
SICStus Prolog Release Notes
by the Intelligent Systems Laboratory

Swedish Institute of Computer Science
PO Box 1263

SE-164 29 Kista, Sweden

December 1999

Swedish Institute of Computer Science
sicstus-request@sics.se

http://www.sics.se/sicstus/

mailto:sicstus-request@sics.se
http://www.sics.se/sicstus/

Copyright c© 1999 SICS

Swedish Institute of Computer Science
PO Box 1263
SE-164 29 Kista, Sweden

Permission is granted to make and distribute verbatim copies of these notes provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of these notes under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of these notes into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by SICS.

Chapter 1: Release notes and installation guide for UNIX 1

1 Release notes and installation guide for UNIX

This chapter assumes that the environment variable PATH includes <prefix>/bin, where
<prefix> points to the SICStus installation directory. The installation directory is specified
during installation, see Section 1.3 [UNIX installation], page 1. For example:

csh,tcsh> setenv PATH "/usr/local/bin:$path"
sh,bash,ksh> export PATH="/usr/local/bin:$path"

1.1 Setting SP PATH under UNIX

The SP_PATH environment variable can be used to override the location of the SICStus
Runtime Library. There are two situations where it is justified to use it.

1. The --moveable option has been given to spld when building the executable.
2. The executable is a runtime system, and NULL is passed in the third argument to

SP_initialize.

The correct value of this variable in both cases is ‘/usr/local/lib/sicstus-3.8’, assuming
SICStus was installed in ‘/usr/local’.

1.2 The Crypt Utility

The SICStus binary distributions are encrypted with the crypt program. If you do not
have crypt on your machine, you can download a public domain crypt utility available via
anonymous FTP from

ftp://ftp.sics.se/archive/sicstus3/crypt.tar.gz

The enclosed README files describes how to compile it.

1.3 Installation

Most users will install SICStus from a binary distribution. These are available for all
supported platforms. Information on how to download and unpack the binary distribution
is sent by email when ordering SICStus.

Binary distributions are installed by executing a interactive installation script called
InstallSICStus. Type

% InstallSICStus

and follow the instructions on the screen.

During the installation, you will be required to enter your site-name and license code. These
are included in the download instructions.

ftp://ftp.sics.se/archive/sicstus3/crypt.tar.gz

Chapter 1: Release notes and installation guide for UNIX 2

The installation program does not only copy files to their destination, it also performs final
link steps for some of the executables and for the library modules requiring third-party
software support (currently library(bdb), library(tcltk), and library(jasper)). This
is done in order to adapt to local variations in installation paths and versions.

Compiling SICStus from the sources requires a source code distribution, available on request
for customers with maintenance contract. Contact sicstus@sics.se for more info.

Instructions for compiling and installing SICStus from the source code is available in the
files README and INSTALL in the source code distribution.

1.4 Foreign language interface

1.4.1 How to customize splfr and spld

The utilities splfr and spld are implemented as Perl scripts and can be customized in
order to adapt to local variations. Do not attempt this unless you know what you are doing.
Customization is done by editing their common configuration file spld.config. Follow
these instructions:

1. Locate the configuration file spld.config. It should be located in the same directory
as splfr and spld.

2. Make a copy for spld.config, lets call it hacked_spld.config. Do not edit the
original file.

3. The configuration file contains lines on the form CFLAGS=-g -O2. Edit these according
to your needs. Do not add or remove any flags.

4. You may now use the modified spld.config together with spld or splfr like this
% spld [...] --config=/path/to/hacked_spld.config

Replace /path/to with the actual path to the hacked configuration file.

1.4.2 How to create dynamic linked foreign resources manually

To compile the glue code file and user code, use the compiler options assigned to INCR_
CFLAGS by ./configure. In addition also include -DSPDLL.

The object files are then linked into a dynamic linked foreign resource. For this you will
normally use the linker whose name was assigned to SHLD by ./configure and linker
options assigned to SHLDFLAGS. The resource will consist of the file ResourceName.Suffix
where Suffix is the value assigned to SHSFX by ./configure. The defaults are

SHLD= ld
SHLDFLAGS= -shared
SHSFX= so

E.g. on Sparc/SunOS 5.X:

% cc -c -DSPDLL glue_code.c

Chapter 1: Release notes and installation guide for UNIX 3

% cc -c -DSPDLL mycode.c
% ld -shared glue_code.o mycode.o -o myresource.so

Libraries needed by the resource should normally also be included in the link command
line.

1.4.3 Interfacing to C++

Functions in C++ files which should be called from Prolog must be enclosed like e.g:

extern "C" {
void myfun(long i)
{...};
};

To build a dynamic linked foreign resource with C++ code, you may (depending on platform)
have to explicitly include certain libraries. E.g. on Sparc/SunOS 5.X using gcc:

% splfr -LD -L/usr/gnu/lib/gcc-lib/sparc-sun-solaris2.4/2.7.0 -lgcc

The library path is installation dependent, of course.

1.5 Platform specific UNIX notes

This section contains some installation notes which are platform specific under UNIX.

• Alpha/OSF1 When using library(bdb), the runtime linkers default search path must
be overridden to ensure that the builtin libdb.* is not used. This can be done by
setting LD_LIBRARY_PATH. Example:

bash> export LD_LIBRARY_PATH=/usr/local/BerkeleyDB/lib
csh> setend LD_LIBRARY_PATH /usr/local/BerkelyDB/lib

• Alpha/OSF1 Runtime loading of library(tcltk) might not work. If so,
library(tcltk) has to be pre-linked with the executable. Example:

% spld -D --resources=tcltk -o ./mysicstus

• MacOS X Server The following libraries are not supported: library(bdb),
library(db), library(tcltk), library(jasper).

• Solaris, Intel Edition The following libraries are not supported: library(bdb).

1.6 Files that may be redistributed with runtime systems

When a runtime system is redistributed to third parties, only the following files may be
included in the distribution. All filenames are relative to ‘<prefix>/lib/sicstus-3.8’:

‘../*.{a,so,sl,dylib}’
‘bin/sprt.sav’
‘bin/jasper.jar’

Chapter 1: Release notes and installation guide for UNIX 4

‘library/*.{tcl.po}’
‘library/*/*.{s.o,so,sl,dylib}’
‘library/*/*.po’

Chapter 2: Release notes and installation guide for Windows 5

2 Release notes and installation guide for
Windows

This chapter assumes that the environment variable PATH includes %SP_PATH%\bin, where
SP_PATH points to the SICStus installation directory. For example:

C:\> set PATH=c:\Program Files\sicstus3\bin;%PATH%

You may also want to include the paths to Tcl/Tk (see Chapter 3 [Tcl/Tk notes], page 12),
Java (see Section 4.1 [Getting Started], page 13), and Berkeley DB (see Chapter 6 [Berkeley
DB notes], page 18).

2.1 Requirements

• Operating environment: Microsoft Windows 95, 98, NT 4.0.
• Processor: 386, 486, or Pentium-class
• Available user memory: 16 Mbytes
• Available hard drive space: 20 Mbytes
• For interfacing with C or C++: Microsoft Visual C++ 5.0 or later.

2.2 Installation

The development system comes in two flavors:

1. A console-based executable which is suitable to run from a DOS-prompt, from batch
files, or under Emacs. See Section 2.4 [Command line editing], page 8.

2. A windowed executable providing command line editing and menus.

The distribution consists of a single, self-installing executable (sp3w32.exe) containing
development system, runtime support files, library sources, and manuals.

Installed files on a shared drive can be reused for installation on other machines.

SICStus Prolog requires a license code to run. You should have received from SICS your
site name, the expiration date and the code. This information is normally entered during
installation:

Expiration date: ExpirationDate
Site: Site
License Code: Code

but it can also be entered later on by executing the following commands at a command
prompt:

% splm -i Site
% splm -a sicstus3.8 ExpirationDate Code

Chapter 2: Release notes and installation guide for Windows 6

2.3 Windows Notes

• Pre-linked foreign resources are not supported under Windows; they have to be imple-
mented as DLLs. They are created using the utility splfr as described in the user’s
manual.

• The file name arguments to splfr and spld should not have embedded spaces. The
reason for this is that not all C-compilers/linkers seem to support quoting of file name
arguments.

• If SICStus cannot find the license information (see below) or if it was entered incorrectly
then SICStus will just exit. There will be no dialog or other feedback informing you of
the problem.
Note that the license consists of three parts, the Site name (or user name for personal
licenses), the License code, and the Expiration date. All parts are case sensitive, and
spaces are significant. A common mistake is to enter the License code correctly but
the Site/User name incorrectly.
If you have trouble with the license code use ‘splm.exe’, as explained in the letter with
your license code.

• On Windows 95/98
the shortcut installed in the ‘Start’ menu (‘Start\Programs\SICStus Prolog’) may
not work immediately after installation. Restarting after installing SICStus appears to
cure this. If this does not help you can add your own shortcut to, e.g., ‘C:\Program
Files\SICStus Prolog\bin\spwin.exe’.

• Selecting the ‘Manual’ or ‘Release Notes’ item in the ‘Help’ menu gives an error mes-
sage similar to ‘... \!Help\100#!Manual.lnk could not be found’. This happens
when Adobe Acrobat Reader is not installed or if it has not been installed for the cur-
rent user. Open ‘C:\Program Files\SICStus Prolog\doc\pdf\’ in the explorer and
try opening ‘relnotes.pdf’. This might bring up an configuration dialog for Adobe
Acrobat, configure Acrobat and try the ‘Help’ menu again. Alternatively, you may
have to obtain Adobe Acrobat. It is available for free from http://www.adobe.com/.

• Windows NT.
We recommend that SICStus is installed by a user with administrative privileges and
that the installation is made ‘For All Users’. See also the next item.
The first time the installer is run it will install necessary system files for supporting the
new ‘Windows Installer’ technology from Microsoft. This will fail unless the user has
administrative rights. A typical symptom is an error message asking for ‘msiexec’.
If SICStus is installed for a single user then SICStus will not find the license information
when started by another user. In this case you can use the command line utility
‘splm.exe’ as described in the letter containing your license code.

• Windows NT.
If SICStus was installed by a different user than the one using it then the ‘Help’ menu
will only show a single entry ‘Documentation’. This item will open an ‘HTML’-page with
links to the documentation.
To obtain the full ‘Help’ menu for all users you should copy the folder
‘C:\WINNT\Profiles\USER\Application Data\SICS\’ to ‘C:\WINNT\Profiles\All
Users\Application Data\SICS\’, where USER is the user that installed SICStus.

http://www.adobe.com/

Chapter 2: Release notes and installation guide for Windows 7

2.3.1 Launching Runtime Systems on Target Machines

This section describes how to launch a runtime system on a so called target machine, i.e. a
machine which does not have SICStus installed.

In order to locate all relevant files, the following directory structure is recommended.

myapp.exe
sprt38.dll
sp38\
+--- bin\
| +--- sprt.sav
+--- library\

+--- <files from %SP_PATH%\library>

myapp.exe is typically created by a call to spld:

% spld --main=user [...] -o ./myapp.exe

If the directory containing sprt38.dll contains a directory called sp38, SICStus assumes
that it is part of a Runtime System as described in the picture. The runtime library
(sprt.sav) is then looked up in the directory (‘sp38/bin’), as in the picture. Further-
more, the initial library_directory/1 fact will initially be set to the same directory with
sp38/library appended.

The directory structure under library/ should look like in a regular installed SICStus,
including the platform-specific subdirectory (x86-win32-nt-4 in this case). If your appli-
cation needs to use library(system) and library(random), your directory structure may
look like:

myapp.exe
sprt38.dll
sp38\
+--- bin\
| +--- sprt.sav
+--- library\

+--- random.po
+--- system.po
+--- x86-win32-nt-4 \

+--- random.dll
+--- system.dll

The sp* files can also be put somewhere else in order to be shared by several applications
provided the sprt38.dll can be located by the DLL search.

The 38 in the file names above is derived from SICStus’s major and minor version numbers,
i.e. currently 3 and 8. Naming the files with version number enables applications using
different sicstus versions to install the sp* files in the same directory.

Chapter 2: Release notes and installation guide for Windows 8

2.3.2 Generic Runtime Systems

There are three ready-made runtime systems provided
with the distributions, ‘%SP_PATH%\bin\sprt.exe’, ‘%SP_PATH%\library\sprtw.exe’, and
‘%SP_PATH%\bin\sprti.exe’. These are created using spld:

% spld --main=restore main.sav -o sprt.exe
% spld --main=restore main.sav -i -o sprti.exe
% spld --main=restore main.sav --window -o sprtw.exe

These are provided for users who do not have a C-compiler available. The programs launches
a runtime system by restoring the saved state main.sav (created by save_program/2) and
then call the predicate runtime_entry/1 (defined by the user), setting the first argument
to the atom start. Alternatively, the runtime system’s entry point may be specified using
save_program/2.

The program ‘sprti.exe’ assumes that the standard streams are connected to a terminal,
even if they to not seem to be (useful under Emacs, for example). ‘sprtw.exe’ is a windowed
executable, corresponding to ‘spwin.exe’.

For more info on how spld works, see section “The spld utility” in SICStus Prolog Manual.

2.3.3 Setting SP PATH under Windows

The use of the SP_PATH variable under Windows is discouraged, since Windows applications
can find out for themselves where they were started from.

SP_PATH is only used if the directory where sprt<ver>.dll is loaded from does not contain
sp<ver> (a directory) or sprt.sav (where <ver> is "38" for SICStus version 3.8(.x)). If
SP_PATH is used, SICStus expects it to be set such that %SP_PATH%/bin contains sprt.sav.
See Section 2.3.1 [Launching Runtime Systems on Target Machines], page 7.

2.4 Command line editing

Command line editing supporting Emacs-like commands and IBMPC arrow keys is provided
in the console-based executable. The following commands are available:

^h erase previous char

^d erase next char

^u kill line

^f forward char

^b backward char

^a begin of line

^e end of line

^p previous line

Chapter 2: Release notes and installation guide for Windows 9

^n next line

^i insert space

^s forward search

^r reverse search

^v view history

^q input next char blindly

^k kill to end of line

Options may be specified in the file ‘%HOME%\spcmd.ini’ as:

Option Value

on separate lines. Recognized options are:

lines Value is the number of lines in the history buffer. 1-100 is accepted; the default
is 30.

save Value is either 0 (don’t save or restore history buffer) or 1 (save history buffer
in ‘%HOME%\spcmd.hst’ on exit, restore history from the same file on start up.

The command line editing is switched off by giving the option ‘-nocmd’ when starting
SICStus. Command line editing will be automatically turned off if SICStus is run with
piped input (e.g. from Emacs).

2.5 The console window

The console window used for the windowed executable is based on code written by Jan
Wielemaker <jan@swi.psy.uva.nl>.

In SICStus 3.8 the console was enhanced with menu access to common prolog flags and file
operations. Most of these should be self explanatory. The ‘Reconsult’ item in the ‘File’
menu reconsults the last file consulted with use of the ‘File’ menu. It will probably be
replaced in the future with something more powerful.

Note that the menus work by simulating user input to the prolog top level or debugger. For
this reason it is recommended that the menus are only used when SICStus is waiting for a
goal at the top-level (or in a break level) or when the debugger is waiting for a command.

2.5.1 Console Preferences

The stream-based console window is a completely separate library, using its own configu-
ration info. It will look at the environment variable CONSOLE which should contain a string
of the form name:value{,name:value} where name is one of:

Chapter 2: Release notes and installation guide for Windows 10

sl The number of lines you can scroll back. There is no limit, but the more you
specify the more memory will be used. Memory is allocated when data becomes
available. The default is 200.

rows The initial number of lines. The default is 24.

cols The initial number of columns. The default is 80.

x The X coordinate of the top-left corner. The default is CW_USEDEFAULT.

y The Y coordinate of the top-left corner. The default is CW_USEDEFAULT.

You will normally specify this in your ‘autoexec.bat’ file. Here is an example:

% set CONSOLE=sl:600,x:400,y:400

Many of these settings are also accessible from the menu ‘Settings’ of the console.

2.6 Emacs Interface

Choosing 〈EOF〉 from the menu seems to generate an eternal 〈EOF〉 which is not useful for
e.g. escaping a break level. Instead a C-d can be generated by typing C-q C-d.

2.7 Limitations

• File paths with both / and \ as separator are accepted. SICStus returns paths using
/. Note that \, since it is escape character, must be given as \\ unless the prolog flag
character_escapes is set to off.

• All file names and paths are converted to lowercase when expanded by absolute_file_
name/2 etc.

• File paths of the form ~/ are expanded using the values of the environment variable HOME
or HOMEDRIVE and HOMEPATH. The form ~username/ is not expanded. The form $VAR/

is expanded using the value of the environment variable VAR. The form %VAR%/ is
not recognized.

• Interruption by ^C is limited on the windowed executable: ^C is checked for upon
character output and garbage collection only.

• Pre-linked foreign resources are not supported. The --resources option to spld is a
no-op.

• In the windowed executable, the user_error stream is line buffered.
• Running under Emacs has been tried with GNU-Emacs v.19.31 and 19.34

(http://www.cs.washington.edu/homes/voelker/ntemacs.html). See above.
• Tcl/Tk: The top_level_events option to tk_new/2 is not supported.
• stream_select/3 is not supported.
• stream_interrupt/3 is not supported.
• library(timeout) is not supported.
• library(sockets): The AF_UNIX address family is (unsurprisingly) not supported;

socket_select/[5,6] support only socket streams for arg 4(5).

http://www.cs.washington.edu/homes/voelker/ntemacs.html

Chapter 2: Release notes and installation guide for Windows 11

• library(system): popen/3 is not supported. kill/2 attempts to terminate the re-
quested process irrespectively of the 2nd arg.

2.8 Files that may be redistributed with runtime systems

When a runtime system is redistributed to third parties, only the following files may be
included in the distribution. All filenames are relative to ‘%SP_PATH%’:

‘bin\sprt.sav’
‘bin\jasper.jar’
‘bin*.dll’
‘bin*.po’
‘library*.{tcl,po,bas}’
‘library**.dll’
‘library**.po’

Chapter 3: Tcl/Tk notes 12

3 Tcl/Tk notes

Tcl/Tk itself is not included in the SICStus distribution. It must be installed in order to
use the interface. It can be downloaded from the Tcl/Tk primary website:

http://www.scriptics.com

The Tcl/Tk interface module included in SICStus Prolog 3.8 (library(tcltk)) is verified
to work with Tcl/Tk 8.2 (with a few exceptions noted below). Previous versions of the
interface have been verified to work with Tcl/Tk versions 7.3/3.6, 7.4/4.0, 7.5/4.1, 7.6/4.2,
8.0, and 8.1. The current version of the interface may or may not work with these versions.

Under UNIX, the installation program automatically detects the Tcl/Tk version (if the user
does not specify it explicitly).

Under Windows, the binary distribution is compiled against Tcl/Tk 8.2. If you need to use
an older Tcl/Tk, contact SICStus Support.

Note: The Tcl/Tk interface module is not supported under: Mac OS X Server, FreeBSD.
Under AIX, the interface module has only been verified with Tcl/Tk version 7.6/4.2.

As of SICStus Prolog 3.8.1 Tcl_FindExecutable("") is called when the ‘tcltk’ library
is loaded, before any Tcl/Tk interpreter is created. This should fix errors related to not
finding ‘init.tcl’ and also improve support for international character sets.

3.1 The Tcl/Tk Terminal Window

The Tcl/Tk interface includes a experimental terminal window based on Tcl/Tk. It is
opened by using the (undocumented) predicate:

tk_terminal(Interp, TextWidget, InStream, OutStream, ErrStream)
Given a TextWidget, e.g. .top.myterm, this predicate opens three prolog
streams for which the text widget acts as a terminal.

There is also a library(tkconsol), making use of tk_terminal/5, which switches the
Prolog top level to a Tk window. This is done by simply loading the library module.

http://www.scriptics.com

Chapter 4: Jasper notes 13

4 Jasper notes

Jasper requires at least Java 2 (a.k.a. JDK 1.2) to run (the full development kit, not just
the JRE). Jasper does not work with Visual J++ or Visual Café. Jasper is only supported
under the following configurations:

Solaris 2.x (SPARC)
Verified using Sun’s JDK 1.2.x, downloadable from

http://java.sun.com/products/jdk/1.2/

Note: Solaris/Intel users, see Section 1.5 [Platform specific UNIX notes], page 3.

Windows 95/98/NT
Verified using Sun’s JDK 1.2.2, downloadable from

http://java.sun.com/products/jdk/1.2/

Linux (x86)
Verified using Blackdown’s JDK 1.2 (pre-release-v2, native threads, nojit).
Downloadable from

http://www.blackdown.org/java-linux.html

4.1 Getting Started

This section describes some tips and hints on how to get the interface started. This is
actually where most problems occur.

Under Windows, it is recommended that you add SICStus’s and Java’s DLL directo-
ries to your %PATH%. This will enable Windows library search method to locate all rel-
evant DLLs. For SICStus, this is the same as where sicstus.exe is located, usually
C:/Program Files/sicstus3/bin). For Java it is usually C:/jdk1.2.2/jre/bin/classic
and C:/jdk1.2.2/bin. For example:

set PATH=C:/Program Files/sicstus3/bin;C:/jdk1.2.2/jre/bin/classic;\
C:/jdk1.2.2/bin;%PATH%

If SICStus is used as parent application, things are usually really simple. Just exe-
cute the query | ?- use_module(library(jasper)).. After that, it is possible to per-
form meta-calls (as described in the User’s Manual), or load a foreign resource containing
foreign(...,java,...) predicates.

On some platforms, you may encounter the following error message:

% sicstus
SICStus 3.8 (sparc-solaris-5.5.1): Wed Sep 22 08:42:14 MET DST 1999
Licensed to SICS
| ?- use_module(library(jasper)).
[...]
{SYSTEM ERROR: ’Attempted to load Java engine into sbrk\’d
SICStus system (try starting SICStus with -m option)’}

http://java.sun.com/products/jdk/1.2/
http://java.sun.com/products/jdk/1.2/
http://www.blackdown.org/java-linux.html

Chapter 4: Jasper notes 14

[...]

Since most platforms don’t allow sbrk() and malloc() to coexist peacefully, SICStus re-
fuses to load the JVM if not the -m flag was given to SICStus. The message can, as the
error message suggests, be avoided if SICStus is started with the -m flag:

% sicstus -m

If Java is used as parent application, things are a little more complicated. There are a
couple of things which need to be taken care of. The first is to specify the correct class
path so that Java can find the Jasper classes (SICStus, SPTerm, and so on). This is done
by specifying the pathname of the file jasper.jar:

% java -classpath $SP_PATH/bin/jasper.jar ...

SP_PATH does not need to be set; it is only used here as a placeholder. See the documentation
of the Java implementation for more info on how to set classpaths.

The second is specify where Java should find the Jasper native library (libjasper.so
or jasper.dll), which
is loaded into the JVM by invoking the method System.loadLibrary("jasper"). This
method uses a platform dependent search method to locate the Jasper native library, and
quite often this method fails. A typical example of such a failure looks like:

% java -classpath [...]/jasper.jar se.sics.jasper.SICStus
Trying to load SICStus.
Exception in thread "main" java.lang.UnsatisfiedLinkError: no jasper
in java.library.path
at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1133)
at java.lang.Runtime.loadLibrary0(Runtime.java:470)
at java.lang.System.loadLibrary(System.java:745)
at se.sics.jasper.SICStus.loadNativeCode(SICStus.java:37)
at se.sics.jasper.SICStus.initSICStus(SICStus.java:80)
at se.sics.jasper.SICStus.<init>(SICStus.java:111)
at se.sics.jasper.SICStus.main(SICStus.java:25)

This can be fixed by explicitly setting the Java property java.library.path to the location
of libjasper.so (or jasper.dll), like this:

% java -Djava.library.path=/usr/local/lib [...]

If this works properly, SICStus should have be loaded into the JVM address space. The
only thing left is to tell SICStus where the runtime library (i.e. sprt.sav) is located. You
may choose to specify this explicitly by either givin a second argument when initializing
the SICStus object or by specifying the property sicstus.path:

Example (UNIX):

% java -Dsicstus.path=/usr/local/lib/sicstus-3.8

Chapter 4: Jasper notes 15

Example (Win32):

% java -Dsicstus.path="c:\Program Files\sicstus3"

If you do not specify any explicit path, SICStus will search for the runtime library itself.

If everything is setup correctly, you should be able to call main (which contains a short
piece of test-code) in the SICStus root class, something like this:

% java -Djava.library.path=/usr/local/lib \
-classpath /usr/local/lib/sicstus-3.8/bin/jasper.jar \
se.sics.jasper.SICStus

Trying to load SICStus.
If you see this message, you have succesfully
initialized the SICStus Prolog engine.

It is similar under Win32, with the exception that the paths look slightly different.

4.2 Jasper and Native Threads

It is highly recommended that you run your JDK in native threads mode. This is the default
under Windows. Under UNIX, most JDKs use native threads per default in version 1.2.

SICStus does not allow multiple native threads executing simultaneous in the emulator. In
other words, all calls to SICStus have to be performed from the same Java (native) thread.
If this condition is violated, a IllegalCallerException is thrown. There are also methods
in the SICStus class to check whether the current thread is allowed to call SICStus methods,
without throwing an exception. See the se.sics.jasper package documentation for more
info.

The simplest way of avoiding IllegalCallerExceptions being thrown is to have a single,
dedicated, Java-thread which is performs all the calls to SICStus. Other threads wanting
to call Prolog can synchronize with the dedicated Java-thread using the methods wait()
and notify().

4.3 Known Bugs and Limitations in Jasper

• Jasper cannot be used from within applets, since Jasper relies on calling methods
declared as native. This is due to a security-restriction enforced on applets; they are
not allowed to call native code.

• If a green threads JVM is used (which is not recommended), avoid using terminal
I/O routines in Java code called from Prolog (or in general when Prolog is the parent
application). This is due to magic tricks the JVM does with file descriptors to handle
blocking system calls without native threads.

• On some platforms you need to explicitly specify the -native option when calling java.
The following error is an example of what may happen if you do not specify -native:

% java -classpath .:[...]/lib/sicstus-3.8/bin/jasper.jar -Djava.library.path=[...]/lib -Dsicstus.path=[...]./lib/sicstus-3.8 Simple

Chapter 4: Jasper notes 16

*** panic: libthread loaded into green threads
Abort (core dumped)

Instead, do
% java -native [...]

See your JDK documentation for more info on command-line parameters to the JVM.
• There is a known memory leak when using the argument conversion specifiers [-chars],

[-string], -chars, and -string. They convert Java strings to UTF8 strings using
GetStringUTFChars(), but they do not call ReleaseStringUTFChars() to release the
string.

4.4 Java Examples Directory

There is an examples directory available in $SP_PATH/library/jasper/examples. See the
file README for more info.

4.5 Resources

There are almost infinitely many Java resources on the Internet. Here is a list of a few
which are related to Jasper and JNI.

• JavaSoft Homepage.
• JavaSoft’s Java FAQ.
• JavaSoft Documentation Homepage.
• JNI Documentation.
• JavaSoft’s JNI Tutorial.
• Yahoo’s Java page.
• The ACM student magazine Crossroads has published an article on the JNI. This

article may be out of date.

http://java.sun.com/
http://java.sun.com/products/jdk/faq.html
http://java.sun.com/docs/index.html
http://java.sun.com/products/jdk/1.2/docs/guide/jni/index.html
http://java.sun.com/docs/books/tutorial/native1.1/index.html
http://www.yahoo.com/Computers_and_Internet/Programming_Languages/Java/
http://www1.acm.org:82/crossroads/xrds4-2/jni.html

Chapter 5: Visual Basic notes 17

5 Visual Basic notes

The Visual Basic - SICStus Prolog interface consists of the following files:

• vbsp.dll (installed as ‘SICStus\bin\vbsp.dll’)
• vbsp.po (installed as ‘SICStus\bin\vbsp.po’)
• vbsp.bas (installed as ‘SICStus\library\vbsp.bas’)

In order to use the interface, perform the following steps:

• include the file ‘vbsp.bas’ in your Visual Basic project.
• put the files ‘vbsp.dll’ and ‘vbsp.po’ in a place where DLLs are searched for (For

example the same directory as your applications EXE file or the Windows-System
directory). This is true by default if ‘SICStus\bin\’ is in the PATH environment
variable.

• make the SICStus runtime DLL etc. available. See section “Launching Runtime Sys-
tems on Target Machines” in SICStus Prolog Release Notes.

Chapter 6: Berkeley DB notes 18

6 Berkeley DB notes

As of SICStus 3.8, the library module library(db) has been replaced by library(bdb).
The functionality is similar, but library(bdb) is built on top of Berkeley DB. Berkeley
DB can be downloaded from:

http://www.sleepycat.com

library(bdb) has been verified to work using Berkeley DB version 2.7.5.

When using Berkeley DB on Windows, you may want to set %PATH% to contain the path to
libdb.dll. Consult the Berkeley DB documentation for further info.

http://www.sleepycat.com

Chapter 7: The Emacs Interface 19

7 The Emacs Interface

The Emacs Interface was originally developed for GNU Emacs 19.34 and is presently being
maintained using XEmacs 21.1 and tested with GNU Emacs 19.34.1. For best performance
and compatibility and to enable all features we recommend that the latest versions of GNU
Emacs or XEmacs are used.

7.1 Installation

Starting with SICStus 3.8 the Emacs interface is distributed with SICStus and installed
by default. The default installation
location for the emacs files is ‘<prefix>/lib/sicstus-3.8/emacs/’ on UNIX platforms
and ‘C:/Program Files/SICStus/emacs/’ on Windows.

For maximum performance it is recommended, that the Emacs lisp files (extension .el) are
compiled. This can be done from within Emacs with the command M-x byte-compile-

file. See section “Installation” in SICStus Prolog Manual, for further details.

7.1.1 Installing On-Line Documentation

It is possible to look up the documentation for any built in or library predicate from within
Emacs (using C-c ? or the menu). For this to work Emacs must be told about the location
of the ‘info’-files that make up the documentation. This can be done for the entire emacs
installation or on a per user basis, see section “Installation” in SICStus Prolog Manual, for
further details.

The default location for the ‘info’-files are ‘<prefix>/lib/sicstus-3.8/doc/info/’ on
UNIX platforms and ‘C:/Program Files/SICStus/doc/info/’ on Windows.

More recent versions of GNU Emacs and XEmacs should be able to automatically incor-
porate info files from a subdirectory into the main Info documentation tree. It is therefore
recommended that the SICStus Info files are kept together in their own directory.

Chapter 8: Revision history 20

8 Revision history

This chapter summarizes the changes in release 3 wrt. previous SICStus Prolog releases as
well as changes introduced by patch releases.

8.1 Changes in release 3

• Backslashes (\) in strings, quoted atoms, and integers written in ‘0’’ notation denote
escape sequences. Character escaping can be switched off.

• Multifile declarations are required in all files where clauses to a multifile predicate are
defined. This complies with the ISO Prolog Standard.

• The built-in predicate call_residue/2 has been modified so that goals that are dis-
junctively blocked on several variables are returned correctly in the second argument.

• The built-in predicate setarg/3 has been removed. Its functionality is provided by
the new built-ins create_mutable/2, get_mutable/2, update_mutable/2, and is_
mutable/2, which implement a timestamp technique for value-trailing with low-level
support.

• The built-in predicates unix/1 and plsys/1 have been removed. Their functionality
is provided by prolog_flag(argv,X), by the new halt/1 built-in, and by the new
library(system) module which also contains several new predicates.

• The socket I/O built-ins have been moved to the new library(sockets) module.
• The built-in time_out/3 has been moved to the new library(timeout) module.
• The built-ins term_hash/[2,4], subsumes_chk/2, and term_subsumer/3 have been

moved to the new library(terms) module, which also contains operations for unifi-
cation with occurs-check, testing acyclicity, and getting the variables of a term.

• The foreign language interface (Prolog-to-C) has been extended with the types +chars,
-chars and [-chars] for fast conversion between C strings and Prolog lists of character
codes. Several new interface functions are available.

• The memory handling of the C-to-Prolog interface has been simplified by passing each
Prolog term as a “handle” object, called an SP_term_ref, making the functions SP_
show_term() and SP_hide_term() obsolete.

• The InterViews 2.6 based GUI module library(gmlib) has been replaced by the
Tcl/Tk
based library(tcltk). A version of library(gmlib) converted to SICStus Prolog
release 3 is available from ‘ftp://ftps.ics.se/archive/sicstus3/gmlib.tar.gz’.

• The library(objects) module has been enhanced.
* Inheritance is static, i.e. determined at object creation time, and is implemented

as module importation.
* A new, very light-weight, type of object: instance.
* Attributes, efficient storage of terms in objects.
* Unprefixed goals in methods denote message passing to self. Prolog goals in

methods must be prefixed by :.

Chapter 8: Revision history 21

• In library(charsio), the open_chars_stream/[3,4] predicates have been replaced
by open_chars_stream/2 and with_output_to_chars/[2,3].

• The library(assoc) module now implements AVL trees instead of unbalanced binary
trees.

• The new library(atts) implements attributed variables, a general mechanism for
associating logical variables with arbitrary attributes. Comes with a number of hooks
that make it convenient to define and interface to constraint solvers.

• The Boolean constraint solver has been moved to the new library(clpb) and is im-
plemented on top of library(atts).

• New constraint solvers for rationals (library(clpq)) and reals (library(clpr)), im-
plemented on top of library(atts).

• user:goal_expansion/3 is a new hook predicate for macro-expansion.
• bb_put/2, bb_get/2, bb_delete/2, and bb_update/3 are new built-ins implementing

blackboard primitives.
• prolog_load_context/2 is a new built-in predicate for accessing aspects of the context

of files being loaded.
• user:file_search_path/2 is a new hook predicate providing an alias expansion mech-

anism for filenames.
• gcd/2 is a new built-in function.
• The statistics keyword walltime measures elapsed absolute time.
• In runtime systems, ensure_loaded/1 and use_module/[1,2,3] have the same se-

mantics as in development systems.
• Native code compilation available for MIPS platforms.
• Problems in native code compilation for certain SPARC models have been eliminated.
• Performance improvements include emulated code speed, native code speed, and the

foreign language interface.
• The system has been ported to the DEC OSF/1 Alpha (a 64-bit platform).

8.2 Changes introduced in 3#4

• New built-in predicates and shell commands for creating and loading foreign language
modules and creating customized development and runtime systems. Previous built-ins
remain for backwards compatibility.

• Slight changes in the C interface: hook variables are set by function calls, SP_foreign_
reinit_hook is not supported.

• The system has been ported to the Microsoft Win32 platform (Intel x86).
• The system has been ported to the Macintosh.
• The system has been ported to the OS/2 (32bit) platform (Intel x86).
• If the init file ‘~/.sicstusrc’ is not found, SICStus looks for ‘~/sicstus.ini’.
• library(sockets): socket_select/5 arg 1 may be a, possibly empty, list of passive

sockets, arg 3 returns a, possibly empty, list of new streams.

Chapter 8: Revision history 22

• library(system): The following new predicates are provided: tmpnam/1, directory_
files/2, file_property/2, delete_file/2, make_directory/1.

• A new constraint solver for finite domains (library(clpfd)), implemented on top of
library(atts).

8.3 Changes introduced in 3#5

• New built-in open/4, enables opening files in binary mode.
• library(charsio): New predicate with_output_to_chars/4.
• library(heaps): New predicates delete_from_heap/4, empty_heap/1, is_heap/1.
• library(queues): New predicate is_queue/1.
• library(sockets): New predicates: socket_accept/3, and socket_select/6 pro-

vide address of connecting client. hostname_address/2 resolves name/ip-number.
• SP_atom_length returns the print name length of a Prolog atom.
• Modification time instead of current time stored for loaded files.

8.4 Changes introduced in 3#6

• toplevel_print_options and debugger_print_options are new Prolog flags con-
trolling the toplevel’s and debugger’s printing behavior.

• is_mutable/1 is a new built-in which is true for mutables.
• ‘~@’ is a new spec in format/[2,3] for arbitrary goals.
• Mutables are initialized correctly when read in.
• toplevel_print_options and debugger_print_options are new Prolog flags con-

trolling the toplevel’s and debugger’s printing behavior.
• is_mutable/1 is a new built-in which is true for mutables.
• ‘~@’ is a new spec in format/[2,3] for arbitrary goals.
• Mutables are initialized correctly when read in.
• The finite domain constraint solver (library(clpfd)) has been enhanced by a pro-

gramming interface for global constraints, improved compilation to library constraints
and other performance enhancements, and by a number of new exported constraints.

• library(objects): New hook predicate user:method_expansion/3.
• library(sockets): socket_select/5 has extended functionality.
• Efficiency bugs in format/[2,3] fixed.
• Bug in save_program/[1,2] with native code fixed.
• Bugs in library(chr) fixed, and a couple of new constraint handlers fixed.
• A problem with source linked debugging of DCG rules fixed.
• Prevent looping on duplicates in module/2 decl.
• Prevent memory overrun in library(tcltk).

Chapter 8: Revision history 23

8.5 Changes introduced in version 3.7

• The concept of patchlevels removed and replaced by versions.
• library(chr): A new library module providing Constraint Handling Rules; see

http://www.pst.informatik.uni-muenchen.de/~fruehwir/chr-solver.html

• Jasper, a bi-directional Java-interface, consisting of extensions to the existing FLI and
a new library module library(jasper).

• Atom garbage collection, invoked by garbage_collect_atoms/0, and controlled by the
agc_margin Prolog flag. New statistics options: atoms, atom_garbage_collection.
New interface functions: SP_register_atom, SP_unregister_atom.

• Calls with clean-up guaranteed, provided by call_cleanup/2, which replaces undo/1.
• Source-linked debugging, controlled by the source_info Prolog flag.
• Debugger enhancements: tracing of compiled code; a new debugger mode zip and

built-ins zip/0, nozip/0; new debugger commands out n, skip i, quasi-skip i, zip,
backtrace n, raise exception. Modules can be declared as hidden which disables tracing
of their predicates.

• Saved states are available in runtime systems, and are portable across platforms and
between development and runtime systems. save/[1,2] are gone. In most cases,
save_program/2 can be used in their place, with a little rearrangement of your code.
Predicates can be declared as volatile.

• A interface function SP_restore is the C equivalent of restore/1, which now only
restores the program state, leaving the Prolog execution stacks unchanged.

• The GNU Emacs interface was enhanced: source-linked debugging, new menus, speed,
help functions, electric functions, indentation, portability, bug fixes.

• The reader can return layout information about terms read in. New read_term/3
option: layout(-Layout). New hook predicate: user:term_expansion/4.

• Module name expansion of goals is done prior to execution of meta-calls.
• Imported predicates can be spied and abolished.
• random:randset/3 returns a set in standard order.
• db:db_canonical/[2,3] are new; can be used to check whether two TermRef s refer

to the same term.
• clpfd:serialized_precedence/3 and clpfd:serialized_precedence_resource/4

are new; model non-overlapping tasks with precedence constraints or sequence-
dependent setup times.

• In object method bodies, goals of the form :Goal are translated according to the
manual. Earlier versions treated arguments occurring in the ‘:’ position of meta-
predicates specially.

• A new interface function SP_raise_fault and interface macro SP_on_fault are avail-
able for handling runtime faults that cannot be caught as exceptions.

• A new interface function SP_set_memalloc_hooks is available for redefining the mem-
ory manager’s bottom layer. Related to that, there is a new command-line option
‘-m’.

http://www.pst.informatik.uni-muenchen.de/~fruehwir/chr-solver.html

Chapter 8: Revision history 24

• Development and runtime systems have been reorganized internally. All use a runtime
kernel shared object or DLL, and are initialized by restoring saved states. Development
systems additionally use a development kernel shared object or DLL.

• The ‘-B’ command-line option is gone in the start-up script, and some new options
have appeared.

• Under UNIX: new option ‘-base’ to override the executable used by the start-script.
• Under UNIX: improvements in the configure-script; better options to specify Tcl/Tk

versions and paths.
• Hookable standard-streams.
• Floating-point operations on Digital Alpha are now IEEE-conformant.
• reinitialise/0 does not load any initialization files given in ‘-i’ or ‘-l’ command

line flags.
• Under UNIX: New option -S to spmkrs and spmkds to link the SICStus Runtime Kernel

(and development extensions for spmkds) statically into the executable.
• ?- [File1,File2,...] was broken.
• require/1 did not find all directories.
• Runtime systems could crash after GC.
• Bugs in clp[qr]:dump/3, clp[qr]:expand/0, clp[qr]:noexpand/0.
• The garbage collector reported too many bytes collected.
• Memory overflows were not handled gracefully.
• Imported predicates couldn’t be abolished.
• arrays:arefa/3, arrays:arefl/3, heaps:min_of_heap/5 are now steadfast.
• Most library(clpfd) predicates now check the type of their arguments. Bugs fixed

in relation/3, serialized/2, all_distinct/1.
• frozen/2 could crash on an argument of the wrong type.
• SP_get_list_n_chars does not require a proper list.
• Problems with exceptions in embedded commands in source files.
• Problems with load_files(Files, [compilation_mode(assert_all)]).
• For load_files(Files, [if(changed)]), a non-module file is not considered to have

been previously loaded if it was loaded into a different module.
• Incorrect translation of if/3 goals in DCG rules.
• On Win32, system:mktemp/2 sometimes returned filenames with backslashes in them.

8.6 Changes introduced in version 3.7.1

• The type-specifier object in Jasper has changed to object(Class).
• Under UNIX: Error-handling in splfr, spmkrs, spmkds.
• Jasper did not convert return values correctly when calling Java from Prolog.
• Jasper did not handle instance methods correctly.
• Some of the legal type-specifiers in Jasper were rejected by the glue-code generator.

Chapter 8: Revision history 25

• Efficiency bugs in format/[2,3] fixed.
• Bug in save_program/[1,2] with native code fixed.
• Bugs in library(chr) fixed, and a couple of new constraint handlers fixed.
• A problem with source linked debugging of DCG rules fixed.
• Prevent looping on duplicates in module/2 decl.
• Prevent memory overrun in library(tcltk).

8.7 Changes introduced in version 3.8

8.7.1 Wide character support

Wide character handling is introduced, with the following highlights:

• character code sets up to 31 bit wide;
• three built-in wide character modes (ISO 8859 1, UTF8, EUC), selectable via environ-

ment flags;
• complete control over the external encoding via hook functions.

For programs using the default ISO 8859 1 character set, the introduction of wide characters
is transparent, except for the string format change in the foreign interface, see below.

In programs using the EUC character set, the multibyte EUC characters are now input as
a single, up to 23 bit wide, character code. This character code can be easily decomposed
into its constituent bytes, if needed. The encoding function is described in detail in the
SICStus manual.

To support wide characters, the foreign interfaces now use UTF-8 encoding for strings
containing non-ASCII characters (codes >= 128). This affects programs with strings that
contain e.g. accented characters and which transfer such strings between Prolog and C. If
such a string is created on the C side, it should be converted to UTF-8, before passing it
to Prolog. Similarly for a string passed from Prolog to C, if it is to be decomposed into
characters on the C side, the inverse transformation has to be applied.

Utility functions SP_code_wci and SP_wci_code are provided to support the conversion of
strings between the WCI (Wide Character Internal encoding, i.e. UTF-8) format and wide
character codes.

8.7.2 Breakpointing debugger

A new general debugger is introduced, with advanced debugging features and an advice
facility. It generalizes the notion of spypoint to that of the breakpoint. Breakpoints make
it possible to e.g. stop the program at a specified line, or in a specified line range, or to call
arbitrary Prolog goals at specified ports, etc. Highlights:

• Advice facility — useful for non-interactive debugging, such as checking of program
invariants, collecting information, profiling, etc.

Chapter 8: Revision history 26

• Debugger hook predicate — new interactive tracer commands can be defined.
• Tracer information access — data on current and past execution states, such as those

contained in the ancestor list, or the backtrace, is now accessible to the program.
• The following built-in predicates have been added: add_breakpoint/2, spy/2,

current_breakpoint/4, remove_breakpoints/1, disable_breakpoints/1, enable_
breakpoints/1, execution_state/1, and execution_state/2. user:debugger_
command_hook/2 is a new hook predicate.
The predicates nospy/1 and nospyall/0 have slighty changed meaning.
The predicate spypoint_condition/3 has been removed.

8.7.3 ISO compliance

SICStus 3.8 supports standard Prolog, adhering to the International Standard ISO/IEC
13211-1 (PROLOG: Part 1—General Core). At the same time it also supports programs
written in earlier versions of SICStus. This is achieved by introducing two execution modes
iso and sicstus. Users can change between the modes using the prolog flag language.
Main issues:

• The sicstus execution mode is practically identical to 3.7.1, except for minor changes
in error term format.

• The iso mode is fully compliant with ISO standard, but no strict conformance mode
is provided.

• The dual mode system supports the gradual transition from legacy SICStus code to
ISO Prolog compliant programs.

• Note that the built-in predicates, functions and Prolog flags, required by the ISO stan-
dard, are also available in sicstus execution mode, unless they conflict with existing
SICStus predicates or functions. This expansion of the language carries a remote risk
of name clashes with user code.

8.7.4 Generic new features

• The spmkds and spmkrs utilities for creating stand-alone executables have been re-
placed by a common spld utility which takes several new options. Runtime systems
do not always need a main program in C. On Windows, the resulting executable can
optionally be windowed. The splfr utility takes several new options. The development
and runtime kernels have been merged into a single one.

• Partial saved states corresponding to a set of source files, modules, and predicates can
be created by the new built-in predicates save_files/2, save_modules/2, and save_
predicates/2 respectively. These predicates create files in a binary format, by default
with the prefix ‘.po’ (for Prolog object file), which can be loaded by load_files/[1,2].
The load_type(Type) option of load_files/2 has been extended. Partial saved states
render ‘.ql’ files obsolescent.

• The new built-in predicate trimcore/0 reclaims any dead clauses and predicates, de-
fragmentizes Prolog’s memory, and attempts to return unused memory to the operating
system. It is called automatically at every top level query.

Chapter 8: Revision history 27

• The value of the new read-only Prolog flag host_type is an atom identifying the plat-
form, such as ’x86-linux-glibc2.1’.

• The functionality of the source_info Prolog flag, introduced in release 3.7, has been
extended beyond the Emacs interface. Line number information is now included in
error exceptions whenever possible. This information is displayed in debugging and
error messages (outside Emacs) or causes Emacs to highlight the culprit line of code.
Valid values are off, on, and emacs.

• Predicate indicators can take the form Name/[Arity,...,Arity] in spy/[1,2], nospy/1,
listing/1, abolish/1, profile_data/4, profile_reset/1, save_predicates/2,
and gauge:view/1.

• The new interface functions SP_chdir() and SP_getcwd() provide access to the current
working directory.

• The interface function SP_load() has been generalized to correspond to load_files/1.
• The interface function SP_deinitialize() is now documented.
• Windows: the registry is no longer used by SICStus itself. The SICStus Runtime

Library is located based on the location of sprt<xx>.dll. SP_PATH is only used as a
last resort. See Section 2.3 [Windows notes], page 6.

• Source code compilation and installation procedure has been improved and simplified.
See ‘README’ and ‘INSTALL’ in the source distribution for documentation.

• The layout of the Gauge graphical user interface has been improved.
• The new library(bdb) provides an interface to the Berkeley DB toolset for persistent

storage, and replaces library(db). The programming interface of the new module is
similar to that of the old one, with some new concepts added such as iterators. The
sources of the old library module are available from:

ftp://ftp.sics.se/archive/sicstus3/libdb.tgz

• library(db) is obsolete and will be removed in the next major release.
• Generic runtime systems on Windows are built using spld and exist in three flavors:

generic character based (sprt.exe), generic character based interactive (sprti.exe),
and generic windowed (sprtw.exe). See Section 2.3.2 [Generic Runtime Systems],
page 8.

• The manual chapter for library(tcltk) has been rewritten and greatly expanded.
• library(clpq) and library(clpr): new predicates inf/4 and sup/4.
• Code fragments loaded via the Emacs interface are imported into the type-in module,

unless the source file has an explicit mode line.
• library(gcla) has been removed.
• initialization/[0,1] have been replaced by ISO compliant initializations.

8.7.5 New features in library(jasper)

• Java 2 (a.k.a. JDK 1.2) is now required. library(jasper) will not work using JDK
1.1.x.

• Support for native threads JDKs. See Section 4.2 [Jasper and Native Threads], page 15.

Chapter 8: Revision history 28

• Changed package name from jasper to se.sics.jasper, according to JavaSoft guide-
lines. See Section 4.1 [Getting Started], page 13.

• Classfiles are now placed in jasper.jar, which is located in $SP_PATH/bin. See Sec-
tion 4.1 [Getting Started], page 13.

• The shared library for Jasper (jasper.dll or libjasper.so) is now located in
the same directory as the runtime kernel (default <installdir>/lib under UNIX,
<installdir>/bin under Windows). See Section 4.1 [Getting Started], page 13.

• Meta-call functionality added (jasper_call_instance/6, jasper_call_static/6,
etc.). This makes it possible to call Java without having to generate any glue-code
(i.e. without a C-compiler).

• Support for handling local global references from Prolog (jasper_create_global_
ref/3, jasper_delete_global_ref/2, jasper_delete_local_ref/2).

• SPException.term declared protected instead of private.
• New class SPCanonicalAtom to handle canonical representations of atoms and to

make sure that they are safe with atom-gc. New methods getCanonicalAtom and
putCanonicalAtom. New constructor for SPPredicate. getAtom and putAtom depre-
cated.

• New exception: IllegalCallerException is thrown if the current thread is not allowed
to call SICStus.

8.7.6 New features in library(clpfd)

• fd_degree/2 is new; returns the number of constraints attached to a variable.
• labeling/2 requires the list of domain variables to have bounded domains. User-

defined variable and value choice heuristics can be provided.
• element/3 is interval-consistent in its second and third arguments. Use relation/3 if

domain-consistency is required.
• serialized/3 is new and replaces serialized_precedence/3 and serialized_

precedence_resource/4. A number of new options control the algorithm. The space
complexity no longer depends on the domain size.

• cumulative/5 is new and takes the same options as serialized/3.
• all_different/2, all_distinct/2 and assignment/3 are new and take options con-

trolling the algorithms.
• Generally, performance and error checking have been improved.

8.7.7 Bugs fixed in version 3.8

• absolute_file_name/2: could crash under IRIX; nested compound terms allowed
• call_cleanup/2: efficiency
• close/1: efficiency; handling the standard streams
• format/[2,3]: ~N didn’t work as expected; are now meta-predicates—needed by the

~@ format spec
• load_files/[1,2]: avoid changing directory; don’t loop on duplicate exports

Chapter 8: Revision history 29

• load_foreign_resource/1: filenames containing periods on WinNT
• print_message/2: in runtime systems
• prolog_load_context/2: value of term_position
• reinitialise/0: sequencing of events
• save_program/[1,2]: fastcode handling; file mode creation masks; in runtime systems
• write_term/[1,2]: the indented(true) option and non-ground terms
• library(db): efficiency of term deletion
• library(heaps): delete_from_heap/4
• library(objects): the new/2 method; cyclic dependencies
• library(random): determinacy and efficiency
• library(sockets): noisy startup on Windows; block buffering is now the default
• library(system): sleep/1 admits floats as well as integers
• library(terms): subsumes_chk/2 and variant/2 now don’t unblock goals
• glue code generator: incorrect translation of +chars; syntax error messages were sup-

pressed
• all system messages go via the print_message/2 interface
• input argument checking is generally stricter
• resources are unloaded in LIFO order but loaded in FIFO order at save/restore
• CLP(Q,R): answer constraint projection
• problems with bignums and big terms in ‘.ql’ files
• detecting invalid goals in metacalls, asserts, load_files/[1,2]
• spurious redefinition warnings
• bignum quotient/remainder on 64-bit architectures
• compiler: complexity of compiling multiple clauses with same key, code generation

quality for inline goals
• memory manager: avoiding dangling pointers on Windows, better reclamation of dead

clauses and predicates, using dynamic hashing and hashpjw for atoms, keeping predi-
cate tables as small as possible, avoiding stack overflow if multiple goals get simulta-
neously unblocked, better reuse of free memory blocks

• garbage collector: removing redundant trail entries for mutables, improved scope and
speed of generational garbage collection

• callbacks to Prolog while reading from the terminal
• printing atoms with character codes in 27...31
• reading atoms with \c

• Floating point NaN (Not a Number). Now behaves consistently across platforms. In
particular fixed Windows related bugs with arithmetic on and printing of NaN.
• Arithmetic comparisons involving NaN now fails (except =\=). Note that X is

nan, X =:= X fails.
• Term order for NaN is now defined and the same for all platforms. There is a

single NaN and it lies between (the float) +inf and the integers.

Chapter 8: Revision history 30

8.8 Changes introduced in version 3.8.1

Version 3.8.1 is a bugfix release only, no new features has been added.

configure.in: Removed multiple occurences of the -n32 flag under IRIX if cc is used
instead of gcc.
configure.in: FreeBSD 3.x is now handled correctly.
configure.in: On Linux and Solaris, SICStus is now always linked with the POSIX
thread library.
InstallSICStus: spld did not log verbose output to logfile.
spld, splfr: Eliminated use of .. to specify relative paths. Caused problems on
Windows 95/98.
library(jasper): Green threads JDKs not supported any longer.
library(tcltk): Tcl_FindExecutable("") is called when the ‘tcltk’ library is
loaded, before any Tcl/Tk interpreter is created. This should fix errors related to
not finding ‘init.tcl’ and also improve support for international character sets.
multifile + discontiguous combination fix
redefinition warning for multifile predicates fix
listing/[0,1], tell/1, see/1 fixes
avoid bogus line number info for native code
trail compression fix
stack_shifts (statistics/2 option) manual fix
load_foreign_resource/1 search algorithm fix
atom/number handling fixes
raise error for a =.. [b|c]

avoid SP_term_ref leaks in some functions
prevent dangling pointer problem in displaying line number info
check representability of compiled clauses
prevent looping at halt and elsewhere if advice has been given
CHR: initialization fix
CLPFD: fixes and corrections to all_distinct/[1,2], assignment/[2,3],
circuit/[1,2], serialized/[2,3], cumulative/[4,5], fdset_member/2, arithmetic
LINDA: buffering fix

Chapter 9: Generic limitations 31

9 Generic limitations

On 32-bit architectures, the total data space cannot exceed 256 Mb. The Linux implemen-
tation of sbrk() returns memory starting at 0x08000000, so in practice the limit there is
128 Mb.

The number of arguments of a compound term may not exceed 255.

The number of atoms created may not exceed 262143.

The number of characters of an atom may not exceed 65535.

NUL is not a legal character in atoms.

There are 256 “temporary” and 256 “permanent” variables available for compiled clauses.

Saved states are not portable between 32-bit and 64-bit architectures, or from a system built
with native code support to a system without native code support for the same architecture.

Indexing on big integers or floats is coarse.

Chapter 10: Questions and answers 32

10 Questions and answers

Current support status for the various platforms can be found at the SICStus Homepage:

http://www.sics.se/sicstus/

Information about and fixes for bugs which have shown up since the latest release can be
found there as well.

Send requests for ordering information to

sicstus-request@sics.se

Send bug reports to

sicstus-support@sics.se

Bugs tend actually to be fixed if they can be isolated, so it is in your interest to report them
in such a way that they can be easily reproduced.

The mailing list

sicstus-users@sics.se

is a moderated mailing list for communication among users and implementors. To
[un]subscribe, write to

sicstus-users-request@sics.se

http://www.sics.se/sicstus/
mailto:sicstus-request@sics.se
mailto:sicstus-support@sics.se
mailto:sicstus-users@sics.se
mailto:sicstus-users-request@sics.se

i

Table of Contents

1 Release notes and installation guide for UNIX
. 1
1.1 Setting SP PATH under UNIX . 1
1.2 The Crypt Utility . 1
1.3 Installation . 1
1.4 Foreign language interface . 2

1.4.1 How to customize splfr and spld 2
1.4.2 How to create dynamic linked foreign resources

manually . 2
1.4.3 Interfacing to C++ . 3

1.5 Platform specific UNIX notes . 3
1.6 Files that may be redistributed with runtime systems 3

2 Release notes and installation guide for
Windows . 5
2.1 Requirements . 5
2.2 Installation . 5
2.3 Windows Notes . 6

2.3.1 Launching Runtime Systems on Target Machines . . 7
2.3.2 Generic Runtime Systems . 8
2.3.3 Setting SP PATH under Windows. 8

2.4 Command line editing . 8
2.5 The console window . 9

2.5.1 Console Preferences . 9
2.6 Emacs Interface . 10
2.7 Limitations . 10
2.8 Files that may be redistributed with runtime systems 11

3 Tcl/Tk notes . 12
3.1 The Tcl/Tk Terminal Window . 12

4 Jasper notes . 13
4.1 Getting Started . 13
4.2 Jasper and Native Threads . 15
4.3 Known Bugs and Limitations in Jasper 15
4.4 Java Examples Directory . 16
4.5 Resources . 16

5 Visual Basic notes . 17

6 Berkeley DB notes . 18

ii

7 The Emacs Interface . 19
7.1 Installation . 19

7.1.1 Installing On-Line Documentation 19

8 Revision history . 20
8.1 Changes in release 3 . 20
8.2 Changes introduced in 3#4 . 21
8.3 Changes introduced in 3#5 . 22
8.4 Changes introduced in 3#6 . 22
8.5 Changes introduced in version 3.7 . 23
8.6 Changes introduced in version 3.7.1 . 24
8.7 Changes introduced in version 3.8 . 25

8.7.1 Wide character support . 25
8.7.2 Breakpointing debugger . 25
8.7.3 ISO compliance . 26
8.7.4 Generic new features . 26
8.7.5 New features in library(jasper) 27
8.7.6 New features in library(clpfd) 28
8.7.7 Bugs fixed in version 3.8 . 28

8.8 Changes introduced in version 3.8.1 . 30

9 Generic limitations . 31

10 Questions and answers 32

	Release notes and installation guide for UNIX
	Setting SP@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}PATH under UNIX
	The Crypt Utility
	Installation
	Foreign language interface
	How to customize splfr and spld
	How to create dynamic linked foreign resources manually
	Interfacing to C{@char 43}{@char 43}

	Platform specific UNIX notes
	Files that may be redistributed with runtime systems

	Release notes and installation guide for Windows
	Requirements
	Installation
	Windows Notes
	Launching Runtime Systems on Target Machines
	Generic Runtime Systems
	Setting SP@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}PATH under Windows

	Command line editing
	The console window
	Console Preferences

	Emacs Interface
	Limitations
	Files that may be redistributed with runtime systems

	Tcl/Tk notes
	The Tcl/Tk Terminal Window

	Jasper notes
	Getting Started
	Jasper and Native Threads
	Known Bugs and Limitations in Jasper
	Java Examples Directory
	Resources

	Visual Basic notes
	Berkeley DB notes
	The Emacs Interface
	Installation
	Installing On-Line Documentation

	Revision history
	Changes in release 3
	Changes introduced in 3#4
	Changes introduced in 3#5
	Changes introduced in 3#6
	Changes introduced in version 3.7
	Changes introduced in version 3.7.1
	Changes introduced in version 3.8
	Wide character support
	Breakpointing debugger
	ISO compliance
	Generic new features
	New features in library(jasper)
	New features in library(clpfd)
	Bugs fixed in version 3.8

	Changes introduced in version 3.8.1

	Generic limitations
	Questions and answers

