
SICStus Prolog Release Notes
Mats Carlsson et al.

Swedish Institute of Computer Science
PO Box 1263

SE-164 29 Kista, Sweden

Release 4.0.8
September 2009

Swedish Institute of Computer Science
sicstus-request@sics.se http://www.sics.se/sicstus/

mailto:sicstus-request@sics.se
http://www.sics.se/sicstus/

Copyright c© 1995-2009 SICS

Swedish Institute of Computer Science
PO Box 1263
SE-164 29 Kista, Sweden

Permission is granted to make and distribute verbatim copies of these notes provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of these notes under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of these notes into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by SICS.

i

Table of Contents

1 Overview . 1

2 Platforms . 2

3 Release Notes and Installation Guide for UNIX
. 3

3.1 Installation . 3
3.1.1 Prerequisites . 3

3.1.1.1 C Compiler and Linker . 3
3.1.2 The Installation Script . 3
3.1.3 The Uninstallation Script . 4

3.2 Platform Specific Notes . 4

4 Release Notes and Installation Guide for
Windows . 7

4.1 Requirements . 7
4.2 Installation . 7
4.3 Windows Notes . 8
4.4 Command Line Editing . 8
4.5 The Console Window . 9

4.5.1 Console Preferences . 9
4.6 Windows Limitations . 10

5 Tcl/Tk Notes . 11

6 Jasper Notes . 12
6.1 Supported Java Versions . 12
6.2 Getting Started . 12

6.2.1 Windows . 12
6.2.2 UNIX . 13
6.2.3 Running Java from SICStus . 13
6.2.4 Running SICStus from Java . 13

6.3 Jasper Package Options . 15
6.4 Multi Threading . 16
6.5 Changes in Jasper from SICStus 3 . 16
6.6 Known Bugs and Limitations . 16
6.7 Java Examples Directory . 17
6.8 Resources . 17

7 Berkeley DB Notes . 18

ii

8 The Emacs Interface . 19
8.1 Installation . 19

8.1.1 Installing On-Line Documentation . 19

9 Revision History . 20
9.1 What Is New In Release 4 . 20

9.1.1 Virtual Machine . 20
9.1.2 Prolog Language . 20

9.1.2.1 Single Language Mode . 20
9.1.2.2 DCG Notation . 20
9.1.2.3 Asserting Terms with Attributed Variables 20
9.1.2.4 Arithmetic . 21
9.1.2.5 Syntax . 21
9.1.2.6 Prolog Flags . 21
9.1.2.7 Stream Properties . 21
9.1.2.8 Statistics Keywords . 21
9.1.2.9 Built-In Predicates . 21
9.1.2.10 Hook Predicates . 25

9.1.3 Library Modules . 25
9.1.4 Input-Output System . 29
9.1.5 Foreign Language APIs . 29

9.1.5.1 Foreign Language Interface . 29
9.1.5.2 C API Functions . 30
9.1.5.3 Java API . 31

9.2 Guide to Porting Code from Release 3 . 31
9.3 Limitations in the Current Release . 33
9.4 Changes Introduced in Version 4.0.1 . 33

9.4.1 New Features . 33
9.4.2 Bugs Fixed . 33
9.4.3 Other Changes . 34
9.4.4 Known Issues . 34

9.5 Changes Introduced in Version 4.0.2 . 34
9.5.1 New Features . 34
9.5.2 Bugs Fixed . 35
9.5.3 Other Changes . 35
9.5.4 Known Issues . 36

9.6 Changes Introduced in Version 4.0.3 . 36
9.6.1 New Features . 36
9.6.2 Bugs Fixed . 36
9.6.3 Other Changes . 37
9.6.4 Known Issues . 37

9.7 Changes Introduced in Version 4.0.4 . 38
9.7.1 New Features . 38
9.7.2 Bugs Fixed . 38
9.7.3 Other Changes . 39
9.7.4 Known Issues . 39

9.8 Changes Introduced in Version 4.0.5 . 39
9.8.1 New Features . 39

iii

9.8.2 Bugs Fixed . 39
9.8.3 Other Changes . 40
9.8.4 Known Issues . 41

9.9 Changes Introduced in Version 4.0.6 . 42
9.10 Changes Introduced in Version 4.0.7 . 42

9.10.1 New Features . 42
9.10.2 Bugs Fixed . 42
9.10.3 Other Changes . 42
9.10.4 Known Issues . 43

9.11 Changes Introduced in Version 4.0.8 . 43
9.11.1 New Features . 43
9.11.2 Bugs Fixed . 43
9.11.3 Other Changes . 43
9.11.4 Known Issues . 43

10 Generic Limitations . 45

11 Contact Information . 46

Chapter 1: Overview 1

1 Overview

These notes summarize the changes in release 4 wrt. previous SICStus Prolog releases as
well as changes introduced by minor releases and their patch releases. Platform specific
information pertaining to certain parts of the system are also documented herein.

Chapter 2: Platforms 2

2 Platforms

Binary distributions of Release 4.0 are available for the following platforms. Addi-
tional platforms are available. If your platform is not listed, please let us know
(sicstus-request@sics.se).

Intel/x86, Windows 2000/XP/Vista, 32 bits
Intel/x86, Linux glibc 2.3, 32/64 bits

Built and tested on Red Hat Enterprise Linux 4

Intel/x86, Linux glibc 2.2, 32 bits
Built and tested on Red Hat Linux 7.2

Intel/x86, Solaris 10, 32/64 bits
Intel/x86, Mac OS X 10.4, 32/64 bits
PowerPC, Mac OS X 10.4, 32 bits
PowerPC, AIX 5.1L, 32/64 bits
Sparc, Solaris 8, 32/64 bits

mailto:sicstus-request@sics.se

Chapter 3: Release Notes and Installation Guide for UNIX 3

3 Release Notes and Installation Guide for UNIX

This chapter assumes that the environment variable PATH includes <prefix>/bin, where
<prefix> points to the SICStus installation directory. The installation directory is specified
during installation; see Section 3.1 [UNIX installation], page 3. For example:

csh,tcsh> setenv PATH "/usr/local/bin:$PATH"
sh,bash,ksh> export PATH="/usr/local/bin:$PATH"

3.1 Installation

Installation of SICStus under UNIX is performed by an installation (Shell) script
InstallSICStus, which interacts with the user to obtain options such as where to install
SICStus. The Java based SICStus Installer Tool is a graphical front-end to the installation
script, which automates downloading and installation. The SICStus Installer Tool is avail-
able from the download page. Use of the SICStus Installer Tool is strictly optional but may
be convenient, especially on platforms such as Mac OS X, that, by default, lack C compiler.

3.1.1 Prerequisites

3.1.1.1 C Compiler and Linker

A full SICStus installation requires a C compiler and a linker to perform final link steps on
the installation machine.

If a C compiler is not available, it is possible to use a pre-built installation on some platforms.

Pre-built installation is only recommended as a last resort; it is available from the SICStus
Installer Tool or by invoking InstallSICStus with the ‘--all-questions’ argument.

A disadvantage with the pre-built installation is that SICStus libraries that interface to
third-party products (Tcl/Tk, Berkeley DB, Java) may not work, or may require environ-
ment variables such as LD_LIBRARY_PATH to be set. Another disadvantage is that spld and
splfr may not work unless you manually adjust the spld configure file. Of course, neither
spld nor splfr will work anyway if you do not have a C compiler.

3.1.2 The Installation Script

Most users will install SICStus from a binary distribution. These are available for all
supported platforms. Information on how to download and unpack the binary distribution
is sent by email when ordering SICStus.

Binary distributions are installed by executing an interactive installation script called
InstallSICStus. Type:

% ./InstallSICStus

and follow the instructions on the screen. As an alternative, the SICStus Installer Tool can
be used to download the SICStus files and invoke the installation script.

Chapter 3: Release Notes and Installation Guide for UNIX 4

During installation, you will be required to enter your site-name and license code. These
are included in the download instructions.

The installation program does not only copy files to their destination, it also performs final
link steps for some of the executables and for the library modules requiring third-party
software support (currently library(bdb) and library(tcltk)). This is done in order to
adapt to local variations in installation paths and versions.

Invoke InstallSICStus with the ‘--help’ argument to get a list of options.

Compiling SICStus from the sources requires a source code distribution. Contact sicstus-
support@sics.se for more info.

3.1.3 The Uninstallation Script

To uninstall SICStus the script UnInstallSICStus can be run. It is created during instal-
lation in the same directory as InstallSICStus.

3.2 Platform Specific Notes

This section contains some installation notes that are platform specific under UNIX.

Solaris SPARC 64-bit
You cannot install (or build) the 64 bit version of SICStus using gcc 2.x.
You need to use the Sun Workshop/Forte compiler, version 5.0 or later.
InstallSICStus will try to find it during installation but if that fails, you
can set the environment variable CC to e.g. ‘/opt/SUNWspro/bin/cc’ before in-
voking InstallSICStus. Using gcc 3.x does seem to work but has not yet
received much testing. To install with gcc 3.x, set the environment variable
CC appropriately before invoking InstallSICStus.
The following libraries are not supported: library(bdb), library(tcltk).

Solaris 8

The default thread library in Solaris 8 is incompatible with SICStus. The
“Alternate Thread Library (T2)” must be used instead. This is ensured auto-
matically for executables built with the spld tool. It is not ensured automat-
ically when loading SICStus into Java or other programs not built by spld.
See http://developers.sun.com/solaris/articles/alt_thread_lib.html
for further information.
Problems causes by the old thread library include:
• library(timeout) does not work.
• Java hangs during initialization of a Jasper SICStus object.

This problem does not affect Solaris 9 or later.

Mac OS X

An executable built with spld will only work if there is a properly configured
subdirectory ‘sp-4.0.8’ in the same directory as the executable; see Section
“Runtime Systems on UNIX Target Machines” in the SICStus Prolog Manual.

http://developers.sun.com/solaris/articles/alt_thread_lib.html

Chapter 3: Release Notes and Installation Guide for UNIX 5

Alternatively, the option ‘--wrapper’ can be passed to spld. In this case a
wrapper script is created that will set up various environment variables and
invoke the real executable.
When using third-party products like BDB, you may need to set up DYLD_
LIBRARY_PATH so that the Mac OS X dynamic linker can find them. When
using the SICStus development executable (sicstus), this should happen au-
tomatically.
Sometimes, the default limit on the process’s data-segment is unreasonably
small, which may lead to unexpected memory allocation failures. To check this
limit, do:

tcsh> limit data

datasize 6144 kbytes
bash> ulimit -d

6144

This indicates that the maximum size of the data-segment is only 6 Mb. To
remove the limit, do:

tcsh> limit datasize unlimited

datasize unlimited
bash> ulimit -d unlimited

bash> ulimit -d

unlimited

Please note: limit (ulimit) is a shell built-in in csh/tcsh
(sh/bash). It may have a different name in other shells.
Please note: The limit will also affect SICStus when started from
within Emacs, e.g. with M-x run-prolog. To change the limit used
by Emacs and its sub-processes (such as SICStus) you will need to
change the limit in the shell used to start Emacs. Alternatively you
can create a shell wrapper for the emacs command.

As of SICStus 4.0.1 SICStus will set the data segment size of itself according to
the value of the environment variable SP_ULIMIT_DATA_SEGMENT_SIZE. If you
set this variable in the initialization file for your shell you do not have to use
the ulimit command.
library(timeout) does not work reliably in some versions of Mac OS X on a
multi-CPU machine. In particular, timeouts tend to happen much later than
they should. This is caused by an OS bug. One workaround is to disable all
but one CPU using the “Processor” control in the “System Preferences” or the
hwprefs command. These utilities are part of “CHUD” which can be installed
as part of Apple XCode. The underlying bug is related to setitimer(ITIMER_
VIRTUAL) and has been observed at least up to Mac OS X 10.4.8 (Darwin 8.8.1).
It seems to be fixed in Mac OS X 10.5.2 (Darwin 9.2.2).
File names are encoded in UTF-8 under Mac OS X. This is handled correctly
by SICStus.
If SICStus encounters a file name that is not encoded in UTF-8, it will silently
ignore the file or directory. This can happen on file systems where files have

Chapter 3: Release Notes and Installation Guide for UNIX 6

been created by some other OS than Mac OS X, e.g. on network file servers
accessed by other UNIX flavors or Windows.
The default character encoding for the SICStus standard streams is based on
the current locale which is POSIX/C, i.e. US ASCII, by default on Mac OS X.
This will come in conflict with the default character encoding for the Terminal
application which is UTF-8. A clickable launcher for SICStus is optionally in-
stalled in the Applications folder. This launcher will set the character encoding
of the standard streams to UTF-8 for both the Terminal and SICStus.
The SICStus binaries are not built as universal binaries, and neither spld nor
splfr supports building universal binaries. You can however build a universal
binary of your SICStus application by running spld from a SICStus PowerPC-
installation (this may be done on an Intel-Mac using Rosetta) and running spld
from a SICStus Intel-installation, and then joining the two generated binaries
with lipo. The following example assumes that your program is in ‘myprog.pl’
and the paths to your PowerPC-installation and your Intel-installation are SP-
i386-BINPATH and SP-PPC-BINPATH respectively:

$(SP-i386-BINPATH)/sicstus -l myprog.pl --goal "save_program(myprog), halt."
$(SP-i386-BINPATH)/spld --main=restore myprog.sav -static -o myprog-i386
$(SP-PPC-BINPATH)/spld --main=restore myprog.sav -static -o myprog-ppc
lipo myprog-i386 myprog-ppc -create -output myprog

You cannot install a PowerPC-based SICStus on an Intel-Mac with the SICStus
Installer Tool. You must unpack the tar file and run the script InstallSICStus
with the ‘--all-questions’ argument. When asked if you want to install the
prebuilt version of SICStus, answer “yes”.

Mac OS X 64-bit
The following libraries are not supported: library(bdb), library(tcltk).

AIX Applications that embed the SICStus run-time need to use the large address-
space model. This is done automatically by spld. If you do not use spld, you
need to set this option yourself. This is achieved by linking the executable using
the ‘-bmaxdata’ option. An alternative may be to set the environment variable
ldr_cntrl appropriately. See the documentation for the AIX command ld.

Chapter 4: Release Notes and Installation Guide for Windows 7

4 Release Notes and Installation Guide for
Windows

This chapter assumes that the environment variable PATH includes %SP_PATH%\bin, where
SP_PATH points to the SICStus installation directory (typically
C:\Program Files\SICStus Prolog 4.0.8. Here, %SP_PATH% is just a place-holder; you
usually do not need to set the environment variable SP_PATH, but see Section “CPL Notes”
in the SICStus Prolog Manual. For example:

C:\> set PATH=C:\Program Files\SICStus Prolog 4.0.8\bin;%PATH%

To use splfr and spld, you must also include Microsoft Visual Studio (or at least its
C compiler and linker). The easiest way is to run vsvars32.bat from the Visual Studio
distribution.

To use the respective library modules, you must also include the paths to Tcl/Tk (see
Chapter 5 [Tcl/Tk Notes], page 11) and Berkeley DB (see Chapter 7 [Berkeley DB Notes],
page 18) onto the PATH environment variable if the installer for Berkeley DB and Tcl/Tk
have not done so already.

4.1 Requirements

• Operating environment: Microsoft Windows 2000 SP4, XP SP2 or Vista (including
x64 but not IA64 versions of XP and Vista). Windows XP or later is recommended.

• Available hard drive space: 200 Mbytes (approximate)
• For interfacing with C or C++, or for using spld or splfr: C compiler and related tools

from Microsoft Visual Studio 2005 SP1 (a.k.a. VS 8).
Microsoft offers free editions of its C compilers. It is probably possible to make these
work as well but they may require other tools or downloads.

4.2 Installation

The development system comes in two flavors:

1. A console-based executable suitable to run from a DOS-prompt, from batch files, or
under Emacs. See Section 4.4 [Command Line Editing], page 8.

2. A windowed executable providing command line editing and menus.

The distribution consists of a single, self-installing executable (‘InstallSICStus.exe’) con-
taining development system, runtime support files, library sources, and manuals. Note that
the installer itself asks for a password, when started. This is different from the license code.

Installed files on a shared drive can be reused for installation on other machines.

SICStus Prolog requires a license code to run. You should have received from SICS your
site name, the expiration date and the code. This information is normally entered during
installation:

Chapter 4: Release Notes and Installation Guide for Windows 8

Expiration date: ExpirationDate

Site: Site

License Code: Code

but it can also be entered by starting sicstus from the Start menu (spwin.exe) and selecting
Enter License from the Settings menu. Entering the license may require Administrative
rights. Running SICStus should be possible from a limited account.

4.3 Windows Notes

• The file name arguments to splfr and spld should not have embedded spaces. For
file names with spaces, you can use the corresponding short file name.

• Selecting the ‘Manual’ or ‘Release Notes’ item in the ‘Help’ menu may give an error
message similar to ‘... \!Help\100#!Manual.lnk could not be found’. This hap-
pens when Adobe Acrobat Reader is not installed or if it has not been installed
for the current user. Open ‘C:\Program Files\SICStus Prolog 4.0.8\doc\pdf\’
in the explorer and try opening ‘relnotes.pdf’. If this brings up a configuration
dialog for Adobe Acrobat, configure Acrobat and try the ‘Help’ menu again. Al-
ternatively, you may have to obtain Adobe Acrobat. It is available for free from
http://www.adobe.com/.

• We recommend that SICStus be installed by a user with administrative privileges and
that the installation is made ‘For All Users’.
If SICStus is installed for a single user, SICStus will not find the license information
when started by another user. In this case, the windowed version of SICStus (spwin)
will put up a dialog where a license can be entered.

4.4 Command Line Editing

Command line editing supporting Emacs-like commands and IBM PC arrow keys is pro-
vided in the windowed executable (spwin.exe). The following commands are available:

^h erase previous char

^d erase next char

^u kill line

^f forward char

^b backward char

^a begin of line

^e end of line

^p previous line

^n next line

^i insert space

^s forward search

^r reverse search

http://www.adobe.com/

Chapter 4: Release Notes and Installation Guide for Windows 9

^v view history

^q input next char blindly

^k kill to end of line

Options may be specified in the file ‘~/spcmd4.ini’ as:

Option Value

on separate lines. Recognized options are:

lines Value is the number of lines in the history buffer. 1-100 is accepted; the default
is 25.

save Value is either 0 (don’t save or restore history buffer) or 1 (save history buffer
in ‘~/spcmd4.hst’ on exit, restore history from the same file on start up.

4.5 The Console Window

The console window used for the windowed executable is based on code written by Jan
Wielemaker <jan at swi.psy.uva.nl>.

The console comes with a menu access to common Prolog flags and file operations. Most of
these should be self explanatory. The ‘Reconsult’ item in the ‘File’ menu reconsults the
last file consulted with use of the ‘File’ menu. The console will probably be replaced in
the future with something more powerful.

Note that the menus work by simulating user input to the Prolog top level or debugger. For
this reason, it is recommended that the menus only be used when SICStus is waiting for a
goal at the top-level (or in a break level) or when the debugger is waiting for a command.

4.5.1 Console Preferences

The stream-based console window is a completely separate library, using its own configura-
tion info. It will look at the environment variable CONSOLE, which should contain a string
of the form name:value{,name:value} where name is one of the following:

sl The number of lines you can scroll back. There is no limit, but the more you
specify the more memory will be used. Memory is allocated when data becomes
available. The default is 200.

rows The initial number of lines. The default is 24.

cols The initial number of columns. The default is 80.

x The X coordinate of the top-left corner. The default is determined by the
system.

y The Y coordinate of the top-left corner. The default is determined by the
system.

Many of these settings are also accessible from the menu ‘Settings’ of the console.

Chapter 4: Release Notes and Installation Guide for Windows 10

4.6 Windows Limitations

• File paths with both ‘/’ and ‘\’ as separator are accepted. SICStus returns paths using
‘/’. Note that ‘\’, since it is escape character, must be given as ‘\\’.

• All file names and paths are normalized when expanded by absolute_file_name/3.
This is to simulate the case insensitivity used by Windows file systems. This means
that files created by SICStus may have names on disk that differs in case from what
was specified when the file was created.

• Emacs Issues: Running under Emacs has been tried with recent versions of GNU Emacs
and XEmacs. See Chapter 8 [The Emacs Interface], page 19.
− In both GNU Emacs and XEmacs C-c C-c (comint-interrupt-subprocess) will

not interrupt a blocking read from standard input. The interrupt will be noted
as soon as some character is sent to SICStus. The characters typed will not be
discarded but will instead be used as debugger commands, sometimes leading to
undesirable results.

− Choosing ‘Send EOF’ from the menu, i.e. comint-send-eof), closes the connection
to the SICStus process. This will cause SICStus to exit. This problem cannot be
fixed in SICStus; it is a limitation of current versions of FSF Emacs and XEmacs
(at least up to FSF Emacs 20.7 and XEmacs 21.5).
Instead of sending and end of file, you can enter the symbol end_of_file followed
by a period. Alternatively, a C-z can be generated by typing C-q C-z.

• Under Windows, statistics(runtime, ...) measures user time of the thread
running SICStus (the main thread) instead of process user time. This makes
statistics(runtime, ...) meaningful also in a multi-threaded program.

Chapter 5: Tcl/Tk Notes 11

5 Tcl/Tk Notes

Tcl/Tk itself is not included in the SICStus distribution. It must be installed in order to
use the interface. It can be downloaded from the Tcl/Tk primary website:

http://tcl.sourceforge.net

A better alternative may be to use one of the free installers available from:

http://www.activestate.com

SICStus for Mac OS X uses Aqua Tcl/Tk. The Aqua version of Tcl/Tk uses the native
Aqua user interface. Mac OS 10.4 and later includes Aqua Tcl/Tk.

The Tcl/Tk interface module included in SICStus Prolog 4.0.8 (library(tcltk)) is verified
to work with Tcl/Tk 8.4, and with Tcl/Tk 8.5 for some platforms. See the SICStus download
web page, http://www.sics.se/isl/sicstuswww/site/download4.html, for details.

Under UNIX, the installation program automatically detects the Tcl/Tk version (if the user
does not specify it explicitly). Except as noted above, the distributed files are compiled for
Tcl/Tk 8.4.

Under Windows, the binary distribution is compiled against Tcl/Tk 8.4.

Please note: You need to have the Tcl/Tk binaries accessible from your PATH
environment variable, e.g. ‘C:\Program Files\Tcl\bin’.

The GUI version of SICStus spwin, like all Windows non-console applications, lacks the C
standard streams (stdin, stdout, stderr) and the Tcl command puts and others that use
these streams will therefore give errors. The solution is to use sicstus instead of spwin if
the standard streams are required.

http://tcl.sourceforge.net
http://www.activestate.com
http://www.sics.se/isl/sicstuswww/site/download4.html

Chapter 6: Jasper Notes 12

6 Jasper Notes

6.1 Supported Java Versions

Jasper requires at least Java 2 to run. Except under Windows the full development kit,
not just the JRE, is needed. Jasper does not work with Visual J++ or Visual Café. Unless
indicated otherwise, you can download the JDK from http://java.sun.com.

Except where indicated, Jasper is supported for Java 1.5 or later.

For some platforms, Jasper is only supported under the following conditions:

Mac OS X Using Jasper from Java may require that DYLD_LIBRARY_PATH be set up so that
Java can find the SICStus run-time library. That is, you may need to set DYLD_
LIBRARY_PATH to the location of the SICStus run-time libsprt4-0-8.dylib.
Note that currently there is no 32-bit version of Java 1.6 available for OS X.

AIX JDK 1.3.1 is supported.
The AIX version of JDK 1.3.1 requires some environment variables to be set
before invoking an application that embeds the Java VM. For this reason, the
following environment variables should be set before starting a SICStus exe-
cutable that uses library(jasper):

bash$ export AIXTHREAD_SCOPE=S

bash$ export AIXTHREAD_MUTEX_DEBUG=OFF

bash$ export AIXTHREAD_RWLOCK_DEBUG=OFF

bash$ export AIXTHREAD_COND_DEBUG=OFF

bash$ export LDR_CNTRL=USERREGS

bash$ ex-

port LIBPATH=/usr/java131/jre/bin:/usr/java131/jre/bin/classic

bash$ sicstus

...

See the AIX JDK 1.3.1 README (‘/usr/java131/README.HTML’) and “JNI
Programming on AIX” for futher details.

6.2 Getting Started

This section describes some tips and hints on how to get the interface started. This is
actually where most problems occur.

6.2.1 Windows

Under Windows, you should add SICStus Prolog’s and Java’s DLL directories to
your %PATH%. This will enable Windows library search method to locate all rele-
vant DLLs. For SICStus, this is the same as where ‘sicstus.exe’ is located, usually
C:\Program Files\SICStus Prolog 4.0.8\bin. For Java 1.5, it is usually ‘C:\Program
Files\Java\jdk1.5.0_15\jre\bin\client’.

For example (Windows 2000/XP/Vista):

http://java.sun.com

Chapter 6: Jasper Notes 13

C:\> set PATH="C:\Program Files\Java\jdk1.5.0_15\jre\bin\client;%PATH%"
C:\> set PATH="C:\Program Files\SICStus Prolog 4.0.8\bin;%PATH%"

To make this change permanent under Windows 2000 or Windows XP, you would use the
‘Advanced’ tab in the ‘System’ Control Panel. Consult your OS documentation for details.

6.2.2 UNIX

When library(jasper) is used to embed Java in a SICStus development system or run-
time system, the run-time linker needs to be told where to find the Java libraries (e.g.
‘libjvm.so’). During installation, ‘InstallSICStus’ will build either the sicstus exe-
cutable or the jasper foreign resource so that it contains the necessary information; the
details are platform dependent.

If you use spld to relink SICStus or to build a run-time system, you can use the command
line option ‘--resource=-jasper’ (note the minus sign). This tells spld to include the
search path (rpath) in the executable needed to ensure that library(jasper) can find the
Java libraries.

If you want to run sicstus with another Java than what was specified during installation,
you can use spld without the ‘--resources’ option to get a SICStus executable without
any embedded Java paths. In this case, you need to set the environment variable LD_
LIBRARY_PATH (or similar) appropriately. One example of this is to use the JDK 1.5 server
version instead of the default (client) version.

6.2.3 Running Java from SICStus

If SICStus is used as parent application, things are usually really simple. Just execute the
query:

| ?- use_module(library(jasper)).

After that, it is possible to perform meta-calls as described in Section “Jasper Library
Predicates” in the SICStus Prolog Manual.

When Jasper is used in run-time systems, additional constraints apply as described in
Section “Runtime Systems on Target Machines” in the SICStus Prolog Manual. The Java
to SICStus interface relies on dynamically loading the SICStus run-time system. For this
reason, it is not possible to use library(jasper) from an executable that links statically
with the SICStus run-time.

6.2.4 Running SICStus from Java

If Java is used as parent application, things are a little more complicated. There are a
couple of things that need to be taken care of. The first is to specify the correct class path
so that Java can find the Jasper classes (SICStus, SPTerm, and so on). This is done by
specifying the pathname of the file ‘jasper.jar’:

% java -classpath $SP_PATH/bin/jasper.jar ...

Chapter 6: Jasper Notes 14

SP_PATH does not need to be set; it is only used here as a placeholder. See the documentation
of the Java implementation for more info on how to set classpaths.

The second is to specify where Java should find the Jasper native library (‘libspnative.so’
or ‘spnative.dll’), which the SICStus class loads into the JVM by invoking the method
System.loadLibrary("spnative"). Under UNIX, Jasper can usually figure this out by
itself, but in the event that Jasper is used in a non-standard installation, this will most
likely fail. A typical example of such a failure looks like:

% java -classpath [...]/jasper.jar se.sics.jasper.SICStus

Trying to load SICStus.
Exception in thread "main" java.lang.UnsatisfiedLinkError: no spnative
in java.library.path
at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1133)
at java.lang.Runtime.loadLibrary0(Runtime.java:470)
at java.lang.System.loadLibrary(System.java:745)
at se.sics.jasper.SICStus.loadNativeCode(SICStus.java:37)
at se.sics.jasper.SICStus.initSICStus(SICStus.java:80)
at se.sics.jasper.SICStus.<init>(SICStus.java:111)
at se.sics.jasper.SICStus.main(SICStus.java:25)

Under UNIX, this can be fixed by explicitly setting the Java property java.library.path
to the location of ‘libspnative.so’, like this:

% java -Djava.library.path=/usr/local/sicstus4.0

/lib [...]

Under Windows, Java must be able to find ‘spnative.dll’ through the PATH environment
variable (see Section 6.2.1 [Windows], page 12). Setting ‘-Djava.library.path’ under
Windows can lead to problems if multiple versions of SICStus has been installed.

If this works properly, SICStus should have been loaded into the JVM address space.
The only thing left is to tell SICStus where the (extended) runtime library, ‘sprt.sav’
(‘spre.sav’), is located. On those platforms where the SICStus run-time system can de-
termine its own location, e.g. Windows, Solaris and Linux, the run-time system will find
the runtime library automatically. Otherwise, you may choose to specify this explicitly by
either giving a second argument when initializing the SICStus object or by specifying the
property sicstus.path. Example (UNIX):

% java -Dsicstus.path=/usr/local/sicstus4.0

/lib/sicstus-4.0.8

If you do not specify any explicit path, SICStus will search for the runtime library itself.

If everything is set up correctly, you should be able to call main (which contains a short
piece of test-code) in the SICStus root class, something like this:

Chapter 6: Jasper Notes 15

% java -Djava.library.path="/usr/local/sicstus4.0
/lib" \

-Dsicstus.path="/usr/local/sicstus4.0
/lib/sicstus-4.0.8" \

-classpath "/usr/local/sicstus4.0
/lib/sicstus-4.0.8/bin/jasper.jar" \

se.sics.jasper.SICStus

Trying to load SICStus.
If you see this message, you have successfully
initialized the SICStus Prolog engine.

Under Windows, it would look something like this, depending on the shell used:

% java -classpath "C:/Program Files/SICStus Prolog

4.0.8/bin/jasper.jar" se.sics.jasper.SICStus

Trying to load SICStus.
If you see this message, you have successfully
initialized the SICStus Prolog engine.

If more than one se.sics.jasper.SICStus instance will be created, the SICStus run-
times named e.g. ‘sprt4-0-8_instance_01_.dll’ need to be available as well. See Section
“Runtime Systems on Target Machines” in the SICStus Prolog Manual.

6.3 Jasper Package Options

The following Java system properties can be set to control some features of the Jasper
package:

se.sics.jasper.SICStus.checkSPTermAge
This flag is unsupported.
A boolean, true by default. If true, run-time checks are performed that attempt
to detect potentially dangerous use of the SPTerm.putXXX family of functions.
The value of this flag can be set and read with SICStus.setShouldCheckAge()
and SICStus.shouldCheckAge(). This flag was false by default in SICStus 3.8.
The run-time checks throws an IllegalTermException when there is risk that
a SPTerm is set to point to a Prolog term strictly newer than the SPTerm. In this
context strictly newer means that there exists an open query that was opened
after the SPTerm object was created but before the Prolog term. See Section
“SPTerm and Memory” in the SICStus Prolog Manual:

% java -Dse.sics.jasper.SICStus.checkSPTermAge=true ...

or, from Prolog:
jasper_initialize(

[’-Dse.sics.jasper.SICStus.checkSPTermAge=true’],
JVM)

se.sics.jasper.SICStus.reuseTermRefs
This flag is unsupported.

Chapter 6: Jasper Notes 16

A boolean, on by default. If false, SPTerm.delete() will only invalidate the
SPTerm object, it will not make the Prolog side SP term ref available for re-use.
The value of this flag can be set and read with SICStus.setReuseTermRefs()
and SICStus.reuseTermRefs(). There should be no reason to turn it off.
To set this flag do:

% java -Dse.sics.jasper.SICStus.reuseTermRefs=true ...

or, from Prolog:
jasper_initialize(

[’-Dse.sics.jasper.SICStus.reuseTermRefs=true’],
JVM)

se.sics.jasper.SICStus.debugLevel
This flag is unsupported.
You probably should not use it in production code. It may be removed or
change meaning in future releases.
An integer, zero by default. If larger than zero, some debug info is output to
System.out. Larger values produce more info. The value of this flag can be
set and read with SICStus.setDebugLevel() and SICStus.debugLevel():

% java -Dse.sics.jasper.SICStus.debugLevel=1 ...

or, from Prolog:
jasper_initialize(

[’-Dse.sics.jasper.SICStus.debugLevel=1’],
JVM)

6.4 Multi Threading

Some exceptions thrown in multi threaded mode may be removed in the future. The user
should never catch specific exceptions, but instead catch instances of PrologException.

See Section 6.6 [Known Bugs and Limitations], page 16, for details on the limitations of
multi threaded Jasper.

6.5 Changes in Jasper from SICStus 3

• The (deprecated) predicates jasper_call_static/6 and jasper_call_instance/6
have been removed.

• SICStus 4 uses ISO syntax. This may affect Java code that handles Prolog terms.

6.6 Known Bugs and Limitations

• Jasper cannot be used from within applets, since Jasper relies on calling methods
declared as native. This is due to a security-restriction enforced on applets by Java;
they are not allowed to call native code.

• Some uses of SPTerm will leak memory on the Prolog side. This is not really a bug
but may come as a surprise to the unwary. See Section “SPTerm and Memory” in the
SICStus Prolog Manual.

Chapter 6: Jasper Notes 17

• Loading multiple SICStus runtimes has not been very well tested with multi threaded
Jasper.

6.7 Java Examples Directory

There is an examples directory available in $SP_PATH/library/jasper/examples. See the
file README for more info.

6.8 Resources

There are almost infinitely many Java resources on the Internet. Here is a list of a few
related to Jasper and JNI.

• JavaSoft Homepage (http://java.sun.com/).
• JavaSoft’s Java FAQ (http://java.sun.com/products/jdk/faq.html).
• JavaSoft Documentation Homepage (http://java.sun.com/docs/index.html).
• JNI Documentation

(http://java.sun.com/j2se/1.5.0/docs/guide/jni/index.html).
• The ACM student magazine Crossroads has published an article on the JNI

(http://www.acm.org/crossroads/xrds4-2/jni.html). This article may be out of
date.

http://java.sun.com/
http://java.sun.com/products/jdk/faq.html
http://java.sun.com/docs/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/jni/index.html
http://www.acm.org/crossroads/xrds4-2/jni.html

Chapter 7: Berkeley DB Notes 18

7 Berkeley DB Notes

library(bdb) is built on top of Berkeley DB. Berkeley DB can be downloaded from:

http://www.oracle.com/database/berkeley-db

Berkeley DB for Mac OS X can be installed using MacPorts
http://trac.macosforge.org/projects/macports/wiki.

library(bdb) is built using version 4.5.20. It may be possible to recompile it to work with
other versions as well.

When using Berkeley DB under Windows, you should set the PATH environment variable
to contain the path to ‘libdb45.dll’. Consult the Berkeley DB documentation for further
info.

http://www.oracle.com/database/berkeley-db
http://trac.macosforge.org/projects/macports/wiki

Chapter 8: The Emacs Interface 19

8 The Emacs Interface

The Emacs Interface was originally developed for GNU Emacs 19.34 and is presently being
maintained using XEmacs 21.1 and tested with GNU Emacs 21.2. For best performance
and compatibility and to enable all features we recommend that the latest versions of GNU
Emacs or XEmacs be used. For information on obtaining GNU Emacs or XEmacs; see
http://www.gnu.org/software/emacs/ and http://www.xemacs.org, respectively.

8.1 Installation

The Emacs interface is distributed with SICStus and installed by default. The default in-
stallation location for the Emacs files is ‘<prefix>/lib/sicstus-4.0.8/emacs/’ on UNIX
platforms and ‘C:\Program Files\SICStus Prolog 4.0.8\emacs\’ under Windows.

For maximum performance the Emacs Lisp files (extension ‘.el’) should be compiled. This,
completely optional step, can be done from within Emacs with the command M-x byte-

compile-file. See Section “Installation” in the SICStus Prolog Manual.

The easiest way to configure the Emacs interface is to load the file ‘sicstus_emacs_init.el’
from your ‘.emacs’ file. It will find the SICStus executable and do all initialization needed
to use the SICStus Emacs interface.

8.1.1 Installing On-Line Documentation

It is possible to look up the documentation for any built in or library predicate from within
Emacs (using C-c ? or the menu). For this to work, Emacs must be told about the location
of the ‘info’-files that make up the documentation.

If you load the file ‘sicstus_emacs_init.el’ from your ‘.emacs’ file, Emacs should be able
to find the SICStus documentation automatically; see Section “Installation” in the SICStus
Prolog Manual.

http://www.gnu.org/software/emacs/
http://www.xemacs.org

Chapter 9: Revision History 20

9 Revision History

This chapter summarizes the changes in release 4 wrt. previous SICStus Prolog releases as
well as changes introduced by patch releases.

9.1 What Is New In Release 4

9.1.1 Virtual Machine

• The internal representation of Prolog terms and code has been redesigned, resulting in
code that runs up to twice as fast as in release 3.

• Certain memory limitations that existed in release 3 have been dropped. All available
virtual memory can be used without any limitations imposed by SICStus Prolog.

• The number of available atoms is four times larger than in release 3 (1M atoms are
available on 32-bit platforms).

• The range of small integers is eight times larger than in release 3. Although the size of
integers is unbounded, small integers are handled more efficiently than other numbers.

• Multifile predicates are compiled by default; in release 3, they could not be compiled.
• Native code compilation has been dropped.
• The profiling data accessible by profile_data/4 and library(gauge) is more precise.

Some of the choices of release 3 have been dropped.

9.1.2 Prolog Language

9.1.2.1 Single Language Mode

Release 3 had the notion of multiple language modes: iso and sicstus. Release 4 does
not have this notion. The syntax and semantics of the Prolog language correspond to the
previous iso language mode.

9.1.2.2 DCG Notation

The exact rules for translating DCG rules to plain Prolog clauses have not been laid down in
a standard, but there is a broad consensus in the Prolog community about what they should
mean. One of the guiding principles is that the translation should be steadfast, in particular
that the translated code should always treat its last argument as an output argument and
not use it “too early”. In some cases, a non-steadfast translation was produced in release
3. This has been corrected in release 4.

9.1.2.3 Asserting Terms with Attributed Variables

In release 3, terms containing attributed variables and blocked goals could be asserted,
copied, gathered as solutions to findall/3 and friends, and raised as exceptions. The copy
would contain new attributed variables with the attributes copied. This operation could be
very expensive, could yield unexpected results and was not always safe e.g. in the context
of CLPFD constraints. In release 4, the semantics of this operation has changed: in the
copy, an attributed variable is simply replaced by a plain, brand new variable. Of course, if
the same attributed variable occurs more than once, the same plain variable will occur in
the corresponding places in the copy. If the attributes are relevant, the program can obtain
them by using the new built-in predicate copy_term/3 described below.

Chapter 9: Revision History 21

9.1.2.4 Arithmetic

The infix operator ‘#’ (bitwise exclusive or) has been renamed to ‘\’.

9.1.2.5 Syntax

Atoms can now contain the NUL character, i.e. character code zero. It is classified as white
space and must therefore be entered using escapes. As an example ’a\0\a’ is a three
character atom containing two as separated by a NUL.

Internally, atom names and other encoded strings, use the non-shortest form ‘0xC0 0x80’
to encode NUL. This is similar to how NUL is handled by Tcl/Tk and Java.

9.1.2.6 Prolog Flags

The language and wcx Prolog flag have been dropped.

The following Prolog flag is new:

quoted_charset
Controls the character set to use when writing quoted atoms.

9.1.2.7 Stream Properties

The wcx property has been dropped.

The following properties are new:

encoding_signature/1
Specifies whether an encoding signature (such as Unicode “byte order mark”)
was used to determine the character encoding.

encoding/1
Subsumes the wcx/1 option of release 3.

eol/1 Specifies how line endings in the file should be handled if the stream is opened
in text mode.

9.1.2.8 Statistics Keywords

The following keywords are new:

total_runtime
Measures the total CPU time used while executing, including memory manage-
ment such as garbage collection but excluding system calls.

defragmentation
Measures the number of and time spent performing memory defragmentation.

9.1.2.9 Built-In Predicates

The set of built-in predicates has changed slightly. The following predicates have been
removed:

Chapter 9: Revision History 22

’C’/3 This was used in the Prolog translation of DCG rules. It could trivially be
replaced by unifications and served no other reasonable purpose.

get0/[1,2]
put/[1,2]

These used to have an overloaded semantics meaning one thing on binary
streams and another thing on text streams. They have been subsumed by
their ISO counterparts.

get/[1,2]
tab/[1,2]
skip/[1,2]

Although these do not have ISO counterparts, they have been removed for
being in the spirit of get0/[1,2] and put/[1,2]. We have provided skip_
char/[1,2], skip_code/[1,2], and skip_byte/[1,2] as an ISO style replace-
ment for skip/[1,2].

ttyget0/1
ttyget/1
ttynl/0
ttyput/1
ttyskip/1
ttytab/1
ttyflush/0

These used to exist as shorthands for the respective predicate with an additional
user argument. In most cases, the “respective predicate” is one of the non-ISO
style predicate mentioned above, so there was no point in keeping the shorthand.

fileerrors/0
nofileerrors/0

These used to exist as shorthands for set_prolog_flag/2 with specific argu-
ments, and so can be trivially replaced.

call_residue/2
Dropped because it was not possible to ensure the correct behavior in all cir-
cumstances, it relied heavily on copying terms with attributed variables, and
it was not needed by any library module. It has been replaced by a simi-
lar predicate, call_residue_vars/2, which should suffice in most cases where
call_residue/2 was used; see below.

undo/1 Dropped because it was not possible to ensure the correct behavior in all cir-
cumstances. Users that know what they are doing can still call the unsupported
predicate prolog:undo/1. The argument should have a module prefix.

help/0
version/0
version/1

These predicates, managing and displaying messages, can be easily emulated
by feaures of the message system.

Chapter 9: Revision History 23

fcompile/1
load/1 These predicates used to compile Prolog source code into ‘.ql’ files, and load

such files. ‘.ql’ files serve a purpose when boot-strapping the Prolog system,
but offer no advantages over ‘.po’ files, the Prolog object code format used by
other built-in predicates.

load_foreign_files/2
This predicate provided a shorthand for building and loading a temporary for-
eign resource. Working with foreign resources is straightforward, and so the
shorthand was dropped.

require/1
This predicate provided a shorthand for locating and loading library predicates.
This was originally introduced for a compatibility reason that is now obsolete.
It is straightforward to provide the necessary :- use_module/2 directives, and
so the shorthand was dropped.

The following predicates have been added:

call/N Generalizes call/1. For example, call(p(1,2), a, b) is equivalent to
call(p(1,2, a, b)).

skip_char/[1,2]
skip_code/[1,2]
skip_byte/[1,2]

ISO style replacements for the non-ISO style skip/[1,2].

call_residue_vars/2
Called as follows:

call_residue_vars(:Goal, -Vars)

Executes the procedure call Goal, unifying Vars with the list of residual vari-
ables that have blocked goals or attributes attached to them.

copy_term/3
Called as follows:

copy_term(+Term, -Copy, -Body)

Makes a copy of Term in which all variables have been replaced by new variables
that occur nowhere outside the newly created term. If Term contains attributed
variables, Body is unified with a term such that executing Body will reinstate
equivalent attributes on the variables in Copy. Otherwise, Body is unified with
true.

Some predicates have been changed slightly; in most cases, this affects predicates that take
a list of options:

[F1,F2,...]
This is now a short-hand for load_files([F1,F2,...]).

Chapter 9: Revision History 24

is_mutable/1
The predicate is_mutable/1 has been renamed to mutable/1, in analogy with
integer/1, atom/1 etc.

module/1

The predicate module/1 has been renamed to set_module/1, to avoid possible
confusion with the module/2 declaration.

format/[2,3]
For the predicate format/[2,3], the semantics of the ‘~@’ spec has changed
slightly: the goal Arg is called as if by \+ \+ Arg , i.e. any bindings made by
the goal are lost.

close/2

Takes new options:

direction/1
Specifies which directions to close.

open/4

The wcx/1 option has been dropped. Takes new options:

encoding_signature/1
encoding/1
eol/1 Correspond to the respective stream properties.

if_exists/1
Specifies what should happen if the file already exists.

absolute_file_name/3
The ignore_underscores/1 option has been dropped. The file_type/1 op-
tion value ql has been dropped, whereas the option value executable is new.
The access/1 option values execute, executable and search are new. The
glob/1 option is new, allowing to match file names against a pattern.

load_files/2
The load_type/1 option value ql has been dropped. encoding_signature/1,
encoding/1, subsuming the wcx/1 option of release 3, and eol/1, are new
options, corresponding to the respective stream properties.

write_term/3
The quoted_charset/1 option is new, reflecting the value of the Prolog flag
with the same name.

halt/1

The predicate halt/1 now raises an internal exception like halt/0. This gives
surrounding Prolog and C code an opportunity to perform cleanup.

profile_data/4
The Selection argument now takes one of the values: [calls,choice_
points,instructions]. The Resolution argument now takes one of the values:
[predicate,clause].

Chapter 9: Revision History 25

append/3
member/2
memberchk/2

These are now built-in, they used to reside in library(lists).

9.1.2.10 Hook Predicates

The hook user:term_expansion/[2,4] is replaced by the hook:

user:term_expansion(Term1, Layout1, Tokens,
Term2, Layout2, [Token|Tokens]).

The purpose of the new argument Tokens is to support multiple, independent expansion
rules. The purpose of the arguments Layout1 and Layout2 is to support source-linked
debugging of term-expanded code. Each expansion rule should have its unique identifying
token Token.

The hook user:goal_expansion/3 is replaced by the following per-module hook:

M:goal_expansion(Term1, Layout1,
Module, Term2, Layout2).

Typically, Module has imported the predicate Term1 from module M. The purpose of the
arguments Layout1 and Layout2 is to support source-linked debugging of goal-expanded
code.

9.1.3 Library Modules

There is no consensus for a core library, portable across Prolog systems, let alone a standard
for such a library. Since SICStus Prolog 3 was first released, SICS has acquired Quintus
Prolog, which has a rather rich library. For release 4, we have decided to make this asset be
available to the SICStus community by providing a library that is a merger of the previous
SICStus and Quintus libraries, which already overlap significantly.

The User’s Manual documents the library of release 4. For the purposes of aiding code
transition to release 4, the following is a list of the release 3 library modules, and their fate
in release 4. See also Section 9.2 [Guide to Porting Code from Release 3], page 31.

Chapter 9: Revision History 26

atts
comclient
fdbg
gauge
heaps
linda/client
linda/server
pillow
prologbeans
tcltk
timeout
trees
wgraphs
xml As in release 3.

arrays The native release 4 counterpart is called library(logarr). Also available is
a deprecated compatibility module library(arrays3).

assoc The native release 4 counterpart is called library(avl), reflecting the abstract
data type, AVL trees, and with a modified, richer API. Also available is a
deprecated compatibility module library(assoc3).

bdb As in release 3, but uses the default Berkeley DB hash function, so all of the
standard Berkeley DB utilites should now work.

charsio Called library(codesio) in release 4. Likewise, the syllable ‘chars’ has been
renamed to ‘codes’ in predicate names.

clpb
clpq
clpr As in release 3, unsupported.

clpfd As in release 3, plus the following additions and changes:

automaton/8
is a new constraint capturing any constraint whose checker of
ground instances can be expressed as a finite automaton.

minimum/2
maximum/2

are new constraints, constraining a value to be the minimum (max-
imum) of a list of values.

nvalue/2 is a new constraint, constraining the number of distinct values taken
by a list of values.

cumulative/[1,2]
provides a unified interface, subsuming serialized/[2,3] and
cumulative/[4,5].

table/[2,3]
defines an n-ary constraint by extension, subsuming relation/3.

Chapter 9: Revision History 27

all_different/[1,2]
all_distinct/[1,2]

Arguments can have unbounded domains.

scalar_product/[4,5]
can optionally be told to maintain arc-consistency. This function-
ality subsumes knapsack/3.

global_cardinality/[2,3]
can optionally be told to use a simple algorithm. This functionality
subsumes count/4.

fd_copy_term/3
is gone. Subsumed by built-in copy_term/3.

jasper The Jasper module is available in the current release. An alternative for Java
users is PrologBeans. The latter is the recommended method for interfacing
Java with SICStus. Jasper should only be used when PrologBeans is insufficient.

lists The native release 4 counterpart has a modified, richer API. Also available is a
deprecated compatibility module library(lists3).

ordsets As in release 3, plus several new predicates.

queues The native release 4 counterpart has a modified, richer API. Also available is a
deprecated compatibility module library(queues3).

random The native release 4 counterpart has a modified, richer API. Also available is a
deprecated compatibility module library(random3).

sockets The new predicate socket_client_open/3 subsumes socket/2 and socket_
connect/3.
socket_server_open/[2,3] subsumes socket/2, socket_bind/2 and
socket_listen/2.
socket_select/7 can wait for any kind of stream, not just socket streams.
socket_select/7 waits until one unit (character for text streams, byte for
binary streams) can be transferred.
socket_select/7 can wait for streams ready to write.
socket_select/7 does not create streams, you need to explicitly use socket_
server_accept.
Socket streams are binary by default.
Blocking socket operations can be interrupted on both UNIX and Windows.
library(sockets) should work with IPv6 (in addition to IPv4 and AF_UNIX).

system Operations on files and directories have been moved to its own module,
library(file_systems). Process primitives have been redesigned and moved
to a new module, library(process). The predicates for creating tempo-
rary files, mktemp/2 and tmpnam/1, have been removed. They used C li-
brary functionality that is broken by design and insecure. Instead, to cre-
ate and open a temporary file use something like open(temp(’foo’), write,

Chapter 9: Revision History 28

S, [if_exists(generate_unique_name)]), possibly together with stream_
property(S, file_name(Path)) if you need to know the path to the generated
file name.
The (little) remaining functionality is largely as in release 3. Also available is
a deprecated compatibility module library(system3).

terms As in release 3, plus several new predicates. term_hash/2 is not guaranteed to
compute the same hash values as in release 3.

ugraphs As in release 3, plus a couple of deletions.

objects Replaced by the Quintus Prolog flavor of library(objects).

chr A reimplementation of library(chr), based on the Leuven implementation.

flinkage
spaceout Not present in release 4.

vbsp Not available in the current release. Visual Basic .NET and other .NET lan-
guages can use PrologBeans .NET.

The following is a list of library modules that are new in release 4.

aggregate
provides an aggregation operator for data-base-style queries.

assoc uses unbalanced binary trees to implement “association lists”, i.e. extendible
finite mappings from terms to terms.

bags defines operations on bags, or multisets

between provides some means of generating integers.

file_systems
accesses files and directories.

objects provides a package for object-oriented programming, and can be regarded as a
high-level alternative to library(structs).

process Process creation etc.

rem provides Rem’s algorithm for maintaining equivalence classes.

samsort provides generic sorting.

sets defines operations on sets represented as lists with the elements unordered.

structs provides access to C data structures, and can be regarded as a low-level alter-
native to library(objects).

types Provides type checking.

varnumbers
An inverse of numbervars/3.

Chapter 9: Revision History 29

9.1.4 Input-Output System

The internals of the I/O subsystem have been completely redesigned. The new version
should be faster while at the same time providing more functionality and more consistent
behavior between operating systems and between stream types.

The semantics of character codes has been fixed as (a superset of) Unicode. Redefining the
meaning of character codes is no longer supported.

New features and changes to the SICStus streams (SP_stream) include:

• Streams are binary or text also at the lowest level, e.g. in the C API, and there are
separate operations for performing I/O of bytes and characters.

• Streams have a layered design. This makes it possible to add character set translation
and other transformations (compression, encryption, automatic character set detection,
. . .) to any stream.

• All streams provide non-blocking operations and are interruptible, e.g. with ^C
(‘SIGINT’). This is also true for file streams and under Windows.

• Subject to OS limitations, file names can use Unicode and be of arbitrary length. In
particular, under Windows, the Unicode API is used for all operations.

• Limits on file size, file time stamps etc have been removed.
• Error handling has been simplified and made more consistent. In the C API all I/O

operations return an error code from a rich set of error codes. Errors during write and
close operations are no longer ignored.

• It is possible to wait for I/O ready (both for read and write) on any type of stream. This
works for all platforms, including Windows. Select operations waits for the appropriate
item type, e.g. until a whole (possibly multi-byte) character can be transferred on a
text stream.

Other minor changes:

• Now byte_count/2 can be called only on binary streams.
• at_end_of_stream/[0,1] never blocks. Instead it will fail, i.e. behave as if the stream

is not at its end, if the operation would otherwise block. See Section “at_end_of_
stream/[0,1]” in the SICStus Prolog Manual.

9.1.5 Foreign Language APIs

9.1.5.1 Foreign Language Interface

The conversion specifier (in foreign/[2,3] facts) string(N) has been dropped.

The conversion specifier chars has been renamed to codes, in analogy with the built-in
predicate atom_codes/2, the second argument of which is a list of character codes.

The C header generated by splfr from the foreign/[2,3] facts now uses the const at-
tribute where appopriate.

Chapter 9: Revision History 30

Foreign resources are no longer unloaded by save_program/[1,2]. For this reason, the
deinit function of a foreign resource is no longer called when saving a program so SP_WHEN_
SAVE has been removed.

9.1.5.2 C API Functions

Many functions in the C API has been changed or removed, especially those related to OS
and I/O operations. There are also a number of new C API functions.

Old API Replaced by

SP_make_stream, SP_make_stream_context SP_create_stream

SP_set_tty SP_CREATE_STREAM_OPTION_INTERACTIVE

SP_fgetc SP_get_byte, SP_get_code

SP_fputc SP_put_byte, SP_put_code

SP_fputs SP_put_codes, SP_put_encoded_string

SP_fflush SP_flush_output

SP_chdir SP_set_current_dir

SP_getcwd SP_get_current_dir

SP_set_wcx_hooks Gone

SP_wcx_getc, SP_wcx_putc Gone

SP_to_os, SP_from_os Gone

SP_put_number_chars SP_put_number_codes

SP_get_number_chars SP_get_number_codes

Other new functions include:

SP_get_stream_user_data
SP_get_stream_counts
SP_put_bytes
SP_fopen

Chapter 9: Revision History 31

SP_unget_code
SP_unget_byte

Also, many functions take new or changed parameters.

9.1.5.3 Java API

• The PrologBeans API has been extensively revised. See the PrologBeans HTML
(javadoc) documentation.

• PrologBeans was built with Java 1.5

9.2 Guide to Porting Code from Release 3

Release 4 does not provide a mode in which it is 100% compatible with earlier releases.
However, this section provides guidelines for migrating Prolog code from release 3 to release
4.

1. First of all, make sure that your code runs in ISO execution mode. In release 3, the
command line option ‘--iso’ can be used.

2. A number of built-in predicates have been dropped. They are listed in the table below,
along with their approximate substitutes. Refer to the documentation for each case.
Dropped built-in Replaced by

get0/[1,2], get/[1,2] get_code/[1,2], get_byte/[1,2]

ttyget0/1, ttyget/1 get_code/2, get_byte/2

put/[1,2], tab/[1,2] put_code/[1,2], put_byte/[1,2]

ttyput/1, ttytab/1 put_code/2, put_byte/2

skip/[1,2] skip_code/[1,2], skip_byte/[1,2]

ttyskip/1 skip_code/2, skip_byte/2

ttynl/0 nl/1

ttyflush/0 flush_output/1

fileerrors/0, nofileerrors/0 set_prolog_flag/2

’C’/3 unification

call_residue/2 call_residue_vars/2

undo/1 prolog:undo/1

Chapter 9: Revision History 32

help/0 the message system

version/0 the message system

version/1 the message system

fcompile/1 save_files/2

load/1 load_files/2

load_foreign_files/2 splfr + load_foreign_resource/1

require/1 use_module/2

is_mutable/1 mutable/1

module/1 set_module/1

3. The hook predicates user:term_expansion/[2,4] and user:term_expansion/3 are
now called user:term_expansion/6 and Module:term_expansion/5 and have a mod-
ified API; see Section “Term and Goal Expansion” in the SICStus Prolog Manual.

4. The set of library modules has been enriched by incorporating a subset of the Quintus
Prolog library modules that we have deemed useful.
library(clpb), library(clpq) and library(clpr) are provided but not sup-
ported. library(flinkage) and library(spaceout) are not included in SICStus
4. library(objects) has been replaced by its Quintus counterpart, with a completely
different API.
The following table lists the affected SICStus 3 library modules.
Affected module Closest equivalent Comment

arrays arrays3 a

assoc assoc3 b

charsio codesio c

clpfd clpfd d

lists lists3 e

queues queues3 f

random random3 g

sockets sockets d

Chapter 9: Revision History 33

system system3 h

Comments to the table:
a. library(arrays3) is a code migration library module; the long-term solution is

to use library(logarrs) instead.
b. library(assoc3) is a code migration library module; the long-term solution is to

use library(avl) instead.
c. The syllable ‘chars’ has been changed to ‘codes’ throughout.
d. Several API changes; see the documentation.
e. library(lists3) is a code migration library module; the long-term solution is to

use library(lists) instead.
f. library(queues3) is a code migration library module; the long-term solution is

to use library(queues) instead.
g. library(random3) is a code migration library module; the long-term solution is

to use library(random) instead.
h. library(system3) is a code migration library module; the long-term solution is to

use library(system), library(file_systems) and library(process) instead.
One difference between library(system3) and the original SICStus Prolog 3 ver-
sion is that exec/3 returns a process reference, a compound term, instead of an
integer process identifier.

9.3 Limitations in the Current Release

This section lists features that are missing or incompletely implemented in the current
release of SICStus Prolog (SICStus Prolog 4.0.8) but that may appear in future releases.
Please let us know what features are important to you!

library(tcltk): There is no way to pass non-Latin 1 characters from Tcl/Tk to Prolog.
The Tcl/Tk Terminal is not supported.

library(spaceout): not supported; see Section 9.1.3 [Library Modules], page 25.

The Visual Basic 6 module (vbsp) is not supported; see Section 9.1.3 [Library Modules],
page 25.

The Windows GUI spwin.exe does not support full Unicode. The console version
sicstus.exe fully supports Unicode when run from a console window or from within Emacs.

The Emacs mode may not work reliably when passing Prolog code between Emacs and
SICStus if the code is not written using Latin 1.

9.4 Changes Introduced in Version 4.0.1

9.4.1 New Features

9.4.2 Bugs Fixed

• Spurious SPIO_E_ERROR exceptions when interrupting Prolog. Most often seen when
using library(timeout) or when using ^C at the top-level prompt.

Chapter 9: Revision History 34

• Inconsistent error messages if the license information was missing or incomplete.
• library(fdbg): inconsistent trace messages for labeling steps.
• library(clpfd): error handling for user-defined global constraint actions.
• Source info of interpreted clauses.
• Memory management issue with garbage collection + pending unblocked goals
• CHR debugging and tracing did not work.

9.4.3 Other Changes

• Compatibility issue: The two Latin 1 character codes 0x00AA (FEMININE ORDINAL
INDICATOR) and 0x00BA (MASCULINE ORDINAL INDICATOR) are now classified as lower
case letters by the Prolog parser. They used to be (incorrectly) classified as symbol
chars. This may affect code that used any of these characters in unquoted atoms or
functors.
This change was made to align their classification with the Unicode standard.

• Quoted atoms strings can now contain any character sequence from Unicode 5.0 when
reading, with some restrictions; see Section “Syntax of Tokens as Character Strings”
in the SICStus Prolog Manual.

• Quoted atoms and strings are now by default written using a larger subset of Unicode
than before. See the documentation for the Prolog flag quoted_charset (see Section
“Prolog Flags” in the SICStus Prolog Manual).

• Windows: All code is built with the security options ‘/GS’, ‘/SAFESEH’, ‘/NXCOMPAT’.
• Corrected the documentation for SP_put_list_n_codes().
• Now UTF-8 is used when communicating with the SICStus Prolog sub-process in ver-

sions of Emacs and XEmacs that supports it.

9.4.4 Known Issues

The following are known issues with this release of SICStus. See Section 9.3 [Limitations
in the Current Release], page 33 for more information about missing or incomplete features
in this release.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.
When reading terms SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.
This is not a problem as long as the input is in the proper format but it will allow some
input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

9.5 Changes Introduced in Version 4.0.2

9.5.1 New Features

• Added support for ISO-8859-2, a.k.a. Latin 2.

Chapter 9: Revision History 35

• absolute_file_name/3: new option file_type(executable)
expands to extensions([’’, ’.exe’]) on Windows and to extensions([’’]) on
other systems.

9.5.2 Bugs Fixed

• Memory manager: efficiency bug.
• library(structs): unsigned types, 64-bit issues.
• PrologBeans: Lists of integers with element values above 255 broke the communication

between Java and SICStus.
• Closing a stream would sometimes hang due to a race condition on UNIX-like platforms.

This was most likely to happen on MacOS X.
• set_stream_position/2 and seek/4 did not work on output streams.
• Multiple issues with absolute_file_name/3.

− Option file_errors(fail) would sometimes report permission errors (SPIO_E_
PERMISSION_ERROR) instead of silently failing.

− Option file_errors(fail) now fails instead of raising an exception for file name
domain errors like malformed file names and too many symbolic links (SPIO_E_
INVALID_NAME).

− Options access(execute) and access(search) now imply access(exist). This
is similar to how access(read) works.

− The undocumented internal option access(directory) was allowed. Use file_
type(directory) instead.

• library(process): process_create/[2,3] now skips non-executable file and non-
files if the File-argument can expand to more than one file. This is especially useful
when using the symbolic name path/1 to specify a file.

• library(avl): Bug in avl_delete/4.
• library(random): Document and check validity of the random number generator state.

Bug in random_numlist/4.
• get_atts/2: Could fail incorrectly.
• library(clpfd): A memory management problem. An integer overflow problem.

Propagation bug in case/[3,4], affecting automaton/8 too.
• A problem with shared subterms in copying, asserting, collecting and throwing terms.
• The Prolog flag title was truncated by spwin.exe under Windows.
• The spdet utility did not automatically add ‘.pl’ and ‘.pro’ extensions to file name

arguments.

9.5.3 Other Changes

• library(clpfd): minor efficiency issues.
• The user_error stream is always unbuffered, even when not attached to a terminal.
• Improved detection of the ‘executable’ file property under Windows, e.g. in absolute_

file_name/3 and process_create/[2,3].
• The Prolog flag title is now saved by set_prolog_flag(title, ...) on all platforms.

It used to be ignored except under Windows.

Chapter 9: Revision History 36

9.5.4 Known Issues

The following are known issues with this release of SICStus. See Section 9.3 [Limitations
in the Current Release], page 33 for more information about missing or incomplete features
in this release.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.
When reading terms SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.
This is not a problem as long as the input is in the proper format but it will allow some
input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

9.6 Changes Introduced in Version 4.0.3

9.6.1 New Features

• The new Prolog flag legacy_char_classification makes it possible to use full Uni-
code, e.g. Chinese characters, in unquoted atoms and variable names. See Section
“Prolog Flags” in the SICStus Prolog Manual.

• The Prolog flag redefine_warnings can take new values, and is no longer ignored in
runtime systems. See Section “Prolog Flags” in the SICStus Prolog Manual.

• SP_load_sicstus_run_time(), and related functionality for loading multiple SICStus
runtimes into a process, is now available.

• Jasper Java interface (library(jasper)) is now available. Jasper is mainly for legacy
code; PrologBeans is still the preferred method of calling Prolog from Java.

• library(sockets) now supports UNIX domain (AF_UNIX) sockets on UNIX-like plat-
forms. The new predicate socket_server_open/3 allows some options when opening
a server socket.

• SP_set_argv(), a new C API function for setting the values returned by the argv
Prolog flag. Similar to the argv argument to SP_initialize(), but can report failure
and can use locale information.

• spld and splfr: new command line options. The new (POSIX) option ‘--’ is treated
the same as the older ‘-LD’. New option ‘--conf VAR=VAL ’ to override variable VAR
in the configuration file. Option processing has been rewritten to be more robust and
consistent. See Section “The Application Builder” in the SICStus Prolog Manual and
Section “The Foreign Resource Linker” in the SICStus Prolog Manual.

• sicstus The new (POSIX) option ‘--’ is a synonym for the old ‘-a’.

9.6.2 Bugs Fixed

• trimcore/0 could lead to memory corruption.
• append/3 “optimization” could cause garbage collector crash.
• spld and splfr: multiple ‘--cflag’ options accumulate, as documented.
• sockets:current_host/1 would fail on Windows 2000 with some network configura-

tions.

Chapter 9: Revision History 37

• process:process_release/1 did not work.
• All process creation routines in library(system3) now work when there are command

line options in the command argument, as was intended.
• file_systems:current_directory/2 was sensitive to load context when passed a

relative path as its second argument.
• The Windows GUI spwin.exe command ‘Save Transcript’ now works and uses UTF-

16 with BOM which can be read by most Windows programs and by recent Emacs and
XEmacs.

• The menu commands of the Windows GUI spwin.exe no longer load foreign resources.
This prevents extra foreign resources from being recorded by save_program/[1,2].

• library(chr)

− Multiple occurrences of the same answer constraint are no longer suppressed.
− Error in compile-time error message.

• library(clpfd)

− element/3 and cumulatives/[2,3] could crash.
− Bug in dom(X)+dom(Y) in indexicals.
− Structure sharing issues with fd_set/2 and in_set/2 in the global constraint API.
− mod and rem are now available with the intended semantics.
− Incorrect reification of arithmetic relations involving division, mod and rem.

• Variables not transferred correctly in the PrologBeans process communication protocol.

9.6.3 Other Changes

• Output to different interactive output streams, like user_output and user_error, are
now properly ordered.

• If the standard OS streams cannot be used, the SICStus run-time will use null streams
instead of failing initialization. Happened when started from recent Linux nohup com-
mand.

• Under UNIX, sicstus now interprets command line arguments using locale information
(the Windows version already did this).

• Saved states invoked as shell scripts will now use a version specific name for the sicstus
executable, e.g., exec sicstus-4.0.3 ... instead of exec sicstus

• The spld tool now ignores the --more-memory option and no longer attempts to use a
modified linker script on x86 Linux.

• The splfr tool no longer uses a fixed name for some temporary files, which prevented
parallel make.

9.6.4 Known Issues

The following are known issues with this release of SICStus. See Section 9.3 [Limitations
in the Current Release], page 33 for more information about missing or incomplete features
in this release.

Chapter 9: Revision History 38

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.
When reading terms SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.
This is not a problem as long as the input is in the proper format but it will allow some
input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

9.7 Changes Introduced in Version 4.0.4

9.7.1 New Features

9.7.2 Bugs Fixed

• On Windows the result of absolute_file_name/[2,3] would contain backslash instead
of forward slash if the absolute file name contained certain non-ASCII characters. This
bug also broke all directory listing functions in library(file_systems), e.g. file_
systems:file_member_of_directory/[2,3,4].

• A change in 4.0.3 caused system3:popen/3, system3:shell/[1,2] and
system3:system/[1,2] to no longer work when the command string contains redi-
rection and other special constructs. These predicates now always invokes the system
shell.

• A change in 4.0.3 caused library(sockets) to not accept a lone port number as an
address. A port number Port is now treated the same as inet(’’, Port), as in earlier
releases. This also broke prologbeans:start/[0,1] when no port was specified.

• A few operators had non-ISO mode operator declarations. This has been corrected
to match the documentation, the ISO Prolog standard and the ISO language mode in
SICStus Prolog 3. See Section “Built-in Operators” in the SICStus Prolog Manual.
Please note: This is an incompatible change that may cause a Prolog program or data
to be parsed differently (or not at all). However, in practice we expect this to affect
little or no code. Data written using write_canonical/[1,2] or similar will not be
affected and will be read back correctly regardless of operator declarations.
To preserve the old, incorrect, operator declarations, insert the following at the top of
your Prolog files:

:- op(500, fx,[+,-]).
:- op(300, xfx,[mod,rem]).

To ensure that the new, correct, operator declarations are in effect also in older versions
of SICStus Prolog 4, insert the following at the top of your Prolog files (please note:
this documentation was updated after 4.0.4 to correct the associativity of +, -):

:- op(200, fy,[+,-]).
:- op(400, yfx,[mod,rem]).

Chapter 9: Revision History 39

9.7.3 Other Changes

9.7.4 Known Issues

The following are known issues with this release of SICStus. See Section 9.3 [Limitations
in the Current Release], page 33 for more information about missing or incomplete features
in this release.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.
When reading terms SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.
This is not a problem as long as the input is in the proper format but it will allow some
input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

9.8 Changes Introduced in Version 4.0.5

9.8.1 New Features

• library(zinc): Interpreters for the MiniZinc and FlatZinc
combinatorial problem modeling languages being developed in the G12 project; see
http://www.g12.csse.unimelb.edu.au.

• library(clpfd): Revived deprecated constraints count/4 and relation/3.

9.8.2 Bugs Fixed

• open/[3,4] error handling.
• Critical virtual machine bugs in floating point arithmetic.
• Garbage collection now runs in constant space.
• Opening a UNIX fifo, or other non-seekable file, in text mode would not terminate

until the other end closed the connection and then it would report a seek error. The
problem was with the read-ahead needed to detect character encoding. Non-seekable
files are now opened as if encoding_signature(false) were passed to open/4.

• Runtime systems generated by spld did not propagate exit code from halt/1.
• statistics/0 would sometimes report incorrect, including negative, “program space

breakdown” for the “miscellaneous” and “interpreted code” categories.
• SP_event() handlers are no longer allowed to run during SP_exception_term() or

SP_deinitialize().
SP_exception_term() calls Prolog code which could allow SP_event() handlers to run,
e.g. for library(timeout). In this case exceptions and failures from an SP_event()
handler would be ignored and possibly confuse SP_exception_term().
SP_deinitialize() does some cleanup by calling Prolog code. This can no longer
cause SP_event() handlers to run.

• Fixed a memory corruption issue that happened during exception handling.
• Prologbeans:

− Lists of one character atoms were incorrectly transferred from Java to SICStus.

http://www.g12.csse.unimelb.edu.au

Chapter 9: Revision History 40

− The example sessionsum was missing the line:
pSession.connect();

after the declaration of pSession.
− Session listeners were not notified when a client closed the stream.

• Jasper: A memory leak in multithread mode.
• Debugger:

A file/[1,2] breakpoint test or action would raise an exception when used with
uninstantiated first (file name) argument.

− Some conditional breakpoints could not be handled by SU_messages message pro-
cessing. This sometimes caused a raw message term to be presented in the debug-
ger.

− Sometimes breakpoint tests were evaluated with the wrong value for the bid/1
breakpoint condition. The bid/1 breakpoint condition was not always reset to
bid(off) when no breakpoint was selected. The documentation was updated to
correctly say bid(off) instead of bid(none).

• Sometimes SICStus would enter an infinite loop if the error stream was closed in the
other read-end. This could happen, e.g. when SICStus was invoked as a subprocess
and the parent process exited ungracefully.

• Some Prolog code would not compile in profiledcode mode.
• Spurious type errors in several library modules.
• library(objects), library(structs): fixed a 64-bit issue, and putting integers now

checks for overflows.
• library(avl): bug in avl_max/3.
• library(clpfd): bug fixes for circuit/1, table/[2,3], lex_chain/[1,2], #\=.
• library(bdb):

− db_open/5 could crash if the option cache_size/1 was passed.
− Very long filenames could cause crashes.
− Did not work reliably with non-ASCII file names.
− db_enumerate/3, db_sync/1, db_make_iterator/2, db_iterator_next/3 and

db_iterator_done/1 crashed if called after the database had been closed.

9.8.3 Other Changes

• The windowed executable (spwin.exe) on Windows now saves and reads the command
history (see Section 4.4 [Command Line Editing], page 8).

• write/[1,2] is now much faster when writing atomic terms.
• assertz/1 and friends are now faster when asserting facts, i.e. clauses without bodies.
• library(terms): the new predicate term_hash/3 allows more control over the hashing

behavior and hash algorithm used.
Notable new features: a new, better, default hash algorithm and several other algo-
rithms, including the 4.0.4 version, are available; it is possible to obtain a full 32-bit
hash value; it is possible to get an instantiation error or hash value when the term
being hashed is nonground.

Chapter 9: Revision History 41

term_hash/[2,4] has been changed to use a better hash function by default. The new
hash function gives less collisions in general, and gives the same value on all platforms.
Please note: The change of hash function is an incompatible change that may affect
programs or data that depend on the old hash algorithm. The old behavior can be
obtained as follows:

%% Pre 4.0.5 version
term_hash_4_0_4(Term, Hash) :-

term_hash(Term, [algorithm(’sicstus-4.0.4’)], Hash).

term_hash_4_0_4(Term, Depth, Range, Value) :-
term_hash(Term, [algorithm(’sicstus-4.0.4’), depth(Depth), range(Range)], Hash).

• library(debugger_examples) updated.
• Extended Runtime systems (a separate product, adding the compiler to run-time sys-

tems) now require a license at runtime. By default spld will embed the license into
the executable.

• The hook user:error_exception/1 is now called with the exception term specified
by ISO Prolog, i.e. the same term that is seen by catch/3 and on_exception/3.
It used to be called with an internal representation of the exception. This affects
error exceptions, i.e. those with functor error/2. The old (pre 4.0.5) value passed to
user:error_exception/1 is the second argument of the error/2 structure.
Please note: This is an incompatible change. Old code that uses user:error_
exception/1 may need to be rewritten. If the old code looked like:

%% Pre 4.0.5 version
user:error_exception(Old) :- do_something(Old).

it can be rewritten as follows (which will also work in older versions of SICStus Prolog):
%% >= 4.0.5 version
user:error_exception(New) :-

(New = error(_, Old) -> true; Old = New),
do_something(Old).

• trimcore/0 is now more thorough when releasing memory back to the operating sys-
tem. This also affects the trimcore-variant used by the top-level.

• It is now possible to tell SICStus to use malloc() et al. as memory manager instead
of the default custom allocator.
malloc() is selected when starting sicstus with the new option ‘-m’; when initializing
the SICStus run-time with the environment variable SP_USE_MALLOC set to yes; for SIC-
Stus run-times built with the new spld option ‘--memhook=malloc’; and when calling
SP_set_memalloc_hooks() with the new option SP_SET_MEMALLOC_HOOKS_HINT_USE_
MALLOC. See Section “SP set memalloc hooks” in the SICStus Prolog Manual.

• library(clpfd): unification with domain variables as well as propositional combina-
tions of arithmetic constraints have been accelerated.

9.8.4 Known Issues

The following are known issues with this release of SICStus. See Section 9.3 [Limitations
in the Current Release], page 33 for more missing or incomplete features in this release.

Chapter 9: Revision History 42

• Exceptions in interpreted code will not get accurate source info in the source linked
debugger.

• Saved-states and ‘.po’ files are not portable across architectures that have the same
word size, which they should be. This will be fixed in release 4.1.0.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.
When reading terms SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.
This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

9.9 Changes Introduced in Version 4.0.6

This section is intentionally left empty. Version 4.0.6 was skipped in the release series.

9.10 Changes Introduced in Version 4.0.7

9.10.1 New Features

• Most text streams can now be opened with reposition(true), allowing set_stream_
position/2 and seek/4. This works for fixed-width, single-byte encodings. This
includes Latin 1 and similar encodings provided LFD is used for end-of-line. See Section
“open” in the SICStus Prolog Manual.

• library(clpb) is revived from SICStus 3, unsupported.

9.10.2 Bugs Fixed

• SP_event() handlers are no longer allowed to run during SP_fclose(), which some-
times needs to perform some cleanup by calling Prolog code. This can no longer cause
SP_event() handlers to run.

• Exceptions during exception handling would cause the top-level to exit.
• SP_event() handlers were not always called during event handling. One symptom was

that, at least on Windows, timeout:time_out/3 could not always interrupt a goal
called from an event handler.

• Bug in redefining multifile predicates.
• sockets:socket_select/7 leaked memory on Windows.
• library(queues): bug in portray_queue/1.
• library(clpfd): Incorrect reification and efficiency bugs in arithmetic relations in-

volving division, mod and rem; incorrect handling of inf and sup in table/[2,3].

9.10.3 Other Changes

• Foreign resources compiled with SICStus Prolog versions older than 4.0.5 will not load
into version 4.0.5 or later. This change was already in SICStus Prolog 4.0.5 but was
not documented in the release notes.

• The eol/1 stream property is now available also when not explicitly specified when
opening a file with open/[3,4].

Chapter 9: Revision History 43

• Decreased overhead for reclaiming dead dynamic clauses.
• Decreased garbage collection overhead in some cases.

9.10.4 Known Issues

The following are known issues with this release of SICStus. See Section 9.3 [Limitations
in the Current Release], page 33 for more missing or incomplete features in this release.

• Exceptions in interpreted code will not get accurate source info in the source linked
debugger.

• Saved-states and ‘.po’ files are not portable across architectures that have the same
word size, which they should be. This will be fixed in release 4.1.0.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.
When reading terms SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.
This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

9.11 Changes Introduced in Version 4.0.8

9.11.1 New Features

GROWTHFACTOR
A new environment variable that controls the rate at which the Prolog stacks
grow when they are expanded. See Section “sicstus — SICStus Prolog Devel-
opment System” in the SICStus Prolog Manual.

9.11.2 Bugs Fixed

• Compiler: shallow backtracking bug.
• Virtual machine: issues with memory corruption, liveness data, recovery from memory

resource error.
•

9.11.3 Other Changes

• Stack memory is maintained separately from other memory, which can sharply reduce
memory fragmentation.

• Decreased garbage collection overhead in some cases.

9.11.4 Known Issues

The following are known issues with this release of SICStus. See Section 9.3 [Limitations
in the Current Release], page 33 for more missing or incomplete features in this release.

• Exceptions in interpreted code will not get accurate source info in the source linked
debugger.

Chapter 9: Revision History 44

• Saved-states and ‘.po’ files are not portable across architectures that have the same
word size, which they should be. This will be fixed in release 4.1.0.

• SICStus Prolog does not verify that Prolog text is in Unicode NFC format.
When reading terms SICStus Prolog currently does not verify that the input text
contains valid Unicode 5.0 characters in Normal Form C. See Section “Syntax of Tokens
as Character Strings” in the SICStus Prolog Manual.
This is not a problem as long as the input is in the proper format but it will accept
some input that may be rejected or interpreted differently in a future version of SICStus
Prolog.

Chapter 10: Generic Limitations 45

10 Generic Limitations

The number of arguments of a compound term may not exceed 255.

The number of atoms created may not exceed 1048575 (33554431) on 32-bit (64-bit) archi-
tectures.

The number of bytes making up the characters of an atom may not exceed 65535.

There are 256 “temporary” and 256 “permanent” variables available for compiled clauses.

Saved-states and ‘.po’ files are not portable between 32-bit and 64-bit architectures.

Indexing on large integers or floats is coarse, i.e there is essentially no indexing between
different large integers or floats. This can have a huge negative impact on performance,
e.g. when using hash codes or some such to represent a (hash-table) as clauses. The hash
predicates in library(terms) avoids this, by default, but it has been known to cause hard
to track down performance problems when the number is created by some other means.

Chapter 11: Contact Information 46

11 Contact Information

Current support status for the various platforms as well as a web interface for reporting
bugs can be found at the SICStus Prolog homepage:

http://www.sics.se/sicstus/

Information about and fixes for bugs that have shown up since the latest release can be
found there as well.

The mailing list sicstus-users@sics.se is a mailing list for communication among users
and implementors. To subscribe, write a message to sympa@sics.se with the following line
in the message body:

subscribe sicstus-users

http://www.sics.se/sicstus/
mailto:sicstus-users@sics.se
mailto:sympa@sics.se

	Overview
	Platforms
	Release Notes and Installation Guide for UNIX
	Installation
	Prerequisites
	C Compiler and Linker

	The Installation Script
	The Uninstallation Script

	Platform Specific Notes

	Release Notes and Installation Guide for Windows
	Requirements
	Installation
	Windows Notes
	Command Line Editing
	The Console Window
	Console Preferences

	Windows Limitations

	Tcl/Tk Notes
	Jasper Notes
	Supported Java Versions
	Getting Started
	Windows
	UNIX
	Running Java from SICStus
	Running SICStus from Java

	Jasper Package Options
	Multi Threading
	Changes in Jasper from SICStus 3
	Known Bugs and Limitations
	Java Examples Directory
	Resources

	Berkeley DB Notes
	The Emacs Interface
	Installation
	Installing On-Line Documentation

	Revision History
	What Is New In Release 4
	Virtual Machine
	Prolog Language
	Single Language Mode
	DCG Notation
	Asserting Terms with Attributed Variables
	Arithmetic
	Syntax
	Prolog Flags
	Stream Properties
	Statistics Keywords
	Built-In Predicates
	Hook Predicates

	Library Modules
	Input-Output System
	Foreign Language APIs
	Foreign Language Interface
	C API Functions
	Java API

	Guide to Porting Code from Release 3
	Limitations in the Current Release
	Changes Introduced in Version 4.0.1
	New Features
	Bugs Fixed
	Other Changes
	Known Issues

	Changes Introduced in Version 4.0.2
	New Features
	Bugs Fixed
	Other Changes
	Known Issues

	Changes Introduced in Version 4.0.3
	New Features
	Bugs Fixed
	Other Changes
	Known Issues

	Changes Introduced in Version 4.0.4
	New Features
	Bugs Fixed
	Other Changes
	Known Issues

	Changes Introduced in Version 4.0.5
	New Features
	Bugs Fixed
	Other Changes
	Known Issues

	Changes Introduced in Version 4.0.6
	Changes Introduced in Version 4.0.7
	New Features
	Bugs Fixed
	Other Changes
	Known Issues

	Changes Introduced in Version 4.0.8
	New Features
	Bugs Fixed
	Other Changes
	Known Issues

	Generic Limitations
	Contact Information

