
SICStus Prolog Release Notes
by the Intelligent Systems Laboratory

Swedish Institute of Computer Science
PO Box 1263

SE-164 29 Kista, Sweden

Release 3.8.6
April 2001

Swedish Institute of Computer Science
sicstus-request@sics.se http://www.sics.se/sicstus/

mailto:sicstus-request@sics.se
http://www.sics.se/sicstus/

Copyright c© 2000 SICS

Swedish Institute of Computer Science
PO Box 1263
SE-164 29 Kista, Sweden

Permission is granted to make and distribute verbatim copies of these notes provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of these notes under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of these notes into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by SICS.

Chapter 1: Release notes and installation guide for UNIX 1

1 Release notes and installation guide for UNIX

This chapter assumes that the environment variable PATH includes <prefix>/bin, where
<prefix> points to the SICStus installation directory. The installation directory is specified
during installation, see Section 1.2 [UNIX installation], page 1. For example:

csh,tcsh> setenv PATH "/usr/local/bin:$PATH"
sh,bash,ksh> export PATH="/usr/local/bin:$PATH"

1.1 The Crypt Utility

The SICStus binary distributions are encrypted with the crypt program. If you do not
have crypt on your machine, you can download a public domain crypt utility available via
anonymous FTP from

ftp://ftp.sics.se/archive/sicstus3/aux/crypt.tar.gz

The enclosed README files describes how to compile it.

1.2 Installation

Most users will install SICStus from a binary distribution. These are available for all
supported platforms. Information on how to download and unpack the binary distribution
is sent by email when ordering SICStus.

Binary distributions are installed by executing a interactive installation script called
InstallSICStus. Type

% InstallSICStus

and follow the instructions on the screen.

During the installation, you will be required to enter your site-name and license code. These
are included in the download instructions.

The installation program does not only copy files to their destination, it also performs final
link steps for some of the executables and for the library modules requiring third-party
software support (currently library(bdb), library(tcltk), and library(jasper)). This
is done in order to adapt to local variations in installation paths and versions.

Compiling SICStus from the sources requires a source code distribution, available on request
for customers with maintenance contract. Contact sicstus-support@sics.se for more
info.

Instructions for compiling and installing SICStus from the source code is available in the
files README and INSTALL in the source code distribution.

ftp://ftp.sics.se/archive/sicstus3/aux/crypt.tar.gz

Chapter 1: Release notes and installation guide for UNIX 2

1.3 Foreign language interface

1.3.1 How to customize splfr and spld

The utilities splfr and spld are implemented as Perl scripts and can be customized in
order to adapt to local variations. Do not attempt this unless you know what you are doing.
Customization is done by editing their common configuration file spld.config. Follow
these instructions:

1. Locate the configuration file spld.config. It should be located in the same directory
as splfr and spld.

2. Make a copy for spld.config, lets call it hacked_spld.config. Do not edit the
original file.

3. The configuration file contains lines on the form CFLAGS=-g -O2. Edit these according
to your needs. Do not add or remove any flags.

4. You may now use the modified spld.config together with spld or splfr like this
% spld [...] --config=/path/to/hacked_spld.config

Replace /path/to with the actual path to the hacked configuration file.

1.3.2 How to create dynamic linked foreign resources manually

To compile the glue code file and user code, use the compiler options assigned to INCR_
CFLAGS (see ‘spld.config’) by ./configure. In addition also include -DSPDLL. To ensure
an up-to-date compilation procedure run splfr with --verbose argument to see what it
does.

The object files are then linked into a dynamic linked foreign resource. For this you will
normally use the linker whose name was assigned to SHLD by ./configure and linker
options assigned to SHLDFLAGS. The resource will consist of the file ResourceName.Suffix
where Suffix is the value assigned to SHSFX by ./configure. The defaults are

SHLD= ld
SHLDFLAGS= -shared
SHSFX= so

E.g. on Sparc/SunOS 5.X:

% cc -c -DSPDLL glue_code.c
% cc -c -DSPDLL mycode.c
% ld -shared glue_code.o mycode.o -o myresource.so

Libraries needed by the resource should normally also be included in the link command
line.

1.3.3 Interfacing to C++

Functions in C++ files which should be called from Prolog must use C linkage, e.g.:

Chapter 1: Release notes and installation guide for UNIX 3

extern "C" {
void myfun(long i)
{...};
};

To build a dynamic linked foreign resource with C++ code, you may (depending on platform)
have to explicitly include certain libraries. E.g., on Sparc/SunOS 5.X using gcc:

% splfr -LD -L/usr/gnu/lib/gcc-lib/sparc-sun-solaris2.4/2.7.0 -lgcc

The library path is installation dependent, of course.

1.3.4 Runtime Systems on Target Machines

This section describes how to distribute runtime systems on target machines, i.e., machines
which do not have SICStus installed.

In order to build a runtime system for distribution on a target machine, the option
--moveable must be passed to spld. This option prevents spld from hardcoding any
paths into the executable.

Next, in order for SICStus to be able to locate all relevant files, the following directory
structure is recommended.

myapp.exe
lib/
+--- libsprt38.so
+--- sicstus-3.8.6/

+--- bin/
| +--- sprt.sav
+--- library/

+--- <files from $SP_PATH/library>

myapp.exe is typically created by a call to spld:

% spld --main=user --moveable [...] -o ./myapp.exe

In order for the executable to be able to locate sprt.sav, the variable SP_PATH needs to
be set. If the example above is rooted in ‘/home/joe’, then SP_PATH should be set to
‘/home/joe/lib/sicstus-3.8.6’.

Unless the --static option is passed to spld, it might also be necessary to set LD_LIBRARY_
PATH (or equivalent) to ‘/home/joe/lib’ (in the example above) in order for the dynamic
linker to find libsprt38.so. If the --static option is used, this is not necessary.

1.4 Platform specific notes

This section contains some installation notes which are platform specific under UNIX.

Chapter 1: Release notes and installation guide for UNIX 4

• Alpha/OSF1 Runtime loading of library(bdb) or library(tcltk) might not work
unless Berkeley DB and Tcl/Tk is installed in the standard directories (e.g.,
‘/usr/shlib/’). In the case of library(bdb) this is further complicated by the fact
that Berkeley DB uses the name ‘libdb.*’ which conflicts with a builtin library of the
same name.
There are two solutions

* Override the runtime linkers default search path by setting LD_LIBRARY_PATH

Example:
bash> export LD_LIBRARY_PATH=/usr/local/BerkeleyDB/lib:/home/joe/mytcltk/lib
csh> setenv LD_LIBRARY_PATH /usr/local/BerkelyDB/lib:/home/joe/mytcltk/lib

* Prelink tcltk or bdb (or both) into the executable. Example:
% spld -D --resources=tcltk,bdb -o ./mysicstus

• HPUX Loading foreign resources (e.g., use_module(library(system))) may not work
unless SHLIB PATH is setup to include the directory that contains ‘libsprt38.sl’,
e.g.:

hpux>setenv MYSP /src/sicstus/bin/release-3.8.3/hppa-hpux-B.10.20
hpux>unsetenv SHLIB_PATH
hpux>$MYSP/bin/sicstus -f
SICStus 3.8.3 (hppa-hpux-B.10.20): Fri May 5 20:50:33 EDT 2000
Licensed to SICS
| ?- use_module(library(system)). % This will not work
{loadingsystem.po...}
{module system imported into user}
/usr/lib/dld.sl: Can’t find path for shared library: libsprt38.sl
/usr/lib/dld.sl: No such file or directory
{SYSTEM ERROR: ’shl_load(....) failed in load_foreign_resource/1’}

<< halt >>

hpux>setenv SHLIB_PATH ${MYSP}/lib
hpux>$MYSP/bin/sicstus -f
SICStus 3.8.3 (hppa-hpux-B.10.20): Fri May 5 20:50:33 EDT 2000
Licensed to SICS
| ?- use_module(library(system)). % This will work
{loading system.po...}
{module system imported into user}
{loadedsystem.po}

• FreeBSD Loading foreign resources (e.g., use module(library(system))) may not
work unless LD LIBRARY PATH is setup to include the directory that contains
‘libsprt38.so’, e.g. setenv LD_LIBRARY_PATH /usr/local/lib. See the similar
problem with HPUX above.

• AIX When using the spld and splfr utilities you may see warnings like the following:
ld: 0711-415 WARNING: Symbol expand_file_name is already exported.
ld: 0711-319 WARNING: Exported symbol not defined: normal_path

These warnings can be ignored.

Chapter 1: Release notes and installation guide for UNIX 5

• Solaris 64bit You cannot install (or build) the 64 bit version of SICStus using gcc.
You need to use the Sun Workshop/Forte compiler. InstallSICStus will try to find it
during the install but if that fails you can set the environment variable CC to, e.g.,
‘/opt/SUNWspro/bin/cc’ before invoking InstallSICStus.

• Solaris 64bit The following libraries are not supported: library(bdb), library(db),
library(tcltk), library(jasper).

• MacOS X Server The following libraries are not supported: library(bdb),
library(db), library(tcltk), library(jasper).

• MacOS X Server When creating executables using spld, the directory which contains
the executable must be in the user’s PATH variable.

• MacOS X Server Sometimes, the default limit on the process’ data-segment is unrea-
sonably small, which may lead to unexpected memory allocation failures. To check this
limit, do

tcsh> limit data
datasize 6144 kbytes

This indicates that the maximum size of the data-segment is only 6 Mb. To remove
the limit, do

tcsh> limit data unlimited
datasize unlimited

Note: limit is a shell built-in in tcsh. It may have a different name in other shells.

1.5 Files that may be redistributed with runtime systems

When a runtime system is redistributed to third parties, only the following files may be
included in the distribution. All filenames are relative to ‘<prefix>/lib/sicstus-3.8’:

‘../*.{a,so,sl,dylib}’
‘bin/sprt.sav’
‘bin/jasper.jar’
‘library/*.{tcl,po,pl}’
‘library/*/*.{s.o,so,sl,dylib}’
‘library/*/*.{po,pl}’
‘sp_platform’

(Located with InstallSICStus)

Chapter 2: Release notes and installation guide for Windows 6

2 Release notes and installation guide for
Windows

This chapter assumes that the environment variable PATH includes %SP_PATH%\bin, where
SP_PATH points to the SICStus installation directory. For example:

C:\> set PATH=c:\Program Files\SICStus Prolog\bin;%PATH%

You may also want to include the paths to Tcl/Tk (see Chapter 3 [Tcl/Tk Notes], page 13),
Java (see Section 4.2 [Getting Started], page 15), and Berkeley DB (see Chapter 6 [Berkeley
DB notes], page 22).

2.1 Requirements

• Operating environment: Microsoft Windows 95, 98, NT 4.0, 2000
• Processor: 386, 486, or Pentium-class
• Available user memory: 16 Mbytes
• Available hard drive space: 20 Mbytes
• For interfacing with C or C++: Microsoft Visual C++ 6.0 or later.

2.2 Installation

The development system comes in two flavors:

1. A console-based executable which is suitable to run from a DOS-prompt, from batch
files, or under Emacs. See Section 2.4 [Command line editing], page 9.

2. A windowed executable providing command line editing and menus.

The distribution consists of a single, self-installing executable (‘InstallSICStus.exe’) con-
taining development system, runtime support files, library sources, and manuals.

Installed files on a shared drive can be reused for installation on other machines.

SICStus Prolog requires a license code to run. You should have received from SICS your
site name, the expiration date and the code. This information is normally entered during
installation:

Expiration date: ExpirationDate
Site: Site
License Code: Code

but it can also be entered later on by executing the following commands at a command
prompt:

% splm -i Site
% splm -a sicstus3.8 ExpirationDate Code

Chapter 2: Release notes and installation guide for Windows 7

2.3 Windows Notes

• Pre-linked foreign resources are not supported under Windows; they have to be imple-
mented as DLLs. They are created using the utility splfr as described in the user’s
manual.

• The file name arguments to splfr and spld should not have embedded spaces. For
file names with spaces you can use the corresponding short file name.

• If SICStus cannot find the license information (see below) or if it was entered incorrectly
then SICStus will just exit. There will be no dialog or other feedback informing you of
the problem.
Note that the license consists of three parts, the Site name (or user name for personal
licenses), the License code, and the Expiration date. All parts are case sensitive, and
spaces are significant. A common mistake is to enter the License code correctly but
the Site/User name incorrectly.
If you have trouble with the license code use ‘splm.exe’, as explained in the letter with
your license code.

• On Windows 95/98 the shortcut
installed in the ‘Start’ menu (e.g., ‘Start\Programs\SICStus Prolog 3.8.6’) may
not work immediately after installation. Restarting after installing SICStus appears to
cure this. If this does not help you can add your own shortcut to, e.g., ‘C:\Program
Files\SICStus Prolog\bin\spwin.exe’.

• Selecting the ‘Manual’ or ‘Release Notes’ item in the ‘Help’ menu may give an error
message similar to ‘... \!Help\100#!Manual.lnk could not be found’. This hap-
pens when Adobe Acrobat Reader is not installed or if it has not been installed for the
current user. Open ‘C:\Program Files\SICStus Prolog\doc\pdf\’ in the explorer
and try opening ‘relnotes.pdf’. If this brings up a configuration dialog for Adobe
Acrobat, configure Acrobat and try the ‘Help’ menu again. Alternatively, you may
have to obtain Adobe Acrobat. It is available for free from http://www.adobe.com/.

• Windows NT, 2000
We recommend that SICStus is installed by a user with administrative privileges and
that the installation is made ‘For All Users’.
If SICStus is installed for a single user then SICStus will not find the license information
when started by another user. In this case you can use the command line utility
‘splm.exe’ as described in the letter containing your license code.

• Windows The first time the installer is run it will install necessary system files for
supporting the new ‘Windows Installer’ technology from Microsoft. This will fail
unless the user has administrative rights. A typical symptom is an error message
asking for ‘msiexec’. The Windows Installer technology is already part of Windows
2000.

2.3.1 Runtime Systems on Target Machines

This section describes how to launch a runtime system on a so called target machine, i.e.,
a machine which does not have SICStus installed.

http://www.adobe.com/

Chapter 2: Release notes and installation guide for Windows 8

In order to locate all relevant files, the following directory structure is recommended.

myapp.exe
sprt38.dll
sp38\
+--- bin\
| +--- sprt.sav
+--- library\

+--- <files from %SP_PATH%\library>

myapp.exe is typically created by a call to spld:

% spld --main=user [...] -o ./myapp.exe

If the directory containing sprt38.dll contains a directory called sp38, SICStus assumes
that it is part of a Runtime System as described in the picture. The runtime library
(sprt.sav) is then looked up in the directory (‘sp38/bin’), as in the picture. Furthermore,
the initial library_directory/1 fact will be set to the same directory with sp38/library
appended.

The directory structure under library/ should look like in a regular installed SICStus,
including the platform-specific subdirectory (x86-win32-nt-4 in this case). If your appli-
cation needs to use library(system) and library(random), your directory structure may
look like:

myapp.exe
sprt38.dll
sp38\
+--- bin\
| +--- sprt.sav
+--- library\

+--- random.po
+--- system.po
+--- x86-win32-nt-4 \

+--- random.dll
+--- system.dll

The sp* files can also be put somewhere else in order to be shared by several applications
provided the sprt38.dll can be located by the DLL search.

The 38 in the file names above is derived from SICStus’s major and minor version numbers,
i.e., currently 3 and 8. Naming the files with version number enables applications using
different sicstus versions to install the sp* files in the same directory.

2.3.2 Generic Runtime Systems

There are three ready-made runtime systems provided
with the distributions, ‘%SP_PATH%\bin\sprt.exe’, ‘%SP_PATH%\library\sprtw.exe’, and
‘%SP_PATH%\bin\sprti.exe’. These are created using spld:

Chapter 2: Release notes and installation guide for Windows 9

% spld --main=restore main.sav -o sprt.exe
% spld --main=restore main.sav -i -o sprti.exe
% spld --main=restore main.sav --window -o sprtw.exe

These are provided for users who do not have a C-compiler available. The programs
launches a runtime system by restoring the saved state ‘main.sav’ (created by save_
program/[1,2]). If it was created by save_program/2, the given startup goal is run. Then,
user:runtime_entry(start) is run. The program exits with 0 upon normal temination
and with 1 on failure or exception.

The program ‘sprti.exe’ assumes that the standard streams are connected to a terminal,
even if they to not seem to be (useful under Emacs, for example). ‘sprtw.exe’ is a windowed
executable, corresponding to ‘spwin.exe’.

Note: the current working directory must be set to contain ‘main.sav’ for these runtime
systems to work. An easy way to achieve this is to use a short cut to start the runtime
system. You can specify the working directory used as one of the properties of the the
shortcut.

For more info on how spld works, see section “The spld utility” in the SICStus Prolog
Manual.

2.3.3 Setting SP PATH under Windows

The use of the SP_PATH variable under Windows is discouraged, since Windows applications
can find out for themselves where they were started from.

SP_PATH is only used if the directory where sprt<ver>.dll is loaded from does not contain
sp<ver> (a directory) or sprt.sav (where <ver> is "38" for SICStus version 3.8(.x)). If
SP_PATH is used, SICStus expects it to be set such that %SP_PATH%/bin contains sprt.sav.
See Section 2.3.1 [Runtime Systems on Target Machines], page 7.

2.4 Command line editing

Command line editing supporting Emacs-like commands and IBMPC arrow keys is provided
in the console-based executable. The following commands are available:

^h erase previous char

^d erase next char

^u kill line

^f forward char

^b backward char

^a begin of line

^e end of line

Chapter 2: Release notes and installation guide for Windows 10

^p previous line

^n next line

^i insert space

^s forward search

^r reverse search

^v view history

^q input next char blindly

^k kill to end of line

Options may be specified in the file ‘%HOME%\spcmd.ini’ as:

Option Value

on separate lines. Recognized options are:

lines Value is the number of lines in the history buffer. 1-100 is accepted; the default
is 30.

save Value is either 0 (don’t save or restore history buffer) or 1 (save history buffer
in ‘%HOME%\spcmd.hst’ on exit, restore history from the same file on start up.

The command line editing is switched off by giving the option ‘-nocmd’ when starting
SICStus. Command line editing will be automatically turned off if SICStus is run with
piped input (e.g., from Emacs).

2.5 The console window

The console window used for the windowed executable is based on code written by Jan
Wielemaker <jan@swi.psy.uva.nl>.

In SICStus 3.8 the console was enhanced with menu access to common prolog flags and file
operations. Most of these should be self explanatory. The ‘Reconsult’ item in the ‘File’
menu reconsults the last file consulted with use of the ‘File’ menu. It will probably be
replaced in the future with something more powerful.

Note that the menus work by simulating user input to the prolog top level or debugger. For
this reason it is recommended that the menus are only used when SICStus is waiting for a
goal at the top-level (or in a break level) or when the debugger is waiting for a command.

2.5.1 Console Preferences

The stream-based console window is a completely separate library, using its own configu-
ration info. It will look at the environment variable CONSOLE which should contain a string
of the form name:value{,name:value} where name is one of:

Chapter 2: Release notes and installation guide for Windows 11

sl The number of lines you can scroll back. There is no limit, but the more you
specify the more memory will be used. Memory is allocated when data becomes
available. The default is 200.

rows The initial number of lines. The default is 24.

cols The initial number of columns. The default is 80.

x The X coordinate of the top-left corner. The default is determined by the
system.

y The Y coordinate of the top-left corner. The default is determined by the
system.

You will normally specify this in your ‘autoexec.bat’ file. Here is an example:

% set CONSOLE=sl:600,x:400,y:400

Many of these settings are also accessible from the menu ‘Settings’ of the console.

2.6 Emacs Interface

Choosing ‘Send EOF’ from the menu seems to generate an eternal end of file state, typically
causing SICStus to exit. Instead a C-d can be generated by typing C-q C-d. Alternatively
you can enter the symbol end_of_file followed by a period.

Sometimes ‘Send EOF’ from the menu or deleting the *prolog* buffer leaves a detached
sicstus process running (not idle). You will have to terminate it with the task manager.
The cause is an error in the SICStus interrupt handling code, present at least up to 3.8.6
(inclusive).

2.7 Limitations

• File paths with both / and \ as separator are accepted. SICStus returns paths using
/. Note that \, since it is escape character, must be given as \\ unless the prolog flag
character_escapes is set to off.

• All file names and paths are converted to lowercase when expanded by absolute_file_
name/2 etc.

• File paths of the form ‘~/’ are expanded using the values of the environment variables
‘HOMEDRIVE’ and ‘HOMEPATH’. The form ~username/ is not expanded. The form $VAR
is expanded using the value of the environment variable VAR. The form %VAR% is
not recognized.

• interruptible:
Blocking system calls, such as those used by library(sockets), are not interruptible by
^C in any kind of SICStus executable.

• Pre-linked foreign resources are not supported. The --resources option to spld is a
no-op.

Chapter 2: Release notes and installation guide for Windows 12

• In the windowed executable, the user_error stream is line buffered.
• Running under Emacs has been tried with recent versions of GNU Emacs and XEmacs.

See Chapter 7 [The Emacs Interface], page 23.
• Tcl/Tk: The top_level_events option to tk_new/2 is not supported.
• stream_select/3 is not supported.
• stream_interrupt/3 is not supported.
• library(timeout) is not supported.
• library(sockets): The AF_UNIX address family is (unsurprisingly) not supported;

socket_select/[5,6] support only socket streams for arg 4(5).
• library(system): popen/3 is not supported. kill/2 attempts to terminate the re-

quested process irrespectively of the 2nd arg. You should not use it as it bypasses the
killed process cleanup routines.

2.8 Files that may be redistributed with runtime systems

When a runtime system is redistributed to third parties, only the following files may be
included in the distribution. All filenames are relative to ‘%SP_PATH%’:

‘bin\sprt.sav’
‘bin\jasper.jar’
‘bin*.dll’
‘bin*.po’
‘library*.{tcl,po,pl,bas}’
‘library**.dll’
‘library**.{po,pl}’

Chapter 3: Tcl/Tk Notes 13

3 Tcl/Tk Notes

Tcl/Tk itself is not included in the SICStus distribution. It must be installed in order to
use the interface. It can be downloaded from the Tcl/Tk primary website:

http://dev.scriptics.com

The Tcl/Tk interface module included in SICStus Prolog 3.8 (library(tcltk)) is verified
to work with Tcl/Tk 8.2 and 8.3 (with a few exceptions noted below). Previous versions
of the interface have been verified to work with Tcl/Tk versions 7.3/3.6, 7.4/4.0, 7.5/4.1,
7.6/4.2, 8.0, and 8.1. The current version of the interface may or may not work with these
versions.

Under UNIX, the installation program automatically detects the Tcl/Tk version (if the user
does not specify it explicitly). The distributed files are compiled for Tcl/Tk 8.3.

Under Windows, the binary distribution is compiled against Tcl/Tk 8.2. If you need to use
another version of Tcl/Tk you have to recompile library(tcltk), see section “Configur-
ing the Tcl/Tk library module under Windows” in the SICStus Prolog FAQ. Note: You
need to have the Tcl/Tk binaries accessible from your ‘PATH’ environment variable, e.g.,
‘C:\Program Files\Tcl\bin"’.

Note: The Tcl/Tk interface module is not supported under: Mac OS X Server

As of SICStus Prolog 3.8.1 Tcl_FindExecutable("") is called when the ‘tcltk’ library
is loaded, before any Tcl/Tk interpreter is created. This should fix errors related to not
finding ‘init.tcl’ and also improve support for international character sets.

3.1 The Tcl/Tk Terminal Window

The Tcl/Tk interface includes a experimental terminal window based on Tcl/Tk. It is
opened by using the (undocumented) predicate:

tk_terminal(Interp, TextWidget, InStream, OutStream, ErrStream)
Given a TextWidget, e.g. .top.myterm, this predicate opens three prolog
streams for which the text widget acts as a terminal.

There is also a library(tkconsol), making use of tk_terminal/5, which switches the
Prolog top level to a Tk window. This is done by simply loading the library module.

http://dev.scriptics.com

Chapter 4: Jasper Notes 14

4 Jasper Notes

4.1 Supported Java Versions

Jasper requires at least Java 2 (a.k.a. JDK 1.2) to run. Except on Windows the full develop-
ment kit, not just the JRE, is needed. Jasper does not work with Visual J++ or Visual Café.
Unless indicated otherwise you can download the JDK from http://www.javasoft.com.

Jasper is only supported under the following configurations:

Solaris 2.x (SPARC and x86)

JDK 1.2
Verified using Sun’s JDK 1.2.2 06, earlier versions of 1.2 are also
expected to work.

JDK 1.3 JDK 1.3 is now supported with some limitations, see the Linux
entry below.

JDK 1.3.1 JDK 1.3.1 is now supported, see the Linux entry below.

Linux (x86)

JDK 1.2 Verified using
Blackdown’s JDK (Version 1.2.2 FCS for Linux). Downloadable
from http://www.blackdown.org/java-linux.html.
Sun’s JDK 1.2.2 does not support native threads and therefore does
not work.

JDK 1.3.0 02
Other versions of JDK 1.3 are also expected to work.
JDK 1.3 uses signals in a way that are incompatible with the way
signals are used by the sicstus development executable (‘sicstus’).
Most of the signal handlers used by (‘sicstus’) are now turned off
automatically before library(jasper) starts Java. This appear
to make JDK 1.3 work with the sicstus development system. How-
ever, according to the JDK 1.3 documentation this may still cause
problems. In JDK 1.3.1 the problem with conflicting uses of signals
was recognized and a Java initialization option was added to reduce
Java’s use of signals, see the JDK 1.3.1 item below.
Note that this is a problem only with development systems.
SICStus run-time systems does not use signals and for this rea-
son JDK 1.3 works, e.g., when embedding SICStus in Java using
the Jasper package.

JDK 1.3.1 Tested with JDK 1.3.1 beta 1. JDK 1.3.1 uses signals in the same
way as JDK 1.3 resulting in the same conflicts with the sicstus
development system as described above. However, JDK 1.3.1 sup-
ports the option -Xrs which makes JDK use signals in a way that
is compatible with the sicstus development system.

http://www.blackdown.org/java-linux.html

Chapter 4: Jasper Notes 15

There are several ways to pass this flag to Java. The recommended
way is to pass it with jasper_initialize:

bash> sicstus -m
...
| ?- use_module(library(jasper)),

jasper_initialize([’-Xrs’, <other options here>], JVM).

Alternatively you can pass it using the (not documented in the JDK
documentation) environment variable _JAVA_OPTIONS:

bash> export _JAVA_OPTIONS=’-Xrs’
bash> sicstus -m

Using _JAVA_OPTIONS is currently the only way to pass this flag if
you rely on the automatic Java initialization done when invoking a
Java foreign resource.
Note that, also for JDK 1.3.1, this is only a problem with sicstus
development system.

Windows 95/98/NT/2000
Verified using Sun’s JDK 1.3 and JDK 1.2.2.

Other platforms
JDK 1.3 appears to be mature enough and widespread enough to make it fea-
sible to support on other SICStus platforms as well if required. Your input on
this issue is much appreciated, especially if you are familiar with linker issues
and JDK installation on the platform in question.

4.2 Getting Started

This section describes some tips and hints on how to get the interface started. This is
actually where most problems occur.

4.2.1 Windows

Under Windows, it is recommended that you add SICStus’s and Java’s DLL directories
to your %PATH%. This will enable Windows library search method to locate all relevant
DLLs. For SICStus, this is the same as where sicstus.exe is located, usually C:/Program
Files/SICStus Prolog/bin). For Java it is usually ‘C:\jdk1.3\jre\bin\hotspot’
and ‘C:\jdk1.3\bin’ (for JDK 1.2.2 it would be ‘C:\jdk1.2.2\jre\bin\classic’ and
‘C:\jdk1.2.2\bin’).

For example (Windows NT):

set PATH=C:\jdk1.3\jre\bin\hotspot;C:\jdk1.3\bin;%PATH%
set PATH=C:\Program Files\SICStus Prolog\bin;%PATH%

Chapter 4: Jasper Notes 16

4.2.2 Unix

When library(jasper) is used to embed Java in a SICStus development system or run-
time system then the run-time linker needs to be told where to find the Java libraries (e.g.,
‘libjvm.so’). During installation ‘InstallSICStus’ will build the ‘sicstus’ executable so
that it contains the necessary information.

If you use ‘spld’ to relink sicstus or to build a run-time system you can use the command
line option --resource=-jasper. This tells ‘spld’ to include the search path (rpath) in
the executable needed to ensure that library(jasper) can find the Java libraries.

If you want to run ‘sicstus’ with another Java than what was specified during installation
you can use ‘spld’ without the --resources option to get a sicstus executable without any
embedded Java paths. In this case you need to set the environment variable LD_LIBRARY_
PATH (or similar) appropriately. One example of this is to use the JDK 1.3 server version
instead of the default (client) version.

Alternatively you can use the ‘spld’ with both the --resource=-jasper option and --
with-jdk=DIR to generate a development system with embedded paths to another Java
directory tree.

4.2.3 Running Java from SICStus

If SICStus is used as parent application, things are usually really simple. Just execute the
query | ?- use_module(library(jasper)).. After that, it is possible to perform meta-
calls as described in section “Jasper Library Predicates” in the SICStus Prolog Manual, or
load a foreign resource containing foreign(...,java,...) predicates.

On Unix, you may encounter the following error message:

% sicstus
SICStus 3.8 (sparc-solaris-5.5.1): Wed Sep 22 08:42:14 MET DST 1999
Licensed to SICS
| ?- use_module(library(jasper)).
[...]
{SYSTEM ERROR: ’Attempted to load Java engine into sbrk\’d
SICStus system (try starting SICStus with -m option)’}
[...]

Since most platforms don’t allow sbrk() and malloc() (or threads) to coexist peacefully,
SICStus refuses to load the JVM if not the -m flag was given to SICStus. The message can,
as the error message suggests, be avoided if sicstus is started with the -m flag:

% sicstus -m

The ‘-m’ flag is neither needed, nor recommended, on Windows.

Chapter 4: Jasper Notes 17

4.2.4 Running SICStus from Java

If Java is used as parent application, things are a little more complicated. There are a
couple of things which need to be taken care of. The first is to specify the correct class
path so that Java can find the Jasper classes (SICStus, SPTerm, and so on). This is done
by specifying the pathname of the file jasper.jar:

% java -classpath $SP_PATH/bin/jasper.jar ...

SP_PATH does not need to be set; it is only used here as a placeholder. See the documentation
of the Java implementation for more info on how to set classpaths.

The second is to specify where Java should find the Jasper native library (libjasper.so
or jasper.dll), which the SICStus class loads into the JVM by invoking the method
System.loadLibrary("jasper"). This method uses a platform dependent search method
to locate the Jasper native library, and quite often this method fails. A typical example of
such a failure looks like:

% java -classpath [...]/jasper.jar se.sics.jasper.SICStus
Trying to load SICStus.
Exception in thread "main" java.lang.UnsatisfiedLinkError: no jasper
in java.library.path
at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1133)
at java.lang.Runtime.loadLibrary0(Runtime.java:470)
at java.lang.System.loadLibrary(System.java:745)
at se.sics.jasper.SICStus.loadNativeCode(SICStus.java:37)
at se.sics.jasper.SICStus.initSICStus(SICStus.java:80)
at se.sics.jasper.SICStus.<init>(SICStus.java:111)
at se.sics.jasper.SICStus.main(SICStus.java:25)

This can be fixed by explicitly setting the Java property java.library.path to the location
of libjasper.so (or jasper.dll), like this:

% java -Djava.library.path=/usr/local/lib [...]

When Jasper is used in run-time systems, additional constraints apply as described in
Section 2.3.1 [Runtime Systems on Target Machines], page 7.

If this works properly, SICStus should have been loaded into the JVM address space. The
only thing left is to tell SICStus where the runtime library (i.e., sprt.sav) is located. You
may choose to specify this explicitly by either giving a second argument when initializing
the SICStus object or by specifying the property sicstus.path:

Example (UNIX):

% java -Dsicstus.path=/usr/local/lib/sicstus-3.8

Example (Win32):

% java -Dsicstus.path="c:\Program Files\SICStus Prolog"

Chapter 4: Jasper Notes 18

If you do not specify any explicit path, SICStus will search for the runtime library itself.

If everything is setup correctly, you should be able to call main (which contains a short
piece of test-code) in the SICStus root class, something like this:

% java -Djava.library.path="/usr/local/lib" \
-Dsicstus.path="/usr/local/lib/sicstus-3.8" \
-classpath "/usr/local/lib/sicstus-3.8/bin/jasper.jar" \
se.sics.jasper.SICStus

Trying to load SICStus.
If you see this message, you have successfully
initialized the SICStus Prolog engine.

It is similar under Win32, with the exception that the paths look slightly different.

4.3 Jasper Package Options

The following Java system properties can be set to control some recently added features of
the Jasper package:

se.sics.jasper.SICStus.checkSPTermAge
This flag is unsupported.
You probably should not use it in production code. It may be ignored (or be
made the default) in future releases. However, we strongly recommend that
you use this flag during development and report any good or bad experiences
to sicstus-support@sics.se.
A boolean, off by default. If true then run-time checks are performed
that attempt to detect potentially dangerous use of the SPTerm.putXXX
family of functions. The value of this flag can be set and read with
SICStus.setShouldCheckAge() and SICStus.shouldCheckAge().
The run-time checks throws an IllegalTermException when there is risk that
a SPTerm is set to point to a Prolog term strictly newer than the SPTerm. In this
context strictly newer means that there exists an open query that was opened
after the SPTerm object was created but before the Prolog term. See section
“SPTerm and Memory” in the SICStus Prolog Manual, for more information.

java -Dse.sics.jasper.SICStus.checkSPTermAge=true ...

or, from Prolog:
jasper_initialize(

[’-Dse.sics.jasper.SICStus.checkSPTermAge=true’],
JVM)

se.sics.jasper.SICStus.reuseTermRefs
This flag is unsupported.
A boolean, on by default. If false then SPTerm.delete() will only invalidate
the SPTerm object, it will not make the Prolog side term-ref available for re-use.
The value of this flag can be set and read with SICStus.setReuseTermRefs()
and SICStus.reuseTermRefs(). There should be no reason to turn it off.

mailto:sicstus-support@sics.se

Chapter 4: Jasper Notes 19

To set this flag do:
java -Dse.sics.jasper.SICStus.reuseTermRefs=true ...

or, from Prolog:
jasper_initialize(

[’-Dse.sics.jasper.SICStus.reuseTermRefs=true’],
JVM)

se.sics.jasper.SICStus.debugLevel
This flag is unsupported.
You probably should not use it in production code. It may be removed or
change meaning in future releases.
An integer, zero by default. If larger than zero then some debug info is output
to System.out. Larger values produce more info. The value of this flag can be
set and read with SICStus.setDebugLevel() and SICStus.debugLevel().

java -Dse.sics.jasper.SICStus.debugLevel=1 ...

or, from Prolog:
jasper_initialize(

[’-Dse.sics.jasper.SICStus.debugLevel=1’],
JVM)

4.4 Known Bugs and Limitations in Jasper

• Jasper cannot be used from within applets, since Jasper relies on calling methods
declared as native. This is due to a security-restriction enforced on applets; they are
not allowed to call native code.

• As of SICStus 3.8.1 only native threads are supported (as opposed to ‘green threads’).
This is the default under Windows. Under UNIX, most JDKs use native threads per
default in version 1.2.
On some platforms you need to explicitly specify the -native option when calling java.
The following error is an example of what may happen if you do not specify -native:

% java -classpath .:[...]/lib/sicstus-3.8/bin/jasper.jar \
-Djava.library.path=[...]/lib \
-Dsicstus.path=[...]./lib/sicstus-3.8 Simple

*** panic: libthread loaded into green threads
Abort (core dumped)

Instead, do
% java -native [...]

See your JDK documentation for more info on command-line parameters to the JVM.
• Some uses of SPTerm can corrupt the Prolog data areas. This is a well understood, easily

avoidable, problem that cannot easily be fixed in Jasper (or SICStus), section “SPTerm
and Memory” in the SICStus Prolog Manual. See Section 4.3 [Jasper Package Options],
page 18, for a flag that tells Jasper to give exceptions in potentially troublesome cases.

Chapter 4: Jasper Notes 20

• Some uses of SPTerm will leak memory on the Prolog side. This is not really a bug
but may come as a surprise to the unwary, See section “SPTerm and Memory” in the
SICStus Prolog Manual.

• On some combinations of C-compilers and JDKs (specifically GCC with Sun’s JDK),
the following warning may occur:

% splfr simple.pl
SICStus 3.8.6 (sparc-solaris-5.7): Mon Feb 21 10:43:17 MET 2000
Licensed to SICS
{spk.ai82.c generated, 20 msec}

yes
In file included from /usr/local/jdk1.2/include/jni.h:35,

from spk.ai82.c:94:
/usr/local/jdk1.2/include/solaris/jni_md.h:20: warning: \

ignoring pragma: "@(#)jni_md.h 1.11 99/02/01 SMI

The warning can be safely ignored. You can suppress the warnings when using ‘gcc’
by passing the options --cflag=-Wno-unknown-pragmas to splfr.

4.5 Java Examples Directory

There is an examples directory available in $SP_PATH/library/jasper/examples. See the
file README for more info.

4.6 Resources

There are almost infinitely many Java resources on the Internet. Here is a list of a few
which are related to Jasper and JNI.

• JavaSoft Homepage (http://java.sun.com/).
• JavaSoft’s Java FAQ (http://java.sun.com/products/jdk/faq.html).
• JavaSoft Documentation Homepage (http://java.sun.com/docs/index.html).
• JNI Documentation

(http://java.sun.com/products/jdk/1.3/docs/guide/jni/index.html).
• Yahoo’s Java page (http://www.yahoo.com/Computers_and_

Internet/Programming_Languages/Java/).
• The ACM student magazine Crossroads has published an article on the JNI

(http://www.acm.org/crossroads/xrds4-2/jni.html). This article may be out of
date.

http://java.sun.com/
http://java.sun.com/products/jdk/faq.html
http://java.sun.com/docs/index.html
http://java.sun.com/products/jdk/1.3/docs/guide/jni/index.html
http://www.yahoo.com/Computers_and_Internet/Programming_Languages/Java/
http://www.yahoo.com/Computers_and_Internet/Programming_Languages/Java/
http://www.acm.org/crossroads/xrds4-2/jni.html

Chapter 5: Visual Basic notes 21

5 Visual Basic notes

The Visual Basic - SICStus Prolog interface consists of the following files:

• vbsp.dll (installed as ‘SICStus\bin\vbsp.dll’)
• vbsp.po (installed as ‘SICStus\bin\vbsp.po’)
• vbsp.bas (installed as ‘SICStus\library\vbsp.bas’)

In order to use the interface, perform the following steps:

• Include the file ‘vbsp.bas’ in your Visual Basic project.
• Make the SICStus runtime DLL etc. available. See Section 2.3.1 [Runtime Systems on

Target Machines], page 7. The easiest way is to put, e.g., ‘C:\Program Files\SICStus
Prolog\bin’ in the ‘PATH’ environment variable.
If VB cannot find the SICStus run-time files it will report something similar to

File not found: VBSP

• Put the files ‘vbsp.dll’ and ‘vbsp.po’ in a place where DLLs are searched for (For ex-
ample the same directory as your applications EXE file, on the ‘PATH’ or the Windows-
System directory). This is true by default if ‘C:\Program Files\SICStus Prolog\bin’
is in the PATH environment variable, as suggested in the previous item. Note that when
running your Visual Basic project in the Visual Basic debugger then the directory of
the current application is the directory that contains the Visual Basic debugger and
not the directory that contains your Visual Basic project.

Chapter 6: Berkeley DB notes 22

6 Berkeley DB notes

As of SICStus 3.8, the library module library(db) has been replaced by library(bdb).
The functionality is similar, but library(bdb) is built on top of Berkeley DB. Berkeley DB
can be downloaded from:

http://www.sleepycat.com

library(bdb) has been verified to work using Berkeley DB version 2.7.7. It does not work
with Berkeley DB 3.x versions.

When using Berkeley DB on Windows, you may want to set the ‘PATH’ environment variable
to contain the path to libdb.dll. Consult the Berkeley DB documentation for further info.

http://www.sleepycat.com

Chapter 7: The Emacs Interface 23

7 The Emacs Interface

The Emacs Interface was originally developed for GNU Emacs 19.34 and is presently being
maintained using XEmacs 21.1 and tested with GNU Emacs 19.34.1. For best performance
and compatibility and to enable all features we recommend that the latest versions of GNU
Emacs or XEmacs are used. For information on obtaining GNU Emacs or XEmacs, see
www.gnu.org and www.xemacs.org, respectively.

7.1 Installation

Starting with SICStus 3.8 the Emacs interface is distributed with SICStus and installed
by default. The default installation
location for the emacs files is ‘<prefix>/lib/sicstus-3.8/emacs/’ on UNIX platforms
and ‘C:\Program Files\SICStus Prolog\emacs\’ on Windows.

For maximum performance the Emacs lisp files (extension .el) should be compiled. This
can be done from within Emacs with the command M-x byte-compile-file. See section
“Installation” in the SICStus Prolog Manual, for further details.

7.1.1 Installing On-Line Documentation

It is possible to look up the documentation for any built in or library predicate from within
Emacs (using C-c ? or the menu). For this to work Emacs must be told about the location
of the ‘info’-files that make up the documentation. This can be done for the entire emacs
installation or on a per user basis, see section “Installation” in the SICStus Prolog Manual,
for further details.

The default location for the ‘info’-files are ‘<prefix>/lib/sicstus-3.8/doc/info/’ on
UNIX platforms and ‘C:\Program Files\SICStus Prolog\doc\info\’ on Windows.

More recent versions of GNU Emacs and XEmacs should be able to automatically incor-
porate info files from a subdirectory into the main Info documentation tree. It is therefore
recommended that the SICStus Info files are kept together in their own directory.

www.gnu.org
www.xemacs.org

Chapter 8: Revision history 24

8 Revision history

This chapter summarizes the changes in release 3 wrt. previous SICStus Prolog releases as
well as changes introduced by patch releases.

8.1 Changes in release 3

• Backslashes (\) in strings, quoted atoms, and integers written in ‘0’’ notation denote
escape sequences. Character escaping can be switched off.

• Multifile declarations are required in all files where clauses to a multifile predicate are
defined. This complies with the ISO Prolog Standard.

• The built-in predicate call_residue/2 has been modified so that goals that are dis-
junctively blocked on several variables are returned correctly in the second argument.

• The built-in predicate setarg/3 has been removed. Its functionality is provided by
the new built-ins create_mutable/2, get_mutable/2, update_mutable/2, and is_
mutable/2, which implement a timestamp technique for value-trailing with low-level
support.

• The built-in predicates unix/1 and plsys/1 have been removed. Their functionality
is provided by prolog_flag(argv,X), by the new halt/1 built-in, and by the new
library(system) module which also contains several new predicates.

• The socket I/O built-ins have been moved to the new library(sockets) module.
• The built-in time_out/3 has been moved to the new library(timeout) module.
• The built-ins term_hash/[2,4], subsumes_chk/2, and term_subsumer/3 have been

moved to the new library(terms) module, which also contains operations for unifi-
cation with occurs-check, testing acyclicity, and getting the variables of a term.

• The foreign language interface (Prolog-to-C) has been extended with the types +chars,
-chars and [-chars] for fast conversion between C strings and Prolog lists of character
codes. Several new interface functions are available.

• The memory handling of the C-to-Prolog interface has been simplified by passing each
Prolog term as a “handle” object, called an SP_term_ref, making the functions SP_
show_term() and SP_hide_term() obsolete.

• The InterViews 2.6 based GUI module library(gmlib) has been replaced by the
Tcl/Tk
based library(tcltk). A version of library(gmlib) converted to SICStus Prolog
release 3 is available from ‘ftp://ftp.sics.se/archive/sicstus3/gmlib.tar.gz’.

• The library(objects) module has been enhanced.
* Inheritance is static, i.e. determined at object creation time, and is implemented

as module importation.
* A new, very light-weight, type of object: instance.
* Attributes, efficient storage of terms in objects.
* Unprefixed goals in methods denote message passing to self. Prolog goals in

methods must be prefixed by :.

Chapter 8: Revision history 25

• In library(charsio), the open_chars_stream/[3,4] predicates have been replaced
by open_chars_stream/2 and with_output_to_chars/[2,3].

• The library(assoc) module now implements AVL trees instead of unbalanced binary
trees.

• The new library(atts) implements attributed variables, a general mechanism for
associating logical variables with arbitrary attributes. Comes with a number of hooks
that make it convenient to define and interface to constraint solvers.

• The Boolean constraint solver has been moved to the new library(clpb) and is im-
plemented on top of library(atts).

• New constraint solvers for rationals (library(clpq)) and reals (library(clpr)), im-
plemented on top of library(atts).

• user:goal_expansion/3 is a new hook predicate for macro-expansion.
• bb_put/2, bb_get/2, bb_delete/2, and bb_update/3 are new built-ins implementing

blackboard primitives.
• prolog_load_context/2 is a new built-in predicate for accessing aspects of the context

of files being loaded.
• user:file_search_path/2 is a new hook predicate providing an alias expansion mech-

anism for filenames.
• gcd/2 is a new built-in function.
• The statistics keyword walltime measures elapsed absolute time.
• In runtime systems, ensure_loaded/1 and use_module/[1,2,3] have the same se-

mantics as in development systems.
• Native code compilation available for MIPS platforms.
• Problems in native code compilation for certain SPARC models have been eliminated.
• Performance improvements include emulated code speed, native code speed, and the

foreign language interface.
• The system has been ported to the DEC OSF/1 Alpha (a 64-bit platform).

8.2 Changes introduced in 3#4

• New built-in predicates and shell commands for creating and loading foreign language
modules and creating customized development and runtime systems. Previous built-ins
remain for backwards compatibility.

• Slight changes in the C interface: hook variables are set by function calls, SP_foreign_
reinit_hook is not supported.

• The system has been ported to the Microsoft Win32 platform (Intel x86).
• The system has been ported to the Macintosh.
• The system has been ported to the OS/2 (32bit) platform (Intel x86).
• If the init file ‘~/.sicstusrc’ is not found, SICStus looks for ‘~/sicstus.ini’.
• library(sockets): socket_select/5 arg 1 may be a, possibly empty, list of passive

sockets, arg 3 returns a, possibly empty, list of new streams.

Chapter 8: Revision history 26

• library(system): The following new predicates are provided: tmpnam/1, directory_
files/2, file_property/2, delete_file/2, make_directory/1.

• A new constraint solver for finite domains (library(clpfd)), implemented on top of
library(atts).

8.3 Changes introduced in 3#5

• New built-in open/4, enables opening files in binary mode.
• library(charsio): New predicate with_output_to_chars/4.
• library(heaps): New predicates delete_from_heap/4, empty_heap/1, is_heap/1.
• library(queues): New predicate is_queue/1.
• library(sockets): New predicates: socket_accept/3, and socket_select/6 pro-

vide address of connecting client. hostname_address/2 resolves name/ip-number.
• SP_atom_length returns the print name length of a Prolog atom.
• Modification time instead of current time stored for loaded files.

8.4 Changes introduced in 3#6

• toplevel_print_options and debugger_print_options are new Prolog flags con-
trolling the toplevel’s and debugger’s printing behavior.

• is_mutable/1 is a new built-in which is true for mutables.
• ‘~@’ is a new spec in format/[2,3] for arbitrary goals.
• Mutables are initialized correctly when read in.
• The finite domain constraint solver (library(clpfd)) has been enhanced by a pro-

gramming interface for global constraints, improved compilation to library constraints
and other performance enhancements, and by a number of new exported constraints.

• library(objects): New hook predicate user:method_expansion/3.
• library(sockets): socket_select/5 has extended functionality.
• Efficiency bugs in format/[2,3] fixed.
• Bug in save_program/[1,2] with native code fixed.
• Bugs in library(chr) fixed, and a couple of new constraint handlers fixed.
• A problem with source linked debugging of DCG rules fixed.
• Prevent looping on duplicates in module/2 decl.
• Prevent memory overrun in library(tcltk).

8.5 Changes introduced in version 3.7

• The concept of patchlevels removed and replaced by versions.
• library(chr): A new library module providing Constraint Handling Rules; see

http://www.pst.informatik.uni-muenchen.de/~fruehwir/chr-solver.html

http://www.pst.informatik.uni-muenchen.de/~fruehwir/chr-solver.html

Chapter 8: Revision history 27

• Jasper, a bi-directional Java-interface, consisting of extensions to the existing FLI and
a new library module library(jasper).

• Atom garbage collection, invoked by garbage_collect_atoms/0, and controlled by the
agc_margin Prolog flag. New statistics options: atoms, atom_garbage_collection.
New interface functions: SP_register_atom, SP_unregister_atom.

• Calls with clean-up guaranteed, provided by call_cleanup/2, which replaces undo/1.
• Source-linked debugging, controlled by the source_info Prolog flag.
• Debugger enhancements: tracing of compiled code; a new debugger mode zip and

built-ins zip/0, nozip/0; new debugger commands out n, skip i, quasi-skip i, zip,
backtrace n, raise exception. Modules can be declared as hidden which disables tracing
of their predicates.

• Saved states are available in runtime systems, and are portable across platforms and
between development and runtime systems. save/[1,2] are gone. In most cases,
save_program/2 can be used in their place, with a little rearrangement of your code.
Predicates can be declared as volatile.

• A interface function SP_restore is the C equivalent of restore/1, which now only
restores the program state, leaving the Prolog execution stacks unchanged.

• The GNU Emacs interface was enhanced: source-linked debugging, new menus, speed,
help functions, electric functions, indentation, portability, bug fixes.

• The reader can return layout information about terms read in. New read_term/3
option: layout(-Layout). New hook predicate: user:term_expansion/4.

• Module name expansion of goals is done prior to execution of meta-calls.
• Imported predicates can be spied and abolished.
• random:randset/3 returns a set in standard order.
• db:db_canonical/[2,3] are new; can be used to check whether two TermRef s refer

to the same term.
• clpfd:serialized_precedence/3 and clpfd:serialized_precedence_resource/4

are new; model non-overlapping tasks with precedence constraints or sequence-
dependent setup times.

• In object method bodies, goals of the form :Goal are translated according to the
manual. Earlier versions treated arguments occurring in the ‘:’ position of meta-
predicates specially.

• A new interface function SP_raise_fault and interface macro SP_on_fault are avail-
able for handling runtime faults that cannot be caught as exceptions.

• A new interface function SP_set_memalloc_hooks is available for redefining the mem-
ory manager’s bottom layer. Related to that, there is a new command-line option
‘-m’.

• Development and runtime systems have been reorganized internally. All use a runtime
kernel shared object or DLL, and are initialized by restoring saved states. Development
systems additionally use a development kernel shared object or DLL.

• The ‘-B’ command-line option is gone in the start-up script, and some new options
have appeared.

• Under UNIX: new option ‘-base’ to override the executable used by the start-script.

Chapter 8: Revision history 28

• Under UNIX: improvements in the configure-script; better options to specify Tcl/Tk
versions and paths.

• Hookable standard-streams.
• Floating-point operations on Digital Alpha are now IEEE-conformant.
• reinitialise/0 does not load any initialization files given in ‘-i’ or ‘-l’ command

line flags.
• Under UNIX: New option -S to spmkrs and spmkds to link the SICStus Runtime Kernel

(and development extensions for spmkds) statically into the executable.
• ?- [File1,File2,...] was broken.
• require/1 did not find all directories.
• Runtime systems could crash after GC.
• Bugs in clp[qr]:dump/3, clp[qr]:expand/0, clp[qr]:noexpand/0.
• The garbage collector reported too many bytes collected.
• Memory overflows were not handled gracefully.
• Imported predicates couldn’t be abolished.
• arrays:arefa/3, arrays:arefl/3, heaps:min_of_heap/5 are now steadfast.
• Most library(clpfd) predicates now check the type of their arguments. Bugs fixed

in relation/3, serialized/2, all_distinct/1.
• frozen/2 could crash on an argument of the wrong type.
• SP_get_list_n_chars does not require a proper list.
• Problems with exceptions in embedded commands in source files.
• Problems with load_files(Files, [compilation_mode(assert_all)]).
• For load_files(Files, [if(changed)]), a non-module file is not considered to have

been previously loaded if it was loaded into a different module.
• Incorrect translation of if/3 goals in DCG rules.
• On Win32, system:mktemp/2 sometimes returned filenames with backslashes in them.

8.6 Changes introduced in version 3.7.1

• The type-specifier object in Jasper has changed to object(Class).
• Under UNIX: Error-handling in splfr, spmkrs, spmkds.
• Jasper did not convert return values correctly when calling Java from Prolog.
• Jasper did not handle instance methods correctly.
• Some of the legal type-specifiers in Jasper were rejected by the glue-code generator.
• Efficiency bugs in format/[2,3] fixed.
• Bug in save_program/[1,2] with native code fixed.
• Bugs in library(chr) fixed, and a couple of new constraint handlers fixed.
• A problem with source linked debugging of DCG rules fixed.
• Prevent looping on duplicates in module/2 decl.
• Prevent memory overrun in library(tcltk).

Chapter 8: Revision history 29

8.7 Changes introduced in version 3.8

8.7.1 Wide character support

Wide character handling is introduced, with the following highlights:

• character code sets up to 31 bit wide;
• three built-in wide character modes (ISO 8859 1, UTF8, EUC), selectable via environ-

ment flags;
• complete control over the external encoding via hook functions.

For programs using the default ISO 8859 1 character set, the introduction of wide characters
is transparent, except for the string format change in the foreign interface, see below.

In programs using the EUC character set, the multibyte EUC characters are now input as
a single, up to 23 bit wide, character code. This character code can be easily decomposed
into its constituent bytes, if needed. The encoding function is described in detail in the
SICStus manual.

To support wide characters, the foreign interfaces now use UTF-8 encoding for strings
containing non-ASCII characters (codes >= 128). This affects programs with strings that
contain e.g. accented characters and which transfer such strings between Prolog and C. If
such a string is created on the C side, it should be converted to UTF-8, before passing it
to Prolog. Similarly for a string passed from Prolog to C, if it is to be decomposed into
characters on the C side, the inverse transformation has to be applied.

Utility functions SP_code_wci and SP_wci_code are provided to support the conversion of
strings between the WCI (Wide Character Internal encoding, i.e., UTF-8) format and wide
character codes.

8.7.2 Breakpointing debugger

A new general debugger is introduced, with advanced debugging features and an advice
facility. It generalizes the notion of spypoint to that of the breakpoint. Breakpoints make
it possible to e.g. stop the program at a specified line, or in a specified line range, or to call
arbitrary Prolog goals at specified ports, etc. Highlights:

• Advice facility — useful for non-interactive debugging, such as checking of program
invariants, collecting information, profiling, etc.

• Debugger hook predicate — new interactive tracer commands can be defined.
• Tracer information access — data on current and past execution states, such as those

contained in the ancestor list, or the backtrace, is now accessible to the program.
• The following built-in predicates have been added: add_breakpoint/2, spy/2,

current_breakpoint/4, remove_breakpoints/1, disable_breakpoints/1, enable_
breakpoints/1, execution_state/1, and execution_state/2. user:debugger_
command_hook/2 is a new hook predicate.

Chapter 8: Revision history 30

The predicates nospy/1 and nospyall/0 have slighty changed meaning.
The predicate spypoint_condition/3 has been removed.

8.7.3 ISO compliance

SICStus 3.8 supports standard Prolog, adhering to the International Standard ISO/IEC
13211-1 (PROLOG: Part 1—General Core). At the same time it also supports programs
written in earlier versions of SICStus. This is achieved by introducing two execution modes
iso and sicstus. Users can change between the modes using the Prolog flag language.
Main issues:

• The sicstus execution mode is practically identical to 3.7.1, except for minor changes
in error term format.

• The iso mode is fully compliant with ISO standard, but no strict conformance mode
is provided.

• The dual mode system supports the gradual transition from legacy SICStus code to
ISO Prolog compliant programs.

• Note that the built-in predicates, functions and Prolog flags, required by the ISO stan-
dard, are also available in sicstus execution mode, unless they conflict with existing
SICStus predicates or functions. This expansion of the language carries a remote risk
of name clashes with user code.

8.7.4 Generic new features

• The spmkds and spmkrs utilities for creating stand-alone executables have been re-
placed by a common spld utility which takes several new options. Runtime systems
do not always need a main program in C. On Windows, the resulting executable can
optionally be windowed. The splfr utility takes several new options. The development
and runtime kernels have been merged into a single one.

• Partial saved states corresponding to a set of source files, modules, and predicates can
be created by the new built-in predicates save_files/2, save_modules/2, and save_
predicates/2 respectively. These predicates create files in a binary format, by default
with the prefix ‘.po’ (for Prolog object file), which can be loaded by load_files/[1,2].
The load_type(Type) option of load_files/2 has been extended. Partial saved states
render ‘.ql’ files obsolescent.

• The new built-in predicate trimcore/0 reclaims any dead clauses and predicates, de-
fragmentizes Prolog’s memory, and attempts to return unused memory to the operating
system. It is called automatically at every top level query.

• The value of the new read-only Prolog flag host_type is an atom identifying the plat-
form, such as ’x86-linux-glibc2.1’.

• The functionality of the source_info Prolog flag, introduced in release 3.7, has been
extended beyond the Emacs interface. Line number information is now included in
error exceptions whenever possible. This information is displayed in debugging and
error messages (outside Emacs) or causes Emacs to highlight the culprit line of code.
Valid values are off, on, and emacs.

Chapter 8: Revision history 31

• Predicate indicators can take the form Name/[Arity,...,Arity] in spy/[1,2], nospy/1,
listing/1, abolish/1, profile_data/4, profile_reset/1, save_predicates/2,
and gauge:view/1.

• The new interface functions SP_chdir() and SP_getcwd() provide access to the current
working directory.

• The interface function SP_load() has been generalized to correspond to load_files/1.
• The interface function SP_deinitialize() is now documented.
• Windows: the registry is no longer used by SICStus itself. The SICStus Runtime

Library is located based on the location of sprt<xx>.dll. SP_PATH is only used as a
last resort. See Section 2.3 [Windows notes], page 7.

• Source code compilation and installation procedure has been improved and simplified.
See ‘README’ and ‘INSTALL’ in the source distribution for documentation.

• The layout of the Gauge graphical user interface has been improved.
• The new library(bdb) provides an interface to the Berkeley DB toolset for persistent

storage, and replaces library(db). The programming interface of the new module is
similar to that of the old one, with some new concepts added such as iterators. The
sources of the old library module are available from:

ftp://ftp.sics.se/archive/sicstus3/libdb.tgz
• library(db) is obsolete and will be removed in the next major release.
• Generic runtime systems on Windows are built using spld and exist in three flavors:

generic character based (sprt.exe), generic character based interactive (sprti.exe),
and generic windowed (sprtw.exe). See Section 2.3.2 [Generic Runtime Systems],
page 8.

• The manual chapter for library(tcltk) has been rewritten and greatly expanded.
• library(clpq) and library(clpr): new predicates inf/4 and sup/4.
• Code fragments loaded via the Emacs interface are imported into the type-in module,

unless the source file has an explicit mode line.
• library(gcla) has been removed.
• initialization/[0,1] have been replaced by ISO compliant initializations.

8.7.5 New features in library(jasper)

• Java 2 (a.k.a. JDK 1.2) is now required. library(jasper) will not work using JDK
1.1.x.

• Support for native threads JDKs.
• Changed package name from jasper to se.sics.jasper, according to JavaSoft guide-

lines. See Section 4.2 [Getting Started], page 15.
• Classfiles are now placed in jasper.jar, which is located in $SP_PATH/bin. See Sec-

tion 4.2 [Getting Started], page 15.
• The shared library for Jasper (jasper.dll or libjasper.so) is now located in

the same directory as the runtime kernel (default <installdir>/lib under UNIX,
<installdir>/bin under Windows). See Section 4.2 [Getting Started], page 15.

Chapter 8: Revision history 32

• Meta-call functionality added (jasper_call_instance/6, jasper_call_static/6,
etc.). This makes it possible to call Java without having to generate any glue-code
(i.e., without a C-compiler).

• Support for handling local global references from Prolog (jasper_create_global_
ref/3, jasper_delete_global_ref/2, jasper_delete_local_ref/2).

• SPException.term declared protected instead of private.
• New class SPCanonicalAtom to handle canonical representations of atoms and to

make sure that they are safe with atom-gc. New methods getCanonicalAtom and
putCanonicalAtom. New constructor for SPPredicate. getAtom and putAtom depre-
cated.

• New exception: IllegalCallerException is thrown if the current thread is not allowed
to call SICStus.

8.7.6 New features in library(clpfd)

• fd_degree/2 is new; returns the number of constraints attached to a variable.
• labeling/2 requires the list of domain variables to have bounded domains. User-

defined variable and value choice heuristics can be provided.
• element/3 is interval-consistent in its second and third arguments. Use relation/3 if

domain-consistency is required.
• serialized/3 is new and replaces serialized_precedence/3 and serialized_

precedence_resource/4. A number of new options control the algorithm. The space
complexity no longer depends on the domain size.

• cumulative/5 is new and takes the same options as serialized/3.
• all_different/2, all_distinct/2 and assignment/3 are new and take options con-

trolling the algorithms.
• Generally, performance and error checking have been improved.

8.7.7 Bugs fixed in version 3.8

• absolute_file_name/2: could crash under IRIX; nested compound terms allowed
• call_cleanup/2: efficiency
• close/1: efficiency; handling the standard streams
• format/[2,3]: ~N didn’t work as expected; are now meta-predicates—needed by the

~@ format spec
• load_files/[1,2]: avoid changing directory; don’t loop on duplicate exports
• load_foreign_resource/1: filenames containing periods on Windows NT
• print_message/2: in runtime systems
• prolog_load_context/2: value of term_position
• reinitialise/0: sequencing of events
• save_program/[1,2]: fastcode handling; file mode creation masks; in runtime systems
• write_term/[1,2]: the indented(true) option and non-ground terms

Chapter 8: Revision history 33

• library(db): efficiency of term deletion
• library(heaps): delete_from_heap/4
• library(objects): the new/2 method; cyclic dependencies
• library(random): determinacy and efficiency
• library(sockets): noisy startup on Windows; block buffering is now the default;

socket_buffering/4 added
• library(system): sleep/1 admits floats as well as integers
• library(terms): subsumes_chk/2 and variant/2 now don’t unblock goals
• glue code generator: incorrect translation of +chars; syntax error messages were sup-

pressed
• all system messages go via the print_message/2 interface
• input argument checking is generally stricter
• resources are unloaded in LIFO order but loaded in FIFO order at save/restore
• CLP(Q,R): answer constraint projection
• problems with bignums and big terms in ‘.ql’ files
• detecting invalid goals in meta-calls, asserts, load_files/[1,2]
• spurious redefinition warnings
• bignum quotient/remainder on 64-bit architectures
• compiler: complexity of compiling multiple clauses with same key, code generation

quality for inline goals
• memory manager: avoiding dangling pointers on Windows, better reclamation of dead

clauses and predicates, using dynamic hashing and hashpjw for atoms, keeping predi-
cate tables as small as possible, avoiding stack overflow if multiple goals get simulta-
neously unblocked, better reuse of free memory blocks

• garbage collector: removing redundant trail entries for mutables, improved scope and
speed of generational garbage collection

• callbacks to Prolog while reading from the terminal
• printing atoms with character codes in 27...31
• reading atoms with \c

• Floating point NaN (Not a Number). Now behaves consistently across platforms. In
particular fixed Windows related bugs with arithmetic on and printing of NaN.
• Arithmetic comparisons involving NaN now fails (except =\=). Note that X is

nan, X =:= X fails.
• Term order for NaN is now defined and the same for all platforms. There is a

single NaN and it lies between (the float) +inf and the integers.

8.8 Changes introduced in version 3.8.1

Version 3.8.1 is a bugfix release only, no new features has been added.

configure.in: Removed multiple occurences of the -n32 flag under IRIX if cc is used
instead of gcc.

Chapter 8: Revision history 34

configure.in: FreeBSD 3.x is now handled correctly.
configure.in: On Linux and Solaris, SICStus is now always linked with the POSIX
thread library.
InstallSICStus: spld did not log verbose output to logfile.
spld, splfr: Eliminated use of .. to specify relative paths. Caused problems on
Windows 95/98.
library(jasper): Green threads JDKs not supported any longer.
library(tcltk): Tcl_FindExecutable("") is called when the ‘tcltk’ library is
loaded, before any Tcl/Tk interpreter is created. This should fix errors related to
not finding ‘init.tcl’ and also improve support for international character sets.
multifile + discontiguous combination fix
redefinition warning for multifile predicates fix
listing/[0,1], tell/1, see/1 fixes
avoid bogus line number info for native code
trail compression fix
stack_shifts (statistics/2 option) manual fix
load_foreign_resource/1 search algorithm fix
atom/number handling fixes
raise error for a =.. [b|c]

avoid SP_term_ref leaks in some functions
prevent dangling pointer problem in displaying line number info
check representability of compiled clauses
prevent looping at halt and elsewhere if advice has been given
CHR: initialization fix
CLPFD: fixes and corrections to all_distinct/[1,2], assignment/[2,3],
circuit/[1,2], serialized/[2,3], cumulative/[4,5], fdset_member/2, arithmetic
LINDA: buffering fix

8.9 Changes introduced in version 3.8.2

Version 3.8.2 is a bugfix release only, no new features has been added.

call_residue/2: fix bug when the goal called copy_term/2.
listing/[1,2], portray_clause/[1,2], top-level: cope with constrained/attributed
variables.
portray_clause/[1,2], write_term/[2,3] with indented(true): do not juggle
module prefixes.
Foreign resources: problems with prelinked resources and with clpfd

Foreign resources: The returned arguments from a foreign function are now properly
ignored if an exception was raised with SP_raise_exception.

Chapter 8: Revision history 35

Foreign resources: Added some, for now, undocumented callbacks to ‘sicstus.h’. Doc-
umented SP_to_os, SP_from_os.
Atom garbage collector: don’t reclaim undefined predicates that have pointers to them;
some atom locations were not traced.
Local stack shifter bug.
Source info management: ensure expansion of the compiled file table.
Backtracking from fastcode to compactcode special case.
Bytecode relocation bug after restore.
Compiler bug on very large clauses.
SP_WcxOpenHook: incorrect prototype.
Emulator kernel: performance bugs.
64-bit portability bugs.
library(bdb): a relative filename given in db_open/5 was treated by SICStus as
relative to the current working directory, but should be relative to the given BDB
environment.
library(clpfd): somewhat faster arithmetic, lingering bugs in serialized/[2,3]
and cumulative/[4,5], labeling/2 options value/1, variable/1
The configure script did not specify the correct Irix/MIPS ABI/ISA level building with
GCC.
Added --with=<package> options to spld and splfr to override default installation
path for third-party software packages.
spld: Fixed bugs in argument handling. ‘.pl’ file arguments are no longer compiled
at spld time, but passed directly to SP_load().
library(jasper): Multiple threads are allowed to call SICStus without
IllegalCallerException being thrown. See section “Java Threads” in the SICStus
Prolog Manual.
library(jasper): Argument-checking bug in jasper_call_static/6 and jasper_
call_instance/6.
Recover properly from memory allocation failures.

8.10 Changes introduced in version 3.8.3

Version 3.8.3 is mainly a bugfix release. New features:

New interface functions SP_calloc() and SP_strdup().
The Windows version is now up to twice as fast (measured on the benchmarks in
http://www.sics.se/sicstus/benchmarks.html). In particular SICStus ought to
be as fast on Windows as on Linux given the same hardware. This will only affect
‘pure’ Prolog code, builtins such as assert are not affected although the prolog part
of libraries are affected. (The change is in the byte code dispatch mechanism).
The Windows console (‘spwin.exe’) can now save a transcript of the interaction with
the Prolog top-level. The command is under the ‘File’ menu. You may wish to increase
the number of ‘save lines’ in the ‘Windows Settings’ (under the ‘Settings’ menu).

http://www.sics.se/sicstus/benchmarks.html

Chapter 8: Revision history 36

library(clpfd): new constraints disjoint1/[1,2], disjoint2/[1,2] model non-
overlapping lines and rectangles.

Bug fixes:

The Windows console: ‘All Files’ should now work in file selection dialogs.
A problem that prevented spld and splfr from working on Windows 95/98 has been
fixed.
Fixed meta-quoting of regular expressions in spld and splfr.
spld warns when input files are ignored
Runtime system executables generated using spld return 0 when user:runtime_
entry/1 succeeds and 1 on failure or exception.
SP_chdir declares its first argument as const char *.
Restore fixes for native code.
Atom garbage collection during restore fix.
Listing fix for disjunctions.
Integer range manual fix.
Avoid doing initializations twice for ‘-l’ and ‘-r’ files.
Compiler fix for once/1.
Buffering fix for Linda.
Wide character handling bug fixes.
prolog_flag/[2,3]: fix for runtime systems.
SP_unify(): undo any bindings on failure.
library(bdb): relative filename handling fix.
library(clpfd): GC interaction, overflow detection, performance fixes.
A problem where multiple copies of the Jasper library were loaded has been fixed.
This affects all platforms. Now there is exactly one version of the jasper shared library
(‘libjasper.so’ or ‘jasper.dll’).
Jasper: +atom maps to SPCanonicalAtom instead of SPTerm.
Jasper: the +double specifier did not work.

8.11 Changes introduced in version 3.8.4

Version 3.8.4 is mainly a bugfix release. New features:

abort/0 returns to the innermost top-level, and does not switch off the debugger.
library(clpfd): Given a term Term containing domain variables, fd_copy_
term(Term,Template,Body) will compute Template and Body where Template is a
copy of the same term with all variables renamed to new variables such that executing
Body will post constraints equivalent to those that Term is attached to.
library(tcltk)):

Chapter 8: Revision history 37

Added list(CommandList) to the possible command formats. It creates a TCL
list by, in effect, calling the TCL command list with the result of converting each
element of CommandList. The result is that Tcl will treat the result as a list with
the same length as CommandList even if the elements contains spaces or other
special characters.
Current code that uses ListOfCommands should probably often be better off using
list(ListOfCommands). See the manual for details.
Added writeq(Command) and write_canonical(Command) as legal command
specifications. Documented that write_canonical is the preferred way of passing
Prolog terms from Prolog to Tcl and back.
More error checking and reporting. In particular the output of a Prolog goal must
now be in the special command format. It used to just silently generate garbage.
Potential backward compatibility issue.

Now the value of variables named _ are ignored. This makes it possible to avoid
errors if some uninteresting result is not in the special command format. This used
to be less of a problem since such errors were silently ignored. (Note: in SICStus
3.8.5 this was changed to ignore all variables with names starting with underscore
‘_’.)
International (UNICODE) character now passed between Tcl/Tk and Prolog.
Made the stream used internally by library(tcltk) always use UTF8 so that
non seven bit characters gets recognized by Tcl. This transfers character codes
unchanged between SICStus and Tcl so it assumes that SICStus interprets char-
acter codes as UNICODE (as this is what Tcl does).
tk_num_main_windows/2 and tk_main_window/2 no longer segfaults on Windows
if tk_new/2 has not been called. Added a "tk new called" check to some other
routines as well. The segfault occurred when, due to a bug in Tk, Tk uses stubs
to access Tcl. Presently Tk uses Tcl stubs by default only on Windows.
The empty string resulting from an empty CommandList now becomes properly
NUL terminated.
prolog_call now resets the FLI stack to avoid space leaks when Tcl/tk is the
master and Prolog the slave.
Corrected some bugs in the Tcl/Tk documentation. Added examples of using the
new command specifications.

library(’linda/client’): New predicate shutdown_server/0. The server keeps
running after receiving this signal, until such time as all the clients have closed their
connections. Courtesy of Malcolm Ryan.
Some more options are available when the user is asked about redefining predicates.

Bug fixes:

skip_line/1, at_end_of_file/0, tab/2.
Asserting, copying or throwing terms with domain variables now raises an exception
instead of crashing.
Non-existent files and the include/1 directive.

Chapter 8: Revision history 38

GC and BDD interaction.
save_program/[1,2], save_files/[1,2]: check for I/O errors; problems with
’$ref’/2 terms; problems with SICStus Objects.
unload_foreign_resource/1: false alarm in prelinked binaries.
Jasper: glue code sometimes crashed when returning from a Java method that throwed
an exception.
Jasper: glue code reported errors for bogus argument numbers.
library(tcltk)): Bug fixes and enhancements, see the ‘New Features’ section above
for details.
spld/splfr on Windows: Errors are now properly reflected in the exit code from these
programs.
Error handling determining current directory.
library(clpfd): disequations
speeded up, bugs in disjoint1/[1,2], disjoint2/[1,2], element/3, propagation,
entailment detection, backward compatibility.
Workaround for crashes when static SICStus executables, i.e., built with spld --
static, load (non-prelinked) dynamic foreign resources. With this workaround loading
a dynamic foreign resource into a static SICStus executable will still, unnecessarily, load
the shared version of the SICStus runtime system (‘libsprt38.so’) but the shared run-
time system will not be used. This will be fixed in a forthcoming release.

8.12 Changes introduced in version 3.8.5

Version 3.8.5 is mainly a bugfix release. New features:

copy_term/2 and call_residue/2 now support finite domain variables.
Representation errors due to illegal usage of finite domain variables have been replaced
by more useful exceptions.
The new exported predicate terms:term_variables_bag/2 is like terms:term_
variables/2, but its output argument is a list of variables in order of first occurrence.
bdb:db_open/5 is generalized so that a cache size can be provided.
clpfd:fd_neighbors/2 is a new exported predicates. It is the relation that clpfd:fd_
closure/2 is the transitive closure of.
The Java interface has been improved; see below for new features.

Bug fixes:

current_atom/1 now terminates correctly.
once/1 is now handled correctly in ISO mode.
predicate_property/2 now handles built-ins correctly.
prolog_flag/2 alias current_prolog_flag/2 now behave as pure relations in SICStus
execution mode.
read/[1,2] now handle character code 0 correctly.

Chapter 8: Revision history 39

save_files/2, save_predicates/2, and save_modules/2 do not replace given output
file extensions. A ‘.po’ extension will be added if none is given. Note, however, that
load_files/[1,2] will only recognize files with a ‘.po’ extension as ‘.po’ files.
statistics(trail,L) and statistics(choice,L) are more accurate.
stream_code/2 now handles errors correctly.
stream_interrupt/3 raises an existence error under Windows.
stream_property/2 now handles alias/1 property for standard streams correctly.
stream_select/3 now returns a valid list of streams, and raises an existence error
under Windows.
The tokenizer now does not read too far ahead on non-float tokens that start like floats.
The s answer to redefinition queries is now handled correctly.
Worked around a C compiler bug affecting garbage collection under Windows.
A compiler bug fixed.
Repeated restoring caused a memory leak, now sealed.
SP pred refs cannot become dangling.
Calls from C to Prolog now undergo module name expansion and goal expansion, just
like calls to call/1.
Bug fixes in SP_cons_list and SP_cons_functor.
Memory overflows after SP_open_query() are safe.
Stream position terms now preserve after end of stream conditions.
Cyclic terms are detected in arithmetic function arguments.
Predicates defined by goal expansion only can be exported.
The character_escapes flag is obeyed in ISO execution mode.
Debugger bugs fixed: showing source code in Emacs; the a, o, and r commands.
The Emacs interface function prolog-comment-region now uses triple percent signs,
to cater for indent-region.
The clpfd:full_answer functionality has been repaired, affecting frozen/2,
clpfd:attribute_goal/2 and clpfd:fd_copy_term/3. clpfd:fd_global/3 is now a
meta-predicate.
sockets:socket_select/[5,6] are now steadfast; better error handling.
sockets:socket_select/[5,6] now work correctly with non-socket streams that use
file descriptors on systems where sockets and file descriptors are treated the same (i.e.,
not Windows).
system:working_directory/2 is now insensitive to any loads in progress. Its argu-
ments are not subject to absolute_file_name/2 processing—that was never intended.
timeout:time_out/3 now cleans up properly after abort.
library(bdb) now handles wide characters, e.g. in error messages.
library(clpfd) now cleans up properly after integer overflows, and does not assume
a 32-bit architecture.
clpfd:cumulative/[4,5] now check that the resource limit is not exceeded by any
single task.

Chapter 8: Revision history 40

Glue code generated for foreign resources (C and Java) did the wrong thing for [-term].
The problem occurred if the foreign function did many calls to SP_term_ref() or if it
raised an exception.
Fixed a problem with spld and splfr on Windows 95/98.
On AIX spld and splfr tried to use a nonexisting file. The file (‘sprt.exp’) is now
included in the distribution.
halt/0 and abort/0 are handled better in runtime systems of type --main=load and
--main=restore.
The Java interface (library(jasper) and se/sics/jasper/SICStus etc.) has been
improved:

Fixed lots of bugs.
The Prolog runtime system is no longer de-initialized at random by the Java
garbage collector.
All Java methods now properly synchronize with the Prolog runtime system to
ensure thread safety.
There are no longer any known memory leaks when calling Java from Prolog or
vice versa.
SPTerm and SPQuery now properly detect improper usage and raise exceptions
instead of crashing in the Prolog runtime system.
Enhanced meta-call interface jasper_call/4 makes foreign resources and splfr
strictly optional when calling Java from Prolog.
The constructor SPTerm() is no longer public, it was always documented as "should
really have been private". Use the contructor SPTerm(SICStus) instead.
The exception IllegalCallerException is no longer used. You should
change your code to reflect this. One possible change is to change throws
IllegalCallerException into throws SPException, this works for the 3.8.4 ver-
sion as well.
The exception IllegalTermException is new. It is signalled when attempting to
use a SPTerm where the corresponding term ref is no longer valid. You need to
update your code (typically adding throws IllegalTermException). One pos-
sible change is to use the less specific throws SPException instead of throws
IllegalTermException, this should work for the 3.8.4 version as well.
It is now possible to create terms and queries by reading from a string. See
SICStus.readFromString() and new versions of SICStus.openQuery() etc.
SPPredicate is now deprecated. The preferred method is to supply module and
predicate name explicitly.
All calls to Prolog now behave as if wrapped in call(M:Goal) where M is the
module specified when creating the query. This makes goal expansion and meta
argument expansion do the right thing, i.e., behave as if entered interactively.
It is now possible to explicitly delete a SPTerm object, making the Prolog side
term-ref available for re-use. See SPTerm.delete().
The documentation has been improved and expanded.

Chapter 8: Revision history 41

The examples have been updated and new examples added, notably a Swing demo
with a Prolog top-level. The Prolog top-level is useful when debugging applications
where Java is the top-level application.
JavaServer etc. is now more clearly marked as unsupported example code. It
represents an unfinished sockets based Jasper interface. It does not belong in the
se.sics.jasper package and will be removed at a later date.

library(tcltk). When Tcl/Tk calls Prolog, it now ignores the returned values of all
unbound variables and variables with names starting with underscore ‘_’. In 3.8.4, it
used to ignore only anonymous variables.

8.13 Changes introduced in version 3.8.6

Version 3.8.6 is mainly a bugfix release. New features:

SP_atom documented as a data type.
library(jasper) and Java foreign resources now support null object references. See
section “Jasper Library Predicates” in the SICStus Prolog Manual.
library(jasper) now works with JDK 1.3 (with some restrictions) and JDK 1.3.1 as
well as JDK 1.2.2. See Section 4.1 [Supported Java Versions], page 14.
On Linux the path to the JDK libraries is now embedded (rpath) in the sicstus exe-
cutable instead of in the jasper foreign resource (libjasper.so). In most cases this should
not be a user visible change. This was necessary due to differences between the Linux
(glibc) and the Solaris dynamic loader.
InstallSICStus should now understand TclPro directory structure when configuring
Tcl/Tk.

Bug fixes:

splfr code generation bug for [-term] and +boolean.
spld --sicstus=<PATH> now works. You are unlikely to need it though.
Better error reporting for incorrect type signatures to old style calls to
library(jasper).
Jasper: SPTerm.delete() sometimes did not enable reuse of the deleted term ref.
On some versions of Windows (NT 4 but not on Windows 2000) Java would crash
under the following circumstances. ‘java.exe’ is the main application, Java tries to
do use_module(library(jasper)), the short pathname of the ‘SICStus Prolog\bin’
folder is on the PATH environment variable. As a work-around for the underlying Win32
LoadLibrary bug SICStus will now always use the long pathname when loading foreign
resources.
On Windows, you can sometimes get an floating point divide by zero exception when
embeding SICStus into other applications. The symptom was a crash with something
like "Exception: 0xc000008e (EXCEPTION_FLT_DIVIDE_BY_ZERO)". This also hap-
pened for some applications that use Visual Basic for Applications (VBA) with the
SICStus Visual Basic module (vbsp.dll). A thorough discussion of this issue and a

Chapter 8: Revision history 42

solution is available in ‘library/vbsp/sp_fpwrap.h’. This solution is now used by the
SICStus Visual Basic module. We have had reports of this issue affecting FileMaker,
Rational Rose and Visio.
library(bdb) now complains if run with a different version of Berkeley DB than what
was used for building it (BDB 2.7.7).
Now uses malloc() for memory allocation when invoking SICStus from Java, also on
Linux. The default memory allocation method (using sbrk/brk) is not thread safe on
any platform.
Avoid spurious error message after ^C a.
Loading ‘.po’ files and saved states: work around GCC bug affecting endianness con-
version.
Standard term comparison on stream position terms didn’t work after seek/4.
dif/2 and friends: memory management bug.
format/[2,3]: avoid spurious time-out exceptions.
freeze(V,V) behavior bug.
number_chars/2, number_codes/2: bug affecting empty lists.
library(bdb) now verifies that BDB version 2.7.7 is used.
library(clpfd): missing distribution files; buggy action handling of user-
defined global constraints; wrong answers in disjoint1/[1,2], disjoint2/[1,2],
serialized/[2,3], and cumulative/[4,5]; integer overflow checks; error detection
in FD set operations; complexity of fd_closure/2 and fd_copy_term/3; entailment
action in element/3.
library(clpq,clpr): bug affecting bb_inf/3 and strict inequalities.
library(jasper) now enforces the use of malloc for memory management, also on
Linux.
sockets:socket_buffering/4: bug handling 3rd arg.
library(tcltk): some demos depended on current working directory.
library(xref): handling of catch/3.

Chapter 9: Generic limitations 43

9 Generic limitations

On 32-bit architectures, the total data space cannot exceed 256 MB. The Linux implemen-
tation of sbrk() returns memory starting at 0x08000000, so in practice the limit there
is 128 MB. An experimental workaround for the Linux 128 MB limit is available from
sicstus-support@sics.se.

The number of arguments of a compound term may not exceed 255.

The number of atoms created may not exceed 262143 (33554431) on 32-bit (64-bit) archi-
tectures.

The number of characters of an atom may not exceed 65535.

NUL is not a legal character in atoms.

There are 256 “temporary” and 256 “permanent” variables available for compiled clauses.

Saved states are not portable between 32-bit and 64-bit architectures, or from a system built
with native code support to a system without native code support for the same architecture.

Indexing on big integers or floats is coarse.

mailto:sicstus-support@sics.se

Chapter 10: Questions and answers 44

10 Questions and answers

Current support status for the various platforms can be found at the SICStus Homepage:

http://www.sics.se/sicstus/

Information about and fixes for bugs which have shown up since the latest release can be
found there as well.

Send requests for ordering information to

sicstus-request@sics.se

Report bugs through the web interface

http://www.sics.se/sicstus/bugreport/bugreport.html.

or to

sicstus-support@sics.se

Bugs tend actually to be fixed if they can be isolated, so it is in your interest to report them
in such a way that they can be easily reproduced.

The mailing list

sicstus-users@sics.se

is a moderated mailing list for communication among users and implementors. To
[un]subscribe, write to

sicstus-users-request@sics.se

http://www.sics.se/sicstus/
mailto:sicstus-request@sics.se
http://www.sics.se/sicstus/bugreport/bugreport.html
mailto:sicstus-support@sics.se
mailto:sicstus-users@sics.se
mailto:sicstus-users-request@sics.se

i

Table of Contents

1 Release notes and installation guide for UNIX
. 1
1.1 The Crypt Utility . 1
1.2 Installation . 1
1.3 Foreign language interface . 2

1.3.1 How to customize splfr and spld 2
1.3.2 How to create dynamic linked foreign resources

manually . 2
1.3.3 Interfacing to C++ . 2
1.3.4 Runtime Systems on Target Machines 3

1.4 Platform specific notes . 3
1.5 Files that may be redistributed with runtime systems 5

2 Release notes and installation guide for
Windows . 6
2.1 Requirements . 6
2.2 Installation . 6
2.3 Windows Notes . 7

2.3.1 Runtime Systems on Target Machines 7
2.3.2 Generic Runtime Systems . 8
2.3.3 Setting SP PATH under Windows. 9

2.4 Command line editing . 9
2.5 The console window . 10

2.5.1 Console Preferences . 10
2.6 Emacs Interface . 11
2.7 Limitations . 11
2.8 Files that may be redistributed with runtime systems 12

3 Tcl/Tk Notes. 13
3.1 The Tcl/Tk Terminal Window . 13

4 Jasper Notes . 14
4.1 Supported Java Versions . 14
4.2 Getting Started . 15

4.2.1 Windows . 15
4.2.2 Unix . 16
4.2.3 Running Java from SICStus . 16
4.2.4 Running SICStus from Java . 17

4.3 Jasper Package Options . 18
4.4 Known Bugs and Limitations in Jasper 19
4.5 Java Examples Directory . 20
4.6 Resources . 20

ii

5 Visual Basic notes . 21

6 Berkeley DB notes . 22

7 The Emacs Interface . 23
7.1 Installation . 23

7.1.1 Installing On-Line Documentation 23

8 Revision history . 24
8.1 Changes in release 3 . 24
8.2 Changes introduced in 3#4 . 25
8.3 Changes introduced in 3#5 . 26
8.4 Changes introduced in 3#6 . 26
8.5 Changes introduced in version 3.7 . 26
8.6 Changes introduced in version 3.7.1 . 28
8.7 Changes introduced in version 3.8 . 29

8.7.1 Wide character support . 29
8.7.2 Breakpointing debugger . 29
8.7.3 ISO compliance . 30
8.7.4 Generic new features . 30
8.7.5 New features in library(jasper) 31
8.7.6 New features in library(clpfd) 32
8.7.7 Bugs fixed in version 3.8 . 32

8.8 Changes introduced in version 3.8.1 . 33
8.9 Changes introduced in version 3.8.2 . 34
8.10 Changes introduced in version 3.8.3 . 35
8.11 Changes introduced in version 3.8.4 . 36
8.12 Changes introduced in version 3.8.5 . 38
8.13 Changes introduced in version 3.8.6 . 41

9 Generic limitations . 43

10 Questions and answers 44

	Release notes and installation guide for UNIX
	The Crypt Utility
	Installation
	Foreign language interface
	How to customize splfr and spld
	How to create dynamic linked foreign resources manually
	Interfacing to C{@char 43}{@char 43}
	Runtime Systems on Target Machines

	Platform specific notes
	Files that may be redistributed with runtime systems

	Release notes and installation guide for Windows
	Requirements
	Installation
	Windows Notes
	Runtime Systems on Target Machines
	Generic Runtime Systems
	Setting SP@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}PATH under Windows

	Command line editing
	The console window
	Console Preferences

	Emacs Interface
	Limitations
	Files that may be redistributed with runtime systems

	Tcl/Tk Notes
	The Tcl/Tk Terminal Window

	Jasper Notes
	Supported Java Versions
	Getting Started
	Windows
	Unix
	Running Java from SICStus
	Running SICStus from Java

	Jasper Package Options
	Known Bugs and Limitations in Jasper
	Java Examples Directory
	Resources

	Visual Basic notes
	Berkeley DB notes
	The Emacs Interface
	Installation
	Installing On-Line Documentation

	Revision history
	Changes in release 3
	Changes introduced in 3#4
	Changes introduced in 3#5
	Changes introduced in 3#6
	Changes introduced in version 3.7
	Changes introduced in version 3.7.1
	Changes introduced in version 3.8
	Wide character support
	Breakpointing debugger
	ISO compliance
	Generic new features
	New features in library(jasper)
	New features in library(clpfd)
	Bugs fixed in version 3.8

	Changes introduced in version 3.8.1
	Changes introduced in version 3.8.2
	Changes introduced in version 3.8.3
	Changes introduced in version 3.8.4
	Changes introduced in version 3.8.5
	Changes introduced in version 3.8.6

	Generic limitations
	Questions and answers

