SICStus Prolog User’s Manual

by the Intelligent Systems Laboratory

Swedish Institute of Computer Science
PO Box 1263
SE-164 29 Kista, Sweden

Release 4.0.0
March 2007

Swedish Institute of Computer Science
sicstus-request@sics.se http://www.sics.se/sicstus/

mailto:sicstus-request@sics.se
http://www.sics.se/sicstus/

Copyright © 1995-2007 SICS

Swedish Institute of Computer Science
PO Box 1263
SE-164 29 Kista, Sweden

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by SICS.

Table of Contents

Introduction................ 1
Acknowledgments............................. 3
1 Notational Conventions 5
1.1 Keyboard Characters.......... ...,)
1.2 Mode SPEC. ..o 5
1.3 Development and Runtime Systems........................... 5
1.4 Function Prototypes........ ... 5
1.5 ISO Compliance.o 6
2 GloSSary ..ot e 7
3 HowtoRun Prolog....................... 21
3.1 Getting Started ... 21
3.2 Reading in Programs i 21
3.3 Inserting Clauses at the Terminal............................ 22
3.4 Queries and Directives......... ... 23
341 QUETIES « . oottt 23
3.4.2 Directives 24
3.5 Syntax Errors....... ... 25
3.6 Undefined Predicates 26
3.7 Program Execution And Interruption........................ 26
3.8 Exiting From The Top-Level 27
3.9 Nested Executions—Break 27
3.10 Saving and Restoring Program States....................... 27
3.11 Emacs Interface......... 29
3.11.1 Imstallation............o 29
31111 Quick-Start..... .. 29
3.11.1.2 Customizing Emacs 30
3.11.1.3 Enabling Emacs Support for SICStus.............. 30

3.11.1.4 Enabling Emacs Support for SICStus Documentation
... 31
3.11.2 Basic Configuration................. 31
3113 USaZE. oo vt 32
3.11.4 Mode Line ... 34
3.11.5 Configuration 34
316 PSS ettt 36
3.11.6.1 Font-locking 37
3.11.6.2 Auto-fill Mode 37
3.11.6.3 Speed ... 37

3.11.6.4 Changing Colorscoi ... 37

ii SICStus Prolog

4 The Prolog Language 39
A1 SYNbAX . oot 39
411 OVEIVIEW . . vttt et e e e e e e e 39
412 Terms ..o 39
4.1.2.1 OVEIVIEW . ottt e e 39
4.1.2.2 Integerso 39
4.1.2.3 Floating-point Numbers 40
4.1.24 AtOMS. ..ot 40
4.1.2.5 Variables...... 40
4.1.2.6 Foreign Terms 41
4.1.3 Compound Terms.oiiiiinii .. 41
4.1.3.1 LastS oo 42
4.1.3.2 Strings As Lists 42
4.1.4 Character Escapingooiiiiiiiinnno. . 43
4.1.5 Operators and their Built-in Predicates.................. 43
4.1.5. 1 OVErVIEW . oottt 43
4.1.5.2 Manipulating and Inspecting Operators............. 46
4.1.5.3 Syntax Restrictions............... 46
4.1.5.4 Built-in Operators.oovveiiino ... 47
4.1.6 Commentinguuuunneee i 47
4.1.7 Formal Syntax............ooiiioii 47
4171 OVEIVIEW . vttt ettt et 47
4.1.7.2 Notationc.c.oueeei 48
4.1.7.3 Syntax of Sentences as Terms 49
4.1.7.4 Syntax of Terms as Tokens......................... 49
4.1.7.5 Syntax of Tokens as Character Strings.............. 50
4.1.7.6 Escape Sequencesooiiiiiiinaiiii... 53
4177 NOtes ..o 54
4.1.8 Summary of Predicates..............., 55
4.2 SemAantiCsvo it 55
4.2.1 Programs 55
4.2.2 Types of Predicates Supplied with SICStus Prolog........ 57
4.2.2.1 Hook Predicateso 57
4.2.2.2 Extendible Predicates Y
4.2.3 Control Structures.............. i 57
4.23.1 The Cut.. ..o 58
4.2.3.2 Disjunctionooeiiiii 60
4233 If-Then-Else........ ... o .. 61
4.2.3.4 Negation as Failure................................ 62
4.2.3.5 Other Control Structures 62
4.2.4 Declarative and Procedural Semantics................... 62
4.25 Meta-Calls 65
4.2.6 Exceptions Related to Procedure Calls 65
4.2.7 Occurs-Check 66
4.2.8 Summary of Control Predicates......................... 66
4.3 Loading Programs. i 67
4.3 1 OVEIVIEW . .ottt et e e e e e e e e e e 67

4.3.2 The Load Predicates........... 68

4.3.3 Redefining Procedures during Program Execution 70
4.3.4 Declarations and Initializations 70
4.3.4.1 Multifile Declarations. 71
4.3.4.2 Dynamic Declarations 71
4.3.4.3 Volatile Declarations 72
4.3.4.4 Discontiguous Declarations......................... 72
4.3.4.5 Block Declarations 72
4.3.4.6 Meta-Predicate Declarations 73
4.3.4.7 Module Declarations............................... 73
4.3.4.8 Public Declarations................................ 73
4.3.4.9 Mode Declarations 74
4.3.4.10 Include Declarations.............................. 74
4.3.4.11 Initializations........... 74
4.3.5 Term and Goal Expansion.............................. 74
4.3.6 Predicate List 75
4.4 Saving and Loading the Prolog Database..................... 7
4.4.1 Overview of PO Files, 77
4.4.2 Saved-States 77
4.4.3 Selective Saving and Loading of PO Files................ 78
4.4.4 Predicate List 79
4.5 Files and Directories. ... 80
4.5.1 The File Search Path Mechanism 80
4.5.1.1 Defining File Search Paths......................... 81
4.5.1.2 Frequently Used File Specifications 82
4.5.1.3 Predefined File Search Paths....................... 83
4.5.2 Syntactic Rewriting........ 83
4.5.3 List of Predicates........... ... 86
4.6 Input and Output........ i 86
4.6.1 Introduction........... 86
4.6.2 About Streams 86
4.6.2.1 Programming Note.......... 87
4.6.2.2 Stream Categories.oouiiiiinnii. 87
4.6.3 TermInput 87
4.6.3.1 Reading Terms: The "Read" Predicates............. 87
4.6.3.2 Changing the Prompt 88
4.6.4 Term Output....... ... 88
4.6.4.1 Writing Terms: the "Write" Predicates 89
4.6.4.2 Common Characteristics........................... 89
4.6.4.3 Distinctions Among the "write" Predicates.......... 89
4.6.4.4 Displaying Termscooiiiieininen... 90
4.6.4.5 Using the Portray Hook 90
4.6.4.6 Portrayinga Clauseiiiiii.. 90
4.6.5 Byte and Character Input 91
4.6.5.1 OVEIVIEW . o\ v vttt et ettt 91
4.6.5.2 Reading Bytes and Characters 91
4.6.5.3 Peeking 91
4.6.5.4 SKIpPING. ..ottt 91

4.6.5.5 Finding the End of Line and End of File............ 92

iii

SICStus Prolog

4.6.6 Byte and Character Output 92
4.6.6.1 Writing Bytes and Characters...................... 92
4.6.6.2 New Line........ 92
4.6.6.3 Formatted Output 92

4.6.7 Stream and File Handling 93
4.6.7.1 Stream Objects ..., 93
4.6.7.2 Exceptions Related to Streams 94
4.6.7.3 Suppressing Error Messages........................ 94
4.6.7.4 Opening a Streamccooiviiiinne.... 94
4.6.7.5 Text Stream Encodings............................ 95
4.6.7.6 Finding the Current Input Stream.................. 96
4.6.7.7 Finding the Current Output Stream 96
4.6.7.8 Finding Out About Open Streams.................. 97
4.6.7.9 Closing a Stream ..., .. 97
4.6.7.10 Flushing Output 98

4.6.8 Reading the State of Opened Streams 98
4.6.8.1 Stream Position Information for Terminal I/O....... 98

4.6.9 Random Accessto Files........... 98

4.6.10 Summary of Predicates and Functions.................. 99

4.7 Arithmetic....... .. 102

471 OVEIVIEW . oottt e e e e e 102

4.7.2 Evaluating Arithmetic Expressions..................... 103

4.7.3 Exceptions Related to Arithmetic...................... 103

4.7.4 Arithmetic Comparison 103

4.7.5 Arithmetic Expressions..............c.ooiiieiiia... 104

4.7.6 Predicate Summary i 107

4.8 Looking at Terms 108

4.8.1 Meta-logical Predicates................................ 108
4.8.1.1 Type Checking...........cooov ... 108
4.8.1.2 Unificationoo i 109

4.8.2 Analyzing and Constructing Terms..................... 109

4.8.3 Analyzing and Constructing Lists................... ... 109

4.8.4 Converting between Constants and Text................ 110

4.8.5 Atom Operations..............cooiiiiiiiiiiiiia... 110

4.8.6 Assigning Names to Variables.......................... 111

4.8.7 Copying Termsooiiiiii .. 111

4.8.8 Comparing Terms 112
4.8.8.1 Introduction.............. 112
4.8.8.2 Standard Order of Terms 112
4.8.8.3 Sorting Termscco ... 113

4.8.9 Mutable Terms i 113

4.8.10 Summary of Predicates................. 114

4.9 Looking at the Program State.............................. 117

4.9.1 OVEIVIEW .ottt e e 117

4.9.2 Associating Predicates with their Properties 117

4.9.3 Associating Predicates with Files 118

4.94 Prolog Flags ... 118

4.9.5 Load Contextuii .. 122

4.9.6 Predicate Summary i 123

4.10 Memory Use and Garbage Collection 124
4.10.1 OVEIVIEW .ottt et e 124
4.10.1.1 Reclaiming Space 125
4.10.1.2 Displaying Statistics................. 125
4.10.2 Garbage Collection and Programming Style............ 128
4.10.3 Enabling and Disabling the Garbage Collector 130
4.10.4 Monitoring Garbage Collections 130
4.10.5 Interaction of Garbage Collection and Heap Expansion.. 131
4.10.6 Invoking the Garbage Collector Directly............... 132
4.10.7 Atom Garbage Collection 132
4.10.7.1 The Atom Garbage Collector User Interface....... 133
4.10.7.2 Protecting Atoms in Foreign Memory............. 134
4.10.7.3 Permanent Atoms....................... ..., 136
4.10.7.4 Details of Atom Registration..................... 136
4.10.8 Summary of Predicates............................... 137
411 Modules. . ..o 137
4111 OVEIVIEW .ottt e e 137
4.11.2 Basic Conceptso 138
4.11.3 Defininga Module.......... 138
4.11.4 Converting Non-module-files into Module-files.......... 139
4.11.5 Loadinga Module 139
4.11.6 Visibility Rules........... ... 140
4.11.7 The Source Module 141
4.11.8 The Type-in Module............, 142
4.11.9 Creating a Module Dynamically 143
4.11.10 Module Prefixes on Clauses. 143
4.11.10.1 Current Modules.............. 144
4.11.11 Debugging Code ina Module........................ 144
4.11.12 Name Clashes 144
4.11.13 Obtaining Information about Loaded Modules 145
4.11.13.1 Predicates Defined in a Module 145
4.11.13.2 Predicates Visible in a Module 146
4.11.14 TImporting Dynamic Predicates....................... 146
4.11.15 Module Name Expansion............................ 147
4.11.16 The meta_predicate Declaration.................... 147
4.11.17 Semantics of Module Name Expansion 149
4.11.18 Predicate Summary........... 151
4.12 Modification of the Database.............................. 151
4.12.1 Introduction 151
4.12.2 Dynamic and Static Procedures....................... 152
4.12.3 Database References 153
4.12.4 Adding Clauses to the Database 153
4.12.5 Removing Clauses from the Database 154
4.12.5.1 A Note on Efficient Use of retract/1 155
4.12.6 Accessing Clauses.t 156
4.12.7 Modification of Running Code: Examples.............. 156

4.12.7.1 Example: assertz.............oiiiiiiii... 156

vi SICStus Prolog

4.12.7.2 Example: retract.............. 157
4.12.7.3 Example: abolish 157
4.12.8 The Internal Database 158
4.12.9 Blackboard Primitives 159
4.12.10 Summary of Predicates 160
4.13 Sets and Bags: Collecting Solutions to a Goal 161
4.13.1 Introduction i 161
4.13.2 Collecting a Sorted List 162
4.13.2.1 Existential Quantifier............................ 163
4.13.3 Collecting a Bag of Solutions 163
4.13.3.1 Collecting All Instances.......................... 163
4.13.4 Predicate Summaryiiiii 164
414 Grammar Rules......... 164
4.14.1 Definite Clause Grammarsooeee.... 164
4.14.2 How to Use the Grammar Rule Facility................ 165
4.14.3 An Example...... ... 166
4.14.4 Semantics of Grammar Rules......................... 167
4.14.5 Summary of Predicates................., 171
4.15 Errors and Exceptions........... i 172
4151 OVEIVIEW . oottt 172
4.15.2 Raising Exceptions L. 172
4.15.3 Handling Exceptions............. 173
4.15.3.1 Protecting a Particular Goal 173
4.15.3.2 Handling Unknown Predicates 174
4.15.4 Error Classes. 174
4.15.4.1 Instantiation Errors............................. 177
41542 TypeErrors..... 177
4.15.4.3 Domain Errors......... 178
4.15.4.4 Evaluation Errors............. 179
4.15.4.5 Representation Errors 179
4.15.4.6 Existence Errors L, 179
4.15.4.7 Permission Errors............ 180
4.15.4.8 Context Errors..............iiiiiiii... 180
4.15.4.9 Consistency Errors............ 181
4.15.4.10 Syntax Errors.......... i 181
4.15.4.11 Resource Errors........... 182
4.15.4.12 System Errors 182
4155 AnExample......... ... 182
4.15.6 Interrupting Execution.............. 183
4.15.7 Summary of Predicates............................... 184
4.16 Messages and QUETIESt 184
4.16.1 Message Processingc i 184
4.16.1.1 Phases of Message Processing 185
4.16.1.2 Message Generation Phase....................... 186
4.16.1.3 Message Printing Phase 187
4.16.2 Message Handling Predicates 187
4.16.3 Query Processing i 188

4.16.3.1 Query Classescoveiiiniiii .. 188

4.16.3.2 Phases of Query Processing 189
4.16.3.3 Hooks in Query Processing 191
4.16.3.4 Default Input Methods 192
4.16.3.5 Default Map Methods 192
4.16.3.6 Default Query Classes........................... 193
4.16.4 Query Handling Predicates 193
4.16.5 Predicate Summary...............iiii i 194

5 Debuggingciiiiiiiiiiaa.. 197
5.1 The Procedure Box Control Flow Model 197
5.2 Basic Debugging Predicates.............. 199
5.3 Plain Spypointsoouuret 201
5.4 Format of Debugging Messages................cccoiiii.... 202
5.5 Commands Available during Debugging..................... 203
5.6 Advanced Debugging — an Introduction.................... 208
5.6.1 Creating Breakpoints 208
5.6.2 Processing Breakpoints............... oL 209
5.6.3 Breakpoint Tests 210
5.6.4 Specific and Generic Breakpoints 216
5.6.5 Breakpoint Actions 217
5.6.6 Advice-points i 223
5.6.7 Built-in Predicates for Breakpoint Handling 225
5.6.8 Accessing Past Debugger States........................ 227
5.6.9 Storing User Information in the Backtrace.............. 230
5.6.10 Hooks Related to Breakpoints 231
5.6.11 Programming Breakpoints................... 233
5.7 Breakpoint Handling Predicates 237
5.8 The Processing of Breakpoints 239
5.9 Breakpoint Conditions........... 241
5.9.1 Tests Related to the Current Goal 242
5.9.2 Tests Related to Source Information.................... 243
5.9.3 Tests Related to the Current Port...................... 244
5.9.4 Tests Related to the Break Level....................... 245
5.9.5 Other Conditions, 246
5.9.6 Conditions Usable in the Action Part 246
5.9.7 Options for Focusing on a Past State................... 247
5.9.8 Condition MacroS.ouveiiineniineeiineen.. 247
5.9.9 The Action Variables 247
5.10 Consulting during Debugging 250
5.11 Catching Exceptions. i 250

5.12 Predicate Summary 250

vii

viii SICStus Prolog

6 Mixing C/C++ and Prolog 253
6.1 NOteS ..ot 253
6.2 Calling C from Prolog 254

6.2.1 Foreign Resources 255
6.2.2 Conversion Declarations............................ ... 256
6.2.3 Conversions between Prolog Arguments and C Types. ... 256
6.2.4 Interface Predicates............... 259
6.2.5 The Foreign Resource Linker 260
6.2.5.1 Customizing splfr under UNIX................... 260
6.2.5.2 Creating Dynamic Linked Foreign Resources Manually
under UNIX oo 260
6.2.6 Init and Deinit Functions.............. 260
6.2.7 Creating the Linked Foreign Resource.................. 261
6.3 Calling C++ from Prolog......... 262
6.4 Support Functions. 262
6.4.1 Creating and Manipulating SP_term_refs............... 262
6.4.2 Atomsin C 263
6.4.3 Creating Prolog Terms 263
6.4.4 Accessing Prolog Terms 264
6.4.5 Testing Prolog Terms 0. 265
6.4.6 Unifying and Comparing Terms........................ 266
6.4.7 Operating System Servicesooiieeennn... 266
6.4.7.1 Memory Management 266
6.4.7.2 File System.......... ... 266
6.4.7.3 Threads........ ... 266
6.5 Calling Prolog from C..... 267
6.5.1 Finding One Solution of a Call......................... 267
6.5.2 Finding Multiple Solutions of a Call.................... 267
6.5.3 Calling Prolog Asynchronously......................... 268
6.5.3.1 Signal Handling.................................. 268
6.5.4 Exception Handling in C.............................. 269
6.6 SICStus Streamso, 269
6.6.1 Prolog Streams.......... 269
6.6.2 Defining a New Stream................................ 271
6.6.2.1 Low Level I/O Functions 275
6.6.3 Hookable Standard Streams 275
6.6.3.1 Writing User-stream Hooks 275
6.6.3.2 Writing User-stream Post-hooks................... 276
6.7 Stand-Alone Executables 276
6.7.1 Runtime Systems...............ccoiiiiiiiiiiiii... 277
6.7.2 Runtime Systems on Target Machines.................. 277
6.7.2.1 Runtime Systems on UNIX Target Machines 278
6.7.2.2 Runtime Systems on Windows Target Machines 279
6.7.3 The Application Builder............................... 280
6.7.3.1 Customizing spld under UNIX.................... 280
6.7.3.2 All-in-one Executables............................ 281
6.7.3.3 Examples...........oi 284

6.7.4 User-defined Main Programs........................... 286

6.7.4.1 Initializing the Prolog Engine 286

6.7.4.2 Loading Prolog Code............................. 286
6.7.5 Generic Runtime Systems under Windows 287
6.8 Examples. 287
6.8.1 Train Example (connections) 287
6.8.2 Exceptions from C.......... it 291
6.8.3 Stream Example............. 294
7 Interfacing NET and Java............... 295
8 Multiple SICStus Run-Times in a Process
....................................... 297
8.1 Memory Considerations.iiiiiiie . 297
8.2 Multiple SICStus Run-Times in C.......................... 297
8.2.1 Using a Single SICStus Run-Time...................... 298
8.2.2 Using More than One SICStus Run-Time............... 298
8.3 Foreign Resources and Multiple SICStus Run-Times 299
8.3.1 Foreign Resources Supporting Only One SICStus Run-Time
... 299
8.3.2 Foreign Resources Supporting Multiple SICStus Run-Times
... 300
8.3.2.1 Simplified Support for Multiple SICStus Run-Times
.. 300
8.3.2.2 Full Support for Multiple SICStus Run-Times. 301
8.4 Multiple Run-Times and Threads........................... 303
9 Writing Efficient Programs............... 305
9.1 OVEIrVIEW . . oottt e e e 305
9.2 Execution Profiling......... 305
9.3 The Cub.... ..o 306
9.3.1 OVEIVIEW .ottt e e e e e 306
9.3.2 Making Predicates Determinate........................ 306
9.3.3 Placement of Cuts........... 308
9.3.4 Terminating a Backtracking Loop...................... 308
9.4 Indexing........coouiiiiii 309
9.4.1 OVEIVIEW . vttt e e e e 309
9.4.2 DataTables.......... .o i 309
9.4.3 Determinacy Detection.................. 310
9.5 Last Clause Determinacy Detection...................... ... 311
9.6 The Determinacy Checker 311
9.6.1 Using the Determinacy Checker........................ 312
9.6.2 Declaring Nondeterminacy 312
9.6.3 Checker OUutputcooii i 313
9.6.4 Example..... ... 314
9.6.5 OpPtionsS.ooiii 314
9.6.6 What is Detected i 315

9.7 Last Call Optimization 316

X SICStus Prolog

9.7.1 Accumulating Parameters 317
9.7.2 Accumulating Lists 317
9.8 Building and Dismantling Terms 318
9.9 Conditionals and Disjunction............................... 321
9.10 Programming Examples 323
9.10.1 Simple List Processing 323
9.10.2 Family Example (descendants)........................ 323
9.10.3 Association List Primitives........................... 324
9.10.4 Differentiation. 324
9.10.5 Use of Meta-Logical Predicates 325
9.10.6 Prologin Prolog........... 325
9.10.7 Translating English Sentences into Logic Formulae 326
9.11 The Cross-Referencer.......... 327
9.11.1 Introduction, 327
9.11.2 Practice and Experience.............................. 327
10 The Prolog Library 329
10.1 An Aggregation Operator for Data-Base-Style
Queries—1library(aggregate) L 332
10.2 Association Lists—1library(assoc) 335
10.3 Attributed Variables—1library(atts) 337
10.4 AVL Trees—1library(avl)ooiiiiiiinno... 343
10.5 Bags, or Multisets—1library(bags) 346
10.6 External Storage of Terms (Berkeley DB)—1ibrary(bdb) ... 350
10.6.1 Basicsooii i 350
10.6.2 Current Limitations............, 351
10.6.3 Berkeley DB 351
10.6.4 The DB-Spec—Informal Description 351
10.6.5 Predicates 352
10.6.5.1 Conventionsooeeiiiiiiiiiinnnnea... 352
10.6.5.2 The Environment 352
10.6.5.3 Memory Leaks............ 353
10.6.5.4 The Predicates.............cooiii ... 353
10.6.6 An Example Session 356
10.6.7 The DB-Spec.oooi 357
10.6.8 Exporting and importing a database 358
10.7 Generating Integers—library(between) 358
10.8 I/O on Lists of Character Codes—1library(codesio) 359
10.9 Accessing Files And Directories—1library(file_systems) .. 360
10.10 Heap Operations—1library(heaps) 365
10.11 List Operations—1library(lists) 367
10.12 Array Operations—1library(logarr) 378
10.13 The Objects Package—library(objects) 378
10.13.1 Imtroduction 378
10.13.1.1 Using SICStus Objects ..., 379
10.13.1.2 Defining Classes ..., 380
10.13.1.3 Using Classeso 381

10.13.1.4 Looking Ahead, 382

10.13.2 Simple ClassSescoieie i 382
10.13.2.1 Scope of a Class Definition...................... 382
10.13.2.2 Slots . oo 383
10.13.2.3 Methods 385

10.13.3 Imheritance.......... ... 394
10.13.3.1 Single Inheritance.............................. 394
10.13.3.2 Multiple Inheritance............................ 397
10.13.3.3 Asking About Classes and Objects 400

10.13.4 Term Classesottt 402
10.13.4.1 Simple Term Classesooi... 403
10.13.4.2 Restricted Term Classes 403
10.13.4.3 Specifying a Term Class Essence 404

10.13.5 Technical Details 405
10.13.5.1 Syntax of Class Definitions 405
10.13.5.2 Limitations............. ... i 407

10.13.6 Exported Predicates 408
10.13.6.1 <=/ 2 oo 409
10.13.6.2 <</ 2 o 410
10.13.6.3 >>/2 . o 411
10.13.6.4 class/1\hfill declaration 412
10.13.6.5 class_ancestor/2.............ciiiiiiiii... 415
10.13.6.6 class_method/1\hfill declaration 416
10.13.6.7 class_superclass/2oouuiiiiiiin. 417
10.13.6.8 class_of/2 ...t 418
10.13.6.9 create/2.ot 419
10.13.6.10 current_class/1...... 421
10.13.6.11 debug_message/O\hfill declaration............. 422
10.13.6.12 define_method/3...........c.cvviiiiniieinnn... 423
10.13.6.13 descendant _of/2.............o ... 424
10.13.6.14 destroy/1 425
10.13.6.15 direct_message/4.......... ...l 426
10.13.6.16 end_class/[0,1]\hfill declaration 427
10.13.6.17 fetch_slot/2ot 428
10.13.6.18 inherit/1\hfill declaration.................... 429
10.13.6.19 instance_method/1\hfill declaration........... 431
10.13.6.20 message/4 i 432
10.13.6.21 nodebug_message/O\hfill declaration........... 433
10.13.6.22 pointer_object/2......... ... 434
10.13.6.23 store_slot/2 ..o 435
10.13.6.24 undefine_method/3........................... 436
10.13.6.25 wuninherit/1\hfill declaration.................. 437

10137 GlOSSATY .« .o oo ettt e 437

10.14 Ordered Set Operations—1library(ordsets) 440
10.15 Process Utilities—1ibrary(process) 442
10.16 Queue Operations —library(queues) 446
10.17 Random Number Generator—1library(random) 449
10.18 Rem’s Algorithm—1library(rem) 450
10.19 Generic Sorting—1library(samsort) 450

xi

xii SICStus Prolog

10.20 Unordered Set Operations—library(sets) 451
10.21 Socket I/O—1library(sockets)c.ooovneana... 453
10.22 The Structs Package—1library(structs) 455
10.22.1 Foreign Types.......covuiii i 456
10.22.1.1 Declaring Typescooviiniiiiinii .. 457
10.22.2 Checking Foreign Term Types....................... 458
10.22.3 Creating and Destroying Foreign Terms 458
10.22.4 Accessing and Modifying Foreign Term Contents. 458
10.22.5 Casting 459
10.22.6 Null Foreign Terms i, 459
10.22.7 Interfacing with Foreign Code 460
10.22.8 Examining Type Definitions at Runtime.............. 460
10.22.9 TIPS . o oottt 461
10.22.10 Example. ... 462
10.23 Operating System Utilities—library(system) 464
10.24 Term Utilities—1ibrary(terms) 465
10.25 Meta-Call with Limit on Execution Time—1library(timeout)
.. 467
10.26 Updatable Binary Trees—1library(trees) 468
10.27 Type Checking—1library(types) 469
10.28 Unweighted Graph Operations—1ibrary(ugraphs) 471
10.29 An Inverse of numbervars/3—1library(varnumbers) 473
10.30 Weighted Graph Operations—1library(wgraphs).......... 474
10.31 Parsing and Generating XML—1ibrary(xml) 476
10.32 Process Communication—1library(linda/[server,client])
.. 478
10.32.1 Linda Serveroiiiin i 479
10.32.2 Linda Client 480
10.33 Constraint Handling Rules—1library(chr) 482
10.33.1 Imtroduction L. 482
10.33.2 Syntax and Semantics.coooiiiii.. 483
10.33.2.1 Syntax ... 483
10.33.2.2 Semantics ...t 483
10.33.3 CHR in Prolog Programs............................ 485
10.33.3.1 Embedding in Prolog Programs 485
10.33.3.2 Constraint Declaration 485
10.33.3.3 Compilation 487
10.33.4 Debugging ... 487
10.33.4.1 Ports...... ... 487
10.33.4.2 Tracingovei it 488
10.33.4.3 Debugging Predicates 488
10.33.5 Examples....... ..o 489
10.33.6 Guidelineso 490
10.34 Constraint Logic Programming over Finite
Domains—1ibrary(clpfd) ... 490
10.34.1 Introduction i 491
10.34.1.1 Referencing this Software....................... 491

10.34.1.2 Acknowledgments 492

xiii

10.34.2 Solver Interface........... ..., 492
10.34.2.1 Posting Constraints 493
10.34.2.2 A Constraint Satisfaction Problem 493
10.34.2.3 Reified Constraints............................. 494

10.34.3 Available Constraints 495
10.34.3.1 Arithmetic Constraints 495
10.34.3.2 Membership Constraints........................ 496
10.34.3.3 Propositional Constraints....................... 497
10.34.3.4 Combinatorial Constraints...................... 497
10.34.3.5 User-Defined Constraints 512

10.34.4 Enumeration Predicates............................. 513

10.34.5 Statistics Predicates, 516

10.34.6 Answer Constraints.........................ooo... 516

10.34.7 The Constraint System 517
10.34.7.1 Definitions 517
10.34.7.2 Pitfalls of Interval Reasoning.................... 517

10.34.8 Defining Global Constraints 518
10.34.8.1 The Global Constraint Programming Interface ... 518
10.34.8.2 Reflection Predicates........................... 520
10.34.8.3 FD Set Operations............................. 521
10.34.8.4 A Global Constraint Example................... 523

10.34.9 Defining Primitive Constraints....................... 524
10.34.9.1 Indexicalsiiiiiiiinina... 525
10.34.9.2 Range Expressionsco.o.... 525
10.34.9.3 Term Expressionsoooiiioo... 526
10.34.9.4 Monotonicity of Indexicals...................... 526
10.34.9.5 FD Predicates 927
10.34.9.6 Execution of Propagating Indexicals............. 529
10.34.9.7 Execution of Checking Indexicals................ 530
10.34.9.8 Goal Expanded Constraints..................... 530

10.34.10 Example Programs 531
10.34.10.1 Send More Money.............cooooiiiiio... 532
10.34.10.2 N Queensooiiiinniiiinaa. 532
10.34.10.3 Cumulative Scheduling 534

10.34.11 Syntax SUMMATYottt 535
10.34.11.1 Syntax of Indexicals........................... 535
10.34.11.2 Syntax of Arithmetic Expressions 537
10.34.11.3 Operator Declarations......................... 537

10.35 Constraint Logic Programming over Rationals or
Reals—1library([clpg,clprl) ..., 538

10.35.1 Introduction 538
10.35.1.1 Referencing this Software....................... 538
10.35.1.2 Acknowledgments 538

10.35.2 Solver Interface........... 539
10.35.2.1 Notational Conventions......................... 539
10.35.2.2 Solver Predicates.c...i.. 539
10.35.2.3 Unification 543

10.35.2.4 Feedback and Bindings 544

xiv SICStus Prolog

10.35.3 Linearity and Nonlinear Residues 544
10.35.3.1 How Nonlinear Residues Are Made to Disappear.. 546
10.35.3.2 Isolation Axioms................covoiinaoa... 546

10.35.4 Numerical Precision and Rationals................... 547

10.35.5 Projection and Redundancy Elimination.............. 551
10.35.5.1 Variable Ordering 552
10.35.5.2 Turning Answers into Terms 553
10.35.5.3 Projecting Inequalities.......................... 553

10.35.6 Why Disequations, 556

10.35.7 Monash Examples, 558

10.35.8 A Mixed Integer Linear Optimization Example 558

10.35.9 Implementation Architecture 561
10.35.9.1 Fragments and Bits 961
10.35.9.2 Bugs......oooii 561

10.36 Finite Domain Constraint Debugger—1library(fdbg)...... 562

10.36.1 Introduction 562

10.36.2 COneeptS. « oo vttt 562
10.36.2.1 Events 562
10.36.2.2 Labeling Levels 563
10.36.2.3 Visualizers..........ooviiiiniiinniiin.. 563
10.36.2.4 Names of Terms 563
10.36.2.5 Selectors 564
10.36.2.6 Name Auto-Generation......................... 564
10.36.2.7 Legend....... ... 565
10.36.2.8 The fdbg_output Stream....................... 565

10.36.3 Basics ... oo 565
10.36.3.1 FDBG Optionscoiiiiiiineiiin.. 565
10.36.3.2 Naming Terms..........., 567
10.36.3.3 Built-In Visualizers 567
10.36.3.4 New Debugger Commands...................... 568
10.36.3.5 Annotating Programs 569
10.36.3.6 An Example Session............................ 570

10.36.4 Advanced Usage. ..., 572
10.36.4.1 Customizing Output 572
10.36.4.2 Writing Visualizers............................. 573
10.36.4.3 Writing Legend Printers........................ 575

10.36.4.4 Showing Selected Constraints (simple version).... 575
10.36.4.5 Showing Selected Constraints (advanced version)

.. 576
10.36.4.6 Debugging Global Constraints 580
10.36.4.7 Code of the Built-In Visualizers................. 585

10.37 The PiLLoW Web Programming Library—1library(pillow)
.. 586
10.38 Tcl/Tk Interface—1library(tcltk) 586
10.38.1 Introduction 586
10.38.1.1 What Is Tel/Tk? ... 586

10.38.1.2 What Is Tcl/Tk Good For?..................... 587

10.38.1.3 What Is Tcl/Tks Relationship to SICStus Prolog?

.. 587
10.38.1.4 A Quick Example of Tcl/Tk in Action........... 587
10.38.1.5 Outline of This Tutorial 590

10.38.2 Tel. oo 590
10.38.2.1 SyNEaX .o v vttt e 590
10.38.2.2 Variables........ 593
10.38.2.3 Commandsooniiiini ... 594
10.38.2.4 What We Have Left Out........................ 609

10.38.3 Tk oot 609
10.38.3.1 Widgets. ... 610
10.38.3.2 Typesof Widget ..., 610
10.38.3.3 Widgets Hierarchies............................ 612
10.38.3.4 Widget Creation 614
10.38.3.5 Geometry Managers....................uun... 622
10.38.3.6 Event Handling 635
10.38.3.7 Miscellaneous. ... 638
10.38.3.8 What We Have Left Out........................ 638
10.38.3.9 Example pure Tcl/Tk program.................. 638

10.38.4 The Tcl/Tk Prolog Library.......................... 643
10.38.4.1 How it Works - An Overview 643
10.38.4.2 Basic Functions........... 645
10.38.4.3 Evaluation Functions........................... 646
10.38.4.4 Event Functions 651
10.38.4.5 Servicing Tcl and Tk events 654
10.38.4.6 Passing Control to Tk.......................... 656
10.38.4.7 Housekeeping functions......................... 656
10.38.4.8 SUMmMAryot 657

10.38.5 Putting It All Together 659
10.38.5.1 Tcl The Master, Prolog The Slave............... 660
10.38.5.2 Prolog The Master, Tk The Slave 664
10.38.5.3 Prolog And Tcl Interact through Prolog Event Queue

.. 666
10.38.5.4 The Whole 8-Queens Example 669

10.38.6 Quick Reference 675
10.38.6.1 Command Format Summary 675
10.38.6.2 Predicates for Prolog to Interact with Tcl Interpreters

.. 677
10.38.6.3 Predicates for Prolog to Interact with Tcl Interpreters

with Tk Extensions 677
10.38.6.4 Commands for Tcl Interpreters to Interact with The
Prolog System 678

10.38.7 ReSOUICeSot 679
10.38.7.1 Web Sites ... 679
10.38.7.2 BoOKS. ... 679
10.38.7.3 Manual Pages............ 679
10.38.7.4 Usenet News Groupsc.oovveeinneennn... 679

10.39 The Gauge Profiling Tool—1library(gauge) 679

xvi SICStus Prolog

10.40 PrologBeans Interface—library(prologbeans) 682
10.40.1 Introduction i 682
10.40.2 Featuresooeniini 683
10.40.3 A First Example 683
10.40.4 Prolog Server Interface................... 685
10.40.5 Java Client Interface................................ 688
10.40.6 Java Examples 689

10.40.6.1 FEmbedding Prolog in Java Applications.......... 689
10.40.6.2 Application Servers 689
10.40.6.3 Configuring Tomcat for PrologBeans............. 691
10.40.7 .NET Client Interface............................... 692
10.40.8 .NET Examplesoo i, 693
10.40.8.1 C# Examples. ... 693
10.40.8.2 Visual Basic Example 694

10.41 COM Client—1ibrary(comclient) 694
10.41.1 Preliminaries..............oooiiinn ., 694
10.41.2 Terminology ... 694
10.41.3 Predicate Reference............. 695
10.41.4 Examples 697

11 Prolog Reference Pages 699

11.1 Reading the Reference Pages.............................. 699
11T OVErVIEW ..ottt e e e e e 699
11.1.2 Mode Annotations.oiiuiiinneiin . 699
11.1.3 Predicate Annotation 700
11.1.4 Argument Types ... 701

11.1.4.1 Simple Types.....oooie e 701
11.1.4.2 Extended Types 701
11,15 Exceptions.........c.oiii i, 702
11.1.6 Other Fields 703

11.2 Topical List of Prolog Built-Ins............................ 703
11.2.1 Al Solutionscover e 703
11.2.2 Arithmetic...... ... 703
11.2.3 Character I/O....... 703
11.2.4 Control 705
11.2.5 Database 706
11.2.6 Debugging ... 707
11.2.7 Errors and Exceptions, 708
11.2.8 Filename Manipulation............................... 709
11.2.9 File and Stream Handling 709
11.2.10 Foreign Interface 710
11.2.11 Grammar Rules 711
11.2.12 Hook Predicates........... ... i, 711
11.2.13 List Processing ..., 712
11.2.14 Loading Programs 713
11.2.15 0 MemOry . .vove ettt 714
11.2.16 Messages and Queries. ..., 714

11.2.17 Modules 716

11.2.18 Program Stateoieeiiineeiineen. .. 716
11.2.19 Saving Programs i 717
11.2.20 Term CompariSonoouieeeinneennna... 717
11.2.21 Term Handling 718
11.2.22 Term I/O ..o 719
11.2.23 Type Tests. ..o 720
11.3 Built-In Predicates 721
11.3.1 abolish/[1,2] \hfill (ISO].............ccoviueei... 722
11.3.2 @bort/0 . oo 724
11.3.3 absolute_file_name/[2,3] \hfill [hookable].......... 725
11.3.4 add_breakpoint/2 \hfill [development] 732
11.3.5 /2 \hfill [ISO].o 733
11.3.6 append/3 ... 734
11.3.7 arg/3 \hfill [ISO]...... 737
11.3.8 ask_query/4 \hfill [hookable] 738
11.3.9 assert/[1,2] \hfill [ISO].......... 740
11.3.10 asserta/[1,2] \hfill [ISO]....................... ... 742
11.3.11 assertz/[1,2] \hfill [ISO].......................... 744
11.3.12 at_end_of_line/[0,1]...... 746
11.3.13 at_end_of_stream/[0,1] \hfill [ISO]................ 74T
11.3.14 atom/1 \hfill [ISO]o 748
11.3.15 atom_chars/2 \hfill [ISO]........................... 749
11.3.16 atom_codes/2 \hfill [ISO]........................... 750
11.3.17 atom_concat/3 \hfill [ISO].......................... 751
11.3.18 atom_length/2 \hfill [ISO].......................... 752
11.3.19 atomic/t \hfill [ISO]c.cceeiei .. 753
11.3.20 bagof/3 \hfill [ISO]cccoveieii i 754
11.3.21 bb_delete/2. ... 755
11.3.22 Bb_ZEE/2 o e 756
11.3.23 bb_put/2 ..o 757
11.3.24 bb_update/3o 758
11.3.25 (block)/1 \hfill [declaration]........................ 759
11.3.26 break/0 \hfill [development] 761
11.3.27 breakpoint_expansion/2 \hfill [development,hook]... 762
11.3.28 byte_count/2...... 763
11.3.29 call/_57507 \hfill [ISO]coeereieee i 764
11.3.30 call_cleanup/2coeiruuniiiiineianeennnn.. 765
11.3.31 call_residue_vars/2............ouuiiinnnneenenn.. 766
11.3.32 callable/lo 767
11.3.33 catch/3 \hfill [ISO]\ 768
11.3.34 char_code/2 \hfll [ISO]c.cvveiii. 769
11.3.35 char_conversion/2 \hfill [ISO] 770
11.3.36 character_count/2...............ccoiiiiiiiian... 771
11.3.37 clause/[2,3] \hfill [ISO]........coovereeiinen.) 72
11.3.38 close/[1,2] \hfill [ISO]........ 774
11.3.39 compare/3 776
11.3.40 compile/1 ... e
11.3.41 compound/1 \hfill [ISO]............... 778

xvii

xviii SICStus Prolog

11.3.42 consult/1 ... 779
11.3.43 copy_term/[2,3] \hfill [ISO] 780
11.3.44 create_mutable/2.......... 782
11.3.45 current_atom/1 783
11.3.46 current_breakpoint/5 \hfill [development].......... 784
11.3.47 current_char_conversion/2 \hfill [ISO] 785
11.3.48 current_input/1 \hfill [ISO] 786
11.3.49 current_key/2..... 787
11.3.50 current_module/[1,2] 788
11.3.51 current_op/3 \hfill [ISO]........................... 789
11.3.52 current_output/1 \hfill [ISO] 790
11.3.53 current_predicate/[1,2] \hfill [ISO]............... 791
11.3.54 current_prolog_flag/2 \hfill [ISOJ................. 793
11.3.55 current_stream/3, 794
11.3.56 '/O\hfill [ISO] 795
11.3.57 debug/0 \hfill [development] 796
11.3.58 debugger_command_hook/2 \hfill [development,hook].. 797
11.3.59 debugging/0 \hfill [development].................... 798
11.3.60 dif/2 .o 799
11.3.61 disable_breakpoints/1 \hfill [development]......... 800
11.3.62 (discontiguous)/1 \hfill [ISO,declaration] 801
11.3.63 display/l ... 802
11.3.64 (dynamic)/1 \hfill [ISO,declaration] 803
11.3.65 enable_breakpoints/1 \hfill [development].......... 804
11.3.66 ensure_loaded/1 \hfill [ISO] 805
11.3.67 =:= /2 \LAU [ISO] 806
11.3.68 erase/1o 807
11.3.69 error_exception/1 \hfill [development,hook] 808
11.3.70 execution_state/[1,2] \hfill [development]......... 809
11371 = 2 810
11.3.72 expand_term/2 \hfill [hookable] 811
11.3.73 £ail/0 \fill [ISO] ..o 812
11.3.74 £alse/0 oot e 813
11.3.75 file_search_path/2 \hfill [hook] 814
11.3.76 £indall/[3,4] \Dfll [ISO]...........covveeeeei .. 816
11.3.77 £loat/1 \hfill [ISO]o 819
11.3.78 flush_output/[0,1] \hfill [ISO]................. ... 820
11.3.79 foreign/[2,3] \hfill [hook]......................... 821
11.3.80 foreign_resource/2 \hfill [hook] 822
11.3.81 format/[2,3] .. .o 823
11.3.82 freeze/2...... 829
11.3.83 frozen/2.......... .. i 830
11.3.84 functor/3 \hfill [ISO]......... 831
11.3.85 garbage_collect/O..............oiiiiiiiiiiin... 833
11.3.86 garbage_collect_atoms/Ooooon... 834
11.3.87 generate_message/3 \hfill [extendible] 835
11.3.88 generate_message_hook/3 \hfill [hook].............. 837

11.3.89 get_byte/[1,2]1 \hfill [ISO]......................... 839

11.3.90

11.3.91

11.3.92

11.3.93

11.3.94

11.3.95

11.3.96

11.3.97

11.3.98

11.3.99

11.3.100
11.3.101
11.3.102
11.3.103
11.3.104
11.3.105
11.3.106
11.3.107
11.3.108
11.3.109
11.3.110
11.3.111
11.3.112
11.3.113
11.3.114
11.3.115
11.3.116
11.3.117
11.3.118
11.3.119
11.3.120
11.3.121
11.3.122
11.3.123
11.3.124
11.3.125
11.3.126
11.3.127
11.3.128
11.3.129
11.3.130
11.3.131
11.3.132
11.3.133
11.3.134
11.3.135
11.3.136
11.3.137

get_char/[1,2] \hfill [ISO]......................... 840
get_code/[1,2] \hfill [ISO]......................... 841
get_mutable/2......... i 842
goal_expansion/5 \hfill [hook] 843
goal_source_info/3....... 845
>/2\hfill [ISO]..... ... 846
ground/1 847
halt/[0,1] \hfill [ISO]........ 848
T 2 TP 849
=>/2\hfill [ISO]..... 850
include/1 \hfill [ISO,declaration] 851
(initialization)/1 \hfill [ISO,declaration] 852
instance/2....... ... 853
integer/1 \hfill [ISO].......... 855
18/2 856
keysort/2. 858
leash/1 \hfill [development] 859
1ength/2 .. 860
</2\hfill [ISO] 862
library_directory/1 \hfill [hook]................. 863
line_count/2. ... 864
line_position/2 865
listing/[0,1] ... et 866
load_files/[1,2] ..o 867
load_foreign_resource/1 \hfill [hookable]......... 869
message_hook/3 \hfill [hook].................... ... 870
(meta_predicate) /1 \hfill [declaration] 871
(mode) /1 \hfill [declaration]........................ 872
module/[2,3] \hfill [declaration]................... 873
(multifile)/1 \hfill [ISO,declaration].............. 874
mutable/1..... 876
NAME/2 .o 877
nl/[0,1]1 \hfill [ISO] 879
nodebug/0 \hfill [development]..................... 880
nonvar/1 \hfill [ISO].............................. 881
(mospy) /1 .. 882
nospyall/0 \hfill [development].................... 883
=\=/2\hfill [ISO]......... 884
=< /2 \hfill [ISO].... 885
>= /2 \hfill [ISO]..... 886
(\+)/L\bfill [ISO] 887
\=/2\hfill ISO].... 888
notrace/0 \hfill [development]..................... 889
nozip/0 \hfill [development] 890
number/1 \hfill [ISO]........ 891
number_chars/2 \hfill [ISO]..................... ... 892
number_codes/2 \hfill [ISO]..................... ... 893

numbervars/3 \hfill [meta_logic].................... 895

Xix

XX

11.3.138
11.3.139
11.3.140
11.3.141
11.3.142
11.3.143
11.3.144
11.3.145
11.3.146
11.3.147
11.3.148
11.3.149
11.3.150
11.3.151
11.3.152
11.3.153
11.3.154
11.3.155
11.3.156
11.3.157
11.3.158
11.3.159
11.3.160
11.3.161
11.3.162
11.3.163
11.3.164
11.3.165
11.3.166
11.3.167
11.3.168
11.3.169
11.3.170
11.3.171
11.3.172
11.3.173
11.3.174
11.3.175
11.3.176
11.3.177
11.3.178
11.3.179
11.3.180
11.3.181
11.3.182
11.3.183
11.3.184
11.3.185

SICStus Prolog

on_exception/3 896
once/1 \hfill [ISO] 897
op/3\hfill [ISO]......., 898
open/[3,4] \hfill [ISO]......... 899
open_null_stream/1.............................. 903
;/2\hfill [ISO]. ... 904
otherwise/O.t 905
peek_byte/[1,2] \hfill [ISO] 906
peek_char/[1,2] \hfill [ISO] 907
peek_code/[1,2] \hfill [ISO] 908
phrase/[2,3] 909
portray/1 \hfill [hook] 910
portray_clause/[1,2] L. 911
portray_message/2 \hfill [hook] 913
predicate_property/2.......... 914
print/[1,2] \hfill [hookable] 916
print_message/2 \hfill [hookable].................. 917
print_message_lines/3.................... 919
profile_data/4 \hfill [development]................ 920
profile_reset/1 \hfill [development] 922
prolog_flag/[2,3] ... 923
prolog_load_context/2.............. 925
PTOmPt/2 .ot 926
(public)/1 \hfill [declaration] 927
put_byte/[1,2] \hfill [ISO]..................... ... 928
put_char/[1,2] \hfill ISO]..................... ... 929
put_code/[1,2] \hfill ISO]........................ 930
query_abbreviation/3 \hfill [extendible]........... 931
query_class/5 \hfill [extendible]................... 932
query_class_hook/5 \hfill [hook].................. 933
query_hook/6 \hfill [hook]......................... 934
query_input/3 \hfill [extendible]................... 935
query_input_hook/3 \hfill [hook] 936
query_map/4 \hfill [extendible]..................... 937
query_map_hook/4 \hfill [hook] 938
raise_exception/1 939
read/[1,2] \hfill ISO]............................ 940
read_line/[0,1] 941
read_term/[2,3] \hfill [ISO] 942
reconsult/1l 945
recorda/3 946
recorded/3 947
TeCOTAZ/3 .ottt 948
remove_breakpoints/1 \hfill [development]......... 949
repeat/0 \hfill [ISO] 950
restore/l 952
retract/1 \hfill [ISO].......... 953

retractall/l 955

11.3.186
11.3.187
11.3.188
11.3.189
11.3.190
11.3.191
11.3.192
11.3.193
11.3.194
11.3.195
11.3.196
11.3.197
11.3.198
11.3.199
11.3.200
11.3.201
11.3.202
11.3.203
11.3.204
11.3.205
11.3.206
11.3.207
11.3.208
11.3.209
11.3.210
11.3.211
11.3.212
11.3.213
11.3.214
11.3.215
11.3.216
11.3.217
11.3.218
11.3.219
11.3.220
11.3.221
11.3.222
11.3.223
11.3.224
11.3.225
11.3.226
11.3.227
11.3.228
11.3.229
11.3.230
11.3.231
11.3.232
11.3.233

save_files/2.......... . . 956
save_modules/2 957
save_predicates/2......... 958
save_program/[1,2] 959
See/1 L 960
seeing/1 961
SeeK/4 . 963
Seen/0 .. 965
set_input/1 \hfill [ISO].......... 966
set_module/1..... 967
set_output/1 \hfill [ISO].......................... 968
set_prolog_flag/2 \hfill [ISO].................... 969
set_stream_position/2 \hfill [ISO]................ 970
setof/3 \hfill [ISOJ 971
simple/1 ... o 972
skip_byte/[1,2] ... 973
skip_char/[1,2] 974
skip_code/[1,2] ... 975
skip_line/[0,1] ... 976
SOTT/2 o 977
source_file/[1,2] 978
(spy)/[1,2] \hfill [development]................... 979
statistics/[0,2] 980
stream_code/2.... ... 981
Stream_position/2........... 982
stream_position_data/3.............. 983
stream_property/2 \hfill [ISO] 984
sub_atom/5 \hfill [ISO]............................ 986
tell/ L o 988
BELLANE/L o e e 989
== /2 \hfill [ISO]....... 991
term_expansion/6 \hfill [hook] 992
@ /2 \hfill [ISO]....... 994
@< /2 \hfill [ISO] 995
\== /2 \hfill [ISO]......... 996
=< /2 \hfill [ISO]........ i 997
@>= /2 \hfill [ISO]........., 998
= 999
throw/1 \hfill [ISO] 1000
T01d/0 . 1001
trace/0 \hfill [development] 1002
trimcore/0. ... 1003
true/0 \hfill [ISO] 1004
=/2\hfill [ISO] 1005
unify_with_occurs_check/2 \hfill [ISO].......... 1006
=../2\hfilll [ISO].... 1007
unknown/2 \hfill [development].................... 1009

unknown_predicate_handler/3 \hfill [hook]....... 1010

xx1

xxii SICStus Prolog

12

11.3.234 update_mutable/2..................... 1011
11.3.235 wuse_module/[1,2,3] 1012
11.3.236 var/1 \hfill [ISO] 1014
11.3.237 (volatile)/1 \hfill [declaration].................. 1015
11.3.238 When/2o 1016
11.3.239 write/[1,2] \hfill [ISO]............. 1017
11.3.240 write_canonical/[1,2] \hfill [ISO]............... 1018
11.3.241 write_term/[2,3] \hfill [I[SO,hookable]............ 1019
11.3.242 writeq/[1,2] \hfill [ISO]......................... 1022
11.3.243 zip/0 \hfill [development] 1023
C Reference Pages..................... 1025
12.1 Return Values and Errors.......... 1025
12.2 Topical List of C Functions 1025
1221 CEITOUS . oottt 1025
12.2.2 T/O. o 1025
12.2.3 Exceptions....... ... 1026
12.2.4 Files and Streamscoo i, 1026
12.2.5 Foreign Interface 1026
12.2.6 Initialization 1029
12.2.7 Memory Management 1029
12.2.8 Signal Handling 1030
1229 Terms in C. ... 1030
12.210 Type Tests. ..o 1030
12.3 API Functions............. ... 1031
12.3.1 SP_atom_from_string() 1032
12.3.2 SP_atom_length() 1033
12.3.3 SP_calloc() .ottt 1034
12.3.4 SP_close_query() ...t 1035
12,35 SP_compare()ouiiiiiiii e 1036
12.3.6 SP_cons_functor()t 1037
12.3.7 SP_cons_functor_array() 1038
12.3.8 SP_cons_1ist() 1039
12.3.9 SP_create_stream()ooiiiiiiiiii. 1040
12.3.10 SP_cut_query()oooii 1042
12.3.11 SP_define_c_predicate() 1043
12.3.12 SP_deinitialize() ..., 1045
12.3.13 SP_error_message() ..., 1046
12.3.14 SP_event () ... 1047
12.3.15 SP_exception_term() ... 1050
12.3.16 SP_expand_file name()........................... 1051
12317 SP_fail() oottt 1053
12318 SP_fclose() v 1054
12.3.19 SP_flush_output() ..., 1056
12.3.20 SP_fopen()vviii 1057
12.3.21 SP_foreign_stash() \hfill [macro]................. 1059
12,322 SP_fprintf()o 1060

12.3.23 SP_free()t 1061

12.3.24
12.3.25
12.3.26
12.3.27
12.3.28
12.3.29
12.3.30
12.3.31
12.3.32
12.3.33
12.3.34
12.3.35
12.3.36
12.3.37
12.3.38
12.3.39
12.3.40
12.3.41
12.3.42
12.3.43
12.3.44
12.3.45
12.3.46
12.3.47
12.3.48
12.3.49
12.3.50
12.3.51
12.3.52
12.3.53
12.3.54
12.3.55
12.3.56
12.3.57
12.3.58
12.3.59
12.3.60
12.3.61
12.3.62
12.3.63
12.3.64
12.3.65
12.3.66
12.3.67
12.3.68
12.3.69
12.3.70
12.3.71

SP_get_address() ... 1062
SP_get_arg()o 1063
SP_get_atom()............. i 1064
SP_get_byte(). ... 1065
SP_get_code() ... 1066
SP_get_current_dir() 1067
SP_get_float() ... 1068
SP_get_functor() 1069
SP_get_integer() 1070
SP_get_integer_bytes().......................... 1071
SP_get_L1ist() ... 1073
SP_get_list_codes() 1074
SP_get_list_n_ bytes()........................... 1075
SP_get_list_n_codes()..........ciiiiinnn.... 1076
SP_get_number_codes() 1077
SP_get_stream_counts().......................... 1078
SP_get_stream_user_data() 1080
SP_get_string()ooiiiiiiiii 1082
SP_initialize() \hfill [macro] 1083
SP_is_atom() ...t 1084
SP_is_atomic() 1085
SP_is_compound ()ooiniiii 1086
SP_is_float() . ..o 1087
SP_is_integer()coiiiiiiiiini 1088
SP_is_1ist() 1089
SP_is_number () 1090
SP_is_variable() 1091
SP_10ad() .ttt 1092
SP_malloc() ..o 1093
SP_mutex_lock() 1094
SP_mutex_unlock() 1095
SP_new_term_ref() 1096
SP_next_solution() 1097
SP_next_stream() ...t 1098
SP_open_query ()t 1099
SP_pred() ..o 1100
SP_predicate() ... 1101
SP_printf() ... 1102
SP_put_address() ...t 1103
SP_put_atom()ooviii 1104
SP_put_byte()..... ... 1105
SP_put_bytes() 1106
SP_put_code() ...t 1107
SP_put_codes()oooiiiiiiii 1108
SP_put_encoded_string() 1109
SP_put_float() ...t 1110
SP_put_functor() 1111

SP_put_integer()ot 1112

xx1il

xXxXiv SICStus Prolog

12.3.72 SP_put_integer_bytes().......................... 1113
12.3.73 SP_put_list() ..o 1114
12.3.74 SP_put_list_codes() 1115
12.3.75 SP_put_list_n_bytesOcc.... 1116
12.3.76 SP_put_list_n_codes()........................... 1117
12.3.77 SP_put_number_codes() 1118
12.3.78 SP_put_string() ... 1119
12.3.79 SP_put_term()........ 1120
12.3.80 SP_put_variable()cooviiiiiiiiiinn... 1121
12.3.81 SP_query () ...oovmi 1122
12.3.82 SP_query_cut_fail(), 1123
12.3.83 SP_raise_exception()iiiii... 1124
12.3.84 SP_read_from_string()........................... 1125
12.3.85 SP_realloc()ovviiiimmnniiiiiiiiiiiie 1127
12.3.86 SP_register_atom(), 1128
12.3.87 SP_restore()o 1129
12.3.88 SP_set_current_dir() 1130
12.3.89 SP_set_memalloc_hooks() \hfill [preinit]........... 1131
12.3.90 SP_set_user_stream_hook() \hfill [preinit]......... 1133
12.3.91 SP_set_user_stream_post_hook() \hfill [preinit] ... 1134
12.3.92 SP_signal () ... 1135
12.3.93 SP_strdup) ..o 1137
12.3.94 SP_string from_atom() 1138
12.3.95 SP_term_type() ... 1139
12.3.96 SP_unget_byte() 1140
12.3.97 SP_unget_code()uuiriiiiia 1141
12.3.98 SP_unify() ..o 1142
12.3.99 SP_unregister_atom() ..., 1143
12.3.100 SU_initialize() \hfill [hook] 1144
12.3.101 wuser_close() 1145
12.3.102 wuser_flush outputO), 1147
12.3.103 user_read() 1149
12.3.104 user_write()o 1151
13 Command Reference Pages............. 1153
13.1 sicstus — SICStus Prolog Development System 1154
13.2 spdet — Determinacy Checker........................... 1157
13.3 spld — SICStus Prolog Application Builder 1158
13.4 splfr — SICStus Prolog Foreign Resource Linker 1164
13.5 splm — SICStus Prolog License Manager 1167
13.6 spxref — Cross Referencer.............................. 1168
References 1169
Predicate Index................ 1173

Keystroke Index 1185

XXV

BookIndex......oviviiiiiiinieieinnnnn. 1187

XxXVi SICStus Prolog

Introduction 1

Introduction

Prolog is a simple but powerful programming language developed at the University of Mar-
seille [Roussel 75], as a practical tool for programming in logic [Kowalski 74]. From a user’s
point of view the major attraction of the language is ease of programming. Clear, readable,
concise programs can be written quickly with few errors.

For an introduction to programming in Prolog, readers are recommended to consult [Sterling
& Shapiro 86]. However, for the benefit of those who do not have access to a copy of this
book, and for those who have some prior knowledge of logic programming, we include a
summary of the language. For a more general introduction to the field of Logic Programming
see [Kowalski 79]. See Chapter 4 [Prolog Intro|, page 39.

This manual describes a Prolog system developed at the Swedish Institute of Computer
Science. Parts of the system were developed by the project “Industrialization of SICStus
Prolog” in collaboration with Ericsson Telecom AB, NobelTech Systems AB, Infologics AB
and Televerket. The system consists of a WAM emulator written in C, a library and runtime
system written in C and Prolog and an interpreter and a compiler written in Prolog. The
Prolog engine is a Warren Abstract Machine (WAM) emulator [Warren 83]. Two modes
of compilation are available: in-core i.e. incremental, and file-to-file. When compiled, a
predicate will run about 8 times faster and use memory more economically. Implementation
details can be found in [Carlsson 90] and in several technical reports available from SICS.

SICStus Prolog follows the mainstream Prolog tradition in terms of syntax
and built-in predicates. As of release 4, SICStus Prolog is fully compliant
with the International Standard ISO/IEC 13211-1 (PROLOG: Part 1—General Core)
(http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITSY2FIS0%2FIEC+13211%2D1%2D1995).

http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITS%2FISO%2FIEC+13211%2D1%2D1995

SICStus Prolog

Acknowledgments 3

Acknowledgments

The following people have contributed to the development of SICStus Prolog:

Jonas Almgren, Johan Andersson, Stefan Andersson, Nicolas Beldiceanu,
Tamaés Benkd, Kent Boortz, Dave Bowen, Per Brand, Goran Bage, Vicki Car-
leson, Mats Carlsson, Per Danielsson, Joakim Eriksson, Jesper Eskilson, Niklas
Finne, Lena Flood, Gyorgy Gyaraki, David Handk, Seif Haridi, Ralph Hay-
good, Christian Holzbaur, Tom Howland, Key Hyckenberg, Péter Laszld, Per
Mildner, Richard O’Keefe, Greger Ottosson, Dan Sahlin, Peter Schachte, Rob
Scott, Thomas Sjoland, Péter Szeredi, Tamas Szeredi, Peter Van Roy, David
Warren, Johan Widén, and Emil Astrom.

The Industrialization of SICStus Prolog (1988-1991) was funded by

Ericsson Telecom AB, NobelTech Systems AB, Infologics AB, and Televerket,
under the National Swedish Information Technology Program 1T4.

The development of release 3 (1991-1995) was funded in part by
Ellemtel Utvecklings AB
This manual is based on DECsystem-10 Prolog User’s Manual by
D.L. Bowen, L. Byrd, F.C.N. Pereira, .M. Pereira, D.H.D. Warren

See Section 10.33 [lib-chr|, page 482, for acknowledgments relevant to the CHR constraint
solver.

See Section 10.35 [lib-clpqr|, page 538, for acknowledgments relevant to the clp(Q,R) con-
straint solver.

UNIX is a trademark of Bell Laboratories. MSDOS and Windows are trademarks of Mi-
crosoft Corp. OS/2 is a trademark of IBM Corp.

SICStus Prolog

Chapter 1: Notational Conventions 5

1 Notational Conventions

1.1 Keyboard Characters

When referring to keyboard characters, printing characters are written thus: a, while control
characters are written like this: ~A. Thus ~C is the character you get by holding down the
key while you type c. Finally, the special control characters carriage-return, line-feed
and space are often abbreviated to RET), and respectively.

Throughout, we will assume that ~D is the EOF character (it’s usually ~Z under Windows)
and that ~Cis the interrupt character. In most contexts, the term end_of_file terminated
by a full stop (.) can be typed instead of the EOF character.

1.2 Mode Spec

When describing a predicate, we present its usage with a mode spec, which has the form
name(arg, ..., arg), where each arg denotes how that argument is used by the predicate,
and has one of the following forms:

:ArgName The argument is used as a term denoting a goal or a clause or a predicate name,
or that otherwise needs special handling of module prefixes. It is is subject to
module name expansion (see Section 4.11.15 [ref-mod-mne|, page 147).

+ArgName
The argument is an input argument. Usually, but not always, this implies that
the argument should be instantiated.

-ArgName The argument is an output argument. Usually, but not always, this implies
that the argument should be uninstantiated.

?ArgName

The argument may be used for both input and output.

Please note: The reference pages for built-in predicate use slightly different mode specs.

1.3 Development and Runtime Systems

The full Prolog system with top-level, compiler, debugger etc. is known as the development
system.

It is possible to link user-written C code with a subset of SICStus Prolog to create runtime
systems. When introducing a built-in predicate, any limitations on its use in runtime
systems will be mentioned.

1.4 Function Prototypes

Whenever this manual documents a C function as part of SICStus Prolog’s foreign language
interface, the function prototype will be displayed in ANSI C syntax.

6 SICStus Prolog

1.5 ISO Compliance

SICStus Prolog is fully compliant with the International Stan-
dard ISO/IEC 13211-1 (PROLOG: Part 1—General Core)
(http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITSY2FIS0%2FIEC+13211%2D1%2D1995).

To aid programmers who wish to write standard compliant programs, built-in predicates
and arithmetic functors that are part of the ISO Prolog Standard are annotated with [ISO/
in this manual.

http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITS%2FISO%2FIEC+13211%2D1%2D1995

Chapter 2: Glossary 7

2 Glossary

abolish To abolish a predicate is to retract all the predicate’s clauses and to remove all
information about it from the Prolog system, to make it as if that predicate
had never existed.

advice-point
A special case of breakpoint, the advice breakpoint. It is distinguished from
spypoints in that it is intended for non-interactive debugging, such as checking
of program invariants, collecting information, profiling, etc.

alphanumeric
An alphanumeric character is any of the lowercase characters from ‘a’ to ‘z’, the
uppercase characters from ‘A’ to ‘Z’, the numerals from ‘0’ to ‘9’, or underscore
((_7).

ancestors An ancestor of a goal is any goal that the system is trying to solve when it calls
that goal. The most distant ancestor is the goal that was typed at the top-level
prompt.

anonymous variable
An anonymous variable is one that has no unique name, and whose value is
therefore inaccessible. An anonymous variable is denoted by an underscore
(-7

argument See predicate, structure, and arity.

arity The arity of a structure is its number of arguments. For example, the structure
customer (jones,85) has an arity of 2.

atom A character sequence used to uniquely denote some entity in the problem do-
main. A number is not an atom. Examples of legal atoms are:

hello * 1= T #$%° ’New York’ ’don\’t’
See Section 4.1.2.4 [ref-syn-trm-ato], page 40. Atoms are recognized by the

built-in predicate atom/1. Each Prolog atom is represented internally by a
unique integer, represented in C as an SP_atom.

atomic term
Synonym for constant.

backtrace A collection of information on the control flow of the program, gathered by the
debugger. Also the display of this information produced by the debugger. The
backtrace includes data on goals that were called but not exited and also on
goals that exited nondeterminately.

backtracking
The process of reviewing the goals that have been satisfied and attempting to
resatisfy these goals by finding alternative solutions.

binding The process of assigning a value to a variable; used in unification.

blocked goal
A goal that is suspended because it is not instantiated enough.

8 SICStus Prolog

body The body of a clause consists of the part of a Prolog clause following the *:-’
symbol.

breakpoint

A description of certain invocations in the program where the user wants the
debugger to stop, or to perform some other actions. A breakpoint is specific
if it applies to the calls of a specific predicate, possibly under some condi-
tions; otherwise, it is generic. Depending on the intended usage, breakpoints
can be classified as debugger breakpoints, also known as spypoints, or advice
breakpoints, also called advice-points; see Section 5.6 [Advanced Debugging],
page 208.

breakpoint spec
A term describing a breakpoint. Composed of a test part, specifying the con-
ditions under which the breakpoint should be applied, and an action part,
specifying the effects of the breakpoint on the execution.

buffer A temporary workspace in Emacs that contains a file being edited.

built-in predicate
A predicate that comes with the system and that does not have to be explicitly
loaded before it is used.

callable term
A callable term is either a compound term or an atom. Callable terms are
recognized by the built-in predicate callable/1.

character code
An integer that is the numeric representation of a character in the character
code set.

character code set
A subset of the set {0, ..., 2731-1} that can be handled in input/output.
SICStus Prolog fixes the character code set to a superset of UNICODE, which
includes the ASCII code set, i.e. codes 0..127, and these codes are interpreted
as ASCII characters

character-conversion mapping
SICStus Prolog maintains a character-conversion mapping, which is used while
reading terms and programs. Initially, the mapping prescribes no character
conversions. It can be modified by the built-in predicate char_conversion(In,
Out), following which In will be converted to Out. Character coversion can be
switched off by the char_conversion Prolog flag.

character-type mapping
A function mapping each element of the character code set to one of the char-
acter categories (layout, letter, symbol-char, etc.), required for parsing tokens.

choicepoints
A memory block representing outstanding choices for some goals or disjunctions.

clause A fact or a rule. A rule comprises a head and a body. A fact consists of a head
only, and is equivalent to a rule with the body true.

Chapter 2: Glossary 9

code-list A code-list is a list of character codes.

compactcode
Virtual code representation of compiled code. A reasonable compromise be-
tween performance and space requirement. A valid value for the compiling
Prolog flag.

compile To load a program (or a portion thereof) into Prolog through the compiler.

Compiled code runs more quickly than interpreted code, but you cannot debug
compiled code in as much detail as interpreted code.

compound term

conjunction

A compound term is a term that is an atom together with one or more argu-
ments. For example, in the term father (X), father is the name, and X is the
first and only argument. The argument to a compound term can be another
compound term, as in father(father(X)). Compound terms are recognized
by the built-in predicate compound/1.

A series of goals connected by the connective “and” (that is, a series of goals
whose principal operator is *,’).

console-based executable

constant

consult

An executable that inherits the standard streams from the process that invoked
it, e.g. a UNIX shell or a DOS-prompt.

An integer (for example: 1, 20, -10), a floating-point number (for exam-
ple: 12.35), or an atom. Constants are recognized by the built-in predicate
atomic/1.

To load a program (or a portion thereof) into Prolog through the interpreter.
Interpreted code runs more slowly than compiled code, but you can debug
interpreted code in more detail than compiled code.

control structure

creep

cursor

cut

database

A built-in predicate that is “part of the language” in the sense that it is treated
specially in certain language features. The set of such control structures and
language features is enuemrated in Section 4.2.3 [ref-sem-ctr|, page 57.

What the debugger does in trace mode, also known as single-stepping. It goes
to the next port of a procedure box and prints the goal, then prompts you for
input. See Section 5.2 [Basic Debug], page 199.

The point on the screen at which typed characters appear. This is usually
highlighted by a line or rectangle the size of one space, which may or may not
blink.

Written as !'. A built-in predicate that succeeds when encountered; if back-
tracking should later return to the cut, the goal that matched the head of the
clause containing the cut fails immediately.

The Prolog database comprises all of the clauses that have been loaded or
asserted into the Prolog system or that have been asserted, except those clauses
that have been retracted or abolished.

10 SICStus Prolog

db_reference
A compound term denoting a unique reference to a dynamic clause.

debug A mode of program execution in which the debugger stops to print the current
goal only at predicates that have spypoints set on them (see leap).

debugcode
Interpreted representation of compiled code. A valid value for the compiling
Prolog flag.

declaration
A declaration looks like a directive, but is not executed but rather conveys
information about predicates about to be loaded.

deinit function
A function in a foreign resource that is called prior to unloading the resource.

determinate
A predicate is determinate if it can supply only one answer.

development system
A stand-alone executable with the full programming environment, including
top-level, compiler, debugger etc. The default sicstus executable is a develop-
ment system; new development systems containing pre-linked foreign resources
can also be created.

directive A directive is a goal preceded by the prefix operator ‘:-’, whose intuitive mean-
ing is “execute this as a query, but do not print out any variable bindings.”

disjunction
A series of goals connected by the connective “or” (that is, a series of goals
whose principal operator is ;’).

dynamic predicate
A predicate that can be modified while a program is running. The semantics of
such updates is described in Section 4.12.1 [ref-mdb-bas], page 151. A predicate
must explicitly be declared to be dynamic or it must be added to the database
via one of the assertion predicates.

encoded string
A sequence of bytes representing a sequence of possibly wide character codes,
using the UTF-8 encoding.

escape sequence
A sequence of characters beginning with ‘\” inside certain syntactic tokens (see
Section 4.1.7.6 [ref-syn-syn-esc|, page 53).

export A module exports a predicate so that other modules can import it.

extended runtime system
A stand-alone executable. In addition to the normal set of built-in runtime
system predicates, extended runtime systems include the compiler. Extended
runtime systems require the extended runtime library, available from SICS as
an add-on product.

Chapter 2: Glossary 11

fact A clause with no conditions—that is, with an empty body. A fact is a statement
that a relationship exists between its arguments. Some examples, with possible
interpretations, are:

king(louis, france). % Louis was king of France.
have_beaks(birds). % Birds have beaks.
employee (nancy, data_processing, 55000).
% Nancy is an employee in the
%, data processing department.

file specification
An atom or a compound term denoting the name of a file. The rules for mapping
such terms to absolute file names are described in Section 4.5 [ref-fdi], page 80.

floundered query
A query where all unsolved goals are blocked.

foreign predicate
A predicate that is defined in a language other than Prolog, and explicitly
bound to Prolog predicates by the Foreign Language Interface.

foreign resource
A named set of foreign predicates.

functor The functor of a compound term is its name and arity. For example, the
compound term foo(a,b) is said to have “the functor foo of arity two”, which
is generally written foo/2.

The functor of a constant is the term itself paired with zero. For example, the
constant nl is said to have “the functor nl of arity zero”, which is generally
written nl/0.

garbage collection
The freeing up of space for computation by making the space occupied by terms
that are no longer available for use by the Prolog system.

generalized predicate spec
A generalized predicate spec is a term of one of the following forms. It is always
interpreted wrt. a given module context:

Name all predicates called Name no matter what arity, where Name is an
atom for a specific name or a variable for all names, or
Name/Arity

the predicate of that name and arity, or

Name/[Arity,. . ., Arity]
the predicates of that name with one of the given arities, or

Module:Spec
specifying a particular module Module instead of the default mod-
ule, where Module is an atom for a specific module or a variable
for all modules, or

[Spec,. . .,Spec]
the set of all predicates covered by the Specs.

12 SICStus Prolog

glue code Interface code between the Prolog engine and foreign predicates. Automatically
generated by the foreign language interface as part of building a linked foreign
resource.

goal A simple goal is a predicate call. When called, it will either succeed or fail.

A compound goal is a formula consisting of simple goals connected by connec-
tives such as “and” (‘,”) or “or” (‘;).
A goal typed at the top-level is called a query.

ground A term is ground when it is free of (unbound) variables. Ground terms are
recognized by the built-in predicate ground/1.

guarded clause
A clause of the form

Head :- Goals, !, Goals.

head The head of a clause is the single goal, which will be satisfied if the conditions
in the body (if any) are true; the part of a rule before the ‘:=’ symbol. The
head of a list is the first element of the list.

extendible predicate
An extendible predicate is a dynamic, multifile predicate, to which new clauses
can be added by the user.

hook predicate
A hook predicate is a predicate that somehow alters or customizes the behavior
of a hookable predicate.

hookable predicate
A hookable predicate is a built-in predicate whose behavior is somehow altered
or customized by a hook predicate.

import Exported predicates in a module can be imported by other modules. Once a
predicate has been imported by a module, it can be called, or exported, as if it
were defined in that module.

There are two kinds of importation: predicate-importation, in which only spec-
ified predicates are imported from a module; and module-importation, in which
all the predicates exported by a module are imported.

indexing The process of filtering a set of potentially matching clauses of a predicate given
a goal. For interpreted and compiled code, indexing is done on the principal
functor of the first argument. Indexing is coarse wrt. large integers and floats.

init function
A function in a foreign resource that is called upon loading the resource.
initialization
An initialization is a goal that is executed when the file in which the initial-
ization is declared is loaded. An initialization is declared as a directive :-
initialization Goal.

instantiation
A variable is instantiated if it is bound to a non-variable term; that is, to an
atomic term or a compound term.

Chapter 2: Glossary 13

interpret

Load a program or set of clauses into Prolog through the interpreter (also known
as consulting). Interpreted code runs more slowly than compiled code, but more
extensive facilities are available for debugging interpreted code.

invocation box

Same as procedure box.

large integer

layout term

leap

leashing

An integer that is not a small integer.

In the context of handling line number information for source code, a source
term Source gets associated to a layout term Layout, which is one of the fol-
lowing:

e [], if no line number information is available for Source.

e If Source is a simple term, Layout is the number of the line where Source
occurs.

e If Source is a compound term, Layout is a list whose head is the number
of the line where the first token of Source occurs, and whose remaining
elements are the layouts of the arguments of Source.

What the debugger does in debug mode. The debugger shows only the ports
of predicates that have spypoints on them. It then normally prompts you for
input, at which time you may leap again to the next spypoint (see trace).

Determines how frequently the debugger will stop and prompt you for input
when you are tracing. A port at which the debugger stops is called a “leashed
port”.

linked foreign resource

list

load

meta-call

A foreign resource that is ready to be installed in an atomic operation, normally
represented as a shared object or DLL.

A list is written as a set of zero or more terms between square brackets. If there
are no terms in a list, it is said to be empty, and is written as ‘[]’. In this first
set of examples, all members of each list are explicitly stated:

[aa, bb,cc] [X, Y] [Name]l I[[x, y], Z]

In the second set of examples, only the first several members of each list are
explicitly stated, while the rest of the list is represented by a variable on the
right-hand side of the “rest of” operator, ‘|’

(X I Y] [a, b, c | Y] [[x, y] | Rest]

is also known as the “list constructor.” The first element of the list to the
left of *|” is called the head of the list. The rest of the list, including the variable
following ‘|’ (which represents a list of any length), is called the tail of the list.

(l?

To load a Prolog clause or set of clauses, in source or binary form, from a file
or set of files.

The process of interpreting a callable term as a goal. This is done e.g. by the
built-in predicate call/1.

14 SICStus Prolog

meta-logical predicate
A predicate that performs operations that require reasoning about the current
instantiation of terms or decomposing terms into their constituents. Such op-
erations cannot be expressed using predicate definitions with a finite number
of clauses.

meta-predicate
A meta-predicate is one that calls one or more of its arguments; more generally,
any predicate that needs to assume some module in order to operate is called
a meta-predicate. Some arguments of a meta-predicate are subject to module
name expansion.

module A module is a set of predicates in a module-file. The name of a module is an
atom. Some predicates in a module are exported. The default module is user.

module name expansion
The process by which certain arguments of meta-predicates get prefixed by the
source module. See Section 4.11.15 [ref-mod-mne|, page 147.

module-file
A module-file is a file that is headed with a module declaration of the form:

:— module (ModuleName, ExportedPredList).
which must appear as the first term in the file.

multifile predicate
A predicate whose definition is to be spread over more than one file. Such
a predicate must be preceded by an explicit multifile declaration in all files
containing clauses for it.

mutable term
A special form of compound term subject to destructive assignment. See Sec-
tion 4.8.9 [ref-lte-mut], page 113. Mutable terms are recognized by the built-in
predicate is_mutable/1.

name clash
A name clash occurs when a module attempts to define or import a predicate
that it has already defined or imported.

occurs-check
A test to ensure that binding a variable does not bind it to a term where that
variable occurs.

one-char atom
An atom that consists of a single character.

operator A notational convenience that allows you to express any compound term in a
different format. For example, if 1ikes in
| ?- likes(sue, cider).
is declared an infix operator, the query above could be written:
| ?- sue likes cider.

An operator does not have to be associated with a predicate. However, certain
built-in predicates are declared as operators. For example,

Chapter 2: Glossary 15

| 72— =.. (X, V).
can be written as
| ?- X =.. Y.
because =. . has been declared an infix operator.

Those predicates that correspond to built-in operators are written using infix
notation in the list of built-in predicates at the beginning of the part that
contains the reference pages.

Some built-in operators do not correspond to built-in predicates; for example,
arithmetic operators. See Section 4.1.5.4 [ref-syn-ops-bop|, page 47 for a list of
built-in operators.

pair A compound term K-V. Pairs are used by the built-in predicate keysort/2 and
by many library modules.

parent The parent of the current goal is a goal that, in its attempt to obtain a successful
solution to itself, is calling the current goal.

port One of the seven key points of interest in the execution of a Prolog predicate.
See Section 5.1 [Procedure Box], page 197 for a definition.

pre-linked foreign resource
A linked foreign resource that is linked into a stand-alone executable as part of
building the executable.

precedence
A number associated with each Prolog operator, which is used to disambiguate
the structure of the term represented by an expression containing a number
of operators. Operators of lower precedence are applied before those of higher
precedence; the operator with the highest precedence is considered the principal
functor of the expression. To disambiguate operators of the same precedence,
the associativity type is also necessary. See Section 4.1.5 [ref-syn-ops]|, page 43.

predicate A functor that specifies some relationship existing in the problem domain. For
example, < /2 is a built-in predicate specifying the relationship of one number
being less than another. In contrast, the functor + /2 is not (normally used as)
a predicate.

A predicate is either built-in or is implemented by a procedure.

predicate spec
A compound term name/arity or module :name/arity denoting a predicate.

procedure A set of clauses in which the head of each clause has the same predicate. For
instance, a group of clauses of the following form:
connects(san_francisco, oakland, bart_train).
connects(san_francisco, fremont, bart_train).
connects(concord, daly_city, bart_train).

is identified as belonging to the predicate connects/3.
procedure box

A way of visualizing the execution of a Prolog procedure, A procedure box is
entered and exited via ports.

16

SICStus Prolog

profiledcode

profiling

prograrn

PO file

query

recursion

region

rule

Virtual code representation of compiled code, instrumented for profiling. A
valid value for the compiling Prolog flag.

The process of gathering execution statistics of parts of the program, essentially
counting the times selected program points have been reached.

A set of procedures designed to perform a given task.

A PO (Prolog object) file contains a binary representation of a set of mod-
ules, predicates, clauses and directives. They are portable between different
platforms, except between 32-bit and 64-bit platforms. They are created by
save_files/2, save_modules/2, and save_predicates/2.

A query is a question put by the user to the Prolog system. A query is written
as a goal followed by a full-stop in response to the Prolog system prompt. For
example,

| 7- father(edward, ralph).
refers to the predicate father/2. If a query has no variables in it, the system
will respond either ‘yes’ or ‘no’. If a query contains variables, the system will
try to find values of those variables for which the query is true. For example,

| ?- father(edward, X).

X = ralph
After the system has found one answer, the user can direct the system to look
for additional answers to the query by typing ;.

The process in which a running predicate calls itself, presumably with different
arguments and for the purpose of solving some subset of the original problem.

The text between the cursor and a previously set mark in an Emacs buffer.
A clause with one or more conditions. For a rule to be true, all of its conditions
must also be true. For example,
has_stiff_neck(ralph) :-
hacker (ralph) .
This rule states that if the individual ralph is a hacker, he must also have a
stiff neck. The constant ralph is replaced in
has_stiff_neck(X) :-
hacker (X) .

by the variable X. X unifies with anything, so this rule can be used to prove
that any hacker has a stiff neck.

runtime kernel

A shared object or DLL containing the SICStus virtual machine and other
runtime support for stand-alone executables.

runtime system

A stand-alone executable with a restricted set of built-in predicates and no top-
level. Stand-alone applications containing debugged Prolog code and destined
for end-users are typically packaged as runtime systems.

Chapter 2: Glossary 17

saved-state
A snapshot of the state of Prolog saved in a file by save_program/[1,2].

semantics The relation between the set of Prolog symbols and their combinations (as
Prolog terms and clauses), and their meanings. Compare syntax.

sentence A clause or directive.

side-effect A predicate that produces a side-effect is one that has any effect on the “outside
world” (the user’s terminal, a file, etc.), or that changes the Prolog database.

simple term
A simple term is a constant or a variable. Simple terms are recognized by the
built-in predicate simple/1.

skeletal goal
A compound term name (arg, ..., arg) or module:name(arg, ..., arg)
denoting a predicate.

small integer
An integer in the range [-2728,2728-1] on 32-bit platforms, or [-2760,2760-
1] on 64-bit platforms.

source code
The human-readable, as opposed to the machine-executable, representation of
a program.

source module
The module that is the context of a file being loaded. For module-files, the
source module is named in the file’s module declaration. For other files, the
source module is inherited from the context.

SP_term_ref
A “handle” object providing an interface from C to Prolog terms.

spypoint A special case of breakpoint, the debugger breakpoint, intended for interactive
debugging. Its simplest form, the plain spypoint instructs the debugger to stop
at all ports of all invocations of a specified predicate. Conditional spypoints
apply to a single predicate, but are more selective: the user can supply appli-
cability tests and prescribe the actions to be carried out by the debugger. A
generic spypoint is like a conditional spypoint, but not restricted to a single
predicate. See Section 5.6 [Advanced Debugging], page 208.

stand-alone executable
A binary program that can be invoked from the operating system, containing
the SICStus runtime kernel. A stand-alone executable is a development system
(e.g. the default sicstus executable), or a runtime system. Both kinds are
created by the application builder. A stand-alone executable does not itself
contain any Prolog code; all Prolog code must be loaded upon startup.

static predicate
A predicate that can be modified only by being reloaded or by being abolished.
See dynamic predicate.

18 SICStus Prolog

steadfast A predicate is steadfast if it refuses to give the wrong answer even when the
query has an unexpected form, typically with values supplied for arguments
intended as output.

stream An input/output channel. See Section 4.6 [ref-iou], page 86.

stream alias
A name assigned to a stream at the time of opening, which can be referred to
in I/O predicates. Must be an atom. There are also three predefined aliases for
the standard streams: user_input, user_output and user_error.

stream object
A term denoting an open Prolog stream. See Section 4.6 [ref-iou], page 86.

Stream position
A term representing the current position of a stream. This position is deter-
mined by the current byte, character and line counts and line position. Stan-
dard term comparison on stream position terms works as expected. When SP1
and SP2 refer to positions in the same stream, SP1@<SP2 if and only if SP1
is before SP2 in the stream. You should not otherwise rely on their internal
representation.

stream property
A term representing the property of an open Prolog stream. The possible forms
of this term are defined in Section 4.6.7.8 [ref-iou-sth-bos], page 97.

string A special syntactic notation, which, by default, denotes a code-list, e.g.:
"SICStus"

By setting the Prolog flag double_quotes, the meaning of strings can be
changed. With an appropriate setting, a string can be made to denote a char-
list, or an atom. Strings are not a separate data type.

subterm selector
A list of argument positions selecting a subterm within a term (i.e. the subterm
can be reached from the term by successively selecting the argument positions
listed in the selector). Example: within the term q, (r, s; t) the subterm s
is selected by the selector [2, 1, 2].

syntax The part of Prolog grammar dealing with the way in which symbols are put
together to form legal Prolog terms. Compare semantics.

term A basic data object in Prolog. A term can be a constant, a variable, or a
compound term.

trace A mode of program execution in which the debugger creeps to the next port
and prints the goal.

type-in module
The module that is the context of queries.

unblocked goal
A goal that is not blocked.

unbound A variable is unbound if it has not yet been instantiated.

Chapter 2: Glossary 19

unification

unit clause

variable

volatile

The process of matching a goal with the head of a clause during the evaluation
of a query, or of matching arbitrary terms with one another during program
execution.

The rules governing the unification of terms are:
e Two constants unify with one another if they are identical.

e A variable unifies with a constant or a compound term. As a result of the
unification, the variable is instantiated to the constant or compound term.

e A variable unifies with another variable. As a result of the unification, they
become the same variable.

e A compound term unifies with another compound term if they have the
same functor and if all of the arguments can be unified.

See fact.

A logical variable is a name that stands for objects that may or may not be
determined at a specific point in a Prolog program. When the object for which
the variable stands is determined in the Prolog program, the variable becomes
instantiated. A logical variable may be unified with a constant, a compound
term, or another variable. Variables become uninstantiated when the predicate
they occur in backtracks past the point at which they were instantiated.

Variables may be written as any sequence of alphanumeric characters starting

with either a capital letter or ‘_’; e.g.:
X Y Z Name Position c _305 One_stop

See Section 4.1.2.5 [ref-syn-trm-var], page 40.

Predicate property. The clauses of a volatile predicate are not saved in saved-
states.

windowed executable

Zip

An executable that pops up its own window when run, and that directs the
standard streams to that window.

Same as debug mode, except no debugging information is collected while zip-
ping.

20

SICStus Prolog

Chapter 3: How to Run Prolog 21

3 How to Run Prolog

SICStus Prolog offers the user an interactive programming environment with tools for incre-
mentally building programs, debugging programs by following their executions, and modi-
fying parts of programs without having to start again from scratch.

The text of a Prolog program is normally created in a file or a number of files using one of
the standard text editors. The Prolog interpreter can then be instructed to read in programs
from these files; this is called consulting the file. Alternatively, the Prolog compiler can be
used for compiling the file.

3.1 Getting Started

Under UNIX, SICStus Prolog is normally started from one of the shells. On other platforms,
it is normally started by clicking on an icon. However, it is often convenient to run SICStus
Prolog under GNU Emacs instead. A GNU Emacs interface for SICStus Prolog is described
later (see Section 3.11 [Emacs Interface], page 29). From a UNIX shell, SICStus Prolog is
started by invoking the sicstus command-line tool.

Under UNIX, a saved-state file can be executed directly by typing:
% file argument...

This is equivalent to:
% sicstus -r file [-a argument...]

Please note: As of release 3.7, saved-states do not store the complete path of
the binary sp.exe. Instead, they call the main executable sicstus, which is
assumed to be found in the shell’s path. If there are several versions of SICStus
installed, it is up to the user to make sure that the correct start-script is found.

Notice that the flags are not available when executing saved-states—all the command-line
arguments are treated as Prolog arguments.

The development system checks that a valid SICStus license exists and, unless the
‘-—nologo’ option was used, responds with a message of identification and the prompt
‘| 7- 7 as soon as it is ready to accept input, thus:

SICStus 4.0.0 ...

Licensed to SICS
| -

At this point the top-level is expecting input of a query. You cannot type in clauses or
directives immediately (see Section 3.3 [Inserting Clauses|, page 22). While typing in a
query, the prompt (on following lines) becomes ¢ ". That is, the ‘| ?- 7 appears only
for the first line of the query, and subsequent lines are indented.

22 SICStus Prolog

3.2 Reading in Programs

A program is made up of a sequence of clauses and directives. The clauses of a predicate
do not have to be immediately consecutive, but remember that their relative order may be
important (see Section 4.2 [ref-sem]|, page 55).

To input a program from a file file, just type the filename inside list brackets (followed by
. and (RET)), thus:

| 7- [file].

This instructs the interpreter to read in (consult) the program. Note that it may be neces-
sary to enclose the filename file in single quotes to make it a legal Prolog atom; e.g.:

| 7= [’myfile.pl’].
| 7= [’/usr/prolog/somefile’].

The specified file is then read in. Clauses in the file are stored so that they can later be
interpreted, while any directives are obeyed as they are encountered. When the end of
the file is found, the system displays on the standard error stream the time spent. This
indicates the completion of the query.

Predicates that expect the name of a Prolog source file, or more generally a file specification,
use the facilities described in Section 4.5 [ref-fdi], page 80 to resolve the file name. File
extensions are optional. There is also support for libraries.

In general, this query can be any list of filenames, such as:
| ?- [myprog,extras,tests].
In this case all three files would be consulted.

The clauses for all the predicates in the consulted files will replace any existing clauses for
those predicates, i.e. any such previously existing clauses in the database will be deleted.

Note that consult/1 in SICStus Prolog behaves like reconsult/1 in DEC-10 Prolog.

3.3 Inserting Clauses at the Terminal

Clauses may also be typed in directly at the terminal, although this is only recommended
if the clauses will not be needed permanently, and are few in number. To enter clauses at
the terminal, you must give the special query:

| ?- [user].

and the new prompt ‘| ’ shows that the system is now in a state where it expects input of
clauses or directives. To return to top level, type “D. The system responds thus:

% consulted user in module user, 20 msec 200 bytes

Chapter 3: How to Run Prolog 23

3.4 Queries and Directives

Queries and directives are ways of directing the system to execute some goal or goals.

In the following, suppose that list membership has been defined by loading the following
clauses from a file:

member (X, [X|_]1).
member (X, [_|L]) :- member(X, L).

(Notice the use of anonymous variables written ‘_’.)

3.4.1 Queries

The full syntax of a query is ‘?-’ followed by a sequence of goals. The top-level expects
queries. This is signaled by the initial prompt ‘| 7- ’. Thus a query at top-level looks like:

| ?- member(b, [a,b,c]).

Remember that Prolog terms must terminate with a full stop (‘.’, possibly followed by
layout text), and that therefore Prolog will not execute anything until you have typed the
full stop (and then RET)) at the end of the query.

If the goal(s) specified in a query can be satisfied, and if there are no variables as in this
example, the system answers

yes
and execution of the query terminates.

If variables are included in the query, the final value of each variable is displayed (except
for variables whose names begin with ‘_"). Thus the query

| ?- member(X, [a,b,c]).
would be answered by
X =a

At this point, the development system accepts one-letter commands corresponding to certain
actions. To execute an action simply type the corresponding character (lower or upper case)
followed by ®RET). The available commands in development systems are:

RET

y “accepts” the solution; the query is terminated and the development system
responds with ‘yes’.

n “rejects” the solution; the development system backtracks (see Section 4.2 [ref-

sem|, page 55) looking for alternative solutions. If no further solutions can be
found it outputs ‘no’.

b invokes a recursive top-level.

24

SICStus Prolog

In the top-level, a global printdepth is in effect for limiting the subterm nesting
level when printing bindings. The limit is initially 10.

This command, without arguments, resets the printdepth to 10. With an ar-
gument of n, the printdepth is set to n, treating 0 as infinity. This command
works by changing the value of the toplevel_print_options Prolog flag.

A local subterm selector, initially [], is maintained. The subterm selector
provides a way of zooming in to some subterm of each binding. For example,
the subterm selector [2,3] causes the 3rd subterm of the 2nd subterm of each
binding to be selected.

This command, without arguments, resets the subterm selector to [J. With an
argument of 0, the last element of the subterm selector is removed. With an
argument of n (> 0), n is added to the end of the subterm selector. With a list
of arguments, the arguments are applied from left to right.

lists available commands.

While the variable bindings are displayed, all variables occurring in the values are replaced
by terms of the form ’$VAR’ (N) to yield friendlier variable names. Such names come out
as a sequence of letters and digits preceded by ‘_’. The outcome of some queries is shown

below.

| ?- member (X, [tom,dick,harry]).

sl ol
nonon

no

< >
[I|

-~

X

=t

om ;

dick ;
harry ;

- member (X, [a,b,f(Y,c)]), member(X, [f(b,Z),d]).

= f
=Db

C

(b,c),

3

- member (X, [f(_),gl).

f

_B)

Directives are like queries except that:

1. Variable bindings are not displayed if and when the directive succeeds.

2. You are not given the chance to backtrack through other solutions.

3.4.2 Directives

Directives start with the symbol ‘:-’. Any required output must be programmed explicitly;
e.g. the directive:

Chapter 3: How to Run Prolog 25

:- member (3, [1,2,3]), write(ok).

asks the system to check whether 3 belongs to the list [1,2,3]. Execution of a direc-
tive terminates when all the goals in the directive have been successfully executed. Other
alternative solutions are not sought. If no solution can be found, the system prints:

* Goal - goal failed
as a warning.

The principal use for directives (as opposed to queries) is to allow files to contain directives
that call various predicates, but for which you do not want to have the answers printed
out. In such cases you only want to call the predicates for their effect, i.e. you don’t want
terminal interaction in the middle of consulting the file. A useful example would be the use
of a directive in a file that consults a whole list of other files, e.g.:

:- [bits, bobs, main, tests, data, junk].

If a directive like this were contained in the file ‘myprog’, typing the following at top-level
would be a quick way of reading in your entire program:

| ?- [myprogl].

When simply interacting with the top-level, this distinction between queries and directives
is not normally very important. At top-level you should just type queries normally. In a file,
queries are in fact treated as directives, i.e. if you wish to execute some goals, the directive
in the file must be preceded by ‘:-" or ‘?-’; otherwise, it would be treated as a clause.

3.5 Syntax Errors

Syntax errors are detected during reading. Each clause, directive or, in general, any term
read in by the built-in predicate read/1 that fails to comply with syntax requirements is
displayed on the standard error stream as soon as it is read, along with its position in the
input stream and a mark indicating the point in the string of symbols where the parser has
failed to continue analysis, e.g.:

| member (X, X$L).

I Syntax error

I , or) expected in arguments
! in line 5

| member (X , X

I <<here>>

I

$L)
if ‘¢’ has not been declared as an infix operator.

Note that any comments in the faulty line are not displayed with the error message. If you
are in doubt about which clause was wrong you can use the listing/1 predicate to list all
the clauses that were successfully read in, e.g.:

26 SICStus Prolog

| ?- listing(member/2).

Please note: The built-in predicates read/ [1,2] normally raise an exception on
syntax errors (see Section 4.15 [ref-ere|, page 172). The behavior is controlled
by the Prolog flag syntax_errors.

3.6 Undefined Predicates

There is a difference between predicates that have no definition and predicates that have
no clauses. The latter case is meaningful e.g. for dynamic predicates (see Section 4.3.4
[ref-lod-dcl], page 70) that clauses are being added to or removed from. There are good
reasons for treating calls to undefined predicates as errors, as such calls easily arise from
typing errors.

The system can optionally catch calls to predicates that have no definition. First the user de-
fined predicate user:unknown_predicate_handler/3 (see Section 4.15 [ref-ere|, page 172)
is called. If undefined or if the call fails the action is governed by the state of the unknown
Prolog flag, which can be:

trace which causes calls to undefined predicates to be reported and the debugger to
be entered at the earliest opportunity.

error which causes calls to such predicates to raise an exception (the default state).
See Section 4.15 [ref-ere|, page 172.

warning which causes calls to such predicates to display a warning message and then
fail.

fail which causes calls to such predicates to fail.

Calls to predicates that have no clauses are not caught.

The built-in predicate unknown(0ldState, NewState) unifies OldState with the current
state and sets the state to NewState. The built-in predicate debugging/0 prints the value
of this state along with its other information. This state is also controlled by the unknown
Prolog flag.

3.7 Program Execution And Interruption

Execution of a program is started by giving the system a query that contains a call to one
of the program’s predicates.

Only when execution of one query is complete does the system become ready for another
query. However, one may interrupt the normal execution of a query by typing ~C. This
~C interruption has the effect of suspending the execution, and the following message is
displayed:

Prolog interruption (h or ? for help) 7

Chapter 3: How to Run Prolog 27

At this point, the development system accepts one-letter commands corresponding to certain
actions. To execute an action simply type the corresponding character (lower or upper case)
followed by ®RET). The available commands in development systems are:

a aborts the current computation.
c continues the execution.

exits from SICStus Prolog, closing all files.

h

? lists available commands.

b invokes a recursive top-level.

d

z

t switch on the debugger. See Chapter 5 [Debug Intro|, page 197.

If the standard input stream is not connected to the terminal, e.g. by redirecting standard
input to a file or a pipe, the above ~C interrupt options are not available. Instead, typing
~C causes SICStus Prolog to exit, and no terminal prompts are printed.

3.8 Exiting From The Top-Level

To exit from the top-level and return to the shell, either type ~D at the top-level, or call the
built-in predicate halt/0, or use the e (exit) command following a ~C interruption.

3.9 Nested Executions—Break

The Prolog system provides a way to suspend the execution of your program and to enter
a new incarnation of the top-level where you can issue queries to solve goals etc. This is
achieved by issuing the query (see Section 3.7 [Execution], page 26):

| ?- break.

This invokes a recursive top-level, indicated by the message:
% Break level 1

You can now type queries just as if you were at top-level.

If another call of break/0 is encountered, it moves up to level 2, and so on. To close the
break and resume the execution that was suspended, type “D. The debugger state and
current input and output streams will be restored, and execution will be resumed at the
predicate call where it had been suspended after printing the message:

% End break

3.10 Saving and Restoring Program States

Once a program has been read, the system will have available all the information necessary
for its execution. This information is called a program state.

28 SICStus Prolog

The saved-state of a program may be saved on disk for future execution. To save a program
into a file File, type the following query. On UNIX platforms, the file becomes executable:

| ?- save_program(File).
You can also specify a goal to be run when a saved program is restored. This is done by:
| ?- save_program(File, start).

where start/0 is the predicate to be called.

Once a program has been saved into a file File, the following query will restore the system
to the saved-state:

| ?- restore(File).

If a saved-state has been moved or copied to another machine, the path names of foreign
resources and other files needed upon restore are typically different at restore time from
their save time values. To solve this problem, certain atoms will be renamed during restore
as follows:

e Atoms that had ‘$SP_PATH/library’ (the name of the directory containing the Prolog
Library) as prefix at save time will have that prefix replaced by the corresponding
restore time value.

e Atoms that had the name of the directory containing File as prefix at save time will
have that prefix replaced by the corresponding restore time value.

The purpose of this procedure is to be able to build and deploy an application consisting of
a saved-state and other files as a directory tree with the saved-state at the root: as long as
the other files maintain their relative position in the deployed copy, they can still be found
upon restore.

Please note: When creating a saved state with save_program/[1,2], the names
and paths of foreign resources, are included in the saved-state. After restoring
a saved-state, this information is used to reload the foreign resources again.
The state of the foreign resource in terms of global C variables and allocated
memory is thus not preserved. Foreign resources may define init and deinit
functions to take special action upon loading and unloading; see Section 6.2.6
[Init and Deinit Functions], page 260.

As of SICStus Prolog 3.8, partial saved-states corresponding to a set of source files, modules,
and predicates can be created by the built-in predicates save_files/2, save_modules/2,
and save_predicates/2 respectively. These predicates create files in a binary format, by
default with the prefix ‘. po’ (for Prolog object), which can be loaded by load_files/[1,2].
For example, to compile a program split into several source files into a single PO file, type:

| 7- compile(Files), save_files(Files, Object).

Chapter 3: How to Run Prolog 29

For each filename given, the first goal will try to locate a source file and compile it into
memory. The second goal will save the program just compiled into a PO file whose default
suffix is ‘.po’. Thus the PO file will contain a partial memory image.

Please note: PO files can be created with any suffix, but cannot be loaded
unless the suffix is ‘. po’!

3.11 Emacs Interface

This section explains how to use the GNU Emacs interface for SICStus Prolog, and how to
customize your GNU Emacs environment for it.

FEmacs is a powerful programmable editor especially suitable for program develop-
ment. It is available for free for many platforms, including various UNIX dialects,
Windows and Mac OS X. For information specific to GNU Emacs or XEmacs, see
http://www.gnu.org and http://www.xemacs.org respectively. For information on run-
ning Emacs under Windows, see the ‘GNU Emacs FAQ For Windows 98/ME/NT/XP and 2000’
at http://www.gnu.org/software/emacs/windows/ntemacs.html, much of which applies
to both GNU Emacs and XEmacs.

The advantages of using SICStus in the Emacs environment are source-linked debugging,
auto indentation, syntax highlighting, help on predefined predicates (requires the SICStus
info files to be installed), loading code from inside Emacs, auto-fill mode, and more.

The Emacs interface is not part of SICStus Prolog proper, but is included in the distribution
for convenience. It was written by Emil Astrom and Milan Zamazal, based on an earlier
version of the mode written by Masanobu Umeda. Contributions have also been made by
Johan Andersson, Peter Olin, Mats Carlsson, Johan Bevemyr, Stefan Andersson, and Per
Danielsson, Henrik Bakman, and Tamas Rozméan. Some ideas and also a few lines of code
have been borrowed (with permission) from ‘0z.el’, by Ralf Scheidhauer and Michael Mehl,
the Emacs major mode for the Oz programming language. More ideas and code have been
taken from the SICStus debugger mode by Per Mildner.

3.11.1 Installation

See section “The Emacs Interface” in SICStus Prolog Release Notes, for more information
about installing the Emacs interface.

There are some differences between GNU Emacs and XEmacs. This will be indicated with
Emacs-Lisp comments in the examples.

3.11.1.1 Quick-Start

Assuming the Emacs interface for SICStus Prolog has been installed in the default location,
inserting a single line in your ‘~/.emacs’ will make Emacs use the SICStus Prolog mode
automatically when editing files with a ‘.pro’ or ‘.pl’ extension. It will also ensure Emacs
can find the SICStus executables and on-line documentation, etc.

Note to Windows users: ‘~/.emacs’ denotes a file ‘.emacs’ in whatever Emacs considers

to be your home directory. See ‘GNU Emacs FAQ For Windows 98/ME/NT/XP and 2000’ at
http://www.gnu.org/software/emacs/windows/ntemacs.html, for details.

http://www.gnu.org
http://www.xemacs.org
http://www.gnu.org/software/emacs/windows/ntemacs.html
http://www.gnu.org/software/emacs/windows/ntemacs.html

30 SICStus Prolog

Under UNIX, assuming SICStus 4.0.0 was installed in ‘/usr/local/’, add the following
line:

(load "/usr/local/lib/sicstus-4.0.0/emacs/sicstus_emacs_init")

Under Windows, assuming SICStus 4.0.0 was installer in ‘C:\Program Files\SICStus
Prolog 4.0.0\’, add the following line:

(load "C:/Program Files/SICStus Prolog
4.0.0/emacs/sicstus_emacs_init")

No other configuration should be needed to get started. If you want to customize things,
look in the ‘sictus_emacs_init.el’ file and the rest of this section.

3.11.1.2 Customizing Emacs

Version 20 of GNU Emacs and XEmacs introduced a new method for editing and storing
user settings. This feature is available from the menu bar as ‘Customize’ and particular
Emacs variables can be customized with M-x customize-variable. Using ‘Customize’ is
the preferred way to modify the settings for Emacs and the appropriate customize commands
will be indicated below, sometimes together with the old method of directly setting Fmacs
variables.

3.11.1.3 Enabling Emacs Support for SICStus

This section is for reference only, it can safely be skipped; it will let you understand the
setup that is performed by the ‘sictus_emacs_init.el’ file.

Assuming the Emacs interface for SICStus Prolog has been installed in the default location,
inserting the following lines in your ‘~/.emacs’ will make Emacs use this mode automatically
when editing files with a ‘.pro’ or ‘.pl’ extension:

(setq load-path

(cons (expand-file-name "/usr/local/lib/sicstus-4.0.0/emacs")

load-path))
(autoload ’run-prolog "prolog" "Start a Prolog sub-process." t)
(autoload ’prolog-mode "prolog" "Major mode for editing Prolog programs." t)
(setq prolog-use-sicstus-sd t)
(setq auto-mode-alist (append ’ (("\\.pro$" . prolog-mode)
("\\.pl$" . prolog-mode))
auto-mode-alist))

where the path in the first line is the file system path to ‘prolog.el’ (the generic Prolog
mode) and ‘sicstus-support.el’ (SICStus specific code). For example, ‘~/emacs’ means
that the file is in the user’s home directory, in directory emacs. Windows paths can be
written like ‘C:/Program Files/SICStus Prolog 4.0.0/emacs’.

3

The last line above makes sure that files ending with ‘.pro’ or ‘.pl’ are assumed to be
Prolog files and not Perl, which is the default Emacs setting for ‘.pl’. If this is undesirable,
remove that line. It is then necessary for the user to manually switch to prolog mode

Chapter 3: How to Run Prolog 31

by typing M-x prolog-mode after opening a Prolog file; for an alternative approach, see
Section 3.11.4 [Mode Line|, page 34.

If the shell command sicstus is not available in the default path, it is necessary to set the
value of the environment variable EPROLOG to a shell command to invoke SICStus Prolog.
This is an example for C Shell:

% setenv EPROLOG /usr/local/bin/sicstus

3.11.1.4 Enabling Emacs Support for SICStus Documentation
If you follow the steps in Section Quick Start, above, you can skip this section.
It is possible to look up the documentation for any built-in or library predicate from within

Emacs (using C-c ? or the menu). For this to work Emacs must be told about the location
of the ‘info’-files that make up the documentation.

The default location for the ‘info’-files are ‘<prefix>/1ib/sicstus-4.0.0/doc/info/’ on
UNIX platforms and ‘C:/Program Files/SICStus Prolog 4.0.0/doc/info/’ under Win-
dows.

Add the following to your ‘~/.emacs’ file, assuming INFO is the path to the info files, e.g.
‘C:/Program Files/SICStus Prolog 4.0.0/doc/info/’

(setq Info-default-directory-list
(append Info-default-directory-list ’("INF0")))

for GNU Emacs, or

(setq Info-directory-list
(append Info-directory-list ’("INF0")))

for XEmacs. You can also use M-x customize-group info if your Emacs is new
enough. You may have to quit and restart Emacs for these changes to take effect.
3.11.2 Basic Configuration

If the following lines are not present in ‘~/.emacs’, we suggest they are added, so that
the font-lock mode (syntax coloring support) is enabled for all major modes in Emacs that
support it.

(global-font-lock-mode t) ; GNU Emacs
(setq font-lock-auto-fontify t) ; XEmacs
(setq font-lock-maximum-decoration t)

These settings and more are also available through M-x customize-group font-lock.

If one wants to add font-locking only to the prolog mode, the two lines above could be
replaced by:

(add-hook ’prolog-mode-hook ’turn-on-font-lock)

32 SICStus Prolog

Similarly, to turn it off only for prolog mode use:
(add-hook ’prolog-mode-hook ’turn-off-font-lock)

3.11.3 Usage

A prolog process can be started by choosing Run Prolog from the Prolog menu, by typing
C-c (RET), or by typing M-x run-prolog. It is however not strictly necessary to start a
prolog process manually since it is automatically done when consulting or compiling, if
needed. The process can be restarted (i.e. the old one is killed and a new one is created)
by typing C-u C-c RET).

Programs are run and debugged in the normal way, with terminal I/O via the *prolog*
buffer. The most common debugging predicates are available from the menu or via key-
bindings.

A particularly useful feature under the Emacs interface is source-linked debugging. This is
enabled or disabled using the Prolog/Source level debugging menu entry. It can also be
enabled by setting the Emacs variable prolog-use-sicstus-sd to t in ‘7/.emacs’. Both
these methods set the Prolog flag source_info to emacs. Its value should be emacs while
loading the code to be debugged and while debugging. If so, the debugger will display
the source code location of the current goal when it prompts for a debugger command, by
overlaying the beginning of the current line of code with an arrow. If source_info was off
when the code was loaded, or if it was asserted or loaded from user, the current goal will
still be shown but out of context.

Note that if the code has been modified since it was last loaded, Prolog’s line number
information may be invalid. If this happens, just reload the relevant buffer.

Consultation and compilation is either done via the menu or with the following key-bindings:

C-c C-f Consult file.

C-c C-b Consult buffer.
C-c C-r Consult region.
C-c C-p Consult predicate.
C-c C-c £ Compile file.

C-c C-c b Compile buffer.
C-c C-c r Compile region.
C-c C-c p Compile predicate.

The boundaries used when consulting and compiling predicates are the first and last clauses
of the predicate the cursor is currently in.

Other useful key-bindings are:

M-n Go to the next clause.

Chapter 3: How to Run Prolog 33

M-p Go to the previous clause.

M-a Go to beginning of clause.

M-e Go to end of clause.

M-C-c Mark clause.

M-C-a Go to beginning of predicate.

M-C-e Go to end of predicate.

M-C-h Mark predicate.

M—{ Go to the previous paragraph (i.e. empty line).
M-} Go to the next paragraph (i.e. empty line).
M-h Mark paragraph.

M-C-n Go to matching right parenthesis.

M-C-p Go to matching left parenthesis.

M-; Creates a comment at comment-column. This comment will always stay at this

position when the line is indented, regardless of changes in the text earlier on
the line, provided that prolog-align-comments-flag is set to t.

C-c C-t
C-u C-c C-t
Enable and disable creeping, respectively.

C-c C-d
C-u C-c C-d
Enable and disable leaping, respectively.

C-c C-z
C-u C-c C-z
Enable and disable zipping, respectively.

C-x SPC

C-u C-x SPC
Set and remove a line breakpoint. This uses the advanced debugger features
introduced in SICStus 3.8; see Section 5.6 [Advanced Debugging], page 208.

C-c C-s Insert the PredSpec of the current predicate into the code.

C-c C-n Insert the name of the current predicate into the code. This can be useful
when writing recursive predicates or predicates with several clauses. See also
the prolog-electric-dot-flag variable below.

C-c C-v a Convert all variables in a region to anonymous variables. This can also be done
using the Prolog/Transform/All variables to ’_’ menu entry. See also the
prolog-electric-underscore-flag Emacs variable.

C-c ? Help on predicate. This requires the SICStus info files to be installed. If the
SICStus info files are installed in a nonstandard way, you may have to change
the Emacs variable prolog-info-predicate-index.

34 SICStus Prolog

3.11.4 Mode Line

If working with an application split into several modules, it is often useful to let files begin
with a “mode line”:

%kt —*- Mode: Prolog; Module: ModuleName; —*-

The Emacs interface will look for the mode line and notify the SICStus Prolog module
system that code fragments being incrementally reconsulted or recompiled should be im-
ported into the module ModuleName. If the mode line is missing, the code fragment will
be imported into the type-in module. An additional benefit of the mode line is that it tells
Emacs that the file contains Prolog code, regardless of the setting of the Emacs variable
auto-mode-alist. A mode line can be inserted by choosing Insert/Module modeline in
the Prolog menu.

3.11.5 Configuration

The behavior of the Emacs interface can be controlled by a set of user-configurable settings.
Some of these can be changed on the fly, while some require Emacs to be restarted. To set
a variable on the fly, type M-x set-variable VariableName Value RET). Note
that variable names can be completed by typing a few characters and then pressing (TAB).

To set a variable so that the setting is used every time Emacs is started, add lines of the
following format to ‘~/.emacs’:

(setq VariableName Value)

Note that the Emacs interface is presently not using the ‘Customize’ functionality to edit
the settings.

The available settings are:

prolog-system
The Prolog system to use. Defaults to ’sicstus, which will be assumed for
the rest of this chapter. See the on-line documentation for the meaning of
other settings. For other settings of prolog-system the variables below named
sicstus-something will not be used, in some cases corresponding functionality
is available through variables named prolog-something.

sicstus-version
The version of SICStus that is used. Defaults to > (3 . 8). Note that the spaces
are significant!

prolog-use-sicstus-sd
Set to t (the default) to enable the source-linked debugging extensions by de-
fault. The debugging can be enabled via the Prolog menu even if this variable
is nil. Note that the source-linked debugging only works if sicstus-version
is set correctly.

Chapter 3: How to Run Prolog 35

pltrace-port-arrow-assoc obsolescent
Only relevant for source-linked debugging, this controls how the various ports
of invocation boxes (see Section 5.1 [Procedure Box], page 197) map to arrows
that point into the current line of code in source code buffers. Initialized as:
) (("Call" . ||>>>") (||exit" . ll+++||) (llndexitll . ||?++ll)
(nredon . ||<<<n) ("fail" i u___u) ("exception" X u==>||))
where ndexit is the nondeterminate variant of the Exit port. Do not rely on
this variable. It will change in future releases.

prolog-indent-width
How many positions to indent the body of a clause. Defaults to tab-width,
normally 8.

prolog-paren-indent
The number of positions to indent code inside grouping parentheses. Defaults
to 4, which gives the following indentation.

p -
(q1
; q2,
q3
).

Note that the spaces between the parentheses and the code are automatically
inserted when is pressed at those positions.

prolog-align-comments-flag
Set to nil to prevent single %-comments from being automatically aligned.
Defaults to t.

Note that comments with one 7% are indented to comment-column, comments
with two % to the code level, and that comments with three % are never changed
when indenting.

prolog-indent-mline-comments—-flag
Set to nil to prevent indentation of text inside /* ... */ comments. Defaults
t.

prolog-object-end-to-0-flag
Set to nil to indent the closing } of an object definition to prolog-indent-
width. Defaults to t.

sicstus-keywords
This is a list with keywords that are highlighted in a special color when used
as directives (i.e. as :- keyword). Defaults to

> ((sicstus
("block" "discontiguous" "dynamic" "initialization"
"meta_predicate" "mode" "module" "multifile" "public"
"volatile")))

prolog-electric—newline-flag
Set to nil to prevent Emacs from automatically indenting the next line when
pressing RET). Defaults to t.

36 SICStus Prolog

prolog-hungry-delete-key-flag
Set to t to enable deletion of all white space before the cursor when pressing
(unless inside a comment, string, or quoted atom). Defaults to nil.

prolog-electric-dot-flag
Set to t to enable the electric dot function. If enabled, pressing . at the end of
a non-empty line inserts a dot and a newline. When pressed at the beginning of
a line, a new head of the last predicate is inserted. When pressed at the end of
a line with only whitespace, a recursive call to the current predicate is inserted.
The function respects the arity of the predicate and inserts parentheses and the
correct number of commas for separation of the arguments. Defaults to nil.

prolog-electric-underscore-flag
Set to t to enable the electric underscore function. When enabled, pressing
underscore (_) when the cursor is on a variable, replaces the variable with the
anynomous variable. Defaults to nil.

prolog-old-sicstus-keys—-flag
Set to t to enable the key-bindings of the old Emacs interface. These bind-
ings are not used by default since they violate GNU Emacs recommendations.
Defaults to nil.

prolog-use-prolog-tokenizer-flag
Set to nil to use built-in functions of Emacs for parsing the source code when
indenting. This is faster than the default but does not handle some of the
syntax peculiarities of Prolog. Defaults to t.

prolog-parse-mode
What position the parsing is done from when indenting code. Two possible
settings: *beg-of-line and ’beg-of-clause. The first is faster but may result
in erroneous indentation in /* ... */ comments. The default is *beg-of-1line.

prolog-imenu-flag
Set to t to enable a new Predicate menu that contains all predicates of the
current file. Choosing an entry in the menu moves the cursor to the start of
that predicate. Defaults to nil.

prolog-info-predicate-index
The info node for the SICStus predicate index. This is important if the online
help function is to be used (by pressing C-c ?, or choosing the Prolog/Help on
predicate menu entry). The default setting is " (sicstus)Predicate Index".

prolog-underscore-wordchar-flag
Set to nil to not make underscore (_) a word-constituent character. Defaults
to t.

3.11.6 Tips

Some general tips and tricks for using the SICStus mode and Emacs in general are given
here. Some of the methods may not work in all versions of Emacs.

Chapter 3: How to Run Prolog 37

3.11.6.1 Font-locking

When editing large files, it might happen that font-locking is not done because the file is
too large. Typing M-x lazy-lock-mode, which is much faster, results in only the visible
parts of the buffer being highlighted; see its Emacs on-line documentation for details.

If the font-locking seems to be incorrect, choose Fontify Buffer from the Prolog menu.

3.11.6.2 Auto-fill Mode

Auto-fill mode is enabled by typing M-x auto-fill-mode. This enables automatic line
breaking with some features. For example, the following multiline comment was created
by typing M-; followed by the text. The second line was indented and a ‘%’ was added
automatically.

dynamics ([1). % A list of pit furnace
% dynamic instances

3.11.6.3 Speed

There are several things to do if the speed of the Emacs environment is a problem:

e First of all, make sure that ‘prolog.el’ and ‘sicstus-support.el’ are compiled, i.e.
that there is a ‘prolog.elc’ and a ‘sicstus-support.elc’ file at the same location
as the original files. To do the compilation, start Emacs and type M-x byte-compile-
file path (RET), where path is the path to the ‘*.el’ file. Do not be alarmed if
there are a few warning messages as this is normal. If all went well, there should now
be a compiled file, which is used the next time Emacs is started.

e The next thing to try is changing the setting of prolog-use-prolog-tokenizer-flag
to nil. This means that Emacs uses built-in functions for some of the source code
parsing, thus speeding up indentation. The problem is that it does not handle all
peculiarities of the Prolog syntax, so this is a trade-off between correctness and speed.

e The setting of the prolog-parse-mode variable also affects the speed, beg-of-line
being faster than ’beg-of-clause.

e Font locking may be slow. You can turn it off using customization, available through
M-x customize-group font-lock RET). An alternative is to enable one of the
lazy font locking modes. You can also turn it off completely; see Section 3.11.2 [Basic
Configuration|, page 31.

3.11.6.4 Changing Colors

The prolog mode uses the default Emacs colors for font-locking as far as possible. The only
custom settings are in the prolog process buffer. The default settings of the colors may not
agree with your preferences, so here is how to change them.

If your Emacs supports it, use ‘Customize’. M-x customize-group font-lock
will show the ‘Customize’ settings for font locking and also contains pointers to the
‘Customize’ group for the font lock (type)faces. The rest of this section outlines the more
involved methods needed in older versions of Emacs.

38 SICStus Prolog

First of all, list all available faces (a face is a combined setting of foreground and background
colors, font, boldness, etc.) by typing M-x list-faces-display.

There are several functions that change the appearance of a face, the ones you will most
likely need are:

e set-face-foreground

e set-face-background

e set-face-underline-p
e make-face-bold

e make-face-bold-italic
e make-face-italic

e make-face-unbold

e make-face-unitalic

These can be tested interactively by typing M-x function-name. You will then be asked
for the name of the face to change and a value. If the buffers are not updated according to
the new settings, refontify the buffer using the Fontify Buffer menu entry in the Prolog
mentu.

Colors are specified by a name or by RGB values. Available color names can be listed with
M-x list-colors-display.

To store the settings of the faces, a few lines must be added to ‘~/.emacs’. For example:

;5 Customize font-lock faces
(add-hook ’font-lock-mode-hook
’>(lambda ()
(set-face-foreground font-lock-variable-name-face "#00a000")
(make-face-bold font-lock-keyword-face)
(set-face-foreground font-lock-reference-face "Blue")

))

Chapter 4: The Prolog Language 39

4 The Prolog Language

This chapter describes the syntax and semantics of the Prolog language, and introduces
the central built-in predicates and other important language constructs. In many cases, an
entry in a list of built-in predicates, will be annotated with keywords. These annotations
are defined in Section 11.1.3 [mpg-ref-cat], page 700.

4.1 Syntax
4.1.1 Overview

This section describes the syntax of SICStus Prolog.

4.1.2 Terms
4.1.2.1 Overview

The data objects of the language are called terms. A term is either a constant, a variable,
or a compound term.

A constant is either a number (integer or floating-point) or an atom. Constants are definite
elementary objects, and correspond to proper nouns in natural language.

Variables and compound terms are described in Section 4.1.2.5 [ref-syn-trm-var|, page 40,
and Section 4.1.3 [ref-syn-cpt], page 41, respectively.

Foreign data types are discussed in the context of library(structs); see Section 10.22
[lib-structs|, page 455.

4.1.2.2 Integers

The printed form of an integer consists of a sequence of digits optionally preceded by a
minus sign (‘=’). These are normally interpreted as base 10 integers. It is also possible to
enter integers in base 2 (binary), 8 (octal), and 16 (hexadecimal); this is done by preceding
the digit string by the string ‘0b’, ‘00’, or ‘0x’ respectively. The characters A-F or a-f stand
for digits greater than 9. For example, the following tokens all represent the integer fifteen:

15 Ob1111 Ool7 Oxf

Note that
+525

is not a valid integer.

There is also a special notation for character constants. E.g.:
0’A 0°\x41\ 0°\101\

are all equivalent to 65 (the character code for ‘A’). ‘0°’ followed by any character except
‘\” (backslash) is thus read as an integer. If ‘0°’ is followed by ‘\’, the ‘\’ denotes the start
of an escape sequence with special meaning (see Section 4.1.7.6 [ref-syn-syn-esc|, page 53).

40 SICStus Prolog

4.1.2.3 Floating-point Numbers

A floating-point number (float) consists of a sequence of digits with an embedded decimal
point, optionally preceded by a minus sign (-), and optionally followed by an exponent
consisting of upper- or lowercase ‘E’ and a signed base 10 integer. Examples of floats are:

1.0 -23.45 187.6E12 -0.0234e15 12.0E-2
Note that there must be at least one digit before, and one digit after, the decimal point.

4.1.2.4 Atoms

An atom is identified by its name, which is a sequence of up to 65535 characters (other than
the null character). An atom can be written in any of the following forms:

(S

e Any sequence of alphanumeric characters (including ‘_’), starting with a lowercase
letter. Note that an atom may not begin with an underscore.

e Any sequence from the following set of characters (except ‘/*’, which begins a com-
ment):

+ - /\N"<>=“": . 720#$ &

e Any sequence of characters delimited by single quotes. Backslashes in the sequence
denote escape sequences (see Section 4.1.7.6 [ref-syn-syn-esc|, page 53), and if the single
quote character is included in the sequence it must be escaped, e.g. can\’t’.

e Any of:

;o0 {3
Note that the bracket pairs are special: ‘[]1’ and ‘{}’ are atoms but ‘[’, ‘1°, ‘{’, and ‘}’
are not. The form [X] is a special notation for lists (see Section 4.1.3.1 [ref-syn-cpt-lis],
page 42) as an alternative to . (X, [1), and the form {X} is allowed as an alternative

to {3(X).

Examples of atoms are:
a void = := ’Anything in quotes’ []

WARNING: It is recommended that you do not invent atoms beginning with
the character ‘$’, since it is possible that such names may conflict with the
names of atoms having special significance for certain built-in predicates.

4.1.2.5 Variables

Variables may be written as any sequence of alphanumeric characters (including ‘_’) begin-
ning with either a capital letter or ‘_’. For example:

X Value A A1 -3 _RESULT

If a variable is referred to only once in a clause, it does not need to be named and may be
written as an anonymous variable, represented by the underline character ‘_’ by itself. Any
number of anonymous variables may appear in a clause; they are read as distinct variables.
Anonymous variables are not special at runtime.

Chapter 4: The Prolog Language 41

4.1.2.6 Foreign Terms

Pointers to C data structures can be handled using the Structs package.

4.1.3 Compound Terms

The structured data objects of Prolog are compound terms. A compound term comprises
a functor (called the principal functor of the term) and a sequence of one or more terms
called arguments. A functor is characterized by its name, which is an atom, and its arity or
number of arguments. For example, the compound term whose principal functor is ‘point’
of arity 3, and which has arguments X, Y, and Z, is written

point(X, Y, Z)

When we need to refer explicitly to a functor we will normally denote it by the form
Name/ Arity. Thus, the functor ‘point’ of arity 3 is denoted

point/3
Note that a functor of arity 0 is represented as an atom.

Functors are generally analogous to common nouns in natural language. One may think of
a functor as a record type and the arguments of a compound term as the fields of a record.
Compound terms are usefully pictured as trees. For example, the (compound) term

s(np(john), vp(v(likes), np(mary)))
would be pictured as the following tree:

S

/N
np vp
I / N\
john v np

likes mary

The principal functor of this term is s/2. Its arguments are also compound terms. In
illustration, the principal functor of the first argument is np/1.

Sometimes it is convenient to write certain functors as operators; binary functors (that is,
functors of two arguments) may be declared as infix operators, and unary functors (that is,
functors of one argument) may be declared as either prefix or postfix operators. Thus it is
possible to write

X+Y P;Q X<Y +X P;
as optional alternatives to
+(X,Y) ; (P, <(X,Y) +(X) ; (P)

The use of operators is described fully in Section 4.1.5 [ref-syn-ops]|, page 43.

42 SICStus Prolog

4.1.3.1 Lists

Lists form an important class of data structures in Prolog. They are essentially the same as
the lists of Lisp: a list is either the atom [], representing the empty list, or else a compound
term with functor . and two arguments, which are the head and tail of the list respectively,
where the tail of a list is another list. Thus a list of the first three natural numbers is the
structure

/ \
1 .
/ \
2 .
/ \
3 [
which could be written using the standard syntax, as (A) but which is normally written in

a special list notation, as (B). Two examples of this list notation, as used when the tail of
a list is a variable, are (C), which represent the structure in (D).

L(1,.02,.3, DN V)
[1,2,3] (B)
[XIL] [a,blL] (©)
/ \ / \
X L a .
/ \
b L (D)

Note that the notation [X|L] does not add any new power to the language; it simply
improves readability. These examples could be written equally well as (E).

.(X,L) .(a,.(b,L)) (E)

4.1.3.2 Strings As Lists

For convenience, a further notational variant is allowed for lists of integers that correspond
to character codes. Lists written in this notation are called strings. E.g.:

"SICStus"
which, by default, denotes exactly the same list as
[83,73,67,83,116,117,115]

The Prolog flag double_quotes can be used to change the way strings are interpreted. The
default value of the flag is codes, which implies the above interpretation. If the flag is set

Chapter 4: The Prolog Language 43

to chars, a string is transformed to a list of character atoms. FE.g. with this setting the
above string represents the list:

[JSJ,)I),JC)’7SJ,t’u’S]

Finally if double_quotes has the value atom, the string is made equivalent to the atom
formed from its characters: the above sample string is then the same as the atom >SICStus”’.

Backslashes in the sequence denote escape sequences (see Section 4.1.7.6 [ref-syn-syn-esc|,
page 53). As for quoted atoms, if a double quote character is included in the sequence it
must be escaped, e.g. "can\"t".

The built-in predicates that print terms (see Section 4.6.4 [ref-iou-tou], page 88) do not use
string syntax even if they could.

4.1.4 Character Escaping

The character escaping facility is prescribed by the ISO Prolog standard, and allows escape
sequences to occur within strings and quoted atoms, so that programmers can put non-
printable characters in atoms and strings and still be able to see what they are doing.

Strings or quoted atoms containing escape sequences can occur in terms obtained by
read/[1,2], compile/1, and so on. The ‘0’’ notation for the integer code of a charac-
ter is also affected by character escaping.

The only characters that can occur in a string or quoted atom are the printable charac-
ters and SPC). All other layout characters must be expressed with escape sequences (see
Section 4.1.7.6 [ref-syn-syn-esc|, page 53).

4.1.5 Operators and their Built-in Predicates
4.1.5.1 Overview

Operators in Prolog are simply a notational convenience. For example, ‘+’ is an infix
operator, so

2+ 1

is an alternative way of writing the term +(2, 1). That is, 2 + 1 represents the data
structure

and not the number 3. (The addition would only be performed if the structure were passed
as an argument to an appropriate procedure, such as is/2; see Section 4.7.2 [ref-ari-eae],
page 103.)

Prolog syntax allows operators of three kinds: infix, prefix, and postfix. An infix operator
appears between its two arguments, while a prefix operator precedes its single argument
and a postfix operator follows its single argument.

44 SICStus Prolog

Each operator has a precedence, which is a number from 1 to 1200. The precedence is used
to disambiguate expressions in which the structure of the term denoted is not made explicit
through the use of parentheses. The general rule is that the operator with the highest
precedence is the principal functor. Thus if ‘+’ has a higher precedence than ‘/’, then

a+b/c a+(b/c)

are equivalent, and denote the term +(a,/(b,c)). Note that the infix form of the term
/(+(a,b),c) must be written with explicit parentheses:

(a+b)/c

If there are two operators in the expression having the same highest precedence, the am-
biguity must be resolved from the types of the operators. The possible types for an infix
operator are

e xfx
o xfy
o yfx

Operators of type ‘xfx’ are not associative: it is required that both of the arguments of the
operator be subexpressions of lower precedence than the operator itself; that is, the principal
functor of each subexpression must be of lower precedence, unless the subexpression is
written in parentheses (which gives it zero precedence).

Operators of type ‘xfy’ are right-associative: only the first (left-hand) subexpression must
be of lower precedence; the right-hand subexpression can be of the same precedence as the
main operator. Left-associative operators (type ‘yfx’) are the other way around.

An atom named Name is declared as an operator of type Type and precedence Precedence
by the command

:-op(Precedence, Type, Name).

An operator declaration can be cancelled by redeclaring the Name with the same Type, but
Precedence 0.

The argument Name can also be a list of names of operators of the same type and precedence.

It is possible to have more than one operator of the same name, so long as they are of
different kinds: infix, prefix, or postfix. Note that the ISO Prolog standard contains the
restriction that there should be no infix and postfix operators with the same name, however,
SICStus Prolog lifts this restriction.

An operator of any kind may be redefined by a new declaration of the same kind. This
applies equally to operators that are provided as standard, except for the ’,’ operator.
Declarations for all these built-in operators can be found in Section 4.1.5.4 [ref-syn-ops-
bop], page 47.

Chapter 4: The Prolog Language 45

For example, the built-in operators ‘+’ and ‘-’ are as if they had been declared by (A) so
that (B) is valid syntax, and means (C) or pictorially (D).

:-op(500, yfx, [+,-1). (a)
a-b+c (®)
(a-b)+c)
+
/ 0\
- c
/ \
a b (D)

The list functor ./2 is not a standard operator, but we could declare it to be (E) and then
(F) would represent the structure (G).

:-op(600, xfy, .). (E)
a.b.c (F)
/ \
a .
/ \
b ¢ @

Contrasting this with the diagram above for a-b+c shows the difference between ‘yfx’ oper-
ators where the tree grows to the left, and ‘xfy’ operators where it grows to the right. The
tree cannot grow at all for ‘xfx’ operators; it is simply illegal to combine ‘xfx’ operators
having equal precedences in this way.

The possible types for a prefix operator are:

e fx

ofy

and for a postfix operator they are:

o xf

o yf

The meaning of the types should be clear by analogy with those for infix operators. As an
example, if not were declared as a prefix operator of type fy, then

not not P

would be a permissible way to write not(not(P)). If the type were fx, the preceding
expression would not be legal, although

46 SICStus Prolog

not P
would still be a permissible form for not (P).

If these precedence and associativity rules seem rather complex, remember that you can
always use parentheses when in any doubt.
4.1.5.2 Manipulating and Inspecting Operators

To add or remove an operator, use op(Precedence, Type, Name). op/3 declares the atom
Name to be an operator of the stated Type and Precedence. If Precedence is 0, the operator
properties of Name (if any) are cancelled.

To examine the set of operators currently in force, use current_op(Precedence, Type,
Name).

4.1.5.3 Syntax Restrictions

Note carefully the following syntax restrictions, which serve to remove potential ambiguities
associated with prefix operators.

1. The arguments of a compound term written in standard syntax must be expressions
of precedence less than 1000. Thus it is necessary to write the expression P:-Q in

parentheses
assert ((P:-Q))
because the precedence of the infix operator ‘:-’, and hence of the expression P:-Q, is

1200. Enclosing the expression in parentheses reduces its precedence to 0.
2. Similarly, the elements of a list written in standard syntax must be expressions of prece-
dence less than 1000. Thus it is necessary to write the expression P->Q in parentheses
[(P—>Q)]
because the precedence of the infix operator ‘=>’; and hence of the expression P->Q, is
1050. Enclosing the expression in parentheses reduces its precedence to 0.
3. In a term written in standard syntax, the principal functor and its following ‘(" must
not be separated by any intervening spaces, newlines, or other characters. Thus
point (X,Y,Z)
is invalid syntax.
4. If the argument of a prefix operator starts with a ‘(’, this ‘(" must be separated from
the operator by at least one space or other layout character. Thus
:=(p;q),r.
(where ‘: =" is the prefix operator) is invalid syntax. The system would try to interpret
it as the structure:

Chapter 4: The Prolog Language 47

That is, it would take ‘: =’ to be a functor of arity 1. However, since the arguments of a
functor are required to be expressions of precedence less than 1000, this interpretation
would fail as soon as the ‘;’ (precedence 1100) were encountered.

In contrast, the term:

= (p;q),r.
is valid syntax and represents the following structure:

/
/\
p

b

\

r

q

4.1.5.4 Built-in Operators

op(
op(
op(

op(
op(
op(
op(
op (

op(
op(
op(
op(
op(
op(

1200,
1200,
1150,

1100,
1050,
1000,
900,
700,

550,
500,
400,
200,
200,
200,

xfx,
fx,
fx,

xfy,
xfy,
xfy,

fy,
xfx,

xfy,

xfy,
fy,

4.1.6 Commenting

[=, ——>1).

[:-, 7= D).

[mode, public, dynamic, volatile, discontiguous,
multifile, block, meta_predicate,
initialization J]).

L D.

[>D.

L, D).

[\+, spy, nospy 1).

[=, \=, is, =.., ==, \==, 0<, 0@, 0=<, ©O>=,
=:=, =\=, <, >, =<, >=1]).

L: D).

L+, -\, /\, \/ D).

[x, /, //, mod, rem, <<, >>]).

[*x 1).

[~ D).

L+, -, \ D).

Comments have no effect on the execution of a program, but they are very useful for making
programs more comprehensible. T'wo forms of comments are allowed:

1. The character ‘%’ followed by any sequence of characters up to the end of the line.

2. The symbol ‘/*’ followed by any sequence of characters (including newlines) up to the
symbol ‘x/’.

4.1.7 Formal Syntax
4.1.7.1 Overview

A Prolog program consists of a sequence of sentences. Each sentence is a Prolog term. How
sentences are interpreted as terms is defined in Section 4.1.7.3 [ref-syn-syn-sen|, page 49,

48 SICStus Prolog

below. Note that a term representing a sentence may be written in any of its equivalent
syntactic forms. For example, the functor :-/2 could be written in standard prefix notation
instead of as the usual infix operator.

Terms are written as sequences of tokens. Tokens are sequences of characters, which are
treated as separate symbols. Tokens include the symbols for variables, constants, and
functors, as well as punctuation characters such as parentheses and commas.

The interpretation of sequences of tokens as terms is defined in Section 4.1.7.4 [ref-syn-syn-
trm], page 49. Each list of tokens that is read in (for interpretation as a term or sentence)
must be terminated by a full-stop (a period followed by a layout character such as newline
or space) token. Two tokens must be separated by a space if they could otherwise be
interpreted as a single token. Both spaces and comments are ignored when interpreting the
token list as a term. A comment may appear at any point in a token list (separated from
other tokens by spaces where necessary).

The interpretation of sequences of characters as tokens is defined on Section 4.1.7.5 [ref-
syn-syn-tok|, page 50. The next section describes the notation used in the formal definition
of Prolog syntax.

4.1.7.2 Notation

e Syntactic categories (or nonterminals) are printed in italics, for example query. De-
pending on the section, a category may represent a class of either terms, token lists, or
character strings.

e A syntactic rule takes the general form
C ::=F1
| F2
| F3

which states that an entity of category C may take any of the alternative forms F1,
F2 or F3.

e Certain definitions and restrictions are given in ordinary English, enclosed in braces
(43).
e A category written as ‘C..." denotes a sequence of one or more Cs.

e A category written as ‘?C’ denotes an optional C. Therefore ‘?C. .. denotes a sequence
of zero or more Cs.

e A few syntactic categories have names with arguments, and rules in which they appear
may contain meta-variables in the form of italicized capital letters. The meaning of
such rules should be clear from analogy with the definite clause grammars described in
Section 4.14 [ref-gru|, page 164.

e In Section 4.1.7.4 [ref-syn-syn-trm|, page 49, particular tokens of the category Name (a
name beginning with a capital letter) are written as quoted atoms, while tokens that
are individual punctuation characters are written literally.

Chapter 4: The Prolog Language

4.1.7.3 Syntax of Sentences as Terms

sentence

clause

rule
unit-clause
directive
query
head

body

goal

grammar-rule
gr-head

gr-body

non-terminal

terminals
gr-condition
module

::= module : sentence
| list

| clause

| directive

| query

| grammar-rule

::= rule | unit-clause
::= head :- body

::= head

= :- body

= 7- body

:= module : head

| goal

::= module : body

| body -> body ; body

| body -> body
| \+ body

| body ; body
| body , body
| goal

1= term

:= gr-head --> gr-body
::= module : gr-head

| gr-head , terminals

| non-terminal

::= module : gr-body

| gr-body -> gr-body ; gr-body

| gr-body -> gr-body
| \+ gr-body

| gr-body ; gr-body
| gr-body , gr-body
| non-terminal

| terminals

| gr-condition

1= term

= list | string
m= 1| {body?}
1= atom

4.1.7.4 Syntax of Terms as Tokens

term-read-in

::= subterm(1200) full-stop

49

{ where list is a list of sentence }

{ where head is not otherwise a
sentence }

{ where goal is not a variable }

{ where term is not otherwise a

body }

{ where non-terminal is not a vari-

able

{ where term is not otherwise a
gr-body }

50

subterm(N)

term(N)

term(1000)
term(0)

op(N,T)

arguments
list

listexpr

constant
number

unsigned-number

atom
functor

= term(M)

::= op(N,fx) subterm(N-1)

| op(N,fy) subterm(N)

| subterm(N-1)
subterm(N-1)

| subterm(N-1) op(N,xfy) sub-
term(N)

| subterm(N)
subterm(N-1)

| subterm(N-1) op(N,xf)

| subterm(N) op(N,yf)

::= subterm(999) , subterm(1000)
::= functor (arguments)

op(N,xfx)

op(N,yfx)

| (subterm(1200))
| { subterm(1200) }
| list

| string

| constant

| variable

::= name

::= subterm(999)

| subterm(999) , arguments
n= [

| [listexpr]

::= subterm(999)

| subterm(999) , listexpr

| subterm(999) | subterm(999)
= atom | number

::= unsigned-number

| sign unsigned-number
| sign inf

| sign nan

:= natural-number |
float

::= name

= name

unsigned-

SICStus Prolog

{ where M is less than or equal to
N}

{ except in the case of a number if
subterm starts with a ‘(’, op must
be followed by layout-text }

{ if subterm starts with a ‘C’, op
must be followed by layout-text }

{ provided there is no layout-text
between the functor and the ‘(’ }

{ where name has been declared
as an operator of type T and
precedence N }

Chapter 4: The Prolog Language 51

4.1.7.5 Syntax of Tokens as Character Strings

SICStus Prolog supports wide characters (up to 31 bits wide), interpreted as a superset of
UNICODE.

Each character in the code set has to be classified as belonging to one of the character
categories, such as small-letter, digit, etc. This classification is called the character-type
mapping, and it is used for defining the syntax of tokens.

Only character codes 0..255 can be part of tokens, i.e. the ISO 8859/1 (Latin 1) subset of
UNICODE!. This restriction may be lifted in the future.

layout-char
These are character codes 0..32 and 127..160. This includes characters such as

(TAB), LFD), and (SPQ).

small-letter
These are character codes 97..122, i.e. the letters ‘a’ through ‘z’, as well as the
non-ASCII character codes 223..246, and 248..255.

capital-letter
These are character codes 65..90, i.e. the letters ‘A’ through ‘Z’, as well as the
non-ASCII character codes 192..214, and 216..222.

digit These are character codes 48..57, i.e. the digits ‘0’ through ‘9’.

symbol-char
These are character codes 35, 36, 38, 42, 43, 45..47, 58, 60..64, 92, 94, and 126,
i.e. the characters:

+-%x/\N " <>=":.70#3% &
In addition, the non-ASCII character codes 161..191, 215, and 247 belong to
this character type.
solo-char These are character codes 33 and 59 i.e. the characters ‘!’ and ¢;’.
punctuation-char
These are character codes 37, 40, 41, 44, 91, 93, and 123..125, i.e. the characters:
hCH), L1 LI}

quote-char
These are character codes 34, 39, and 96 i.e. the characters ‘", **’, and ‘"

)

underline This is character code 95 i.e. the character ‘_’.

Other characters are unclassified and may only appear in comments.

token ::= name
| natural-number
| unsigned-float

1 Characters outside this range can still be included in quoted atoms and strings by using escape sequences
(see Section 4.1.7.6 [ref-syn-syn-esc|, page 53).

52

name

word
symbol

natural-number

unsigned-float

simple-float
exp
exponent
sign
variable

string
string-item

quoted-atom
quoted-item

backquoted-atom
backquoted-item

layout-text
layout-text-item
comment

| variable

| string

| punctuation-char
| layout-text

| full-stop

::= quoted-name

| word

| symbol

| solo-char

| [?layout-text]
| { ?layout-text }

= digit. .

| base- preﬁx alpha. .

| 0 char-item

::= simple-float
| simple-float exp exponent

::= underline ?alpha. .

| capital-letter 7a]pha

n= " 7string-item. . .
::= quoted-char

| nn

| \ escape-sequence
= ?quoted-item. . .
::= quoted-char

|;)

| \ escape-sequence
= ¢ ?backquoted-item. . .
::= quoted-char

|((

| \ escape-sequence

= layout-text-item. . .

= layout-char | comment
= /* ?char... */

:= small-letter Yalpha. ..
::= symbol-char. . .

n= digit. .. . digit. ..
n=e | E

= digit. .. | sign digit. . .
n=— |+

)

[

SICStus Prolog

{ except in the case of a full-stop
or where the first 2 chars are ‘/*’

}

{ where each alpha must be
digits of the base indicated by
base-prefix, treating a,b,... and
AB,... as 10,11,... }

{ yielding the character code for
char }

{ other than ‘" or ‘\’ }
{ other than ¢’’

or ‘\" }

{ other than ‘“’ or ‘\’ }

{ where ?7char... must not con-

tain ‘*/’ }

Chapter 4: The Prolog Language

full-stop
char

printing-char

alpha

escape-sequence

quoted-name

base-prefix

char-item
other-escape-
sequence

quoted-char

| % ?char... @ILFD

::= layout-char

| printing-char
::= alpha

| symbol-char

| solo-char

| punctuation-char
| quote-char

:= capital-letter | small-letter |
digit | underline
=D

| t

H H < B

| e
| 4

| a

| other-escape-sequence
::= quoted-atom

| backquoted-atom

= 0b

| 0o

| 0x

::= quoted-item

== x alpha. .. \

| o digit... \

|
I\

|)

| n

| [4

=

| printing-char

93

{ where ?7char... must not con-
tain }

{ the following token, if any, must
be layout-text}

{ backspace, character code 8 }

{ horizontal tab, character code 9
}

{ newline, character code 10 }

{ vertical tab, character code 11 }
{ form feed, character code 12 }
{ carriage return, character code
13}

{ escape, character code 27 }

{ delete, character code 127 }

{ alarm, character code 7 }

{ indicates base 2 }
{ indicates base 8 }
{ indicates base 16 }

{treating a,b,... and A,B,... as
10,11,... } in the range [0..15],
hex character code }

{ in the range [0..7], octal charac-
ter code }

{ ignored }

{ stands for itse