeq/[1,2], or write_canonical/[1,2], which put quotes around atoms when
necessary, or use write_term/[2,3] with the quoted option set to yes. Note also
that the printing of quoted atoms is sensitive to character escaping (see Section 4.1.4
[ref-syn-ces|, page 43).
write/[1,2] and writeq/[1,2] treat terms of the form >$VAR’ (N) specially: they
write ‘A’ if N=0, ‘B’ if N=1, ...Z" if N=25, ‘A1’ if N=26, etc. Terms of this form
are generated by numbervars/3 (see Section 4.8.6 [ref-lte-anv], page 112). Terms of
the form ’>$VAR’ (X), where X is not a number are written as unquoted terms. For
example,

| 7- writeq(a(C$VAR”(0), $VAR” (*Test?))).

a(A,Test)
write_canonical/1 does not treat terms of the form ’>$VAR’> (N) specially. It writes
square bracket lists using ./2 and [1 (that is, [a,b] is written as ‘. (a,. (b, [1))’).

Chapter 4: The Prolog Language 91

4.6.4.4 Displaying Terms

Like write_canonical/[1,2], display/1 ignores operator declarations and shows all com-
pound terms in standard prefix form. For example, the command

| 7- display(a+b).
produces the following:
+(a,b)

Calling display/1 is a good way of finding out how Prolog parses a term with several
operators. Unlike write_canonical/[1,2], display/1 does not put quotes around atoms
and functors.

4.6.4.5 Using the Portray Hook

By default, the effect of print/[1,2] is the same as that of write/[1,2], but you can
change its effect by providing clauses for the hook predicate user:portray/1.

If X is a variable, it is printed using write(X). Otherwise the user-definable procedure
user:portray(X) is called. If this succeeds, it is assumed that X has been printed and
print/[1,2] exits (succeeds).

If the call to user:portray/1 fails, and if X is a compound term, write/[1,2] is used to
write the principal functor of X and print/[1,2] is called recursively on its arguments. If
X is atomic, it is written using write/[1,2].

When print/[1,2] has to print a list, say [X1,X2,...,Xn], it passes the whole list to
user:portray/1. As usual, if user:portray/1 succeeds, it is assumed to have printed the
entire list, and print/[1,2] does nothing further with this term. Otherwise print/[1,2]
writes the list using bracket notation, calling print/[1,2] on each element of the list in
turn.

Since [X1,X2,...,Xn] is simply a different way of writing . (X1, [X2,...,Xn]), one might
expect print/[1,2] to be called recursively on the two arguments X1 and [X2,...,Xn],
giving user:portray/1 a second chance at [X2,...,Xn]. This does not happen; lists are
a special case in which print/[1,2] is called separately for each of X1,X2,...Xn.

4.6.4.6 Portraying a Clause

If you want to print a clause, portray_clause/[1,2] is almost certainly the command you
want. None of the other term output commands puts a full-stop after the written term.
If you are writing a file of facts to be loaded by compile/1, use portray_clause/[1,2],
which attempts to ensure that the clauses it writes out can be read in again as clauses.

The output format used by portray_clause/[1,2] and listing/1 has been carefully
designed to be clear. We recommend that you use a similar style. In particular, never put
a semicolon (disjunction symbol) at the end of a line in Prolog.

4.6.5 Byte and Character Input

92

SICStus Prolog

4.6.5.1 Overview

The operations in this category are:

reading (“get” predicates),
peeking (“peek” predicates),
skipping (“skip” predicates),

checking for end of line or end of file (“at_end” predicates).

4.6.5.2 Reading Bytes and Characters

get_byte([Stream,] N) unifies N with the next consumed byte from the current or
given input stream, which must be binary.

get_code([Stream,] N) unifies N with the next consumed character code from the
current or given input stream, which must be text.

get_char ([Stream,] A) unifies A with the next consumed character atom from the
current or given input stream, which must be text.

4.6.5.3 Peeking

Peeking at the next character without consuming it is useful when the interpretation of
“this character” depends on what the next one is.

peek_byte ([Stream,] N) unifies N with the next unconsumed byte from the current
or given input stream, which must be binary.

peek_code ([Stream,] N) unifies N with the next unconsumed character code from
the current or given input stream, which must be text.

peek_char ([Stream,] A) unifies A with the next unconsumed character atom from
the current or given input stream, which must be text.

4.6.5.4 Skipping

There are two ways of skipping over characters in the current or given input stream: skip
to a given character, or skip to the end of a line.

skip_byte([Stream,] N) skips over bytes through the first occurrence of N from the
current or given input stream, which must be binary.

skip_code ([Stream,] N) skips over character codes through the first occurrence of N
from the current or given input stream, which must be text.

skip_char([Stream,] A) skips over character atoms through the first occurrence of
A from the current or given input stream, which must be text.

skip_line or skip_line(Stream) skips to the end of line of the current or given input
stream. Use of this predicate helps portability of code since it avoids dependence on
any particular character code(s) being returned at the end of a line.

4.6.5.5 Finding the End of Line and End of File

To test whether the end of a line on the end of the file has been reached on the current or
given input stream, use at_end_of_line/[0,1] or at_end_of_stream/[0,1].

Chapter 4: The Prolog Language 93

Note that these predicates never block waiting for input. This means that they may fail
even if the stream or line is in fact at its end. An alternative that will never guess wrong is
to use peek_code/[1,2] or peek_byte/[1,2].

4.6.6 Byte and Character Output

The byte and character output operations are:

writing (putting) bytes and characters
creating newlines and tabs
flushing buffers

formatting output.

Please note: The note about “tty-" predicates at the beginning of Section 4.6.5
[ref-iou-cin], page 91 applies here as well.

4.6.6.1 Writing Bytes and Characters

put_byte([Stream,] N) writes the byte N to the current or given output stream,
which must be binary.

put_code ([Stream,] N) writes the character code N to the current or given output
stream, which must be text.

put_char ([Stream,] A) writes the character atom A to the current or given output
stream, which must be text.

The byte or character is not necessarily printed immediately; they may be flushed if the
buffer is full. See Section 4.6.7.10 [ref-iou-sth-flu], page 99.

4.6.6.2 New Line

nl or nl(Stream) terminates the record on the current or given output stream. A linefeed
character is printed.

4.6.6.3 Formatted Output

format ([Stream,] Control, Arguments) interprets the Arguments according to the Con-
trol string and prints the result on the current or given output stream. Alternatively, an
output stream can be specified in a third argument. This predicate is used to produce
formatted output, like the following example.

| 7- toc(1.5).
Table of Contents i

KoKk kKKK kK Kk ok okokokkkkkkkk NICE TABLE skokokokskok sk sk sk ok ok ok ok ok sk sk 3 ok ok ok ok ok ok

* *
* Right aligned Centered Left aligned *
* 123 45 678 *
* 1 2345 6789 *

>k 3k 3k 5k >k >k 3k 3k 3k >k %k >k 3k 3k >k >k 5k 5k 3k >k >k %k >k 3k 5k >k >k >k 3k 3k >k >k %k 5k >k 3k >k >k >k 3k 5k >k >k >k %k 3k >k >k %k >k %k >k >k %k %k >k >k >k *k %k %k

94 SICStus Prolog

For details, including the code to produce this example, see the example program in the
reference page for format/[2,3].

4.6.7 Stream and File Handling

The operations implemented are opening, closing, querying status, flushing, error handling,
setting.

The predicates in the “see” and “tell” families are supplied for compatibility with other
Prologs. They take either file specifications or stream objects as arguments (see Section 11.1
[mpg-ref], page 757) and they specify an alternative, less powerful, mechanism for dealing
with files and streams than the similar predicates (open/[3,4], etc.), which take stream
objects (see the figure “Categorization of Stream Handling Predicates”).

4.6.7.1 Stream Objects

Each input and output stream is represented by a unique Prolog term, a stream object. In
general, this term is of the form

user Stands for the standard input or output stream, depending on context.

’$stream’ (X)
A stream connected to some file. X is an integer.

Atom A stream alias. Aliases can be associated with streams using the alias (Atom)
option of open/4. There are also three predefined aliases:

user_input
An alias initially referring to the UNIX stdin stream. The alias
can be changed with prolog_flag/3 and accessed by the C variable
SP_stdin.

user_output
An alias initially referring to the UNIX stdout stream. The alias
can be changed with prolog_flag/3 and accessed by the C variable
SP_stdout.

user_error
An alias initially referring to the UNIX stderr stream. The alias
can be changed with prolog_flag/3 and accessed by the C vari-
able SP_stderr. This stream is used by the Prolog top-level and
debugger, and for all unsolicited messages by built-in predicates.

Stream objects are created by the predicate open/[3,4] Section 4.6.7.4 [ref-iou-sth-opn],
page 95 and passed as arguments to those predicates that need them. Representation for
stream objects to be used in C code is different. Use stream_code/2 to convert from one
to the other when appropriate.

4.6.7.2 Exceptions Related to Streams

All predicates that take a stream argument will raise the following exceptions:

Chapter 4: The Prolog Language 95

instantiation_error
Stream argument is not ground

type_error
Stream is not an input (or output) stream type.

existence_error
Stream is syntactically valid but does not name an open stream.

permission_error
Stream names an open stream but the stream is not open for the required
operation, or has reached the end of stream on input, or is binary when text is
required, or vice versa.

The reference page for each stream predicate will simply refer to these as “Stream errors”
and will go on to detail other exceptions that may be raised for a particular predicate.

4.6.7.3 Suppressing Error Messages

If the fileerrors flag is set to off, the built-in predicates that open files simply fail,
instead of raising an exception if the specified file cannot be opened.

4.6.7.4 Opening a Stream

Before I/O operations can take place on a stream, the stream must be opened, and it must
be set to be current input or current output. As illustrated in the figure “Categorization
of Stream Handling Predicates”, the operations of opening and setting are separate with
respect to the stream predicates, and combined in the File Specification Predicates.

open(File, Mode, Stream) attempts to open the file File in the mode specified
(read,write or append). If the open/3 request is successful, a stream object, which
can be subsequently used for input or output to the given file, is unified with Stream.
The read mode is used for input. The write and append modes are used for output.
The write option causes a new file to be created for output. If the file already exists,
it is set to empty and its previous contents are lost. The append option opens an
already-existing file and adds output to the end of it. The append option will create
the file if it does not already exist.

Options can be specified by calling open/4.

set_input (Stream) makes Stream the current input stream. Subsequent input pred-
icates such as read/1 and get_code/1 will henceforth use this stream.

set_output (Stream) makes Stream the current output stream. Subsequent output
predicates such as write/1 and put_code/1 will henceforth use this stream.

Opening a stream and making it current are combined in see and tell:

see(S) makes file S the current input stream. If S is an atom, it is taken to be a file
specification, and

if there is an open input stream associated with the filename, and that stream was
opened by see/1, it is made the current input stream;

96

SICStus Prolog

Otherwise, the specified file is opened for input and made the current input stream.
If it is not possible to open the file, see/1 fails. In addition, if the fileerrors
flag is set (as it is by default), see/1 sends an error message to the standard error
stream and calls abort/0, returning to the top level.

tell(S) makes S the current output stream.

If there is an open output stream currently associated with the filename, and that
stream was opened by tell/1, it is made the current output stream;

Otherwise, the specified file is opened for output and made the current output
stream. If the file does not exist, it is created. If it is not possible to open the file
(because of protections, for example), tell/1 fails. In addition, if the fileerrors
flag is set (which it is by default), tell/1 sends an error message to the standard
error stream and calls abort/0, returning to the top level.

It is important to remember to close streams when you have finished with them. Use seen/0
or close/1 for input files, and t01d/0 or close/1 for output files.

open_null_stream(Stream) opens a text output stream that is not connected to any
file and unifies its stream object with Stream. Characters or terms that are sent to
this stream are thrown away. This predicate is useful because various pieces of local
state are kept for null streams: the predicates character_count/2, line_count/2
and line_position/2 can be used on these streams (see Section 4.6.8 [ref-iou-sos],
page 99).

4.6.7.5 Text Stream Encodings

SICStus Prolog supports character codes up to 31 bits wide where the codes are interpreted
as for Unicode for the common subset.

When a character code (a “code point” in Unicode terminology) is read or written to a
stream, it must be encoded into a byte sequence. The method by which each character
code is encoded to or decoded from a byte sequence is called “character encoding”.

The following character encodings are currently supported by SICStus Prolog.

ANSTI_X3.4-1968

The 7-bit subset of Unicode, commonly referred to as ASCII.

IS0-8859-1

The 8-bit subset of Unicode, commonly referred to as Latin 1.

IS0-8859-2

A variant of ISO-8859-1, commonly referred to as Latin 2.

IS0-8859-15

A variant of ISO-8859-1, commonly referred to as Latin 9.

windows 1252

The Microsoft Windows code page 1252.

Chapter 4: The Prolog Language 97

UTF-8
UTF-16
UTF-16LE
UTF-16BE
UTF-32
UTF-32LE
UTF-32BE

The suffixes LE and BE denote respectively little endian and big endian.

These encodings can be auto-detected if a Unicode signature is present in a
file opened for read. A Unicode signature is also known as a Byte order mark
(BOM).

In addition, it is possible to use all alternative names defined by the IANA registry
http://www.iana.org/assignments/character-sets.

All encodings in the table above, except the UTF-XXX encodings, supports the
reposition(true) option to open/4 (see Section 11.3.144 [mpg-ref-open], page 960).

The encoding to use can be specified when using open/4 and similar predicates using the
option encoding/1. When opening a file for input, the encoding can often be determined
automatically. The default is IS0-8859-1 if no encoding is specified and no encoding can
be detected from the file contents.

The encoding used by a text stream can be queried using stream_property/2.

4.6.7.6 Finding the Current Input Stream
current_input (Stream) unifies Stream with the current input stream.

If the current input stream is user_input, seeing(S) unifies S with user. Otherwise,
if the current input stream was opened by see(F), seeing(S) unifies S with F. Oth-
erwise, if the current input stream was opened by open/[3,4], seeing(S) unifies S
with the corresponding stream object.

seeing/1 can be used to verify that a section of code leaves the current input stream
unchanged as follows:

/* nonvar (FileNameOrStream), */
see(FileNameOrStream),

seeing(FileNameOrStream)
WARNING: The sequence

seeing(File),

set_input(File),
will signal an error if the current input stream was opened by see/1. The
only sequences that are guaranteed to succeed are

seeing(FileOrStream),

see(FileOrStream)

http://www.iana.org/assignments/character-sets

98 SICStus Prolog

and

current_input (Stream),

set_input (Stream)

4.6.7.7 Finding the Current Output Stream
current_output (Stream) unifies Stream with the current output
stream.

If the current output stream is user_output, telling(S) unifies S with user. Other-
wise, if the current output stream was opened by tell(F), telling(S) unifies S with
F. Otherwise, if the current output stream was opened by open/[3,4], telling(S)
unifies S with the corresponding stream object.

telling/1 can be used to verify that a section of code leaves the current output stream
unchanged as follows:

/* nonvar (FileNameOrStream), */
tell(FileNameOrStream) ,

telling(FileNameOrStream)
WARNING: The sequence
telling(File),

set_output (File),
will signal an error if the current output stream was opened by tell/1.
The only sequences that are guaranteed to succeed are

telling(FileOrStream),

tell(FileOrStream)
and

current_output (Stream),

set_output (Stream)

4.6.7.8 Finding Out About Open Streams

current_stream(File, Mode, Stream) succeeds if Stream is a stream that is currently
open on file File in mode Mode, where Mode is either read, write, or append. None of
the arguments need be initially instantiated. This predicate is nondeterminate and can be
used to backtrack through all open streams. current_stream/3 ignores the three special
streams for the standard input, output, and error channels.

stream_property(Stream, Property) succeeds if Stream is a currently open stream with
property Property. The three standard channels are not ignored.

4.6.7.9 Closing a Stream

close(X) closes the stream corresponding to X, where X should be a stream object

Chapter 4: The Prolog Language 99

created by open/[3,4], or a file specification passed to see/1 or tell/1. In the
example:

see(foo),

close(foo)
‘foo’ will be closed. However, in the example:

open(foo, read, S),

close(foo)
an exception will be raised and ‘foo’ will not be closed.

t01d/0 closes the current output stream. The current output stream is then set to be
user_output.

seen/0 closes the current input stream. The current input stream is then set to be
user_input.

4.6.7.10 Flushing Output

Output to a stream is not necessarily sent immediately; it is buffered. The predicate f1lush_
output/1 flushes the output buffer for the specified stream and thus ensures that everything
that has been written to the stream is actually sent at that point.

flush_output (Stream) sends all data in the output buffer to stream Stream.

4.6.8 Reading the State of Opened Streams

Byte, character, line count and line position for a specified stream are obtained as follows:

byte_count (Stream, N) unifies N with the total number of bytes either read or written
on the open binary stream Stream.

character_count (Stream, N) unifies N with the total number of characters either
read or written on the open text stream Stream.

line_count (Stream, N) unifies N with the total number of lines either read or written
on the open text stream Stream. A freshly opened text stream has a line count of 0,
i.e. this predicate counts the number of newlines seen.

line_position(Stream, N) unifies N with the total number of characters either read
or written on the current line of the open text stream Stream. A fresh line has a line
position of 0, i.e. this predicate counts the length of the current line.

4.6.8.1 Stream Position Information for Terminal I/O

Input from Prolog streams that have opened the user’s terminal for reading is echoed back
as output to the same terminal. This is interleaved with output from other Prolog streams
that have opened the user’s terminal for writing. Therefore, all streams connected to the
user’s terminal share the same set of position counts and thus return the same values for
each of the predicates character_count/2, line_count/2 and line_position/2.

4.6.9 Random Access to Files

There are two methods of finding and setting the stream position, stream positioning and
seeking. The current position of the read /write pointer in a specified stream can be obtained

100 SICStus Prolog

by using stream_position/2 or stream_property/2. It may be changed by using set_
stream_position/2. Alternatively, seek/4 may be used.

Seeking is more general, and stream positioning is more portable. The differences between
them are:

stream_position/2 is similar to seek/4 with O set = 0, and Method = current.

Where set_stream_position/2 asks for stream position objects, seek/4 uses integer
expressions to represent the position or offset. Stream position objects are obtained by
calling stream_position/2, and are discussed in the reference page.

4.6.10 Summary of Predicates and Functions

Reference pages for the following provide further detail on the material in this section.

at_end_of_line
at_end_of_line(+S)
testing whether at end of line on input stream S

at_end_of_stream 1SO

at_end_of_stream(+S) 1S0
testing whether end of file is reached for the input stream S

flush_output 1S0

flush_output (+S) 1SO
flush the output buffer for stream S

get_byte(-C) 1SO

get_byte(+S,-C) 1SO
C is the next byte on binary input stream S

get_char(-C) 1S0

get_char(+S,-C) 1SO
C is the next character atom on text input stream S

get_code(-C) 1SO

get_code(+S,-C) 1SO
C is the next character code on text input stream S

nl 1SO

nl (+S) 1SO
send a newline to stream S

peek_byte(+C) 1SO

peek_byte (+S,+C) 1S0
looks ahead for next input byte on the binary input stream S

peek_char (+C) 1SO

peek_char (+S,+C) 1SO
looks ahead for next input character atom on the text input stream S

peek_code (+C) 1SO

peek_code (+S,+C) 1S0

looks ahead for next input character code on the text input stream S

Chapter 4: The Prolog Language 101

put_byte (+C) 1SO

put_byte(+S,+C) 1SO
write byte C to binary stream S

put_char (+C) 1SO

put_char (+S,+C) 1SO
write character atom C to text stream S

put_code (+C) 1S0

put_code (+S,+C) 1SO

write character code C to text stream S

skip_byte(+C)
skip_byte(+S,+C)
skip input on binary stream S until after byte C

skip_char (+C)
skip_char(+S,+C)
skip input on text stream S until after char C

skip_code (+C)
skip_code(+S,+C)
skip input on text stream S until after code C

skip_line

skip_line(+S)
skip the rest input characters of the current line (record) on the input stream
S

byte_count (+S,-N)
N is the number of bytes read/written on binary stream S

character_count (+S,-N)
N is the number of characters read/written on text stream S

close(+F) 1SO
close(+F,+0) 1SO

close file or stream F with options O

current_input (-S) 1SO
S is the current input stream

current_output (-S) 1S0
S is the current output stream

current_stream(?F,?M,?S)
S is a stream open on file F in mode M

line_count (+S,-N)
N is the number of lines read /written on text stream S

line_position(+S,-N)
N is the number of characters read/written on the current line of text stream

S

102 SICStus Prolog

open(+F,+M,-S) 1SO
open(+F,+M,-S,+0) 1SO
file F is opened in mode M, options O, returning stream S

open_null_stream(+S)
new output to text stream S goes nowhere

prompt (-0, +N)
queries or changes the prompt string of the current input stream

see(+F) make file F the current input stream

seeing(-N)
the current input stream is named N

seek (+S,+0,+M,+N)
seek to an arbitrary byte position on the stream S

seen close the current input stream

set_input (+S) 1SO
select S as the current input stream

set_output (+S) 1SO
select S as the current output stream

set_stream_position(+S,+P) 1SO
P is the new position of stream S

stream_code(?S,?C)
Converts between Prolog and C representations of a stream

stream_position(+S,-P)
P is the current position of stream S

stream_position_data(?Field,?Position,?Data)
The Field field of the stream position term Position is Data.

stream_property (?Stream, ?Property)) 150
Stream Stream has property Property.

tell(+F) make file F the current output stream
telling(-N)

to file N

told close the current output stream

char_conversion(+InChar, +OutChar) 1SO
The mapping of InChar to OutChar is added to the character-conversion map-
ping.

current_char_conversion(?InChar, ?0utChar) 1SO
InChar is mapped to OutChar in the current character-conversion mapping.

current_op(?P,?T,?A) 1SO

atom A is an operator of type T with precedence P

Chapter 4: The Prolog Language 103

display(+T)

write term T to the user output stream in prefix notation
format (+C, :A)
format (+S,+C, zA)

write arguments A on stream S according to control string C

op(+P,+T,+A) 1SO
make atom A an operator of type T with precedence P

user:portray(+T) hook
tell print/[1,2] and write_term/[2,3] what to do

portray_clause(+C)
portray_clause(+S,+C)
write clause C to the stream S

print (+T) hookable

print (+S,+T) hookable
display the term T on stream S using user:portray/1 or write/2

read(-T) 1SO

read (+S,-T) 1SO
read term T from stream S

read_term(-T,+0) 1SO

read_term(+S,-T,+0) 1SO
read T from stream S according to options O

write(+T) 1SO

write(+S,+T) 1SO
write term T on stream S

write_canonical (+T) 1SO

write_canonical (+S,+T) 1S0

write term T on stream S so that it can be read back by read/[1,2]

writeq(+T) 1SO
writeq(+S,+T) 1SO
write term T on stream S, quoting atoms where necessary
write_term(+T,+0) 1SO, hookable
write_term(+S,+T,+0) 150, hookable

writes T to S according to options O

4.7 Arithmetic

4.7.1 Overview

In Prolog, arithmetic is performed by certain built-in predicates, which take arithmetic
expressions as their arguments and evaluate them. Arithmetic expressions can evaluate to
integers or floating-point numbers (floats).

The range of integers is [-272147483616, 2°2147483616). Thus for all practical purposes,
the range of integers can be considered infinite.

104 SICStus Prolog

The range of floats is the one provided by the C double type, typically [4.9e-324,
1.8e+308] (plus or minus). In case of overflow or division by zero, an evaluation error
exception will be raised. Floats are represented by 64 bits and they conform to the IEEE
754 standard.

The arithmetic operations of evaluation and comparison are implemented in the predicates
described in Section 4.7.2 [ref-ari-eae], page 104 and Section 4.7.4 [ref-ari-acm]|, page 104.
All of them take arguments of the type EXpr, which is described in detail in Section 4.7.5
[ref-ari-aex|, page 105.

4.7.2 Evaluating Arithmetic Expressions

The most common way to do arithm