
SICStus Prolog User’s Manual
by the Intelligent Systems Laboratory

Swedish Institute of Computer Science
PO Box 1263

SE-164 29 Kista, Sweden

Release 3.12.8
May 2007

Swedish Institute of Computer Science
sicstus-request@sics.se http://www.sics.se/sicstus/

mailto:sicstus-request@sics.se
http://www.sics.se/sicstus/

Copyright c© 1995-2007 SICS

Swedish Institute of Computer Science
PO Box 1263
SE-164 29 Kista, Sweden

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by SICS.

i

Table of Contents

Introduction . 1

Acknowledgments . 3

1 Notational Conventions . 5
1.1 Keyboard Characters . 5
1.2 Mode Spec . 5
1.3 Development and Runtime Systems . 5
1.4 Function Prototypes . 5
1.5 ISO Compliance . 6

2 Glossary . 7

3 How to Run Prolog . 21
3.1 Getting Started . 21

3.1.1 Environment Variables . 23
3.2 Reading in Programs . 24
3.3 Inserting Clauses at the Terminal . 25
3.4 Queries and Directives . 25

3.4.1 Queries . 26
3.4.2 Directives . 27

3.5 Syntax Errors . 28
3.6 Undefined Predicates . 29
3.7 Program Execution And Interruption . 30
3.8 Exiting From The Top-Level . 30
3.9 Nested Executions—Break . 30
3.10 Saving and Restoring Program States 31
3.11 Emacs Interface . 32

3.11.1 Installation . 33
3.11.1.1 Quick-Start . 33
3.11.1.2 Customizing Emacs 34
3.11.1.3 Enabling Emacs Support for SICStus . . 34
3.11.1.4 Enabling Emacs Support for SICStus

Documentation . 34
3.11.2 Basic Configuration . 35
3.11.3 Usage. 35
3.11.4 Mode Line . 37
3.11.5 Configuration . 38
3.11.6 Tips . 40

3.11.6.1 Font-locking . 41
3.11.6.2 Auto-fill Mode . 41
3.11.6.3 Speed . 41
3.11.6.4 Changing Colors . 42

ii SICStus Prolog

4 The Prolog Language . 43
4.1 Syntax, Terminology and Informal Semantics 43

4.1.1 Terms . 43
4.1.1.1 Integers . 43
4.1.1.2 Floats . 43
4.1.1.3 Atoms . 44
4.1.1.4 Variables . 44
4.1.1.5 Compound Terms . 45

4.1.2 Programs . 47
4.2 Declarative Semantics . 49
4.3 Procedural Semantics . 50
4.4 Occurs-Check . 52
4.5 The Cut Symbol . 52
4.6 Operators . 54
4.7 Syntax Restrictions . 56
4.8 Comments . 57

5 The Module System . 59
5.1 Basic Concepts . 59
5.2 Module Prefixing . 59
5.3 Defining Modules . 60
5.4 Importation . 61
5.5 Module Name Expansion . 61
5.6 Meta-Predicate Declarations . 62

6 Loading Programs . 65
6.1 Predicates that Load Code . 66
6.2 Declarations . 67

6.2.1 Multifile Declarations . 68
6.2.2 Dynamic Declarations . 69
6.2.3 Volatile Declarations . 69
6.2.4 Discontiguous Declarations . 69
6.2.5 Block Declarations . 70
6.2.6 Meta-Predicate Declarations . 70
6.2.7 Module Declarations . 71
6.2.8 Public Declarations . 71
6.2.9 Mode Declarations . 71
6.2.10 Include Declarations . 71

6.3 Initializations . 72
6.4 Considerations for File-To-File Compilation 72

iii

7 Debugging . 75
7.1 The Procedure Box Control Flow Model 75
7.2 Basic Debugging Predicates . 77
7.3 Plain Spypoints . 79
7.4 Format of Debugging Messages . 80
7.5 Commands Available during Debugging 81
7.6 Advanced Debugging — an Introduction 86

7.6.1 Creating Breakpoints . 87
7.6.2 Processing Breakpoints. 88
7.6.3 Breakpoint Tests . 88
7.6.4 Specific and Generic Breakpoints 94
7.6.5 Breakpoint Actions . 96
7.6.6 Advice-points . 101
7.6.7 Built-in Predicates for Breakpoint Handling 103
7.6.8 Accessing Past Debugger States 105
7.6.9 Storing User Information in the Backtrace 108
7.6.10 Hooks Related to Breakpoints 110
7.6.11 Programming Breakpoints . 112

7.7 Breakpoint Handling Predicates . 116
7.8 The Processing of Breakpoints . 118
7.9 Breakpoint Conditions . 120

7.9.1 Tests Related to the Current Goal 121
7.9.2 Tests Related to Source Information 122
7.9.3 Tests Related to the Current Port. 123
7.9.4 Tests Related to the Break Level 124
7.9.5 Other Conditions . 124
7.9.6 Conditions Usable in the Action Part 125
7.9.7 Options for Focusing on a Past State 125
7.9.8 Condition Macros . 126
7.9.9 The Action Variables . 126

7.10 Consulting during Debugging . 128
7.11 Catching Exceptions . 129

8 Built-In Predicates . 131
8.1 Input / Output . 131

8.1.1 Reading-in Programs . 134
8.1.2 Term and Goal Expansion . 137
8.1.3 Input and Output of Terms 142
8.1.4 Character Input/Output . 151
8.1.5 Stream I/O . 154
8.1.6 DEC-10 Prolog File I/O. 163
8.1.7 An Example . 164

8.2 Arithmetic . 164
8.3 Comparison of Terms . 168
8.4 Control . 170
8.5 Error and Exception Handling . 173
8.6 Information about the State of the Program 175
8.7 Meta-Logic . 183

iv SICStus Prolog

8.8 Modification of Terms . 188
8.9 Modification of the Program . 189
8.10 Internal Database . 191
8.11 Blackboard Primitives . 191
8.12 All Solutions . 193
8.13 Messages and Queries . 195

8.13.1 Message Processing . 195
8.13.1.1 Phases of Message Processing 196
8.13.1.2 Message Generation Phase 197
8.13.1.3 Message Printing Phase 198

8.13.2 Message Handling Predicates 198
8.13.3 Query Processing . 200

8.13.3.1 Query Classes . 200
8.13.3.2 Phases of Query Processing 201
8.13.3.3 Hooks in Query Processing 203
8.13.3.4 Default Input Methods 204
8.13.3.5 Default Map Methods 205
8.13.3.6 Default Query Classes 205

8.13.4 Query Handling Predicates 206
8.14 Coroutining . 208
8.15 Debugging . 209
8.16 Execution Profiling . 211
8.17 Miscellaneous . 213

9 Mixing C/C++ and Prolog 217
9.1 Notes . 217
9.2 Calling C from Prolog . 218

9.2.1 Foreign Resources . 219
9.2.2 Conversion Declarations . 219
9.2.3 Conversions between Prolog Arguments and C Types

. 220
9.2.4 Interface Predicates . 223
9.2.5 The Foreign Resource Linker 224

9.2.5.1 Customizing splfr under UNIX 226
9.2.6 Creating Dynamic Linked Foreign Resources

Manually under UNIX . 227
9.2.7 Init and Deinit Functions . 227
9.2.8 Creating the Linked Foreign Resource 228
9.2.9 An Alternative Way to Define C Predicates 228

9.3 Calling C++ from Prolog . 230
9.4 Support Functions . 231

9.4.1 Creating and Manipulating SP term refs 231
9.4.2 Creating Prolog Terms . 233
9.4.3 Accessing Prolog Terms . 235
9.4.4 Testing Prolog Terms . 237
9.4.5 Unifying and Comparing Terms 238
9.4.6 Operating System Services . 238

9.4.6.1 Memory Allocation 238

v

9.4.6.2 File System . 239
9.4.6.3 Threads . 239

9.4.7 Miscellaneous . 240
9.5 Calling Prolog from C . 241

9.5.1 Finding One Solution of a Call 241
9.5.2 Finding Multiple Solutions of a Call 242
9.5.3 Calling Prolog Asynchronously 243

9.5.3.1 Signal Handling . 244
9.5.4 Exception Handling in C . 246

9.6 SICStus Streams . 247
9.6.1 Prolog Streams . 247
9.6.2 Defining a New Stream . 248

9.6.2.1 Low Level I/O Functions 249
9.6.2.2 Installing a New Stream 249
9.6.2.3 Internal Representation 250

9.6.3 Hookable Standard Streams 251
9.6.3.1 Writing User-stream Hooks 251
9.6.3.2 Writing User-stream Post-hooks 252
9.6.3.3 User-stream Hook Example 252

9.7 Hooks . 253
9.8 Stand-alone Executables . 254

9.8.1 Runtime Systems . 254
9.8.2 Runtime Systems on Target Machines 254

9.8.2.1 Runtime Systems on UNIX Target
Machines . 255

9.8.2.2 Runtime Systems on Windows Target
Machines . 256

9.8.3 The Application Builder . 258
9.8.3.1 Customizing spld under UNIX 264
9.8.3.2 All-in-one Executables 264
9.8.3.3 Examples. 268

9.8.4 User-defined Main Programs. 274
9.8.4.1 Initializing the Prolog Engine 274
9.8.4.2 Loading Prolog Code 277

9.8.5 Generic Runtime Systems under Windows 278
9.9 Examples . 279

9.9.1 Train Example (connections) 279
9.9.2 I/O on Lists of Character Codes 282
9.9.3 Exceptions from C . 285
9.9.4 Stream Example . 287

10 Interfacing .NET and Java 291

vi SICStus Prolog

11 Multiple SICStus Run-Times in a Process
. 293
11.1 Memory Considerations . 293
11.2 Multiple SICStus Run-Times in Java 293
11.3 Multiple SICStus Run-Times in C . 294

11.3.1 Using a Single SICStus Run-Time 294
11.3.2 Using More than One SICStus Run-Time 294

11.4 Foreign Resources and Multiple SICStus Run-Times 296
11.4.1 Foreign Resources Supporting Only One SICStus

Run-Time . 296
11.4.2 Foreign Resources Supporting Multiple SICStus

Run-Times . 297
11.4.2.1 Simplified Support for Multiple SICStus

Run-Times . 297
11.4.2.2 Full Support for Multiple SICStus

Run-Times . 298
11.5 Multiple Run-Times and Threads . 300

12 Handling Wide Characters 301
12.1 Introduction . 301
12.2 Concepts . 301
12.3 Summary of Prolog Level WCX features 303
12.4 Selecting the WCX Mode Using Environment Variables . . 303
12.5 Selecting the WCX Mode Using Hooks 305
12.6 Summary of WCX Features in the Foreign Interface 311
12.7 Summary of Wcx-Related Features in the Libraries 313
12.8 WCX Related Utility Functions . 314
12.9 Representation of EUC Wide Characters 315
12.10 A Sample Wide Character Extension (WCX) Box 316

13 Writing Efficient Programs 319
13.1 Overview . 319
13.2 The Cut . 319

13.2.1 Overview . 319
13.2.2 Making Predicates Determinate 320
13.2.3 Placement of Cuts . 321
13.2.4 Terminating a Backtracking Loop 321

13.3 Indexing . 322
13.3.1 Overview . 322
13.3.2 Data Tables . 323
13.3.3 Determinacy Detection . 324

13.4 Last Clause Determinacy Detection . 324
13.5 The Determinacy Checker . 325

13.5.1 Using the Determinacy Checker 325
13.5.2 Declaring Nondeterminacy 326
13.5.3 Checker Output . 327
13.5.4 Example . 328

vii

13.5.5 Options . 328
13.5.6 What is Detected . 329

13.6 Last Call Optimization . 330
13.6.1 Accumulating Parameters . 331
13.6.2 Accumulating Lists . 332

13.7 Building and Dismantling Terms . 333
13.8 Conditionals and Disjunction . 336
13.9 Programming Examples . 338

13.9.1 Simple List Processing . 338
13.9.2 Family Example (descendants). 338
13.9.3 Association List Primitives 339
13.9.4 Differentiation . 339
13.9.5 Use of Meta-Logical Predicates 339
13.9.6 Use of Term Expansion . 340
13.9.7 Prolog in Prolog . 341
13.9.8 Translating English Sentences into Logic Formulae

. 341
13.10 The Cross-Referencer . 342

13.10.1 Introduction . 342
13.10.2 Basic Use . 343
13.10.3 Practice and Experience . 343

14 The SICStus Tools. 345

15 The Prolog Library . 347

16 Array Operations . 351

17 Association Lists . 353

18 Attributed Variables . 355

19 Heap Operations . 361

20 List Operations . 363

21 Term Utilities . 367

22 Ordered Set Operations 371

23 Queue Operations . 373

24 Random Number Generator 375

viii SICStus Prolog

25 Operating System Utilities 377

26 Updatable Binary Trees 381

27 Unweighted Graph Operations 383

28 Weighted Graph Operations 387

29 Socket I/O . 391

30 Linda—Process Communication 395
30.1 Server . 396
30.2 Client . 397

31 External Storage of Terms (Berkeley DB)
. 401
31.1 Basics . 401
31.2 Current Limitations . 401
31.3 Berkeley DB . 401
31.4 The DB-Spec—Informal Description 402
31.5 Predicates . 402

31.5.1 Conventions . 403
31.5.2 The Environment . 403
31.5.3 Memory Leaks . 403
31.5.4 The Predicates . 404

31.6 An Example Session . 407
31.7 The DB-Spec . 408
31.8 Exporting and importing a database 409

32 Boolean Constraint Solver 411
32.1 Solver Interface . 411
32.2 Examples . 412

32.2.1 Example 1 . 412
32.2.2 Example 2 . 412
32.2.3 Example 3 . 413
32.2.4 Example 4 . 414

ix

33 Constraint Logic Programming over Rationals
or Reals. 417
33.1 Introduction . 417

33.1.1 Referencing this Software . 417
33.1.2 Acknowledgments . 417

33.2 Solver Interface . 417
33.2.1 Notational Conventions . 418
33.2.2 Solver Predicates . 418
33.2.3 Unification . 422
33.2.4 Feedback and Bindings . 423

33.3 Linearity and Nonlinear Residues . 423
33.3.1 How Nonlinear Residues Are Made to Disappear

. 425
33.3.2 Isolation Axioms . 425

33.4 Numerical Precision and Rationals . 426
33.5 Projection and Redundancy Elimination 430

33.5.1 Variable Ordering . 431
33.5.2 Turning Answers into Terms 432
33.5.3 Projecting Inequalities . 432

33.6 Why Disequations . 436
33.7 Syntactic Sugar . 438

33.7.1 Monash Examples . 439
33.7.1.1 Compatibility Notes 440

33.8 A Mixed Integer Linear Optimization Example 441
33.9 Implementation Architecture . 443

33.9.1 Fragments and Bits . 443
33.9.1.1 Rationals . 443
33.9.1.2 Partial Evaluation, Compilation 443
33.9.1.3 Asserting with Constraints. 443

33.9.2 Bugs . 444

34 Constraint Logic Programming over Finite
Domains . 445
34.1 Introduction . 445

34.1.1 Referencing this Software . 445
34.1.2 Acknowledgments . 446

34.2 Solver Interface . 446
34.2.1 Posting Constraints . 447
34.2.2 A Constraint Satisfaction Problem 448
34.2.3 Reified Constraints . 449

34.3 Available Constraints . 450
34.3.1 Arithmetic Constraints . 450
34.3.2 Membership Constraints . 451
34.3.3 Propositional Constraints . 451
34.3.4 Combinatorial Constraints 452
34.3.5 User-Defined Constraints . 465

34.4 Enumeration Predicates . 465

x SICStus Prolog

34.5 Statistics Predicates . 469
34.6 Answer Constraints . 470
34.7 The Constraint System . 470

34.7.1 Definitions . 470
34.7.2 Pitfalls of Interval Reasoning 471

34.8 Defining Global Constraints . 471
34.8.1 The Global Constraint Programming Interface

. 471
34.8.2 Reflection Predicates . 474
34.8.3 FD Set Operations . 475
34.8.4 A Global Constraint Example 477

34.9 Defining Primitive Constraints . 479
34.9.1 Indexicals . 480
34.9.2 Range Expressions . 480
34.9.3 Term Expressions . 481
34.9.4 Monotonicity of Indexicals 482
34.9.5 FD Predicates . 482
34.9.6 Execution of Propagating Indexicals 485
34.9.7 Execution of Checking Indexicals 485
34.9.8 Goal Expanded Constraints 486

34.10 Example Programs . 487
34.10.1 Send More Money . 487
34.10.2 N Queens . 487
34.10.3 Cumulative Scheduling . 489

34.11 Syntax Summary. 490
34.11.1 Syntax of Indexicals . 490
34.11.2 Syntax of Arithmetic Expressions 492
34.11.3 Operator Declarations . 492

35 Constraint Handling Rules 495
35.1 Copyright . 495
35.2 Introduction . 495
35.3 Introductory Examples . 496
35.4 CHR Library . 497

35.4.1 Loading the Library . 498
35.4.2 Declarations . 498
35.4.3 Constraint Handling Rules, Syntax 499
35.4.4 How CHR Work . 500
35.4.5 Pragmas . 500
35.4.6 Options . 502
35.4.7 Built-In Predicates . 503
35.4.8 Consulting and Compiling Constraint Handlers

. 504
35.4.9 Compiler-Generated Predicates 504
35.4.10 Operator Declarations . 505
35.4.11 Exceptions . 505

35.5 Debugging CHR Programs . 507
35.5.1 Control Flow Model . 507

xi

35.5.2 CHR Debugging Predicates 507
35.5.3 CHR Spypoints. 509
35.5.4 CHR Debugging Messages . 510
35.5.5 CHR Debugging Options . 511

35.6 Programming Hints . 513
35.7 Constraint Handlers . 514
35.8 Backward Compatibility . 516

36 Finite Domain Constraint Debugger 519
36.1 Introduction . 519
36.2 Concepts . 519

36.2.1 Events . 519
36.2.2 Labeling Levels . 520
36.2.3 Visualizers . 520
36.2.4 Names of Terms . 521
36.2.5 Selectors . 521
36.2.6 Name Auto-Generation . 521
36.2.7 Legend . 522
36.2.8 The fdbg_output Stream . 522

36.3 Basics . 523
36.3.1 FDBG Options . 523
36.3.2 Naming Terms . 524
36.3.3 Built-In Visualizers . 525
36.3.4 New Debugger Commands 526
36.3.5 Annotating Programs . 527
36.3.6 An Example Session . 527

36.4 Advanced Usage . 530
36.4.1 Customizing Output . 530
36.4.2 Writing Visualizers . 531
36.4.3 Writing Legend Printers . 532
36.4.4 Showing Selected Constraints (simple version) . . 533
36.4.5 Showing Selected Constraints (advanced version)

. 534
36.4.6 Debugging Global Constraints 539
36.4.7 Code of the Built-In Visualizers 544

xii SICStus Prolog

37 SICStus Objects . 547
37.1 Getting Started . 547
37.2 Declared Objects . 548

37.2.1 Object Declaration . 548
37.2.2 Method Declarations . 548
37.2.3 Generic Objects for Easy Reuse 550

37.3 Self, Message Sending, and Message Delegation 551
37.4 Object Hierarchies, Inheritance, and Modules 554

37.4.1 Inheritance . 554
37.4.2 Differential Inheritance . 555
37.4.3 Use of Modules . 555
37.4.4 Super and Sub . 556
37.4.5 The Keyword Super . 556
37.4.6 Semantic Links to Other Objects 557
37.4.7 Dynamically Declared Objects 557
37.4.8 Dynamic Methods . 557
37.4.9 Inheritance of Dynamic Behavior 558

37.5 Creating Objects Dynamically . 559
37.5.1 Object Creation . 559
37.5.2 Method Additions . 560
37.5.3 Parameter Passing to New Objects 560

37.6 Access Driven Programming—Daemons 561
37.7 Instances . 561
37.8 Built-In Objects and Methods . 562

37.8.1 Universal Methods . 562
37.8.2 Inlined Methods . 562
37.8.3 The Proto-Object "object" 562
37.8.4 The built-in object "utility" 564

37.9 Expansion to Prolog Code . 565
37.9.1 The Inheritance Mechanism 566
37.9.2 Object Attributes . 566
37.9.3 Object Instances . 566
37.9.4 The Object Declaration . 567
37.9.5 The Method Code . 567
37.9.6 Parameter Transfer . 569

37.10 Examples . 571
37.10.1 Classification of Birds . 571
37.10.2 Inheritance and Delegation 572
37.10.3 Prolog++ programs . 577

38 The PiLLoW Web Programming Library
. 583

39 Parsing and Generating XML 585

xiii

40 Tcl/Tk Interface. 587
40.1 Introduction . 587

40.1.1 What Is Tcl/Tk? . 587
40.1.2 What Is Tcl/Tk Good For? 587
40.1.3 What Is Tcl/Tks Relationship to SICStus Prolog?

. 588
40.1.4 A Quick Example of Tcl/Tk in Action 588

40.1.4.1 hello world . 588
40.1.4.2 telephone book . 589

40.1.5 Outline of This Tutorial . 590
40.2 Tcl . 591

40.2.1 Syntax . 591
40.2.1.1 Variable Substitution 592
40.2.1.2 Command Substitution 592
40.2.1.3 Backslash Substitution 593
40.2.1.4 Delaying Substitution 593
40.2.1.5 Double-Quotes . 593

40.2.2 Variables . 594
40.2.3 Commands . 595

40.2.3.1 Notation . 595
40.2.3.2 Commands to Do with Variables 596
40.2.3.3 Expressions . 596
40.2.3.4 Lists . 597
40.2.3.5 Control Flow . 599
40.2.3.6 Commands over Strings 602
40.2.3.7 File I/O . 606
40.2.3.8 User Defined Procedures 607
40.2.3.9 Global Variables . 610
40.2.3.10 source. 611

40.2.4 What We Have Left Out . 611
40.3 Tk . 611

40.3.1 Widgets . 612
40.3.2 Types of Widget . 612
40.3.3 Widgets Hierarchies . 614
40.3.4 Widget Creation. 616

40.3.4.1 label . 617
40.3.4.2 message . 618
40.3.4.3 button . 618
40.3.4.4 checkbutton . 618
40.3.4.5 radiobutton . 618
40.3.4.6 entry . 619
40.3.4.7 scale . 619
40.3.4.8 listbox . 620
40.3.4.9 scrollbar . 620
40.3.4.10 frame . 622
40.3.4.11 toplevel . 622
40.3.4.12 menu . 623
40.3.4.13 menubutton . 624

xiv SICStus Prolog

40.3.4.14 canvas . 624
40.3.4.15 text . 625

40.3.5 Geometry Managers . 625
40.3.5.1 pack . 625
40.3.5.2 grid . 635
40.3.5.3 place . 637

40.3.6 Event Handling . 638
40.3.7 Miscellaneous . 641
40.3.8 What We Have Left Out . 641
40.3.9 Example pure Tcl/Tk program 642

40.4 The Tcl/Tk Prolog Library . 646
40.4.1 How it Works - An Overview 646
40.4.2 Basic Functions . 648

40.4.2.1 Loading the Library 648
40.4.2.2 Creating a Tcl Interpreter 648
40.4.2.3 Creating a Tcl Interpreter Extended with

Tk . 648
40.4.2.4 Removing a Tcl Interpreter 649

40.4.3 Evaluation Functions . 649
40.4.3.1 Command format 650
40.4.3.2 Evaluating Tcl Expressions from Prolog

. 652
40.4.3.3 Evaluating Prolog Expressions from Tcl

. 653
40.4.4 Event Functions . 655

40.4.4.1 Evaluate a Tcl Expression And Get Prolog
Events . 655

40.4.4.2 Adding events to the Prolog event queue
. 655

40.4.4.3 An example . 656
40.4.5 Servicing Tcl and Tk events 658
40.4.6 Passing Control to Tk . 660
40.4.7 Housekeeping functions . 660
40.4.8 Summary . 661

40.5 Putting It All Together . 663
40.5.1 Tcl The Master, Prolog The Slave 664
40.5.2 Prolog The Master, Tk The Slave 669
40.5.3 Prolog And Tcl Interact through Prolog Event

Queue . 671
40.5.4 The Whole 8-Queens Example 674

40.6 Quick Reference. 681
40.6.1 Command Format Summary 681
40.6.2 Predicates for Prolog to Interact with Tcl

Interpreters . 683
40.6.3 Predicates for Prolog to Interact with Tcl

Interpreters with Tk Extensions 683
40.6.4 Commands for Tcl Interpreters to Interact with The

Prolog System . 684

xv

40.7 Resources . 685
40.7.1 Web Sites . 685
40.7.2 Books . 685
40.7.3 Manual Pages . 685
40.7.4 Usenet News Groups . 686

41 The Gauge Profiling Tool 687

42 I/O on Lists of Character Codes 691

43 Jasper Java Interface 693
43.1 Jasper Overview . 693
43.2 Getting Started . 693
43.3 Calling Prolog from Java . 694

43.3.1 Single Threaded Example . 694
43.3.2 Multi Threaded Example . 696
43.3.3 Another Multi Threaded Example (Prolog Top

Level) . 698
43.4 Jasper Package Class Reference . 702
43.5 Java Exception Handling . 705
43.6 SPTerm and Memory . 705

43.6.1 Lifetime of SPTerms and Prolog Memory 705
43.6.2 Preventing SPTerm Memory Leaks 706

43.7 Java Threads . 707
43.8 The Jasper Library . 708

43.8.1 Jasper Method Call Example 709
43.8.2 Jasper Library Predicates . 711
43.8.3 Conversion between Prolog Arguments and Java

Types . 714
43.8.4 Global vs. Local References 717
43.8.5 Handling Java Exceptions . 718
43.8.6 Deprecated Jasper API . 720

43.8.6.1 Deprecated Argument Conversions . . . 721
43.8.6.2 Deprecated Jasper Predicates 721

xvi SICStus Prolog

44 PrologBeans Interface. 723
44.1 Introduction . 723
44.2 Features . 724
44.3 A First Example . 725
44.4 Prolog Server Interface . 727
44.5 Java Client Interface . 730
44.6 Java Examples . 734

44.6.1 Embedding Prolog in Java Applications 734
44.6.2 Application Servers . 734
44.6.3 Configuring Tomcat for PrologBeans 736

44.7 .NET Client Interface . 737
44.8 .NET Examples . 738

44.8.1 C# Examples . 738
44.8.1.1 .NET Embedding 738
44.8.1.2 ASPX Servers Pages 739

44.8.2 Visual Basic Example . 739

45 COM Client . 741
45.1 Preliminaries . 741
45.2 Terminology . 741
45.3 Predicate Reference . 742
45.4 Examples . 744

46 The Visual Basic Interface 747
46.1 Overview . 747
46.2 How to Call Prolog from Visual Basic. 747

46.2.1 Opening and Closing a Query 747
46.2.2 Finding the Solutions of a Query 748
46.2.3 Retrieving Variable Values 748
46.2.4 Evaluating a Query with Side-Effects 749
46.2.5 Handling Exceptions in Visual Basic 750

46.3 How to Use the Interface . 750
46.3.1 Setting Up the Interface. 750
46.3.2 Initializing the Prolog Engine From VB 750
46.3.3 Deinitializing the Prolog Engine From VB 750
46.3.4 Loading the Prolog Code . 751

46.4 Examples . 751
46.4.1 Example 1 - Calculator . 751
46.4.2 Example 2 - Train . 754
46.4.3 Example 3 - Queens . 757

46.5 Summary of the Interface Functions 761

47 Glue Code Generator 763

48 Meta-Call with Limit on Memory Use . . . 765

xvii

49 Meta-Call with Timeout 767

50 Summary of Built-In Predicates 769

51 Full Prolog Syntax . 787
51.1 Notation . 787
51.2 Syntax of Sentences as Terms . 787
51.3 Syntax of Terms as Tokens . 788
51.4 Syntax of Tokens as Character Strings 789

51.4.1 iso Execution Mode Rules 793
51.4.2 sicstus Execution Mode Rules 793

51.5 Escape Sequences . 794
51.6 Notes . 794

52 Standard Operators. 797

References. 799

Predicate Index . 803

SICStus Objects Method Index 811

Keystroke Index . 813

Book Index . 815

xviii SICStus Prolog

Introduction 1

Introduction

Prolog is a simple but powerful programming language developed at the University of Mar-
seille [Roussel 75], as a practical tool for programming in logic [Kowalski 74]. From a user’s
point of view the major attraction of the language is ease of programming. Clear, readable,
concise programs can be written quickly with few errors.

For an introduction to programming in Prolog, readers are recommended to consult [Sterling
& Shapiro 86]. However, for the benefit of those who do not have access to a copy of this
book, and for those who have some prior knowledge of logic programming, a summary of
the language is included. For a more general introduction to the field of Logic Programming
see [Kowalski 79]. See Chapter 4 [Prolog Intro], page 43.

This manual describes a Prolog system developed at the Swedish Institute of Computer
Science. Parts of the system were developed by the project “Industrialization of SICStus
Prolog” in collaboration with Ericsson Telecom AB, NobelTech Systems AB, Infologics AB
and Televerket. The system consists of a WAM emulator written in C, a library and runtime
system written in C and Prolog and an interpreter and a compiler written in Prolog. The
Prolog engine is a Warren Abstract Machine (WAM) emulator [Warren 83]. Two modes
of compilation are available: in-core i.e. incremental, and file-to-file. When compiled, a
predicate will run about 8 times faster and use memory more economically. Implementation
details can be found in [Carlsson 90] and in several technical reports available from SICS.

SICStus Prolog follows the mainstream Prolog tradition in terms of syntax
and built-in predicates. As of release 3.8, SICStus Prolog provides two
execution modes: the iso mode, which is fully compliant with the In-
ternational Standard ISO/IEC 13211-1 (PROLOG: Part 1—General Core)
(http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITS%2FISO%2FIEC+13211%2D1%2D1995);
and the sicstus mode, which is largely compatible with e.g. C-Prolog and Quintus Prolog,
supports code written in earlier versions of SICStus Prolog.

http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITS%2FISO%2FIEC+13211%2D1%2D1995

2 SICStus Prolog

Acknowledgments 3

Acknowledgments

The following people have contributed to the development of SICStus Prolog:

Jonas Almgren, Johan Andersson, Stefan Andersson, Nicolas Beldiceanu,
Tamás Benkő, Kent Boortz, Dave Bowen, Per Brand, Göran B̊age, Mats Carls-
son, Per Danielsson, Joakim Eriksson, Jesper Eskilson, Niklas Finne, Lena
Flood, György Gyaraki, Dávid Hanák, Seif Haridi, Ralph Haygood, Christian
Holzbaur, Tom Howland, Key Hyckenberg, Péter László, Per Mildner, Richard
O’Keefe, Greger Ottosson, Dan Sahlin, Peter Schachte, Rob Scott, Thomas
Sjöland, Péter Szeredi, Tamás Szeredi, Peter Van Roy, David Warren, Johan
Widén, and Emil Åström.

The Industrialization of SICStus Prolog (1988-1991) was funded by

Ericsson Telecom AB, NobelTech Systems AB, Infologics AB, and Televerket,
under the National Swedish Information Technology Program IT4.

The development of release 3 (1991-1995) was funded in part by

Ellemtel Utvecklings AB

This manual is based on DECsystem-10 Prolog User’s Manual by

D.L. Bowen, L. Byrd, F.C.N. Pereira, L.M. Pereira, D.H.D. Warren

See Chapter 33 [CLPQR], page 417, for acknowledgments relevant to the clp(Q,R) constraint
solver.

See Chapter 34 [CLPFD], page 445, for acknowledgments relevant to the clp(FD) constraint
solver.

UNIX is a trademark of Bell Laboratories. MSDOS and Windows are trademarks of Mi-
crosoft Corp. OS/2 is a trademark of IBM Corp.

4 SICStus Prolog

Chapter 1: Notational Conventions 5

1 Notational Conventions

1.1 Keyboard Characters

When referring to keyboard characters, printing characters are written thus: a, while control
characters are written like this: ^A. Thus ^C is the character you get by holding down the
〈CTL〉 key while you type c. Finally, the special control characters carriage-return, line-feed
and space are often abbreviated to 〈RET〉, 〈LFD〉 and 〈SPC〉 respectively.

Throughout, we will assume that ^D is the EOF character (it’s usually ^Z under Windows)
and that ^C is the interrupt character. In most contexts, the term end_of_file terminated
by a full stop (.) can be typed instead of the EOF character.

1.2 Mode Spec

When introducing a built-in predicate, we shall present its usage with a mode spec, which
has the form name(arg, . . . , arg), where each arg denotes how that argument should be
instantiated in goals, and has one of the following forms:

:ArgName This argument should be instantiated to a term denoting a goal or a clause or
a predicate name, or that otherwise needs special handling of module prefixes.
The argument is subject to module name expansion (see Section 5.5 [Meta Exp],
page 61).

+ArgName
This argument should be instantiated to a non-variable term.

-ArgName This argument should be uninstantiated.

?ArgName
This argument may or may not be instantiated.

Mode specs are not only used in the manual, but are part of the syntax of the language as
well. When used in the source code, however, the ArgName part must be omitted. That
is, arg must be either ‘:’, ‘+’, ‘-’, or ‘?’.

1.3 Development and Runtime Systems

The full Prolog system with top-level, compiler, debugger etc. is known as the development
system.

It is possible to link user-written C code with a subset of SICStus Prolog to create runtime
systems. When introducing a built-in predicate, any limitations on its use in runtime
systems will be mentioned.

6 SICStus Prolog

1.4 Function Prototypes

Whenever this manual documents a C function as part of SICStus Prolog’s foreign language
interface, the function prototype will be displayed in ANSI C syntax.

1.5 ISO Compliance

SICStus Prolog provides two execution modes: the iso mode, which is fully com-
pliant with the International Standard ISO/IEC 13211-1 (PROLOG: Part 1—General Core)
(http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITS%2FISO%2FIEC+13211%2D1%2D1995);
and the sicstus mode, which supports code written in earlier versions of SICStus Prolog.
The execution mode can be changed using the Prolog flag language; see Section 8.6 [State
Info], page 175. Note, however, that SICStus Prolog does not offer a strictly conforming
mode that rejects uses of implementation specific features.

To aid programmers who wish to write standard compliant programs, built-in predicates
that are part of the ISO Prolog Standard are annotated with [ISO] in this manual. If such
a predicate behaves differently in sicstus mode, an appropriate clarification is given. For
the few predicates that have a completely different meaning in the two modes, two separate
descriptions are given. The one for the iso mode is annotated with [ISO only], while the
sicstus mode version is annotated with [SICStus only].

http://webstore.ansi.org/ansidocstore/product.asp?sku=INCITS%2FISO%2FIEC+13211%2D1%2D1995

Chapter 2: Glossary 7

2 Glossary

abolish To abolish a predicate is to retract all the predicate’s clauses and to remove all
information about it from the Prolog system, to make it as if that predicate
had never existed.

advice-point
A special case of breakpoint, the advice breakpoint. It is distinguished from
spypoints in that it is intended for non-interactive debugging, such as checking
of program invariants, collecting information, profiling, etc.

alphanumeric
An alphanumeric character is any of the lowercase characters from ‘a’ to ‘z’, the
uppercase characters from ‘A’ to ‘Z’, the numerals from ‘0’ to ‘9’, or underscore
(‘_’).

ancestors An ancestor of a goal is any goal that the system is trying to solve when it calls
that goal. The most distant ancestor is the goal that was typed at the top-level
prompt.

anonymous variable
An anonymous variable is one that has no unique name, and whose value is
therefore inaccessible. An anonymous variable is denoted by an underscore
(‘_’).

argument See predicate, structure, and arity.

arity The arity of a structure is its number of arguments. For example, the structure
customer(jones,85) has an arity of 2.

atom A character sequence used to uniquely denote some entity in the problem do-
main. A number is not an atom. Unless character escapes have been switched
off, examples of legal atoms are:

hello * := ’#$%’ ’New York’ ’don\’t’

See Section 4.1.1.3 [Atoms], page 44. Atoms are recognized by the built-in
predicate atom/1. Each Prolog atom is represented internally by a unique
integer, represented in C as an SP_atom.

atomic term
Synonym for constant.

backtrace A collection of information on the control flow of the program, gathered by the
debugger. Also the display of this information produced by the debugger. The
backtrace includes data on goals that were called but not exited and also on
goals that exited nondeterminately.

backtracking
The process of reviewing the goals that have been satisfied and attempting to
resatisfy these goals by finding alternative solutions.

binding The process of assigning a value to a variable; used in unification.

8 SICStus Prolog

blocked goal
A goal that is suspended because it is not instantiated enough.

body The body of a clause consists of the part of a Prolog clause following the ‘:-’
symbol.

breakpoint
A description of certain invocations in the program where the user wants the
debugger to stop, or to perform some other actions. A breakpoint is specific
if it applies to the calls of a specific predicate, possibly under some condi-
tions; otherwise, it is generic. Depending on the intended usage, breakpoints
can be classified as debugger breakpoints, also known as spypoints, or advice
breakpoints, also called advice-points; see Section 7.6 [Advanced Debugging],
page 86.

breakpoint spec
A term describing a breakpoint. Composed of a test part, specifying the con-
ditions under which the breakpoint should be applied, and an action part,
specifying the effects of the breakpoint on the execution.

buffer A temporary workspace in Emacs that contains a file being edited.

built-in predicate
A predicate that comes with the system and that does not have to be explicitly
loaded before it is used.

callable term
A callable term is either a compound term or an atom. Callable terms are
recognized by the built-in predicate callable/1.

char-list A char-list is a list of one-char atoms.

character code
An integer that is the numeric representation of a character. SICStus Prolog
supports character codes in the range 0..2147483647 (i.e. 2^31-1). However, to
be able to input or output character codes larger than 255, one needs to use
the appropriate wide character external encoding.

character code set
A subset of the set {0, . . . , 2^31-1} that can be handled by the external encod-
ing. SICStus Prolog assumes that the character code set is an extension of the
ASCII code set, i.e. it includes codes 0..127, and these codes are interpreted as
ASCII characters

character-conversion mapping
SICStus Prolog maintains a character-conversion mapping, which is used while
reading terms and programs. Initially, the mapping prescribes no character
conversions. It can be modified by the built-in predicate char_conversion(In,
Out), following which In will be converted to Out. Character coversion can be
switched off by the char_conversion Prolog flag.

character-type mapping
A function mapping each element of the character code set to one of the char-
acter categories (layout, letter, symbol-char, etc.), required for parsing tokens.

Chapter 2: Glossary 9

choicepoints
A memory block representing outstanding choices for some goals or disjunctions.

clause A fact or a rule. A rule comprises a head and a body. A fact consists of a head
only, and is equivalent to a rule with the body true.

code-list A code-list is a list of character codes.

conjunction
A series of goals connected by the connective “and” (that is, a series of goals
whose principal operator is ‘,’).

compactcode
Virtual code representation of compiled code. A reasonable compromise be-
tween performance and space requirement. A valid value for the compiling
Prolog flag.

compile To load a program (or a portion thereof) into Prolog through the compiler.
Compiled code runs more quickly than interpreted code, but you cannot debug
compiled code in as much detail as interpreted code.

compound term
A compound term is a term that is an atom together with one or more argu-
ments. For example, in the term father(X), father is the name, and X is the
first and only argument. The argument to a compound term can be another
compound term, as in father(father(X)). Compound terms are recognized
by the built-in predicate compound/1.

console-based executable
An executable that inherits the standard streams from the process that invoked
it, e.g. a UNIX shell or a DOS-prompt.

constant An integer (for example: 1, 20, -10), a floating-point number (for exam-
ple: 12.35), or an atom. Constants are recognized by the built-in predicate
atomic/1.

consult To load a program (or a portion thereof) into Prolog through the interpreter.
Interpreted code runs more slowly than compiled code, but you can debug
interpreted code in more detail than compiled code.

creep What the debugger does in trace mode, also known as single-stepping. It goes
to the next port of a procedure box and prints the goal, then prompts you for
input. See Section 7.2 [Basic Debug], page 77.

cursor The point on the screen at which typed characters appear. This is usually
highlighted by a line or rectangle the size of one space, which may or may not
blink.

cut Written as !. A built-in predicate that succeeds when encountered; if back-
tracking should later return to the cut, the goal that matched the head of the
clause containing the cut fails immediately.

database The Prolog database comprises all of the clauses that have been loaded or
asserted into the Prolog system or that have been asserted, except those clauses
that have been retracted or abolished.

10 SICStus Prolog

database reference
A compound term denoting a unique reference to a dynamic clause.

debug A mode of program execution in which the debugger stops to print the current
goal only at predicates that have spypoints set on them (see leap).

debugcode Interpreted representation of compiled code. A valid value for the compiling
Prolog flag.

declaration
A declaration looks like a directive, but is not executed but conveys information
about predicates about to be loaded.

deinit function
A function in a foreign resource that is called prior to unloading the resource.

determinate
A predicate is determinate if it can supply only one answer.

development system
A stand-alone executable with the full programming environment, including
top-level, compiler, debugger etc. The default sicstus executable is a develop-
ment system; new development systems containing pre-linked foreign resources
can also be created.

directive A directive is a goal preceded by the prefix operator ‘:-’, whose intuitive mean-
ing is “execute this as a query, but do not print out any variable bindings.”

disjunction
A series of goals connected by the connective “or” (that is, a series of goals
whose principal operator is ‘;’).

dynamic predicate
A predicate that can be modified while a program is running. The semantics of
such updates is described in Section 8.9 [Modify Prog], page 189. A predicate
must explicitly be declared to be dynamic or it must be added to the database
via one of the assertion predicates.

encoded string
A sequence of bytes representing a sequence of possibly wide character codes,
using the UTF-8 encoding.

escape sequence
A sequence of characters beginning with ‘\’ inside certain syntactic tokens (see
Section 51.5 [Escape Sequences], page 794).

export A module exports a predicate so that other modules can import it.

extended runtime system
A stand-alone executable. In addition to the normal set of built-in runtime
system predicates, extended runtime systems include the compiler. Extended
runtime systems require the extended runtime library, available from SICS as
an add-on product.

Chapter 2: Glossary 11

external encoding (of wide characters)
A way of encoding sequences of wide characters as sequences of (8-bit) bytes,
used in stream input and output.

fact A clause with no conditions—that is, with an empty body. A fact is a statement
that a relationship exists between its arguments. Some examples, with possible
interpretations, are:

king(louis, france). % Louis was king of France.
have_beaks(birds). % Birds have beaks.
employee(nancy, data_processing, 55000).

% Nancy is an employee in the
% data processing department.

fastcode Native code representation of compiled code. The fastest, but also the most
space consuming representation. Only available for Sparc platforms. A valid
value for the compiling Prolog flag.

file specification
An atom or a compound term denoting the name of a file. The rules for mapping
such terms to absolute file names are described in Section 8.1 [Input Output],
page 131.

floundered query
A query where all unsolved goals are blocked.

foreign predicate
A predicate that is defined in a language other than Prolog, and explicitly
bound to Prolog predicates by the Foreign Language Interface.

foreign resource
A named set of foreign predicates.

functor The functor of a compound term is its name and arity. For example, the
compound term foo(a,b) is said to have “the functor foo of arity two”, which
is generally written foo/2.
The functor of a constant is the term itself paired with zero. For example, the
constant nl is said to have “the functor nl of arity zero”, which is generally
written nl/0.

garbage collection
The freeing up of space for computation by making the space occupied by terms
that are no longer available for use by the Prolog system.

generalized predicate spec
A generalized predicate spec is a term of one of the following forms. It is always
interpreted wrt. a given module context:

Name all predicates called Name no matter what arity, where Name is an
atom for a specific name or a variable for all names, or

Name/Arity
the predicate of that name and arity, or

12 SICStus Prolog

Name/[Arity,. . . ,Arity]
the predicates of that name with one of the given arities, or

Module:Spec
specifying a particular module Module instead of the default mod-
ule, where Module is an atom for a specific module or a variable
for all modules, or

[Spec,. . . ,Spec]
the set of all predicates covered by the Specs.

glue code Interface code between the Prolog engine and foreign predicates. Automatically
generated by the foreign language interface as part of building a linked foreign
resource.

goal A simple goal is a predicate call. When called, it will either succeed or fail.
A compound goal is a formula consisting of simple goals connected by connec-
tives such as “and” (‘,’) or “or” (‘;’).
A goal typed at the top-level is called a query.

ground A term is ground when it is free of (unbound) variables. Ground terms are
recognized by the built-in predicate ground/1.

guarded clause
A clause of the form

Head :- Goals, !, Goals.

head The head of a clause is the single goal, which will be satisfied if the conditions
in the body (if any) are true; the part of a rule before the ‘:-’ symbol. The
head of a list is the first element of the list.

extendible predicate
An extendible predicate is a dynamic, multifile predicate, to which new clauses
can be added by the user.

hook predicate
A hook predicate is a predicate that somehow alters or customizes the behavior
of a hookable predicate.

hookable predicate
A hookable predicate is a built-in predicate whose behavior is somehow altered
or customized by a hook predicate.

import Exported predicates in a module can be imported by other modules. Once a
predicate has been imported by a module, it can be called, or exported, as if it
were defined in that module.
There are two kinds of importation: predicate-importation, in which only spec-
ified predicates are imported from a module; and module-importation, in which
all the predicates made exported by a module are imported.

indexing The process of filtering a set of potentially matching clauses of a predicate given
a goal. For interpreted and compiled code, indexing is done on the principal
functor of the first argument. Indexing is coarse wrt. large integers and floats.

Chapter 2: Glossary 13

init function
A function in a foreign resource that is called upon loading the resource.

initialization
An initialization is a goal that is executed when the file in which the initial-
ization is declared is loaded. An initialization is declared as a directive :-
initialization Goal.

instantiation
A variable is instantiated if it is bound to a non-variable term; that is, to an
atomic term or a compound term.

internal encoding (of wide characters)
A way of encoding wide character sequences internally within the Prolog system.
SICStus Prolog uses a technique known as the UTF-8 encoding for this purpose.

interpret Load a program or set of clauses into Prolog through the interpreter (also known
as consulting). Interpreted code runs more slowly than compiled code, but more
extensive facilities are available for debugging interpreted code.

invocation box
Same as procedure box.

large integer
An integer that is not a small integer.

leap What the debugger does in debug mode. The debugger shows only the ports
of predicates that have spypoints on them. It then normally prompts you for
input, at which time you may leap again to the next spypoint (see trace).

leashing Determines how frequently the debugger will stop and prompt you for input
when you are tracing. A port at which the debugger stops is called a “leashed
port”.

linked foreign resource
A foreign resource that is ready to be installed in an atomic operation, normally
represented as a shared object or DLL.

list A list is written as a set of zero or more terms between square brackets. If there
are no terms in a list, it is said to be empty, and is written as ‘[]’. In this first
set of examples, all members of each list are explicitly stated:

[aa, bb,cc] [X, Y] [Name] [[x, y], z]

In the second set of examples, only the first several members of each list are
explicitly stated, while the rest of the list is represented by a variable on the
right-hand side of the “rest of” operator, ‘|’:

[X | Y] [a, b, c | Y] [[x, y] | Rest]

‘|’ is also known as the “list constructor.” The first element of the list to the
left of ‘|’ is called the head of the list. The rest of the list, including the variable
following ‘|’ (which represents a list of any length), is called the tail of the list.

load To load a Prolog clause or set of clauses, in source or binary form, from a file
or set of files.

14 SICStus Prolog

meta-call The process of interpreting a callable term as a goal. This is done e.g. by the
built-in predicate call/1.

meta-logical predicate
A predicate that performs operations that require reasoning about the current
instantiation of terms or decomposing terms into their constituents. Such op-
erations cannot be expressed using predicate definitions with a finite number
of clauses.

meta-predicate
A meta-predicate is one that calls one or more of its arguments; more generally,
any predicate that needs to assume some module in order to operate is called
a meta-predicate. Some arguments of a meta-predicate are subject to module
name expansion.

mode spec A term name(arg, . . . , arg) where each arg denotes how that argument should
be instantiated in goals. See Section 1.2 [Mode Spec], page 5.

module A module is a set of predicates in a module-file. The name of a module is an
atom. Some predicates in a module are exported. The default module is user.

module name expansion
The process by which certain arguments of meta-predicates get prefixed by the
source module. See Section 5.5 [Meta Exp], page 61.

module-file
A module-file is a file that is headed with a module declaration of the form:

:- module(ModuleName, ExportedPredList).

which must appear as the first term in the file.

multifile predicate
A predicate whose definition is to be spread over more than one file. Such
a predicate must be preceded by an explicit multifile declaration in all files
containing clauses for it.

mutable term
A special form of compound term subject to destructive assignment. See Sec-
tion 8.8 [Modify Term], page 188. Mutable terms are recognized by the built-in
predicate is_mutable/1.

name clash
A name clash occurs when a module attempts to define or import a predicate
that it has already defined or imported.

occurs-check
A test to ensure that binding a variable does not bind it to a term where that
variable occurs.

one-char atom
An atom that consists of a single character.

operator A notational convenience that allows you to express any compound term in a
different format. For example, if likes in

Chapter 2: Glossary 15

| ?- likes(sue, cider).

is declared an infix operator, the query above could be written:
| ?- sue likes cider.

An operator does not have to be associated with a predicate. However, certain
built-in predicates are declared as operators. For example,

| ?- =..(X, Y).

can be written as
| ?- X =.. Y.

because =.. has been declared an infix operator.
Those predicates that correspond to built-in operators are written using infix
notation in the list of built-in predicates at the beginning of the part that
contains the reference pages.
Some built-in operators do not correspond to built-in predicates; for example,
arithmetic operators. See Chapter 52 [Standard Operators], page 797 for a list
of built-in operators.

pair A compound term K-V. Pairs are used by the built-in predicate keysort/2 and
by many library modules.

parent The parent of the current goal is a goal that, in its attempt to obtain a successful
solution to itself, is calling the current goal.

port One of the seven key points of interest in the execution of a Prolog predicate.
See Section 7.1 [Procedure Box], page 75 for a definition.

pre-linked foreign resource
A linked foreign resource that is linked into a stand-alone executable as part of
building the executable.

precedence
A number associated with each Prolog operator, which is used to disambiguate
the structure of the term represented by an expression containing a number
of operators. Operators of lower precedence are applied before those of higher
precedence; the operator with the highest precedence is considered the principal
functor of the expression. To disambiguate operators of the same precedence,
the associativity type is also necessary. See Section 4.6 [Operators], page 54.

predicate A functor that specifies some relationship existing in the problem domain. For
example, < /2 is a built-in predicate specifying the relationship of one number
being less than another. In contrast, the functor + /2 is not (normally used as)
a predicate.
A predicate is either built-in or is implemented by a procedure.

predicate spec
A compound term name/arity or module:name/arity denoting a predicate.

procedure A set of clauses in which the head of each clause has the same predicate. For
instance, a group of clauses of the following form:

16 SICStus Prolog

connects(san_francisco, oakland, bart_train).
connects(san_francisco, fremont, bart_train).
connects(concord, daly_city, bart_train).

is identified as belonging to the predicate connects/3.

procedure box
A way of visualizing the execution of a Prolog procedure, A procedure box is
entered and exited via ports.

profiledcode
Virtual code representation of compiled code, instrumented for profiling. A
valid value for the compiling Prolog flag.

profiling The process of gathering execution statistics of parts of the program, essentially
counting the times selected program points have been reached.

program A set of procedures designed to perform a given task.

PO file A PO (Prolog object) file contains a binary representation of a set of mod-
ules, predicates, clauses and directives. They are portable between different
platforms, except between 32-bit and 64-bit platforms. They are created by
save_files/2, save_modules/2, and save_predicates/2.

QL file A QL (quick load) file contains an intermediate representation of a compiled
source file. They are portable between different platforms, but less efficient
than PO files, and are therefore obsolescent. They are created by fcompile/1.

query A query is a question put by the user to the Prolog system. A query is written
as a goal followed by a full-stop in response to the Prolog system prompt. For
example,

| ?- father(edward, ralph).

refers to the predicate father/2. If a query has no variables in it, the system
will respond either ‘yes’ or ‘no’. If a query contains variables, the system will
try to find values of those variables for which the query is true. For example,

| ?- father(edward, X).

X = ralph

After the system has found one answer, the user can direct the system to look
for additional answers to the query by typing ;.

recursion The process in which a running predicate calls itself, presumably with different
arguments and for the purpose of solving some subset of the original problem.

region The text between the cursor and a previously set mark in an Emacs buffer.

rule A clause with one or more conditions. For a rule to be true, all of its conditions
must also be true. For example,

has_stiff_neck(ralph) :-
hacker(ralph).

This rule states that if the individual ralph is a hacker, then he must also have
a stiff neck. The constant ralph is replaced in

Chapter 2: Glossary 17

has_stiff_neck(X) :-
hacker(X).

by the variable X. X unifies with anything, so this rule can be used to prove
that any hacker has a stiff neck.

runtime kernel
A shared object or DLL containing the SICStus virtual machine and other
runtime support for stand-alone executables.

runtime system
A stand-alone executable with a restricted set of built-in predicates and no top-
level. Stand-alone applications containing debugged Prolog code and destined
for end-users are typically packaged as runtime systems.

saved-state
A snapshot of the state of Prolog saved in a file by save_program/[1,2].
The state consists of all predicates and modules except built-in predicates
and clauses of volatile predicates, the current operator declarations, the cur-
rent character-conversion mapping, the values of all writable Prolog flags ex-
cept debug, debugging, double_quotes, char_conversion, informational,
source_info, wcx, and the user_* stream aliases (see Section 8.6 [State Info],
page 175), any blackboard data (see Section 8.11 [Blackboard Primitives],
page 192), database data (see Section 8.10 [Database], page 191), and profiling
data (see Section 8.16 [Profiling], page 211), but no information for source-
linked debugging.

semantics The relation between the set of Prolog symbols and their combinations (as
Prolog terms and clauses), and their meanings. Compare syntax.

sentence A clause or directive.

side-effect A predicate that produces a side-effect is one that has any effect on the “outside
world” (the user’s terminal, a file, etc.), or that changes the Prolog database.

simple term
A simple term is a constant or a variable. Simple terms are recognized by the
built-in predicate simple/1.

small integer
An integer in the range [-2^25,2^25-1] on 32-bit platforms, or [-2^56,2^56-
1] on 64-bit platforms.

source code
The human-readable, as opposed to the machine-executable, representation of
a program.

source module
The module that is the context of a file being loaded. For module-files, the
source module is named in the file’s module declaration. For other files, the
source module is inherited from the context.

SP term ref
A “handle” object providing an interface from C to Prolog terms.

18 SICStus Prolog

spypoint A special case of breakpoint, the debugger breakpoint, intended for interactive
debugging. Its simplest form, the plain spypoint instructs the debugger to stop
at all ports of all invocations of a specified predicate. Conditional spypoints
apply to a single predicate, but are more selective: the user can supply appli-
cability tests and prescribe the actions to be carried out by the debugger. A
generic spypoint is like a conditional spypoint, but not restricted to a single
predicate. See Section 7.6 [Advanced Debugging], page 86.

stand-alone executable
A binary program that can be invoked from the operating system, containing
the SICStus runtime kernel. A stand-alone executable is a development system
(e.g. the default sicstus executable), or a runtime system. Both kinds are
created by the application builder. A stand-alone executable does not itself
contain any Prolog code; all Prolog code must be loaded upon startup.

static predicate
A predicate that can be modified only by being reloaded or by being abolished.
See dynamic predicate.

stream An input/output channel. See Section 8.1 [Input Output], page 131.

stream alias
A name assigned to a stream at the time of opening, which can be referred to
in I/O predicates. Must be an atom. There are also three predefined aliases for
the standard streams: user_input, user_output and user_error.

stream position
A term representing the current position of a stream. This position is deter-
mined by the current byte, character and line counts and line position. Stan-
dard term comparison on stream position terms works as expected. When SP1
and SP2 refer to positions in the same stream, SP1@<SP2 if and only if SP1
is before SP2 in the stream. You should not otherwise rely on their internal
representation.

string A special syntactic notation, which, by default, denotes a code-list, e.g.:
"SICStus"

In iso execution mode, by setting the Prolog flag double_quotes, the meaning
of strings can be changed. With an appropriate setting, a string can be made
to denote a char-list, or an atom. Strings are not a separate data type.

subterm selector
A list of argument positions selecting a subterm within a term (i.e. the subterm
can be reached from the term by successively selecting the argument positions
listed in the selector). Example: within the term q, (r, s; t) the subterm s
is selected by the selector [2, 1, 2].

syntax The part of Prolog grammar dealing with the way in which symbols are put
together to form legal Prolog terms. Compare semantics.

system encoding (of wide characters)
A way of encoding wide character strings, used or required by the operating
system environment.

Chapter 2: Glossary 19

term A basic data object in Prolog. A term can be a constant, a variable, or a
compound term.

trace A mode of program execution in which the debugger creeps to the next port
and prints the goal.

type-in module
The module that is the context of queries.

unblocked goal
A goal that is not blocked.

unbound A variable is unbound if it has not yet been instantiated.

unification The process of matching a goal with the head of a clause during the evaluation
of a query, or of matching arbitrary terms with one another during program
execution.
The rules governing the unification of terms are:
• Two constants unify with one another if they are identical.
• A variable unifies with a constant or a compound term. As a result of the

unification, the variable is instantiated to the constant or compound term.
• A variable unifies with another variable. As a result of the unification, they

become the same variable.
• A compound term unifies with another compound term if they have the

same functor and if all of the arguments can be unified.

unit clause
See fact.

UTF-8 encoding
See internal encoding

variable A logical variable is a name that stands for objects that may or may not be
determined at a specific point in a Prolog program. When the object for which
the variable stands is determined in the Prolog program, the variable becomes
instantiated. A logical variable may be unified with a constant, a compound
term, or another variable. Variables become uninstantiated when the predicate
they occur in backtracks past the point at which they were instantiated.
Variables may be written as any sequence of alphanumeric characters starting
with either a capital letter or ‘_’; e.g.:

X Y Z Name Position _c _305 One_stop

See Section 4.1.1.4 [Variables], page 44.

volatile Predicate property. The clauses of a volatile predicate are not saved in saved-
states.

windowed executable
An executable that pops up its own window when run, and that directs the
standard streams to that window.

zip Same as debug mode, except no debugging information is collected while zip-
ping.

20 SICStus Prolog

Chapter 3: How to Run Prolog 21

3 How to Run Prolog

SICStus Prolog offers the user an interactive programming environment with tools for incre-
mentally building programs, debugging programs by following their executions, and modi-
fying parts of programs without having to start again from scratch.

The text of a Prolog program is normally created in a file or a number of files using one of
the standard text editors. The Prolog interpreter can then be instructed to read in programs
from these files; this is called consulting the file. Alternatively, the Prolog compiler can be
used for compiling the file.

3.1 Getting Started

Under UNIX, SICStus Prolog is normally started from one of the shells. On other platforms,
it is normally started by clicking on an icon. However, it is often convenient to run SICStus
Prolog under GNU Emacs instead. A GNU Emacs interface for SICStus Prolog is described
later (see Section 3.11 [Emacs Interface], page 32). From a shell, SICStus Prolog is started
by typing:

% sicstus [options] [-a argument...]

where options have the following meaning:

‘-f’ Fast start. Don’t read any initialization file on startup. If the option is omit-
ted and the initialization file exists, SICStus Prolog will consult it on startup
after running any initializations and printing the version banners. The initial-
ization file is ‘.sicstusrc’ or ‘.sicstus.ini’ in the users home directory, i.e.
‘~/.sicstusrc’ or ‘~/.sicstus.ini’. See Section 8.1 [Input Output], page 131,
for an explanation of how a file specification starting with ‘~/’ is interpreted.

‘-i’ Forced interactive. Prompt for user input, even if the standard input stream
does not appear to be a terminal.

‘--iso’
‘--sicstus’

Set the initial value of the language, i.e. select ISO Prolog or SICStus Prolog
mode respectively. The flag is set before any prolog-file or initialization file is
loaded or any saved-state is restored.

‘--noinfo’
Start with the informational Prolog flag set to off initially, suppressing in-
formational messages. The flag is set before any prolog-file or initialization file
is loaded or any saved-state is restored.

‘--nologo’
Start without the initial version message.

‘-m’ For compatibility with previous versions. Ignored.

22 SICStus Prolog

‘-l prolog-file’
Ensure that the file prolog-file is loaded on startup. This is done before any
initialization file is loaded. Only one ‘-l’ option is allowed.

‘-r saved-state’
Restore the saved-state saved-state on startup. This is done before any prolog-
file or initialization file is loaded. Only one ‘-r’ option is allowed.

‘--goal Goal’
Read a term from the text Goal and pass the resulting term to call/1 after all
files have been loaded. As usual Goal should be terminated by a full stop (‘.’).
Only one ‘--goal’ option is allowed.

‘-a argument...’
where the arguments can be retrieved from Prolog by prolog_flag(argv, Args

), which will unify Args with argument. . . represented as a list of atoms.

‘-B[abspath]’
Creates a saved-state for a development system. This option is not needed
for normal use. If abspath is given, it specifies the absolute pathname for the
saved-state. Please note: There must not be a space before the path, lest it be
interpreted as a separate option.

‘-R[abspath]’
Equivalent to the ‘-B’ option, except that it builds a saved-state for a runtime
system instead.

Under UNIX, a saved-state file can be executed directly by typing:

% file argument...

This is equivalent to:

% sicstus -r file [-a argument...]

Please note: As of release 3.7, saved-states do not store the complete path of
the binary sp.exe. Instead, they call the main executable sicstus, which is
assumed to be found in the shell’s path. If there are several versions of SICStus
installed, it is up to the user to make sure that the correct start-script is found.

Notice that the flags are not available when executing saved-states—all the command-line
arguments are treated as Prolog arguments.

The development system checks that a valid SICStus license exists and, unless the
‘--nologo’ option was used, responds with a message of identification and the prompt
‘| ?- ’ as soon as it is ready to accept input, thus:

SICStus 3.12.8 ...
Licensed to SICS
| ?-

Chapter 3: How to Run Prolog 23

At this point the top-level is expecting input of a query. You cannot type in clauses or
directives immediately (see Section 3.3 [Inserting Clauses], page 25). While typing in a
query, the prompt (on following lines) becomes ‘ ’. That is, the ‘| ?- ’ appears only
for the first line of the query, and subsequent lines are indented.

3.1.1 Environment Variables

The following environment variables can be set before starting SICStus Prolog. Some of
these override the default sizes of certain areas. The sizes are given in bytes, but may be
followed by ‘K’ or ‘M’ meaning kilobytes or megabytes respectively.

SP_CSETLEN
Selects the sub-code-set lengths when the EUC character set is used. For the
details, see Section 12.4 [WCX Environment Variables], page 304.

SP_CTYPE Selects the appropriate character set standard: The supported values are euc
(for EUC), utf8 (for Unicode) and iso_8859_1 (for ISO 8859/1). The latter
is the default. For the details, see Section 12.4 [WCX Environment Variables],
page 304.

SP_PATH This environment variable can be used to specify the location of the Runtime
Library (corresponding to the third argument to SP_initialize()). In most
cases there is no need to use it, but see Section 9.1 [CPL Notes], page 217.

TMPDIR If set, indicates the pathname where temporary files should be created. Defaults
to ‘/usr/tmp’.

GLOBALSTKSIZE
Governs the initial size of the global stack.

LOCALSTKSIZE
Governs the initial size of the local stack.

CHOICESTKSIZE
Governs the initial size of the choicepoint stack.

TRAILSTKSIZE
Governs the initial size of the trail stack.

PROLOGINITSIZE
Governs the size of Prolog’s initial memory allocation.

PROLOGMAXSIZE
Defines a limit on the amount of data space that Prolog will use.

PROLOGINCSIZE
Governs the amount of space Prolog asks the operating system for in any given
memory expansion.

PROLOGKEEPSIZE
Governs the size of space Prolog retains after performing some computation.
By default, Prolog gets memory from the operating system as the user program

24 SICStus Prolog

executes and returns all free memory back to the operating system when the
user program does not need it any more. If the programmer knows that her
program, once it has grown to a certain size, is likely to need as much memory
for future computations, then she can advise Prolog not to return all the free
memory back to the operating system by setting this variable. Only memory
that is allocated above and beyond PROLOGKEEPSIZE is returned to the OS; the
rest will be kept.

SP_ULIMIT_DATA_SEGMENT_SIZE
Sets the maximum size of the data segment of the Prolog process. The value
can be unlimited or a numeric value as described in the first paragraph in this
section. A numeric value of zero (0) is equivalent to unlimited. Only used under
UNIX.

In addition the following environment variables are set automatically on startup.

SP_APP_DIR
The absolute path to the directory that contains the executable. Also available
as the application file search path.

SP_RT_DIR
The full path to the directory that contains the SICStus run-time. If the ap-
plication has linked statically to the SICStus run-time then SP_RT_DIR is the
same as SP_APP_DIR. Also available as the runtime file search path.

SP_LIBRARY_DIR
The absolute path to the directory that contains the SICStus library files. Also
available as the initial value of the library file search path.

Send bug reports to sicstus-support@sics.se or use
the form at http://www.sics.se/sicstus/bugreport/bugreport.html. Bugs tend ac-
tually to be fixed if they can be isolated, so it is in your interest to report them in such a
way that they can be easily reproduced.

The mailing list sicstus-users@sics.se is a mailing list for communication among users
and implementors. To subscribe, write a message to sympa@sics.se with the following line
in the message body:

subscribe sicstus-users

3.2 Reading in Programs

A program is made up of a sequence of clauses and directives. The clauses of a predicate
do not have to be immediately consecutive, but remember that their relative order may be
important (see Section 4.3 [Procedural], page 50).

To input a program from a file file, just type the filename inside list brackets (followed by
. and 〈RET〉), thus:

mailto:sicstus-support@sics.se
http://www.sics.se/sicstus/bugreport/bugreport.html
mailto:sicstus-users@sics.se
mailto:sympa@sics.se

Chapter 3: How to Run Prolog 25

| ?- [file].

This instructs the interpreter to read in (consult) the program. Note that it may be neces-
sary to enclose the filename file in single quotes to make it a legal Prolog atom; e.g.:

| ?- [’myfile.pl’].

| ?- [’/usr/prolog/somefile’].

The specified file is then read in. Clauses in the file are stored so that they can later be
interpreted, while any directives are obeyed as they are encountered. When the end of
the file is found, the system displays on the standard error stream the time spent. This
indicates the completion of the query.

Predicates that expect the name of a Prolog source file as an argument use absolute_
file_name/3 (see Section 8.1.5 [Stream Pred], page 154) to look up the file. If no explicit
extension is given, this predicate will look for a file with the default extension ‘.pl’ added
as well as for a file without extension. There is also support for libraries.

In general, this query can be any list of filenames, such as:

| ?- [myprog,extras,tests].

In this case all three files would be consulted.

The clauses for all the predicates in the consulted files will replace any existing clauses for
those predicates, i.e. any such previously existing clauses in the database will be deleted.

Note that consult/1 in SICStus Prolog behaves like reconsult/1 in DEC-10 Prolog.

3.3 Inserting Clauses at the Terminal

Clauses may also be typed in directly at the terminal, although this is only recommended
if the clauses will not be needed permanently, and are few in number. To enter clauses at
the terminal, you must give the special query:

| ?- [user].

|

and the new prompt ‘| ’ shows that the system is now in a state where it expects input of
clauses or directives. To return to top level, type ^D. The system responds thus:

% consulted user in module user, 20 msec 200 bytes

3.4 Queries and Directives

Queries and directives are ways of directing the system to execute some goal or goals.

26 SICStus Prolog

In the following, suppose that list membership has been defined by loading the following
clauses from a file:

member(X, [X|_]).
member(X, [_|L]) :- member(X, L).

(Notice the use of anonymous variables written ‘_’.)

3.4.1 Queries

The full syntax of a query is ‘?-’ followed by a sequence of goals. The top-level expects
queries. This is signaled by the initial prompt ‘| ?- ’. Thus a query at top-level looks like:

| ?- member(b, [a,b,c]).

Remember that Prolog terms must terminate with a full stop (‘.’, possibly followed by
layout text), and that therefore Prolog will not execute anything until you have typed the
full stop (and then 〈RET〉) at the end of the query.

If the goal(s) specified in a query can be satisfied, and if there are no variables as in this
example, then the system answers

yes

and execution of the query terminates.

If variables are included in the query, then the final value of each variable is displayed
(except for variables whose names begin with ‘_’). Thus the query

| ?- member(X, [a,b,c]).

would be answered by

X = a

At this point, the development system accepts one-letter commands corresponding to certain
actions. To execute an action simply type the corresponding character (lower or upper case)
followed by 〈RET〉. The available commands in development systems are:

〈RET〉
y “accepts” the solution; the query is terminated and the development system

responds with ‘yes’.

;

n “rejects” the solution; the development system backtracks (see Section 4.3 [Pro-
cedural], page 50) looking for alternative solutions. If no further solutions can
be found it outputs ‘no’.

b invokes a recursive top-level.

Chapter 3: How to Run Prolog 27

< In the top-level, a global printdepth is in effect for limiting the subterm nesting
level when printing bindings The limit is initially 10.
This command, without arguments, resets the printdepth to 10. With an ar-
gument of n, the printdepth is set to n, treating 0 as infinity. This command
works by changing the value of the toplevel_print_options Prolog flag (see
Section 8.6 [State Info], page 175).

^ A local subterm selector, initially [], is maintained. The subterm selector
provides a way of zooming in to some subterm of each binding. For example,
the subterm selector [2,3] causes the 3rd subterm of the 2nd subterm of each
binding to be selected.
This command, without arguments, resets the subterm selector to []. With an
argument of 0, the last element of the subterm selector is removed. With an
argument of n (> 0), n is added to the back of the subterm selector. With a list
of arguments, the arguments are applied from left to right.

h

? lists available commands.

While the variable bindings are displayed, all variables occurring in the values are replaced
by terms of the form ’$VAR’(N) to yield friendlier variable names. Such names come out
as a sequence of letters and digits preceded by ‘_’. The outcome of some queries is shown
below.

| ?- member(X, [tom,dick,harry]).

X = tom ;

X = dick ;

X = harry ;

no
| ?- member(X, [a,b,f(Y,c)]), member(X, [f(b,Z),d]).

X = f(b,c),
Y = b,
Z = c

| ?- member(X, [f(_),g]).

X = f(_A)

Directives are like queries except that:

1. Variable bindings are not displayed if and when the directive succeeds.
2. You are not given the chance to backtrack through other solutions.

28 SICStus Prolog

3.4.2 Directives

Directives start with the symbol ‘:-’. Any required output must be programmed explicitly;
e.g. the directive:

:- member(3, [1,2,3]), write(ok).

asks the system to check whether 3 belongs to the list [1,2,3]. Execution of a direc-
tive terminates when all the goals in the directive have been successfully executed. Other
alternative solutions are not sought. If no solution can be found, the system prints:

* Goal - goal failed

as a warning.

The principal use for directives (as opposed to queries) is to allow files to contain directives
that call various predicates, but for which you do not want to have the answers printed
out. In such cases you only want to call the predicates for their effect, i.e. you don’t want
terminal interaction in the middle of consulting the file. A useful example would be the use
of a directive in a file that consults a whole list of other files, e.g.:

:- [bits, bobs, main, tests, data, junk].

If a directive like this were contained in the file ‘myprog’ then typing the following at top-
level would be a quick way of reading in your entire program:

| ?- [myprog].

When simply interacting with the top-level, this distinction between queries and directives
is not normally very important. At top-level you should just type queries normally. In a
file, queries are in fact treated as directives, i.e. if you wish to execute some goals then the
directive in the file must be preceded by ‘:-’ or ‘?-’; otherwise, it would be treated as a
clause.

3.5 Syntax Errors

Syntax errors are detected during reading. Each clause, directive or in general any term
read in by the built-in predicate read/1 that fails to comply with syntax requirements is
displayed on the standard error stream as soon as it is read, along with its position in the
input stream and a mark indicating the point in the string of symbols where the parser has
failed to continue analysis, e.g.:

Chapter 3: How to Run Prolog 29

| member(X, X$L).
! Syntax error
! , or) expected in arguments
! in line 5
! member (X , X
! <<here>>
! $ L) .

if ‘$’ has not been declared as an infix operator.

Note that any comments in the faulty line are not displayed with the error message. If you
are in doubt about which clause was wrong you can use the listing/1 predicate to list all
the clauses that were successfully read in, e.g.:

| ?- listing(member/2).

Please note: The built-in predicates read/[1,2] normally raise an exception on
syntax errors (see Section 8.5 [Exception], page 173). The behavior is controlled
by the Prolog flag syntax_errors.

3.6 Undefined Predicates

There is a difference between predicates that have no definition and predicates that have no
clauses. The latter case is meaningful e.g. for dynamic predicates (see Section 6.2 [Declara-
tions], page 68) that clauses are being added to or removed from. There are good reasons
for treating calls to undefined predicates as errors, as such calls easily arise from typing
errors.

The system can optionally catch calls to predicates that have no definition. First the
user defined predicate user:unknown_predicate_handler/3 (see Section 8.5 [Exception],
page 173) is called. If undefined or if the call fails the action is governed by the state of the
unknown Prolog flag, which can be:

trace which causes calls to undefined predicates to be reported and the debugger to
be entered at the earliest opportunity.

error which causes calls to such predicates to raise an exception (the default state).
See Section 8.5 [Exception], page 173.

warning which causes calls to such predicates to display a warning message and then
fail.

fail which causes calls to such predicates to fail.

Calls to predicates that have no clauses are not caught.

The built-in predicate unknown(?OldState, ?NewState) unifies OldState with the current
state and sets the state to NewState. The built-in predicate debugging/0 prints the value

30 SICStus Prolog

of this state along with its other information. This state is also controlled by the unknown
Prolog flag.

3.7 Program Execution And Interruption

Execution of a program is started by giving the system a query that contains a call to one
of the program’s predicates.

Only when execution of one query is complete does the system become ready for another
query. However, one may interrupt the normal execution of a query by typing ^C. This
^C interruption has the effect of suspending the execution, and the following message is
displayed:

Prolog interruption (h or ? for help) ?

At this point, the development system accepts one-letter commands corresponding to certain
actions. To execute an action simply type the corresponding character (lower or upper case)
followed by 〈RET〉. The available commands in development systems are:

a aborts the current computation.

c continues the execution.

e exits from SICStus Prolog, closing all files.

h

? lists available commands.

b invokes a recursive top-level.

d

z

t switch on the debugger. See Chapter 7 [Debug Intro], page 75.

If the standard input stream is not connected to the terminal, e.g. by redirecting standard
input to a file or a pipe, the above ^C interrupt options are not available. Instead, typing
^C causes SICStus Prolog to exit, and no terminal prompts are printed.

3.8 Exiting From The Top-Level

To exit from the top-level and return to the shell, either type ^D at the top-level, or call the
built-in predicate halt/0, or use the e (exit) command following a ^C interruption.

Chapter 3: How to Run Prolog 31

3.9 Nested Executions—Break

The Prolog system provides a way to suspend the execution of your program and to enter
a new incarnation of the top-level where you can issue queries to solve goals etc. This is
achieved by issuing the query (see Section 3.7 [Execution], page 30):

| ?- break.

This invokes a recursive top-level, indicated by the message:

% Break level 1

You can now type queries just as if you were at top-level.

If another call of break/0 is encountered, it moves up to level 2, and so on. To close the
break and resume the execution that was suspended, type ^D. The debugger state and
current input and output streams will be restored, and execution will be resumed at the
predicate call where it had been suspended after printing the message:

% End break

3.10 Saving and Restoring Program States

Once a program has been read, the system will have available all the information necessary
for its execution. This information is called a program state.

The saved-state of a program may be saved on disk for future execution. To save a program
into a file File, type the following query. On UNIX platforms, the file becomes executable:

| ?- save_program(File).

You can also specify a goal to be run when a saved program is restored. This is done by:

| ?- save_program(File, start).

where start/0 is the predicate to be called.

Once a program has been saved into a file File, the following query will restore the system
to the saved-state:

| ?- restore(File).

If a saved-state has been moved or copied to another machine, the path names of foreign
resources and other files needed upon restore are typically different at restore time from
their save time values. To solve this problem, certain atoms will be relocated during restore
as follows:

32 SICStus Prolog

• Atoms that had ‘$SP_PATH/library’ (the name of the directory containing the Prolog
Library) as prefix at save time will have that prefix replaced by the corresponding
restore time value.

• Atoms that had the name of the directory containing File as prefix at save time will
have that prefix replaced by the corresponding restore time value.

The purpose of this procedure is to be able to build and deploy an application consisting of
a saved-state and other files as a directory tree with the saved-state at the root: as long as
the other files maintain their relative position in the deployed copy, they can still be found
upon restore.

Please note: Foreign resources, see Section 9.2 [Calling C from Prolog],
page 218, are unloaded by save_program/[1,2]. The names and paths of the
resources, typically ‘$SP_PATH/library’ relative, are however included in the
saved-state. After the save, and after restoring a saved-state, this information
is used to reload the foreign resources again. The state of the foreign resource
in terms of global C variables and allocated memory is thus not preserved. For-
eign resources may define init and deinit functions to take special action upon
loading and unloading; see Section 9.2.7 [Init and Deinit Functions], page 227.

As of SICStus Prolog 3.8, partial saved-states corresponding to a set of source files, modules,
and predicates can be created by the built-in predicates save_files/2, save_modules/2,
and save_predicates/2 respectively. These predicates create files in a binary format,
by default with the prefix ‘.po’ (for Prolog object file), which can be loaded by load_
files/[1,2]. For example, to compile a program split into several source files into a single
object file, type:

| ?- compile(Files), save_files(Files, Object).

For each filename given, the first goal will try to locate a source file with the default suffix
‘.pl’ and compile it into memory. The second goal will save the program just compiled
into an object file whose default suffix is ‘.po’. Thus the object file will contain a partial
memory image.

Please note: Prolog object files can be created with any suffix, but cannot be
loaded unless the suffix is ‘.po’!

3.11 Emacs Interface

This section explains how to use the GNU Emacs interface for SICStus Prolog, and how to
customize your GNU Emacs environment for it.

Emacs is a powerful programmable editor especially suitable for program develop-
ment. It is available for free for many platforms, including various UNIX dialects,
Windows and MacOS X. For information specific to GNU Emacs or XEmacs, see
http://www.gnu.org and http://www.xemacs.org respectively. For information on run-

http://www.gnu.org
http://www.xemacs.org

Chapter 3: How to Run Prolog 33

ning Emacs under Windows, see the ‘GNU Emacs FAQ For Windows 98/ME/NT/XP and 2000’
at http://www.gnu.org/software/emacs/windows/ntemacs.html, much of which applies
to both GNU Emacs and XEmacs.

The advantages of using SICStus in the Emacs environment are source-linked debugging,
auto indentation, syntax highlighting, help on predefined predicates (requires the SICStus
info files to be installed), loading code from inside Emacs, auto-fill mode, and more.

The Emacs interface is not part of SICStus Prolog proper, but is included in the distribution
for convenience. It was written by Emil Åström and Milan Zamazal, based on an earlier
version of the mode written by Masanobu Umeda. Contributions has also been made by
Johan Andersson, Peter Olin, Mats Carlsson, Johan Bevemyr, Stefan Andersson, and Per
Danielsson, Henrik B̊akman, and Tamás Rozmán. Some ideas and also a few lines of code
have been borrowed (with permission) from ‘Oz.el’ by Ralf Scheidhauer and Michael Mehl,
the Emacs major mode for the Oz programming language. More ideas and code have been
taken from the SICStus debugger mode by Per Mildner.

3.11.1 Installation

See section “The Emacs Interface” in SICStus Prolog Release Notes, for more information
about installing the Emacs interface.

There are some differences between GNU Emacs and XEmacs. This will be indicated with
Emacs-Lisp comments in the examples.

3.11.1.1 Quick-Start

Assuming the Emacs interface for SICStus Prolog has been installed in the default location,
inserting a single line in your ‘~/.emacs’ will make Emacs use the SICStus Prolog mode
automatically when editing files with a ‘.pl’ extension. It will also ensure Emacs can find
the SICStus executables and on-line documentation, etc.

Note to Windows users: ‘~/.emacs’ denotes a file ‘.emacs’ in whatever Emacs considers
to be your home directory. See ‘GNU Emacs FAQ For Windows 98/ME/NT/XP and 2000’ at
http://www.gnu.org/software/emacs/windows/ntemacs.html, for details.

Under UNIX, assuming SICStus 3.12.8 was installed in ‘/usr/local/’, add the following
line:

(load "/usr/local/lib/sicstus-3.12.8/emacs/sicstus_emacs_init")

Under Windows, assuming SICStus 3.12.8 was installer in ‘C:\Program Files\SICStus
Prolog 3.12.8\’, add the following line:

(load "C:/Program Files/SICStus Prolog
3.12.8/emacs/sicstus_emacs_init")

http://www.gnu.org/software/emacs/windows/ntemacs.html
http://www.gnu.org/software/emacs/windows/ntemacs.html

34 SICStus Prolog

No other configuration should be needed to get started. If you want to customize things,
look in the ‘sictus_emacs_init.el’ file and the rest of this section.

3.11.1.2 Customizing Emacs

Version 20 of GNU Emacs and XEmacs introduced a new method for editing and storing
user settings. This feature is available from the menu bar as ‘Customize’ and particular
Emacs variables can be customized with M-x customize-variable. Using ‘Customize’ is
the preferred way to modify the settings for Emacs and the appropriate customize commands
will be indicated below, sometimes together with the old method of directly setting Emacs
variables.

3.11.1.3 Enabling Emacs Support for SICStus

This section is for reference only; it will let you understand the setup that is performed by
the ‘sictus_emacs_init.el’ file.

Assuming the Emacs interface for SICStus Prolog has been installed in the default location,
inserting the following lines in your ‘~/.emacs’ will make Emacs use this mode automatically
when editing files with a ‘.pl’ extension:

(setq load-path
(cons (expand-file-name "/usr/local/lib/sicstus-3.12.8/emacs")

load-path))
(autoload ’run-prolog "prolog" "Start a Prolog sub-process." t)
(autoload ’prolog-mode "prolog" "Major mode for editing Prolog programs." t)
(setq prolog-use-sicstus-sd t)
(setq auto-mode-alist (cons ’("\\.pl$" . prolog-mode) auto-mode-alist))

where the path in the first line is the file system path to ‘prolog.el’ (the generic Prolog
mode) and ‘sicstus-support.el’ (SICStus specific code). For example, ‘~/emacs’ means
that the file is in the user’s home directory, in directory emacs. Windows paths can be
written like ‘C:/Program Files/SICStus Prolog 3.12.8/emacs’.

The last line above makes sure that files ending with ‘.pl’ are assumed to be Prolog files
and not Perl, which is the default Emacs setting. If this is undesirable, remove that line.
It is then necessary for the user to manually switch to prolog mode by typing M-x prolog-

mode after opening a prolog file, for an alternative approach, see Section 3.11.4 [Mode Line],
page 38.

If the shell command sicstus is not available in the default path, then it is necessary to
set the value of the environment variable EPROLOG to a shell command to invoke SICStus
Prolog. This is an example for C Shell:

% setenv EPROLOG /usr/local/bin/sicstus

Chapter 3: How to Run Prolog 35

3.11.1.4 Enabling Emacs Support for SICStus Documentation

If you follow the steps in Section Quick Start, above, you can skip this section.

It is possible to look up the documentation for any built-in or library predicate from within
Emacs (using C-c ? or the menu). For this to work Emacs must be told about the location
of the ‘info’-files that make up the documentation.

The default location for the ‘info’-files are ‘<prefix>/lib/sicstus-3.12.8/doc/info/’
on UNIX platforms and ‘C:/Program Files/SICStus Prolog 3.12.8/doc/info/’ under
Windows.

Add the following to your ‘~/.emacs’ file, assuming INFO is the path to the info files, e.g.
‘C:/Program Files/SICStus Prolog 3.12.8/doc/info/’

(setq Info-default-directory-list
(append Info-default-directory-list ’("INFO")))

for GNU Emacs, or

(setq Info-directory-list
(append Info-directory-list ’("INFO")))

for XEmacs. You can also use M-x customize-group 〈RET〉 info 〈RET〉 if your Emacs is new
enough. You may have to quit and restart Emacs for these changes to take effect.

3.11.2 Basic Configuration

If the following lines are not present in ‘~/.emacs’, we suggest they are added, so that
the font-lock mode (syntax coloring support) is enabled for all major modes in Emacs that
support it.

(global-font-lock-mode t) ; GNU Emacs
(setq font-lock-auto-fontify t) ; XEmacs
(setq font-lock-maximum-decoration t)

These settings and more are also available through M-x customize-group 〈RET〉 font-lock.

If one wants to add font-locking only to the prolog mode, the two lines above could be
replaced by:

(add-hook ’prolog-mode-hook ’turn-on-font-lock)

Similarly, to turn it off only for prolog mode use:

(add-hook ’prolog-mode-hook ’turn-off-font-lock)

36 SICStus Prolog

3.11.3 Usage

A prolog process can be started by choosing Run Prolog from the Prolog menu, by typing
C-c 〈RET〉, or by typing M-x run-prolog. It is however not strictly necessary to start a
prolog process manually since it is automatically done when consulting or compiling, if
needed. The process can be restarted (i.e. the old one is killed and a new one is created)
by typing C-u C-c 〈RET〉.

Programs are run and debugged in the normal way, with terminal I/O via the *prolog*
buffer. The most common debugging predicates are available from the menu or via key-
bindings.

A particularly useful feature under the Emacs interface is source-linked debugging. This is
enabled or disabled using the Prolog/Source level debugging menu entry. It can also be
enabled by setting the Emacs variable prolog-use-sicstus-sd to t in ‘~/.emacs’. Both
these methods set the Prolog flag source_info to emacs. Its value should be emacs while
loading the code to be debugged and while debugging. If so, the debugger will display
the source code location of the current goal when it prompts for a debugger command, by
overlaying the beginning of the current line of code with an arrow. If source_info was off
when the code was loaded, or if it was asserted or loaded from user, the current goal will
still be shown but out of context.

Note that if the code has been modified since it was last loaded, Prolog’s line number
information may be invalid. If this happens, just reload the relevant buffer.

Consultation and compilation is either done via the menu or with the following key-bindings:

C-c C-f Consult file.

C-c C-b Consult buffer.

C-c C-r Consult region.

C-c C-p Consult predicate.

C-c C-c f Compile file.

C-c C-c b Compile buffer.

C-c C-c r Compile region.

C-c C-c p Compile predicate.

The boundaries used when consulting and compiling predicates are the first and last clauses
of the predicate the cursor is currently in.

Other useful key-bindings are:

M-n Go to the next clause.

M-p Go to the previous clause.

Chapter 3: How to Run Prolog 37

M-a Go to beginning of clause.

M-e Go to end of clause.

M-C-c Mark clause.

M-C-a Go to beginning of predicate.

M-C-e Go to end of predicate.

M-C-h Mark predicate.

M-{ Go to the previous paragraph (i.e. empty line).

M-} Go to the next paragraph (i.e. empty line).

M-h Mark paragraph.

M-C-n Go to matching right parenthesis.

M-C-p Go to matching left parenthesis.

M-; Creates a comment at comment-column. This comment will always stay at this
position when the line is indented, regardless of changes in the text earlier on
the line, provided that prolog-align-comments-flag is set to t.

C-c C-t

C-u C-c C-t

Enable and disable creeping, respectively.

C-c C-d

C-u C-c C-d

Enable and disable leaping, respectively.

C-c C-z

C-u C-c C-z

Enable and disable zipping, respectively.

C-x SPC

C-u C-x SPC

Set and remove a line breakpoint. This uses the advanced debugger features
introduced in SICStus 3.8; see Section 7.6 [Advanced Debugging], page 86.

C-c C-s Insert the PredSpec of the current predicate into the code.

C-c C-n Insert the name of the current predicate into the code. This can be useful
when writing recursive predicates or predicates with several clauses. See also
the prolog-electric-dot-flag variable below.

C-c C-v a Convert all variables in a region to anonymous variables. This can also be done
using the Prolog/Transform/All variables to ’_’ menu entry. See also the
prolog-electric-underscore-flag Emacs variable.

C-c ? Help on predicate. This requires the SICStus info files to be installed. If the
SICStus info files are installed in a nonstandard way, you may have to change
the Emacs variable prolog-info-predicate-index.

38 SICStus Prolog

3.11.4 Mode Line

If working with an application split into several modules, it is often useful to let files begin
with a “mode line”:

%%% -*- Mode: Prolog; Module: ModuleName; -*-

The Emacs interface will look for the mode line and notify the SICStus Prolog module
system that code fragments being incrementally reconsulted or recompiled should be im-
ported into the module ModuleName. If the mode line is missing, the code fragment will
be imported into the type-in module. An additional benefit of the mode line is that it tells
Emacs that the file contains Prolog code, regardless of the setting of the Emacs variable
auto-mode-alist. A mode line can be inserted by choosing Insert/Module modeline in
the Prolog menu.

3.11.5 Configuration

The behavior of the Emacs interface can be controlled by a set of user-configurable settings.
Some of these can be changed on the fly, while some require Emacs to be restarted. To set
a variable on the fly, type M-x set-variable 〈RET〉 VariableName 〈RET〉 Value 〈RET〉. Note
that variable names can be completed by typing a few characters and then pressing 〈TAB〉.

To set a variable so that the setting is used every time Emacs is started, add lines of the
following format to ‘~/.emacs’:

(setq VariableName Value)

Note that the Emacs interface is presently not using the ‘Customize’ functionality to edit
the settings.

The available settings are:

prolog-system
The Prolog system to use. Defaults to ’sicstus, which will be assumed for
the rest of this chapter. See the on-line documentation for the meaning of
other settings. For other settings of prolog-system the variables below named
sicstus-something will not be used, in some cases corresponding functionality
is available through variables named prolog-something.

sicstus-version
The version of SICStus that is used. Defaults to ’(3 . 8). Note that the spaces
are significant!

prolog-use-sicstus-sd
Set to t (the default) to enable the source-linked debugging extensions by de-
fault. The debugging can be enabled via the Prolog menu even if this variable

Chapter 3: How to Run Prolog 39

is nil. Note that the source-linked debugging only works if sicstus-version
is set correctly.

pltrace-port-arrow-assoc obsolescent
Only relevant for source-linked debugging, this controls how the various ports
of invocation boxes (see Section 7.1 [Procedure Box], page 75) map to arrows
that point into the current line of code in source code buffers. Initialized as:

’(("call" . ">>>") ("exit" . "+++") ("ndexit" . "?++")
("redo" . "<<<") ("fail" . "---") ("exception" . "==>"))

where ndexit is the nondeterminate variant of the Exit port. Do not rely on
this variable. It will change in future releases.

prolog-indent-width
How many positions to indent the body of a clause. Defaults to tab-width,
normally 8.

prolog-paren-indent
The number of positions to indent code inside grouping parentheses. Defaults
to 4, which gives the following indentation.

p :-
(q1
; q2,

q3
).

Note that the spaces between the parentheses and the code are automatically
inserted when 〈TAB〉 is pressed at those positions.

prolog-align-comments-flag
Set to nil to prevent single %-comments from being automatically aligned.
Defaults to t.
Note that comments with one % are indented to comment-column, comments
with two % to the code level, and that comments with three % are never changed
when indenting.

prolog-indent-mline-comments-flag
Set to nil to prevent indentation of text inside /* ... */ comments. Defaults
t.

prolog-object-end-to-0-flag
Set to nil to indent the closing } of an object definition to prolog-indent-
width. Defaults to t.

sicstus-keywords
This is a list with keywords that are highlighted in a special color when used
as directives (i.e. as :- keyword). Defaults to

’((sicstus
("block" "discontiguous" "dynamic" "initialization"
"meta_predicate" "mode" "module" "multifile" "public"
"volatile")))

40 SICStus Prolog

prolog-electric-newline-flag
Set to nil to prevent Emacs from automatically indenting the next line when
pressing 〈RET〉. Defaults to t.

prolog-hungry-delete-key-flag
Set to t to enable deletion of all white space before the cursor when pressing
〈DEL〉 (unless inside a comment, string, or quoted atom). Defaults to nil.

prolog-electric-dot-flag
Set to t to enable the electric dot function. If enabled, pressing . at the end of
a non-empty line inserts a dot and a newline. When pressed at the beginning of
a line, a new head of the last predicate is inserted. When pressed at the end of
a line with only whitespace, a recursive call to the current predicate is inserted.
The function respects the arity of the predicate and inserts parentheses and the
correct number of commas for separation of the arguments. Defaults to nil.

prolog-electric-underscore-flag
Set to t to enable the electric underscore function. When enabled, pressing
underscore (_) when the cursor is on a variable, replaces the variable with the
anynomous variable. Defaults to nil.

prolog-old-sicstus-keys-flag
Set to t to enable the key-bindings of the old Emacs interface. These bind-
ings are not used by default since they violate GNU Emacs recommendations.
Defaults to nil.

prolog-use-prolog-tokenizer-flag
Set to nil to use built-in functions of Emacs for parsing the source code when
indenting. This is faster than the default but does not handle some of the
syntax peculiarities of Prolog. Defaults to t.

prolog-parse-mode
What position the parsing is done from when indenting code. Two possible
settings: ’beg-of-line and ’beg-of-clause. The first is faster but may result
in erroneous indentation in /* ... */ comments. The default is ’beg-of-line.

prolog-imenu-flag
Set to t to enable a new Predicate menu that contains all predicates of the
current file. Choosing an entry in the menu moves the cursor to the start of
that predicate. Defaults to nil.

prolog-info-predicate-index
The info node for the SICStus predicate index. This is important if the online
help function is to be used (by pressing C-c ?, or choosing the Prolog/Help on
predicate menu entry). The default setting is "(sicstus)Predicate Index".

prolog-underscore-wordchar-flag
Set to nil to not make underscore (_) a word-constituent character. Defaults
to t.

Chapter 3: How to Run Prolog 41

3.11.6 Tips

Some general tips and tricks for using the SICStus mode and Emacs in general are given
here. Some of the methods may not work in all versions of Emacs.

3.11.6.1 Font-locking

When editing large files, it might happen that font-locking is not done because the file is
too large. Typing M-x lazy-lock-mode results in only the visible parts of the buffer being
highlighted, which is much faster, see its Emacs on-line documentation for details.

If the font-locking seems to be incorrect, choose Fontify Buffer from the Prolog menu.

3.11.6.2 Auto-fill Mode

Auto-fill mode is enabled by typing M-x auto-fill-mode. This enables automatic line
breaking with some features. For example, the following multiline comment was created
by typing M-; followed by the text. The second line was indented and a ‘%’ was added
automatically.

dynamics([]). % A list of pit furnace
% dynamic instances

3.11.6.3 Speed

There are several things to do if the speed of the Emacs environment is a problem:

• First of all, make sure that ‘prolog.el’ and ‘sicstus-support.el’ are compiled, i.e.
that there is a ‘prolog.elc’ and a ‘sicstus-support.elc’ file at the same location
as the original files. To do the compilation, start Emacs and type M-x byte-compile-

file 〈RET〉 path 〈RET〉, where path is the path to the ‘*.el’ file. Do not be alarmed if
there are a few warning messages as this is normal. If all went well, there should now
be a compiled file, which is used the next time Emacs is started.

• The next thing to try is changing the setting of prolog-use-prolog-tokenizer-flag
to nil. This means that Emacs uses built-in functions for some of the source code
parsing, thus speeding up indentation. The problem is that it does not handle all
peculiarities of the Prolog syntax, so this is a trade-off between correctness and speed.

• The setting of the prolog-parse-mode variable also affects the speed, ’beg-of-line
being faster than ’beg-of-clause.

• Font locking may be slow. You can turn it off using customization, available through
M-x customize-group 〈RET〉 font-lock 〈RET〉. An alternative is to enable one of the
lazy font locking modes. You can also turn it off completely; see Section 3.11.2 [Basic
Configuration], page 35.

42 SICStus Prolog

3.11.6.4 Changing Colors

The prolog mode uses the default Emacs colors for font-locking as far as possible. The only
custom settings are in the prolog process buffer. The default settings of the colors may not
agree with your preferences, so here is how to change them.

If your emacs support it, use ‘Customize’, M-x customize-group 〈RET〉 font-lock 〈RET〉 will
show the ‘Customize’ settings for font locking and also contains pointers to the ‘Customize’
group for the font lock (type)faces. The rest of this section outlines the more involved
methods needed in older versions of Emacs.

First of all, list all available faces (a face is a combined setting of foreground and background
colors, font, boldness, etc.) by typing M-x list-faces-display.

There are several functions that change the appearance of a face, the ones you will most
likely need are:

• set-face-foreground

• set-face-background

• set-face-underline-p

• make-face-bold

• make-face-bold-italic

• make-face-italic

• make-face-unbold

• make-face-unitalic

These can be tested interactively by typing M-x function-name. You will then be asked
for the name of the face to change and a value. If the buffers are not updated according
to the new settings, then refontify the buffer using the Fontify Buffer menu entry in the
Prolog menu.

Colors are specified by a name or by RGB values. Available color names can be listed with
M-x list-colors-display.

To store the settings of the faces, a few lines must be added to ‘~/.emacs’. For example:

;; Customize font-lock faces
(add-hook ’font-lock-mode-hook

’(lambda ()
(set-face-foreground font-lock-variable-name-face "#00a000")
(make-face-bold font-lock-keyword-face)
(set-face-foreground font-lock-reference-face "Blue")
))

Chapter 4: The Prolog Language 43

4 The Prolog Language

This chapter provides a brief introduction to the syntax and semantics of a certain subset
of logic (definite clauses, also known as Horn clauses), and indicates how this subset forms
the basis of Prolog.

4.1 Syntax, Terminology and Informal Semantics

4.1.1 Terms

The data objects of the language are called terms. A term is either a constant, a variable
or a compound term.

4.1.1.1 Integers

The constants include integers such as

0 1 999 -512

Besides the usual decimal, or base 10, notation, integers may also be written in other base
notations. In sicstus mode, any base from 2 to 36 can be specified, while in iso mode
bases 2 (binary), 8 (octal), and 16 (hex) can be used. Letters ‘A’ through ‘Z’ (upper or
lower case) are used for bases greater than 10. E.g.:

15 2’1111 8’17 16’f % sicstus mode
15 0b1111 0o17 0xf % iso mode

all represent the integer fifteen. Except for the first, decimal, notation, the forms in the
first line are only acceptable in sicstus mode, while those in the second line are only valid
in iso mode.

There is also a special notation for character constants. E.g.:

0’A 0’\x41 0’\101

are all equivalent to 65 (the character code for ‘A’). ‘0’’ followed by any character except
‘\’ (backslash) is thus read as an integer. Unless character escapes have been switched off, if
‘0’’ is followed by ‘\’, the ‘\’ denotes the start of an escape sequence with special meaning
(see Section 51.5 [Escape Sequences], page 794).

4.1.1.2 Floats

Constants also include floats such as

44 SICStus Prolog

1.0 -3.141 4.5E7 -0.12e+8 12.0e-9

Note that there must be a decimal point in floats written with an exponent, and that there
must be at least one digit before and after the decimal point.

4.1.1.3 Atoms

Constants also include atoms such as

a void = := ’Algol-68’ []

Atoms are definite elementary objects, and correspond to proper nouns in natural language.
For reference purposes, here is a list of the possible forms that an atom may take:

1. Any sequence of alphanumeric characters (including ‘_’), starting with a lower case
letter.

2. Any sequence from the following set of characters:
+ - * / \ ^ < > = ~ : . ? @ # $ &

This set can in fact be larger; see Section 51.4 [Token String], page 790 for a precise
definition.

3. Any sequence of characters delimited by single quotes. Unless character escapes have
been switched off, backslashes in the sequence denote escape sequences (see Section 51.5
[Escape Sequences], page 794), and if the single quote character is included in the
sequence it must be escaped, e.g. ’can\’t’.

4. Any of:
! ; [] {}

Note that the bracket pairs are special: ‘[]’ and ‘{}’ are atoms but ‘[’, ‘]’, ‘{’, and ‘}’
are not. However, when they are used as functors (see below) the form {X} is allowed as
an alternative to {}(X). The form [X] is the normal notation for lists, as an alternative
to .(X,[]).

4.1.1.4 Variables

Variables may be written as any sequence of alphanumeric characters (including ‘_’) starting
with either a capital letter or ‘_’; e.g.:

X Value A A1 _3 _RESULT

If a variable is only referred to once in a clause, it does not need to be named and may be
written as an anonymous variable, indicated by the underline character ‘_’. A clause may
contain several anonymous variables; they are all read and treated as distinct variables.

A variable should be thought of as standing for some definite but unidentified object. This
is analogous to the use of a pronoun in natural language. Note that a variable is not simply

Chapter 4: The Prolog Language 45

a writable storage location as in most programming languages; rather it is a local name for
some data object, cf. the variable of pure LISP and identity declarations in Algol68.

4.1.1.5 Compound Terms

The structured data objects of the language are the compound terms. A compound term
comprises a functor (called the principal functor of the term) and a sequence of one or more
terms called arguments. A functor is characterized by its name, which is an atom, and its
arity or number of arguments. For example the compound term whose functor is named
point of arity 3, with arguments X, Y and Z, is written

point(X, Y, Z)

Note that an atom is considered to be a functor of arity 0.

Functors are generally analogous to common nouns in natural language. One may think of
a functor as a record type and the arguments of a compound term as the fields of a record.
Compound terms are usefully pictured as trees. For example, the term

s(np(john),vp(v(likes),np(mary)))

would be pictured as the compound term

s
/ \

np vp
| / \

john v np
| |

likes mary

Sometimes it is convenient to write certain functors as operators—2-ary functors may be
declared as infix operators and 1-ary functors as prefix or postfix operators. Thus it is
possible to write e.g.:

X+Y (P;Q) X<Y +X P;

as optional alternatives to

+(X,Y) ;(P,Q) <(X,Y) +(X) ;(P)

The use of operators is described fully below (see Section 4.6 [Operators], page 54).

Lists form an important class of data structures in Prolog. They are essentially the same as
the lists of LISP: a list either is the atom [] representing the empty list, or is a compound
term with functor . and two arguments, which are respectively the head and tail of the list.
Thus a list of the first three natural numbers is the compound term

46 SICStus Prolog

.
/ \
1 .

/ \
2 .

/ \
3 []

which could be written, using the standard syntax, as

.(1,.(2,.(3,[])))

but which is normally written, in a special list notation, as

[1,2,3]

The special list notation in the case when the tail of a list is a variable is exemplified by

[X|L] [a,b|L]

representing

. .
/ \ / \

X L a .
/ \

b L

respectively.

Note that this notation does not add any new power to the language; it simply makes it
more readable. e.g. the above examples could equally be written

.(X,L) .(a,.(b,L))

For convenience, a further notational variant is allowed for lists of integers that correspond
to character codes or one-char atoms. Lists written in this notation are called strings. E.g.:

"SICStus"

which, by default, denotes exactly the same list as

[83,73,67,83,116,117,115]

The Prolog flag double_quotes can be used to change the way strings are interpreted. The
default value of the flag is codes, which implies the above interpretation. If the flag is
set to chars, a string is transformed to a char-list. E.g. with this setting the above string
represents the list:

[’S’,’I’,’C’,’S’,t,u,s]

Chapter 4: The Prolog Language 47

Finally if double_quotes has the value atom, then the string is made equivalent to the
atom formed from its characters: the above sample string is then the same as the atom
’SICStus’.

Unless character escapes have been switched off, backslashes in the sequence denote escape
sequences (see Section 51.5 [Escape Sequences], page 794). As for quoted atoms, if a double
quote character is included in the sequence it must be escaped, e.g. "can\"t".

4.1.2 Programs

A fundamental unit of a logic program is the goal or procedure call. E.g.

gives(tom, apple, teacher) reverse([1,2,3], L) X<Y

A goal is merely a special kind of term, distinguished only by the context in which it appears
in the program. The (principal) functor of a goal identifies what predicate the goal is for. It
corresponds roughly to a verb in natural language, or to a procedure name in a conventional
programming language.

A logic program consists simply of a sequence of statements called sentences, which are
analogous to sentences of natural language. A sentence comprises a head and a body. The
head either consists of a single goal or is empty. The body consists of a sequence of zero
or more goals (i.e. it too may be empty). If the head is not empty, the sentence is called a
clause.

If the body of a clause is empty, the clause is called a unit clause, and is written in the form

P.

where P is the head goal. We interpret this declaratively as

Goals matching P are true.

and procedurally as

Goals matching P are satisfied.

If the body of a clause is non-empty, the clause is called a rule, and is written in the form

P :- Q, R, S.

where P is the head goal and Q, R and S are the goals that make up the body. We can
read such a clause either declaratively as

P is true if Q and R and S are true.

or procedurally as

To satisfy goal P, satisfy goals Q, R and S.

48 SICStus Prolog

A sentence with an empty head is called a directive (see Section 3.4.2 [Directives], page 28),
and is written in the form

:- P, Q.

where P and Q are the goals of the body. Such a query is read declaratively as

Are P and Q true?

and procedurally as

Satisfy goals P and Q.

Sentences generally contain variables. Note that variables in different sentences are com-
pletely independent, even if they have the same name—i.e. the lexical scope of a variable
is limited to a single sentence. Each distinct variable in a sentence should be interpreted
as standing for an arbitrary entity, or value. To illustrate this, here are some examples of
sentences containing variables, with possible declarative and procedural readings:

1. employed(X) :- employs(Y,X).

“Any X is employed if any Y employs X.”
“To find whether a person X is employed, find whether any Y employs X.”

2. derivative(X,X,1).

“For any X, the derivative of X with respect to X is 1.”
“The goal of finding a derivative for the expression X with respect to X itself is satisfied
by the result 1.”

3. ?- ungulate(X), aquatic(X).

“Is it true, for any X, that X is an ungulate and X is aquatic?”
“Find an X that is both an ungulate and aquatic.”

In any program, the predicate for a particular (principal) functor is the sequence of clauses
in the program whose head goals have that principal functor. For example, the predicate
for a 3-ary functor concatenate/3 might well consist of the two clauses

concatenate([], L, L).
concatenate([X|L1], L2, [X|L3]) :- concatenate(L1, L2, L3).

where concatenate(L1,L2,L3) means “the list L1 concatenated with the list L2 is the list
L3”. Note that for predicates with clauses corresponding to a base case and a recursive
case, the preferred style is to write the base case clause first.

In Prolog, several predicates may have the same name but different arities. Therefore,
when it is important to specify a predicate unambiguously, the form name/arity is used;
e.g. concatenate/3.

Certain predicates are predefined by the Prolog system. Such predicates are called built-in
predicates.

Chapter 4: The Prolog Language 49

As we have seen, the goals in the body of a sentence are linked by the operator ‘,’, which
can be interpreted as conjunction (“and”). It is sometimes convenient to use an additional
operator ‘;’, standing for disjunction (“or”). (The precedence of ‘;’ is such that it dominates
‘,’ but is dominated by ‘:-’.) An example is the clause

grandfather(X, Z) :-
(mother(X, Y); father(X, Y)),
father(Y, Z).

which can be read as

For any X, Y and Z, X has Z as a grandfather if either the mother of X is Y or
the father of X is Y, and the father of Y is Z.

Such uses of disjunction can always be eliminated by defining an extra predicate—for in-
stance the previous example is equivalent to

grandfather(X,Z) :- parent(X,Y), father(Y,Z).

parent(X,Y) :- mother(X,Y).
parent(X,Y) :- father(X,Y).

—and so disjunction will not be mentioned further in the following, more formal, description
of the semantics of clauses.

The token ‘|’, when used outside a list, is an alias for ‘;’. The aliasing is performed when
terms are read in, so that

a :- b | c.

is read as if it were

a :- b ; c.

Note the double use of the ‘.’ character. On the one hand it is used as a sentence terminator,
while on the other it may be used in a string of symbols making up an atom (e.g. the list
functor ./2). The rule used to disambiguate terms is that a ‘.’ followed by layout-text is
regarded as a sentence terminator (see Section 51.4 [Token String], page 790).

4.2 Declarative Semantics

The semantics of definite clauses should be fairly clear from the informal interpretations
already given. However it is useful to have a precise definition. The declarative semantics
of definite clauses tells us which goals can be considered true according to a given program,
and is defined recursively as follows.

A goal is true if it is the head of some clause instance and each of the goals (if
any) in the body of that clause instance is true, where an instance of a clause

50 SICStus Prolog

(or term) is obtained by substituting, for each of zero or more of its variables,
a new term for all occurrences of the variable.

For example, if a program contains the preceding procedure for concatenate/3, then the
declarative semantics tells us that

?- concatenate([a], [b], [a,b]).

is true, because this goal is the head of a certain instance of the first clause for
concatenate/3, namely,

concatenate([a], [b], [a,b]) :- concatenate([], [b], [b]).

and we know that the only goal in the body of this clause instance is true, since it is an
instance of the unit clause that is the second clause for concatenate/3.

4.3 Procedural Semantics

Note that the declarative semantics makes no reference to the sequencing of goals within
the body of a clause, nor to the sequencing of clauses within a program. This sequencing
information is, however, very relevant for the procedural semantics that Prolog gives to
definite clauses. The procedural semantics defines exactly how the Prolog system will exe-
cute a goal, and the sequencing information is the means by which the Prolog programmer
directs the system to execute the program in a sensible way. The effect of executing a goal
is to enumerate, one by one, its true instances. Here then is an informal definition of the
procedural semantics. We first illustrate the semantics by the simple query

?- concatenate(X, Y, [a,b]).

We find that it matches the head of the first clause for concatenate/3, with X instantiated
to [a|X1]. The new variable X1 is constrained by the new query produced, which contains
a single recursive procedure call:

?- concatenate(X1, Y, [b]).

Again this goal matches the first clause, instantiating X1 to [b|X2], and yielding the new
query:

?- concatenate(X2, Y, [])

Now the single goal will only match the second clause, instantiating both X2 and Y to [].
Since there are no further goals to be executed, we have a solution

X = [a,b]
Y = []

i.e. a true instance of the original goal is

Chapter 4: The Prolog Language 51

concatenate([a,b], [], [a,b])

If this solution is rejected, backtracking will generate the further solutions

X = [a]
Y = [b]

X = []
Y = [a,b]

in that order, by re-matching, against the second clause for concatenate, goals already
solved once using the first clause.

Thus, in the procedural semantics, the set of clauses

H :- B1, ..., Bm.
H’ :- B1’, ..., Bm’.
...

are regarded as a procedure definition for some predicate H, and in a query

?- G1, ..., Gn.

each Gi is regarded as a procedure call. To execute a query, the system selects by its
computation rule a goal, Gj say, and searches by its search rule a clause whose head matches
Gj. Matching is done by the unification algorithm (see [Robinson 65]), which computes the
most general unifier, mgu, of Gj and H). The mgu is unique if it exists. If a match is found,
the current query is reduced to a new query

?- (G1, ..., Gj-1, B1, ..., Bm, Gj+1, ..., Gn)mgu.

and a new cycle is started. The execution terminates when the empty query has been
produced.

If there is no matching head for a goal, the execution backtracks to the most recent successful
match in an attempt to find an alternative match. If such a match is found, an alternative
new query is produced, and a new cycle is started.

In SICStus Prolog, as in other Prolog systems, the search rule is simple: “search forward
from the beginning of the program”.

The computation rule in traditional Prolog systems is also simple: “pick the leftmost goal
of the current query”. However, SICStus Prolog and other modern implementations have a
somewhat more complex computation rule “pick the leftmost unblocked goal of the current
query”.

A goal can be blocked on one ore more uninstantiated variables, and a variable may block
several goals. Thus binding a variable can cause blocked goals to become unblocked, and
backtracking can cause currently unblocked goals to become blocked again. Moreover, if
the current query is

52 SICStus Prolog

?- G1, ..., Gj-1, Gj, Gj+1, ..., Gn.

where Gj is the first unblocked goal, and matching Gj against a clause head causes several
blocked goals in G1, . . . , Gj-1 to become unblocked, then these goals may become reordered.
The internal order of any two goals that were blocked on the same variable is retained,
however.

Another consequence is that a query may be derived consisting entirely of blocked goals.
Such a query is said to have floundered. The top-level checks for this condition. If detected,
the outstanding blocked subgoals are printed on the standard error stream along with the
answer substitution, to notify the user that the answer (s)he has got is really a speculative
one, since it is only valid if the blocked goals can be satisfied.

A goal is blocked if certain arguments are uninstantiated and its predicate definition is an-
notated with a matching block declaration (see Section 6.2.5 [Block Declarations], page 70).
Goals of certain built-in predicates may also be blocked if their arguments are not sufficiently
instantiated.

When this mechanism is used, the control structure resembles that of coroutines, suspending
and resuming different threads of control. When a computation has left blocked goals
behind, the situation is analogous to spawning a new suspended thread. When a blocked
goal becomes unblocked, the situation is analogous to temporarily suspending the current
thread and resuming the thread to which the blocked goal belongs.

4.4 Occurs-Check

It is possible, and sometimes useful, to write programs that unify a variable to a term in
which that variable occurs, thus creating a cyclic term. The usual mathematical theory
behind Logic Programming forbids the creation of cyclic terms, dictating that an occurs-
check should be done each time a variable is unified with a term. Unfortunately, an occurs-
check would be so expensive as to render Prolog impractical as a programming language.
Thus cyclic terms may be created and may cause loops trying to print them.

SICStus Prolog mitigates the problem by its ability to unify, compare (see Section 8.3
[Term Compare], page 168), assert, and copy cyclic terms without looping. The write_
term/[2,3] built-in predicate can optionally handle cyclic terms; see Section 8.1.3 [Term
I/O], page 142. Unification with occurs-check is available as a built-in predicate; see Sec-
tion 8.17 [Misc Pred], page 213. Predicates testing (a)cyclicity are available in a library
package; see Chapter 21 [Term Utilities], page 367. Other predicates usually do not handle
cyclic terms well.

4.5 The Cut Symbol

Besides the sequencing of goals and clauses, Prolog provides one other very important
facility for specifying control information. This is the cut symbol, written !. It is inserted

Chapter 4: The Prolog Language 53

in the program just like a goal, but is not to be regarded as part of the logic of the program
and should be ignored as far as the declarative semantics is concerned.

The effect of the cut symbol is as follows. When first encountered as a goal, cut succeeds
immediately. If backtracking should later return to the cut, the effect is to fail the parent
goal, i.e. the goal that matched the head of the clause containing the cut, and caused the
clause to be activated. In other words, the cut operation commits the system to all choices
made since the parent goal was invoked, and causes other alternatives to be discarded. The
goals thus rendered determinate are the parent goal itself, any goals occurring before the cut
in the clause containing the cut, and any subgoals that were executed during the execution
of those preceding goals.

For example:

member(X, [X|_]).
member(X, [_|L]) :- member(X, L).

This predicate can be used to test whether a given term is in a list. E.g.:

| ?- member(b, [a,b,c]).

returns the answer ‘yes’. The predicate can also be used to extract elements from a list, as
in

| ?- member(X, [d,e,f]).

With backtracking this will successively return each element of the list. Now suppose that
the first clause had been written instead:

member(X, [X|_]) :- !.

In this case, the above call would extract only the first element of the list (d). On back-
tracking, the cut would immediately fail the whole predicate.

x :- p, !, q.
x :- r.

This is equivalent to

x := if p then q else r;

in an Algol-like language.

It should be noticed that a cut discards all the alternatives since the parent goal, even when
the cut appears within a disjunction. This means that the normal method for eliminating
a disjunction by defining an extra predicate cannot be applied to a disjunction containing
a cut.

A proper use of the cut is usually a major difficulty for new Prolog programmers. The usual
mistakes are to over-use cut, and to let cuts destroy the logic. A cut that doesn’t destroy

54 SICStus Prolog

the logic is called a green cut; a cut that does is called a red cut. We would like to advise
all users to follow these general rules. Also see Chapter 13 [Writing Efficient Programs],
page 319.

• Write each clause as a self-contained logic rule, which just defines the truth of goals
that match its head. Then add cuts to remove any fruitless alternative computation
paths that may tie up memory.

• Cuts are usually placed right after the head, sometimes preceded by simple tests.
• Cuts are hardly ever needed in the last clause of a predicate.

4.6 Operators

Operators in Prolog are simply a notational convenience. For example, the expression 2+1
could also be written +(2,1). This expression represents the compound term

+
/ \

2 1

and not the number 3. The addition would only be performed if the term were passed as an
argument to an appropriate predicate such as is/2 (see Section 8.2 [Arithmetic], page 164).

The Prolog syntax caters for operators of three main kinds—infix, prefix and postfix. An
infix operator appears between its two arguments, while a prefix operator precedes its single
argument and a postfix operator is written after its single argument.

Each operator has a precedence, which is a number from 1 to 1200. The precedence is used
to disambiguate expressions where the structure of the term denoted is not made explicit
through the use of parentheses. The general rule is that it is the operator with the highest
precedence that is the principal functor. Thus if ‘+’ has a higher precedence than ‘/’, then

a+b/c a+(b/c)

are equivalent and denote the term +(a,/(b,c)). Note that the infix form of the term
/(+(a,b),c) must be written with explicit parentheses, i.e.

(a+b)/c

If there are two operators in the subexpression having the same highest precedence, the
ambiguity must be resolved from the types of the operators. The possible types for an infix
operator are

xfx xfy yfx

Operators of type xfx are not associative: it is a requirement that both of the two subexpres-
sions that are the arguments of the operator must be of lower precedence than the operator

Chapter 4: The Prolog Language 55

itself, i.e. their principal functors must be of lower precedence, unless the subexpression is
explicitly parenthesized (which gives it zero precedence).

Operators of type xfy are right-associative: only the first (left-hand) subexpression must
be of lower precedence; the right-hand subexpression can be of the same precedence as the
main operator. Left-associative operators (type yfx) are the other way around.

A functor named name is declared as an operator of type type and precedence precedence
by the directive:

:- op(precedence, type, name).

The argument name can also be a list of names of operators of the same type and precedence.

It is possible to have more than one operator of the same name, so long as they are of
different kinds, i.e. infix, prefix or postfix. Note that the ISO Prolog standard contains a
limitation that there should be no infix and postfix operators with the same name, however,
SICStus Prolog lifts this restriction.

An operator of any kind may be redefined by a new declaration of the same kind. This
applies equally to operators that are provided as standard, except for the ’,’ operator.
Declarations of all the standard operators can be found elsewhere (see Chapter 52 [Standard
Operators], page 797).

For example, the standard operators + and - are declared by

:- op(500, yfx, [+, -]).

so that

a-b+c

is valid syntax, and means

(a-b)+c

i.e.

+
/ \
- c
/ \
a b

The list functor ./2 is not a standard operator, but if we declare it thus:

:- op(900, xfy, .).

then a.b.c would represent the compound term

56 SICStus Prolog

.
/ \
a .

/ \
b c

Contrasting this with the diagram above for a-b+c shows the difference between yfx op-
erators where the tree grows to the left, and xfy operators where it grows to the right.
The tree cannot grow at all for xfx operators; it is simply illegal to combine xfx operators
having equal precedences in this way.

The possible types for a prefix operator are

fx fy

and for a postfix operator they are

xf yf

The meaning of the types should be clear by analogy with those for infix operators. As an
example, if not were declared as a prefix operator of type fy, then

not not P

would be a permissible way to write not(not(P)). If the type were fx, the preceding
expression would not be legal, although

not P

would still be a permissible form for not(P).

If these precedence and associativity rules seem rather complex, remember that you can
always use parentheses when in any doubt.

Note that the arguments of a compound term written in standard syntax must be expres-
sions of precedence below 1000. Thus it is necessary to parenthesize the expression P :- Q
in

| ?- assert((P :- Q)).

4.7 Syntax Restrictions

Note carefully the following syntax restrictions, which serve to remove potential ambiguity
associated with prefix operators.

1. In a term written in standard syntax, the principal functor and its following ‘(’ must
not be separated by any intervening layout-text. Thus

point (X,Y,Z)

Chapter 4: The Prolog Language 57

is invalid syntax.
2. If the argument of a prefix operator starts with a ‘(’, this ‘(’ must be separated from

the operator by at least one layout-char. Thus
:-(p;q),r.

(where ‘:-’ is the prefix operator) is invalid syntax. The system would try to interpret
it as the compound term:

,
/ \

:- r
|
;
/ \
p q

That is, it would take ‘:-’ to be a functor of arity 1. However, since the arguments
of a compound term are required to be expressions of precedence below 1000, this
interpretation would fail as soon as the ‘;’ (precedence 1100) was encountered.
In contrast, the term:

:- (p;q),r.

is valid syntax and represents the following compound term:
:-
|
,

/ \
; r
/ \
p q

4.8 Comments

Comments have no effect on the execution of a program, but they are very useful for making
programs more readily comprehensible. Two forms of comment are allowed in Prolog:

1. The character ‘%’ followed by any sequence of characters up to end of line.
2. The symbol ‘/*’ followed by any sequence of characters (including new lines) up to

‘*/’.

58 SICStus Prolog

Chapter 5: The Module System 59

5 The Module System

By making use of the module systems facilities, programs can be divided into different
modules. Each module has its own independent predicate name space. This is an important
feature for the development of larger programs. The module system of SICStus Prolog is
predicate based. This means that only the predicates are local to a module, whereas terms
are global. The module system is flat, not hierarchical, so all modules are visible to one
another. It is non-strict, i.e. the normal visibility rules can be overridden by special syntax.
No overhead is incurred on compiled calls to predicates in other modules. It is modeled
after and compatible with the Quintus Prolog module system. Finally, using the module
system is optional, and SICStus Prolog may be used without the user being aware of the
module system at all.

Modules in SICStus Prolog can also be used for object-oriented programming. See Chap-
ter 37 [Obj Intro], page 547, for details.

5.1 Basic Concepts

Each predicate in the Prolog system, whether built-in or user defined, belongs to a module.
A predicate is generally only visible in the module where it is defined. However a predicate
may be imported by another module. It is thereby made visible in that module too. Built-in
predicates are visible in every module. Predicates declared as public in a module declaration
(see below) are exported. Normally only public predicates may be imported by another
module.

For any given goal, the source module is the module in which the corresponding predicate
must be visible. Similarly, for any given clause, the source module of its head is the module
into which the clause is loaded.

For goals occurring in a source file with a module declaration, the source module is the
declared module. For goals occurring in a source file without a module declaration, the
source module is the module that the file is being loaded into. For goals typed at the top-
level, the source module is the type-in module. The type-in module is by default the user
module but may be changed by the built-in predicate module/1.

The other predefined module is the prolog module where all the built-in predicates reside.
The exported built-in predicates are automatically imported into each new module as it is
created.

5.2 Module Prefixing

Notwithstanding the visibility rules, any predicate can be called from any other module by
prefixing the goal with the module name and the colon operator, thus overriding the source
module of the goal:

60 SICStus Prolog

| ?- foo:bar(X).

This feature is intended mainly for debugging purposes, since it defies the purposes of the
module system. If the prefixed goal is a meta-predicate, however, the prefixed module name
may affect the module name expansion of the goal (see Section 5.5 [Meta Exp], page 61).
If multiple module prefixes are used, the innermost one has priority.

It is also possible to override the source module of clauses and directives by module prefixing.
For example,

:- dynamic mod:p/1.
p(X) :- mod:(q(X), r(X)).
mod:(q(X) :- r(X)).
mod:s(X) :- t(X).

declares mod:p/1 as dynamic, whatever the source module is; defines p/1 in the source
module as calling mod:q/1 and mod:r/1; defines mod:q/1 as calling mod:r/1; and defines
mod:s/1 as calling t/1 in the source module. The latter technique is particularly useful
when the prefix is user and the predicate is a hook predicate such as user:portray/1,
which must be defined in the user module, but the rest of the file consists of predicates
belonging to some other module.

5.3 Defining Modules

A module is normally defined by putting a module declaration in a source file. A module
declaration has the form:

:- module(ModuleName, ExportList[, Options]).

where ModuleName is an atom, and should precede all other clauses and directives of that
file.

When the file is loaded, all predicates in the file go into ModuleName and the predicates of
the ExportList are exported. When a module declaration is processed, all existing predicates
in the module are erased before the new ones are loaded. A file that contains a module
declaration is henceforth called a module-file.

Options is an optional argument, and should be a list. The only available option is
hidden(Boolean), where Boolean is false (the default) or true. In the latter case, tracing
of the predicates of the module is disabled (although spypoints can be set), and no source
information is generated at compile time.

A module can also be defined dynamically by asserting or loading predicates to it:

| ?- assert(m:p(x)).

creates the module m, if it does not already exists, and asserts p(x) to it.

Chapter 5: The Module System 61

| ?- compile(m:f).

creates the module m and loads f into m.

Dynamically created modules have no public predicates.

5.4 Importation

When a module-file is loaded by load_files/[1,2] or one of its shorthands (see Sec-
tion 8.1.1 [Read In], page 134), by default all the public predicates of the module-file are
imported by the receiving module. An explicit list of predicates to import may also be
specified.

Name clashes with already existing predicates, local or imported from other modules, are
handled in two different ways: If the receiving module is the user module, the user is asked
for redefinition of the predicate. For other receiving modules, a warning is issued and the
importation is canceled. In the first case redefinition silently takes place if the redefine_
warnings Prolog flag has the value off. The binding of an imported predicate remains,
even if the origin is reloaded or deleted. However, abolish/[1,2] break up the importation
binding. When a module-file is reloaded, a check is made that the predicates imported by
other modules are still in the public list. If that is not the case, a warning is issued. Note
that an imported predicate may be re-exported.

5.5 Module Name Expansion

Some predicates take goals as arguments (i.e. meta-predicates). These arguments must
include a module specification stating which module the goal refers. Some other predicates
also need module information i.e. compile/1. The property of needing module information
is declared with a meta-predicate declaration (see Section 5.6 [Meta Decl], page 62). Goals
for these predicates are module name expanded to ensure the module information. Goals
appearing in queries and meta-calls are expanded prior to execution while goals in the
bodies of clauses and directives are expanded at compile time. The expansion is made
by preceding the relevant argument with ‘Module:’. If the goal is prefixed by ‘Module
:’, Module is used for the expansion; otherwise, the source/type-in module is used. An
argument is not expanded if:

• It already has a module prefix, or
• It is a variable appearing in an expandable position in the head of the clause.

Some examples:

62 SICStus Prolog

| ?- [user].

| :- meta_predicate p(:), q(:).

| r(X) :- p(X).

| q(X) :- p(X).

| ^D
% consulted user in module user, 0 msec 424 bytes

| ?- listing.

r(A) :-
p(user:A).

q(A) :-
p(A).

Here, p/1 and q/1 are declared as meta-predicates while r/1 is not. Thus the clause r(X)
:- p(X) will be transformed to r(X) :- p(M:X), by item 2 above, where M is the type-in
module, whereas q(X) :- p(X) will not.

| ?- m:assert(f(1)).

Here, assert/1 is called in the module m. However, this does not ensure that f(1) is
asserted into m. The fact that assert/1 is a meta-predicate makes the system module
name expand the goal, transforming it to m:assert(m:f(1)) before execution. This way,
assert/1 is supplied the correct module information.

5.6 Meta-Predicate Declarations

The fact that a predicate needs module name expansion is declared in a meta-predicate
declaration:

:- meta_predicate MetaPredSpec, ..., MetaPredSpec.

where each MetaPredSpec is a mode spec. E.g.:

:- meta_predicate p(:, +).

which means that the first argument of p/2 shall be module name expanded. The arguments
in the mode spec are interpreted as:

:
An integer

This argument, in any call to the declared predicate, shall be expanded. (Inte-
gers are allowed for compatibility reasons).

Anything else e.g. +, - or ?
This argument shall not be expanded

Chapter 5: The Module System 63

A number of built-in predicates have predefined meta-predicate declarations, as indicated
by the mode specs in this manual, e.g. call(:Term).

64 SICStus Prolog

Chapter 6: Loading Programs 65

6 Loading Programs

Programs can be loaded in three different ways: consulted or compiled from source file,
or loaded from object files. The latter is the fastest way of loading programs, but of
course requires that the programs have been compiled to object files first. Object files
may be handy when developing large applications consisting of many source files, but are
not strictly necessary since it is possible to save and restore entire execution states (see
Section 8.17 [Misc Pred], page 213).

Consulted, or interpreted, predicates are equivalent to, but slower than, compiled ones.
Although they use different representations, the two types of predicates can call each other
freely.

The SICStus Prolog compiler produces compact and efficient code, running about 8 times
faster than consulted code, and requiring much less runtime storage. Compiled Prolog
programs are comparable in efficiency with LISP programs for the same task. However,
against this, compilation itself takes about twice as long as consulting, and tracing of goals
that compile in-line are not available in compiled code.

The compiler operates in four different modes, controlled by the compiling Prolog flag.
The possible states of the flag are:

compactcode
Compilation produces byte-coded abstract instructions. This is the default
unless SICStus Prolog has been installed with support for fastcode compilation.

fastcode Compilation produces native machine instructions. Currently only available for
Sparc platforms. Fastcode runs about 3 times faster than compactcode. This
is the default if SICStus Prolog has been installed with support for fastcode
compilation.

profiledcode
Compilation produces byte-coded abstract instructions instrumented to pro-
duce execution profiling data. See Section 8.16 [Profiling], page 211. Profiling
is not available in runtime systems.

debugcode
Compilation produces interpreted code, i.e. compiling is replaced by consulting.

The compilation mode can be changed by issuing the query:

| ?- prolog_flag(compiling, OldValue, NewValue).

A Prolog program consists of a sequence of sentences (see Section 51.2 [Sentence], page 788).
Directives encountered among the sentences are executed immediately as they are encoun-
tered, unless they can be interpreted as declarations (see Section 6.2 [Declarations], page 68),
which affect the treatment of forthcoming clauses, or as initializations, which build up a set
of goals to be executed after the program has been loaded. Clauses are loaded as they are
encountered.

66 SICStus Prolog

A Prolog program may also contain a list of sentences (including the empty list). This
is treated as equivalent to those sentences occurring in place of the list. This feature
makes it possible to have user:term_expansion/[2,4] (see Section 8.1.2 [Term and Goal
Expansion], page 137) “return” a list of sentences, instead of a single sentence.

6.1 Predicates that Load Code

This section contains a summary of the relevant predicates. For a more precise description,
see Section 8.1.1 [Read In], page 134.

To consult a program, issue the query:

| ?- consult(Files).

where Files is either a filename or a list of filenames, instructs the processor to read in the
program that is in the files. For example:

| ?- consult([dbase,’extras.pl’,user]).

When a directive is read it is immediately executed. Any predicate defined in the files erases
any clauses for that predicate already present. If the old clauses were loaded from a different
file than the present one, the user will be queried first whether (s)he really wants the new
definition. However, if a multifile declaration (see Section 6.2 [Declarations], page 68) is
read and the corresponding predicate exists and has previously been declared as multifile,
new clauses will be added to the predicate, rather than replacing the old clauses. If clauses
for some predicate appear in more than one file, the later set will effectively overwrite the
earlier set. The division of the program into separate files does not imply any module
structure—any predicate can call any other (see Chapter 5 [Module Intro], page 59).

consult/1, used in conjunction with save_program/[1,2] and restore/1, makes it possi-
ble to amend a program without having to restart from scratch and consult all the files that
make up the program. The consulted file is normally a temporary “patch” file containing
only the amended predicate(s). Note that it is possible to call consult(user) and then
enter a patch directly on the terminal (ending with ^D). This is only recommended for
small, tentative patches.

| ?- [File|Files].

This is a shorthand way of consulting a list of files. (The case where there is just one
filename in the list was described earlier (see Section 3.2 [Reading In], page 24).

To compile a program in-core, use the built-in predicate:

| ?- compile(Files).

where Files is specified just as for consult/1.

Chapter 6: Loading Programs 67

The effect of compile/1 is very much like that of consult/1, except all new predicates will
be stored in compiled rather than consulted form. However, predicates declared as dynamic
(see below) will be stored in consulted form, even though compile/1 is used.

Programs can be compiled into an intermediate representation known as ‘.ql’ (for Quick
Load file). As of SICStus Prolog 3.8, this feature is obsolescent with the introduction of
partial saved-states (‘.po’ files; see Section 3.10 [Saving], page 31), which can be handled
much more efficiently.

To compile a program into a ‘.ql’ file, use the built-in predicate:

| ?- fcompile(Files).

where Files is specified just as for consult/1. For each filename in the list, the compiler
will append the suffix ‘.pl’ to it and try to locate a source file with that name and compile
it to a ‘.ql’ file. The filename is formed by appending the suffix ‘.ql’ to the specified
name. The internal state of SICStus Prolog is not changed as result of the compilation. See
Section 6.4 [Considerations], page 72.

To load a program from a set of source or object files, use the built-in predicates load_
files/[1,2] (the latter is controlled by an options list):

| ?- load_files(Files).

where Files is either a single filename or a list of filenames, optionally with ‘.pl’ or ‘.po’
or ‘.ql’ extensions. This predicate takes the following action for each File in the list of
filenames:

1. If the File is user, compile(user) or [user] is performed;
2. If File cannot be found, not even with an extension, an existence error is signaled;
3. If a ‘.po’ file is found, the file is loaded;
4. If a ‘.ql’ file is found, the file is loaded;
5. If a source file is found, the file is compiled or consulted.
6. If more than one file is found for File, item 3 or 4 or 5 applies depending on which file

was modified most recently.
7. If File cannot be found, not even with an extension, an existence error is signaled.
8. Source files are compiled, unless load_files/1 was called from a directive of a file

being consulted.

Finally, to ensure that some files have been loaded, use the built-in predicate:

| ?- ensure_loaded(Files).

Same as load_files(Files), except if the file to be loaded has already been loaded and has
not been modified since that time, in which case the file is not loaded again. If a source file
has been modified, ensure_loaded/1 does not cause any object file to become recompiled.

68 SICStus Prolog

6.2 Declarations

When a program is to be loaded, it is sometimes necessary to tell the system to treat some of
the predicates specially. This information is supplied by including declarations about such
predicates in the source file, preceding any clauses for the predicates that they concern. A
declaration is written just as a directive, beginning with ‘:-’. A declaration is effective from
its occurrence through the end of file.

Although declarations that affect more than one predicate may be collapsed into a single
declaration, the recommended style is to write the declarations for a predicate immediately
before its first clause.

Operator declarations are not declarations proper, but rather directives that modify the
global table of syntax operators. Operator declarations are executed as they are encountered
while loading programs.

The rest of this section details the available forms of predicate declarations.

6.2.1 Multifile Declarations

A declaration

:- multifile PredSpec, ..., PredSpec. ISO

where each PredSpec is a predicate spec, causes the specified predicates to become multifile.
This means that if more clauses are subsequently loaded from other files for the same
predicate, then the new clauses will not replace the old ones, but will be added at the end
instead. As of release 3, multifile declarations are required in all files from where clauses to
a multifile predicate are loaded.

An example when multifile declarations are particularly useful is in defining hook predicates.
A hook predicate is a user-defined predicate that somehow alters or customizes the behavior
of SICStus Prolog. A number of such hook predicates are described in this manual. Often,
an application needs to combine the functionality of several software modules, some of
which define clauses for such hook predicates. By simply declaring every hook predicates as
multifile, the functionality of the clauses for the hook predicates is automatically combined.
If this is not done, the last software module to define clauses for a particular hook predicate
will effectively supersede any clauses defined for the same hook predicate in a previous
module. By default, hook predicates must be defined in the user module, and only their
first solution is relevant.

If a file containing clauses for a multifile predicate is reloaded, the old clauses from the same
file are removed. The new clauses are added at the end.

If a multifile predicate is loaded from a file with no multifile declaration for it, the predicate
is redefined as if it were an ordinary predicate (i.e. the user is asked for confirmation).

Chapter 6: Loading Programs 69

Clauses of multifile predicates are (currently) always loaded in interpreted form, even if they
were processed by the compiler. If performance is an issue, define the multifile predicates as
unit clauses or as clauses with a single goal that just calls an auxiliary compiled predicate
to perform any time-critical computation.

If a multifile predicate is declared dynamic in one file, it must also be done so in the other
files from where it is loaded. Hook predicates should always be declared as multifile and
dynamic, as this is the convention followed in the library modules.

Multifile declarations must precede any other declarations for the same predicate(s)!

6.2.2 Dynamic Declarations

A declaration

:- dynamic PredSpec, ..., PredSpec. ISO

where each PredSpec is a predicate spec, causes the specified predicates to become dynamic,
which means that other predicates may inspect and modify them, adding or deleting individ-
ual clauses. Dynamic predicates are always stored in consulted form even if a compilation is
in progress. This declaration is meaningful even if the file contains no clauses for a specified
predicate—the effect is then to define a dynamic predicate with no clauses.

The semantics of dynamic code is described in Section 8.9 [Modify Prog], page 189.

6.2.3 Volatile Declarations

A declaration

:- volatile PredSpec, ..., PredSpec.

where each PredSpec is a predicate spec, causes the specified predicates to become volatile.

A predicate should be declared as volatile if it refers to data that cannot or should not be
saved in a saved-state. In most cases a volatile predicate will be dynamic, and it will be used
to keep facts about streams or memory references. When a program state is saved at run-
time, the clauses of all volatile predicates will be left unsaved. The predicate definitions will
be saved though, which means that the predicates will keep all properties, that is volatile
and maybe dynamic or multifile, when the saved-state is restored.

6.2.4 Discontiguous Declarations

A declaration

:- discontiguous PredSpec, ..., PredSpec. ISO

70 SICStus Prolog

where each PredSpec is a predicate spec, disables warnings about clauses not being together
for the specified predicates. By default, such warnings are issued in development systems
unless disabled selectively for specific predicates, or globally by setting the discontiguous_
warnings flag to off.

6.2.5 Block Declarations

The declaration

:- block BlockSpec, ..., BlockSpec.

where each BlockSpec is a mode spec, specifies conditions for blocking goals of the predicate
referred to by the mode spec (f/3 say). When a goal for f/3 is to be executed, the mode
specs are interpreted as conditions for blocking the goal, and if at least one condition
evaluates to true, the goal is blocked.

A block condition evaluates to true iff all arguments specified as ‘-’ are uninstantiated,
in which case the goal is blocked until at least one of those variables is instantiated. If
several conditions evaluate to true, the implementation picks one of them and blocks the
goal accordingly.

The recommended style is to write the block declarations in front of the source code of the
predicate they refer to. Indeed, they are part of the source code of the predicate, and must
precede the first clause. For example, with the definition:

:- block merge(-,?,-), merge(?,-,-).

merge([], Y, Y).
merge(X, [], X).
merge([H|X], [E|Y], [H|Z]) :- H @< E, merge(X, [E|Y], Z).
merge([H|X], [E|Y], [E|Z]) :- H @>= E, merge([H|X], Y, Z).

calls to merge/3 having uninstantiated arguments in the first and third position or in the
second and third position will suspend.

The behavior of blocking goals for a given predicate on uninstantiated arguments cannot
be switched off, except by abolishing or redefining the predicate.

Block declarations generalize the “wait declarations” of earlier versions of SICStus Prolog.
A declaration ‘:- wait f/3’ in the old syntax corresponds to ‘:- block f(-,?,?)’ in the
current syntax. See Section 13.9.6 [Use Of Term Exp], page 340, for a simple way to extend
the system to accept the old syntax.

6.2.6 Meta-Predicate Declarations

A declaration

Chapter 6: Loading Programs 71

:- meta_predicate MetaPredSpec, ..., MetaPredSpec.

where each MetaPredSpec is a mode spec, informs the compiler that certain arguments of
the declared predicates are used for passing goals. To ensure the correct semantics in the
context of multiple modules, clauses or directives containing goals for the declared predicates
may need to have those arguments module name expanded. See Section 5.5 [Meta Exp],
page 61, for details.

6.2.7 Module Declarations

A declaration

:- module(ModuleName, ExportList[, Options]).

where ExportList is a list of predicate specs, declares that the forthcoming predicates should
go into the module named ModuleName and that the predicates listed should be exported.
See Section 5.3 [Def Modules], page 60, for details.

6.2.8 Public Declarations

The only effect of a declaration

:- public PredSpec, ..., PredSpec.

where each PredSpec is a predicate spec to give the SICStus cross-referencer (see Sec-
tion 13.10 [The Cross-Referencer], page 342) a starting point for tracing reachable code. In
some Prologs, this declaration is necessary for making compiled predicates visible. In SIC-
Stus Prolog, predicate visibility is handled by the module system. See Chapter 5 [Module
Intro], page 59.

6.2.9 Mode Declarations

A declaration

:- mode ModeSpec, ..., ModeSpec.

where each ModeSpec is a mode spec, has no effect whatsoever, but is accepted for com-
patibility reasons. Such declarations may be used as a commenting device, as they express
the programmer’s intention of data flow in predicates.

6.2.10 Include Declarations

A declaration

72 SICStus Prolog

:- include(Files). ISO

where Files is a file name or a list of file names, instructs the processor to literally embed
the Prolog clauses and directives in Files into the file being loaded. This means that the
effect of the include directive is such as if the include directive itself was replaced by the
text in the Files. Including some files is thus different from loading them in several respects:

• The embedding file counts as the source file of the predicates loaded, e.g. with respect
to the built-in predicate source_file/2; see Section 8.1.1 [Read In], page 134.

• Some clauses of a predicate can come from the embedding file, and some from included
files.

• When including a file twice, all the clauses in it will be entered twice into the program
(although this is not very meaningful).

SICStus Prolog uses the included file name (as opposed to the embedding file name) only in
source-linked debugging and error reporting. Note that source-linked debugging information
is not kept for included files compiled to ‘.ql’ format; in such cases the debugger will show
the include directive itself as the source information.

6.3 Initializations

A directive

:- initialization :Goal. ISO

in a file includes Goal to the set of goals that shall be executed after that file has been
loaded.

initialization/1 is actually callable at any point during loading of a file. Initializations
are saved by save_modules/2 and save_program/[1,2], and so are executed after loading
or restoring such files too.

Goal is associated with the file loaded, and with a module, if applicable. When a file, or
module, is going to be reloaded, all goals earlier installed by that file, or in that module,
are removed first.

6.4 Considerations for File-To-File Compilation

When compiling a source file to a ‘.ql’ file, remember that clauses are loaded and directives
are executed at run time, not at compile time. Only predicate declarations are processed at
compile time. For instance, it does not work to include operator declarations or clauses of
user:term_expansion/[2,4] or user:goal_expansion/3 or any auxiliary predicates that
they might need, and rely on the new transformations to be effective for subsequent clauses
of the same file or subsequent files of the same compilation.

Chapter 6: Loading Programs 73

Any directives or clauses that affect the compile-time environment must be loaded prior
to compiling source files to ‘.ql’ files. This also holds for meta-predicates called by the
source files but defined elsewhere, for module name expansion to work correctly. If this
separation into files is unnatural or inconvenient, one can easily ensure that the compile-
time environment is up to date by doing:

| ?- ensure_loaded(Files), fcompile(Files).

Since module name expansion takes place at compile time, the module into which the
file is to be loaded must be known when compiling to ‘.ql’ files. This is no problem for
module-files because the module name is picked from the module declaration. When non-
module-files are compiled, the file name may be prefixed with the module name that is to
be used for expansion:

| ?- fcompile(Module:Files).

If a ‘.ql’ file is loaded into a different module from which it was compiled for, a warning is
issued.

74 SICStus Prolog

Chapter 7: Debugging 75

7 Debugging

This chapter describes the debugging facilities that are available in development systems.
The purpose of these facilities is to provide information concerning the control flow of your
program.

The main features of the debugging package are as follows:

• The Procedure Box model of Prolog execution, which provides a simple way of visualiz-
ing control flow, especially during backtracking. Control flow is viewed at the predicate
level, rather than at the level of individual clauses.

• The ability to exhaustively trace your program or to selectively set spypoints. Spypoints
allow you to nominate interesting predicates at which, for example, the program is to
pause so that you can interact.

• The ability to set advice-points. An advice-point allows you to carry out some actions
at certain points of execution, independently of the tracing activity. Advice-points
can be used, e.g. for checking certain program invariants (cf. the assert facility of the
C programming language), or for gathering profiling or branch coverage information.
Spypoints and advice-points are collectively called breakpoints.

• The wide choice of control and information options available during debugging.

The Procedure Box model of execution is also called the Byrd Box model after its inventor,
Lawrence Byrd.

Much of the information in this chapter is also in Chapter eight of [Clocksin & Mellish 81],
which is recommended as an introduction.

Unless otherwise stated, the debugger prints goals using write_term/3 with the value of
the Prolog flag debugger_print_options (see Section 8.6 [State Info], page 175).

The debugger is not available in runtime systems and the predicates defined in this chapter
are undefined; see Section 9.8.1 [Runtime Systems], page 254.

7.1 The Procedure Box Control Flow Model

During debugging, the debugger prints out a sequence of goals in various states of instantia-
tion in order to show the state the program has reached in its execution. However, in order
to understand what is occurring it is necessary to understand when and why the debugger
prints out goals. As in other programming languages, key points of interest are predicate
entry and return, but in Prolog there is the additional complexity of backtracking. One
of the major confusions that novice Prolog programmers have to face is the question of
what actually happens when a goal fails and the system suddenly starts backtracking. The
Procedure Box model of Prolog execution views program control flow in terms of movement
about the program text. This model provides a basis for the debugging mechanism in devel-

76 SICStus Prolog

opment systems, and enables the user to view the behavior of the program in a consistent
way.

Let us look at an example Prolog predicate :

Call | | Exit

---------> + descendant(X,Y) :- offspring(X,Y). + --------->
| |
| descendant(X,Z) :- |

<--------- + offspring(X,Y), descendant(Y,Z). + <---------
Fail | | Redo

-------------------+------------------
|

<------------------------------+
Exception

The first clause states that Y is a descendant of X if Y is an offspring of X, and the second
clause states that Z is a descendant of X if Y is an offspring of X and if Z is a descendant
of Y. In the diagram a box has been drawn around the whole predicate and labeled arrows
indicate the control flow in and out of this box. There are five such arrows, which we shall
look at in turn.

Call This arrow represents initial invocation of the predicate. When a goal of the
form descendant(X,Y) is required to be satisfied, control passes through the
Call port of the descendant box with the intention of matching a component
clause and then satisfying the subgoals in the body of that clause. Note that
this is independent of whether such a match is possible; i.e. first the box is
called, and then the attempt to match takes place. Textually we can imagine
moving to the code for descendant when meeting a call to descendant in some
other part of the code.

Exit This arrow represents a successful return from the predicate. This occurs when
the initial goal has been unified with one of the component clauses and the
subgoals have been satisfied. Control now passes out of the Exit port of the
descendant box. Textually we stop following the code for descendant and go
back to the place we came from.

Redo This arrow indicates that a subsequent goal has failed and that the system is
backtracking in an attempt to find alternatives to previous solutions. Control
passes through the Redo port of the descendant box. An attempt will now be
made to resatisfy one of the component subgoals in the body of the clause that
last succeeded; or, if that fails, to completely rematch the original goal with an
alternative clause and then try to satisfy any subgoals in the body of this new
clause. Textually we follow the code backwards up the way we came looking
for new ways of succeeding, possibly dropping down on to another clause and
following that if necessary.

Chapter 7: Debugging 77

Fail This arrow represents a failure of the initial goal, which might occur if no
clause is matched, or if subgoals are never satisfied, or if any solution produced
is always rejected by later processing. Control now passes out of the Fail port
of the descendant box and the system continues to backtrack. Textually we
move back to the code that called this predicate and keep moving backwards
up the code looking for choicepoints.

Exception This arrow represents an exception that was raised in the initial goal, either by
a call to throw/1 or raise_exception/1 or by an error in a built-in predicate.
See Section 8.5 [Exception], page 173. Control now passes out of the Exception
port of the descendant box and the system continues to pass the exception to
outer levels. Textually we move back to the code that called this predicate
and keep moving backwards up the code looking for a call to catch/3 or on_
exception/3.

In terms of this model, the information we get about the procedure box is only the control
flow through these five ports. This means that at this level we are not concerned with which
clause matches, and how any subgoals are satisfied, but rather we only wish to know the
initial goal and the final outcome. However, it can be seen that whenever we are trying to
satisfy subgoals, what we are actually doing is passing through the ports of their respective
boxes. If we were to follow this, then we would have complete information about the control
flow inside the procedure box.

Note that the box we have drawn round the predicate should really be seen as an invocation
box. That is, there will be a different box for each different invocation of the predicate.
Obviously, with something like a recursive predicate, there will be many different Calls and
Exits in the control flow, but these will be for different invocations. Since this might get
confusing each invocation box is given a unique integer identifier.

In addition to the five basic ports discussed above, there are two more ports for invocations
involving a blocked goal:

Block This port is passed through when a goal is blocked.

Unblock This port is passed through when a previously blocked goal is unblocked.

7.2 Basic Debugging Predicates

Development systems provide a range of built-in predicates for control of the debugging
facilities. The most basic predicates are as follows:

debug development

Switches the debugger on, and ensures that the next time control reaches a
spypoint, it will be activated. In basic usage this means that a message will be
produced and you will be prompted for a command. In order for the full range
of control flow information to be available it is necessary to have the debugger
on from the start. When it is off the system does not remember invocations

78 SICStus Prolog

that are being executed. (This is because it is expensive and not required for
normal running of programs.) You can switch Debug Mode on in the middle of
execution, either from within your program or after a ^C (see trace/0 below),
but information prior to this will be unavailable.

zip development

Same as debug/0, except no debugging information is being collected, and so
is almost as fast as running with the debugger switched off.

trace development

Switches the debugger on, and ensures that the next time control enters an
invocation box, a message will be produced and you will be prompted for a
command. The effect of trace/0 can also be achieved by typing t after a ^C
interruption of a program.
At this point you have a number of options. See Section 7.5 [Debug Commands],
page 81. In particular, you can just type 〈RET〉 to creep (or single-step) into
your program. If you continue to creep through your program you will see every
entry and exit to/from every invocation box, including compiled code, except
for code belonging to hidden modules (see Section 5.3 [Def Modules], page 60).
You will notice that the debugger stops at all ports. However, if this is not
what you want, the following built-in predicate gives full control over the ports
at which you are prompted:

leash(+Mode) development

Leashing Mode is set to Mode. Leashing Mode determines the ports of invo-
cation boxes at which you are to be prompted when you creep through your
program. At unleashed ports a tracing message is still output, but program
execution does not stop to allow user interaction. Note that leash/1 does not
apply to spypoints, the leashing mode of these can be set using the advanced
debugger features; see Section 7.6 [Advanced Debugging], page 86. Block and
Unblock ports cannot be leashed. Mode can be a subset of the following, spec-
ified as a list of the following:

call Prompt on Call.

exit Prompt on Exit.

redo Prompt on Redo.

fail Prompt on Fail.

exception
Prompt on Exception.

The following shorthands are also allowed:

leash(full).
Same as leash([call,exit,redo,fail,exception])..

leash(half).
Same as leash([call,redo])..

leash(none).
Same as leash([])..

Chapter 7: Debugging 79

The initial value of Leashing Mode is [call,exit,redo,fail,exception] (full
leashing).

nodebug development

notrace development

nozip development

Switches the debugger off. If there are any spypoints set then they will be kept
but will never be activated.

debugging development

Prints information about the current debugging state. This will show:
1. Whether undefined predicates are being trapped.
2. What breakpoints have been set (see below).
3. What mode of leashing is in force (see above).

7.3 Plain Spypoints

For programs of any size, it is clearly impractical to creep through the entire program.
Spypoints make it possible to stop the program whenever it gets to a particular predicate
of interest. Once there, one can set further spypoints in order to catch the control flow a
bit further on, or one can start creeping.

In this section we discuss the simplest form of spypoints, the plain spypoints. The more
advanced forms, the conditional and generic spypoints will be discussed later; see Section 7.6
[Advanced Debugging], page 86.

Setting a plain spypoint on a predicate indicates that you wish to see all control flow through
the various ports of its invocation boxes, except during skips. When control passes through
any port of an invocation box with a spypoint set on it, a message is output and the user is
asked to interact. Note that the current mode of leashing does not affect plain spypoints:
user interaction is requested on every port.

Spypoints are set and removed by the following built-in predicates. The first two are also
standard operators:

spy :Spec development

Sets plain spypoints on all the predicates given by the generalized predicate
spec Spec.
Examples:

| ?- spy [user:p, m:q/[2,3]].

| ?- spy m:[p/1, q/1].

If you set some spypoints when the debugger is switched off then it will be
automatically switched on, entering zip mode.

80 SICStus Prolog

nospy :Spec development

Similar to spy Spec except that all the predicates given by Spec will have all
previously set spypoints removed from them (including conditional spypoints;
see Section 7.6.1 [Creating Breakpoints], page 87).

nospyall development

Removes all the spypoints that have been set, including the conditional and
generic ones.

The commands available when you arrive at a spypoint are described later. See Section 7.5
[Debug Commands], page 81.

7.4 Format of Debugging Messages

We shall now look at the exact format of the message output by the system at a port.
All trace messages are output to the standard error stream, using the print_message/2
predicate; see Section 8.13 [Messages and Queries], page 195. This allows you to trace
programs while they are performing file I/O. The basic format is as follows:

N S 23 6 Call: T foo(hello,there,_123) ?

N is only used at Exit ports and indicates whether the invocation could backtrack and
find alternative solutions. Unintended nondeterminacy is a source of inefficiency, and this
annotation can help spot such efficiency bugs. It is printed as ‘?’, indicating that foo/3
could backtrack and find alternative solutions, or ‘ ’ otherwise.

S is a spypoint indicator. If there is a plain spypoint on foo/3, it is printed as ‘+’. In case
of conditional and generic spypoints it takes the form ‘*’ and ‘#’, respectively. Finally, it is
printed as ‘ ’, if there is no spypoint on the predicate being traced.

The first number is the unique invocation identifier. It is increasing regardless of whether
or not debugging messages are output for the invocations (provided that the debugger is
switched on). This number can be used to cross correlate the trace messages for the various
ports, since it is unique for every invocation. It will also give an indication of the number of
procedure calls made since the start of the execution. The invocation counter starts again
for every fresh execution of a command, and it is also reset when retries (see later) are
performed.

The number following this is the current depth; i.e. the number of direct ancestors this goal
has, for which a procedure box has been built by the debugger.

The next word specifies the particular port (Call, Exit, Redo, Fail, or Exception).

T is a subterm trace. This is used in conjunction with the ‘^’ command (set subterm),
described below. If a subterm has been selected, T is printed as the sequence of commands
used to select the subterm. Normally, however, T is printed as ‘ ’, indicating that no
subterm has been selected.

Chapter 7: Debugging 81

The goal is then printed so that you can inspect its current instantiation state.

The final ‘?’ is the prompt indicating that you should type in one of the commands allowed
(see Section 7.5 [Debug Commands], page 81). If this particular port is unleashed then you
will not get this prompt since you have specified that you do not wish to interact at this
point.

At Exception ports, the trace message is preceded by a message about the pending excep-
tion, formatted as if it would arrive uncaught at the top level.

Note that calls that are compiled in-line and built-in predicates at depth 1 (e.g. those called
directly from the top-level) are not traced.

Block and Unblock ports are exceptions to the above debugger message format. A message

S - - Block: p(_133)

indicates that the debugger has encountered a blocked goal, i.e. one which is temporar-
ily suspended due to insufficiently instantiated arguments (see Section 4.3 [Procedural],
page 50). By default, no interaction takes place at this point, and the debugger simply
proceeds to the next goal in the execution stream. The suspended goal will be eligible for
execution once the blocking condition ceases to exist, at which time a message

S - - Unblock: p(_133)

is printed. Although Block and Unblock ports are unleashed by default in trace mode, you
can make the debugger interact at these ports by using conditional spypoints.

7.5 Commands Available during Debugging

This section describes the particular commands that are available when the system prompts
you after printing out a debugging message. All the commands are one or two letter
mnemonics, some of which can be optionally followed by an argument. They are read from
the standard input stream with any blanks being completely ignored up to the end of the
line (〈RET〉).

The only command that you really have to remember is ‘h’ (followed by 〈RET〉). This
provides help in the form of the following list of available commands.

82 SICStus Prolog

<cr> creep c creep
l leap z zip
s skip s <i> skip i
o out o <n> out n
q q-skip q <i> q-skip i
r retry r <i> retry i
f fail f <i> fail i
j<p> jump to port j<p><i>jump to port i
d display w write
p print p <i> print partial
g ancestors g <n> ancestors n
t backtrace t <n> backtrace n
& blocked goals & <n> nth blocked goal
n nodebug = debugging
+ spy this * spy conditionally
- nospy this \ <i> remove brkpoint
D <i> disable brkpoint E <i> enable brkpoint
a abort b break
@ command u unify
e raise exception . find this
< reset printdepth < <n> set printdepth
^ reset subterm ^ <n> set subterm
? help h help

c

〈RET〉 creep causes the debugger to single-step to the very next port and print a
message. Then if the port is leashed (see Section 7.2 [Basic Debug], page 77),
the user is prompted for further interaction. Otherwise, it continues creeping.
If leashing is off, creep is the same as leap (see below) except that a complete
trace is printed on the standard error stream.

l leap causes the debugger to resume running your program, only stopping when
a spypoint is reached (or when the program terminates). Leaping can thus be
used to follow the execution at a higher level than exhaustive tracing. All you
need to do is to set spypoints on an evenly spread set of pertinent predicates,
and then follow the control flow through these by leaping from one to the other.
Debugging information is collected while leaping, so when a spypoint is reached,
it is possible to inspect the ancestor goals, or creep into them upon entry to
Redo ports.

z zip is like leap, except no debugging information is being collected while zipping,
resulting in significant savings in memory and execution time.

s skip is only valid for Call and Redo ports. It skips over the entire execution
of the predicate. That is, you will not see anything until control comes back
to this predicate (at either the Exit port or the Fail port). Skip is particularly
useful while creeping since it guarantees that control will be returned after the
(possibly complex) execution within the box. If you skip then no message at
all will appear until control returns. This includes calls to predicates with spy-

Chapter 7: Debugging 83

points set; they will be masked out during the skip. No debugging information
is being collected while skipping.
If you supply an integer argument, then this should denote an invocation num-
ber of an ancestral goal. The system tries to get you to the Exit or Fail port of
the invocation box you have specified.

o out is a shorthand for skipping to the Exit or Fail port of the immediate ancestor
goal. If you supply an integer argument n, it denotes skipping to the Exit or
Fail port of the nth ancestor goal.

q quasi-skip is like a combination of zip and skip: execution stops when either
control comes back to this predicate, or a spypoint is reached. No debugging
information is being collected while quasi-skipping.
An integer argument can be supplied as for skip.

r retry can be used at any port (although at the Call port it has no effect). It
transfers control back to the Call port of the box. This allows you to restart
an invocation when, for example, you find yourself leaving with some weird
result. The state of execution is exactly the same as when you originally called,
(unless you use side-effects in your program; i.e. asserts etc. will not be undone).
When a retry is performed the invocation counter is reset so that counting
will continue from the current invocation number regardless of what happened
before the retry. This is in accord with the fact that you have, in executional
terms, returned to the state before anything else was called.
If you supply an integer argument, then this should denote an invocation num-
ber of an ancestral goal. The system tries to get you to the Call port of the box
you have specified. It does this by continuously failing until it reaches the right
place. Unfortunately this process cannot be guaranteed: it may be the case
that the invocation you are looking for has been cut out of the search space by
cuts (!) in your program. In this case the system fails to the latest surviving
Call port before the correct one.

f fail can be used at any of the four ports (although at the Fail port it has no
effect). It transfers control to the Fail port of the box, forcing the invocation
to fail prematurely.
If you supply an integer after the command, then this is taken as specifying
an invocation number and the system tries to get you to the Fail port of the
invocation box you have specified. It does this by continuously failing until it
reaches the right place. Unfortunately this process cannot be guaranteed: it
may be the case that the invocation you are looking for has been cut out of the
search space by cuts (!) in your program. In this case the system fails to the
latest surviving Fail port before the correct one.

j<p> jump to port transfers control back to the prescribed port <p>. Here, <p> is
one of: ‘c’, ‘e’, ‘r’, ‘f’, standing for Call, Exit, Redo and Fail ports. Takes an
optional integer argument, an invocation number.
Jumping to a Call port is the same as retrying it, i.e. ‘jc’ is the same as the ‘r’
debugger command; and similarly ‘jf’ is the same as ‘f’.

84 SICStus Prolog

The ‘je’ jump to Exit port command transfers control back to the Exit port
of the box. It can be used at a Redo or an Exit port (although at the latter it
has no effect). This allows you to restart a computation following an Exit port,
which you first leapt over, but because of its unexpected failure you arrived at
the Redo port. When you supply an integer argument, then this should denote
an exact invocation number of an exited invocation present in the backtrace,
and then the system will get you to the specified Exit port. The debugger
requires here an exact invocation number so that it does not jump too far back
in the execution (if an Exit port is not present in the backtrace, it may be be
a better choice to jump to the preceding Call port, rather than to continue
looking for another Exit port).
The ‘jr’ jump to Redo port command transfers control back to the Redo port of
the box. It can be used at an Exit or a Redo port (although at the latter it has
no effect). This allows you to force the goal in question to try to deliver another
solution. When you supply an integer argument, then this should denote an
exact invocation number of an exited invocation present in the backtrace, and
then the system will get you to the specified Redo port.

d display goal displays the current goal using display/1. See Write (below).

p print goal displays the current goal using print/1. An argument will override
the default printdepth, treating 0 as infinity.

w write goal displays the current goal using writeq/1.

g print ancestor goals provides you with a list of ancestors to the current goal, i.e.
all goals that are hierarchically above the current goal in the calling sequence.
You can always be sure of jumping to the Call or Fail port of any goal in the
ancestor list (by using retry etc). If you supply an integer n, then only that
number of ancestors will be printed. That is to say, the last n ancestors will
be printed counting back from the current goal. Each entry is displayed just as
they would be in a trace message.

t print backtrace is the same as the above, but also shows any goals that have
exited nondeterminately and their ancestors. This information shows where
there are outstanding choices that the program could backtrack to. If you
supply an integer n, then only that number of goals will be printed.
Ancestors to the current goal are annotated with the ‘Call:’ port, as they have
not yet exited, whereas goals that have exited are annotated with the ‘Exit:’
port. You can always be sure of jumping to the Exit or Redo port of any goal
shown to be exited in the backtrace listing.
The backtrace is a tree rather than a stack: to find the parent of a given goal
with depth indicator d, look for the closest goal above it with depth indicator
d-1.

& print blocked goals prints a list of the goals that are currently blocked in the
current debugging session together with the variable that each such goal is
blocked on (see Section 4.3 [Procedural], page 50). The goals are enumerated
from 1 and up. If you supply an integer n, then only that goal will be printed.
Each entry is preceded by the goal number followed by the variable name.

Chapter 7: Debugging 85

n nodebug switches the debugger off. Note that this is the correct way to switch
debugging off at a trace point. You cannot use the @ or b commands because
they always return to the debugger.

= debugging outputs information concerning the status of the debugging package.
See Section 8.15 [Debug Pred], page 209, the built-in predicate debugging/0.

+ spy this sets a plain spypoint on the current goal.

* spy this conditionally sets a conditional spypoint on the current goal. Prompts
for the Conditions, and calls the

spy(Func, Conditions)

goal, where Func is the predicate spec of the current invocation. For spy/2, see
Section 7.7 [Breakpoint Predicates], page 116.

- nospy this removes all spypoints applicable to the current goal. Equivalent to
nospy Func, where Func is the predicate spec of the current invocation.

\ remove this removes the spypoint that caused the debugger to interact at the
current port. With an argument n, it removes the breakpoint with identifier n.
Equivalent to remove_breakpoints(BID), where BID is the current breakpoint
identifier, or the supplied argument (see Section 7.7 [Breakpoint Predicates],
page 116).

D disable this disables the spypoint that caused the debugger to interact at the
current port. With an argument n, it disables the breakpoint with identi-
fier n. Equivalent to disable_breakpoints(BID), where BID is the current
breakpoint identifier, or the supplied argument (see Section 7.7 [Breakpoint
Predicates], page 116).

E enable this enables all specific spypoints for the predicate at the current port.
With an argument n, it enables the breakpoint with identifier n. Equivalent
to enable_breakpoints(BID), where BID is the breakpoint identifiers for the
current predicate, or the supplied argument (see Section 7.7 [Breakpoint Pred-
icates], page 116).

. find this outputs information about where the predicate being called is defined.

a abort causes an abort of the current execution. All the execution states built
so far are destroyed and you are put right back at the top-level. (This is the
same as the built-in predicate abort/0.)

b break calls the built-in predicate break/0, thus putting you at a recursive top-
level with the execution so far sitting underneath you. When you end the break
(^D) you will be reprompted at the port at which you broke. The new execution
is completely separate from the suspended one; the invocation numbers will
start again from 1 during the break. The debugger is temporarily switched
off as you call the break and will be re-switched on when you finish the break
and go back to the old execution. However, any changes to the leashing or to
spypoints will remain in effect.

86 SICStus Prolog

@ command gives you the ability to call arbitrary Prolog goals. It is effectively
a one-off break (see above). The initial message ‘| :- ’ will be output on the
standard error stream, and a command is then read from the standard input
stream and executed as if you were at top-level. If the term read is of form
Pattern ^ Body, then Pattern is unified with the current goal and Body is
executed.

u unify is available at the Call port and gives you the option of providing a
solution to the goal from the standard input stream rather than executing the
goal. This is convenient e.g. for providing a “stub” for a predicate that has not
yet been written. A prompt will be output on the standard error stream, and
the solution is then read from the standard input stream and unified with the
goal. If the term read in is of the form Head :- Body, then Head will be unified
with the current goal, and Body will be executed in its place.

e raise exception is available at all ports. A prompt will be output on the standard
error stream, and an exception term is then read from the standard input stream
and raised in the program being debugged.

< This command, without arguments, resets the printdepth to 10. With an ar-
gument of n, the printdepth is set to n, treating 0 as infinity. This command
works by changing the value of the debugger_print_options Prolog flag (see
Section 8.6 [State Info], page 175).

^ While at a particular port, a current subterm of the current goal is maintained.
It is the current subterm that is displayed, printed, or written when prompt-
ing for a debugger command. Used in combination with the printdepth, this
provides a means for navigating in the current goal for focusing on the part of
interest. The current subterm is set to the current goal when arriving at a new
port. This command, without arguments, resets the current subterm to the
current goal. With an argument of n (> 0), the current subterm is replaced by
its n:th subterm. With an argument of 0, the current subterm is replaced by
its parent term. With a list of arguments, the arguments are applied from left
to right.

?

h help displays the table of commands given above.

The user can define new debugger commands or modify the behavior of the above ones
using the debugger_command_hook hook predicate, see Section 7.7 [Breakpoint Predicates],
page 116.

7.6 Advanced Debugging — an Introduction

This section gives an overview of the advanced debugger features. These center around the
notion of breakpoint. Breakpoints can be classified as either spypoints (a generalization of
the plain spypoint introduced earlier) or advice-points (e.g. for checking program invariants
independently from tracing). The first five subsections will deal with spypoints only. Nev-

Chapter 7: Debugging 87

ertheless we will use the term breakpoint, whenever a statement is made that applies to
both spypoints and advice-points.

Section 7.8 [Breakpoint Processing], page 118 describes the breakpoint processing mecha-
nism in full detail. Reference style details of built-in predicates dealing with breakpoints
are given in Section 7.7 [Breakpoint Predicates], page 116 and in Section 7.9 [Breakpoint
Conditions], page 120.

7.6.1 Creating Breakpoints

Breakpoints can be created using the add_breakpoint/2 built-in predicate. Its first argu-
ment should contain the description of the breakpoint, the so called breakpoint spec. It will
return the breakpoint identifier (BID) of the created breakpoint in its second argument.
For example:

| ?- add_breakpoint(pred(foo/2), BID).

% Plain spypoint for user:foo/2 added, BID=1
BID = 1

Here, we have a simple breakpoint spec, prescribing that the debugger should stop at all
ports of all invocations of the predicate foo/2. Thus the above goal actually creates a plain
spypoint, exactly as ?- spy foo/2. does.

A slightly more complicated example follows:

| ?- add_breakpoint([pred(foo/2),line(’/myhome/bar.pl’,123)], _).

% Conditional spypoint for user:foo/2 added, BID=1

This breakpoint will be activated only for those calls of foo/2 that occur in line 123 of the
Prolog program file ’/myhome/bar.pl’. Because of the additional condition, this is called
a conditional spypoint.

The breakpoint identifier (BID) returned by add_breakpoint/2 is an integer, assigned in
increasing order, i.e. more recent breakpoints receive higher identifier values. When looking
for applicable breakpoints, the debugger tries the breakpoints in descending order of BIDs,
i.e. the most recent applicable breakpoint is used. Breakpoint identifiers can be used for
referring to breakpoints to be deleted, disabled or enabled (see later).

Generally, the breakpoint spec is a pair Tests-Actions. Here, the Tests part describes the
conditions under which the breakpoint should be activated, while the Actions part contains
instructions on what should be done at activation. The test part is built from tests, while
the action part from actions and tests. Test, actions and composite constructs built from
these are generally referred to as breakpoint conditions, or simply conditions.

The action part can be omitted, and then the breakpoint spec consists of tests only. For
spypoints, the default action part is [show(print),command(ask)]. This instructs the
debugger to print the goal in question and then ask the user what to do next, exactly as
described in Section 7.4 [Debug Format], page 80. To illustrate other possibilities let us

88 SICStus Prolog

explain the effect of the [show(display),command(proceed)] action part: this will use
display/1 for presenting the goal (just as the ‘d’ debugger command does, see Section 7.5
[Debug Commands], page 81), and will then proceed with execution without stopping (i.e.
the spypoint is unleashed).

7.6.2 Processing Breakpoints

We first give a somewhat simplified sketch of how the debugger treats the breakpoints. This
description will be refined in the sequel.

The debugger allows us to prescribe some activities to be performed at certain points of
execution, namely at the ports of procedure boxes. In principle, the debugger is entered
at each port of each procedure invocation. It then considers the current breakpoints one
by one, most recent first. The first breakpoint for which the evaluation of the test part
succeeds is then activated, and the execution continues according to its action part. The
activated breakpoint “hides” the remaining (older) ones, i.e. those are not tried here. If
none of the current breakpoints is activated, the debugger behaves according to the actual
debugging mode (trace, debug or zip).

Both the test and the action part can be simple or composite. Evaluating a simple test
amounts to checking whether it holds in the current state of execution, e.g. pred(foo/2)
holds if the debugger is at a port of predicate foo/2.

Composite conditions can be built from simple ones by forming lists, or using the ‘,’, ‘;’,
‘->’, and ‘\+’ operators, with the usual meaning of conjunction, disjunction, if-then-else
and negation. A list of conditions is equivalent to a conjunction of the same conditions.
For example, the condition [pred(foo/2), \+port(fail)] will hold for all ports of foo/2,
except for the Fail port.

7.6.3 Breakpoint Tests

This section gives a tour of the most important simple breakpoint tests. In all examples
here the action part will be empty. Note that the examples are independent, so if you want
to try out these you should get rid of the old breakpoints (e.g. using ?- nospyall.) before
you enter a new one.

The goal(...) test is a generalization of the pred(...) test, as it allows us to check the
arguments of the invocation. For example:

| ?- add_breakpoint(goal(foo(1,_)), _).

% Conditional spypoint for user:foo/2 added, BID=1

The goal(G) breakpoint test specifies that the breakpoint should be applied only if the
current goal is an instance of G, i.e. G and the current goal can be unified without sub-
stituting any variables in the latter. This unification is then carried out. The goal(G)

Chapter 7: Debugging 89

condition is thus equivalent to the subsumes(G,CurrentGoal) test (subsumes/2 is defined
in library(terms), see Chapter 21 [Term Utilities], page 367).

In the above example the debugger will stop if foo/2 is called with 1 as its first argument,
but not if the first argument is, say, 2, nor if it is a variable.

You can use non-anonymous variables in the goal test, and then put further constraints on
these variables using the true condition:

| ?- add_breakpoint([goal(foo(X,_)),true(X>1)], _).

% Conditional spypoint for user:foo/2 added, BID=1

Here the first test, goal, specifies that we are only interested in invocations of foo/2, and
names the first argument of the goal as X. The second, the true/1 test, specifies a further
condition stated as a Prolog goal: X is greater than 1 (we assume here that the argument is
numeric). Thus this breakpoint will be applicable if and only if the first argument of foo/2
is greater than 1. Generally, an arbitrary Prolog goal can be placed inside the true test:
the test will succeed iff the goal completes successfully.

Any variable instantiations in the test part will be undone before executing the action part,
as the evaluation of the test part is enclosed in a double negation (\+ \+ (...)). This
ensures that the test part has no effect on the variables of the current goal.

Both the pred and the goal tests may include a module name. In fact, the first argument
of add_breakpoint is module name expanded, and the (explicit or implicit) module name
of this argument is then inherited by default by the pred, goal, and true tests. Notice the
module qualification inserted in front of the breakpoint spec of the last example, as shown
in the output of the debugging/0 built-in predicate:

| ?- debugging.

(...)
Breakpoints:

1 * user:foo/2 if user:[goal(foo(A,B)),true(A>1)]

As no explicit module qualifications were given in the tests, this breakpoint spec is trans-
formed to the following form:

[goal(user:foo(A,B)),true(user:(A>1))]

For exported predicates, a pred or goal test will be found applicable for all invocations of the
predicate, irrespective of the module the call occurs in. When you add the breakpoint you
can use the defining or an importing module name, but this information is not remembered:
the module name is “normalized”, i.e. it is changed to the defining module. The example
below shows this: although the spypoint is placed on user:append, the message and the
breakpoint list both mention lists:append.

90 SICStus Prolog

| ?- use_module(library(lists)).

(...)
% module lists imported into user
(...)
| ?- spy user:append.

% Plain spypoint for lists:append/3 added, BID=1
| ?- debugging.

(...)
Breakpoints:

1 + lists:append/3

Note that the debugger does not stop inside a library predicate when doing an exhaustive
trace. This is because the library modules are declared hidden (cf. Chapter 5 [Module Intro],
page 59), and no trace is produced for calls inside hidden modules that invoke predicates
defined in hidden modules. However, a spypoint is always shown in the trace, even if it
occurs in a hidden module:

+ 1 1 Call: append([1,2],[3,4],_531) ? 〈RET〉
+ 2 2 Call: lists:append([2],[3,4],_1182) ? 〈RET〉
+ 3 3 Call: lists:append([],[3,4],_1670) ? 〈RET〉
+ 3 3 Exit: lists:append([],[3,4],[3,4]) ? 〈RET〉
(...)

You can narrow a breakpoint to calls from within a particular module by using the module
test, e.g.

| ?- add_breakpoint([pred(append/3),module(user)], _).

% The debugger will first zip -- showing spypoints (zip)
% Conditional spypoint for lists:append/3 added, BID=1
% zip
| ?- append([1,2], [3,4], L).

* 1 1 Call: append([1,2],[3,4],_531) ? 〈RET〉
* 1 1 Exit: append([1,2],[3,4],[1,2,3,4]) ? 〈RET〉
L = [1,2,3,4]

With this spypoint, the debugger will only stop at the invocations of append/3 from the
user module.

Note that calling module information is not kept by the compiler for the built-in predicates,
therefore the module test will always unify its argument with prolog in case of compiled
calls to built-in predicates.

There are two further interesting breakpoint tests related to invocations: inv(Inv) and
depth(Depth). These unify they arguments with the invocation number and the depth,
respectively (the two numbers shown at the beginning of each trace message). Such tests
are most often used in more complex breakpoints, but there may be some simple cases when
they are useful.

Chapter 7: Debugging 91

Assume you put a plain spypoint on foo/2, and start leaping through your program. After
some time, you notice some inconsistency at an Exit port, but you cannot go back to the
Call port for retrying this invocation, because of side-effects. So you would like to restart
the whole top-level goal and get back to the Call port of the suspicious goal as fast as
possible. Here is what you can do:

| ?- spy foo/2.

% Plain spypoint for user:foo/2 added, BID=1
| ?- debug, foo(23, X).

% The debugger will first leap -- showing spypoints (debug)
+ 1 1 Call: foo(23,_414) ? l

(...)
+ 81 17 Call: foo(7,_9151) ? l

+ 86 18 Call: foo(6,_9651) ? l

+ 86 18 Exit: foo(6,8) ? -

% Plain spypoint for user:foo/2, BID=1, removed (last)
86 18 Exit: foo(6,8) ? *

Placing spypoint on user:foo/2 with conditions: inv(86).
% Conditional spypoint for user:foo/2 added, BID=1
* 86 18 Exit: foo(6,8) ? a

% Execution aborted
% source_info
| ?- debug, foo(23, X).

% The debugger will first leap -- showing spypoints (debug)
* 86 18 Call: foo(6,_2480) ? 〈RET〉

When you reach the Exit port of the suspicious invocation (number 86), you remove the
plain spypoint (via the - debugger command), and add a conditional one using the ‘*’
debugger command. This automatically includes pred(foo/2) among the conditions and
displays the prompt ‘Placing spypoint ... with conditions:’, requesting further ones.
You enter here the inv test with the invocation number in question, resulting in a breakpoint
with the [pred(foo/2),inv(86)] conditions. If you restart the original top-level goal in
debug mode, the debugger immediately positions you at the invocation with the specified
number.

Note that when the debugger executes a skip or a zip command, no procedure boxes are
built. Consequently, the invocation and depth counters are not incremented. If skip and/or
zip commands were used during the first execution, then the suspicious invocation gets an
invocation number higher than 86 in the second run. Therefore it is better to supply the
inv(I),true(I>=86) condition to the ‘*’ debugger command, which will bring you to the
first call of foo/2 at, or after invocation number 86 (which still might not be the suspicious
invocation).

In the examples, the inv test was used both with a numeric and a variable argument
(inv(86) and inv(I)). This is possible because the debugger unifies the given feature with
the argument of the test. This holds for most tests, we will mention the exceptions.

92 SICStus Prolog

Another similar example: if you suspect that a given predicate goes into an infinite recursion,
and would like the execution to stop when entering this predicate somewhere inside the
recursion, then you can do the following:

| ?- add_breakpoint([pred(foo/2),depth(_D),true(_D>=100)], _).

% Conditional spypoint for user:foo/2 added, BID=1
% zip,source_info
| ?- debug, foo(200, X).

% The debugger will first leap -- showing spypoints (debug)
* 496 100 Call: foo(101,_12156) ?

The above breakpoint spec will cause the debugger to stop at the first invocation of foo/2
at depth 100 or greater. Note again that debug mode has to be entered for this to work (in
zip mode no debugging information is kept, so the depth does not change).

We now continue with tests that restrict the breakpoint to an invocation at a specific place
in the code.

Assume file /home/bob/myprog.pl contains the following Prolog program:

% /home/bob/myprog.pl

p(X, U) :- % line 1
q(X, Y), % line 2
q(Y, Z), % line 3
(\+ q(Z, _) % line 4
-> q(Z+1, U) % line 5
; q(Z+2, U) % line 6
). % ...

q(X, Y) :-
X < 10, !, Y is X+1. % line 10

q(X, Y) :-
Y is X+2. % line 12

If you are interested only in the last invocation of q/2 within p/2, you can use the following
breakpoint:

| ?- add_breakpoint([pred(q/2),line(’/home/bob/myprog.pl’,6)], _).

% Conditional spypoint for user:q/2 added, BID=1

Generally, the test line(File,Line) holds if the current invocation was in line number
Line of a file whose absolute name is File. This test (as well as the line/1 and file/1
tests, see below) require the presence of source information: the file in question had to
be consulted or compiled with the source_info Prolog flag switched on (i.e. set to on or
emacs).

If e.g. q/2 is called only from a single file, then the file name need not be mentioned and a
line/1 test suffices: line(6). On the other hand, if we are interested in all invocations of
a predicate within a file, then we can omit the line number and use the file(File) test.

Chapter 7: Debugging 93

For Prolog programs that are interpreted (consulted or asserted), further positioning in-
formation can be obtained, even in the absence of source information. The test parent_
pred(Pred) unifies the module name expanded Pred with a predicate spec (of form Module

:PredName/Arity) identifying the predicate in which the current invocation resides. The
test parent_pred(Pred,N) will additionally unify N with the serial number of the clause
containing the current goal.

For example, assuming the above myprog.pl file is consulted, the breakpoint below will
cause the execution to stop when the call of is/2 in the second clause of q/2 is reached:

| ?- add_breakpoint([pred(is/2),parent_pred(q/2,2)], _).

% Conditional spypoint for prolog:is/2 added, BID=1
* Predicate prolog:is/2 compiled inline, breakable only in inter-
preted code
% zip,source_info
| ?- p(20, X).

in scope of a goal at line 12 in /home/bob/myprog.pl
* 1 1 Call: _579 is 20+2 ?

Notice the warning issued by add_breakpoint/2: there are some built-in predicates (e.g.
arithmetic, functor/3, arg/3, etc.), for which the compiler generates specific inline trans-
lation, rather than the generic predicate invocation code. Therefore compiled calls to such
predicates are not visible to the debugger.

More exact positioning information can be obtained for interpreted programs by using the
parent_clause(Cl,Sel,I) test. This unifies Cl with the clause containing the current
invocation, while Sel and I both identify the current invocation within the body of this
clause. Sel is unified with a subterm selector, while I with the serial number of the call.
This test has variants parent_clause/[1,2], in which only the Cl argument, or the Cl,Sel
arguments are present.

As an example, two further alternatives of putting a breakpoint on the last call of q/2
within myprog.pl (line 6) are shown below, together with a listing showing the selectors
and call serial numbers for the body of p/2:

| ?- add_breakpoint([pred(q/2),parent_clause((p(_,_):-_),[2,2,2])],_).

| ?- add_breakpoint([pred(q/2),parent_clause((p(_,_):-_),_,5)],_).

p(X, U) :- % line % call no. % subterm selector
q(X, Y), % 2 1 [1]
q(Y, Z), % 3 2 [2,1]
(\+ q(Z, _) % 4 3 [2,2,1,1,1]
-> q(Z+1, U) % 5 4 [2,2,1,2]
; q(Z+2, U) % 6 5 [2,2,2]
). % 7

Here, the first argument of the parent_clause test ensures that the current invocation is
in (the only clause of) p/2. If p/2 had more clauses, we would have to use an additional

94 SICStus Prolog

test, say parent_pred(user:p/2,1), and then the first argument of parent_clause could
be an anonymous variable.

In the examples so far the breakpoint tests referred only to the goal in question. Therefore,
the breakpoint was found applicable at all ports of the procedure box of the predicate. We
can distinguish between ports using the port breakpoint test:

| ?- add_breakpoint([pred(foo/2),port(call)], _).

With this breakpoint, the debugger will stop at the Call port of foo/2, but not at other
ports. Note that the port(call) test can be simplified to call — add_breakpoint/2 will
recognize this as a port name, and treat it as if it were enclosed in a port/1 functor.

Here are two equivalent formulations for a breakpoint that will cause the debugger to stop
only at the Call and Exit ports of foo/2:

| ?- add_breakpoint([pred(foo/2),(call;exit)], _).

| ?-
add_breakpoint([pred(foo/2),port(P),true((P=call;P=exit(_)))], _).

In both cases we have to use disjunction. In the first example we have a disjunctive break-
point condition of the two simple tests port(call) and port(exit) (with the port functor
omitted). In the second case the disjunction is inside the Prolog test within the true test.

Notice that the two examples refer to the Exit port differently. When you use port(P),
where P is a variable, then, at an exit port, P will be unified with either exit(nondet)
or exit(det), depending on the determinacy of the exited predicate. However, for conve-
nience, the test port(exit) will also succeed at Exit ports. So in the first example above,
exit can be replaced by exit(_), but the exit(_) in the second can not be replaced by
exit.

Finally, there is a subtle point to note with respect to activating the debugger at non Call
ports. Let us look at the following breakpoint:

| ?- add_breakpoint([pred(foo/2),fail], _).

The intention here is to have the debugger stop at only the Fail port of foo/2. This is very
useful if foo/2 is not supposed to fail, but we suspect that it does. The above breakpoint
will behave as expected when the debugger is leaping, but not while zipping. This is because
for the debugger to be able to stop at a non Call port, a procedure box has to be built at
the Call port of the given invocation. However, no debugging information is collected in zip
mode by default, i.e. procedure boxes are not built. Later we will show how to achieve the
required effect, even in zip mode.

Chapter 7: Debugging 95

7.6.4 Specific and Generic Breakpoints

In all the examples so far a breakpoint was put on a specific predicate, described by a goal
or pred test. Such breakpoints are called specific, as opposed to generic ones.

Generic breakpoints are the ones that do not specify a concrete predicate. This can happen
when the breakpoint spec does not contain goal or pred tests at all, or their argument is
not sufficiently instantiated. Here are some examples of generic breakpoints:

| ?- add_breakpoint(line(’/home/bob/myprog.pl’,6), _).

% Generic spypoint added, BID=1
| ?- add_breakpoint(pred(foo/_), _).

% Generic spypoint added, BID=2
| ?- add_breakpoint([goal(G),true((arg(1,G,X),X==bar))], _).

% Generic spypoint added, BID=3

The first breakpoint will stop at all calls in line 6 of the given file, the second at all calls of a
predicate foo, irrespective of the number of arguments, while the third one will stop at any
predicate with bar as its first argument. However, there is an additional implicit condition:
the module name expansion inserts the type-in module as the default module name in the
goal and pred conditions. Consequently, the second and third breakpoint applies only to
predicates in the type-in module (user by default). If you would like the breakpoint to
cover all modules you have to include an anonymous module prefix in the argument of the
goal or pred test:

| ?- add_breakpoint(pred(_:foo/_), _).

% Generic spypoint added, BID=1
% zip
| ?- add_breakpoint([goal(_:G),true((arg(1,G,X),X==bar))], _).

% Generic spypoint added, BID=2

Generic breakpoints are very powerful, but there is a price to pay: the zip mode is slowed
down considerably.

As said earlier, in principle the debugger is entered at each port of each procedure invocation.
As an optimization, the debugger can request the underlying Prolog engine to run at full
speed and invoke the debugger only when one of the specified predicates is called. This
optimization is used in zip mode, provided there are no generic breakpoints. In the presence
of generic breakpoints, however, the debugger has to be entered at each call, to check their
applicability. Consequently, with generic breakpoints, zip mode execution will not give
much speed-up over debug mode, although its space requirements will still be much lower.

It is therefore advisable to give preference to specific breakpoints over generic ones, whenever
possible. For example, if your program includes predicates foo/2 and foo/3, then it is much
better to create two specific breakpoints, rather than a single generic one with conditions
[pred(foo/_),...].

96 SICStus Prolog

spy/2 is a built-in predicate that will create specific breakpoints only. Its first argument is
a generalized predicate spec, much like in spy/1, and the second argument is a breakpoint
spec. spy/2 will expand the first argument to one or more predicate specs, and for each of
these will create a breakpoint, with a pred condition added to the test part of the supplied
breakpoint spec. For example, in the presence of predicates foo/2 and foo/3

| ?- spy(foo/_, file(...))

is equivalent to:

| ?- add_breakpoint([pred(foo/2),file(...)], _),

add_breakpoint([pred(foo/3),file(...)], _).

Note that with spy/[1,2] it is not possible to put a breakpoint on a (yet) undefined
predicate. On the other hand, add_breakpoint/2 is perfectly capable of creating such
breakpoints.

7.6.5 Breakpoint Actions

The action part of a breakpoint spec supplies information to the debugger as to what should
be done when the breakpoint is activated. This is achieved by setting the three so called
debugger action variables. These are listed below, together with their most important
values.

• The show variable prescribes how the debugged goal should be displayed:

print write the goal according to the debugger_print_options Prolog flag.

silent do not display the goal.
• The command variable prescribes what should the debugger do:

ask ask the user.

proceed continue the execution without stopping, creating a procedure box for the
current goal at the Call port,

flit continue the execution without stopping, without creating a procedure box
for the current goal at the Call port.

• The mode variable prescribes in what mode the debugger should continue the execution:

trace creeping.

debug leaping.

zip zipping.

off without debugging.

For example, the breakpoint below specifies that whenever the Exit port of foo/2 is reached,
no trace message should be output, no interaction should take place and the debugger should
be switched off.

Chapter 7: Debugging 97

| ?- add_breakpoint([pred(foo/2),port(exit)]-

[show(silent),command(proceed),mode(off)], _).

Here, the action part consists of three actions, setting the three action variables. This
breakpoint spec can be simplified by omitting the wrappers around the variable values, as
the sets of possible values of the variables are all disjoint. If we use spy/2 then the pred
wrapper goes away, too, resulting in a much more concise, equivalent formulation of the
above breakpoint:

| ?- spy(foo/2,exit-[silent,proceed,off]).

Let us now revisit the process of breakpoint selection. When the debugger arrives at a
port it first initializes the action variables according to the current debugging and leashing
modes, as shown below:

debugging leashing | Action variables
mode mode	show command mode
trace at leashed port | print ask trace

|
trace at unleashed port | print proceed trace

|
debug - | silent proceed debug

|
zip - | silent flit zip

It then considers each breakpoint, most recent first, until it finds a breakpoint whose test
part succeeds. If such a breakpoint is found, its action part is evaluated, normally changing
the action variable settings. A failure of the action part is ignored, in the sense that the
breakpoint is still treated as the selected one. However, as a side-effect, a procedure box will
always be built in such cases. More precisely, the failure of the action part causes the flit
command value to be changed to proceed, all other command values being left unchanged.
This is to facilitate the creation of breakpoints that stop at non-Call ports (see below for
an example).

If no applicable breakpoint is found, then the action variables remain unchanged.

The debugger then executes the actions specified by the action variables. This process,
referred to as the action execution, means the following:

• The current debugging mode is set to the value of the mode action variable.
• A trace message is displayed according to the show variable.
• The program continues according to the command variable.

Specifically, if command is ask, then the user is prompted for a debugger command, which
in turn is converted to new assignments to the action variables. The debugger will then
repeat the action execution process, described above. For example, the ‘c’ (creep) inter-

98 SICStus Prolog

active command is converted to [silent,proceed,trace], the ‘d’ (display) command to
[display,ask] (when command is ask, the mode is irrelevant), etc.

The default values of the action variables correspond to the standard debugger behavior
described in Section 7.2 [Basic Debug], page 77. For example, when an unleashed port is
reached in trace mode, a trace message is printed and the execution proceeds in trace mode,
without stopping. In zip mode, no trace message is shown, and execution continues in zip
mode, without building procedure boxes at Call ports.

Note that a spypoint action part that is empty ([] or not present) is actually treated as
[print,ask]. Again, this is the standard behavior of spypoints, as described in Section 7.2
[Basic Debug], page 77.

If an action part is nonempty, but it does not set the action variables, the only effect it will
have is to hide the remaining older spypoints, as the debugger will behave in the standard
way, according to the debugging mode. Still, such breakpoints may be useful if they have
side-effects, e.g.

| ?- spy(foo/2, -[parent_pred(P),

goal(G),

true(format(’~q called from:~w~n’,[G,P]))]).
% The debugger will first zip -- showing spypoints (zip)
% Conditional spypoint for user:foo/2 added, BID=1
true
% zip
| ?- foo(3,X).

foo(2,_701) called from:bar/3
foo(1,_1108) called from:bar/3
foo(0,_1109) called from:bar/3
foo(1,_702) called from:bar/3
X = 2 ? ;

no

This spypoint produces some output at ports of foo/2, but otherwise will not influence the
debugger. Notice that a breakpoint spec with an empty test part can be written -Actions.

Let us look at some simple examples of what other effects can be achieved by appropriate
action variable settings:

| ?- spy(foo/2, -[print,proceed]).

This is an example of an unleashed spypoint: it will print a trace message passing each port
of foo/2, but will not stop there. Note that because of the proceed command a procedure
box will be built, even in zip mode, and so the debugger will be activated at non-Call ports
of foo/2.

The next example is a variant of the above:

| ?- spy(foo/2, -[print,flit]).

Chapter 7: Debugging 99

This will print a trace message at the Call port of foo/2 and will then continue the execution
in the current debugging mode, without building a procedure box for this call. This means
that the debugger will not be able to notice any other ports of foo/2.

Now let us address the task of stopping at a specific non-Call port of a predicate. For this
to work in zip mode, one has to ensure that a procedure box is built at the Call port. In
the following example, the first spypoint causes a box to be built for each call of foo/2,
while the second one makes the debugger stop when the Fail port of foo/2 is reached.

| ?- spy(foo/2, call-proceed), spy(foo/2, fail).

% Conditional spypoint for user:foo/2 added, BID=1
% Conditional spypoint for user:foo/2 added, BID=2

You can achieve the same effect with a single spypoint, by putting the fail condition (which
is a shortcut for port(fail)) in the action part, rather than in the test part.

| ?- spy(foo/2, -[fail,print,ask]).

Here, when the execution reaches the Call port of foo/2, the test part (which contains the
pred(foo/2) condition only) succeeds, so the breakpoint is found applicable. However, the
action part fails at the Call port. This has a side-effect in zip mode, as the default flit
command value is changed to proceed. In other modes the action variables are unaffected.
The net result is that a procedure box is always built for foo/2, which means that the
debugger will actually reach the Fail port of this predicate. When this happens, the action
part succeeds, and executing the actions print,ask will cause the debugger to stop.

Note that we have to explicitly mention the print,ask actions here, because the action part
is otherwise nonempty (contains the fail condition). It is only the empty or missing action
part, which is replaced by the default [print,ask]. If you want to include a condition in
the action part, you have to explicitly mention all action variable settings you need.

To make this simpler, the debugger handles breakpoint condition macros, which expand
to other conditions. For example leash is a macro that expands to [print,ask]. Conse-
quently, the last example can be simplified to:

| ?- spy(foo/2, -[fail,leash]).

Similarly, the macro unleash expands to [print,proceed], while hide to
[silent,proceed].

We now briefly describe further possible settings to the action variables.

The mode variable can be assigned the values skip(Inv) and qskip(Inv), meaning skipping
and quasi-skipping until a port is reached whose invocation number is less or equal to Inv.
When the debugger arrives at this port it sets the mode variable to trace.

It may be surprising that skip(...) is a mode, rather than a command. This is because
commands are executed and immediately forgotten, but skipping has a lasting effect: the

100 SICStus Prolog

program is to be run with no debugging until a specific point, without creating new proce-
dure boxes, and ignoring the existing ones in the meantime.

Here is an example using the skip mode:

| ?- spy(foo/2,call-[print,proceed,inv(Inv),skip(Inv)]).

This breakpoint will be found applicable at Call ports of foo/2. It will print a trace message
there and will skip over to the Exit or Fail port without stopping. Notice that the number
of the current invocation is obtained in the action part, using the inv condition with a
variable argument. A variant of this example follows:

| ?- spy(foo/2,-[silent,proceed,

(call -> inv(Inv), skip(Inv)

; true

)]).

This spypoint makes foo/2 invisible in the output of the debugger: at all ports we silently
proceed (i.e. display nothing and do not stop). Furthermore, at the Call port we perform
a skip, so neither foo/2 itself, nor any predicate called within it will be shown by the
debugger.

Notice the use of the true/0 test in the above conditional! This is a breakpoint test that
always succeeds. The debugger also recognizes false as a test that always fails. Note that
while false and fail are synonyms as built-in predicates, they are completely different as
breakpoint conditions: the latter is a shortcut for port(fail).

The show variable has four additional value patterns. Setting it to display, write, or
write_term(Options) will result in the debugged goal G being shown using display(G
), writeq(G), or write_term(G, Options), respectively. The fourth pattern, Method-Sel
, can be used for replacing the goal in the trace message by one of its subterms, the one
pointed to by the selector Sel.

For example, the following spypoint instructs the debugger to stop at each port of foo/2,
and to only display the first argument of foo/2 in the trace message, instead of the complete
goal.

| ?- spy(foo/2, -[print-[1],ask]).

% Conditional spypoint for user:foo/2 added, BID=1
| ?- foo(5,X).

* 1 1 Call: ^1 5 ?

The command variable has several further value patterns. The variable can be set to
proceed(OldGoal,NewGoal). At a Call port this instructs the debugger to first build a
procedure box for the current goal, then to unify it with OldGoal and finally execute New-
Goal in its place (cf. the ‘u’ (unify) interactive debugger command). At non-Call ports this
command first goes back to the Call port (cf. the ‘r’ (retry) command), and then does the
above activities.

Chapter 7: Debugging 101

A variant of the proceed/2 command is flit(OldGoal,NewGoal). This has the same effect,
except for not building a procedure box for OldGoal.

We now just briefly list further command values (for the details, see Section 7.9.9 [Action
Variables], page 126). Setting command to exception(E) will raise an exception E, abort
will abort the execution. The values retry(Inv), reexit(Inv), redo(Inv), fail(Inv) will
cause the debugger to go back to an earlier Call, Exit, Redo, or Fail port with invocation
number Inv (cf. the ‘j’ (jump) interactive debugger command).

Sometimes it may be useful to access the value of an action variable. This can be done with
the get condition: e.g. get(mode(M)) will unify M with the current execution mode. The
get(...) wrapper can be omitted in the test part, but not in the action part (since there
a mode(M) action will set, rather than read, the mode action variable). For example:

| ?- spy(foo/2, mode(trace)-show(print-[1])).

This spypoint will be found applicable only in trace mode (and will cause the first argument
of foo/2 to appear in the trace message). (The mode and show wrappers can also be omitted
in the above example, they are used only to help interpreting the breakpoint spec.)

7.6.6 Advice-points

As mentioned earlier, there are two kinds of breakpoints: spypoints and advice-points.
The main purpose of spypoints is to support interactive debugging. In contrast with this,
advice-points can help you to perform non-interactive debugging activities. For example,
the following advice-point will check a program invariant: whether the condition Y-X<3
always holds at exit from foo(X,Y).

| ?- add_breakpoint([pred(foo/2),advice]

-[exit,goal(foo(X,Y)),\+true(Y-X<3),trace], _).

% Conditional advice point for user:foo/2 added, BID=1
% advice
| ?- foo(4, Y).

Y = 3
% advice
| ?- foo(9, Y).

3 3 Exit: foo(7,13) ? n

2 2 Exit: foo(8,21) ?

The test part of the above breakpoint contains a pred test, and the advice condition,
making it an advice-point. (You can also include the debugger condition in spypoint specs,
although this is the default interpretation.)

The action part starts with the exit port condition. Because of this the rest of the action
part is evaluated only at Exit ports. By placing the port condition in the action part, we
ensure the creation of a procedure box at the Call port, as explained earlier.

102 SICStus Prolog

Next, we get hold of the goal arguments using the goal condition, and use the \+true(Y-
X<3) test to check if the invariant is violated. If this happens, the last condition sets the
mode action variable to trace, switching on the interactive debugger.

Following the add_breakpoint/2 call the above example shows two top-level calls to foo/2.
The invariant holds within the first goal, but is violated within the second. Notice that the
advice mechanism works with the interactive debugger switched off.

You can ask the question, why do we need advice-points? The same task could be imple-
mented using a spypoint. For example:

| ?- add_breakpoint(pred(foo/2)

-[exit,goal(foo(X,Y)),\+true(Y-X<3),leash], _).

% The debugger will first zip -- showing spypoints (zip)
% Conditional spypoint for user:foo/2 added, BID=1
% zip
| ?- foo(4, X).

X = 3
% zip
| ?- foo(9, X).

* 3 3 Exit: foo(7,13) ? z

* 2 2 Exit: foo(8,21) ?

The main reason to have a separate advice mechanism is to be able to perform checks
independently of the interactive debugging. With the second solution, if you happen to
start some interactive debugging, you cannot be sure that the invariant is always checked.
For example, no spypoints will be activated during a skip. In contrast with this, the advice
mechanism is watching the program execution all the time, independently of the debugging
mode.

Advice-points are handled in very much the same way as spypoints are. When arriving
at a port, advice-point selection takes place first, followed by spypoint selection. This can
be viewed as the debugger making two passes over the current breakpoints, considering
advice-points only in the first pass, and spypoints only in the second.

In both passes the debugger tries to find a breakpoint that can be activated, checking the
test and action parts, as described earlier. However, there are some differences between the
two passes:

• Advice processing is performed if there are any (non-disabled) advice-points. Spypoint
processing is only done if the debugger is switched on, and is not doing a skip.

• For advice-points, the action variables are initialized as follows: mode is set to current
debugging mode, command = proceed, show = silent. Note that this is done indepen-
dently of the debugging mode (in contrast with the spypoint search initialization).

• The default action part for advice-points is []. This means that if no action part is
given, then the only effect of the advice-point will be to build a procedure box (because
of the command = proceed initialization).

• If no advice-point was found applicable, then command is set to flit.

Chapter 7: Debugging 103

Having performed advice processing, the debugger inspects the command variable. The
command values different from proceed and flit are called divertive, as they alter the
normal flow of control (e.g. proceed(...,...)), or involve user interaction (ask). If the
command value is divertive, then the prescribed action is performed immediately, without
executing the spypoint selection process. Otherwise, if command = proceed, it is noted
that the advice part requests the building of a procedure box. Next, the second, spypoint
processing pass is carried out, and possible user interaction takes place, as described earlier.
A procedure box is built if either the advice-point or the spypoint search requests this.

Let us conclude this section by another example, a generic advice-point for collecting branch
coverage information:

| ?- add_breakpoint(

(advice,call) -

(line(F,L) -> true(assert(line_reached(F,L))), flit

; flit

), _).

% Generic advice point added, BID=1
% advice,source_info
| ?- foo(4,X).

X = 3 ? ;

no
% advice,source_info
| ?- setof(X, line_reached(F,X), S).

F = ’/home/bob/myprog.pl’,
S = [31,33,34,35,36]

This advice-point will be applicable at every Call port. It will then assert a fact with the
file name and the line number if source information is available. Finally, it will set the
command variable to flit on both branches of execution. This is to communicate the fact
that the advice-point does not request the building of a procedure box.

It is important to note that this recording of the line numbers reached is performed inde-
pendently of the interactive debugging.

In this example we used the ’,’/2 operator, rather than list notation, for describing the
conjunction of conditions, as this seems to fit better the if-then-else expression used in the
action part. We could have still used lists in the tests part, and in the “then” part of
the actions. Note that if we omit the “else” branch, the action part will fail if no source
information is available for the given call. This will cause a procedure box to be built,
which is an unnecessary overhead. An alternative solution, using the line/2 test twice, is
the following:

| ?- add_breakpoint([advice,call,line(_,_)]-

[line(F,L),true(assert(line_reached(F,L))),flit], _).

Further examples of advice-points are available in library(debugger_examples).

104 SICStus Prolog

7.6.7 Built-in Predicates for Breakpoint Handling

This section introduces built-in predicates for evaluating breakpoint conditions, and for
retrieving, deleting, disabling and enabling breakpoints.

The breakpoint spec of the last advice-point example was quite complex. And, to be practi-
cal, it should be improved to assert only line numbers not recorded so far. For this you will
write a Prolog predicate for the conditional assertion of file/line information, assert_line_
reached(File,Line), and use it instead of the assert(line_reached(F,L)) condition.

Because of the complexity of the breakpoint spec, it looks like a good idea to move the
if-then-else condition into Prolog code. This requires that we test the line(F,L) condition
from Prolog. The built-in predicate execution_state/1 serves for this purpose. It takes
a simple or a composite breakpoint condition as its argument and evaluates it, as if in the
test part of a breakpoint spec. The predicate will succeed iff the breakpoint condition eval-
uates successfully. Thus execution_state/1 allows you to access debugging information
from within Prolog code. For example, you can write a Prolog predicate, assert_line_
reached/0, which queries the debugger for the current line information and then processes
the line number:

assert_line_reached :-
(execution_state(line(F,L)) -> assert_line_reached(F,L).
; true
).

| ?- add_breakpoint([advice,call]-
[true(assert_line_reached),flit], _).

Arbitrary tests can be used in execution_state/1, if it is called from within a true condi-
tion. It can also be called from outside the debugger, but then only a subset of conditions
is available. Furthermore, the built-in predicate execution_state/2 allows accessing in-
formation from past debugger states (see Section 7.6.8 [Accessing Past Debugger States],
page 105).

The built-in predicates remove_breakpoints(BIDs), disable_breakpoints(BIDs) and
enable_breakpoints(BIDs) serve for removing, disabling and enabling the given break-
points. Here BIDs can be a single breakpoint identifier, a list of these, or one of the atoms
all, advice, debugger.

We now show an application of remove_breakpoints/1 for implementing one-off break-
points, i.e. breakpoints that are removed when first activated.

For this we need to get hold of the currently selected breakpoint identifier. The bid(BID)
condition serves for this purpose: it unifies its argument with the identifier of the breakpoint
being processed. The following is an example of a one-off breakpoint.

Chapter 7: Debugging 105

| ?- spy(foo/2, -[bid(BID),true(remove_breakpoints(BID)),leash]).

% Conditional spypoint for user:foo/2 added, BID=1
% zip
| ?- foo(2, X).

% Conditional spypoint for user:foo/2, BID=1, removed (last)
1 1 Call: foo(2,_402) ? z

X = 1

The action part of the above breakpoint calls the bid test to obtain the breakpoint identifier.
It then uses this number as the argument to the built-in predicate remove_breakpoints/1,
which removes the activated breakpoint.

The built-in predicate current_breakpoint(Spec, BID, Status, Kind, Type) enumer-
ates all breakpoints present in the debugger. For example, if we call current_breakpoint/5
before the invocation of foo/2 in the last example, we get this:

| ?- current_breakpoint(Spec, BID, Status, Kind, Type).

Spec = [pred(user:foo/2)]-
[bid(_A),true(remove_breakpoints(_A)),leash],
BID = 1,
Status = on,
Kind = conditional(user:foo/2),
Type = debugger

Here Spec is the breakpoint spec of the breakpoint with identifier BID. Status is on
for enabled breakpoints and off for disabled ones. Kind is one of plain(MFunc),
conditional(MFunc) or generic, where MFunc is the module qualified functor of the
specific breakpoint. Finally Type is the breakpoint type: debugger or advice.

The Spec returned by current_breakpoint/5 is exactly the same as the one given in add_
breakpoint/2. If the breakpoint was created by spy/2, then the test part is extended
by a pred condition, as exemplified above. Earlier we described some pre-processing steps
that the spec goes through, such as moving the module qualification of the spec to certain
conditions. These transformations are performed on the copy of the breakpoint used for
testing. Independently of this, the debugger also stores the original breakpoint, which is
returned by current_breakpoint/5.

7.6.8 Accessing Past Debugger States

In this section we introduce the built-in predicates for accessing past debugger states, and
the breakpoint conditions related to these.

The debugger collects control flow information about the goals being executed, more pre-
cisely about those goals, for which a procedure box is built. This collection of information,
the backtrace, includes the invocations that were called but not exited yet, as well as those
that exited nondeterminately. For each invocation, the main data items present in the

106 SICStus Prolog

backtrace are the following: the goal, the module, the invocation number, the depth and
the source information, if any.

Furthermore, as you can enter a new break level from within the debugger, there can be
multiple backtraces, one for each active break level.

You can access all the information collected by the debugger using the built-in predicate
execution_state(Focus, Tests). Here Focus is a ground term specifying which break
level and which invocation to access. It can be one of the following:

• break_level(BL) selects the current invocation within the break level BL.
• inv(Inv) selects the invocation number Inv within the current break level.
• A list containing the above two elements, selects the invocation with number Inv within

break level BL.

Note that the top-level counts as break level 0, while the invocations are numbered from 1
upwards.

The second argument of execution_state/2, Tests, is a simple or composite breakpoint
condition. Most simple tests can appear inside Tests, with the exception of the port,
bid, advice, debugger, and get tests. These tests will be interpreted in the context of
the specified past debugger state. Specifically, if a true/1 condition is used, then any
execution_state/1 queries appearing in it will be evaluated in the past context.

To illustrate the use of execution_state/2, we now define a predicate last_call_
arg(ArgNo, Arg), which is to be called from within a break, and which will look at the last
debugged goal of the previous break level, and return in Arg the ArgNoth argument of this
goal.

last_call_arg(ArgNo, Arg) :-
execution_state(break_level(BL1)),
BL is BL1-1,
execution_state(break_level(BL), goal(Goal)),
arg(ArgNo, Goal, Arg).

We see two occurrences of the term break_level(...) in the above example. Although
these look very similar, they have different roles. The first one, in execution_state/1, is a
breakpoint test, which unifies the current break level with its argument. Here it is used to
obtain the current break level and store it in BL1. The second use of break_level(...),
in the first argument of execution_state/2, is a focus condition, whose argument has to
be instantiated, and which prescribes the break level to focus on. Here we use it to obtain
the goal of the current invocation of the previous break level.

Note that the goal retrieved from the backtrace is always in its latest instantiation state.
For example, it not possible to get hold of the goal instantiation at the Call port, if the
invocation in question is at the Exit port.

Here is an example run, showing how last_call_arg/2 can be used:

Chapter 7: Debugging 107

5 2 Call: _937 is 13+8 ? b

% Break level 1
% 1
| ?- last_call_arg(2, A).

A = 13+8

There are some further breakpoint tests that are primarily used in looking at past execution
states.

The test max_inv(MaxInv) returns the maximal invocation number within the current (or
selected) break level. The test exited(Boolean) unifies Boolean with true if the invocation
has exited, and with false otherwise.

The following example predicate lists those goals in the backtrace, together with their
invocation numbers, that have exited. These are the invocations that are listed by the t

interactive debugger command (print backtrace), but not by the g command (print ancestor
goals). Note that the predicate between(N,M, I) enumerates all integers such that N ≤
I ≤ M .

exited_goals :-
execution_state(max_inv(Max)),
between(1, Max, Inv),
execution_state(inv(Inv), [exited(true),goal(G)]),
format(’~t~d~6| ~p\n’, [Inv,G]),
fail.

exited_goals.
(...)

?* 41 11 Exit: foo(2,1) ? @
| :- exited_goals.

26 foo(3,2)
28 bar(3,1,1)
31 foo(2,1)
33 bar(2,1,0)
36 foo(1,1)
37 foo(0,0)
39 foo(1,1)
41 foo(2,1)
43 bar(2,1,0)
46 foo(1,1)
47 foo(0,0)

?* 41 11 Exit: foo(2,1) ?

Note that similar output can be obtained by entering a new break level and calling exited_
goals from within an execution_state/2:

% 1
| ?- execution_state(break_level(0), true(exited_goals)).

108 SICStus Prolog

The remaining two breakpoint tests allow you to find parent and ancestor invocations
in the backtrace. The parent_inv(Inv) test unifies Inv with the invocation number of
the youngest ancestor present in the backtrace, called debugger-parent for short. The test
ancestor(AncGoal,Inv) looks for the youngest ancestor in the backtrace that is an instance
of AncGoal. It then unifies the ancestor goal with AncGoal and its invocation number with
Inv.

Assume you would like to stop at all invocations of foo/2 that are somewhere within bar/1,
possibly deeply nested. The following two breakpoints achieve this effect:

| ?- spy(bar/1, advice), spy(foo/2, ancestor(bar(_),_)).

% Plain advice point for user:bar/1 added, BID=3
% Conditional spypoint for user:foo/2 added, BID=4

We added an advice-point for bar/1 to ensure that all calls to it will have procedure boxes
built, and so become part of the backtrace. Advice-points are a better choice than spypoints
for this purpose, as with ?- spy(bar/1, -proceed) the debugger will not stop at the call
port of bar/1 in trace mode. Note that it is perfectly all right to create an advice-point
using spy/2, although this is a bit of terminological inconsistency.

Further examples of accessing past debugger states can be found in library(debugger_
examples).

7.6.9 Storing User Information in the Backtrace

The debugger allows the user to store some private information in the backtrace. It al-
locates a Prolog variable in each break level and in each invocation. The breakpoint test
private(Priv) unifies Priv with the private information associated with the break level,
while the test goal_private(GPriv) unifies GPriv with the Prolog variable stored in the
invocation.

Both variables are initially unbound, and behave as if they were passed around the program
being debugged in additional arguments. This implies that any variable assignments done
within these variables are undone on backtracking.

The private condition practically gives you access to a Prolog variable shared by all invo-
cations of a break level. This makes it possible to remember a term and look at it later, in
a possibly more instantiated form, as shown by the following example.

Chapter 7: Debugging 109

memory(Term) :-
execution_state(private(P)),
memberchk(myterm(Term), P).

| ?- trace, append([1,2,3,4], [5,6], L).

1 1 Call: append([1,2,3,4],[5,6],_514) ? @
| :- append(_,_,L)^memory(L).

1 1 Call: append([1,2,3,4],[5,6],_514) ? c

2 2 Call: append([2,3,4],[5,6],_2064) ? c

3 3 Call: append([3,4],[5,6],_2422) ? c

4 4 Call: append([4],[5,6],_2780) ? @
| :- memory(L), write(L), nl.

[1,2,3|_2780]
4 4 Call: append([4],[5,6],_2780) ?

The predicate memory/1 receives the term to be remembered in its argument. It gets hold
of the private field associated with the break level in variable P, and calls memberchk/2 (see
Chapter 20 [Lists], page 363), with the term to be remembered, wrapped in myterm, as the
list element, and the private field, as the list. Thus the latter, initially unbound variable,
is used as an open-ended list. For example, when memory/1 is called for the first time, the
private field gets instantiated to [myterm(Term)|_]. If later you call memory/1 with an
uninstantiated argument, it will retrieve the term remembered earlier and unify it with the
argument.

The above trace excerpt shows how this utility predicate can be used to remember an
interesting Prolog term. Within invocation number 1 we call memory/1 with the third,
output argument of append/3, using the ‘@’ command (see Section 7.5 [Debug Commands],
page 81). A few tracing steps later, we retrieve the term remembered and print it, showing
its current instantiation. Being able to access the instantiation status of some terms of
interest can be very useful in debugging. In library(debugger_examples) we describe
new debugger commands for naming Prolog variables and providing name-based access to
these variables, based on the above technique.

We could have avoided the use of memberchk/2 in the example by simply storing
the term to be remembered in the private field itself (memory(Term) :- execution_
state(private(Term)).). But this would have made the private field unusable for other
purposes. For example, the finite domain constraint debugger (see Chapter 36 [FDBG],
page 519) would stop working, as it relies on the private fields.

There is only a single private variable of both kinds within the given scope. Therefore the
convention of using an open ended list for storing information in private fields, as shown
in the above example, is very much recommended. The different users of the private field
are distinguished by the wrapper they use (e.g. myterm/1 above, fdbg/1 for the constraint
debugger, etc.). Future SICStus Prolog releases may enforce this convention by providing
appropriate breakpoint tests.

We now present an example of using the goal private field. Earlier we have shown a spypoint
definition that made a predicate invisible in the sense that its ports are silently passed

110 SICStus Prolog

through and it is automatically skipped over. However, with that earlier solution, execution
always continues in trace mode after skipping. We now improve the spypoint definition:
the mode in which the Call port was reached is remembered in the goal private field, and
the mode action variable is reset to this value at the Exit port.

mode_memory(Mode) :-
execution_state(goal_private(GP)),
memberchk(mymode(Mode), GP).

| ?- spy(foo/2, -[silent,proceed,

true(mode_memory(MM)),

(call -> get(mode(MM)), inv(Inv), skip(Inv)

; exit -> mode(MM)

; true

)]).

Here, we first define an auxiliary predicate mode_memory/1, which uses the open list con-
vention for storing information in the goal private field, applying the mymode/1 wrapper.
We then create a spypoint for foo/2, whose action part first sets the print and command
action variables. Next, the mode_memory/1 predicate is called, unifying the mode memory
with the MM variable. We then branch in the action part: at Call ports the uninstantiated
MM is unified with the current mode, and a skip command is issued. At Exit ports MM holds
the mode saved at the Call port, so the mode(MM) action re-activates this mode. At all
other ports we just silently proceed without changing the debugger mode.

7.6.10 Hooks Related to Breakpoints

There are two hooks related to breakpoints.

The hook breakpoint_expansion(Macro,Body) makes it possible for the user to extend
the set of allowed conditions. This hook is called, at breakpoint addition time, with each
simple test or action within the breakpoint spec, as the Macro argument. If the hook
succeeds, then the term returned in the Body argument is substituted for the original test
or action. Note that Body can not span both the test and the action part, i.e. it cannot
contain the - /2 operator. The whole Body will be interpreted either as a test or as an
action, depending on the context of the original condition.

We now give a few examples for breakpoint macros. The last example defines a condition
making a predicate invisible, a reformulation of the last example of the previous subsection.

Chapter 7: Debugging 111

:- multifile user:breakpoint_expansion/2.
user:breakpoint_expansion(

skip, [inv(I),skip(I)]).

user:breakpoint_expansion(
gpriv(Value),
[goal_private(GP),true(memberchk(Value,GP))]).

user:breakpoint_expansion(
invisible,
[silent,proceed,

(call -> get(mode(M)), gpriv(mymode(M)), skip
; exit -> gpriv(mymode(MM)), mode(MM)
; true
)]).

| ?- spy(foo/2, -invisible).

We first define the skip macro, instructing the debugger to skip the current invocation.
This macro is only meaningful in the action part.

The second clause defines the gpriv/2 macro, a generalization of the earlier
mode_memory/1 predicate. For example, gpriv(mymode(M)) expands to goal_
private(GP),true(memberchk(mymode(M),GP)). This embodies the convention of using
open-ended lists for the goal private field.

Finally, the last clause implements the action macro invisible/0, which makes the pred-
icate in question to disappear from the trace. The last line shows how this macro can be
used to make foo/2 invisible.

Below is an alternative implementation of the same macro. Here we use a Prolog predicate
that returns the list of action variable settings to be applied at the given port. Notice that
a variable can be used as a breakpoint condition, as long as this variable gets instantiated
to a (simple or composite) breakpoint condition by the time it is reached in the process of
breakpoint evaluation.

user:breakpoint_expansion(invisible,
[true(invisible(Settings)),Settings]).

invisible([proceed,silent,NewMode]) :-
execution_state([mode(M),port(P),inv(Inv),goal_private(GP)]),
memberchk(mymode(MM), GP),
(P == call -> MM = M, NewMode = skip(Inv)
; P = exit(_) -> NewMode = MM
; NewMode = M
).

112 SICStus Prolog

The second hook related to breakpoints is debugger_command_hook(DCommand, Actions).
This hook serves for customizing the behavior of the interactive debugger, i.e. for introducing
new interactive debugger commands. The hook is called for each debugger command read
in by the debugger. DCommand contains the abstract format of the debugger command
read in, as returned by the query facility (see Section 8.13.3 [Query Processing], page 200).
If the hook succeeds, it should return in Actions an action part to be evaluated as the result
of the command.

If you want to redefine an existing debugger command, you should study library(’SU_
messages’) to learn the abstract format of this command, as returned by the query facility.
If you want to add a new command, it suffices to know that unrecognized debugger com-
mands are returned as unknown(Line,Warning). Here, Line is the cude-list typed in, with
any leading layout removed, and Warning is a warning message.

The following example defines the ‘S’ interactive debugger command to behave as skip at
Call and Redo ports, and as creep otherwise:

:- multifile user:debugger_command_hook/2.
user:debugger_command_hook(unknown([0’S|_],_), Actions) :-

execution_state([port(P),inv(I)]),
Actions = [Mode,proceed,silent],
(P = call -> Mode = skip(I)
; P = redo -> Mode = skip(I)
; Mode = trace
).

Note that the silent action is needed above; otherwise, the trace message will be printed
a second time, before continuing the execution.

library(debugger_examples) contains some of the above hooks, as well as several others.

7.6.11 Programming Breakpoints

We will show two examples using the advanced features of the debugger.

The first example defines a hide_exit(Pred) predicate, which will hide the Exit port for
Pred (i.e. it will silently proceed), provided the current goal was already ground at the
Call port, and nothing was traced inside the given invocation. The hide_exit(Pred) goal
creates two spypoints for predicate Pred:

:- meta_predicate hide_exit(:).
hide_exit(Pred) :-

add_breakpoint([pred(Pred),call]-
true(save_groundness), _),

add_breakpoint([pred(Pred),exit,true(hide_exit)]-hide, _).

Chapter 7: Debugging 113

The first spypoint is applicable at the Call port, and it calls save_groundness to check
if the given invocation was ground, and if so, it stores a term hide_exit(ground) in the
goal_private attribute of the invocation.

save_groundness :-
execution_state([goal(_:G),goal_private(Priv)]),
ground(G), !, memberchk(hide_exit(ground), Priv).

save_groundness.

The second spypoint created by hide_exit/1 is applicable at the Exit port and it checks
whether the hide_exit/0 condition is true. If so, it issues a hide action, which is a
breakpoint macro expanding to [silent,proceed].

hide_exit :-
execution_state([inv(I),max_inv(I),goal_private(Priv)]),
memberchk(hide_exit(Ground), Priv), Ground == ground.

Here, hide_exit encapsulates the tests that the invocation number is the same as the last
invocation number used (max_inv), and that the goal_private attribute of the invocation
is identical to ground. The first test ensures that nothing was traced inside the current
invocation.

If we load the above code, as well as the small example below, then the following interaction
can take place. Note that the hide_exit predicate is called with the _:_ argument, resulting
in generic spypoints being created.

| ?- [user].

| cnt(0) :- !.

| cnt(N) :-

N > 0, N1 is N-1, cnt(N1).

| ^D
% consulted user in module user, 0 msec 424 bytes

| ?- hide_exit(_:_), trace, cnt(1).

% The debugger will first zip -- showing spypoints (zip)
% Generic spypoint added, BID=1
% Generic spypoint added, BID=2
% The debugger will first creep -- showing everything (trace)
1 1 Call: cnt(1) ? c

2 2 Call: 1>0 ? c

3 2 Call: _2019 is 1-1 ? c

3 2 Exit: 0 is 1-1 ? c

4 2 Call: cnt(0) ? c

1 1 Exit: cnt(1) ? c

% trace
| ?-

114 SICStus Prolog

Invocation 1 is ground, its Exit port is not hidden, because further goals were traced inside
it. On the other hand, Exit ports of ground invocations 2 and 4 are hidden.

Our second example defines a predicate call_backtrace(Goal, BTrace), which will ex-
ecute Goal and build a backtrace showing the successful invocations executed during the
solution of Goal.

The advantages of such a special backtrace over the one incorporated in the debugger are
the following:

• it has much lower space consumption;
• the user can control what is put on and removed from the backtrace (e.g. in this example

all goals are kept, even the ones that exited determinately);
• the interactive debugger can be switched on and off without affecting the “private”

backtrace being built.

The call_backtrace/2 predicate is based on the advice facility. It uses the variable acces-
sible via the private(_) condition to store a mutable holding the backtrace (see Section 8.7
[Meta Logic], page 183). Outside the call_backtrace predicate the mutable will have the
value off.

The example is a module-file, so that internal invocations can be identified by the module
name. We load the lists library, because memberchk/2 will be used in the handling of the
private field.

:- module(backtrace, [call_backtrace/2]).
:- use_module(library(lists)).

:- meta_predicate call_backtrace(:, ?).
call_backtrace(Goal, BTrace) :-

Spec = [advice,call]
-[true((goal(M:G),store_goal(M,G))),flit],

(current_breakpoint(Spec, _, on, _, _) -> B = []
; add_breakpoint(Spec, B)
),
call_cleanup(call_backtrace1(Goal, BTrace),

remove_breakpoints(B)).

call_backtrace(Goal, BTrace) is a meta-predicate, which first sets up an appropriate
advice-point for building the backtrace. The advice-point will be activated at each Call
port, will call the store_goal/2 predicate with arguments containing the module and the
goal in question. Note that the advice-point will not build a procedure box (cf. the flit
command in the action part).

The advice-point will be added just once: any further (recursive) calls to call_backtrace/2
will notice the existence of the breakpoint and will skip the add_breakpoint/2 call.

Chapter 7: Debugging 115

Having ensured the appropriate advice-point exists, call_backtrace/2 calls call_
backtrace1/2 with a cleanup operation that removes the breakpoint added, if any.

:- meta_predicate call_backtrace1(:, ?).
call_backtrace1(Goal, BTrace) :-

execution_state(private(Priv)),
memberchk(backtrace_mutable(Mut), Priv),
(is_mutable(Mut) -> get_mutable(Old, Mut),

update_mutable([], Mut)
; create_mutable([], Mut), Old = off
),
call(Goal),
get_mutable(BTrace, Mut), update_mutable(Old, Mut).

The predicate call_backtrace1/2 retrieves the private field of the execution state and uses
it to store a mutable, wrapped in backtrace_mutable. When first called within a top-level
the mutable is created with the value []. In later calls the mutable is re-initialized to [].
Having set up the mutable, Goal is called. In the course of the execution of the Goal the
debugger will accumulate the backtrace in the mutable. Finally, the mutable is read, its
value is returned in BTrace, and it is restored to its old value (or off).

store_goal(M, G) :-
M \== backtrace,
G \= call(_),
execution_state(private(Priv)),
memberchk(backtrace_mutable(Mut), Priv),
is_mutable(Mut),
get_mutable(BTrace, Mut),
BTrace \== off, !,
update_mutable([M:G|BTrace], Mut).

store_goal(_, _).

store_goal/2 is the predicate called by the advice-point, with the module and the goal
as arguments. We first ensure that calls from within the backtrace module and those of
call/1 get ignored. Next, the module qualified goal term is prepended to the mutable value
retrieved from the private field, provided the mutable exists and its value is not off.

Below is an example run, using a small program:

116 SICStus Prolog

| ?- [user].

| cnt(N):- N =< 0, !.

| cnt(N) :-

N > 0, N1 is N-1, cnt(N1).

| ^D
% consulted user in module user, 0 msec 424 bytes

| ?- call_backtrace(cnt(1), B).

% Generic advice point added, BID=1
% Generic advice point, BID=1, removed (last)

B = [user:(0=<0),user:cnt(0),user:(0 is 1-1),user:(1>0),user:cnt(1)]

| ?-

Note that the backtrace produced by call_backtrace/2 can not contain any information
regarding failed branches. For example, the very first invocation within the above execution,
1 =< 0, is first put on the backtrace at its Call port, but this is immediately undone because
the goal fails. If you would like to build a backtrace that preserves failed branches, you
have to use side-effects, e.g. dynamic predicates.

Further examples of complex breakpoint handling are contained in library(debugger_
examples).

This concludes the tutorial introduction of the advanced debugger features.

7.7 Breakpoint Handling Predicates

This section describes the advanced built-in predicates for creating and removing break-
points.

add_breakpoint(:Spec, ?BID) development

Adds a breakpoint with a spec Spec, the breakpoint identifier assigned is unified
with BID. Spec is one of the following:

Tests-Actions
Tests standing for Tests-[]

-Actions standing for []-Actions

Here, both Tests and Actions are either a simple Condition, see Section 7.9
[Breakpoint Conditions], page 120, or a composite Condition. Conditions can
be composed by forming lists, or by using the ‘,’, ‘;’, ‘->’, and ‘\+’ operators,
with the usual meaning of conjunction, disjunction, if-then-else, and negation,
respectively. A list of conditions is equivalent to a conjunction of the same
conditions ([A|B] is treated as (A,B)).
The add_breakpoint/2 predicate performs some transformations and checks
before adding the breakpoint. All condition macros invoked are expanded into

Chapter 7: Debugging 117

their bodies, and this process is repeated for the newly introduced bodies. The
goal and pred conditions are then extracted from the outermost conjunctions
of the test part and moved to the beginning of the conjunction. If these are
inconsistent, a consistency error is signalled. Module name expansion is per-
formed for certain tests, as described below.
Both the original and the transformed breakpoint spec is recorded by the debug-
ger. The original is returned in current_breakpoint/5, while the transformed
spec is used in determining the applicability of breakpoints.
There can only be a single plain spypoint for each predicate. If a plain spypoint
is added, and there is already a plain spypoint for the given predicate, then:
a. the old spypoint is deleted and a new added as the most recent breakpoint,

if this change affects the breakpoint selection mechanism.
b. otherwise, the old spypoint is kept and enabled if needed.

spy(:PredSpec, :Spec) development

Adds a conditional spypoint with a breakpoint spec formed by adding
pred(Pred) to the test part of Spec, for each predicate Pred designated by
the generalized predicate spec PredSpec.

current_breakpoint(:Spec, ?BID, ?Status, ?Kind, ?Type) development

There is a breakpoint with breakpoint spec Spec, identifier BID, status Status,
kind Kind, and type Type. Status is one of on or off, referring to enabled
and disabled breakpoints. Kind is one of plain(MFunc), conditional(MFunc
) or generic, where MFunc is the module qualified functor of the specific
breakpoint. Type is the breakpoint type: debugger or advice.
current_breakpoint/5 enumerates all breakpoints on backtracking.
The Spec as returned by current_breakpoint/5 is exactly the same as supplied
at the creation of the breakpoint,

remove_breakpoints(+BIDs) development

disable_breakpoints(+BIDs) development

enable_breakpoints(+BIDs) development

Removes, disables or enables the breakpoints with identifiers specified by BIDs.
BIDs can be a number, a list of numbers or one of the atoms: all, debugger,
advice. The atoms specify all breakpoints, debugger type breakpoints and
advice type breakpoints, respectively.

execution_state(:Tests) development

Tests are satisfied in the current state of the execution. Arbitrary tests can be
used in this predicate, if it is called from inside the debugger, i.e. from within a
true condition. Otherwise only those tests can be used, which query the data
stored in the backtrace. An exception is raised if the latter condition is violated,
i.e. a non-backtraced test (see Section 7.9 [Breakpoint Conditions], page 120)
occurs in a call of execution_state/1 from outside the debugger.

execution_state(+FocusConditions, :Tests) development

Tests are satisfied in the state of the execution pointed to by FocusConditions
(see Section 7.9.7 [Past States], page 126). An exception is raised if there is a
non-backtraced test among Tests.

118 SICStus Prolog

Note that the predicate arguments holding a breakpoint spec (Spec or Tests above) are sub-
ject to module name expansion. The first argument within simple tests goal(_), pred(_),
parent_pred(_), parent_pred(_,_), ancestor(_,_), and true(_) will inherit the module
name from the (module name expanded) breakpoint spec/tests predicate argument, if there
is no explicit module qualification within the simple test. Within the proceed(Old,New)
and flit(Old,New) command value settings, Old will get the module name from the goal
or pred condition by default, while New from the whole breakpoint spec argument.

The following hook predicate can be used to customize the behavior of the interactive
debugger.

debugger_command_hook(+DCommand,?Actions) hook,development

user:debugger_command_hook(+DCommand,?Actions)
This predicate is called for each debugger command SICStus Prolog reads in.
The first argument is the abstract format of the debugger command DCom-
mand, as returned by the query facility (see Section 8.13.3 [Query Processing],
page 200). If it succeeds, Actions is taken as the list of actions (see Section 7.9.6
[Action Conditions], page 125) to be done for the given debugger command. If
it fails, the debugger command is interpreted in the standard way.
Note that if a line typed in in response to the debugger prompt can not be
parsed as a debugger command, debugger_command_hook/2 is called with the
term unknown(Line,Warning). Here, Line is the code-list typed in, with any
leading layout removed, and Warning is a warning message. This allows the
user to define new debugger commands, see Section 7.6.10 [Hooks Related to
Breakpoints], page 110 for an example.

7.8 The Processing of Breakpoints

This section describes in detail how the debugger handles the breakpoints. For the purpose
of this section disabled breakpoints are not taken into account: whenever we refer to the
existence of some breakpoint(s), we always mean the existence of enabled breakpoint(s).

The Prolog engine can be in one of the following three states with respect to the debugger:

no debugging
if there are no advice-points and the debugger is either switched off, or doing a
skip;

full debugging
if the debugger is in trace or debug mode (creeping or leaping), or there are
any generic breakpoints;

selective debugging
in all other cases.

In the selective debugging state only those predicate invocations are examined, for which
there exists a specific breakpoint. In the full debugging state all invocations are examined,

Chapter 7: Debugging 119

except those calling a predicate of a hidden module (but even these will be examined, if
there is a specific breakpoint for them). In the no debugging state the debugger is not
entered at predicate invocations.

Now we describe what the debugger does when examining an invocation of a predicate, i.e.
executing its Call port. The debugger activities can be divided into three stages: advice-
point processing, spypoint processing and interaction with the user. The last stage may be
repeated several times before program execution continues.

The first two stages are similar, as they both search for an applicable breakpoint (spypoint
or advice-point). This common breakpoint search is carried out as follows. The debugger
considers all breakpoints of the given type, most recent first. For each breakpoint, the test
part of the spec is evaluated, until one successful is found. Any variable bindings created in
this successful evaluation are then discarded (this is implemented by enclosing it in double
negation). The first breakpoint, for which the evaluation of the test part succeeds is selected.
If such a breakpoint can be found, then the breakpoint search is said to have completed
successfully, otherwise it is said to have failed.

If a breakpoint has been selected then its action part is evaluated, normally setting some
debugger action variables. If the action part fails, then, as a side-effect, it is ensured that a
procedure box will be built. This is achieved by changing the value of the command action
variable from flit to proceed.

Having described the common breakpoint search, let us look at the details of the first
stage, advice-point processing. This stage is executed only if there are any advice-points
set. First, the debugger action variables are initialized: mode is set to the current debugger
mode, command to proceed and show to silent. Next, advice-point search takes place. If
this fails, command is set to flit, otherwise its value is unchanged.

After completing the advice-point search the command variable is examined. If its value is
divertive, i.e. different from proceed and flit, then the spypoint search stage is omitted,
and the debugger continues with the third stage. Otherwise, it is noted if the advice-point
processing has requested the building of a procedure box (i.e. command = proceed), and the
debugger continues with the second stage.

The second stage is spypoint processing. This stage is skipped if the debugger is switched
off or doing a skip (mode is off or skip(_)). First the the show and command variables are
re-assigned, based on the hiddenness of the predicate being invoked, the debugger mode and
the leashing status of the port. If the predicate is both defined in, and called from a hidden
module, then their values will be silent and flit. An example of this is when a built-in
predicate is called from a hidden module, e.g. from a library. Otherwise, in trace mode,
their values are print and ask for leashed ports, and print and proceed for unleashed
ports. In debug mode, the variables are set to silent and proceed, while in zip mode to
silent and flit (Section 7.6.5 [Breakpoint Actions], page 96 contains a tabulated listing
of these initialization values).

120 SICStus Prolog

Having initialized the debugger action variables, the spypoint search phase is performed. If
an empty action part has been selected in a successful search, then show and command are
set to print and ask. The failure of the search is ignored.

The third stage is the interactive part. First, the goal in question is displayed according to
the value of show. Next, the value of command is checked: if it is other than ask, then the
interactive stage ends. Otherwise, (it is ask), the variable show is re-initialized to print, or
to print-Sel, if its value was of form Method-Sel. Next, the debugger prompts the user for
a command, which is interpreted either in the standard way, or through user:debugger_
command_hook/2. In both cases the debugger action variables are modified as requested,
and the interactive part is repeated.

After the debugger went through all the three stages, it decides whether to build a procedure
box. This will happen if either the advice-point stage or the other two stages require it.
The latter is decided by checking the command variable: if that is flit or flit(Old,New
), then no procedure box is required by the spypoint part. If the advice-point does require
the building of a procedure box, then the above command values are replaced by proceed
and proceed(Old,New), respectively.

At the end of the process the value of mode will be the new debugging mode, and command
will determine what the debugger will do; see Section 7.9.9 [Action Variables], page 126.

A similar three-stage process is carried out when the debugger arrives at a non-Call port of
a predicate. The only difference is that the building of a procedure box is not considered
(flit is equivalent to proceed), and the hiddenness of the predicate is not taken into
account.

While the Prolog system is executing the above three-stage process for any of the ports, it
is said to be inside the debugger. This is relevant, because some of the conditions can only
be evaluated in this context.

7.9 Breakpoint Conditions

This section describes the format of simple breakpoint conditions. We first list the tests that
can be used to enquire the state of execution. We then proceed to describe the conditions
usable in the action part and the options for focusing on past execution states. Finally, we
describe condition macros and the format of the values of the debugger action variables.

We distinguish between two kinds of tests, based on whether they refer to information
stored in the backtrace or not. The latter category, the non-backtraced tests, contains
the conditions related to the current port (port, bid, mode, show, command, get) and
the breakpoint type selection conditions (advice and debug). All remaining tests refer to
information stored in the backtrace.

Non-backtraced tests will raise an exception, if they appear in calls to execution_state/1
from outside the debugger, or in queries about past execution state, in execution_state/2.

Chapter 7: Debugging 121

Backtraced tests are allowed both inside and outside the debugger. However such tests
can fail if the given query is not meaningful in the given context, e.g. if execution_
state(goal(G)) is queried before any breakpoints were encountered.

Note that if a test is used in the second argument of execution_state/2, then the term
current, in the following descriptions, should be interpreted as referring to the execution
state focused on (described by the first argument of execution_state/2).

7.9.1 Tests Related to the Current Goal

The following tests give access to basic information about the current invocation.

inv(Inv) The invocation number of the current goal is Inv. Invocation numbers start
from 1.

depth(Depth)
The current execution depth is Depth.

goal(MGoal)
The current goal is an instance of the module name expanded MGoal tem-
plate. The current goal and MGoal are unified. This condition is equiv-
alent to the subsumes(MGoal,CurrentGoal) test (subsumes/2 is defined in
library(terms), see Chapter 21 [Term Utilities], page 367).

pred(MFunc)
The module name expanded MFunc template matches (see notes below) the
functor (M:F/N) of the current goal. The unification required for matching is
carried out.

module(Module)
The current goal is invoked from module Module. For compiled calls to built-in
predicates Module will always be prolog.

goal_private(GoalPriv)
The private information associated with the current goal is GoalPriv. This is
initialized to an unbound variable at the Call port. It is strongly recommended
that GoalPriv be used as an open ended list, see Section 7.6.9 [Storing User
Information in the Backtrace], page 108.

exited(Boolean)
Boolean is true if the the current invocation has exited, and false otherwise.
This condition is mainly used for looking at past execution states.

parent_inv(Inv)
The invocation number of the debugger-parent (see notes below) of the current
goal is Inv.

ancestor(AncGoal,Inv)
The youngest debugger-ancestor of the current goal, which is an instance of the
module name expanded AncGoal template, is at invocation number Inv. The
unification required for matching is carried out.

122 SICStus Prolog

Notes:

The debugger-parent of a goal is the youngest ancestor of the goal present on the backtrace.
This will differ from the ordinary parent if not all goals are traced, e.g. if the goal in
question is reached in zip mode. A debugger-ancestor of a goal is any of its ancestors on
the backtrace.

In the goal and ancestor tests above, there is a given module qualified goal template, say
ModT:GoalT, and it is matched against a concrete goal term Mod:Goal in the execution
state. This matching is carried out as follows:

a. It is checked that Goal is an instance of GoalT.
b. Goal and GoalT are unified.
c. It is checked that Mod and ModT are either unifiable (and are unified), or name

such modules in which Goal has the same meaning, i.e. either one of Mod:Goal and
ModT:Goal is an exported variant of the other, or both are imported from the same
module.

Similar matching rules apply for predicate functors, in the pred condition. In this test the
argument holds a module qualified functor template, say ModT:Name/Arity, and this is
matched against a concrete goal term Mod:Goal in the execution state.

a. It is checked that the functor of Goal unifies with Name/Arity, and this unification is
carried out.

b. It is checked that Mod and ModT are either unifiable (and are unified), or name such
modules in which Goal has the same meaning.

7.9.2 Tests Related to Source Information

These tests provide access to source related information. The file and line tests will fail if
no source information is present. The parent_clause and parent_pred tests are available
for interpreted code only, they will fail in compiled code.

file(File)
The current goal is invoked from a file whose absolute name is File.

line(File,Line)
The current goal is invoked from line Line, from within a file whose absolute
name is File.

line(Line)
The current goal is invoked from line Line.

parent_clause(Cl)
The current goal is invoked from clause Cl.

parent_clause(Cl,Sel)
The current goal is invoked from clause Cl and within its body it is pointed to
by the subterm selector Sel.

Chapter 7: Debugging 123

parent_clause(Cl,Sel,I)
The current goal is invoked from clause Cl, it is pointed to by the subterm
selector Sel within its body, and it is the Ith goal within it. The goals in the
body are counted following their textual occurrence.

parent_pred(Pred)
The current goal is invoked from predicate Pred.

parent_pred(Pred,N)
The current goal is invoked from predicate Pred, clause number N.

The parent_pred tests match their first argument against the functor of the parent predi-
cate in the same way as the pred test does, see the notes in the previous section (Section 7.9.1
[Goal Tests], page 121).

7.9.3 Tests Related to the Current Port

These tests can only be used inside the debugger and only when focused on the current
invocation. If they appear in execution_state/2 or in execution_state/1 called from
outside the debugger, an exception will be raised.

The notion of port in breakpoint handling is more general than outlined earlier in Section 7.1
[Procedure Box], page 75. Here, the following terms are used to describe a port:

call, exit(nondet), exit(det), redo, fail,
exception(Exception), block, unblock

Furthermore, the atoms exit and exception can be used in the port condition (see below),
to denote any of the two exit ports and an arbitrary exception port, respectively.

port(Port)
The current execution port matches Port in the following sense: either Port
and the current port unify, or Port is the functor of the current port (e.g.
port(exit) holds for both exit(det) and exit(nondet) ports).
As explained earlier, the port condition for a non Call port is best placed in
the action part. This is because the failure of the action part will cause the
debugger to pass through the Call port silently, and to build a procedure box,
even in zip mode. The following idiom is suggested for creating breakpoints at
non Call ports:

add_breakpoint(Tests-[port(Port),Actions], BID).

bid(BID) The breakpoint being examined has a breakpoint identifier BID. (BID = none
if no breakpoint was selected.)

mode(Mode)
Mode is the value of the mode variable, which normally reflects the current
debugger mode.

124 SICStus Prolog

command(Command)
Command is the value of the command variable, which is the command to be
executed by default, if the breakpoint is selected.

show(Show)
Show is the value of the show variable, i.e. the default show method (the method
for displaying the goal in the trace message).

The last three of the above tests access the debugger action variables. These break-
point conditions have a different meaning in the action part. For example, the condition
mode(trace), if it occurs in the tests, checks if the current debugger mode is trace. On
the other hand, if the same term occurs within the action part, it sets the debugger mode
to trace.

To support the querying of the action variables in the action part, the following breakpoint
condition is provided:

get(ActVar)
Equivalent to ActVar, where this is an action variable test, i.e. one of the
terms mode(Mode), command(Command), show(Show). It has this meaning in
the action part as well.

For the port, mode, command and show conditions, the condition can be replaced by its
argument, if that is not a variable. For example the condition call can be used instead
of port(call). Conditions matching the terms listed above as valid port values will be
converted to a port condition. Similarly, any valid value for the three debugger action
variables is converted to an appropriate condition. These valid values are described in
Section 7.9.9 [Action Variables], page 126.

7.9.4 Tests Related to the Break Level

These tests can be used both inside and outside the condition evaluation process, and also
can be used in queries about past break levels.

break_level(N)
We are at (or focused on) break level N (N = 0 for the outermost break level).

max_inv(MaxInv)
The last invocation number used within the current break level is MaxInv. Note
that this invocation number may not be present in the backtrace (because the
corresponding call exited determinately).

private(Priv)
The private information associated with the break level is Priv. Similarly to
goal_private/1, this condition refers initially to an unbound variable and can
be used to store an arbitrary Prolog term. However, it is strongly recommended
that Priv be used as an open ended list, see Section 7.6.9 [Storing User Infor-
mation in the Backtrace], page 108.

Chapter 7: Debugging 125

7.9.5 Other Conditions

The following conditions are for prescribing or checking the breakpoint type. They cause
an exception if used outside the debugger or in execution_state/2.

advice The breakpoint in question is of advice type.

debugger The breakpoint in question is of debugger type.

The following construct converts an arbitrary Prolog goal into a condition.

true(Cond)
The Prolog goal Cond is true, i.e. once(Cond) is executed and the condition is
satisfied iff this completes successfully. If an exception is raised during execu-
tion, then an error message is printed and the condition fails.
The substitutions done on executing Cond are carried out. Cond is subject to
module name expansion. If used in the test part of spypoint conditions, the
goal should not have any side-effects, as the test part may be evaluated several
times.

The following conditions represent the Boolean constants.

true

[] A condition that is always true. Useful e.g. in conditionals.

false A condition that is always false.

7.9.6 Conditions Usable in the Action Part

The meaning of the following conditions, if they appear in the action part, is different from
their meaning in the test part.

mode(Mode)
Set the debugger mode to Mode.

command(Command)
Set the command to be executed to Command.

show(Show)
Set the show method to Show.

The values admissible for Mode, Command and Show are described in Section 7.9.9 [Action
Variables], page 126.

Furthermore, any other condition can be used in the action part, except for the ones spec-
ifying the breakpoint type (advice and debugger). Specifically, the get condition can be
used to access the value of an action variable.

126 SICStus Prolog

7.9.7 Options for Focusing on a Past State

The following ground terms can be used in the first argument of execution_state/2 (see
Section 7.7 [Breakpoint Predicates], page 116). Alternatively, a list containing such terms
can be used. If a given condition occurs multiple times, only the last one is considered. The
order of conditions within the list does not matter.

break_level(BL)
Focus on the current invocation of break level BL. BL is the break level num-
ber, the top-level being break_level(0). For past break levels, the current
invocation is the one from which the next break level was entered.

inv(Inv) Focus on the invocation number Inv of the currently focused break level.

7.9.8 Condition Macros

There are a few condition macros expanding to a list of other conditions:

unleash Expands to [show(print),command(proceed)]

hide Expands to [show(silent),command(proceed)]

leash Expands to [show(print),command(ask)]

The user can also define condition macros using the hook predicate below.

breakpoint_expansion(+Macro, -Body) hook,development

user:breakpoint_expansion(+Macro, -Body)
This predicate is called with each (non-composite) breakpoint test or action, as
its first argument. If it succeeds, then the term returned in the second argument
(Body) is substituted for the original condition. The expansion is done at the
time the breakpoint is added.
Note that Body can be composite, but it cannot be of form Tests-Actions.
This means that the whole Body will be interpreted as being in either the test
or the action part, depending on the context.
The built-in breakpoint conditions can not be redefined using this predicate.

7.9.9 The Action Variables

In this section we list the possible values of the debugger action variables, and their meaning.

Note that the Prolog terms, supplied as values, are copied when a variable is set. This is
relevant primarily in case of the proceed/2 and flit/2 values.

Values allowed in the show condition:

Chapter 7: Debugging 127

print Write using options stored in the debugger_print_options Prolog flag.

silent Display nothing.

display Write using display.

write Write using writeq.

write_term(Options)
Write using options Options.

Method-Sel
Display only the subterm selected by Sel, using Method. Here, Method is one
of the methods above, and Sel is a subterm selector.

Values allowed in the command condition:

ask Ask the user what to do next.

proceed Continue the execution without interacting with the user (cf. unleashing).

flit Continue the execution without building a procedure box for the current goal
(and consequently not encountering any other ports for this invocation). Only
meaningful at Call ports, at other ports it is equivalent to proceed.

proceed(Goal,New)
Unless at call port, first go back to the call port (retry the current invocation,
see the retry(Inv) command value below). Next, unify the current goal with
Goal and execute the goal New in its place. Create (or keep) a procedure box
for the current goal.
This construct is used by the ‘u’ (unify) interactive debugger command.
Both the Goal and New arguments are module name expanded when the break-
point is added: the module of Goal defaults to the module of the current goal,
while that of New to the module name of the breakpoint spec. If the command
value is created during run time, then the module name of both arguments
defaults to the module of the current goal.
The term proceed(Goal,New) will be copied when the command action variable
is set. Therefore breakpoint specs of form

Tests - [goal(foo(X)),...,proceed(_,bar(X))]

should be avoided, and
Tests - [goal(foo(X)),...,proceed(foo(Y),bar(Y))

should be used instead. The first variant will not work as expected if X is non-
ground, as the variables in the bar/1 call will be detached from the original
ones in foo/1. Even if X is ground, the first variant may be much less efficient,
as it will copy the possibly huge term X.

flit(Goal,New)
Same as proceed(Goal,New), but do not create (or discard) a procedure box
for the current goal. (Consequently no other ports will be encountered for this
invocation.)

128 SICStus Prolog

Notes for proceed/2, on module name expansion and copying, also apply to
flit/2.

exception(E)
Raise the exception E.

abort Abort the execution.

retry(Inv)
Retry the the most recent goal in the backtrace with an invocation number
less or equal to Inv (go back to the Call port of the goal). This is used by the
interactive debugger command ‘r’, retry; see Section 7.5 [Debug Commands],
page 81.

reexit(Inv)
Re-exit the the invocation with number Inv (go back to the Exit port of the
goal). Inv must be an exact reference to an exited invocation present in the
backtrace (exited nondeterminately, or currently being exited). This is used
by the interactive debugger command ‘je’, jump to Exit port; see Section 7.5
[Debug Commands], page 81.

redo(Inv)
Redo the the invocation with number Inv (go back to the Redo port of the
goal). Inv must be an exact reference to an exited invocation present in the
backtrace. This is used by the interactive debugger command ‘jr’, jump to
Redo port; see Section 7.5 [Debug Commands], page 81.

fail(Inv)
Fail the most recent goal in the backtrace with an invocation number less or
equal to Inv (transfer control back to the Fail port of the goal). This is used by
the interactive debugger command ‘f’, fail; see Section 7.5 [Debug Commands],
page 81.

Values allowed in the mode condition:

qskip(Inv)
Quasi-skip until the first port with invocation number less or equal to Inv
is reached. Having reached that point, mode is set to trace. Valid only if
Inv ≥ 1 and furthermore Inv ≤ CurrInv for entry ports (Call, Redo), and
Inv < CurrInv for all other ports, where CurrInv is the invocation number of
the current port.

skip(Inv)
Skip until the first port with invocation number less or equal to Inv is reached,
and set mode to trace there. Inv should obey the same rules as for qskip.

trace Creep.

debug Leap.

zip Zip.

off Continue without debugging.

Chapter 7: Debugging 129

7.10 Consulting during Debugging

It is possible, and sometimes useful, to consult a file whilst in the middle of program
execution. Predicates that have been successfully executed and are subsequently redefined
by a consult and are later reactivated by backtracking, will not notice the change of their
definitions. In other words, it is as if every predicate, when called, creates a copy of its
definition for backtracking purposes.

7.11 Catching Exceptions

Usually, exceptions that occur during debugging sessions are displayed only in trace mode
and for invocation boxes for predicates with spypoints on them, and not during skips.
However, it is sometimes useful to make exceptions trap to the debugger at the earliest
opportunity instead. The hook predicate user:error_exception/1 provides such a possi-
bility:

error_exception(+Exception) hook

user:error_exception(+Exception)
This predicate is called at all Exception ports. If it succeeds, the debugger enters
trace mode and prints an exception port message. Otherwise, the debugger
mode is unchanged and a message is printed only in trace mode or if a spypoint
is reached, and not during skips.

Note that this hook takes effect when the debugger arrives at an Exception port. For this
to happen, procedure boxes have to be built, e.g. by running (the relevant parts of) the
program in debug mode.

130 SICStus Prolog

Chapter 8: Built-In Predicates 131

8 Built-In Predicates

SICStus Prolog provides a wide range of built-in predicates to perform all kinds of tasks;
see the Table of Contents.

It is not possible to redefine built-in predicates. An attempt to do so will raise an exception.
See Chapter 50 [Pred Summary], page 769.

When introducing a built-in predicate, we shall present its usage with a mode spec, and
optionally with an annotation containing one or more of:

ISO The predicate complies with the ISO Prolog Standard.

ISO only The predicate variant described complies with the ISO Prolog Standard and is
valid in the iso execution mode only.

SICStus only
The predicate variant described is valid in the sicstus execution mode only.

declaration
A declaration that can’t be redefined as a predicate.

development
The predicate is not available in runtime systems.

extendible The predicate is an extendible predicate.

hook The predicate is a hook predicate.

hookable The predicate is a hookable predicate.

obsolescent
The predicate is obsolescent and should be avoided in new code.

reserved A reserved construct that can’t be defined as a predicate.

The following descriptions of the built-in predicates are grouped according to the above
categorization of their tasks.

8.1 Input / Output

There are two sets of file manipulation predicates in SICStus Prolog. One set is inherited
from DEC-10 Prolog. These predicates always refer to a file by specification. The other
set of predicates is modeled after Quintus Prolog and refer to files as streams. Streams
correspond to the file pointers used at the operating system level.

This second set of file manipulation predicates, the one involving streams, is supported by
the ISO Prolog standard. Note that the notion of file is used here in a generalized sense;
it may refer to a named file, the user’s terminal, or some other device. The ISO Prolog
standard refers to this generalized notion of file using the term source/sink.

132 SICStus Prolog

A stream can be opened and connected to a file specification or file descriptor for input or
output by calling the predicates open/[3,4]. These predicates will return a reference to a
stream, which may then be passed as an argument to various I/O predicates. Alternatively,
a stream can be assigned an alias at the time of opening, and referred to by this alias
afterwards. The predicate close/1 is used for closing a stream.

There are two types of streams, binary or text. Binary streams are seen as a sequence of
bytes, i.e. integers in the range 0–255. Text streams, on the other hand, are considered
a sequence of characters, represented by their character codes. SICStus Prolog handles
wide characters, i.e. characters with codes larger than 255. The WCX (Wide Character
eXtension) component of SICStus Prolog allows selecting various encoding schemes via
environment variables or hook predicates; see Chapter 12 [Handling Wide Characters],
page 301.

The predicates current_stream/3 and stream_property/2 are used for retrieving infor-
mation about a stream, and for finding the currently existing streams.

Prolog streams can be accessed from C functions as well. See Section 9.6 [SICStus Streams],
page 247, for details.

The possible formats of a stream are:

’$stream’(X)
A stream connected to some file. X is an integer.

Atom A stream alias. Aliases can be associated with streams using the alias(Atom)
option of open/4. There are also three predefined aliases:

user_input
An alias initially referring to the UNIX stdin stream. The alias
can be changed with prolog_flag/3 and accessed by the C variable
SP_stdin.

user_output
An alias initially referring to the UNIX stdout stream. The alias
can be changed with prolog_flag/3 and accessed by the C variable
SP_stdout.

user_error
An alias initially referring to the UNIX stderr stream. The alias
can be changed with prolog_flag/3 and accessed by the C variable
SP_stderr.
This stream is used by the Prolog top-level and debugger, and for
system messages.

Certain I/O predicates manipulate streams implicitly, by maintaining the notion of a current
input stream and a current output stream. The current input and output streams are set to
the user_input and user_output initially and for every new break (see Section 3.9 [Nested],
page 31). The predicate see/1 (tell/1) can be used for setting the current input (output)
stream to newly opened streams for particular files. The predicate seen/0 (told/0) closes

Chapter 8: Built-In Predicates 133

the current input (output) stream, and resets it to the standard input (output) stream.
The predicate seeing/1 (telling/1) is used for retrieving the file name associated with
the current input (output) streams.

The file specification user stands for the standard input or output stream, depending on
context. Terminal output is only guaranteed to be displayed if the output stream is explicitly
flushed.

A file specification FileSpec other than user must be an atom or a compound term. It is
subject to syntactic rewriting. Depending on the operation, the resulting absolute filename
is subject to further processing. Syntactic rewriting is performed wrt. a context directory
Context, in the follows steps:

• If FileSpec has the form Path(File), it is rewritten by first looking up a clause of the
hook predicate user:file_search_path(Path,Expansion). If such a clause is found,
and Expansion can be rewritten to the atomic file name FirstPart, and File can be
rewritten to the atomic file name SecondPart, then FileSpec is rewritten to FirstPart

/SecondPart.
• Under Windows, all ‘\’ characters are converted to ‘/’.
• If FileSpec is a relative file name, Context is prepended to it.
• FileSpec is normalized by dividing it into components and processing these components.

A component is defined to be those characters:
1. Between the beginning of the file name and the end of the file name if there are

no ‘/’s in the file name.
2. Between the beginning of the file name and the first ‘/’.
3. Between any two successive ‘/’-groups (where a ‘/’-group is defined to be a sequence

of one or more ‘/’s with no non-‘/’ character interspersed.) Each ‘/’-group is
replaced by a single ‘/’. Under Windows, however, a ‘//’ prefix is not replaced by
a single ‘/’.

4. Between the last ‘/’ and the end of the file name.

To give the absolute file name, the following rules are applied to each component of
FileSpec.
1. The component ‘~user’, if encountered as the first component of FileSpec, is re-

placed by the absolute path of the home directory of user. If user doesn’t exist, a
permission error is raised. Not yet applicable under Windows.

2. The component ‘~’, if encountered as the first component of FileSpec, is replaced by
the absolute path of the home directory of the current user. Under Windows, ‘~’ is
replaced by the user’s home directory using the environment variables HOMEDRIVE
and HOMEPATH.

3. The component ‘$var’, if encountered as the first component of FileSpec, is re-
placed by the value of the environment variable var. If var doesn’t exist, a permis-
sion error is raised.

4. The component ‘.’ is deleted.
5. The component ‘..’ is deleted together with the directory name syntactically pre-

ceding it. For example, ‘a/b/../c’ is rewritten as ‘a/c’.

134 SICStus Prolog

6. Any trailing ‘/’ is deleted.
7. Under Windows, the normalization process ensures that the absolute file name is

either a network path ‘//hostname/sharename/...’ or begins with a drive letter
followed by ‘:’.

For example, asssuming the user’s home directory is ‘/users/clyde’ and given the clauses

file_search_path(home, ’$HOME’).
file_search_path(demo, home(prolog(demo))).
file_search_path(prolog, prolog).

the file specification demo(mydemo) would
be rewritten to ’/users/clyde/prolog/demo/mydemo’, since $HOME is interpreted as an
environment variable (Under UNIX, this is the user’s home directory).

Failure to open a file normally causes an exception to be raised. This behavior can be turned
off and on by of the built-in predicates nofileerrors/0 and fileerrors/0 described below.

8.1.1 Reading-in Programs

When the predicates discussed in this section are invoked, file specifications are treated as
relative to the current working directory. While loading code, however, file specifications
are treated as relative to the directory containing the file being read in. This has the effect
that if one of these predicates is invoked recursively, the file specification of the recursive
load is relative to the directory of the enclosing load. See Chapter 6 [Load Intro], page 65,
for an introduction to these predicates.

Directives will be executed in order of occurrence. Be aware of the rules governing relative
file specifications, as they could have an effect on the semantics of directives. Only the first
solution of directives is produced, and variable bindings are not displayed. Directives that
fail or raise exceptions give rise to warning or error messages, but do not terminate the load.
However, these warning or error messages can be intercepted by the hook user:portray_
message/2, which can call abort/0 to terminate the load, if that is the desired behavior.

Predicates loading source code are affected by the character-conversion mapping, cf. char_
conversion/2; see Section 8.1.3 [Term I/O], page 142.

Most of the predicates listed below take an argument Files, which is a single file specification
or a list of file specifications. Source, object and QL files usually end with a ‘.pl’, ‘.po’ and
‘.ql’ suffix respectively. These suffixes are optional. Each file specification may optionally
be prefixed by a module name. The module name specifies where to import the exported
predicates of a module-file, or where to store the predicates of a non-module-file. The
module is created if it doesn’t exist already.

absolute_file_name/3 (see Section 8.1.5 [Stream Pred], page 154) is used for resolving the
file specifications. The file specification user is reserved and denotes the standard input
stream.

Chapter 8: Built-In Predicates 135

These predicates are available in runtime systems with the following limitations:

• The compiler is not available, so compiling is replaced by consulting.
• The Prolog flags discontiguous_warnings, redefine_warnings and single_var_

warnings have no effect.
• The informational Prolog flag is off by default, suppressing informational messages.
• The user is not prompted in the event of name clashes etc.

load_files(:Files)
load_files(:Files, +Options)

A generic predicate for loading the files specified by Files with a list of options
to provide extra control. This predicate in fact subsumes the other predicates
except use_module/3, which also returns the name of the loaded module, or
imports a set of predicates from an existing module. Options is a list of zero or
more of the following:

if(X) true (the default) to always load, or changed to load only if the file
has not yet been loaded or if it has been modified since it was last
loaded. A non-module-file is not considered to have been previously
loaded if it was loaded into a different module. The file user is never
considered to have been previously loaded.

when(When)
always (the default) to always load, or compile_time to load only if
the goal is not in the scope of another load_files/[1,2] directive
occurring in a ‘.po’ or ‘.ql’ file.
The latter is intended for use when the file only defines predicates
that are needed for proper term or goal expansion during compila-
tion of other files.

load_type(LoadType)
source to load source files only, object to load object (‘.po’) files
only, ql (obsolescent) to load ‘.ql’ files only, or latest (the de-
fault) to load any type of file, whichever is newest. If the file is
user, source is forced.

imports(Imports)
all (the default) to import all exported predicates if the file is a
module-file, or a list of predicates to import.

compilation_mode(Mode)
compile to translate into compiled code, consult to translate into
static, interpreted code, or assert_all to translate into dynamic,
interpreted code.
The default is the compilation mode of any ancestor load_
files/[1,2] goal, or compile otherwise. Note that Mode has no
effect when a ‘.po’ or ‘.ql’ file is loaded, and that it is recommended
to use assert_all in conjunction with load_type(source), to en-

136 SICStus Prolog

sure that the source file will be loaded even in the presence of a ‘.po’
or ‘.ql’ file.

wcx(Wcx) To pass the term Wcx to the wide character extension component;
see Section 12.3 [Prolog Level WCX Features], page 303.

consult(:Files)
reconsult(:Files) obsolescent
[]
[:File|+Files]

Consults the source file or list of files specified by File and Files. Same as
load_files(Files, [load_type(source),compilation_mode(consult)]).

compile(:Files)
Compiles the source file or list of files specified by Files. The compiled code
is placed in-core, i.e. is added incrementally to the Prolog database. Same as
load_files(Files, [load_type(source),compilation_mode(compile)]).

load(:Files) obsolescent
Loads the ‘.ql’ file or list of files specified by Files. Same as load_
files(Files, [load_type(ql)]).

ensure_loaded(:Files) ISO

Compiles or loads the file or files specified by Files that have been modified
after the file was last loaded, or that have not yet been loaded. The rec-
ommended style is to use this predicate for non-module-files only, but if any
module-files are encountered, their public predicates are imported. Same as
load_files(Files, [if(changed)]).

use_module(:File)
Compiles or loads the module-file specified by File if it has been modified after
it was last loaded, or not yet been loaded. Its public predicates are imported.
The recommended style is to use this predicate for module-files only, but any
non-module-files encountered are simply compiled or loaded. Same as load_
files(File, [if(changed)]).

use_module(:File, +Imports)
Loads the module-file File like ensure_loaded/1 and imports the predicates in
Imports. If any of these are not public, a warning is issued. Imports may also
be set to the atom all in which case all public predicates are imported. Same
as load_files(File, [if(changed),imports(Imports)]).

use_module(-Module, :File, +Imports)
use_module(+Module, :File, +Imports)

If used with +Module, and that module has already been loaded, this merely
imports Imports from that module. Otherwise, this is equivalent to use_
module(File, Imports) with the addition that Module is unified with the
loaded module.

fcompile(:Files) development,obsolescent
Compiles the source file or list of files specified by Files. If Files are prefixed
by a module name, that module name will be used for module name expansion

Chapter 8: Built-In Predicates 137

during the compilation (see Section 6.4 [Considerations], page 72). The suffix
‘.pl’ is added to the given file names to yield the real source file names. The
compiled code is placed on the ‘.ql’ file or list of files formed by adding the
suffix ‘.ql’ to the given file names.

source_file(?File)
File is the absolute name of a source file currently in the system.

source_file(:Head,?File)
source_file(-Head,?File)

Head is the most general goal for a predicate loaded from File.

require(:PredSpecOrSpecs) development,obsolescent
PredSpecOrSpecs is a predicate spec or a list or a conjunction of such. The
predicate will check if the specified predicates are loaded and if not, will try
to load or import them using use_module/2. The file containing the predicate
definitions will be located in the following way:
• The directories specified with user:library_directory/1 are searched for

a file ‘INDEX.pl’. This file is taken to contain relations between all exported
predicates of the module-files in the library directory and its subdirectories.
If an ‘INDEX.pl’ is not found, require/1 will try to create one by load-
ing the library package mkindex and calling make_index:make_library_
index(Directory) (see Chapter 15 [The Prolog Library], page 347).

• The first index entry for the requested predicate will be used to determine
the file to load. An exception is raised if the predicate can’t be located.

• Once an ‘INDEX.pl’ is read, it is cached internally for use in subsequent
calls to require/1.

• Not available in runtime systems.

8.1.2 Term and Goal Expansion

When a program is being read in, SICStus Prolog provides hooks that enable the terms
being read in to be source-to-source transformed before the usual processing of clauses or
directives. The hooks consist in user-defined predicates that define the transformations.
One transformation is always available, however: definite clause grammars, a convenient
notation for expressing grammar rules. See [Colmerauer 75] and [Pereira & Warren 80].

Definite clause grammars are an extension of the well-known context-free grammars. A
grammar rule in Prolog takes the general form

head --> body.

meaning “a possible form for head is body”. Both body and head are sequences of one or
more items linked by the standard Prolog conjunction operator ‘,’.

Definite clause grammars extend context-free grammars in the following ways:

1. A non-terminal symbol may be any Prolog term (other than a variable or number).

138 SICStus Prolog

2. A terminal symbol may be any Prolog term. To distinguish terminals from non-
terminals, a sequence of one or more terminal symbols is written within a grammar rule
as a Prolog list. An empty sequence is written as the empty list ‘[]’. If the terminal
symbols are character codes, such code-lists can be written (as elsewhere) as strings.
An empty sequence is written as the empty list, ‘[]’ or ‘""’.

3. Extra conditions, in the form of Prolog procedure calls, may be included in the right-
hand side of a grammar rule. Such procedure calls are written enclosed in ‘{}’ brackets.

4. The left-hand side of a grammar rule consists of a non-terminal, optionally followed by
a sequence of terminals (again written as a Prolog list).

5. Disjunction, if-then, if-then-else, and not-provable may be stated explicitly in the right-
hand side of a grammar rule, using the operators ‘;’ (‘|’), ‘->’, and ‘\+’ as in a Prolog
clause.

6. The cut symbol may be included in the right-hand side of a grammar rule, as in a
Prolog clause. The cut symbol does not need to be enclosed in ‘{}’ brackets.

As an example, here is a simple grammar that parses an arithmetic expression (made up of
digits and operators) and computes its value.

expr(Z) --> term(X), "+", expr(Y), {Z is X + Y}.
expr(Z) --> term(X), "-", expr(Y), {Z is X - Y}.
expr(X) --> term(X).

term(Z) --> number(X), "*", term(Y), {Z is X * Y}.
term(Z) --> number(X), "/", term(Y), {Z is X / Y}.
term(Z) --> number(Z).

number(C) --> "+", number(C).
number(C) --> "-", number(X), {C is -X}.
number(X) --> [C], {"0"=<C, C=<"9", X is C - "0"}.

In the last rule, C is the character code of some digit.

The query

| ?- expr(Z, "-2+3*5+1", []).

will compute Z=14. The two extra arguments are explained below.

Now, in fact, grammar rules are merely a convenient “syntactic sugar” for ordinary Pro-
log clauses. Each grammar rule takes an input string, analyses some initial portion, and
produces the remaining portion (possibly enlarged) as output for further analysis. The ar-
guments required for the input and output strings are not written explicitly in a grammar
rule, but the syntax implicitly defines them. We now show how to translate grammar rules
into ordinary clauses by making explicit the extra arguments.

A rule such as

p(X) --> q(X).

Chapter 8: Built-In Predicates 139

translates into

p(X, S0, S) :- q(X, S0, S).

If there is more than one non-terminal on the right-hand side, as in

p(X, Y) -->
q(X),
r(X, Y),
s(Y).

then corresponding input and output arguments are identified, as in

p(X, Y, S0, S) :-
q(X, S0, S1),
r(X, Y, S1, S2),
r(Y, S2, S).

Terminals are translated using the built-in predicate ’C’(S1, X, S2), read as “point S1 is
connected by terminal X to point S2”, and defined by the single clause

’C’([X|S], X, S).

(This predicate is not normally useful in itself; it has been given the name upper-case ‘c’
simply to avoid using up a more useful name.) Then, for instance

p(X) --> [go,to], q(X), [stop].

is translated by

p(X, S0, S) :-
’C’(S0, go, S1),
’C’(S1, to, S2),
q(X, S2, S3),
’C’(S3, stop, S).

Extra conditions expressed as explicit procedure calls naturally translate as themselves,
e.g.:

p(X) --> [X], {integer(X), X>0}, q(X).

translates to

p(X, S0, S) :-
’C’(S0, X, S1),
integer(X),
X>0,
q(X, S1, S).

Similarly, a cut is translated literally.

140 SICStus Prolog

Terminals are translated using the built-in predicate ’C’(S1, X, S2), read as “point S1 is
connected by terminal X to point S2”, and defined by the single clause

Terminals on the left-hand side of a rule are also translated using ’C’/3, connecting them
to the output argument of the head non-terminal, e.g.:

is(N), [not] --> [aint].

becomes

is(N, S0, S) :-
’C’(S0, aint, S1),
’C’(S, not, S1).

Disjunction has a fairly obvious translation, e.g.:

args(X, Y) -->
(dir(X), [to], indir(Y)
; indir(Y), dir(X)
).

translates to

args(X, Y, S0, S) :-
(dir(X, S0, S1),

’C’(S1, to, S2),
indir(Y, S2, S)

; indir(Y, S0, S1),
dir(X, S1, S)

).

Similarly for if-then, if-then-else, and not-provable.

The built-in predicates that are concerned with grammar rules and other compile/consult
time transformations are as follows:

expand_term(+Term1,?Term2)
If Term1 is a term that can be transformed, Term2 is the result. Otherwise
Term2 is just Term1 unchanged. This transformation takes place automatically
when grammar rules are read in, but sometimes it is useful to be able to perform
it explicitly. Grammar rule expansion is not the only transformation available;
the user may define clauses for the predicate user:term_expansion/[2,4]
to perform other transformations. user:term_expansion(Term1[,Layout1
],Term2[,Layout2]) is called first, and only if it fails is the standard expansion
used.

Chapter 8: Built-In Predicates 141

term_expansion(+Term1,?TermOrTerms) hook

term_expansion(+Term1,+Layout1,?TermOrTerms,?Layout2) hook

user:term_expansion(+Term1,?TermOrTerms)
user:term_expansion(+Term1,+Layout1,?TermOrTerms,?Layout2)

Defines transformations on terms read while a program is consulted or compiled.
It is called for every Term1 read, including at end of file, represented as the
term end_of_file. If it succeeds, TermOrTerms is used for further processing;
otherwise, the default grammar rule expansion is attempted. It is often useful
to let a term expand to a list of directives and clauses, which will then be
processed sequentially.
The 4 arguments version also defines transformations on the layout of the term
read, so that the source-linked debugger can display accurate source code lines if
the transformed code needs debugging. Layout1 is the layout corresponding to
Term1, and Layout2 should be a valid layout of TermOrTerms (see Section 8.1.3
[Term I/O], page 142).
For accessing aspects of the load context, e.g. the name of the file being
compiled, the predicate prolog_load_context/2 (see Section 8.6 [State Info],
page 175) can be used.
user:term_expansion/[2,4] may also be used to transform queries entered
at the terminal in response to the ‘| ?- ’ prompt. In this case, it will be
called with Term1 = ?-(Query) and should succeed with TermOrTerms = ?-
(ExpandedQuery).

goal_expansion(+Goal,+Module,?NewGoal) hook

user:goal_expansion(+Goal,+Module,?NewGoal)
Defines transformations on goals while clauses are being consulted, compiled
or asserted, after any processing by user:term_expansion/[2,4] of the terms
being read in. It is called for every simple Goal in the calling context Module
found while traversing the clause bodies. If it succeeds, Goal is replaced by
NewGoal; otherwise, Goal is left unchanged. NewGoal may be an arbitrarily
complex goal, and user:goal_expansion/3 is recursively applied to its sub-
goals.

Please note: the arguments of built-in meta-predicates such as
call/1, setof/3 and on_exception/3 are not subject to such
compile-time processing.

This predicate is also used to resolve any meta-calls to Goal at runtime via
the same mechanism. If the transformation succeeds, NewGoal is simply called
instead of Goal. Otherwise, if Goal is a goal of an existing predicate, that
predicate is invoked. Otherwise, error recovery is attempted by user:unknown_
predicate_handler/3 as described below.
user:goal_expansion/3 can be regarded as a macro expansion facility. It
is used for this purpose to support the interface to attributed variables in
library(atts), which defines the predicates M:get_atts/2 and M:put_atts/2
to access module-specific variable attributes. These “predicates” are actually
implemented via the user:goal_expansion/3 mechanism. This has the effect

142 SICStus Prolog

that calls to the interface predicates are expanded at compile time to efficient
code.
For accessing aspects of the load context, e.g. the name of the file being
compiled, the predicate prolog_load_context/2 (see Section 8.6 [State Info],
page 175) can be used.

phrase(:Phrase,?List)
phrase(:Phrase,?List,+Remainder)

The list List is a phrase of type Phrase (according to the current grammar
rules), where Phrase is either a non-terminal or more generally a grammar rule
body. Remainder is what remains of the list after a phrase has been found. If
called with 2 arguments, the remainder has to be the empty list.

’C’(?S1,?Terminal,?S2) obsolescent
Not normally of direct use to the user, this built-in predicate is used in the
expansion of grammar rules (see above). It is defined as if by the clause
’C’([X|S], X, S).

8.1.3 Input and Output of Terms

Most of the following predicates come in two versions, with or without a stream argument.
Predicates without a stream argument operate on the current input or output stream,
depending on context. Predicates with a stream argument can take stream reference or an
alias in this argument position, the alias being replaced by the stream it was associated
with.

Some of these predicates support a notation for terms containing multiple occurrences of
the same subterm (cycles and DAGs). The notation is @(Template,Substitution) where
Substitution is a list of Var=Term pairs where the Var occurs in Template or in one of
the Terms. This notation stands for the instance of Template obtained by binding each
Var to its corresponding Term. The purpose of this notation is to provide a finite printed
representation of cyclic terms. This notation is not used by default, and @/2 has no special
meaning except in this context.

read(?Term) ISO

read(+Stream,?Term) ISO

The next term, delimited by a full-stop (i.e. a ‘.’, possibly followed by layout
text), is read from Stream and is unified with Term. The syntax of the term
must agree with current operator declarations. If a call read(Stream,Term)
causes the end of Stream to be reached, Term is unified with the term end_of_
file. Further calls to read/2 for the same stream will then raise an exception,
unless the stream is connected to the terminal. The characters read are subject
to character-conversion, see below.

read_term(?Term,+Options) ISO

read_term(+Stream,?Term,+Options) ISO

Same as read/[1,2] with a list of options to provide extra control or informa-
tion about the term. Options is a list of zero or more of:

Chapter 8: Built-In Predicates 143

syntax_errors(+Val)
Controls what action to take on syntax errors. Val must be one of
the values allowed for the syntax_errors Prolog flag. The default
is set by that flag.

variables(?Vars)
Vars is bound to the list of variables in the term input, in left-to-
right traversal order.

variable_names(?Names)
Names is bound to a list of Name=Var pairs, where each Name is
an atom indicating the name of a non-anonymous variable in the
term, and Var is the corresponding variable.

singletons(?Names)
Names is bound to a list of Name=Var pairs, one for each variable
appearing only once in the term and whose name does not begin
with ‘_’.

cycles(+Boolean)
Boolean must be true or false. If selected, any occurrences of
@/2 in the term read in are replaced by the potentially cyclic terms
they denote as described above. Otherwise (the default), Term is
just unified with the term read in.

layout(?Layout)
Layout is bound to a layout term corresponding to Term. The
layout Y of a term X is one of:
• If X is a variable or atomic term, Y is the number of the line

where X occurs.
• If X is a compound term, Y is a list whose head is the number of

the line where the first token of X occurs, and whose remaining
elements are the layouts of the arguments of X.

• [], if no line number information is available for X.

consume_layout(+Boolean)
Boolean must be true or false. If this option is true, read_
term/[2,3] will consume the layout-text-item that follows the ter-
minating ‘.’ (this layout-text-item can either be a layout-char or a
comment starting with a ‘%’). If the option is false, the layout-
text-item will remain in the input stream, so that subsequent char-
acter input predicates will see it. The default of the consume_
layout option is true in sicstus execution mode, and it is false
in iso execution mode.

144 SICStus Prolog

| ?- read_term(T, [layout(L), vari-
able_names(Va), singletons(S)]).
|: [

foo(X),

X = Y

].

L = [35,[36,36],[36,[37,37,37],38]],
S = [’Y’=_A],
T = [foo(_B),_B=_A],
Va = [’X’=_B,’Y’=_A]

| ?- read_term(T, [consume_layout(false)]), get_code(C).

|: 1.

C = 10,
T = 1

| ?- read_term(T, [consume_layout(true)]), get_code(C).

|: 1.

|: a

C = 97,
T = 1

char_conversion(+InChar, +OutChar) ISO

InChar and OutChar should be one-char atoms. If they are not the same, then
the mapping of InChar to OutChar is added to the character-conversion map-
ping. This means that in all subsequent term and program input operations any
unquoted occurrence of InChar will be replaced by OutChar. The rationale for
providing this facility is that in some extended character sets (such as Japanese
JIS character sets) the same character can appear several times and thus have
several codes, which the users normally expect to be equivalent. It is advisable
to always quote the arguments of char_conversion/2.
If InChar and OutChar are the same, the effect of char_conversion/2 is to
remove any mapping of InChar from the character-conversion mapping.

current_char_conversion(?InChar, ?OutChar) ISO

The character of one-char atom InChar is mapped to that of the one-char atom
OutChar in the current character-conversion mapping. Enumerates all such
pairs on backtracking.

write(?Term) ISO

write(+Stream,?Term) ISO

The term Term is written onto Stream according to current operator declara-
tions. Same as write_term([Stream,] Term, [numbervars(true)]).

Chapter 8: Built-In Predicates 145

display(?Term)
The term Term is displayed onto the standard output stream (which is not nec-
essarily the current output stream) in standard parenthesized prefix notation.
Same as write_term(user, Term, [ignore_ops(true)]).

write_canonical(?Term) ISO

write_canonical(+Stream,?Term) ISO

Similar to write(Stream,Term). The term will be written according
to the standard syntax. The output from write_canonical/2 can be
parsed by read/2 even if the term contains special characters or if op-
erator declarations have changed. Same as write_term([Stream,] Term,
[quoted(true),ignore_ops(true)]).

writeq(?Term) ISO

writeq(+Stream,?Term) ISO

Similar to write(Stream,Term), but the names of atoms and functors are
quoted where necessary to make the result acceptable as input to read/2,
provided the same operator declarations are in effect. Same as write_
term([Stream,] Term, [quoted(true),numbervars(true)]).

print(?Term) hookable

print(+Stream,?Term) hookable

Prints Term onto Stream. This predicate provides a handle for user defined
pretty printing:
• If Term is a variable then it is output using write(Stream,Term).
• If Term is non-variable then a call is made to the user defined predicate

user:portray/1. If this succeeds then it is assumed that Term has been
output.

• Otherwise, print/2 is called recursively on the components of Term, unless
Term is atomic in which case it is written via write/2.

In particular, the debugging package prints the goals in the tracing messages,
and the top-level prints the final values of variables. Thus you can vary the
forms of these messages if you wish.
Note that on lists ([_|_]), print/2 will first give the whole list to
user:portray/1, but if this fails it will only give each of the (top-level) el-
ements to user:portray/1. That is, user:portray/1 will not be called on all
the tails of the list.
Same as write_term([Stream,] Term,
[portrayed(true),numbervars(true)]).

portray(+Term) hook

user:portray(+Term)
This should either print the Term and succeed, or do nothing and fail. In the
latter case, the default printer (write/1) will print the Term.

portray_clause(?Clause)
portray_clause(+Stream,?Clause)

Writes the clause Clause onto Stream exactly as listing/[0,1] would have
written it. Same as write_term([Stream,] Term,

146 SICStus Prolog

[quoted(true),numbervars(true),indented(true)]) followed by a period
and a newline and binding variables to terms of the form ’$VAR’(N) yielding
friendlier variable names.

write_term(+Term,+Options) ISO

write_term(+Stream,+Term,+Options) ISO

Same as write/[1,2] etc. with a list of options to provide extra control.
This predicate in fact subsumes the above output predicates except portray_
clause/[1,2], which additionally prints a period and a newline, and removes
module prefixes that are redundant wrt. the current type-in module. Options
is a list of zero or more of the following, where Boolean must be true or false
(false is the default).

quoted(+Boolean)
If selected, functors are quoted where necessary to make the result
acceptable as input to read/1. write_canonical/1, writeq/1,
and portray_clause/1 select this.

ignore_ops(+Boolean)
If selected, Term is written in standard parenthesized notation in-
stead of using operators. write_canonical/1 and display/1 se-
lect this.

portrayed(+Boolean)
If selected, user:portray/1 is called for each subterm. print/1
selects this.

numbervars(+Boolean)
If selected, terms of the form ’$VAR’(N) where N is an integer >=
0, an atom, or a code-list, are treated specially (see numbervars/3).
print/1, write/1, writeq/1, and portray_clause/1 select this.

cycles(+Boolean)
If selected, the potentially cyclic term is printed in finite @/2 nota-
tion, as discussed above.

indented(+Boolean)
If selected, the term is printed with the same indentation as is used
by portray_clause/1 and listing/[0,1].

max_depth(+Depth)
Depth limit on printing. Depth is an integer. 0 (the default) means
no limit.

character_escapes(+Boolean)
If selected, quoted atoms containing special characters will be
printed using escape sequences (see Section 51.5 [Escape Se-
quences], page 794). The default value depends on the character_
escapes Prolog flag.

Chapter 8: Built-In Predicates 147

float_format(+Spec)
How to print floats. Spec should be an atom of the form ‘~NC’, like
one of the format/[2,3] character sequences for printing floats.
The default is ‘~H’.

priority(+Prio)
The term is printed as if in the context of an associative operator
of precedence Prio, where Prio is an integer. The default is 1200.
See Section 4.6 [Operators], page 54.

format(+Format,:Arguments)
format(+Stream,+Format,:Arguments)

Prints Arguments onto Stream according to format Format. Format is an atom
or a code-list of formatting characters. If Format is an atom, it will be converted
to a code-list. Thus:

| ?- format("Hello world!\n", []).

has the same effect as
| ?- format(’Hello world!\n’, []).

no matter which value the double_quotes Prolog flag has.
format/[2,3] is the Prolog equivalent to the C stdio function printf().
Arguments is a list of items to be printed. If there are no items then an empty
list should be supplied.
The default action on a format character is to print it. The character ‘~’
introduces a control sequence. To print a ‘~’ repeat it:

| ?- format(’Hello ~~world!\n’, []).

Hello ~world!

Unless character escapes have been switched off, the escape sequence (see Sec-
tion 51.5 [Escape Sequences], page 794) ‘\c’ (c for continue) is useful when
formatting a string for readability. It causes all characters up to, but not in-
cluding, the next non-layout character to be ignored.

| ?- format(’Hello \c

world!\n’, []).

Hello world!

The general format of a control sequence is ‘~NC’. The character C determines
the type of the control sequence. N is an optional numeric argument. An
alternative form of N is ‘*’. ‘*’ implies that the next argument in Arguments
should be used as a numeric argument in the control sequence. Example:

| ?- format(’Hello~4cworld!\n’, [0’x]).

Helloxxxxworld!

| ?- format(’Hello~*cworld!\n’, [4,0’x]).

Helloxxxxworld!

The following control sequences are available.

‘~a’ The argument is an atom. The atom is printed without quoting.

148 SICStus Prolog

‘~Nc’ (Print character.) The argument is a number that will be inter-
preted as a character code. N defaults to one and is interpreted as
the number of times to print the character.

‘~Ne’
‘~NE’ (Print float in exponential notation.) The argument is a float, which

will be printed in exponential notation with one digit before the
decimal point and N digits after it. If N is zero, one digit appears
after the decimal point. A sign and at least two digits appear in
the exponent, which is introduced by the letter used in the control
sequence. N defaults to 6. Examples:

| ?- Pi=3.14159265, for-
mat(’~e ~2E ~0E\n’, [Pi,Pi,Pi]).
3.141593e+00 3.14E+00 3.0E+00

‘~Nf’
‘~NF’ (Print float in fixed-point notation.) The argument is a float, which

will be printed in fixed-point notation with N digits after the dec-
imal point. N may be zero, in which case a zero appears after the
decimal point. At least one digit appears before it and at least one
after it. N defaults to 6. Examples:

| ?- Pi=3.14159265, for-
mat(’~f, ~2F, ~0F\n’, [Pi,Pi,Pi]).
3.141593, 3.14, 3.0

‘~Ng’
‘~NG’ (Print float in generic notation.) The argument is a float, which

will be printed in ‘f’ or ‘e’ (or ‘E’ if ‘G’ is used) notation with N
significant digits. If N is zero, one significant digit is printed. ‘E’
notation is used if the exponent from its conversion is less than
-4 or greater than or equal to N, otherwise ‘f’ notation. Trailing
zeroes are removed from the fractional part of the result. A decimal
point and at least one digit after it always appear. N defaults to 6.
Examples:

| ?- for-
mat(’~g ~2G ~0G\n’, [1.23456789e+10, 3.14159265, 0.0123]).
1.23457e+10 3.1 0.01

‘~Nh’
‘~NH’ (Print float precisely.) The argument is a float, which will be

printed in ‘f’ or ‘e’ (or ‘E’ if ‘H’ is used) notation with d signifi-
cant digits, where d is the smallest number of digits that will yield
the same float when read in. ‘E’ notation is used if N<0 or if the ex-
ponent is less than -N-1 or greater than or equal to N+d, otherwise
‘f’ notation. N defaults to 3. Examples:

| ?- F = 123000.0, G = 0.000123,

format(’~h ~h ~2h ~2H ~-
1H\n’, [F,G,F,G,3.14]).
123000.0 0.000123 1.23e+05 1.23E-04 3.14E+00

Chapter 8: Built-In Predicates 149

The intuition is that for numbers like 123000000.0, at most N con-
secutive zeroes before the decimal point are allowed in ‘f’ notation.
Similarly for numbers like 0.000000123.
‘E’ notation is forced by using ‘~-1H’. ‘F’ is forced by using ‘~999H’.

‘~Nd’ (Print decimal.) The argument is an integer. N is interpreted as
the number of digits after the decimal point. If N is 0 or missing,
no decimal point will be printed. Example:

| ?- format(’Hello ~1d world!\n’, [42]).

Hello 4.2 world!

| ?- format(’Hello ~d world!\n’, [42]).

Hello 42 world!

‘~ND’ (Print decimal.) The argument is an integer. Identical to ‘~Nd’
except that ‘,’ will separate groups of three digits to the left of the
decimal point. Example:

| ?- format(’Hello ~1D world!\n’, [12345]).

Hello 1,234.5 world!

‘~Nr’ (Print radix.) The argument is an integer. N is interpreted as a
radix, 2 ≤ N ≤ 36. If N is missing the radix defaults to 8. The
letters ‘a-z’ will denote digits larger than 9. Example:

| ?- format(’Hello ~2r world!\n’, [15]).

Hello 1111 world!

| ?- format(’Hello ~16r world!\n’, [15]).

Hello f world!

‘~NR’ (Print radix.) The argument is an integer. Identical to ‘~Nr’ except
that the letters ‘A-Z’ will denote digits larger than 9. Example:

| ?- format(’Hello ~16R world!\n’, [15]).

Hello F world!

‘~Ns’ (Print string.) The argument is a code-list. Exactly N characters
will be printed. N defaults to the length of the string. Example:

| ?- format(’Hello ~4s ~4s!\n’, ["new","world"]).
Hello new worl!

| ?- format(’Hello ~s world!\n’, ["new"]).
Hello new world!

‘~i’ (Ignore.) The argument, which may be of any type, is ignored.
Example:

| ?- format(’Hello ~i~s world!\n’, ["old","new"]).
Hello new world!

‘~k’ (Print canonical.) The argument may be of any type. The argu-
ment will be passed to write_canonical/1 (see Section 8.1.3 [Term
I/O], page 142). Example:

150 SICStus Prolog

| ?- format(’Hello ~k world!\n’, [[a,b,c]]).

Hello .(a,.(b,.(c,[]))) world!

‘~p’ (Print.) The argument may be of any type. The argument will
be passed to print/1 (see Section 8.1.3 [Term I/O], page 142).
Example:

| ?- assert((portray([X|Y]) :- print(cons(X,Y)))).

| ?- format(’Hello ~p world!\n’, [[a,b,c]]).

Hello cons(a,cons(b,cons(c,[]))) world!

‘~q’ (Print quoted.) The argument may be of any type. The argument
will be passed to writeq/1 (see Section 8.1.3 [Term I/O], page 142).
Example:

| ?- format(’Hello ~q world!\n’, [[’A’,’B’]]).

Hello [’A’,’B’] world!

‘~w’ (Write.) The argument may be of any type. The argument will
be passed to write/1 (see Section 8.1.3 [Term I/O], page 142).
Example:

| ?- format(’Hello ~w world!\n’, [[’A’,’B’]]).

Hello [A,B] world!

‘~@’ (Call.) The argument is a goal, which will be called and expected to
print on the current output stream. If the goal performs other side-
effects or does not succeed determinately, the behavior is undefined.
Example:

| ?- format(’Hello ~@ world!\n’, [write(new)]).

Hello new world!

‘~~’ (Print tilde.) Takes no argument. Prints ‘~’. Example:
| ?- format(’Hello ~~ world!\n’, []).

Hello ~ world!

‘~Nn’ (Print newline.) Takes no argument. Prints N newlines. N defaults
to 1. Example:

| ?- format(’Hello ~n world!\n’, []).

Hello
world!

‘~N’ (Print Newline.) Prints a newline if not at the beginning of a line.

The following control sequences set column boundaries and specify padding.
A column is defined as the available space between two consecutive column
boundaries on the same line. A boundary is initially assumed at line position
0. The specifications only apply to the line currently being written.
When a column boundary is set (‘~|’ or ‘~+’) and there are fewer characters
written in the column than its specified width, the remaining space is divided
equally amongst the pad sequences (‘~t’) in the column. If there are no pad
sequences, the column is space padded at the end.
If ‘~|’ or ‘~+’ specifies a position preceding the current position, the boundary
is set at the current position.

Chapter 8: Built-In Predicates 151

‘~N|’ Set a column boundary at line position N. N defaults to the current
position.

‘~N+’ Set a column boundary at N positions past the previous column
boundary. N defaults to 8.

‘~Nt’ Specify padding in a column. N is the fill character code. N may
also be specified as ‘C where C is the fill character. The default fill
character is 〈SPC〉. Any (‘~t’) after the last column boundary on a
line is ignored.

Example:
| ?- format(’~‘*t NICE TABLE ~‘*t~61|~n’, []),

format(’*~t*~61|~n’, []),

format(’*~t~a~20|~t~a~t~20+~a~t~20+~t*~61|~n’,
[’Right aligned’,’Centered’,’Left aligned’]),

format(’*~t~d~20|~t~d~t~20+~d~t~20+~t*~61|~n’,
[123,45,678]),

format(’*~t~d~20|~t~d~t~20+~d~t~20+~t*~61|~n’,
[1,2345,6789]),

format(’~‘*t~61|~n’, []).

************************ NICE TA-
BLE *************************
* *
* Right aligned Cen-
tered Left aligned *
* 123 45 678 *
* 1 2345 6789 *

8.1.4 Character Input/Output

Most of character I/O predicates have several variants:

bytes vs. characters
There are separate predicates for binary I/O, which work on bytes, and for
text I/O, which work on characters. The former have the suffix ‘_byte’, e.g.
put_byte.

character codes vs. one-char atoms
The text I/O predicates come in two variants, those that use character codes
(suffix ‘_code’, e.g. put_code), and those using one-char atoms (suffix ‘_char’,
e.g. put_char).

SICStus compatibility predicates
The SICStus compatibility predicates work on both binary and text streams
and use character codes or bytes, depending on the stream type. They normally
have no suffix (e.g. put), with the exception of peek_char.

152 SICStus Prolog

explicit vs. implicit stream
Each of the above predicates comes in two variants: with an explicit first
argument, which is the stream or alias to which the predicate applies (e.g.
put_byte(Stream, Byte)), or without the stream argument, in which case the
current input or output stream is used, depending on the context (e.g. put_
byte(Byte)).

I/O on standard streams
These are variants of SICStus compatibility predicates that always work on
the standard input or output. These predicates have the prefix tty, e.g.
ttyput(Code).

nl ISO

nl(+Stream) ISO

A new line is started on the text stream Stream by printing a 〈LFD〉. If Stream
is connected to the terminal, its buffer is flushed.

get_code(?Code) ISO

get_code(+Stream,?Code) ISO

Code is the character code of the next character read from text stream Stream.
If all characters of Stream have been read, Code is -1, and further calls to get_
code/2 for the same stream will normally raise an exception, unless the stream
is connected to the terminal (but see the eof_action option of open/4; see
Section 8.1.5 [Stream Pred], page 154).

get_char(?Char) ISO

get_char(+Stream,?Char) ISO

Char is the one-char atom naming the next character read from text stream
Stream. If all characters of Stream have been read, Char is end_of_file,
and further calls to get_char/2 for the same stream will normally raise an
exception, unless the stream is connected to the terminal (but see the eof_
action option of open/4; see Section 8.1.5 [Stream Pred], page 154).

get_byte(?Byte) ISO

get_byte(+Stream,?Byte) ISO

Byte is the next byte read from the binary stream Stream. It has the same
behavior at the end of stream as get_code.

get0(?Code) obsolescent
get0(+Stream,?Code) obsolescent

A combination of get_code and get_byte: Code is the next character code or
byte read from the arbitrary stream Stream.

get(?N) obsolescent
get(+Stream,?N) obsolescent

Same as get0/2, except N is the character code of the next character that is
not a layout-char (see Section 51.4 [Token String], page 790) read from Stream.

Chapter 8: Built-In Predicates 153

peek_code(?Code) ISO

peek_code(+Stream,?Code) ISO

Code is the character code of the next character from text stream Stream, or
-1, if all characters of Stream have been read. The character is not actually
read; it is only looked at and is still available for subsequent input.

peek_char(?Char) ISO only

peek_char(+Stream,?Char) ISO only

Char is the one-char atom naming the next character from text stream Stream,
or end_of_file, if all characters of Stream have been read. The character is
not actually read.

peek_char(?Code) SICStus only

peek_char(+Stream,?Code) SICStus only

Identical to peek_code.

peek_byte(?Byte) ISO

peek_byte(+Stream,?Byte) ISO

Byte is the next byte from binary stream Stream, or -1, if all bytes of Stream
have been read. The byte is not actually read.

skip(+Code) obsolescent
skip(+Stream,+Code) obsolescent

Skips just past the next character code Code from Stream. Code may be an
arithmetic expression.

skip_line
skip_line(+Stream)

Skips just past the next 〈LFD〉 from the text stream Stream.

read_line(-Line)
read_line(+Stream, -Line)

Reads one line of input from Stream, and returns the code-list Line. When the
end of file is reached, Line is the atom end_of_file, and on subsequent calls
an exception is raised.

put_code(+Code) ISO

put_code(+Stream,+Code) ISO

Character code Code is output onto text stream Stream.

put_char(+Char) ISO

put_char(+Stream,+Char) ISO

The character named by the one-char atom Char is output onto text stream
Stream.

put_byte(+Byte) ISO

put_byte(+Stream,+Byte) ISO

Byte Byte is output onto binary stream Stream.

put(+Code) obsolescent
put(+Stream,+Code) obsolescent

A combination of put_code and put_byte: Code is output onto (an arbitrary
stream) Stream. Code may be an arithmetic expression.

154 SICStus Prolog

tab(+N) obsolescent
tab(+Stream,+N) obsolescent

N spaces are output onto text stream Stream. N may be an arithmetic expres-
sion.

The above predicates are the ones that are the most commonly used, as they can refer to
any streams. The predicates listed below always refer to the standard input and output
streams. They are provided for compatibility with DEC-10 character I/O, and are actually
redundant and easily recoded in terms of the above predicates.

ttynl obsolescent
Same as nl(user_output).

ttyflush obsolescent
Same as flush_output(user_output).

ttyget0(?N) obsolescent
Same as get0(user_input, N).

ttyget(?N) obsolescent
Same as get(user_input, N).

ttyput(+N) obsolescent
Same as put(user_output, N).

ttyskip(+N) obsolescent
Same as skip(user_input, N).

ttytab(+N) obsolescent
Same as tab(user_output, N).

8.1.5 Stream I/O

The following predicates are relevant to stream I/O. Character, byte and line counts are
maintained per stream. All streams connected to the terminal, however, share the same set
of counts. For example, writing to user_output will advance the counts for user_input, if
both are connected to the terminal. Bidirectional streams use the same counters for input
and output.

Wherever a stream argument appears as input (+Stream), a stream alias can be used instead.

absolute_file_name(+FileSpec,-AbsFileName)
absolute_file_name(+FileSpec,-AbsFileName,+Options)

If FileSpec is user, then AbsFileName is unified with user; this “file name”
stands for the standard input or output stream, depending on context. Other-
wise, unifies AbsFileName with the first absolute file name that corresponds to
the relative file specification FileSpec and that satisfies the access modes given
by Options. Options is a list of zero or more of the following, the default being
the empty list:

Chapter 8: Built-In Predicates 155

ignore_underscores(+Boolean)
Boolean must be true or false. If true, when constructing an
absolute file name that matches the given access modes, two names
are tried: First the absolute file name derived directly from File-
Spec, and then the file name obtained by first deleting all under-
scores from FileSpec. If false (default), suppresses any deletion of
underscores.

extensions(+Ext)
Has no effect if FileSpec contains a file extension. Ext is an atom
or a list of atoms, each atom representing an extension (e.g. ’.pl’)
that should be tried when constructing the absolute file name. The
extensions are tried in the order they appear in the list. Default
value is Ext = [”], i.e. only the given FileSpec is tried, no extension
is added. To specify extensions(’’) or extensions([]) is equal
to not giving any extensions option at all.

file_type(+Type)
Picks an adequate extension for the operating system currently
running, which means that programs using this option instead of
extensions(Ext) will be more portable between operating sys-
tems. This extension mechanism has no effect if FileSpec contains
a file extension. Type must be one of the following atoms:

text implies extensions([”]). FileSpec is a file without any
extension. (Default)

source implies extensions([’.pl’,”]). FileSpec is a Prolog source
file, maybe with a ‘.pl’ extension.

object implies extensions([’.po’]). FileSpec is a Prolog object
file.

ql implies extensions([’.ql’]). FileSpec is a QL file. Obso-
lescent.

saved_state
implies extensions([’.sav’,”]). FileSpec is a saved-state,
maybe with a ‘.sav’ extension.

foreign_file
FileSpec is a foreign language object file, maybe with
a system dependent extension.

foreign_resource
FileSpec is a foreign language shared object file, maybe
with a system dependent extension.

directory
implies extensions([”]). FileSpec is a directory, not
a regular file. Only when this option is present
can absolute_file_name/3 access directories without
raising an exception.

156 SICStus Prolog

access(+Mode)
Mode must be an atom or a list of atoms. If a list is given, Abs-
FileName must obey every specified option in the list. This makes
it possible to combine a read and write, or write and exist check,
into one call. Each atom must be one of the following:

read AbsFileName must be readable.

write
append If AbsFileName exists, it must be writable. If it doesn’t

exist, it must be possible to create.

exist The file represented by AbsFileName must exist.

none The file system is not accessed. The first absolute file
name that is derived from FileSpec is returned. Note
that if this option is specified, no existence exceptions
can be raised. (Default)

file_errors(+Val)
fileerrors(+Val)

Val is one of the following, where the default is determined by the
current value of the fileerrors Prolog flag:

error Raise an exception if a file derived from FileSpec has
the wrong permissions, that is, can’t be accessed at all,
or doesn’t satisfy the the access modes specified with
the access option.

fail Fail if a file derived from FileSpec has the wrong per-
missions. Normally an exception is raised, which might
not always be a desirable behavior, since files that do
obey the access options might be found later on in the
search. When this option is given, the search space is
guaranteed to be exhausted.

solutions(+Val)
Val is one of the following:

first As soon as a file derived from FileSpec is found, commit
to that file. Makes absolute file name/3 determinate.
(Default)

all Return each file derived from FileSpec that is found.
The files are returned through backtracking. This op-
tion is probably most useful in combination with the
option file_errors(fail).

relative_to(+FileOrDirectory)
FileOrDirectory should be an atom, and controls how to resolve
relative filenames. If it is ’’, file names will be treated as relative
to the current working directory. If a regular, existing file is given,
file names will be treated as relative to the directory containing

Chapter 8: Built-In Predicates 157

FileOrDirectory. Otherwise, file names will be treated as relative
to FileOrDirectory.
If absolute_file_name/3 is called from a goal in a file being
loaded, the default is the directory containing that file. Otherwise,
the default is the current working directory.

The functionality of absolute_file_name/3 is most easily described as a four
phase process, in which each phase gets an infile from the preceding phase, and
constructs one or more outfiles to be consumed by the succeeding phases. The
phases are:
1. Syntactic rewriting
2. Underscore deletion
3. Extension expansion
4. Access checking

Each of the three first phases modifies the infile and produces variants that will
be fed into the succeeding phases. The functionality of all phases but the first
are decided with the option list. The last phase checks if the generated file exists,
and if not asks for a new variant from the preceding phases. If the file exists,
but doesn’t obey the access mode option, a permission exception is raised. If
the file obeys the access mode option, absolute_file_name/3 commits to that
solution, subject to the solutions option, and unifies AbsFileName with the
file name. For a thorough description, see below.
Note that the relative file specification FileSpec may also be of the form
Path(FileSpec), in which case the absolute file name of the file FileSpec in
one of the directories designated by Path is returned (see the description of
each phase below).

Phase 1 This phase translates the relative file specification given by FileSpec
into the corresponding absolute file name. See Section 8.1 [Input
Output], page 131, for a description of syntactic rewriting. The
rewrite is done wrt. the value of the relative_to option. There
can be more than one solution, in which case the outfile becomes
the solutions in the order they are generated. If the succeeding
phase fails, and there are no more solutions, an existence exception
is raised.

Phase 2 See the ignore_underscores option.

Phase 3 See the extensions and file_type options.

Phase 4 See the access option.

Comments:
• If an option is specified more than once the rightmost option takes prece-

dence. This provides for a convenient way of adding default values by
putting these defaults at the front of the list of options.

• If absolute_file_name/3 succeeds, and the file access option was one of
{read, write, append}, it is guaranteed that the file can be opened with

158 SICStus Prolog

open/[3,4]. If the access option was exist, the file does exist, but might
be both read and write protected.

• If file_type(directory) is not given, the file access option is other than
none, and a specified file refers to a directory, then absolute_file_name/3
signals a permission error.

• absolute_file_name/[2,3] is sensitive to the fileerrors Prolog flag,
which determines whether the predicate should fail or raise permission
errors when encountering files with the wrong permission. Failing has the
effect that the search space always is exhausted.

• If FileSpec contains a ‘..’ component, the constructed absolute file name
might be wrong. This occurs if the parent directory is not the same as the
directory preceding ‘..’ in the relative file specification, which only can
happen if a soft link is involved.

• This predicate is used for resolving file specification by the built-in predi-
cates:
− open/[3,4]

− see/1

− tell/1

− consult/1

− reconsult/1

− compile/1

− fcompile/1

− load/1

− ensure_loaded/1

− use_module/[1,2,3]

− load_files/[1,2]

− load_foreign_files/2

− load_foreign_resource/1

− unload_foreign_resource/1

− save_modules/2

− save_predicates/2

− save_files/2

− restore/1

− save_program/[1,2]

To check whether the file ‘my_text’ exists in the home directory, with one of
the extensions ‘.text’ or ‘.txt’, and is both writable and readable:

| ?- absolute_file_name(’~/my_text’, File,

[extensions([’.text’,’.txt’]),

access([read,write])]).

To check if the Prolog file ‘same_functor’ exists in some library, and also check
if it exists under the name ‘samefunctor’:

Chapter 8: Built-In Predicates 159

| ?- absolute_file_name(library(same_functor), File,

[file_type(source), access(exist),

ignore_underscores(true)]).

file_search_path(+Path,-Expansion) hook

user:file_search_path(+Path,-Expansion)
Specifies how to rewrite compound file specifications to atomic file names, as
described in Section 8.1 [Input Output], page 131. Path should be an atom and
Expansions a file name. The predicate may succeed nondeterminately in this
search for an atomic file name.
The predicate is undefined at startup, but behaves as if it were a dynamic, mul-
tifile predicate with the following clauses. See Section 8.6 [State Info], page 175
for more info on the Prolog flag host_type. The environment variables SP_APP_
DIR and SP_RT_DIR expand respectively to the absolute path of the directory
that contains the executable and the directory that contains the SICStus run-
time.

file_search_path(library, Path) :-
library_directory(Path).

file_search_path(system, Platform) :-
prolog_flag(host_type, Platform).

file_search_path(application, ’$SP_APP_DIR’).
file_search_path(runtime, ’$SP_RT_DIR’).

library_directory(-Directory) hook

user:library_directory(-Directory)
Specifies a directory to be searched when a file specification of the form
library(Name) is used. The predicate is undefined at startup, but behaves
as if it were a dynamic, multifile predicate with a single clause defining the
location of the Prolog library. The initial value is the same as the value of the
environment variable SP_LIBRARY_DIR. The predicate may succeed nondeter-
minately in this search for a library directory.

open(+FileName,+Mode,-Stream) ISO

open(+FileName,+Mode,-Stream,+Options) ISO

If FileName is a valid file specification, the file that it denotes is opened in mode
Mode (invoking the UNIX function fopen) and the resulting stream is unified
with Stream. Mode is one of:

read Open the file for input.

write Open the file for output. The file is created if it does not already
exist, the file will otherwise be truncated.

append Open the file for output. The file is created if it does not already
exist, the file will otherwise be appended to.

If FileName is an integer, it is assumed to be a file descriptor passed to Prolog
from C. The file descriptor is connected to a Prolog stream (invoking the POSIX
function fdopen) which is unified with Stream.
Options is a list of zero or more of:

160 SICStus Prolog

type(+T) Specifies whether the stream is a text or binary stream. Default
is text.

reposition(+Boolean)
Specifies whether repositioning is required for the stream (true),
or not (false). The latter is the default.

alias(+A)
Specifies that the atom A is to be an alias for the stream.

eof_action(+Action)
Specifies what action is to be taken when the end of stream has
already been reported (by returning -1 or end_of_file), and a
further attempt to input is made. Action can have the following
values:

error An exception is raised. This is the default.

eof_code An end of stream indicator (-1 or end_of_file) is re-
turned again.

reset The stream is considered not to be at end of stream
and another attempt is made to input from it.

wcx(Wcx) Specifies to pass the term Wcx to the wide character extension com-
ponent; see Section 12.3 [Prolog Level WCX Features], page 303.

close(+X) ISO

close(+X, +Options) ISO

If X is a stream or alias, the stream is closed. If X is the name of a file opened by
see/1 or tell/1, the corresponding stream is closed. Options is a list possibly
containing the following element:

force(Boolean)
Specifies whether SICStus Prolog is to close the stream forcefully,
even in the presence of errors (true), or not (false). The latter is
the default. Currently this option has no effect.

current_input(?Stream) ISO

Stream is the current input stream. The current input stream is also accessed
by the C variable SP_curin.

current_output(?Stream) ISO

Stream is the current output stream. The current output stream is also accessed
by the C variable SP_curout.

current_stream(?FileName,?Mode,?Stream)
Stream is a stream that was opened in mode Mode and that is connected to the
absolute file name Filename (an atom) or to the file descriptor Filename (an
integer). This predicate can be used for enumerating all currently open streams
through backtracking.

set_input(+Stream) ISO

Sets the current input stream to Stream.

Chapter 8: Built-In Predicates 161

set_output(+Stream) ISO

Sets the current output stream to Stream.

flush_output ISO

flush_output(+Stream) ISO

Flushes all internally buffered characters or bytes for Stream to the operating
system.

open_null_stream(-Stream)
Opens a text output stream. Everything written to this stream will be thrown
away.

character_count(+Stream,?N)
N is the number of characters read/written on text stream Stream. The count
is reset by set_stream_position/2.

byte_count(+Stream,?N)
N is the number of bytes read/written on stream Stream. Meaningful for both
binary and text streams. In the latter case it will differ from the number
returned by character_count/2 in the presence of wide characters. The count
is reset by set_stream_position/2.

line_count(+Stream,?N)
N is the number of lines read/written on text stream Stream. The count is
reset by set_stream_position/2.

line_position(+Stream,?N)
N is the number of characters read/written on the current line of text stream
Stream. The count is reset by set_stream_position/2.

stream_position(+Stream,?Position)
Position is a term representing the current stream position of Stream. This
operation is available for any Prolog stream. You can retrieve certain data
from a stream position term using stream_position_data/3.

stream_position_data(?Field, +Pos, ?Data)
The Field field of the Pos term is Data. Pos is a stream position; Field is one
of: line_count, character_count, line_position, byte_count.

stream_property(?Stream, ?Property)) ISO

Stream Stream has property Property. Enumerates through backtracking all
currently open streams, including the standard input/output/error streams,
and all their properties.
Property can be one of the following:

file_name(?F)
F is the file name associated with the Stream.

mode(?M) Stream has been opened in mode M.

input Stream is an input stream.

output Stream is an output stream.

162 SICStus Prolog

alias(?A)
Stream has an alias A.

position(?P)
P is a term representing the current stream position of Stream.
Same as stream_position(Stream, P).

end_of_stream(?E)
E describes the position of the input stream Stream, with respect
to the end of stream. If not all characters have been read, then E
is unified with not; otherwise, (all characters read) but no end of
stream indicator (-1 or end_of_file) was reported yet, then E is
unified with at; otherwise, E is unified with past.

eof_action(?A)
A is the end-of-file action applicable to Stream, cf. the eof_action
option of open/4.

type(?T) Stream is of type T.

wcx(?Wcx)
Wide character extension information Wcx was supplied at opening
Stream; see Section 12.3 [Prolog Level WCX Features], page 303.

set_stream_position(+Stream,+Position) ISO

Position is a term representing a new stream position of Stream, which is
then set to the new position. This operation is only available for Prolog
streams connected to “seekable devices” (disk files, usually). If the option
reposition(true) was supplied at the successful opening of the stream, then
set_stream_position/2 is guaranteed to be successful.

seek(+Stream,+Offset,+Method,-NewLocation)
True if the stream Stream can be set to the byte offset Offset relative to Method,
and NewLocation is the new byte offset from the beginning of the file after the
operation. Method must be one of:

bof Seek from the beginning of the file stream.

current Seek from the current position of the file stream.

eof Seek from the end of the file stream.

This operation is only available for Prolog streams connected to “seekable de-
vices” (disk files, usually) and is an interface to the stdio functions fseek and
ftell. After applying this operation, the character count, line count and line
position aspects of the stream position of Stream will be undefined.

at_end_of_stream ISO

at_end_of_stream(+Stream) ISO

The end of stream has been reached for the input stream Stream. An input
stream reaches end of stream when all characters (except ‘EOF’, i.e. -1) of the
stream have been read. These predicates peek ahead for next input character
if there is no character available on the buffer of Stream. Unless the stream
is to be treated as connected to the terminal (see SP_force_interactive(),

Chapter 8: Built-In Predicates 163

Section 9.8.4.1 [Initializing the Prolog Engine], page 275), a stream remains at
end of stream after ‘EOF’ has been read, and any further attempt to read from
the stream will raise an existence error (see Section 8.5 [Exception], page 173).

at_end_of_line
at_end_of_line(+Stream)

The end of stream or end of line has been reached for the input stream Stream.
An input stream reaches end of line when all the characters except 〈LFD〉 of
the current line have been read. These predicates peek ahead for next input
character if there is no character available on the buffer of Stream.

fileerrors obsolescent
Undoes the effect of nofileerrors/0.

nofileerrors obsolescent
After a call to this predicate, failure to locate or open a file will cause the
operation to fail instead of the default action, which is to raise an exception.

8.1.6 DEC-10 Prolog File I/O

The following predicates manipulate files.

see(+File)
The file File becomes the current input stream. File may be a stream previously
opened by see/1 or a file specification. In the latter case, the following action
is taken: If there is a stream opened by see/1 associated with the same file
already, then it becomes the current input stream. Otherwise, the file denoted
by File is opened for input and made the current input stream.

seeing(?FileName)
FileName is unified with the name of the current input file, if it was opened by
see/1, with the current input stream, if it is not user_input; otherwise, with
user.

seen

Closes the current input stream, and resets it to user_input.

tell(+File)
The file File becomes the current output stream. File may be a stream previ-
ously opened by tell/1 or a file specification. In the latter case, the following
action is taken: If there is a stream opened by tell/1 associated with the same
file already, then it becomes the current output stream. Otherwise, the file
denoted by File is opened for output and made the current output stream.

telling(?FileName)
FileName is unified with the name of the current output file, if it was opened
by tell/1, with the current output stream, if it is not user_output; otherwise,
with user.

told

164 SICStus Prolog

Closes the current output stream, and resets it to user_output.

8.1.7 An Example

Here is an example of a common form of file processing:

process_file(F) :-
seeing(OldInput),
see(F), % Open file F
repeat,

read(T), % Read a term
process_term(T), % Process it
T == end_of_file, % Loop back if not at end of file

!,
seen, % Close the file
see(OldInput).

The above is an example of a repeat loop. Nearly all sensible uses of repeat/0 follow the
above pattern. Note the use of a cut to terminate the loop.

8.2 Arithmetic

Arithmetic is performed by built-in predicates, which take as arguments arithmetic expres-
sions and evaluate them. An arithmetic expression is a term built from numbers, variables,
and functors that represent arithmetic functions. At the time of evaluation, each variable
in an arithmetic expression must be bound to a non-variable expression. An expression
evaluates to a number, which may be an integer or a float.

The range of integers is [-2^2147483616, 2^2147483616). Thus for all practical purposes,
the range of integers can be considered infinite.

The range of floats is the one provided by the C double type, typically [4.9e-324,
1.8e+308] (plus or minus). In case of overflow or division by zero, iso execution mode
will raise an evaluation error exception. In sicstus execution mode no exceptions will be
raised, instead appropriate infinity values, as defined by the IEEE standard, will be used.

Only certain functors are permitted in an arithmetic expression. These are listed below,
together with an indication of the functions they represent. X and Y are assumed to be
arithmetic expressions. Unless stated otherwise, the arguments of an expression may be any
numbers and its value is a float if any of its arguments is a float; otherwise, the value is an
integer. Any implicit coercions are performed with the integer/1 and float/1 functions.

The arithmetic functors are annotated with [ISO], [ISO only], or [SICStus only], with the
same meaning as for the built-in predicates; see Section 1.5 [ISO Compliance], page 6.

Chapter 8: Built-In Predicates 165

+(X) The value is X.

-X The value is the negative of X. ISO

X+Y The value is the sum of X and Y. ISO

X-Y The value is the difference of X and Y. ISO

X*Y The value is the product of X and Y. ISO

X/Y The value is the float quotient of X and Y. ISO

X//Y ISO The value is the integer quotient of X and Y. The result is always truncated
towards zero. In iso execution mode X and Y have to be integers.

X rem Y ISO

The value is the integer remainder after dividing X by Y, i.e. integer(X)-
integer(Y)*(X//Y). The sign of a nonzero remainder will thus be the same as
that of the dividend. In iso execution mode X and Y have to be integers.

X mod Y ISO only

The value is X modulo Y, i.e. integer(X)-integer(Y)*floor(X/Y). The sign
of a nonzero remainder will thus be the same as that of the divisor. X and Y
have to be integers.

X mod Y SICStus only

The value is the same as that of X rem Y.

integer(X)
The value is the closest integer between X and 0, if X is a float; otherwise, X
itself.

float_integer_part(X) ISO

The same as float(integer(X)). In iso execution mode, X has to be a float.

float_fractional_part(X) ISO

The value is the fractional part of X, i.e. X - float_integer_part(X). In iso
execution mode, X has to be a float.

float(X) ISO

The value is the float equivalent of X, if X is an integer; otherwise, X itself.

X/\Y ISO The value is the bitwise conjunction of the integers X and Y. In iso execution
mode X and Y have to be integers.

X\/Y ISO The value is the bitwise disjunction of the integers X and Y. In iso execution
mode X and Y have to be integers.

X#Y The value is the bitwise exclusive or of the integers X and Y.

\(X) ISO The value is the bitwise negation of the integer X. In iso execution mode X
has to be an integer.

X<<Y ISO The value is the integer X shifted left by Y places. In iso execution mode X
and Y have to be integers.

X>>Y ISO The value is the integer X shifted right by Y places. In iso execution mode X
and Y have to be integers.

166 SICStus Prolog

[X] A list of just one number X evaluates to X. Since a quoted string is just a list
of integers, this allows a quoted character to be used in place of its character
code; e.g. "A" behaves within arithmetic expressions as the integer 65.

SICStus Prolog also includes an extra set of functions listed below. These may not be
supported by other Prologs. All trigonometric and transcendental functions take float
arguments and deliver float values. The trigonometric functions take arguments or deliver
values in radians.

abs(X) ISO

The value is the absolute value of X.

sign(X) ISO

The value is the sign of X, i.e. -1, if X is negative, 0, if X is zero, and 1, if X is
positive, coerced into the same type as X (i.e. the result is an integer, iff X is
an integer).

gcd(X,Y) The value is the greatest common divisor of the two integers X and Y. In iso
execution mode X and Y have to be integers.

min(X,Y) The value is the lesser value of X and Y.

max(X,Y) The value is the greater value of X and Y.

msb(X) The value is the position of the most significant nonzero bit of the integer X,
counting bit positions from zero. It is equivalent to, but more efficient than,
integer(log(2,X)). X must be greater than zero, and in iso execution mode,
X has to be an integer.

round(X) ISO only

The value is the closest integer to X. X has to be a float. If X is exactly half-way
between two integers, it is rounded up (i.e. the value is the least integer greater
than X).

round(X) SICStus only

The value is the float that is the closest integral value to X. If X is exactly
half-way between two integers, it is rounded to the closest even integral value.

truncate(X) ISO only

The value is the closest integer between X and 0. X has to be a float.

truncate(X) SICStus only

The value is the float that is the closest integer between X and 0.

floor(X) ISO only

The value is the greatest integer less or equal to X. X has to be a float.

floor(X) SICStus only

The value is the float that is the greatest integral value less or equal to X.

ceiling(X) ISO only

The value is the least integer greater or equal to X. X has to be a float.

ceiling(X) SICStus only

The value is the float that is the least integral value greater or equal to X.

Chapter 8: Built-In Predicates 167

sin(X) ISO

The value is the sine of X.

cos(X) ISO

The value is the cosine of X.

tan(X) The value is the tangent of X.

cot(X) The value is the cotangent of X.

sinh(X) The value is the hyperbolic sine of X.

cosh(X) The value is the hyperbolic cosine of X.

tanh(X) The value is the hyperbolic tangent of X.

coth(X) The value is the hyperbolic cotangent of X.

asin(X) The value is the arc sine of X.

acos(X) The value is the arc cosine of X.

atan(X) ISO

The value is the arc tangent of X.

atan2(X,Y)
The value is the four-quadrant arc tangent of X and Y.

acot(X) The value is the arc cotangent of X.

acot2(X,Y)
The value is the four-quadrant arc cotangent of X and Y.

asinh(X) The value is the hyperbolic arc sine of X.

acosh(X) The value is the hyperbolic arc cosine of X.

atanh(X) The value is the hyperbolic arc tangent of X.

acoth(X) The value is the hyperbolic arc cotangent of X.

sqrt(X) ISO

The value is the square root of X.

log(X) ISO

The value is the natural logarithm of X.

log(Base,X)
The value is the logarithm of X in the base Base.

exp(X) ISO

The value is the natural exponent of X.

X ** Y ISO

exp(X,Y) The value is X raised to the power of Y.

inf SICStus only

The value is infinity as defined in the IEEE standard.

nan SICStus only

The value is not-a-number as defined in the IEEE standard.

168 SICStus Prolog

Variables in an arithmetic expression to be evaluated may be bound to other arithmetic
expressions rather than just numbers, e.g.:

evaluate(Expression, Answer) :- Answer is Expression.

| ?- evaluate(24*9, Ans).

Ans = 216

Arithmetic expressions, as described above, are just data structures. If you want one eval-
uated you must pass it as an argument to one of the built-in predicates listed below. Note
that is/2 only evaluates one of its arguments, whereas all the comparison predicates eval-
uate both of theirs. In the following, X and Y stand for arithmetic expressions, and Z for
some term.

Z is X ISO

X, which must be an arithmetic expression, is evaluated and the result is unified
with Z.

X =:= Y ISO

The numeric values of X and Y are equal.

X =\= Y ISO

The numeric values of X and Y are not equal.

X < Y ISO

The numeric value of X is less than the numeric value of Y.

X > Y ISO

The numeric value of X is greater than the numeric value of Y.

X =< Y ISO

The numeric value of X is less than or equal to the numeric value of Y.

X >= Y ISO

The numeric value of X is greater than or equal to the numeric value of Y.

8.3 Comparison of Terms

These built-in predicates are meta-logical. They treat uninstantiated variables as objects
with values that may be compared, and they never instantiate those variables. They should
not be used when what you really want is arithmetic comparison (see Section 8.2 [Arith-
metic], page 164) or unification.

The predicates make reference to a standard total ordering of terms, which is as follows:

• Variables, by age (oldest first—the order is not related to the names of variables).
• Floats, in numeric order (e.g. -1.0 is put before 1.0).
• Integers, in numeric order (e.g. -1 is put before 1).

Chapter 8: Built-In Predicates 169

• Atoms, in alphabetical (i.e. character code) order.
• Compound terms, ordered first by arity, then by the name of the principal functor,

then by age for mutables and by the arguments in left-to-right order for other terms.
Recall that lists are equivalent to compound terms with principal functor ./2.

For example, here is a list of terms in standard order:

[X, -1.0, -9, 1, fie, foe, X = Y, foe(0,2), fie(1,1,1)]

Please note: the standard order is only well-defined for finite (acyclic) terms.
There are infinite (cyclic) terms for which no order relation holds. Furthermore,
blocking goals (see Section 4.3 [Procedural], page 50) on variables or modifying
their attributes (see Chapter 18 [Attributes], page 355) does not preserve their
order.

These are the basic predicates for comparison of arbitrary terms:

Term1 == Term2 ISO

The terms currently instantiating Term1 and Term2 are literally identical (in
particular, variables in equivalent positions in the two terms must be identical).
For example, the query

| ?- X == Y.

fails (answers ‘no’) because X and Y are distinct uninstantiated variables. How-
ever, the query

| ?- X = Y, X == Y.

succeeds because the first goal unifies the two variables (see Section 8.17 [Misc
Pred], page 213).

Term1 \== Term2 ISO

The terms currently instantiating Term1 and Term2 are not literally identical.

Term1 @< Term2 ISO

The term Term1 is before the term Term2 in the standard order.

Term1 @> Term2 ISO

The term Term1 is after the term Term2 in the standard order.

Term1 @=< Term2 ISO

The term Term1 is not after the term Term2 in the standard order.

Term1 @>= Term2 ISO

The term Term1 is not before the term Term2 in the standard order.

Some further predicates involving comparison of terms are:

?=(?X,?Y)
X and Y are either syntactically identical or syntactically non-unifiable.

compare(?Op,?Term1,?Term2)
The result of comparing terms Term1 and Term2 is Op, where the possible
values for Op are:

170 SICStus Prolog

= if Term1 is identical to Term2,

< if Term1 is before Term2 in the standard order,

> if Term1 is after Term2 in the standard order.

Thus compare(=,Term1,Term2) is equivalent to Term1 == Term2.

sort(+List1,?List2)
The elements of the list List1 are sorted into the standard order (see Section 8.3
[Term Compare], page 168) and any identical elements are merged, yielding the
list List2. (The time and space complexity of this operation is at worst O(N lg
N) where N is the length of List1.)

keysort(+List1,?List2)
The list List1 must consist of pairs of the form Key-Value. These items are
sorted into order according to the value of Key, yielding the list List2. No
merging takes place. This predicate is stable, i.e. if K-A occurs before K-B in
the input, then K-A will occur before K-B in the output. (The time and space
complexity of this operation is at worst O(N lg N) where N is the length of
List1.)

8.4 Control

+P , +Q ISO

P and Q.

+P ; +Q ISO

P or Q.

! ISO

See Section 4.5 [Cut], page 52.

\+ +P ISO

Fails if the goal P has a solution, and succeeds otherwise. This is not real nega-
tion (“P is false”), but a kind of pseudo-negation meaning “P is not provable”.
It is defined as if by

\+(P) :- P, !, fail.
\+(_).

In sicstus execution mode no cuts are allowed in P. In iso execution mode
cuts are allowed in P and their scope is the goal P.
Remember that with prefix operators such as this one it is necessary to be
careful about spaces if the argument starts with a ‘(’. For example:

| ?- \+ (P,Q).

is this operator applied to the conjunction of P and Q, but
| ?- \+(P,Q).

would require a predicate \+ /2 for its solution. The prefix operator can however
be written as a functor of one argument; thus

Chapter 8: Built-In Predicates 171

| ?- \+((P,Q)).

is also correct.

+P -> +Q ; +R ISO

Analogous to
if P then Q else R

and defined as if by
(P -> Q; R) :- P, !, Q.
(P -> Q; R) :- R.

except the scope of any cut in Q or R extends beyond the if-then-else construct.
In sicstus execution mode no cuts are allowed in P. In iso execution mode
cuts are allowed in P and their scope is the goal P.
Note that this form of if-then-else only explores the first solution to the goal P.
Note also that the ‘;’ is not read as a disjunction operator in this case; instead,
it is part of the if-then-else construction.
The precedence of ‘->’ is less than that of ‘;’ (see Section 4.6 [Operators],
page 54), so the expression is read as

;(->(P,Q),R)

+P -> +Q ISO

When occurring as a goal, this construction is read as equivalent to
(P -> Q; fail)

if(+P,+Q,+R)
Analogous to

if P then Q else R

but differs from P -> Q ; R in that if(P, Q, R) explores all solutions to the
goal P. There is a small time penalty for this—if P is known to have only one
solution of interest, the form P -> Q ; R should be preferred.
In sicstus execution mode no cuts are allowed in P. In iso execution mode
cuts are allowed in P and their scope is the goal P.

once(+P) ISO

Finds the first solution, if any, of goal P. Fails if no solutions are found. Will
not explore further solutions on backtracking. Equivalent to

(P -> true; fail)

otherwise
true ISO

These always succeed. Use of otherwise/0 is discouraged, because it is not as
portable as true/0, and because the former may suggest a completely different
semantics than the latter.

false
fail ISO

These always fail. Use of false/0 is discouraged, because it is not as portable
as fail/0, and because the latter has a more procedural flavor to it.

172 SICStus Prolog

repeat ISO

Generates an infinite sequence of backtracking choices. In sensible code,
repeat/0 is hardly ever used except in repeat loops. A repeat loop has the
structure

Head :-
...
save_state(OldState),
repeat,

generate(Datum),
action(Datum),
test(Datum),

!,
restore_state(OldState),
...

The purpose is to repeatedly perform some action on elements that are somehow
generated, e.g. by reading them from a stream, until some test becomes true.
Usually, generate, action, and test are all determinate. Repeat loops cannot
contribute to the logic of the program. They are only meaningful if the action
involves side-effects.
The only reason for using repeat loops instead of a more natural tail-recursive
formulation is efficiency: when the test fails back, the Prolog engine immediately
reclaims any working storage consumed since the call to repeat/0.

call(:Term) ISO

incore(:Term) obsolescent
:Term

If Term is instantiated to a term that would be acceptable as the body of a
clause, then the goal call(Term) is executed exactly as if that term appeared
textually in its place, except that any cut (!) occurring in Term only cuts
alternatives in the execution of Term. Use of incore/1 is not recommended.
If Term is not instantiated as described above, an exception is raised.

call_cleanup(:Goal,:Cleanup)
This construction can be used to ensure that Cleanup is executed as soon as
Goal has completed execution, no matter how it finishes. In more detail:
When call_cleanup/2 with a continuation C is called or backtracked into, first
Goal is called or backtracked into. Then there are four possibilities:
1. Goal succeeds determinately, possibly leaving some blocked subgoals.

Cleanup is executed with continuation C.
2. Goal succeeds with some alternatives outstanding. Execution proceeds

to C. If a cut that removes the outstanding alternatives is encountered,
Cleanup is executed with continuation to proceed after the cut. Also, if
an exception E that will be caught by an ancestor of the call_cleanup/2
Goal is raised, Cleanup is executed with continuation raise_exception(E
).

3. Goal fails. Cleanup is executed with continuation fail.

Chapter 8: Built-In Predicates 173

4. Goal raises an exception E. Cleanup is executed with continuation raise_
exception(E).

In a typical use of call_cleanup/2, Cleanup succeeds determinately after per-
forming some side-effect; otherwise, unexpected behavior may result.
Note that the Prolog top-level operates as a read-execute-fail loop, which back-
tracks into or cuts the query when the user types ; or 〈RET〉 respectively. Also,
the predicates halt/0 and abort/0 are implemented in terms of exceptions.
All of these circumstances can trigger the execution of Cleanup.

8.5 Error and Exception Handling

The built-in predicates described in this section are used to alter the control flow to meet
exception and error conditions. The equivalent of a raise_exception/1 is also executed
by the built-in predicates when errors occur.

catch(:ProtectedGoal,?Pattern,:Handler) ISO

on_exception(?Pattern,:ProtectedGoal,:Handler)
throw(+Exception) ISO

raise_exception(+Exception)
catch/3 is the same as on_exception/3 (but note different argument order),
and throw/1 is the same as raise_exception/1. on_exception/3 calls Pro-
tectedGoal. If this succeeds or fails, so does the call to on_exception/3.
If however, during the execution of ProtectedGoal, there is a call to raise_
exception(Exception), then Exception is copied and the stack is unwound
back to the call to on_exception/3, whereupon the copy of Exception is uni-
fied with Pattern. If this unification succeeds, then on_exception/3 calls the
goal Handler in order to determine the success or failure of on_exception/3.
Otherwise, the stack keeps unwinding, looking for an earlier invocation of on_
exception/3. Exception may be any term.

In a development system, any previously uncaught exception is caught and an appropriate
error message is printed before returning to the top level. In recursive calls to Prolog
from C, uncaught exceptions are returned back to C instead. The printing of these and
other messages in a development system is handled by the predicate print_message/2 (see
Section 8.13 [Messages and Queries], page 195).

The format of the exception raised by the built-in predicates depends on the execution
mode. In iso execution mode the format is

error(ISO_Error, SICStus_Error)

where ISO Error is the error term prescribed by the ISO Prolog standard, while SICS-
tus Error is the part defined by the standard to be implementation dependent. In case
of SICStus Prolog this is the SICStus error term, which normally contains additional in-

174 SICStus Prolog

formation, such as the goal and the argument number causing the error. Arguments are
numbered from 1 upwards.

In sicstus execution mode, the SICStus error term is used when raising an exception in a
built-in predicate.

The list below itemizes the error terms, showing the ISO Error and SICStus Error form of
each one, in that order. Note that the SICStus and ISO error terms do not always belong
to the same error class, and that the context and consistency error classes are extensions
to the ISO Prolog standard.

The goal part of the error term may optionally have the form $@(Callable,PC) where PC
is an internal encoding of the line of code containing the culprit goal or one of its ancestors.

instantiation_error
instantiation_error(Goal,ArgNo)

Goal was called with insufficiently instantiated variables.

type_error(TypeName,Culprit)
type_error(Goal,ArgNo,TypeName,Culprit)

Goal was called with the wrong type of argument(s). TypeName is the expected
type and Culprit what was actually found.

domain_error(Domain,Culprit)
domain_error(Goal,ArgNo,Domain,Culprit)

Goal was called with argument(s) of the right type but with illegal value(s).
Domain is the expected domain and Culprit what was actually found.

existence_error(ObjectType,Culprit)
existence_error(Goal,ArgNo,ObjectType,Culprit,Reserved)

Something does not exist as indicated by the arguments. If the unknown Prolog
flag is set to error, this error is raised with ArgNo set to 0 when an undefined
predicate is called.

permission_error(Operation,ObjectType,Culprit)
permission_error(Goal,Operation,ObjectType,Culprit,Reserved)

The Operation is not permitted on Culprit of the ObjectType.

context_error(ContextType,CommandType)
context_error(Goal,ContextType,CommandType)

The CommandType is not permitted in ContextType.

syntax_error(Message)
syntax_error(Goal,Position,Message,Tokens,AfterError)

A syntax error was found when reading a term with read/[1,2] or assembling
a number from its characters with number_chars/2. In the former case this
error is raised only if the syntax_errors flag is set to error.

evaluation_error(ErrorType,Culprit)
evaluation_error(Goal,ArgNo,ErrorType,Culprit)

An incorrect arithmetic expression was evaluated. Only occurs in iso execution
mode.

Chapter 8: Built-In Predicates 175

representation_error(ErrorType)
representation_error(Goal,ArgNo,ErrorType)

A representation error occurs when the program tries to compute some well-
defined value that cannot be represented, such as a compound term with arity
> 255.

consistency_error(Culprit1,Culprit2,Message)
consistency_error(Goal,Culprit1,Culprit2,Message)

A consistency error occurs when two otherwise valid values or operations have
been specified that are inconsistent with each other.

resource_error(ResourceType)
resource_error(Goal,ResourceType)

A resource error occurs when SICStus Prolog has insufficient resources to com-
plete execution. The only value for ResourceType that is currently in use is
memory.

system_error
system_error(Message)

An error occurred while dealing with the operating system.

It is possible to handle a particular kind of existence errors locally: calls to undefined
predicates. This can be done by defining clauses for:

unknown_predicate_handler(+Goal,+Module,-NewGoal) hook

user:unknown_predicate_handler(+Goal,+Module,-NewGoal)
Called as a result of a call to an undefined predicate. Goal is bound to the
goal of the undefined predicate and Module to the module where the call was
made. If this predicate succeeds, Module:NewGoal is called; otherwise, the
action taken is governed by the unknown Prolog flag.

The following example shows an auto-loader for library packages:

user:unknown_predicate_handler(Goal, Module, Goal) :-
functor(Goal, Name, Arity),
require(Module:(Name/Arity)).

8.6 Information about the State of the Program

listing

Lists onto the current output stream all the clauses in the database (in the
type-in module; see Section 5.2 [Module Spec], page 59). Clauses listed onto a
file can be consulted back.

listing(:Spec)
Lists all interpreted predicates covered by the generalized predicate spec Spec.
For example:

| ?- listing([concatenate/3, reverse, m:go/[2,3], bar:_]).

176 SICStus Prolog

current_atom(?Atom) meta-logical

Atom is an atom known to SICStus Prolog. Can be used to enumerate (through
backtracking) all currently known atoms, and return each one as Atom.

current_predicate(?Name,:Head)
current_predicate(?Name,-Head)

Name is the name of a user defined or library predicate, and Head is the most
general goal for that predicate, possibly prefixed by a module name. This
predicate can be used to enumerate all user defined or library predicates through
backtracking.

current_predicate(?Name/?Arity) ISO

Name is the name of a user defined or library predicate, possibly prefixed by a
module name and Arity is its arity. This predicate can be used to enumerate
all user defined or library predicates through backtracking.

predicate_property(:Head,?Property)
predicate_property(-Head,?Property)

Head is the most general goal for an existing predicate, possibly prefixed by a
module name, and Property is a property of that predicate, where the possible
properties are
• one of the atoms built_in (for built-in predicates) or compiled or

interpreted (for user defined predicates) or fd_constraint for FD pred-
icates see Section 34.9 [Defining Primitive Constraints], page 479.

• the atom dynamic for predicates that have been declared dynamic (see
Section 6.2.2 [Dynamic Declarations], page 69),

• the atom multifile for predicates that have been declared multifile (see
Section 6.2.1 [Multifile Declarations], page 68),

• the atom volatile for predicates that have been declared volatile (see
Section 6.2.3 [Volatile Declarations], page 69),

• one or more terms (block Term) for predicates that have block declarations
(see Section 6.2.5 [Block Declarations], page 70),

• the atom exported or terms imported_from(ModuleFrom) for predi-
cates exported or imported from modules (see Chapter 5 [Module Intro],
page 59),

• the term (meta_predicate Term) for predicates that have meta-predicate
declarations (see Section 5.6 [Meta Decl], page 62).

This predicate can be used to enumerate all existing predicates and their prop-
erties through backtracking.

current_module(?Module)
Module is a module in the system. It can be used to backtrack through all
modules present in the system.

current_module(?Module, ?File)
Module is the module defined in File.

module(+Module)
The type-in module is set to Module.

Chapter 8: Built-In Predicates 177

set_prolog_flag(+FlagName,+NewValue) ISO

prolog_flag(+FlagName,?OldValue,?NewValue)
OldValue is the value of the Prolog flag FlagName, and the new value of
FlagName is set to NewValue. The possible Prolog flag names and values are:

agc_margin
An integer Margin. The atoms will be garbage collected when Mar-
gin new atoms have been created since the last atom garbage col-
lection. Initially 10000.

argv A read-only flag. The value is a list of atoms of the program ar-
guments supplied when the current SICStus Prolog process was
started. For example, if SICStus Prolog were invoked with:

% sicstus -a hello world 2001

then the value will be [hello,world,’2001’].

bounded ISO

A read-only flag, one of the flags defining the integer type. For
SICStus, its value is false, indicating that the domain of integers
is practically unbounded.

char_conversion ISO

If this flag is on, unquoted characters in terms and programs read
in will be converted, as specified by previous invocations of char_
conversion/2. If the flag is off no conversion will take place. The
default value is on.

compiling
Governs the mode in which compile/1 and fcompile/1 operate
(see Chapter 6 [Load Intro], page 65).

compactcode
Compilation produces byte-coded abstract instructions
(the default).

fastcode Compilation produces native machine instructions.
Currently only available for Sparc platforms.

profiledcode
Compilation produces byte-coded abstract instructions
instrumented to produce execution profiling data.

debugcode
Compiling is replaced by consulting.

debugging
Corresponds to the predicates debug/0, nodebug/0, tracee/0,
notrace/0, zip/0, nozip/0 (see Section 8.15 [Debug Pred],
page 209). The flag describes the mode the debugger is in, or
is required to be switched to:

trace Trace mode (the debugger is creeping).

178 SICStus Prolog

debug Debug mode (the debugger is leaping).

zip Zip mode (the debugger is zipping).

off The debugger is switched off (the default).

debug ISO The flag debug, prescribed by the ISO Prolog standard, is a
simplified form of the debugging flag:

off The debugger is switched off (the default).

on The debugger is switched on (to trace mode, if previ-
ously switched off).

(The flags debugging and debug have no effect in runtime systems.)

double_quotes ISO only

Governs the interpretation of double quoted strings (see Sec-
tion 4.1.1.5 [Compound Terms], page 45):

codes Code-list comprising the string.

chars Char-list comprising the string.

atom The atom composed of the same characters as the
string.

character_escapes
on or off. If this flag is on, a backslash occurring inside integers in
‘0’’ notation or inside quoted atoms or strings has special mean-
ing, and indicates the start of an escape sequence (see Section 51.5
[Escape Sequences], page 794). This flag is relevant when reading
as well as when writing terms, and is initially on.

debugger_print_options
The value is a list of options for write_term/3 (see Section 8.1.3
[Term I/O], page 142), to be used in the debugger’s messages. The
initial value is
[quoted(true),numbervars(true),portrayed(true),max_
depth(10)].

discontiguous_warnings
on or off. Enable or disable warning messages when clauses are
not together in source files. Initially on. (This warning is always
disabled in runtime systems.)

fileerrors
on or off. Enables or disables raising of file error exceptions.
Equivalent to fileerrors/0 and nofileerrors/0, respectively
(see Section 8.1.5 [Stream Pred], page 154). Initially on (enabled).

gc on or off. Enables or disables garbage collection of the global
stack. Initially on (enabled).

Chapter 8: Built-In Predicates 179

gc_margin
Margin: At least Margin kilobytes of free global stack space are
guaranteed to exist after a garbage collection. Also, no garbage
collection is attempted unless the global stack is at least Margin
kilobytes. Initially 1000.

gc_trace Governs global stack garbage collection trace messages.

verbose Turn on verbose tracing of garbage collection.

terse Turn on terse tracing of garbage collection.

off Turn off tracing of garbage collection (the default).

host_type
A read-only flag. The value is an atom identifying the platform on
which SICStus was compiled, such as ’x86-linux-glibc2.1’ or
’sparc-solaris-5.7’.

informational
on or off. Enables or disables the printing of informational mes-
sages. Initially on (printing enabled) in development systems, un-
less the ‘--noinfo’ command line option was used; off (printing
disabled) in runtime systems.

integer_rounding_function ISO

A read-only flag, one of the flags defining the integer type. In
SICStus Prolog its value is toward_zero, indicating that the in-
teger division ((//)/2) and integer remainder (rem/2) arithmetic
functions use rounding toward zero; see Section 8.2 [Arithmetic],
page 164.

language iso or sicstus. Selects the execution mode specified. Initially
sicstus, unless the ‘--iso’ command line option was used.

max_arity ISO

A read-only flag, specifying the maximum arity allowed for a com-
pound term. In SICStus Prolog this is 255.

max_integer ISO

A read-only flag, specifying the largest possible integer value. As
in SICStus Prolog the range of integers in not bounded, prolog_
flag/3 and current_prolog_flag/2 will fail, when accessing this
flag.

min_integer ISO

A read-only flag, specifying the smallest possible integer value. As
in SICStus Prolog the range of integers in not bounded, prolog_
flag/3 and current_prolog_flag/2 will fail, when accessing this
flag.

redefine_warnings
on or off. Enable or disable warning messages when :

180 SICStus Prolog

• a module or predicate is being redefined from a different file
than its previous definition. Such warnings are currently not
issued when a ‘.po’ file is being loaded.

• a predicate is being imported while it was locally defined al-
ready.

• a predicate is being redefined locally while it was imported
already.

• a predicate is being imported while it was imported from an-
other module already.

Initially on. (This warning is always disabled in runtime systems.)

single_var_warnings
on or off. Enable or disable warning messages when a clause con-
taining variables not beginning with ‘_’ occurring once only is com-
piled or consulted. Initially on.

source_info
emacs or on or off. If not off while source code is being loaded,
information about line numbers and file names are stored with the
loaded code. If the value is on while debugging, this information
is used to print the source code location while prompting for a
debugger command. If the value is on while printing an uncaught
error exception message, the information is used to print the source
code location of the culprit goal or one of its ancestors, as far as it
can be determined. If the value is emacs in any of these cases, the
appropriate line of code is instead highlighted, and no extra text
is printed. The value is off initially, and that is its only available
value in runtime systems.

syntax_errors
Controls what action is taken upon syntax errors in read/[1,2].

dec10 The syntax error is reported and the read is repeated.

error An exception is raised. See Section 8.5 [Exception],
page 173. (the default).

fail The syntax error is reported and the read fails.

quiet The read quietly fails.

system_type
A read-only flag. The value is development in development systems
and runtime in runtime systems.

toplevel_print_options
The value is a list of options for write_term/3 (see Sec-
tion 8.1.3 [Term I/O], page 142), to be used when the top-
level displays variable bindings, answer constraints. It is
also used when messages are displayed. The initial value is

Chapter 8: Built-In Predicates 181

[quoted(true),numbervars(true),portrayed(true),max_
depth(10)].

typein_module
Permitted values are atoms. Controls the current type-in module
(see Section 5.2 [Module Spec], page 59). Corresponds to the pred-
icate module/1.

unknown ISO

Corresponds to the predicate unknown/2 (see Section 8.15 [Debug
Pred], page 209).

trace Causes calls to undefined predicates to be reported and
the debugger to be entered at the earliest opportunity.
(This setting is not possible in runtime systems.)

fail Causes calls to such predicates to fail.

warning Causes calls to such predicates to display a warning
message and then fail.

error Causes calls to such predicates to raise an exception
(the default). See Section 8.5 [Exception], page 173.

user_input
Permitted values are any stream opened for reading. Controls
which stream is referenced by user_input and SP_stdin. It is
initially set to a stream connected to UNIX stdin.

user_output
Permitted values are any stream opened for writing. Controls which
stream is referenced by user_output and SP_stdout. It is initially
set to a stream connected to UNIX stdout.

user_error
Permitted values are any stream opened for writing. Controls which
stream is referenced by user_error and SP_stderr. It is initially
set to a stream connected to UNIX stderr.

version A read-only flag. The value is an atom containing the ban-
ner text displayed on startup, such as ’SICStus 3 #0: Wed Mar 15
12:29:29 MET 1995’.

wcx The value of the flag is the default term to be passed to the
wide character extension component; see Section 12.3 [Prolog Level
WCX Features], page 303.

prolog_flag(?FlagName,?Value)
current_prolog_flag(?FlagName,?Value) ISO

Value is the current value of the Prolog flag FlagName. Can be used to enu-
merate all Prolog flags and their values by backtracking.

prolog_load_context(?Key,?Value)
This predicate gives access to context variables during compilation and loading
of Prolog files. It unifies Value with the value of the variable identified by Key.
Possible keys are:

182 SICStus Prolog

source The absolute path name of the file being compiled. During load-
ing of a ‘.po’ or ‘.ql’ file, the corresponding source file name is
returned.

file Outside included files (see Section 6.2.10 [Include Declarations],
page 71) this is the same as the source key. In included files this
is the absolute path name of the file being included.

directory
The absolute path name of the directory of the file being com-
piled/loaded. In included files this is the directory of the file being
included.

module The source module (see Section 5.5 [Meta Exp], page 61). This
is useful for example if you are defining clauses for user:term_
expansion/[2,4] and need to access the source module at compile
time.

stream The stream being compiled or loaded from.

term_position
A term representing the stream position of the last clause read.

statistics
Displays on the standard error stream statistics relating to memory usage, run
time, garbage collection of the global stack and stack shifts. The printing is han-
dled by print_message/2; see Section 8.13 [Messages and Queries], page 195.

statistics(?Key,?Value)
This allows a program to gather various execution statistics. For each of the
possible keys Key, Value is unified with a list of values, as follows:

global_stack
[size used,free]
This refers to the global stack, where compound terms are stored.
The values are gathered before the list holding the answers is allo-
cated.

local_stack
[size used,free]
This refers to the local stack, where recursive predicate environ-
ments are stored.

trail [size used,free]
This refers to the trail stack, where conditional variable bindings
are recorded.

choice [size used,free]
This refers to the choicepoint stack, where partial states are stored
for backtracking purposes.

core
memory [size used,0]

These refer to the amount of memory actually allocated by the

Chapter 8: Built-In Predicates 183

Prolog engine. The zero is there for compatibility with other Prolog
implementations.

heap
program [size used,size free]

These refer to the amount of memory allocated for the database,
symbol tables, and the like.

runtime [since start of Prolog,since previous statistics] These re-
fer to CPU time used while executing, excluding time spent garbage
collecting, stack shifting, or in system calls. The second element is
the time since the last call to statistics/2 with this key. It is not
affected by calls to statistics/0.

walltime [since start of Prolog,since previous statistics] These re-
fer to absolute time elapsed. The second element is the time since
the last call to statistics/2 with this key. It is not affected by
calls to statistics/0.

garbage_collection
[no. of GCs,bytes freed,time spent]

stack_shifts
[no. of global shifts,no. of local/trailtrail shifts,time
spent]

atoms [no. of atoms,bytes used,atoms free] The number of atoms
free is the number of atoms allocated (the first element in the
list) subtracted from the maximum number of atoms, i.e. 262143
(33554431) on 32-bit (64-bit) architectures. Note that atom
garbage collection may be able to reclaim some of the allocated
atoms.

atom_garbage_collection
[no. of AGCs,bytes freed,time spent]

Times are in milliseconds, sizes of areas in bytes.

trimcore

Trims the stacks, reclaims any dead clauses and predicates, defragmentizes
Prolog’s memory, and attempts to return any unused memory to the operating
system. It is called automatically at every top-level query, except the stacks
are not trimmed then.

8.7 Meta-Logic

The predicates in this section are meta-logical and perform operations that require reasoning
about the current instantiation of terms or decomposing terms into their constituents. Such
operations cannot be expressed using predicate definitions with a finite number of clauses.

184 SICStus Prolog

var(?X) ISO,meta-logical

Tests whether X is currently uninstantiated (var is short for variable). An unin-
stantiated variable is one that has not been bound to anything, except possibly
another uninstantiated variable. Note that a compound term with some com-
ponents that are uninstantiated is not itself considered to be uninstantiated.
Thus the query

| ?- var(foo(X, Y)).

always fails, despite the fact that X and Y are uninstantiated.

nonvar(?X) ISO,meta-logical

Tests whether X is currently instantiated. This is the opposite of var/1.

ground(?X) meta-logical

Tests whether X is completely instantiated, i.e. free of unbound variables. In
this context, mutable terms are treated as nonground, so as to make ground/1
a monotone predicate.

atom(?X) ISO,meta-logical

Checks that X is currently instantiated to an atom (i.e. a non-variable term of
arity 0, other than a number).

float(?X) ISO,meta-logical

Checks that X is currently instantiated to a float.

integer(?X) ISO,meta-logical

Checks that X is currently instantiated to an integer.

number(?X) ISO,meta-logical

Checks that X is currently instantiated to a number.

atomic(?X) ISO,meta-logical

Checks that X is currently instantiated to an atom or number.

simple(?X) meta-logical

Checks that X is currently uninstantiated or instantiated to an atom or number.

compound(?X) ISO,meta-logical

Checks that X is currently instantiated to a compound term.

callable(?X) meta-logical

Checks that X is currently instantiated to a term valid as a goal i.e. a compound
term or an atom.

is_mutable(?X) meta-logical

Checks that X is currently instantiated to a mutable term (see Section 8.8
[Modify Term], page 188).

functor(+Term,?Name,?Arity) ISO,meta-logical

functor(?Term,+Name,+Arity) ISO,meta-logical

The principal functor of Term has name Name and arity Arity, where Name is
either an atom or, provided Arity is 0, a number. Initially, either Term must
be instantiated, or Name and Arity must be instantiated to, respectively, either
an atom and an integer in [0,255] or an atomic term and 0. In the case where

Chapter 8: Built-In Predicates 185

Term is initially uninstantiated, the result of the call is to instantiate Term to
the most general term having the principal functor indicated.

arg(+ArgNo,+Term,?Arg) ISO,meta-logical

Arg is the argument ArgNo of the compound term Term. The arguments are
numbered from 1 upwards, ArgNo must be instantiated to a positive integer
and Term to a compound term.

+Term =.. ?List ISO

?Term =.. +List ISO

List is a list whose head is the atom corresponding to the principal functor of
Term, and whose tail is a list of the arguments of Term. e.g.

| ?- product(0, n, n-1) =.. L.

L = [product,0,n,n-1]

| ?- n-1 =.. L.

L = [-,n,1]

| ?- product =.. L.

L = [product]

If Term is uninstantiated, then List must be instantiated either to a list of
determinate length whose head is an atom, or to a list of length 1 whose head is a
number. Note that this predicate is not strictly necessary, since its functionality
can be provided by arg/3 and functor/3, and using the latter two is usually
more efficient.

name(+Const,?CharList) obsolescent
name(?Const,+CharList) obsolescent

If Const is an atom or number, CharList is a code-list of the characters com-
prising the name of Const. e.g.

186 SICStus Prolog

| ?- name(product, L).

L = [112,114,111,100,117,99,116]

| ?- name(product, "product").

| ?- name(1976, L).

L = [49,57,55,54]

| ?- name(’1976’, L).

L = [49,57,55,54]

| ?- name((:-), L).

L = [58,45]

If Const is uninstantiated, CharList must be instantiated to a code-list. If
CharList can be interpreted as a number, Const is unified with that number;
otherwise, with the atom whose name is CharList. E.g.:

| ?- name(X, [58,45]).

X = :-

| ?- name(X, ":-").

X = :-

| ?- name(X, [49,50,51]).

X = 123

Note that there are atoms for which name(Const,CharList) is true, but which
will not be constructed if name/2 is called with Const uninstantiated. One such
atom is the atom ’1976’. It is recommended that new programs use atom_
codes/2 or number_codes/2, as these predicates do not have this inconsistency.

atom_codes(+Const,?CodeList) ISO

atom_codes(?Const,+CodeList) ISO

The same as name(Const,CodeList), but Const is constrained to be an atom.

number_codes(+Const,?CodeList) ISO

number_codes(?Const,+CodeList) ISO

The same as name(Const,CodeList), but Const is constrained to be a number.

atom_chars(+Const,?CharList) ISO only

atom_chars(?Const,+CharList) ISO only

Analogous to atom_codes/2, but CharList is a char-list instead of a code-list.

Chapter 8: Built-In Predicates 187

atom_chars(+Const,?CodeList) SICStus only

atom_chars(?Const,+CodeList) SICStus only

The same as atom_codes(Const,CharList).

number_chars(+Const,?CharList) ISO only

number_chars(?Const,+CharList) ISO only

Analogous to number_codes/2, but CharList is a char-list instead of a code-list.

number_chars(+Const,?CodeList) SICStus only

number_chars(?Const,+CodeList) SICStus only

The same as number_codes(Const,CharList).

char_code(+Char,?Code) ISO

char_code(?Char,+Code) ISO

Code is the character code of the one-char atom Char.

atom_length(+Atom,?Length) ISO

Length is the number of characters of the atom Atom.

atom_concat(+Atom1,+Atom2,?Atom12) ISO

atom_concat(?Atom1,?Atom2,+Atom12) ISO

The characters of the atom Atom1 concatenated with those of Atom2 are the
same as the characters of atom Atom12. If the last argument is instantiated,
nondeterminately enumerates all possible atom-pairs that concatenate to the
given atom, e.g.:

| ?- atom_concat(A, B, ’ab’).

A = ’’,
B = ab ? ;

A = a,
B = b ? ;

A = ab,
B = ’’ ? ;

no

sub_atom(+Atom,?Before,?Length,?After,?SubAtom) ISO

The characters of SubAtom form a sublist of the characters of Atom, such that
the number of characters preceding SubAtom is Before, the number of charac-
ters after SubAtom is After, and the length of SubAtom is Length. Capable of
nondeterminately enumerating all sub-atoms and their all possible placements,
e.g.:

188 SICStus Prolog

| ?- sub_atom(abrakadabra, Before, _, After, ab).

After = 9,
Before = 0 ? ;

After = 2,
Before = 7 ? ;

no

copy_term(?Term,?CopyOfTerm) ISO,meta-logical

CopyOfTerm is a renaming of Term, such that brand new variables have been
substituted for all variables in Term. If any of the variables of Term have goals
blocked on them, the copied variables will have copies of the goals blocked on
them as well. Similarly, independent copies are substituted for any mutable
terms in term. It behaves as if defined by:

copy_term(X, Y) :-
assert(’copy of’(X)),
retract(’copy of’(Y)).

The implementation of copy_term/2 conserves space by not copying ground
subterms.

8.8 Modification of Terms

One of the tenets of logic programming is that terms are immutable objects of the Herbrand
universe, and the only sense in which they can be modified is by means of instantiating
non-ground parts. There are, however, algorithms where destructive assignment is essential
for performance. Although alien to the ideals of logic programming, this feature can be
defended on practical grounds.

SICStus Prolog provides an abstract datatype and three operations for efficient backtrackable
destructive assignment. In other words, any destructive assignments are transparently
undone on backtracking. Modifications that are intended to survive backtracking must be
done by asserting or retracting dynamic program clauses instead. Unlike previous releases
of SICStus Prolog, destructive assignment of arbitrary terms is not allowed.

A mutable term is represented as a compound terms with a reserved functor:
’$mutable’(Value,Timestamp) where Value is the current value and Timestamp is re-
served for bookkeeping purposes [Aggoun & Beldiceanu 90].

Any copy of a mutable term created by copy_term/2, assert, retract, a database pred-
icate, or an all solutions predicate, is an independent copy of the original mutable term.
Any destructive assignment done to one of the copies will not affect the other copy.

The following operations are provided:

Chapter 8: Built-In Predicates 189

create_mutable(+Datum,-Mutable)
Mutable is a new mutable term with initial value Datum. Datum must not be
an unbound variable.

get_mutable(?Datum,+Mutable)
Datum is the current value of the mutable term Mutable.

update_mutable(+Datum,+Mutable)
Updates the current value of the mutable term Mutable to become Datum.
Datum must not be an unbound variable.

is_mutable(?Mutable)
Checks that Mutable is currently instantiated to a mutable term.

Please note: the effect of unifying two mutables is undefined.

8.9 Modification of the Program

The predicates defined in this section allow modification of dynamic predicates. Dynamic
clauses can be added (asserted) or removed from the program (retracted).

SICStus Prolog implements the “logical” view in updating dynamic predicates. This means
that the definition of a dynamic predicate that is visible to a call is effectively frozen when
the call is made. A predicate always contains, as far as a call to it is concerned, exactly the
clauses it contained when the call was made.

A useful way to think of this is to consider that a call to a dynamic predicate makes a virtual
copy of its clauses and then runs the copy rather than the original clauses. Any changes to
the predicate made by the call are immediately reflected in the Prolog database, but not
in the copy of the predicate being run. Thus, changes to a running predicate will not be
visible on backtracking. A subsequent call, however, makes and runs a copy of the modified
Prolog database. Any changes to the predicate that were made by an earlier call will now
be visible to the new call.

For the predicates of this section, the argument Head must be instantiated to an atom
or a compound term, with an optional module prefix. The argument Clause must be
instantiated either to a term Head :- Body or, if the body part is empty, to Head, with an
optional module prefix. An empty body part is represented as true.

Note that a term Head :- Body must be enclosed in parentheses when it occurs as an
argument of a compound term, as ‘:-’ is a standard infix operator with precedence greater
than 1000 (see Section 4.6 [Operators], page 54), e.g.:

| ?- assert((Head :- Body)).

Like recorded terms (see Section 8.10 [Database], page 191), the clauses of dynamic predi-
cates have a unique implementation-defined identifier. Some of the predicates below have
an additional argument, which is this identifier. This identifier makes it possible to access
clauses directly instead of requiring a normal database (hash-table) lookup.

190 SICStus Prolog

assert(:Clause)
assert(:Clause,-Ref)

The current instance of Clause is interpreted as a clause and is added to the
database. The predicate concerned must currently be dynamic or undefined
and the position of the new clause within it is implementation-defined. Ref is
a database reference to the asserted clause. Any uninstantiated variables in
the Clause will be replaced by new private variables, along with copies of any
subgoals blocked on these variables (see Section 4.3 [Procedural], page 50).

asserta(:Clause) ISO

asserta(:Clause,-Ref)
Like assert/2, except that the new clause becomes the first clause for the
predicate concerned.

assertz(:Clause) ISO

assertz(:Clause,-Ref)
Like assert/2, except that the new clause becomes the last clause for the
predicate concerned.

clause(:Head,?Body) ISO

clause(:Head,?Body,?Ref)
clause(?Head,?Body,+Ref)

The clause (Head :- Body) exists in the database, and its database reference is
Ref. The predicate concerned must currently be dynamic. At the time of call,
either Ref must be instantiated, or Head must be instantiated to an atom or a
compound term. Thus clause/3 can have two different modes of use.

retract(:Clause) ISO

The first clause in the database that matches Clause is erased. The predicate
concerned must currently be dynamic. retract/1 may be used in a nondeter-
minate fashion, i.e. it will successively retract clauses matching the argument
through backtracking.

retractall(:Head)
Erases all clauses whose head matches Head, where Head must be instantiated
to an atom or a compound term. The predicate concerned must currently be
dynamic. The predicate definition is retained.

Please note: all predicates mentioned above first look for a predicate that is
visible in the module in which the call textually appears. If no predicate is
found, a new dynamic predicate (with no clauses) is created automatically.
It is recommended to declare as dynamic predicates for which clauses will be
asserted.

abolish(:Spec) ISO

abolish(:Name,+Arity)
Abolishes the predicates specified by the generalized predicate spec Spec or
Name/Arity. Name may be prefixed by a module name (see Section 5.2 [Mod-
ule Spec], page 59). In iso execution mode only dynamic predicates can be

Chapter 8: Built-In Predicates 191

abolished. In sicstus execution mode only built-in predicates cannot be abol-
ished, the user-defined ones always can be, even when static.

erase(+Ref)
The dynamic clause or recorded term (see Section 8.10 [Database], page 191)
whose database reference is Ref is effectively erased from the database.

instance(+Ref,?Term)
A (most general) instance of the dynamic clause or recorded term whose
database reference is Ref is unified with Term.

8.10 Internal Database

The predicates described in this section were introduced in early implementations of Prolog
to provide efficient means of performing operations on large quantities of data. The intro-
duction of indexed dynamic predicates have rendered these predicates obsolete, and the sole
purpose of providing them is to support existing code. There is no reason whatsoever to
use them in new code.

These predicates store arbitrary terms in the database without interfering with the clauses
that make up the program. The terms that are stored in this way can subsequently be
retrieved via the key on which they were stored. Many terms may be stored on the same
key, and they can be individually accessed by pattern matching. Alternatively, access can
be achieved via a special identifier, which uniquely identifies each recorded term and which
is returned when the term is stored.

recorded(?Key,?Term,?Ref) obsolescent
The database is searched for terms recorded under the key Key. These terms are
successively unified with Term in the order they occur in the database. At the
same time, Ref is unified with the database reference to the recorded item. If the
key is instantiated to a compound term, only its principal functor is significant.
If the key is uninstantiated, all terms in the database are successively unified
with Term in the order they occur.

recorda(+Key,?Term,-Ref) obsolescent
The term Term is recorded in the database as the first item for the key Key,
where Ref is its database reference. The key must be given, and only its prin-
cipal functor is significant. Any uninstantiated variables in the Term will be
replaced by new private variables, along with copies of any subgoals blocked on
these variables (see Section 4.3 [Procedural], page 50).

recordz(+Key,?Term,-Ref) obsolescent
Like recorda/3, except that the new term becomes the last item for the key
Key.

current_key(?KeyName,?KeyTerm) obsolescent
KeyTerm is the most general form of the key for a currently recorded term, and
KeyName is the name of that key. This predicate can be used to enumerate in
undefined order all keys for currently recorded terms through backtracking.

192 SICStus Prolog

8.11 Blackboard Primitives

The predicates described in this section store arbitrary terms in a per-module repository
known as the “blackboard”. The main purpose of the blackboard was initially to provide a
means for communication between branches executing in parallel, but the blackboard works
equally well during sequential execution. The blackboard implements a mapping from keys
to values. Keys are restricted to being atoms or small integers, whereas values are arbitrary
terms. In contrast to the predicates described in the previous sections, a given key can map
to at most a single term.

Each Prolog module maintains its own blackboard, so as to avoid name clashes if different
modules happen to use the same keys. The “key” arguments of these predicates are subject
to module name expansion, so the module name does not have to be explicitly given unless
multiple Prolog modules are supposed to share a single blackboard.

The predicates below implement atomic blackboard actions.

bb_put(:Key, +Term)
A copy of Term is stored under Key. Any previous term stored under the same
Key is simply deleted.

bb_get(:Key, ?Term)
If a term is currently stored under Key, a copy of it is unified with Term.
Otherwise, bb_get/2 silently fails.

bb_delete(:Key, ?Term)
If a term is currently stored under Key, the term is deleted, and a copy of it is
unified with Term. Otherwise, bb_delete/2 silently fails.

bb_update(:Key, ?OldTerm, ?NewTerm)
If a term is currently stored under Key and unifies with OldTerm, the term is
replaced by a copy of NewTerm. Otherwise, bb_update/3 silently fails. This
predicate provides an atomic swap operation.

The following example illustrates how these primitives may be used to implement a “maxof”
predicate that finds the maximum value computed by some nondeterminate goal, which may
execute in parallel. We use a single key max. Note the technique of using bb_update/3 in a
repeat-fail loop, since other execution branches may be competing for updating the value,
and we only want to store a new value if it is greater than the old value.

We assume that Goal does not produce any “false” solutions that would be eliminated by
cuts in a sequential execution. Thus, Goal may need to include redundant checks to ensure
that its solutions are valid, as discussed above.

Chapter 8: Built-In Predicates 193

maxof(Value, Goal, _) :-
bb_put(max, -1), % initialize max-so-far
call(Goal),
update_max(Value),
fail.

maxof(_, _, Max) :-
bb_delete(max, Max),
Max > 1.

update_max(New):-
repeat,

bb_get(max, Old),
compare(C, Old, New),
update_max(C, Old, New), !.

update_max(<, Old, New) :- bb_update(max, Old, New).
update_max(=, _, _).
update_max(>, _, _).

8.12 All Solutions

When there are many solutions to a problem, and when all those solutions are required to be
collected together, this can be achieved by repeatedly backtracking and gradually building
up a list of the solutions. The following built-in predicates are provided to automate this
process.

Note that the Goal argument to the predicates listed below is called as if by call/1 at run-
time. Thus if Goal is complex and if performance is an issue, define an auxiliary predicate,
which can then be compiled, and let Goal call it.

setof(?Template,:Goal,?Set) ISO

Read this as “Set is the set of all instances of Template such that Goal is
satisfied, where that set is non-empty”. The term Goal specifies a goal or goals
as in call(Goal) (see Section 8.4 [Control], page 170). Set is a set of terms
represented as a list of those terms, without duplicates, in the standard order
for terms (see Section 8.3 [Term Compare], page 168). If there are no instances
of Template such that Goal is satisfied then the predicate fails.
The variables appearing in the term Template should not appear anywhere else
in the clause except within the term Goal. Obviously, the set to be enumerated
should be finite, and should be enumerable by Prolog in finite time. It is possible
for the provable instances to contain variables, but in this case the list Set will
only provide an imperfect representation of what is in reality an infinite set.
If there are uninstantiated variables in Goal, which do not also appear in Tem-
plate, then a call to this built-in predicate may backtrack, generating alternative
values for Set corresponding to different instantiations of the free variables of

194 SICStus Prolog

Goal. (It is to cater for such usage that the set Set is constrained to be non-
empty.) Two instantiations are different iff no renaming of variables can make
them literally identical. For example, given the clauses:

likes(bill, cider).
likes(dick, beer).
likes(harry, beer).
likes(jan, cider).
likes(tom, beer).
likes(tom, cider).

the query
| ?- setof(X, likes(X,Y), S).

might produce two alternative solutions via backtracking:
S = [dick,harry,tom],
Y = beer ? ;

S = [bill,jan,tom],
Y = cider ? ;

The query:
| ?- setof((Y,S), setof(X, likes(X,Y), S), SS).

would then produce:
SS = [(beer,[dick,harry,tom]),(cider,[bill,jan,tom])]

Variables occurring in Goal will not be treated as free if they are explicitly
bound within Goal by an existential quantifier. An existential quantification is
written:

Y^Q

meaning “there exists a Y such that Q is true”, where Y is some Prolog variable.
For example:

| ?- setof(X, Y^(likes(X,Y)), S).

would produce the single result:
S = [bill,dick,harry,jan,tom]

in contrast to the earlier example.
Note that in iso execution mode, only outermost existential quantification
is accepted, i.e. if the Goal argument is of form V1 ^ ... ^ N ^ SubGoal. In
sicstus execution mode existential quantification is handled also deeper inside
Goal.

bagof(?Template,:Goal,?Bag) ISO

This is exactly the same as setof/3 except that the list (or alternative lists)
returned will not be ordered, and may contain duplicates. The effect of this
relaxation is to save a call to sort/2, which is invoked by setof/3 to return
an ordered list.

?X^:P

The all solution predicates recognize this as meaning “there exists an X such
that P is true”, and treats it as equivalent to P (see Section 8.4 [Control],

Chapter 8: Built-In Predicates 195

page 170). The use of this explicit existential quantifier outside the setof/3
and bagof/3 constructs is superfluous and discouraged.

findall(?Template,:Goal,?Bag) ISO

Bag is a list of instances of Template in all proofs of Goal found by Prolog. The
order of the list corresponds to the order in which the proofs are found. The list
may be empty and all variables are taken as being existentially quantified. This
means that each invocation of findall/3 succeeds exactly once, and that no
variables in Goal get bound. Avoiding the management of universally quantified
variables can save considerable time and space.

findall(?Template,:Goal,?Bag,?Remainder)
Same as findall/3, except Bag is the list of solution instances appended with
Remainder, which is typically unbound.

8.13 Messages and Queries

This section describes the two main aspects of user interaction, displaying messages and
querying the user. We will deal with these two issues in turn.

8.13.1 Message Processing

Every message issued by the Prolog system is displayed using a single predicate:

print_message(+Severity, +Message)

Message is a term that encodes the message to be printed. The format of message terms
is subject to change, but can be inspected in the file ‘library(’SU_messages’)’ of the
SICStus Prolog distribution.

The atom Severity specifies the type (or importance) of the message. The following table
lists the severities known to the SICStus Prolog system, together with the line prefixes used
in displaying messages of the given severity:

error ’! ’ for error messages
warning ’* ’ for warning messages
informational ’% ’ for informational messages
help ’’ for help messages
query ’’ for query texts (see Section 8.13.3 [Query Processing], page 200)
silent ’’ a special kind of message, which normally does not produce any

output, but can be intercepted by hooks

print_message/2 is a built-in predicate, so that users can invoke it to have their own
messages processed in the same way as the system messages.

196 SICStus Prolog

The processing and printing of the messages is highly customizable. For example, this
allows the user to change the language of the messages, or to make them appear in dialog
windows rather than on the terminal.

8.13.1.1 Phases of Message Processing

Messages are processed in two major phases. The user can influence the behavior of each
phase using appropriate hooks, described later.

The first phase is called the message generation phase: it determines the text of the message
from the input (the abstract message term). No printing is done here. In this phase the
user can change the phrasing or the language of the messages.

The result of the first phase is created in the form of a format-command list. This is a
list whose elements are format-commands, or the atom nl denoting the end of a line. A
format-command describes a piece of text not extending over a line boundary and it can be
one of the following:

FormatString-Args
format(FormatString, Args)

This indicates that the message text should appear as if printed by
format(FormatString, Args).

write_term(Term, Options)
This indicates that the message text should appear as if printed by

write_term(Term, Options).

write_term(Term)
Equivalent to write_term(Term, Options) where Options is the actual value
of the Prolog flag toplevel_print_options.

As an example, let us see what happens in case of the toplevel call _ =:= 3. An instantia-
tion error is raised by the Prolog system, which is caught, and the abstract message term
instantiation_error(_=:=3,1) is generated (assuming sicstus execution mode)—the
first argument is the goal, and the second argument is the position of the uninstantiated
variable within the goal. In the first phase of message processing this is converted to the
following format-command list:

[’Instantiation error’-[],’ in argument ~d of ~q’-[1,=:= /2],nl,
’goal: ’-[],write_term(_=:=3),nl]

A minor transformation, so-called line splitting is performed on the message text before it
is handed over to the second phase. The format-command list is broken up along the nl
atoms into a list of lines, where each line is a list of format-commands. We will use the
term format-command lines to refer to the result of this transformation.

In the example above, the result of this conversion is the following:

Chapter 8: Built-In Predicates 197

[[’Instantiation error’-[],’ in argument ~d of ~q’-[1,=:= /2]],
[’goal: ’-[],write_term(_=:=3)]]

The above format-command lines term is the input of the second phase of message process-
ing.

The second phase is called the message printing phase, this is where the message is actually
displayed. The severity of the message is used here to prefix each line of the message with
some characters indicating the type of the message, as listed above.

The user can change the exact method of printing (e.g. redirection of messages to a stream,
a window, or using different prefixes, etc.) through appropriate hooks.

In our example the following lines are printed by the second phase of processing:

! Instantiation error in argument 1 of =:= /2
! goal: _=:=3

The user can override the default message processing mechanism in the following two ways:

• A global method is to define the hook predicate portray_message/2, which is the first
thing called by message processing. If this hook exists and succeeds, then it overrides
all other processing—nothing further is done by print_message/2.

• If a finer method of influencing the behavior of message processing is needed, then there
are several further hooks provided, which affect only one phase of the process. These
are described in the following paragraphs.

8.13.1.2 Message Generation Phase

The default message generation predicates are located in the ‘library(’SU_messages’)’
file, in the ’SU_messages’ module, together with other message and query related pred-
icates. This is advantageous when these predicates have to be changed as a whole (for
example when translating all messages to another language), because this can be done
simply by replacing the file ‘library(’SU_messages’)’ by a new one.

In the message generation phase three alternative methods are tried:

• First the hook predicate generate_message_hook/3 is executed, if it succeeds, it is
assumed to deliver the output of this phase.

• Next the default message generation is invoked via ’SU_messages’:generate_
message/3.

• In the case that neither of the above methods succeed, a built-in fall-back message
generation method is used.

The hook predicate generate_message_hook/3 can be used to override the default behav-
ior, or to handle new messages defined by the programmer, which do not fit the default

198 SICStus Prolog

message generation schemes. The latter can also be achieved by adding new clauses to the
extendible ’SU_messages’:generate_message/3 predicate.

If both the hook and the default method refuses to handle the message, then the following
simple format-command list is generated from the abstract message term Message:

[’~q’-[Message],nl]

This will result in displaying the abstract message term itself, as if printed by writeq/1.

For messages of the severity silent the message generation phase is skipped, and the []
format-command list is returned as the output.

8.13.1.3 Message Printing Phase

By default this phase is handled by the built-in predicate print_message_lines/3. Each
line of the message is prefixed with a string depending on the severity, and is printed to
user_error. The query severity is special—no newline is printed after the last line of the
message.

This behavior can be overridden by defining the hook predicate message_hook/3, which
is called with the severity of the message, the abstract message term and its translation
to format-command lines. It can be used to make smaller changes, for example by calling
print_message_lines/3 with a stream argument other than user_error, or to implement
a totally different display method such as using dialog windows for messages.

For messages of the severity silent the message printing phase consists of calling the hook
predicate message_hook/3 only. Even if the hook fails, no printing is done.

8.13.2 Message Handling Predicates

print_message(+Severity, +Message) hookable

Prints a Message of a given Severity. The behavior can be customized using
the hooks user:portray_message/2, user:generate_message_hook/3 and
user:message_hook/3.
All messages from the system are printed by calling this predicate.
First print_message/2 calls user:portray_message/2 with the same argu-
ments. If this does not succeed, the message is processed in the following
phases:
• Message generation phase: the abstract message term Message is format-

ted, i.e. converted to a format-command list. First the hook predicate
user:generate_message_hook/3 is tried, then if it does not succeed, ’SU_
messages’:generate_message/3 is called. If that also fails or gives an
exception, then the built-in default conversion is used, which gives the
following result:

[’~q’-[Message],nl]

Chapter 8: Built-In Predicates 199

• Line splitting transformation: the format-command list is converted to
format-command lines—the list is broken up into a list of lists, each list
containing format-commands for one line.

• Message printing phase: The text of the message (format-command lines
generated in the previous stage) is printed. First the hook predicate
user:message_hook/3 is tried, then, if it does not succeed, the built-in
predicate print_message_lines/3 is called for the user_error stream.

portray_message(+Severity, +Message) hook

user:portray_message(+Severity, +Message)
Called by print_message/2 before processing the message. If this succeeds, it
is assumed that the message has been processed and nothing further is done.

generate_message_hook(+Message, -L0, -L) hook

user:generate_message_hook(+Message, -L0, -L)
A way for the user to override the call to ’SU_messages’:generate_message/3
in the message generation phase in print_message/2.

’SU_messages’:generate_message(+Message, -L0, -L) extendible

Defines how to transform a message term Message to a format-command list.
For a given Message, generates a format-command list in the form of the dif-
ference list L0-L; this means, that L0 is the generated list with L appended to
it. This list will be translated into format-command lines, which will be passed
to the message printing phase.

message_hook(+Severity, +Message, +Lines) hook

user:message_hook(+Severity, +Message, +Lines)
Overrides the call to print_message_lines/3 in the message printing phase
of print_message/2. A way for the user to intercept the abstract message
term Message of type Severity, whose translation into format-command lines is
Lines, before it is actually printed.

print_message_lines(+Stream, +Severity, +Lines)
Print the Lines to Stream, preceding each line with a prefix defined by Severity.
Lines must be a valid format-command lines, Severity can be an arbitrary atom.
If it is one of the predefined severities, the corresponding prefix is used in
printing the message lines. Otherwise the Severity itself is interpreted as the
prefix (this is for Quintus Prolog compatibility, where print_message_lines/3
takes the prefix as its second argument). In case of the query severity no newline
is written after the last line.

goal_source_info(+AGoal, ?Goal, ?SourceInfo)
Decompose the AGoal annotated goal into a Goal proper and the SourceInfo
descriptor term, indicating the source position of the goal.
Annotated goals occur in most of error message terms, and carry information
on the Goal causing the error and its source position. The SourceInfo term,
retrieved by goal_source_info/3 will be one of the following:

[] The goal has no source information associated with it.

fileref(File,Line)
The goal occurs in file File, line Line.

200 SICStus Prolog

clauseref(File,MFunc,ClauseNo,CallNo,Line)
The goal occurs in file File, within predicate MFunc, clause number
ClauseNo, call number CallNo and virtual line number Line. Here,
MFunc is of form Module:Name/Arity, calls are numbered textually
and the virtual line number shows the position of the goal within the
listing of the predicate MFunc, as produced by listing/1. Such a
term is returned for goals occurring in interpreted predicates, which
do not have “real” line number information, e.g. because they were
entered from the terminal, or created dynamically.

8.13.3 Query Processing

All user input in the Prolog system is handled by a single predicate:

ask_query(+QueryClass, +Query, +Help, -Answer)

QueryClass, described below, specifies the form of the query interaction. Query is an
abstract message term specifying the query text, Help is an abstract message term used as
a help message in certain cases, and Answer is the (abstract) result of the query.

ask_query/4 is a built-in predicate, so that users can invoke it to have their own queries
processed in the same way as the system queries.

The processing of queries is highly customizable. For example, this allows changing the
language of the input expected from the user, or to make queries appear in dialog windows
rather than on the terminal.

8.13.3.1 Query Classes

Queries posed by the system can be classified according to the kind of input they expect,
the way the input is processed, etc. Queries of the same kind form a query class.

For example, queries requiring a yes/no answer form a query class with the following char-
acteristics:

• the text ‘ (y or n) ’ is used as the prompt;
• a single line of text is input;
• if the first non-whitespace character of the input is y or n (possibly in capitals), then

the query returns the atom yes or no, respectively, as the abstract answer;
• otherwise a help message is displayed and the query is repeated.

There are built-in query classes for reading in yes/no answers, toplevel queries, debugger
commands, etc.

Chapter 8: Built-In Predicates 201

A query class is characterized by a ground Prolog term, which is supplied as the first
argument to the query processing predicate ask_query/4. The characteristics of a query
class are normally described by the extendible predicate

’SU_messages’:query_class(+QueryClass, -Prompt, -InputMethod,
-MapMethod, -FailureMode).

The arguments of the query_class predicate have the following meaning:

• Prompt: an atom to be used for prompting the user.
• InputMethod: a non-variable term, which specifies how to obtain input from the user.

For example, a built-in input method is described by the atom line. This requests
that a line is input from the user, and the code-list is returned. Another built-in input
method is term(Options); here, a Prolog term is read and returned.
The input obtained using InputMethod is called raw input, as it may undergo further
processing.
In addition to the built-in input methods, the user can define his/her own extensions.

• MapMethod: a non-variable term, which specifies how to process the raw input to get
the abstract answer to the query.
For example, the built-in map method char([yes-"yY", no-"nN"]) expects a code-list
as raw input, and gives the answer term yes or no depending on the first non-whitespace
character of the input. As another example, the built-in map method = requests that
the raw input itself is returned as the answer term—this is often used in conjunction
with the input method term(Options).
In addition to the built-in map methods the user can define his/her own extensions.

• FailureMode

This is used only when the mapping of raw input fails, and the query must be repeated.
This happens for example if the user typed a character other than y or n in case of the
yes_or_no query class. FailureMode determines what to print before re-querying the
user. Possible values are:
• help_query: print a help message, then print the text of the query again
• help: only print the help message
• query: only print the text of the query
• none: do not print anything

8.13.3.2 Phases of Query Processing

Query processing is done in several phases, described below. We will illustrate what is done
in each phase through a simple example: the question put to the user when the solution to
the toplevel query ‘X is 1+1’ is displayed, requesting a decision whether to find alternative
answers or not:

202 SICStus Prolog

| ?- X is 1+1.

X = 2 ? no

Please enter ";" for more choices; otherwise, <return>
? ;

We focus on the query ‘X = 2 ? ’ in the above script.

The example query belongs to the class next_solution, its text is described by the message
term solutions([binding("X",2)]), and its help text by the message term bindings_
help. Accordingly, such a query is executed by calling:

ask_query(next_solution, /* QueryClass */
solutions([binding("X",2)]), /* Query */
bindings_help, /* Help */
Answer)

In general, execution of ask_query(+QueryClass, +Query, +Help, -Answer) consists of
the following phases:

• Preparation phase: The abstract message terms Query (for the text of the query) and
Help (for the help message) are converted to format-command lines via the message
generation and line splitting phases (see Section 8.13.1 [Message Processing], page 195).
Let us call the results of the two conversions QueryLines and HelpLines, respectively.
The text of the query, QueryLines is printed immediately (via the message printing
phase, using query severity). HelpLines may be printed later, and QueryLines printed
again, in case of invalid user input.
The characteristics of QueryClass (described in the previous subsubsection) are re-
trieved to control the exact behavior of the further phases.
In our example, the following parameters are sent in the preparation phase:
QueryLines = [[],[’~s = ’-["X"],write_term(2)]]
HelpLines =
[[’Please enter ";" for more choices; otherwise, <return>’-[]]]

Prompt = ’ ? ’
InputMethod = line
MapMethod = char([yes-";", no-[0’\n]])
FailureMode = help

QueryLines is displayed immediately, printing:
X = 2

(Note that the first element of QueryLines is [], therefore the output is preceded by a
newline. Also note that no newline is printed at the end of the last line, because the
query severity is used.)
The subsequent phases will be called repeatedly until the mapping phase succeeds in
generating an answer.

• Input phase: By default, the input phase is implemented by the extendible predicate
’SU_messages’:query_input(+InputMethod, +Prompt, -RawInput).

Chapter 8: Built-In Predicates 203

This phase uses the Prompt and InputMethod characteristics of the query class. In-
putMethod specifies the method of obtaining input from the user. This method is
executed, and the result (RawInput) is passed on to the next phase.
The use of Prompt may depend on InputMethod. For example, the built-in input
method line prints the prompt unconditionally, while the input method term(_)
passes Prompt to prompt/2.
In the example, first the ‘ ? ’ prompt is displayed. Next, because InputMethod is line,
a line of input is read, and the code-list is returned in RawInput. Supposing that the
user typed no〈RET〉, RawInput becomes " no" = [32,110,111].

• Mapping phase: By default, the mapping phase is implemented by the extendible pred-
icate

’SU_messages’:query_map(+MapMethod, +RawInput,
-Result, -Answer).

This phase uses the MapMethod parameter to control the method of converting the
raw input to the abstract answer.
In some cases RawInput is returned as it is, but otherwise it has to be processed
(parsed) to generate the answer.
The conversion process may have two outcomes indicated in the Result returned:
• success, in which case the query processing is completed with the Answer term

returned;
• failure, the query has to be repeated.

In the latter case a message describing the cause of failure may be returned, to be
printed before the query is repeated.
In our example, the map method is char([yes-";", no-[0’\n]]). The mapping
phase fails for the RawInput passed on by the previous phase of the example, as the
first non-whitespace character is n, which does not match any of the given characters.

• Query restart phase: This phase is executed only if the mapping phase returned with
failure.
First, if a message was returned by the mapping, then it is printed. Subsequently, if
requested by the FailureMode parameter, the help message HelpLines and/or the text
of the query QueryLines is printed.
The query is then repeated—the input and mapping phase will be called again to try
to get a valid answer.
In the above example, the user typed an invalid character, so the mapping failed. The
char(_) mapping does not return any message in case of failure. The FailureMode of
the query class is help, so the help message HelpLines is printed, but the query is not
repeated:

Please enter ";" for more choices; otherwise, <return>

Having completed the query restart phase, the example script continues by re-entering
the input phase: the prompt ‘ ? ’ is printed, another line is read, and is processed by
the mapping phase. If the user types the character ; this time, then the mapping phase
returns successfully and gives the abstract answer term yes.

204 SICStus Prolog

8.13.3.3 Hooks in Query Processing

As explained above, the major parts of query processing are implemented in the ’SU_
messages’ module in the file ‘library(’SU_messages’)’ through the following extendible
predicates:

• ’SU_messages’:query_class(+QueryClass, -Prompt, -InputMethod,
-MapMethod, -FailureMode)

• ’SU_messages’:query_input(+InputMethod, +Prompt, -RawInput)

• ’SU_messages’:query_map(+MapMethod, +RawInput, -Result, -Answer)

This is to enable the user to change the language used, the processing done, etc., simply by
changing or replacing the ‘library(’SU_messages’)’ file.

To give more control to the user and to make the system more robust (for example if the ’SU_
messages’ module is corrupt) the so-called four step procedure is used in the above three
cases—obtaining the query class parameters, performing the query input and performing
the mapping. The four steps of this procedure, described below, are tried in the given order
until the first one that succeeds. Note that if an exception is raised within the first three
steps, then a warning is printed and the step is considered to have failed.

• First a hook predicate is tried. The name of the hook is derived from the name of the
appropriate predicate by appending ‘_hook’ to it, e.g. user:query_class_hook/5 in
case of the query class. If this hook predicate exists and succeeds, then it is assumed
to have done all necessary processing, and the following steps are skipped.

• Second, the predicate in the ’SU_messages’ module is called (this is the default case,
these are the predicates listed above). Normally this should succeed, unless the mod-
ule is corrupt, or an unknown query-class/input-method/map-method is encountered.
These predicates are extendible, so new classes and methods can be added easily by
the user.

• Third, as a fall-back, a built-in minimal version of the predicates in the original ’SU_
messages’ is called. This is necessary because the ‘library(’SU_messages’)’ file is
modifiable by the user, therefore vital parts of the Prolog system (e.g. the toplevel
query) could be damaged.

• If all the above steps fail, then nothing more can be done, and an exception is raised.

8.13.3.4 Default Input Methods

The following InputMethod types are implemented by the default ’SU_messages’:query_
input(+InputMethod, +Prompt, -RawInput) (and these are the input methods known to
the third, fall-back step):

line The Prompt is printed, a line of input is read using read_line/2 and the
code-list is returned as RawInput.

Chapter 8: Built-In Predicates 205

term(Options)
Prompt is set to be the prompt (cf. prompt/2), and a Prolog term is read by
read_term/2 using the given Options, and is returned as RawInput.

FinalTerm^term(Term,Options)
A Prolog term is read as above, and is unified with Term. FinalTerm is returned
as RawInput. For example, the T-Vs^term(T,[variable_names(Vs)]) input
method will return the term read, paired with the list of variable names.

8.13.3.5 Default Map Methods

The following MapMethod types are known to ’SU_messages’:query_map(+MapMethod,
+RawInput, -Result, -Answer) and to the built-in fall-back mapping:

char(Pairs)
In this map method RawInput is assumed to be a code-list.
Pairs is a list of Name-Abbreviations pairs, where Name is a ground term,
and Abbreviations is a code-list. The first non-layout character of RawInput
is used for finding the corresponding name as the answer, by looking it up in
the abbreviation lists. If the character is found, then Result is success, and
Answer is set to the Name found; otherwise, Result is failure.

= No conversion is done, Answer is equal to RawInput and Result is success.

debugger This map method is used when reading a single line debugger command. It
parses the debugger command and returns the corresponding abstract com-
mand term. If the parse is unsuccessful, the answer unknown(Line,Warning)
is returned. This is to allow the user to extend the debugger command language
via debugger_command_hook/2, see Section 7.5 [Debug Commands], page 81.
The details of this mapping can be obtained from the
‘library(’SU_messages’)’ file.
Note that the fall-back version of this mapping is simplified, it only accepts
parameterless debugger commands.

8.13.3.6 Default Query Classes

Most of the default query classes are designed to support some specific interaction with
the user within the Prolog development environment. The full list of query classes can be
inspected in the file ‘library(’SU_messages’)’. Here, we only describe the two classes
defined by ’SU_messages’:query_class/5 that may be of general use:

QueryClass yes_or_no yes_no_proceed
Prompt ’ (y or n) ’ ’ (y, n, p, s, a, or ?) ’
InputMethod line line
MapMethod char([yes-"yY",

no-"nN"])
char([yes-"yY", no-"nN", proceed-"pP",
suppress-"sS", abort-"aA"])

206 SICStus Prolog

FailureMode help_query help_query

8.13.4 Query Handling Predicates

ask_query(+QueryClass, +Query, +Help, -Answer) hookable

Prints the question Query, then reads and processes user input according to
QueryClass, and returns the result of the processing, the abstract answer term
Answer. The Help message may be printed in case of invalid input.
All queries made by the system are handled by calling this predicate.
First ask_query/4 calls query_hook/6 with the same arguments plus the Query
and Help arguments converted to format-command lines. If this call succeeds,
then it overrides all further processing done by ask_query/4. Otherwise, the
query is processed in the following way:
• Preparation phase: The parameters of the query processing, defined by

QueryClass (Prompt, InputMethod, MapMethod and FailureMode) are
retrieved using the four step procedure described above. That is, the fol-
lowing alternatives are tried:
− user:query_class_hook/5;
− ’SU_messages’:query_class/5;
− the built-in copy of query_class/5.

• Input phase: The user is prompted with Prompt, input is read according
to InputMethod, and the result is returned in RawInput.
The four step procedure is used for performing this phase, the predicates
tried are the following:
− user:query_input_hook/3;
− ’SU_messages’:query_input/3;
− the built-in copy of query_input/3.

• Mapping phase: The RawInput returned by the input phase is mapped
to the Answer of the query. This mapping is defined by the MapMethod
parameter, and the result of the conversion is returned in Result, which
can be:
− success—the mapping was successful, Answer is valid;
− failure—the mapping was unsuccessful, the query has to be repeated;
− failure(Warning)—same as failure, but first the given warning

message has to be printed.

The four step procedure is used for performing this phase, the predicates
tried are the following:
− user:query_map_hook/4;
− ’SU_messages’:query_map/4;
− the built-in copy of query_map/4.

If the mapping phase succeeds, then ask_query/4 returns with the Answer
delivered by this phase.

Chapter 8: Built-In Predicates 207

• If the mapping does not succeed, then the query has to be repeated. If
the Result returned by the mapping contains a warning message, then it
is printed using print_message/2. FailureMode specifies whether to print
the help message and whether to re-print the query text. Subsequently,
the input and mapping phases are called again, and this is repeated until
the mapping is successful.

query_hook(+QueryClass, +Query, +QueryLines, +Help, +HelpLines, -Answer) hook

user:query_hook(+QueryClass, +Query, +QueryLines, +Help, +HelpLines, -Answer)
Called by ask_query/4 before processing the query. If this predicate succeeds,
it is assumed that the query has been processed and nothing further is done.

query_class_hook(+QueryClass, -Prompt, -InputMethod, -MapMethod,
-FailureMode) hook

user:query_class_hook(+QueryClass, -Prompt, -InputMethod, -MapMethod,
-FailureMode)

Provides the user with a method of overriding the call to ’SU_
messages’:query_class/5 in the preparation phase of query processing. This
way the default query class characteristics can be changed.

’SU_messages’:query_class(+QueryClass, -Prompt, -InputMethod, -MapMethod,
-FailureMode) extendible

Returns the parameters of the given QueryClass:
• Prompt - an atom to be used as prompt;
• InputMethod - a ground term, which specifies how to obtain input from

the user;
• MapMethod - a ground term, which specifies how to process the input to

get the abstract answer to the query;
• FailureMode - an atom determining what to print in case of an input error,

before re-querying the user. Possible values are:
− help_query - print the help message and print the query text again;
− help - only print the help message;
− query - only print the query text;
− none - do not print anything.

For the list of default input- and map methods, see the “Default Input Methods”
and “Default Map Methods” subsections in Section 8.13.3 [Query Processing],
page 200.

’SU_messages’:query_abbreviation(+QueryClass, -Prompt, -Pairs) extendible

This extendible predicate provides a shortcut for defining query classes with
some fixed characteristics, where
• QueryClass is the query class being defined;
• Prompt is the prompt to be used;
• Pairs is the list of pairs defining the characters accepted and the corre-

sponding abstract answers.

208 SICStus Prolog

This defines a query class with the given prompt, the line input method, the
char(Pairs) map method and help_query failure mode. The predicate is
actually implemented by the first clause of ’SU_messages’:query_class/5:

query_class(QueryClass, Prompt, line,
char(Pairs), help_query) :-

query_abbreviation(QueryClass, Prompt, Pairs), !.

query_input_hook(+InputMethod, +Prompt, -RawInput) hook

user:query_input_hook(+InputMethod, +Prompt, -RawInput)
Provides the user with a method of overriding the call to ’SU_
messages’:query_input/3 in the input phase of query processing. This way
the implementation of the default input methods can be changed.

’SU_messages’:query_input(+InputMethod, +Prompt, -RawInput) extendible

Implements the input phase of query processing. The user is prompted with
Prompt, input is read according to InputMethod, and the result is returned in
RawInput.
See Section 8.13.3 [Query Processing], page 200, for details.

query_map_hook(+MapMethod, +RawInput, -Result, -Answer) hook

user:query_map_hook(+MapMethod, +RawInput, -Result, -Answer)
Provides the user with a method of overriding the call to ’SU_
messages’:query_map/4 in the mapping phase of query processing. This way
the implementation of the default map methods can be changed.

’SU_messages’:query_map(+MapMethod, +RawInput, -Result, -Answer) extendible

Implements the mapping phase of query processing. The RawInput, received
from query_input/3, is mapped to the abstract answer term Answer. The map-
ping is defined by the MapMethod parameter, and one of the terms success,
failure and failure(Warning), describing the result of the conversion is re-
turned in Result.
See Section 8.13.3 [Query Processing], page 200, for details.

8.14 Coroutining

The coroutining facility can be accessed by a number of built-in predicates. This makes it
possible to use coroutines in a dynamic way, without having to rely on block declarations:

when(+Condition,:Goal)
Blocks Goal until the Condition is true, where Condition is a goal with the
restricted syntax:

nonvar(X)
ground(X)
?=(X,Y)

Condition,Condition
Condition;Condition

For example:

Chapter 8: Built-In Predicates 209

| ?- when(((nonvar(X);?=(X,Y)),ground(T)), process(X,Y,T)).

freeze(?X,:Goal)
Blocks Goal until nonvar(X) (see Section 8.7 [Meta Logic], page 183) holds.
This is defined as if by:

freeze(X, Goal) :- when(nonvar(X), Goal).

or
:- block freeze(-, ?).
freeze(_, Goal) :- Goal.

frozen(-Var,?Goal)
If some goal is blocked on the variable Var, or Var has attributes that can be
interpreted as a goal (see Chapter 18 [Attributes], page 355), then that goal is
unified with Goal. If no goals are blocked, Goal is unified with the atom true.
If more than one goal is blocked, a conjunction is unified with Goal.

dif(?X,?Y)
Constrains X and Y to represent different terms i.e. to be non-unifiable. Calls
to dif/2 either succeed, fail, or are blocked depending on whether X and Y are
sufficiently instantiated. It is defined as if by:

dif(X, Y) :- when(?=(X,Y), X\==Y).

call_residue(:Goal,?Residue) obsolescent
The Goal is executed as if by call/1. If during the execution some attributes
or blocked goals were attached to some variables, then Residue is unified with a
list of VariableSet-Goal pairs, and those variables no longer have attributes or
blocked goals attached to them. Otherwise, Residue is unified with the empty
list [].
VariableSet is a set of variables such that when any of the variables is bound,
Goal gets unblocked. Usually, a goal is blocked on a single variable, in which
case VariableSet is a singleton.
Goal is an ordinary goal, sometimes module prefixed. For example:

| ?- call_residue((dif(X,f(Y)), X=f(Z)), Res).

X = f(Z),
Res = [[Y,Z]-(prolog:dif(f(Z),f(Y)))]

8.15 Debugging

Debugging predicates are not available in runtime systems.

unknown(?OldState,?NewState) development

OldState is the current state of the “Action on unknown predicates” flag, and
sets the flag to NewState. This flag determines whether or not the system is
to catch calls to undefined predicates (see Section 3.6 [Undefined Predicates],
page 29), when user:unknown_predicate_handler/3 cannot handle the goal.
The possible states of the flag are:

210 SICStus Prolog

trace Causes calls to undefined predicates to be reported and the debug-
ger to be entered at the earliest opportunity.

fail Causes calls to such predicates to fail.

warning Causes calls to such predicates to display a warning message and
then fail.

error Causes calls to such predicates to raise an exception (the default).
See Section 8.5 [Exception], page 173.

debug development

The debugger is switched on in debug mode. See Section 7.2 [Basic Debug],
page 77.

trace development

The debugger is switched on in trace mode. See Section 7.2 [Basic Debug],
page 77.

zip development

The debugger is switched on in zip mode. See Section 7.2 [Basic Debug],
page 77.

nodebug development

notrace
nozip

The debugger is switched off. See Section 7.2 [Basic Debug], page 77.

leash(+Mode) development

Leashing Mode is set to Mode. See Section 7.2 [Basic Debug], page 77.

spy :Spec development

Plain spypoints are placed on all the predicates given by Spec. See Section 7.3
[Plain Spypoint], page 79.

spy(:Spec, :Conditions) development

Spypoints with condition Conditions are placed on all the predicates given by
Spec. See Section 7.7 [Breakpoint Predicates], page 116.

nospy :Spec development

All spypoints (plain and conditional) are removed from all the predicates given
by Spec. See Section 7.3 [Plain Spypoint], page 79.

nospyall development

Removes all the spypoints (including the generic ones) that have been set.

debugging development

Displays information about the debugger. See Section 7.2 [Basic Debug],
page 77.

add_breakpoint(:Conditions, ?BID) development

Creates a breakpoint with Conditions and with identifier BID. See Section 7.7
[Breakpoint Predicates], page 116.

Chapter 8: Built-In Predicates 211

current_breakpoint(:Conditions, ?BID, ?Status, ?Kind, ?Type) development

There is a breakpoint with conditions Conditions, identifier BID, enabledness
Status, kind Kind, and type Type. See Section 7.7 [Breakpoint Predicates],
page 116.

remove_breakpoints(+BIDs) development

disable_breakpoints(+BIDs)
enable_breakpoints(+BIDs)

Removes, disables or enables the breakpoints specified by BIDs. See Section 7.7
[Breakpoint Predicates], page 116.

execution_state(:Tests) development

Tests are satisfied in the current state of the execution.

execution_state(+FocusConditions, :Tests) development

Tests are satisfied in the state of the execution pointed to by FocusConditions.

debugger_command_hook(+DCommand,?Actions) hook,development

user:debugger_command_hook(+DCommand,?Actions)
Allows the interactive debugger to be extended with user-defined commands.
See Section 7.5 [Debug Commands], page 81.

error_exception(+Exception) hook,development

user:error_exception(+Exception)
Tells the debugger to enter trace mode on certain exceptions. See Section 7.6
[Advanced Debugging], page 86.

8.16 Execution Profiling

Execution profiling is a common aid for improving software performance. The SICStus
Prolog compiler has the capability of instrumenting compiled code with counters, which
are initially zero and incremented whenever the flow of control passes a given point in the
compiled code. This way the number of calls, backtracks, choicepoints created, etc., can be
counted for the instrumented predicates, and an estimate of the time spent in individual
clauses and disjuncts can be calculated.

Gauge is a graphical user interface for inspecting execution profiles. It is available as a
library module (see Chapter 41 [Gauge], page 687).

The original version of the profiling package was written by M.M. Gorlick and C.F. Kessel-
man at the Aerospace Corporation [Gorlick & Kesselman 87].

Only compiled code can be instrumented. To get an execution profile of a program, the
compiler must first be told to produce instrumented code. This is done by issuing the query:

| ?- prolog_flag(compiling,_,profiledcode).

after which the program to be analyzed can be compiled as usual. Any new compiled code
will be instrumented while the compiling Prolog flag has the value profiledcode.

212 SICStus Prolog

The profiling data is generated by simply running the program. The predicate profile_
data/4 (see below) makes available a selection of the data as a Prolog term. The predicate
profile_reset/1 zeroes the profiling counters for a selection of the currently instrumented
predicates.

profile_data(:Spec,?Selection,?Resolution,-Data) development

Data is profiling data collected from the predicates covered by the generalized
predicate spec Spec.
The Selection argument determines the kind of profiling data to be collected. If
uninstantiated, the predicate will backtrack over its possible values, which are:

calls All instances of entering a clause by a procedure call are counted.
This is equivalent to counting all procedure calls that have not been
determined to fail by indexing on the first argument.

backtracks
All instances of entering a clause by backtracking are counted.

choice_points
All instances of creating a choicepoint are counted. This occurs,
roughly, when the implementation determines that there are more
than one possibly matching clauses for a procedure call, and when
a disjunction is entered.

shallow_fails
Failures in the “if” part of if-then-else statements, and in the
“guard” part of guarded clauses, are counted as shallow failures.
See Section 13.8 [Conditionals and Disjunction], page 336.

deep_fails
Any failures that do not classify as shallow as above are counted
as deep failures. The reason for distinguishing shallow and deep
failures is that the former are considerably cheaper to execute than
the latter.

execution_time
The execution time for the selected predicates, clauses, or disjuncts
is estimated in artificial units.

The Resolution argument determines the level of resolution of the profiling data
to be collected. If uninstantiated, the predicate will backtrack over its possible
values, which are:

predicate
Data is a list of Module:PredName-Count, where Count is a sum of
the corresponding counts per clause.

clause Data is a list of Module:ClauseName-Count, where Count includes
counts for any disjunctions occurring inside that clause. Note, how-
ever, that the selections calls and backtracks do not include
counts for disjunctions.

Chapter 8: Built-In Predicates 213

all Data is a list of Module:InternalName-Count. This is the finest
resolution level, counting individual clauses and disjuncts.

Above, PredName is a predicate spec, ClauseName is a compound term Pred-

Name/ClauseNumber, and InternalName is either
ClauseName—corresponding to a clause, or
(ClauseName-DisjNo)/Arity/AltNo—corresponding to a disjunct.

profile_reset(:Spec) development

Zeroes all counters for predicates covered by the generalized predicate spec
Spec.

8.17 Miscellaneous

?X = ?Y ISO

Defined as if by the clause Z=Z.; i.e. X and Y are unified.

?X \= ?Y ISO

The same as \+ X = Y; i.e. X and Y are not unifiable.

unify_with_occurs_check(?X, ?Y) ISO

True if X and Y unify to a finite (acyclic) term. Runs in almost linear time.

length(?List,?Length)
If List is instantiated to a list of determinate length, then Length will be unified
with this length.
If List is of indeterminate length and Length is instantiated to an integer, then
List will be unified with a list of length Length. The list elements are unique
variables.
If Length is unbound then Length will be unified with all possible lengths of
List.

numbervars(?Term,+N,?M) meta-logical

Unifies each of the variables in Term with a special term, so that write(Term
) (or writeq(Term)) (see Section 8.1.3 [Term I/O], page 142) prints those
variables as (‘A’ + (i mod 26))(i/26) where i ranges from N to M-1. N must be
instantiated to an integer. If it is 0 you get the variable names A, B, . . . , Z,
A1, B1, etc. This predicate is used by listing/[0,1] (see Section 8.6 [State
Info], page 175).

undo(:Goal)
The goal Goal is executed on backtracking. This predicate is useful if Goal
performs some side-effect, which must be done on backtracking to undo another
side-effect.
Note that this operation is immune to cuts. That is, undo/1 does not behave
as if it were defined by:

weak_undo(_).
weak_undo(Goal) :- Goal, fail.

214 SICStus Prolog

since defining it that way would not guarantee that Goal be executed on back-
tracking.
Note also that the Prolog top-level operates as a read-call-fail loop, and back-
tracks implicitly for each new query. Raised exceptions and the predicates
halt/0 and abort/0 cause implicit backtracking as well.

halt ISO

Causes Prolog to exit back to the shell. (In recursive calls to Prolog from C,
this predicate will return back to C instead.)

halt(+Code) ISO

Causes the Prolog process to immediately exit back to the shell with the integer
return code Code, even if it occurs in a recursive call from C.

op(+Precedence,+Type,+Name) ISO

Declares the atom Name to be an operator of the stated Type and Precedence
(see Section 4.6 [Operators], page 54). Name may also be a list of atoms in
which case all of them are declared to be operators. If Precedence is 0 then the
operator properties of Name (if any) are cancelled.

current_op(?Precedence,?Type,?Op) ISO

The atom Op is currently an operator of type Type and precedence Precedence.
Neither Op nor the other arguments need be instantiated at the time of the call;
i.e. this predicate can be used to generate as well as to test.

break development

Invokes a recursive top-level. See Section 3.9 [Nested], page 31.

abort

Aborts the current execution. See Section 3.9 [Nested], page 31. (In recursive
calls to Prolog from C, this predicate will return back to C instead.)

save_files(+SourceFiles, +FileSpec)
Any module declarations, predicates, multifile clauses, or directives encountered
in SourceFiles are saved in object format into the file denoted by FileSpec.
Source file information as provided by source_file/[1,2] for the relevant
predicates and modules is also saved.
If FileSpec does not have an explicit suffix, the suffix ‘.po’ will be appended to
it. SourceFiles should denote a single file or a list of files. FileSpec can later
be loaded by load_files/[1,2], at which time any saved directives will be re-
executed. If any of the SourceFiles declares a module, FileSpec too will behave
as a module-file and export the predicates listed in the first module declaration
encountered in SourceFiles. See Section 3.10 [Saving], page 31.

save_modules(+Modules, +FileSpec)
The module declarations, predicates, multifile clauses and initializations be-
longing to Modules are saved in object format into the file denoted by FileSpec.
Source file information and embedded directives (except initializations) are not
saved.
If FileSpec does not have an explicit suffix, the suffix ‘.po’ will be appended
to it. Modules should denote a single module or a list of modules. FileSpec

Chapter 8: Built-In Predicates 215

can later be loaded by load_files/[1,2] and will behave as a module-file and
export any predicates exported by the first module in Modules. See Section 3.10
[Saving], page 31.

save_predicates(:Spec, +FileSpec)
The predicates specified by the generalized predicate spec Spec are saved in
object format into the file denoted by FileSpec. Source file information and
embedded directives are not saved. Thus, this predicate is intended for saving
data represented as tables of dynamic facts, not for saving static code.
If FileSpec does not have an explicit suffix, the suffix ‘.po’ will be appended
to it. FileSpec can later be loaded by load_files/[1,2]. See Section 3.10
[Saving], page 31.

save_program(+FileSpec)
save_program(+FileSpec, :Goal)

The system saves the program state into the file denoted by FileSpec. If File-
Spec does not have an explicit suffix, the suffix ‘.sav’ will be appended to it.
When the program state is restored, Goal is executed. Goal defaults to true.
See Section 3.10 [Saving], page 31.

restore(+FileSpec)
The system is returned to the program state previously saved to the file denoted
by FileSpec with start-up goal Goal. restore/1 may succeed, fail or raise an
exception depending on Goal. See Section 3.10 [Saving], page 31.

garbage_collect
Performs a garbage collection of the global stack immediately.

garbage_collect_atoms
Performs a garbage collection of the atoms immediately.

gc obsolescent
Enables garbage collection of the global stack (the default).

nogc obsolescent
Disables garbage collection of the global stack.

prompt(?Old,?New)
The sequence of characters (prompt) that indicates that the system is waiting
for user input is represented as an atom, and unified with Old; the atom bound
to New specifies the new prompt. In particular, the goal prompt(X, X) unifies
the current prompt with X, without changing it. Note that this predicate only
affects the prompt given when a user’s program is trying to read from the
standard input stream (e.g. by calling read/1). Note also that the prompt is
reset to the default ‘|: ’ on return to top-level.

version development,obsolescent
Displays the introductory messages for all the component parts of the current
system.
Prolog will display its own introductory message upon startup by calling
version/0. If this message is required at some other time it can be obtained

216 SICStus Prolog

using this predicate, which displays a list of introductory messages; initially
this list comprises only one message (Prolog’s), but you can add more messages
using version/1.

version(+Message) development,obsolescent
Appends Message to the end of the message list that is output by version/0.
Message must be an atom.
The idea of this message list is that, as systems are constructed on top of
other systems, each can add its own identification to the message list. Thus
version/0 should always indicate which modules make up a particular package.
It is not possible to remove messages from the list.

help hookable,development,obsolescent
Displays basic information, or a user defined help message. It first calls
user:user_help/0, and only if that call fails is a default help message printed
on the current output stream.

user_help hook,obsolescent
user:user_help

This may be defined by the user to print a help message on the current output
stream.

Chapter 9: Mixing C/C++ and Prolog 217

9 Mixing C/C++ and Prolog

SICStus Prolog provides a bi-directional, procedural interface for program parts written in
C and Prolog. The C side of the interface defines a number of functions and macros for
various operations. On the Prolog side, you have to supply declarations specifying the names
and argument/value types of C functions being called as predicates. These declarations are
used by the predicate load_foreign_resource/1, which performs the actual binding of C
functions to predicates.

In most cases, the argument/value type declaration suffice for making the necessary con-
versions of data automatically as they are passed between C and Prolog. However, it is
possible to declare the type of an argument to be a Prolog term, in which case the receiving
function will see it as a “handle” object, called an SP term ref, for which access functions
are provided.

The C support routines are available in a development system as well as in runtime systems.
The support routines include:

• Static and dynamic linking of C code into the Prolog environment.
• Automatic conversion between Prolog terms and C data with foreign/[2,3] declara-

tions.
• Functions for accessing and creating Prolog terms, and for creating and manipulating

SP term refs.
• The Prolog system may call C predicates, which may call Prolog back without limits

on recursion. Predicates that call C may be defined dynamically from C.
• Support for creating stand-alone executables.
• Support for creating user defined Prolog streams.
• Functions to read and write on Prolog streams from C.
• Functions to install interrupt handlers that can safely call Prolog.
• Functions for manipulating mutual exclusion locks.
• User hooks that can be used to perform user defined actions on a number of occasions

e.g. before reading a character from the standard input stream.

9.1 Notes

ANSI Conformance
Only C compilers that support ANSI C (or similar) are supported.

The SP PATH variable
It is normally not necessary to set this environment variable, but its value will be
used, as a fall-back, at runtime if no explicit boot path is given when initializing
a runtime or development system. In this chapter, the environment variable SP_
PATH is used as a shorthand for the SICStus Prolog installation directory, whose
default location for SICStus 3.12.8 is ‘/usr/local/lib/sicstus-3.12.8’) for

218 SICStus Prolog

UNIX and ‘C:\Program Files\SICStus Prolog 3.12.8’ for Windows. See
Section 3.1.1 [Environment Variables], page 23.

Windows note: Explicit use of the SP_PATH variable is discouraged,
since Windows applications can find out for themselves where they
were started from. SP_PATH is only used if the directory where
‘sprt312.dll’ is loaded from does not contain sp312 (a directory),
‘sprt.sav’, or ‘spre.sav’. If SP_PATH is used, SICStus expects it to
be set such that %SP_PATH%\bin contains ‘sprt.sav’ or ‘spre.sav’.
See Section 9.8.2 [Runtime Systems on Target Machines], page 254.

Definitions and declarations
Type definitions and function declarations for the interface are found in the
header file ‘<sicstus/sicstus.h>’.

Error Codes
The value of many support functions is a return code, which is one of SP_
SUCCESS for success, SP_FAILURE for failure, SP_ERROR if an error condition
occurred, or if an uncaught exception was raised during a call from C to Prolog.
If the value is SP_ERROR, the macro SP_errno will return a value describing the
error condition:

int SP_errno

The function SP_error_message() returns a pointer to the diagnostic message
corresponding to a specified error number:

char *SP_error_message(int errno)

Wide Characters
The foreign interface supports wide characters. Whenever a sequence of possibly
wide character codes is to be passed to or from a C function it is encoded as
a sequence of bytes, using the so called internal encoding of SICStus Prolog,
the UTF-8 encoding; see Section 12.2 [WCX Concepts], page 301. Unless noted
otherwise the encoded form is terminated by a NUL byte. This sequence of bytes
will be called an encoded string, representing the given sequence of character
codes. Note that it is a property of the UTF-8 encoding that it does not change
ASCII character code sequences.
If a foreign function is specified to return an encoded string, an exception
will be raised if, on return to Prolog, the actual string is malformed (is
not a valid sequence of UTF-8 encoded characters). The exception raised is
representation_error(...,...,mis_encoded_string).

9.2 Calling C from Prolog

Functions written in the C language may be called from Prolog using an interface in which
automatic type conversions between Prolog terms and common C types are declared as
Prolog facts. Calling without type conversion can also be specified, in which case the
arguments and values are passed as SP term refs. This interface is partly modeled after
Quintus Prolog.

Chapter 9: Mixing C/C++ and Prolog 219

The functions installed using this foreign language interface may invoke Prolog code and
use the support functions described in the other sections of this chapter.

Functions, or their equivalent, in any other language having C compatible calling conven-
tions may also be interfaced using this interface. When referring to C functions in the
following, we also include such other language functions. Note however that a C compiler is
needed since a small amount of glue code (in C) must be generated for interfacing purposes.

9.2.1 Foreign Resources

A foreign resource is a set of C functions, defined in one or more files, installed as an atomic
operation. The name of a foreign resource, the resource name, is an atom, which should
uniquely identify the resource. Thus, two foreign resources with the same name cannot be
installed at the same time, even if they correspond to different files.

The resource name of a foreign resource is derived from its file name by deleting any leading
path and the suffix. Therefore the resource name is not the same as the absolute file name.
For example, the resource name of both ‘~john/foo/bar.so’ and ‘~ringo/blip/bar.so’ is
bar. If load_foreign_resource(’~john/foo/bar’) has been done ‘~john/foo/bar.so’
will be unloaded if either load_foreign_resource(’~john/foo/bar’) or load_foreign_
resource(’~ringo/blip/bar’) is subsequently called.

It is recommended that a resource name be all lowercase, starting with ‘a’ to ‘z’ followed by
a sequence consisting of ‘a’ to ‘z’, underscore (‘_’), and digits. The resource name is used
to construct the file name containing the foreign resource.

For each foreign resource, a foreign_resource/2 fact is used to declare the interfaced
functions. For each of these functions, a foreign/[2,3] fact is used to specify conver-
sions between predicate arguments and C-types. These conversion declarations are used for
creating the necessary interface between Prolog and C.

The functions making up the foreign resource, the automatically generated glue code, and
any libraries, are compiled and linked, using the splfr tool (see Section 9.2.5 [The Foreign
Resource Linker], page 224), to form a linked foreign resource. A linked foreign resource
exists in two different flavors, static and dynamic. A static resource is simply a relocatable
object file containing the foreign code. A dynamic resource is a shared library (‘.so’ under
most UNIX dialects, ‘.dll’ under Windows), which is loaded into the Prolog executable at
runtime.

Foreign resources can be linked into the Prolog executable either when the executable is
built (pre-linked), or at runtime. Pre-linking can be done using static or dynamic resources.
Runtime-linking can only be done using dynamic resources. Dynamic resources can also be
unlinked.

In all cases, the declared predicates are installed by the built-in predicate load_foreign_
resource/1. If the resource was pre-linked, only the predicate names are bound; otherwise,
runtime-linking is attempted (using dlopen(), LoadLibrary(), or similar).

220 SICStus Prolog

9.2.2 Conversion Declarations

Conversion declaration predicates:

foreign_resource(+ResourceName,+Functions) hook

Specifies that a set of foreign functions, to be called from Prolog, are to be
found in the resource named by ResourceName. Functions is a list of functions
exported by the resource. Only functions that are to be called from Prolog and
optionally one init function and one deinit function should be listed. The init
and deinit functions are specified as init(Function) and deinit(Function
) respectively (see Section 9.2.7 [Init and Deinit Functions], page 227). This
predicate should be defined entirely in terms of facts (unit clauses) and will
be called in the relevant module, i.e. not necessarily in the user module. For
example:

foreign_resource(’terminal’, [scroll,pos_cursor,ask]).

specifies that functions scroll(), pos_cursor() and ask() are to be found in
the resource ‘terminal’.

foreign(+CFunctionName, +Predicate) hook

foreign(+CFunctionName, +Language, +Predicate) hook

Specify the Prolog interface to a C function. Language is at present constrained
to the atom c, so there is no advantage in using foreign/3 over foreign/2.
CFunctionName is the name of a C function. Predicate specifies the name
of the Prolog predicate that will be used to call CFunction(). Predicate also
specifies how the predicate arguments are to be translated to and from the
corresponding C arguments. These predicates should be defined entirely in
terms of facts (unit clauses) and will be called in the relevant module, i.e. not
necessarily in the user module. For example:

foreign(pos_cursor, c, move_cursor(+integer, +integer)).

The above example says that the C function pos_cursor() has two integer
value arguments and that we will use the predicate move_cursor/2 to call this
function. A goal move_cursor(5, 23) would translate into the C call pos_
cursor(5,23);.
The third argument of the predicate foreign/3 specifies how to translate be-
tween Prolog arguments and C arguments. A call to a foreign predicate will
raise an exception if an input arguments is uninstantiated (instantiation_
error/2) or has the wrong type (type_error/4) or domain (domain_error/4).
The call will fail upon return from the function if the output arguments do not
unify with the actual arguments.
The available conversions are listed in the next subsection.

Chapter 9: Mixing C/C++ and Prolog 221

9.2.3 Conversions between Prolog Arguments and C Types

The following table lists the possible values for the arguments in the predicate specification
of foreign/[2,3]. The value declares which conversion between corresponding Prolog
argument and C type will take place.

Please note: here, the term ‘chars’ refers to a code-list, rather than to a char-
list.

Prolog: +integer
C: long The argument should be a number. It is converted to a C long and passed to

the C function.

Prolog: +float
C: double The argument should be a number. It is converted to a C double and passed

to the C function.

Prolog: +atom
C: SP_atom

The argument should be an atom. Its canonical representation is passed to the
C function.

Prolog: +chars
C: char * The argument should be a code-list. The C function will be passed the address

of an array with the encoded string representation of these characters. The
array is subject to reuse by other support functions, so if the value is going to
be used on a more than temporary basis, it must be moved elsewhere.

Prolog: +string
C: char * The argument should be an atom. The C function will be passed the address

of an encoded string representing the characters of the atom. The C function
should not overwrite the string.

Prolog: +string(N) obsolescent
C: char * The argument should be an atom. The encoded string representing the atom

will be copied into a newly allocated buffer. The string will be truncated (at a
wide character boundary) if it is longer than N bytes. The string will be blank
padded on the right if it is shorter than N bytes. The C function will be passed
the address of the buffer. The C function may overwrite the buffer, but should
not assume that it remains valid after returning.

Prolog: +address
C: void * The value passed will be a void * pointer.

Prolog: +address(TypeName)
C: TypeName *

The value passed will be a TypeName * pointer.

Prolog: +term
C: SP_term_ref

The argument could be any term. The value passed will be the internal repre-
sentation of the term.

222 SICStus Prolog

Prolog: -integer
C: long * The C function is passed a reference to an uninitialized long. The value re-

turned will be converted to a Prolog integer.

Prolog: -float
C: double *

The C function is passed a reference to an uninitialized double. The value
returned will be converted to a Prolog float.

Prolog: -atom
C: SP_atom *

The C function is passed a reference to an uninitialized SP_atom. The value
returned should be the canonical representation of a Prolog atom.

Prolog: -chars
C: char **

The C function is passed the address of an uninitialized char *. The returned
encoded string will be converted to a Prolog code-list.

Prolog: -string
C: char **

The C function is passed the address of an uninitialized char *. The returned
encoded string will be converted to a Prolog atom. Prolog will copy the string
to a safe place, so the memory occupied by the returned string may be reused
during subsequent calls to foreign code.

Prolog: -string(N) obsolescent
C: char * The C function is passed a reference to a character buffer large enough to store

N bytes. The C function is expected to fill the buffer with an encoded string
of N bytes (not NULL-terminated). This encoded string will be stripped of
trailing blanks and converted to a Prolog atom.

Prolog: -address
C: void **

The C function is passed the address of an uninitialized void *.

Prolog: -address(TypeName)
C: TypeName **

The C function is passed the address of an uninitialized TypeName *.

Prolog: -term
C: SP_term_ref

The C function is passed a new SP term ref, and is expected to set its value
to a suitable Prolog term. Prolog will try to unify the value with the actual
argument.

Prolog: [-integer]
C: long F()

The C function should return a long. The value returned will be converted to
a Prolog integer.

Chapter 9: Mixing C/C++ and Prolog 223

Prolog: [-float]
C: double F()

The C function should return a double. The value returned will be converted
to a Prolog float.

Prolog: [-atom]
C: SP_atom F()

The C function should return an SP_atom. The value returned must be the
canonical representation of a Prolog atom.

Prolog: [-chars]
C: char *F()

The C function should return a char *. The returned encoded string will be
converted to a Prolog code-list.

Prolog: [-string]
C: char *F()

The C function should return a char *. The returned encoded string will be
converted to a Prolog atom. Prolog will copy the string to a safe place, so the
memory occupied by the returned string may be reused during subsequent calls
to foreign code.

Prolog: [-string(N)] obsolescent
C: char *F()

The C function should return a char *. The first N bytes of the encoded string
(not necessarily NULL-terminated) will be copied and the copied string will be
stripped of trailing blanks. The stripped string will be converted to a Prolog
atom. C may reuse or destroy the string buffer during later calls.

Prolog: [-address]
C: void *F()

The C function should return a void *. (see Section 9.4.2 [Creating Prolog
Terms], page 233), will be converted to a Prolog integer.

Prolog: [-address(TypeName)]
C: TypeName *F()

The C function should return a TypeName *.

Prolog: [-term]
C: SP_term_ref F()

The C function should return a SP term ref. Prolog will try to unify its value
with the actual argument.

9.2.4 Interface Predicates

load_foreign_resource(:Resource)
Unless a foreign resource with the same name as Resource has been statically
linked, the linked foreign resource specified by Resource is linked into the Prolog
load image. In both cases, the predicates defined by Resource are installed, and
any init function is called. Dynamic linking is not possible if the foreign resource
was linked using the ‘--static’ option.

224 SICStus Prolog

If a resource with the same name has been previously loaded, it will be unloaded,
as if unload_foreign_resource(Resource) were called, before Resource is
loaded.

unload_foreign_resource(:ResourceName)
Any deinit function associated with ResourceName, a resource name, is called,
and the predicates defined by ResourceName are uninstalled. If ResourceName
has been dynamically linked, it is unlinked from the Prolog load image.
If no resource named ResourceName is currently loaded, an existence error is
raised.
For backward compatibility, ResourceName can also be of the same type as the
argument to load_foreign_resource/1. In that case the resource name will be
derived from the absolute file name in the same manner as for load_foreign_
resource/1. Also for backward compatibility, unload_foreign_resource/1
is a meta-predicate, but the module is ignored.

Please note: all foreign resources are unloaded before Prolog exits.
This implies that the C library function atexit(func) cannot be
used if func is defined in a dynamically linked foreign resource.

The following predicates are provided for backwards compatibility and should be avoided
in new code:

foreign_file(+File,+Functions) hook,obsolescent
Specifies that a set of foreign functions, to be called from Prolog, are to be
found in File. This predicate is only called from load_foreign_files/2.

load_foreign_files(:ObjectFiles,+Libraries) development,hookable,obsolescent
A resource name is derived from the first file name in ObjectFiles by stripping
off the suffix. If this resource has been statically linked, the predicates defined
by it are installed; otherwise, a linked foreign resource containing the declared
functions is created and loaded.

9.2.5 The Foreign Resource Linker

The foreign resource linker, splfr, is used for creating foreign resources (see Section 9.2.1
[Foreign Resources], page 219). splfr reads terms from a Prolog file, applying op dec-
larations and extracting any foreign_resource/2 fact with first argument matching the
resource name and all foreign/[2,3] facts. Based on this information, it generates the
necessary glue code, and combines it with any additional C or object files provided by the
user into a linked foreign resource. The output file name will be the resource name with a
suitable extension. splfr is invoked as

% splfr [Option | InputFile] ...

The input to splfr can be divided into Options and InputFiles and they can be arbitrarily
mixed on the command line. Anything not interpreted as an option will be interpreted as

Chapter 9: Mixing C/C++ and Prolog 225

an input file. Exactly one of the input files should be a Prolog file. The following options
are available:

‘--help’
‘-v’
‘--verbose’
‘--version’
‘--config=ConfigFile’
‘--cflag=CFlag’
‘-LD’
‘--sicstus=Executable’
‘--with_jdk=DIR’
‘--with_tcltk=DIR’
‘--with_tcl=DIR’
‘--with_tk=DIR’
‘--with_bdb=DIR’
‘--keep’

These are treated the same as for the spld tool. See Section 9.8.3 [The Appli-
cation Builder], page 258, for details.

‘--resource=ResourceName’
Specify the resource’s name. This defaults to the basename of the Prolog source
file found on the command line.

‘-o, --output=OutputFileName’
Specify output file name. This defaults to the name of the resource, suffixed
with the platform’s standard shared object suffix (i.e. ‘.so’ on most UNIX
dialects, ‘.dll’ under Windows). The use of this option is discouraged, except
to change the output directory.

‘--manual’
Do not generate any glue code. This option can only be used when the interface
code is generated manually as described in Chapter 47 [Runtime Utilities],
page 763. You should probably not use this option.

‘-S’
‘--static’

Create a statically linked foreign resource instead of a dynamically linked one,
which is the default. A statically linked foreign resource is a single object
file, which can be pre-linked into a Prolog system. See also the spld tool,
Section 9.8.3 [The Application Builder], page 258.

‘--no-rpath’
Under UNIX, the default is to embed into the shared object all linker library di-
rectories for use by the dynamic linker. For most UNIX linkers this corresponds
to adding a ‘-Rpath’ for each ‘-Lpath’. The ‘--no-rpath’ option inihibits this.

‘--nocompile’
Do not compile, just generate code. This may be useful in Makefiles, for example
to generate the header file in a separate step. Implies ‘--keep’.

226 SICStus Prolog

‘--namebase=namebase’
namebase will be used as part of the name of generated files. The default name
base is the resource name (e.g. as specified with ‘--resource’). If ‘--static’
is specified, the default namebase is the resource name followed by ‘_s’.

‘--header=headername’
Specify the name of the generated header file. The default if is namebase

_glue.h. All C files that define foreign functions or that call SICStus API
functions should include this file. Among other things the generated header file
includes prototypes corresponding to the foreign/3 declarations in the prolog
code.

‘--multi-sp-aware’
‘--exclusive-access’
‘--context-hook=name’
‘--no-context-hook’

Specifies various degrees of support for more than one SICStus in the same
process. See Section 11.4 [Foreign Resources and Multiple SICStus Run-Times],
page 296, for details.

‘--moveable’
Do not embed paths into the foreign resource.
On platforms that support it, i.e. some versions of UNIX, the default behav-
ior of splfr is to add each directory dir specified with ‘-Ldir’ to the search
path used by the run-time loader (using the SysV ld -R option or similar).
The option ‘--moveable’ turns off this behavior. For additional details, see
the corresponding option to spld (see Section 9.8.3 [The Application Builder],
page 258).

The key input to splfr is the SourceFile. The contents of this file determines how the foreign
resource’s interface will look like. When the source-file is read in, foreign_resource/2 facts
with first argument matching the name of this resource (i.e. ResourceName) is extracted
together with all foreign/[2,3] facts.

9.2.5.1 Customizing splfr under UNIX

The splfr tool is implemented as a Perl script and can be customized in order to adapt
to local variations. Do not attempt this unless you know what you are doing. Customiza-
tion is done by editing their common configuration file spconfig-version. Follow these
instructions:

1. Locate the configuration file spconfig-version. It should be located in the same
directory as splfr.

2. Make a copy for spconfig-version; let’s call it hacked_splfr.config. Do not edit
the original file.

3. The configuration file contains lines on the form CFLAGS=-g -O2. Edit these according
to your needs. Do not add or remove any flags.

Chapter 9: Mixing C/C++ and Prolog 227

4. You may now use the modified spconfig-version together with splfr like this:
% splfr [...] --config=/path/to/hacked_splfr.config

Replace ‘/path/to’ with the actual path to the hacked configuration file.

9.2.6 Creating Dynamic Linked Foreign Resources Manually
under UNIX

The only supported method for building foreign resources is by compiling and linking them
with splfr. However, this is sometimes inconvenient, for instance when writing a Makefile
for use with make. To figure out what needs to be done to build a foreign resource, you
should build it once with splfr --verbose --keep ..., note what compiler and linker
flags are used, and save away any generated files. You can then mimic the build commands
used by splfr in your ‘Makefile’. You should repeat this process each time you upgrade
SICStus, even if only the revision part of the SICStus version changes.

9.2.7 Init and Deinit Functions

An init function and/or a deinit function can be declared by foreign_resource/2. If this
is the case, these functions should have the prototype:

void FunctionName (int when)

The init function is called by load_foreign_resource/1 after the resource has been loaded
and the interfaced predicates have been installed. If the init function fails (using SP_fail())
or raises an exception (using SP_raise_exception()), the failure or exception is propagated
by load_foreign_resource/1 and the foreign resource is unloaded (without calling any
deinit function). However, using SP_fail() is not recommended, and operations that may
require SP_raise_exception() are probably better done in an init function that is called
explicitly after the foreign resource has been loaded.

The deinit function is called by unload_foreign_resource/1 before the interfaced pred-
icates have been uninstalled and the resource has been unloaded. If the deinit function
fails or raises an exception, the failure or exception is propagated by unload_foreign_
resource/1, but the foreign resource is still unloaded. However, neither SP_fail() nor
SP_raise_exception() should be called in a deinit function. Complex deinitialization
should be done in an explicitly called deinit function instead.

The init and deinit functions may use the C-interface to call Prolog etc.

Foreign resources are unloaded before saving states, and reloaded afterwards or when the
saved-state is restored; see Section 3.10 [Saving], page 31. Foreign resources are also un-
loaded when exiting Prolog execution. The parameter when reflects the context of the
(un)load_foreign_resource/1 and is set as follows for init functions:

228 SICStus Prolog

SP_WHEN_EXPLICIT
Explicit call to load_foreign_resource/1.

SP_WHEN_RESTORE
Resource is reloaded after save or restore.

For deinit functions:

SP_WHEN_EXPLICIT
Explicit call to unload_foreign_resource/1.

SP_WHEN_SAVE
Resource is unloaded before save.

SP_WHEN_EXIT
Resource is unloaded before exiting Prolog.

9.2.8 Creating the Linked Foreign Resource

Suppose we have a Prolog source file ex.pl containing:

% ex.pl

foreign(f1, p1(+integer,[-integer])).
foreign(f2, p2(+integer,[-integer])).
foreign_resource(ex, [f1,f2]).
:- load_foreign_resource(ex).

and a C source file ex.c with definitions of the functions f1 and f2, both returning long
and having a long as only parameter. The conversion declarations in ‘ex.pl’ state that
these functions form the foreign resource ex.

To create the linked foreign resource, simply type (to the Shell):

% splfr ex.pl ex.c

The linked foreign resource ‘ex.so’ (file suffix ‘.so’ is system dependent) has been created.
It will be dynamically linked by the directive :- load_foreign_resource(ex). when the
file ‘ex.pl’ is loaded. Linked foreign resources can also be created manually (see Chapter 47
[Runtime Utilities], page 763).

Dynamic linking of foreign resources can also be used by runtime systems. On some plat-
forms, however, the executable must not be stripped for dynamic linking to work, i.e. its
symbol table must remain.

9.2.9 An Alternative Way to Define C Predicates

SP_define_c_predicate() defines a Prolog predicate such that when the Prolog predicate
is called it will call a C function with a term corresponding to the Prolog goal. The

Chapter 9: Mixing C/C++ and Prolog 229

arguments to the predicate can then be examined using the usual term access functions,
e.g. SP_get_arg() (see Section 9.4.3 [Accessing Prolog Terms], page 235).

typedef int SP_CPredFun(SP_term_ref goal, void *stash);
int SP_define_c_predicate(char *name, int arity, char *module,

SP_CPredFun *proc, void *stash)

The Prolog predicate module:name/arity will be defined (the module module must already
exist). The stash argument can be anything and is simply passed as the second argument
to the C function proc.

The C function should return SP_SUCCESS for success and SP_FAILURE for failure. The C
function may also call SP_fail() or SP_raise_exception() in which case the return value
will be ignored.

Here is an end-to-end example of the above:

% square.pl

foreign_resource(square, [init(square_init)]).

:- load_foreign_resource(square).

230 SICStus Prolog

/* square.c */

#include <sicstus/sicstus.h>

static int square_it(SP_term_ref goal, void *stash)
{
long arg1;
SP_term_ref tmp = SP_new_term_ref();
SP_term_ref square_term = SP_new_term_ref();
long the_square;

/* goal will be a term like square(42,X) */
SP_get_arg(1,goal,tmp); /* extract first arg */
if (!SP_get_integer(tmp,&arg1))
return SP_FAILURE; /* type check first arg */

SP_put_integer(square_term, arg1*arg1);
SP_get_arg(2,goal,tmp); /* extract second arg */

/* Unify output argument.
SP_put_integer(tmp,...) would *not* work! */

return (SP_unify(tmp, square_term) ? SP_SUCCESS : SP_FAILURE);
}

void square_init(int when)
{

(void)when; /* unused */
/* Install square_it as user:square/2 */
SP_define_c_predicate("square", 2, "user", square_it, NULL /* unused */);

}

terminal

% splfr square.pl square.c

% sicstus -f -l square

% compiling /home/matsc/tmp/square.pl...
% loading foreign resource /home/matsc/tmp/square.so in module user
% compiled /home/matsc/tmp/square.pl in module user, 0 msec 816 bytes
SICStus 3.12.8 ...
Licensed to SICS
| ?- square(4711, X).

X = 22193521 ?
yes
| ?- square(not_an_int, X).

no

Chapter 9: Mixing C/C++ and Prolog 231

9.3 Calling C++ from Prolog

Functions in C++ files that should be called from Prolog must use C linkage, e.g.

extern "C" {
void myfun(long i)
{...};
};

To build a dynamic linked foreign resource with C++ code, you may (depending on platform)
have to explicitly include certain libraries. E.g. on Sparc/SunOS 5.X using gcc:

% splfr -LD -L/usr/gnu/lib/gcc-lib/sparc-sun-solaris2.4/2.7.0 -
lgcc

The library path is installation dependent, of course.

9.4 Support Functions

The support functions include functions to manipulate SP term refs, functions to convert
data between the basic C types and Prolog terms, functions to test whether a term can be
converted to a specific C type, and functions to unify or compare two terms.

9.4.1 Creating and Manipulating SP term refs

Normally, C functions only have indirect access to Prolog terms via SP term refs. C func-
tions may receive arguments as unconverted Prolog terms, in which case the actual argu-
ments received will have the type SP_term_ref. Also, a C function may return an uncon-
verted Prolog term, in which case it must create an SP term ref. Finally, any temporary
Prolog terms created by C code must be handled as SP term refs.

SP term refs are motivated by the fact that SICStus Prolog’s memory manager must have
a means of reaching all live Prolog terms for memory management purposes, including
such terms that are being manipulated by the user’s C code. Previous releases of SICStus
Prolog provided direct access to Prolog terms and the ability to tell the memory manager
that a given memory address points to a Prolog term, but this approach was too low level
and highly error-prone. The current design is modeled after and largely compatible with
Quintus Prolog release 3.

SP term refs are created dynamically. At any given time, an SP term ref has a value (a
Prolog term, initially []). This value can be examined, accessed, and updated by the
support functions described in this section.

It is important to understand the rules governing the scope of SP term refs in conjunction
with calls from Prolog to C and vice versa:

232 SICStus Prolog

• When a C function called from Prolog returns, all SP term refs passed to the function
or dynamically created by the function become invalid.

• When terms are passed to C as a result of calling Prolog, those terms and any
SP term refs created since the start of the query are only valid until backtracking
into the query or an enclosing one.

See Section 43.6 [SPTerm and Memory], page 705, for a discussion (in the context of the
Java interface) of the lifetime of term references.

A new SP term ref is created by calling:

SP_term_ref SP_new_term_ref(void)

The value of the SP term ref to is set to the value of the SP term ref from by calling
SP_put_term(to,from). The previous value of to is lost:

void SP_put_term(SP_term_ref to, SP_term_ref from)

Each Prolog atom is represented internally by a unique integer, represented in C as an SP_
atom. This mapping between atoms and integers depends on the execution history. Certain
functions require this representation as opposed to an SP term ref. It can be obtained by a
special argument type declaration when calling C from Prolog, by calling SP_get_atom(),
or by looking up an encoded string s in the Prolog symbol table by calling SP_atom_from_
string(s).

SP_atom SP_atom_from_string(char *s)

which returns the atom, or zero if the given string is malformed (is not a valid sequence of
UTF-8 encoded characters).

The encoded string containing the characters of a Prolog atom a can be obtained by calling:

char *SP_string_from_atom(SP_atom a)

The length of the encoded string representing a Prolog atom a can be obtained by calling:

int SP_atom_length(SP_atom a)

Same as strlen(SP_string_from_atom(a), but runs in O(1) time.

Prolog atoms, and the space occupied by their print names, are subject to garbage collec-
tion when the number of atoms has reached a certain threshold, under the control of the
agc_margin Prolog flag (see Section 8.6 [State Info], page 175), or when the atom garbage
collector is called explicitly. The atom garbage collector will find all references to atoms
from the Prolog specific memory areas, including SP term refs and arguments passed from
Prolog to foreign language functions. However, atoms created by SP_atom_from_string()
and merely stored in a local variable are endangered by garbage collection. The following
functions make it possible to protect an atom while it is in use. The operations are imple-
mented using reference counters to cater for multiple, independent use of the same atom in
different foreign resources:

Chapter 9: Mixing C/C++ and Prolog 233

int SP_register_atom(SP_atom a)

Registers the atom a with the Prolog memory manager by incrementing its reference counter.
Returns a nonzero value if the operation succeeds.

int SP_unregister_atom(SP_atom a)

Unregisters the atom a with the Prolog memory manager by decrementing its reference
counter. Returns a nonzero value if the operation succeeds.

9.4.2 Creating Prolog Terms

These functions create a term and store it as the value of an SP term ref, which must exist
prior to the call. They return zero if the conversion fails (as far as failure can be detected),
and a nonzero value otherwise, assigning to t the converted value.

Please note: here, the term ‘chars’ refers to a code-list, rather than to a char-
list.

int SP_read_from_string(SP_term_ref t, const char*string, SP_term_ref vals[])
Assigns to t the result of reading a term from the its textual representation
string. Variables that occur in the term are bound to the corresponding term
in val.
The SP term ref vector val is terminated by 0 (zero). val may be NULL, this
is treated as an empty vector.
The variables in the term are ordered according to their first occurence during
a depth first traversal in increasing argument order. That is, the same order
as used by terms:term_variables_bag/2 (see Chapter 21 [Term Utilities],
page 367). Variables that do not have a corresponding entry in vals are ignored.
Entries in vals that do not correspond to a variable in the term are ignored.
The string should be encoded using the internal encoding of SICStus Prolog,
the UTF-8 encoding (see Section 12.2 [WCX Concepts], page 301).
This example creates the term foo(X,42,42,X) (without error checking):

234 SICStus Prolog

SP_term_ref x = SP_new_term_ref();
SP_term_ref y = SP_new_term_ref();
SP_term_ref term = SP_new_term_ref();
SP_term_ref vals[] = {x,y,x, 0/* zero termination */};

SP_put_variable(x);
SP_put_integer(y,42);

SP_read_from_string(term, "foo(A,B,B,C).", vals);
/* A corresponds to vals[0] (x),

B to vals[1] (y),
C to vals[2] (x).
A and C therefore both are bound to
the variable referred to by x.
B is bound to the term referred to by y (42).
So term refers to a term foo(X,42,42,X).

*/

See Section 9.5 [Calling Prolog from C], page 241, for an example of using
SP_read_from_string() to call an arbitrary goal.

int SP_put_variable(SP_term_ref t)
Assigns to t a new Prolog variable.

int SP_put_integer(SP_term_ref t, long l)
Assigns to t a Prolog integer from a C long integer.

int SP_put_float(SP_term_ref t, double d)
Assigns to t a Prolog float from a C double.

int SP_put_atom(SP_term_ref t, SP_atom a)
Assigns to t a Prolog atom from a, which must be the canonical representation
of a Prolog atom. (see Section 9.2 [Calling C from Prolog], page 218).

int SP_put_string(SP_term_ref t, char *name)
Assigns to t a Prolog atom from a C encoded string.

int SP_put_address(SP_term_ref t, void *pointer)
Assigns to t a Prolog integer representing a pointer.

int SP_put_list_chars(SP_term_ref t, SP_term_ref tail, char *s)
Assigns to t a Prolog code-list represented by the encoded string s, prepended
to the value of tail.

int SP_put_list_n_chars(SP_term_ref t, SP_term_ref tail, size_t n, char *s)
Assigns to t a Prolog code-list represented by the first n bytes in encoded string
s, prepended in front of the value of tail.

int SP_put_list_n_bytes(SP_term_ref t, SP_term_ref tail, size_t n, unsigned
char *s)

Assigns to t a list of integers represented by the first n bytes of the byte array
s, prepended to the value of tail.

Chapter 9: Mixing C/C++ and Prolog 235

int SP_put_integer_bytes(SP_term_ref tr, void *buf, size_t buf_size, int
native)

Allows C to pass arbitrarily sized integers to SICStus. buf consists of the
buf_size bytes of the twos complement representation of the integer. Less
significant bytes are at lower indices. If native is non-zero, buf is instead
assumed to be a pointer to the native buf_size byte integral type. Supported
native sizes typically include two, four and eight (64bit) bytes. If the native
size is not supported or if some other error occurs, zero is returned.

int SP_put_number_chars(SP_term_ref t, char *s)
Assigns to t a Prolog number by parsing the string in s.

int SP_put_functor(SP_term_ref t, SP_atom name, int arity)
Assigns to t a Prolog compound term with all the arguments unbound variables.
If arity is 0, assigns the Prolog atom whose canonical representation is name
to t. This is similar to calling functor/3 with the first argument unbound and
the second and third arguments bound to an atom and an integer, respectively.

int SP_put_list(SP_term_ref t)
Assigns to t a Prolog list whose head and tail are both unbound variables.

int SP_cons_functor(SP_term_ref t, SP_atom name, int arity, SP_term_ref arg,
...)

Assigns to t a Prolog compound term whose arguments are the values of arg. . .
If arity is 0, assigns the Prolog atom whose canonical representation is name
to t. This is similar to calling =../2 with the first argument unbound and the
second argument bound.

int SP_cons_list(SP_term_ref t, SP_term_ref head, SP_term_ref tail)
Assigns to t a Prolog list whose head and tail are the values of head and tail.

9.4.3 Accessing Prolog Terms

These functions will take an SP term ref and convert it to C data. They return zero if the
conversion fails, and a nonzero value otherwise, and (except the last two) store the C data
in output arguments. Note that here, the term chars refers to a code-list, rather than to a
char-list:

int SP_get_integer(SP_term_ref t, long *l)
Assigns to *l the C long corresponding to a Prolog number. The value must
fit in *l for the operation to succeed. For numbers too large to fit in a long
you can use SP_get_integer_bytes(), below.

int SP_get_float(SP_term_ref t, double *d)
Assigns to *d the C double corresponding to a Prolog number.

int SP_get_atom(SP_term_ref t, SP_atom *a)
Assigns to *a the canonical representation of a Prolog atom.

236 SICStus Prolog

int SP_get_string(SP_term_ref t, char **name)
Assigns to *name a pointer to the encoded string representing the name of a
Prolog atom. This string must not be modified.

int SP_get_address(SP_term_ref t, void **pointer)
Assigns to *pointer a C pointer from a Prolog term.

int SP_get_list_chars(SP_term_ref t, char **s)
Assigns to *s a zero-terminated array containing an encoded string that cor-
responds to the given Prolog code-list. The array is subject to reuse by other
support functions, so if the value is going to be used on a more than temporary
basis, it must be moved elsewhere.

int SP_get_list_n_chars(SP_term_ref t, SP_term_ref tail, size_t n, size_t *w,
char *s)

Copies into s the encoded string representing the character codes in the initial
elements of list t, so that at most n bytes are used. The number of bytes
actually written is assigned to *w. tail is set to the remainder of the list. The
array s must have room for at least n bytes.

int SP_get_list_n_bytes(SP_term_ref t, SP_term_ref tail, size_t n, size_t *w,
unsigned char *s)

Copies into the byte array s the initial elements of t, which should hold a list
of integers in the range [0,255], so that at most n bytes are used. The number
of bytes actually written is assigned to *w. tail is set to the remainder of the
list. The array s must have room for at least n bytes.

int SP_get_integer_bytes(SP_term_ref tr, void *buf, size_t *pbuf_size, int
native)

Allows C code to obtain arbitrary precision integers from Prolog.
When called, tr should refer to a Prolog integer; floating point values are not
accepted. *pbuf_size should point at the size of the buffer buf, which will
receive the result.
In the following, assume that the integer referred to by tr requires a minimum
of size bytes to store (in twos-complement representation).
1. If tr does not refer to a Prolog integer, zero is returned and the other

arguments are ignored.
2. If *pbuf_size is less than size, then *pbuf_size is updated to size and

zero is returned. The fact that *pbuf_size has changed can be used to
distinguish insufficient buffer size from other possible errors. By calling SP_
get_integer_bytes() with *pbuf_size set to zero, you can determine the
buffer size needed; in this case, buf is ignored.

3. *pbuf_size is set to size.
4. If native is zero, buf is filled with the twos complement representation of

the integer, with the least significant bytes stored at lower indices in buf.
Note that all of buf is filled, even though only size bytes was needed.

5. If native is non-zero, buf is assumed to point at a native *pbuf_size
byte integral type. On most platforms, native integer sizes of two (16-bit),

Chapter 9: Mixing C/C++ and Prolog 237

four (32 bit) and eight (64 bytes) bytes are supported. Note that *pbuf_
size == 1, which would correspond to signed char, is not supported with
native.

6. If an unsupported size is used with native, zero is returned.

The following example gets a Prolog integer into a (presumably 64 bit) long
long C integer.

{
long long x; // C99, GCC supports this
size_t sz = sizeof x;
if (!SP_get_integer_bytes(tr, &x, &sz, 1/* native */))

.. error handling ..
.. use x .. // sz may have decreased

}

int SP_get_number_chars(SP_term_ref t, char **s)
Assigns to *s a zero-terminated array of characters corresponding to the printed
representation of a Prolog number. The array is subject to reuse by other
support functions, so if the value is going to be used on a more than temporary
basis, it must be moved elsewhere.

int SP_get_functor(SP_term_ref t, SP_atom *name, int *arity)
Assigns to *name and *arity the canonical representation and arity of the
principal functor of a Prolog compound term. If the value of t is an atom, then
that atom is assigned to *name and 0 is assigned to *arity. This is similar to
calling functor/3 with the first argument bound to a compound term or an
atom and the second and third arguments unbound.

int SP_get_list(SP_term_ref t, SP_term_ref head, SP_term_ref tail)
Assigns to head and tail the head and tail of a Prolog list.

int SP_get_arg(int i, SP_term_ref t, SP_term_ref arg)
Assigns to arg the i:th argument of a Prolog compound term. This is similar
to calling arg/3 with the third argument unbound.

9.4.4 Testing Prolog Terms

There is one general function for type testing of Prolog terms and a set of specialized, more
efficient, functions, one for each term type:

int SP_term_type(SP_term_ref t)
Depending on the type of the term t, one of SP_TYPE_VARIABLE, SP_TYPE_
INTEGER, SP_TYPE_FLOAT, SP_TYPE_ATOM, or SP_TYPE_COMPOUND is returned.

int SP_is_variable(SP_term_ref t)
Returns nonzero if the term is a Prolog variable, zero otherwise.

int SP_is_integer(SP_term_ref t)
Returns nonzero if the term is a Prolog integer, zero otherwise.

238 SICStus Prolog

int SP_is_float(SP_term_ref t)
Returns nonzero if the term is a Prolog float, zero otherwise.

int SP_is_atom(SP_term_ref t)
Returns nonzero if the term is a Prolog atom, zero otherwise.

int SP_is_compound(SP_term_ref t)
Returns nonzero if the term is a Prolog compound term, zero otherwise.

int SP_is_list(SP_term_ref t)
Returns nonzero if the term is a Prolog list, zero otherwise. Note that only the
principal functor matters: the function returns zero if the term is the empty
list, and nonzero if it’s a non-strict list.

int SP_is_atomic(SP_term_ref t)
Returns nonzero if the term is an atomic Prolog term, zero otherwise.

int SP_is_number(SP_term_ref t)
Returns nonzero if the term is a Prolog number, zero otherwise.

9.4.5 Unifying and Comparing Terms

int SP_unify(SP_term_ref x, SP_term_ref y)
Unifies two terms, returning zero on failure and nonzero on success.

int SP_compare(SP_term_ref x, SP_term_ref y)
Returns -1 if x @< y, 0 if x == y and 1 if x @> y

9.4.6 Operating System Services

9.4.6.1 Memory Allocation

The standard C library memory allocation functions (malloc, calloc, realloc, and free)
are available in foreign code, but cannot reuse any free memory that SICStus Prolog’s
memory manager may have available, and so may contribute to memory fragmentation.

The following functions provide the same services via SICStus Prolog’s memory manager.

void * SP_malloc(size_t size)
Returns a pointer to a block of at least size bytes.

void * SP_calloc(size_t nmemb, size_t size)
Returns a pointer to a block of at least size * nemb. The first size * nmemb
bytes are set to zero.

void * SP_realloc(void *ptr, size_t size)
Changes the size of the block referenced by ptr to size bytes and returns a
pointer to the (possibly moved) block. The contents will be unchanged up to

Chapter 9: Mixing C/C++ and Prolog 239

the lesser of the new and old sizes. The block referenced by ptr must have been
obtained by a call to SP_malloc() or SP_realloc(), and must not have been
released by a call to SP_free() or SP_realloc().

void SP_free(void *ptr)
Releases the block referenced by ptr, which must have been obtained by a call
to SP_malloc() or SP_realloc(), and must not have been released by a call
to SP_free() or SP_realloc().

char * SP_strdup(const char *str)
Returns a pointer to a new string, which is a duplicate of the string pointer to
by str. The memory for the new string is allocated using SP_malloc().

9.4.6.2 File System

SICStus Prolog caches the name of the current working directory. To take advantage of the
cache and to keep it consistent, foreign code should call the following interface functions
instead of calling chdir() and getcwd() directly:

int SP_chdir(const char *path)
Cause a directory pointed to by path to become the current working directory.
Returns 0 upon successful completion. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

char *SP_getcwd(char *buf, unsigned int size);
Returns a pointer to the current directory pathname. If buf is not NULL, the
pathname will be stored in the space pointed to by buf. If buf is a NULL
pointer, size bytes of space will be obtained using SP_malloc(). In this case,
the pointer returned may be used as the argument in a subsequent call to SP_
free(). Returns NULL with errno set if size is not large enough to store the
pathname.

9.4.6.3 Threads

When running more that one SICStus run-time in the same process it is often necessary
to protect data with mutual exclusion locks. The following functions implement recursive
mutual exclusion locks, which only need static initialization.

Note that the SICStus run-time is not thread safe in general.

typedef ... SP_mutex;
#define SP_MUTEX_INITIALIZER ...

int SP_mutex_lock(SP_mutex *pmx);
int SP_mutex_unlock(SP_mutex *pmx);

240 SICStus Prolog

A (recursive) mutual exclusion lock is declared as type SP_mutex. It should be initialized
to (the static initializer) SP_MUTEX_INITIALIZER before use.

SP_mutex_lock() locks the mutex, and returns zero on error, non-zero on success.

SP_mutex_unlock() unlocks the mutex. It returns zero on error, non-zero on success. The
number of unlocks must match the number of locks and only the thread that performed the
lock can unlock the mutex.

...
static SP_mutex volatile my_mutex = SP_MUTEX_INITIALIZER;
/* only access this counter with my_mutex locked */
int volatile protected_counter = 0;

/* returns the new value of protected_counter */
int increment_the_counter(void)
{
int new_value;

if(SP_mutex_lock(&my_mutex) == 0) goto error_handling;
/* No other thread can update protected_counter here */
new_value = protected_counter+1;
protected_counter = new_value;
if (SP_mutex_unlock(&my_mutex) == 0) goto error_handling;
return new_value;

error_handling:
...

}

9.4.7 Miscellaneous

A dynamic foreign resource that is used by multiple SICStus run-times in the same process
may need to maintain a global state that is kept separate for each SICStus run-time. Each
SICStus run-time maintains a location (containing a void*) for each foreign resource. A
foreign resource can then access this location to store any data that is specific to the calling
SICStus run-time.

void **SP_foreign_stash(void)

You can use SP_foreign_stash() to get access to a location, initially set to NULL, where
the foreign resource can store a void*. Typically this would be a pointer to a C struct that
holds all information that need to be stored in global variables. This struct can be allocated
and initialized by the foreign resource init function, it should be deallocated by the foreign
resource deinit function.

Chapter 9: Mixing C/C++ and Prolog 241

SP_foreign_stash() is only available for use in dynamic foreign resources. The value
returned by SP_foreign_stash() is only valid until the next SICStus API call. The correct
way to initialize the location pointed at by SP_foreign_stash() is therefore:

struct my_state {...};

init_my_foreign_resource(...)
{

struct my_state *p = SP_malloc(sizeof(struct my_state));
(*SP_foreign_stash()) = (void*)p;

}

The following example is incorrect; SP_malloc() may be called between the time SP_
foreign_stash() is called and the time its return value is used:

/* WRONG */
(*SP_foreign_stash()) = SP_malloc(sizeof(struct my_state));

SP_foreign_stash() is currently a C macro, not a function. You should not rely on this.

9.5 Calling Prolog from C

In development and runtime systems alike, Prolog and C code may call each other to
arbitrary depths.

Before calling a predicate from C you must look up the predicate definition by module,
name, and arity. The function SP_predicate() will return a pointer to this definition or
return NULL if the predicate is not visible in the module. This definition could be used in
more than one call to the same predicate. The module specification is optional. If NULL or
"" (the empty string) is given, then the default type-in module (see Section 5.2 [Module
Spec], page 59) is assumed:

SP_pred_ref SP_predicate(char *name_string,
long arity,
char *module_string)

Note that the first and third arguments point to encoded strings, representing the characters
of the predicate and module name.

The function SP_pred() may be used as an alternative to the above. The only difference is
that the name and module arguments are passed as Prolog atoms rather than strings, and
the module argument is mandatory. This saves the cost of looking up the two arguments
in the Prolog symbol table. This cost dominates the cost of SP_predicate():

SP_pred_ref SP_pred(SP_atom name_atom,
long arity,
SP_atom module_atom)

242 SICStus Prolog

9.5.1 Finding One Solution of a Call

The easiest way to call a predicate if you are only interested in the first solution is to call the
function SP_query(). It will create a goal from the predicate definition and the arguments,
call it, and commit to the first solution found, if any.

Returns SP_SUCCESS if the goal succeeded, SP_FAILURE if it failed, and SP_ERROR if an error
condition occurred. Only when the return value is SP_SUCCESS are the values in the query
arguments valid, and will remain so until backtracking into any enclosing query:

int SP_query(SP_pred_ref predicate, SP_term_ref arg1, ...)

If you are only interested in the side-effects of a predicate you can call SP_query_cut_
fail(). It will try to prove the predicate, cut away the rest of the solutions, and finally
fail. This will reclaim any memory allocated after the call, and throw away any solution
found. The return values are the same as for SP_query().

int SP_query_cut_fail(SP_pred_ref predicate, SP_term_ref arg1, ...)

9.5.2 Finding Multiple Solutions of a Call

If you are interested in more than one solution a more complicated scheme is used. You
find the predicate definition as above, but you don’t call the predicate directly.

1. Set up a call with SP_open_query()

2. Call SP_next_solution() to find a solution. Call this predicate again to find more
solutions if there are any.

3. Terminate the call with SP_close_query() or SP_cut_query()

The function SP_open_query() will return an identifier of type SP_qid that you use in
successive calls, or 0, if given an invalid predicate reference. Note that if a new query is
opened while another is already open, the new query must be terminated before exploring
the solutions of the old one. That is, queries must be strictly nested:

SP_qid SP_open_query(SP_pred_ref predicate, SP_term_ref arg1, ...)

The function SP_next_solution() will cause the Prolog engine to backtrack over any
current solution of an open query and look for a new one. The given argument must be
the innermost query that is still open, i.e. it must not have been terminated explicitly by
SP_close_query() or SP_cut_query(). Returns SP_SUCCESS for success, SP_FAILURE for
failure, SP_ERROR if an error condition occurred. Only when the return value is SP_SUCCESS
are the values in the query arguments valid, and will remain so until backtracking into this
query or an enclosing one:

int SP_next_solution(SP_qid query)

Chapter 9: Mixing C/C++ and Prolog 243

A query must be terminated in either of two ways. The function SP_cut_query() will
discard the choices created since the corresponding SP_open_query(), like the goal !. The
current solution is retained in the arguments until backtracking into any enclosing query.
The given argument does not have to be the innermost open query; any open queries in its
scope will also be cut. Returns SP_SUCCESS for success and SP_ERROR for invalid usage:

int SP_cut_query(SP_qid query)

Alternatively, the function SP_close_query() will discard the choices created since the
corresponding SP_open_query(), and then backtrack into the query, throwing away any
current solution, like the goal !, fail. The given argument does not have to be the inner-
most open query; any open queries in its scope will also be closed. Returns SP_SUCCESS for
success and SP_ERROR for invalid usage:

int SP_close_query(SP_qid query)

A simple way to call arbitrary prolog code is to use SP_read_from_string() (see Sec-
tion 9.4.2 [Creating Prolog Terms], page 233) to create an argument to call/1. It is a
good idea to always explicitly specify the module context when using call/1 or other
meta-predicates from C.

This example calls a compound goal (without error checking).

SP_pred_ref call_pred = SP_predicate("call", 1, "prolog");
SP_term_ref x = SP_new_term_ref();
SP_term_ref goal = SP_new_term_ref();
SP_term_ref vals[] = {x, 0 /* zero termination */};
long len;

SP_put_variable(x);
/* The X=_ is a trick to ensure that X is the first variable

in the depth-first order and thus corresponds to vals[0] (x).
There are no entries in vals for _,L1,L2.

*/
SP_read_from_string(goal,

"user:(X=_, length([0,1,2],L1), length([3,4],L2), X is L1+L2).", vals);

SP_query(call_pred, goal);
SP_get_integer(x, &len);
/* here len is 5 */

9.5.3 Calling Prolog Asynchronously

If you wish to call Prolog back from a signal handler or a thread other than the thread that
called SP_initialize(), that is, the main thread, you cannot use SP_query() etc. directly.
The call to Prolog has to be delayed until such time that the Prolog execution can accept
an interrupt and the call has to be performed from the main thread (the Prolog execution

244 SICStus Prolog

thread). The function SP_event() serves this purpose, and installs the function func to be
called from Prolog (in the main thread) when the execution can accept a callback. It returns
non-zero if and only if installation succeeded. func is called with arg as first argument.

A queue of functions, with corresponding arguments, is maintained; that is, if several calls
to SP_event() occur before Prolog can accept an interrupt, the functions are queued and
executed in turn at the next possible opportunity. A func installed with SP_event() will
not be called until SICStus is actually running. One way of ensuring that all pending
functions installed with SP_event() are run is to call, from the main thread, some dummy
goal, such as, SP_query_cut_fail(SP_predicate("true",0,"user")).

While SP_event() is safe to call from any thread, it is not safe to call from arbitrary signal
handlers. If you want to call SP_event() when a signal is delivered, you need to install
your signal handler with SP_signal() (see below).

Note that SP_event() is one of the very few functions in the SICStus API that can safely
be called from another thread than the main thread.

Depending on the value returned from func, the interrupted Prolog execution will just
continue (SP_SUCCESS) or backtrack (SP_FAILURE or SP_ERROR). An exception raised by
func, using SP_raise_exception(), will be processed in the interrupted Prolog execution.
If func calls SP_fail() or SP_raise_exception() the return value from func is ignored
and handled as if func returned SP_FAILURE or SP_ERROR, respectively. In case of failure
or exception, the event queue is flushed.

It is generally not robust to let func raise an exception or fail. The reason is that not all
Prolog code is written such that it gracefully handles being interrupted. If you want to
interrupt some long-running Prolog code, it is better to let your code test a flag in some
part of your code that is executed repeatedly.

int SP_event(int (*func)(void*), void *arg)

9.5.3.1 Signal Handling

As noted above it is not possible to call e.g. SP_query() or even SP_event() from an
arbitrary signal handler. That is, from signal handlers installed with signal or sigaction.
Instead you need to install the signal handler using SP_signal().

When the OS delivers a signal sig for which SP_signal(sig,func) has been called SICStus
will not call func immediately. Instead the call to func will be delayed until it is safe for
Prolog to do so, in much the same way that functions installed by SP_event() are handled
(this is an incompatible change from SICStus 3.8 and earlier).

Since the signal handling function func will not be called immediately upon delivery of the
signal to the process it only makes sense to use SP_signal() to handle certain asynchronous
signals such as SIGINT, SIGUSR1, SIGUSR2. Other asynchronous signals handled specially
by the OS, such as SIGCHLD are not suitable for handling via SP_signal(). Note that the

Chapter 9: Mixing C/C++ and Prolog 245

development system installs a handler for ‘SIGINT’, and, under Windows, ‘SIGBREAK’, to
catch keyboard interrupts. Under UNIX, library(timeout) currently uses SIGVTALRM.

When func is called it may only call other (non SICStus) C code and SP_event(). Note
that func will be called in the main thread.

To install a function, func, as a handler for the signal sig, call:

typedef void SP_SigFun (int);
SP_SigFun SP_signal (int sig, SP_SigFun fun);

SP_signal() returns SP_SIG_ERR on error. On success, SP_signal() returns some unspec-
ified value different from SP_SIG_ERR.

If fun is one of the special constants SP_SIG_IGN or SP_SIG_DFL, then one of two things
happens. If a signal handler for sig has already been installed with SP_signal(), then
the SICStus OS-level signal handler is removed and replaced with, respectively, SIG_IGN or
SIG_DFL. If a signal handler has not been installed with SP_signal(), then SP_signal()
does nothing and returns SP_SIG_ERR.

A signal handler installed by a foreign resource should be uninstalled in the deinit function
for the foreign resource. This is to prevent the handler in the foreign resource from being
called after the code of the foreign resource has been unloaded (e.g. by unload_foreign_
resource/1).

The following two functions were used prior to SICStus 3., but are obsolete now:

SP_SigFun SP_reinstall_signal (int sig, SP_SigFun) obsolescent
void SP_continue(void) obsolescent

they are no-ops.

The following piece of C code illustrates these facilities. The function signal_init() in-
stalls the function signal_handler() as the primary signal handler for the signals SIGUSR1
and SIGUSR2. That function invokes the predicate user:prolog_handler/1 as the actual
signal handler, passing the signal number as an argument to the predicate.

246 SICStus Prolog

SP_pred_ref event_pred;

static int signal_event(void *handle)
{
int signal_no = (int) handle;
SP_term_ref x=SP_new_term_ref();
int rc;

SP_put_integer(x, signal_no); /* Should not give an error */
rc = SP_query(event_pred, x);
if (rc == SP_ERROR && SP_exception_term(x))
SP_raise_exception(x); /* Propagate any raised exception */

return rc;
}

static void signal_handler(int signal_no)
{

/* cast to size_t to avoid warnings on 64-bit machines */
SP_event(signal_event, (void *)(size_t)signal_no);
/* The two calls below are for SICStus 3.8 compatibility */
SP_reinstall_signal(signal_no, signal_handler);
SP_continue();

}

void signal_init(void)
{

event_pred = SP_predicate("prolog_handler",1,"user");

SP_signal(SIGUSR1, signal_handler);
SP_signal(SIGUSR2, signal_handler);

}

9.5.4 Exception Handling in C

When an exception has been raised, the functions SP_query(), SP_query_cut_fail() and
SP_next_solution() return SP_ERROR. To access the exception term (the argument of the
call to raise_exception/1), which is asserted when the exception is raised, the function SP_
exception_term() is used. As a side-effect, the exception term is retracted, so if your code
wants to pass the exception term back to Prolog, it must use the SP_raise_exception()
function below. If an exception term exists, SP_exception_term() retracts it and stores
it as the value of an SP term ref, which must exist prior to the call and returns nonzero.
Otherwise, it returns zero:

int SP_exception_term(SP_term_ref t)

Chapter 9: Mixing C/C++ and Prolog 247

To raise an exception from a C function called from Prolog, just call SP_raise_
exception(t) where t is the SP term ref whose value is the exception term. The glue
code will detect that an exception has been raised, any value returned from the function
will be ignored, and the exception will be passed back to Prolog:

void SP_raise_exception(SP_term_ref t)

9.6 SICStus Streams

With the SICStus Prolog C interface, the user can define his/her own streams as well as
from C read or write on the predefined streams. The stream interface is modeled after
Quintus Prolog release 2. It provides:

• C functions to perform I/O on Prolog streams. This way you can use the same stream
from Prolog and C code.

• User defined streams. You can define your own Prolog streams in C.
• Bidirectional streams. A SICStus stream supports reading or writing or both.
• Hookable standard input/output/error streams.

9.6.1 Prolog Streams

From the Prolog level there is a unique number that identifies a stream. This identifier can
be converted from/to a Prolog stream:

stream_code(+Stream,?StreamCode)
stream_code(?Stream,+StreamCode)

StreamCode is the C stream identifier (an integer) corresponding to the Prolog
stream Stream. This predicate is only useful when streams are passed between
Prolog and C. Note that StreamCode no longer has any relation to the file
descriptor.

The StreamCode is a Prolog integer representing an SP_stream * pointer.

To read or write on a Prolog stream from C, special versions of the most common standard
C I/O functions are used:

int SP_getc(void)
int SP_fgetc(SP_stream *s)
void SP_putc(int c)
void SP_fputc(int c, SP_stream *s)

The above functions deliver or accept wide character codes.

248 SICStus Prolog

void SP_puts(char *string)
void SP_fputs(char *string, SP_stream *s)
int SP_printf(char *format, ...)
int SP_fprintf(SP_stream *s, char *format, ...)
int SP_fflush(SP_stream *s)
int SP_fclose(SP_stream *s)

The above functions expect and deliver encoded strings in their char * and char ** argu-
ments. Specifically, in the SP_printf() and SP_fprintf() functions, first the formatting
operation will be performed. The resulting string will be assumed to be in internal en-
coding, and will then be output using the SP_puts() or SP_fputs() function (see below).
This means, e.g. that the %c printf conversion specification can only be used for ASCII
characters, and the strings included using a %s specification should also be ASCII strings,
or already transformed to the encoded form.

The SP_puts() and SP_fputs() functions first convert their encoded string argument into
a sequence of wide character codes, and then output these on the required stream according
to the external encoding; see Section 12.6 [WCX Foreign Interface], page 311.

There following predefined streams are accessible from C:

SP_stdin Standard input. Refers to the same stream as user_input in Prolog. Which
stream is referenced by user_input is controlled by the Prolog flag user_input

SP_stdout
Standard output. Refers to the same stream as user_output in Prolog. Which
stream is referenced by user_output is controlled by the Prolog flag user_
output.

SP_stderr
Standard error. Refers to the same stream as user_error in Prolog. Which
stream is referenced by user_error is controlled by the flag user_error.

SP_curin Current input. It is initially set equal to SP_stdin. It can be changed with the
predicates see/1 and set_input/1.

SP_curout
Current output. It is initially set equal to SP_stdout. It can be changed with
the predicates tell/1 and set_output/1.

Note that these variables are read only. They are set but never read by the stream handling.

9.6.2 Defining a New Stream

The following steps are required to define a new stream in C:

• Define low level functions (character reading, writing etc).
• Initialize and open your stream.

Chapter 9: Mixing C/C++ and Prolog 249

• Allocate memory needed for your particular stream.
• Initialize and install a Prolog stream with SP_make_stream() or SP_make_stream_

context().
• Initialize additional fields. Some streams may require additional changes to the fields

in the SP_stream structure than the default values set by SP_make_stream().

9.6.2.1 Low Level I/O Functions

For each new stream the appropriate low level I/O functions have to be defined. Error han-
dling, prompt handling and character counting is handled in a layer above these functions.
They all operate on a user defined private data structure pointed out by user_handle in
SP_stream.

User defined low level I/O functions may invoke Prolog code and use most of the support
functions described in the other sections of this chapter. They must not use SP_fail() or
SP_raise_exception(), doing so will not have the intended effect and may cause problems.

int my_fgetc(void *handle)
Should return the character read or -1 on end of file.

int my_fputc(char c, void *handle)
Should write the character c and return the character written.

int my_flush(void *handle)
Should flush the (output) stream and return 0 on success, -1 on error.

int my_eof(void *handle)
Should return 1 on end of file, else 0.

void my_clrerr(void *handle)
Should reset the stream’s error and EOF indicators.

int my_close(void *handle)
Should close the stream and return zero.

9.6.2.2 Installing a New Stream

A new stream is made accessible to Prolog using one of the functions:

250 SICStus Prolog

int SP_make_stream(
void *handle,
int (*sgetc)(),
int (*sputc)(),
int (*sflush)(),
int (*seof)(),
void (*sclrerr)(),
int (*sclose)(),
SP_stream **stream)

int SP_make_stream_context(
void *handle,
int (*sgetc)(),
int (*sputc)(),
int (*sflush)(),
int (*seof)(),
void (*sclrerr)(),
int (*sclose)(),
SP_stream **stream,
SP_atom option,
int context)

The functions return SP_SUCCESS on success and SP_ERROR for invalid usage, and will:

• Allocate a SP_stream structure
• Install your low level I/O functions. For those not supplied default functions are in-

stalled.
• Determine if the stream is for input or output or both from the functions supplied.
• Fill in fields in the SP_stream structure with default values

The handle pointer will be supplied as the handle argument in the calls to the low level
functions.

A stream without a close function will be treated as not closable i.e. close/1 will not have
any effect on it.

The SP_make_stream_context() function has two additional arguments supplying infor-
mation related to the handling of wide characters; see Section 12.6 [WCX Foreign Interface],
page 311.

9.6.2.3 Internal Representation

For most streams you don’t have to know anything about the internal representatio, but
there may be occasions when you have to set some fields manually or do some processing on
all streams of a particular type. SICStus Prolog maintains a circular list of stream objects
of type SP_stream.

Chapter 9: Mixing C/C++ and Prolog 251

SP_stream *backward;
SP_stream *forward;

Used for linking streams together. The insertion is done by SP_make_stream()
and the deletion is done from the Prolog predicate close/1.

char *filename;
This field is set to the empty string, "", by SP_make_stream(). May be set to
a suitable encoded string, provided the string will not be overwritten until the
stream is closed.

unsigned long mode;
A bit vector that contains information about the access modes supported, if
the stream is a TTY stream etc. It is not available to the user but the TTY
property can be set by the function:

void SP_set_tty(SP_stream *s)

int fd; The file descriptor if the stream is associated with a file, socket etc. Otherwise
a negative integer.

void *user_handle;
This is the pointer to the user supplied private data for the stream. For example,
in the case of SICStus Prolog predefined file streams the user_handle could be
a pointer to the standard I/O FILE.

There is no standard way to tell if a stream is user defined. You have to save pointers to
the streams created or check if one of the stream functions installed is user defined, i.e:

int is_my_stream(SP_stream *s)
{
return (s->sclose == my_close);

}

9.6.3 Hookable Standard Streams

As of release 3.7, the standard I/O streams (input, output, and error) are hookable, i.e. the
streams can be redefined by the user.

SP_UserStreamHook *SP_set_user_stream_hook(SP_UserStreamHook *hook)
Sets the user-stream hook to hook.

SP_UserStreamPostHook *SP_set_user_stream_post_hook(SP_UserStreamPostHook
*hook)

Sets the user-stream post-hook to hook.

These hook functions must be called before SP_initialize() (see Section 9.8.4.1 [Initial-
izing the Prolog Engine], page 275). In custom built development systems, they may be
called in the hook function SU_initialize(). See Section 9.8.3 [The Application Builder],
page 258.

252 SICStus Prolog

9.6.3.1 Writing User-stream Hooks

The user-stream hook is, if defined, called during SP_initialize(). It has the following
prototype:

SP_stream *user_stream_hook(int which)

If the hook is not defined, SICStus will attempt to open the standard TTY/console versions
of these streams. If they are unavailable (such as for windowed executables under Windows),
the result is undefined.

It is called three times, one for each stream. The which argument indicates which stream
it is called for. The value of which is one of:

SP_STREAMHOOK_STDIN
Create stream for standard input.

SP_STREAMHOOK_STDOUT
Create stream for standard output.

SP_STREAMHOOK_STDERR
Create stream for standard error.

The hook should return a standard SICStus I/O stream, as described in Section 9.6.2
[Defining a New Stream], page 248.

9.6.3.2 Writing User-stream Post-hooks

The user-stream post-hook is, if defined, called after all the streams have been defined, once
for each of the three standard streams. It has a slightly different prototype:

void user_stream_post_hook(int which, SP_stream *str)

where str is a pointer to the corresponding SP_stream structure. There are no requirements
as to what this hook must do; the default behavior is to do nothing at all.

The post-hook is intended to be used to do things that may require that all streams have
been created.

9.6.3.3 User-stream Hook Example

This section contains an example of how to create and install a set of user-streams.

The hook is set by calling SP_set_user_stream_hook() in the main program like this:

SP_set_user_stream_hook(user_strhook);

Chapter 9: Mixing C/C++ and Prolog 253

Remember: SP_set_user_stream_hook() and SP_set_user_stream_post_hook() must
be called before SP_initialize().

The hook user_strhook() is defined like this:

SP_stream *user_strhook(int which)
{
SP_stream *s;

SP_make_stream(NULL, my_getc, my_putc, my_flush, my_eof, my_clrerr,
NULL, &s);

return s;
}

See Section 9.6.2.2 [Installing a New Stream], page 249 for a description on the parameters
to SP_make_stream().

9.7 Hooks

The user may define functions to be called at certain occasions by the Prolog system. This
is accomplished by passing the functions as arguments to the following set-hook-functions.
The functions can be removed by passing a NULL.

typedef int (SP_ReadHookProc) (int fd)
SP_ReadHookProc SP_set_read_hook (SP_ReadHookProc *) obsolescent

The installed function is called before reading a character from fd provided it
is associated with a terminal device. This function shall return nonzero when
there is input available at fd. It is called repeatedly until it returns nonzero.
You should avoid the use of a read hook if possible. It is not possible to write
a reliable read hook. The reason is that SICStus streams are typically based
on C stdio streams (FILE*). Such streams can contain buffered data that is
not accessible from the file descriptor. Using e.g. select() can therefore block
even though fgetc on the underlying FILE* would not block.

typedef void (SP_VoidFun) (void)
SP_VoidFun * SP_set_reinit_hook (SP_VoidFun *)

The installed function is called by the development system upon startup. The
call is made after SICStus Prolog’s signal handler installation but before any
initializations are run and the version banners are displayed. Calling Prolog
from functions invoked through this hook is not supported. In recursive calls
to Prolog from C, which includes all run-time systems, this hook is not used.

typedef void (SP_VoidFun) (void);
SP_VoidFun * SP_set_interrupt_hook (SP_VoidFun *)

The installed function is called on occasions like expansion of stacks, garbage
collection and printouts, in order to yield control to special consoles etc. for

254 SICStus Prolog

interrupt checking. Calling Prolog from functions invoked through this hook is
not supported.

9.8 Stand-alone Executables

So far we have only discussed foreign code as pieces of code loaded into a Prolog executable.
This is often not the desired situation. Instead, people often want to create stand-alone
executables, i.e. an application where Prolog is used as a component, accessed through the
API described in the previous sections.

9.8.1 Runtime Systems

Stand-alone applications containing debugged Prolog code and destined for end-users are
typically packaged as runtime systems. No SICStus license is needed by a runtime system.
A runtime system has the following limitations:

• No top-level. The executable will restore a saved-state and/or load code, and call
user:runtime_entry(start). Alternatively, you may supply a main program and
explicitly initialize the Prolog engine with SP_initialize(). break/0 and require/1
are unavailable.

• No debugger. The Prolog flags debug and debugger_print_options have
no effect. The predicates debugging/0, debug/0, nodebug/0, trace/0,
notrace/0, zip/0, nozip/0, unknown/2, leash/1, spy/[1,2], nospy/1, nospyall/0,
add_breakpoints/2, remove_breakpoints/1, current_breakpoint/5, disable_
breakpoints/1, enable_breakpoints/1, and execution_state/[1,2] are unavail-
able.

• Except in extended runtime systems: no compiler; compiling is replaced by consulting.
fcompile/1 is unavailable. Extended runtime system contain the compiler.

• The Prolog flags discontiguous_warnings, redefine_warnings, single_var_
warnings have no effect. The user is not prompted in the event of name clashes.

• The informational Prolog flag is off by default, suppressing informational messages.
• The predicates version/[0,1] and help/0 are unavailable.
• The compile-time part of the foreign language interface, e.g. load_foreign_files/2,

is unavailable.
• No profiler. The predicates profile_data/4 and profile_reset/1 are unavailable.
• No signal handling except as installed by SP_signal().

9.8.2 Runtime Systems on Target Machines

When a runtime system is delivered to the end user, chances are that the user does not
have an existing SICStus installation. To deliver such an executable, you need:

Chapter 9: Mixing C/C++ and Prolog 255

the executable
This is your executable program, usually created by spld (see Section 9.8.3
[The Application Builder], page 258).

the runtime kernel
This is a shared object or a DLL, usually ‘$SP_PATH/../libsprt312.so’ under
UNIX, or ‘%SP_PATH%\..\sprt312.dll’ under Windows.

the (extended) runtime library
The saved-state ‘$SP_PATH/bin/sprt.sav’ contains the built-in predicates
written in Prolog. It is restored into the program at runtime by the function SP_
initialize(). Extended runtime systems restore ‘$SP_PATH/bin/spre.sav’
instead, available from SICS as an add-on product.

your Prolog code
As a saved-state, ‘.po’ files, ‘.ql’, or source code (‘.pl’ files). They must be
explicitly loaded by the program at runtime (see Section 9.8.4.2 [Loading Prolog
Code], page 277).

your linked foreign resources
Any dynamically linked foreign resources, including any linked foreign resources
for library modules located in ‘$SP_PATH/library’.

The following two sections describe how to package the above components for UNIX and
Windows target machines, i.e. machines that do not have SICStus Prolog installed, respec-
tively. It is also possible to package all the above components into a single executable file,
an all-in-one executable. See Section 9.8.3.2 [All-in-one Executables], page 265.

9.8.2.1 Runtime Systems on UNIX Target Machines

In order to build a runtime system for distribution on a target machine, the option
‘--moveable’ must be passed to spld. This option prevents spld from hardcoding any
(absolute) paths into the executable.

Next, in order for SICStus to be able to locate all relevant files, the following directory
structure should be used.

myapp.exe
sp-3.12.8/
+--- libsprt312.so

+--- sicstus-3.12.8/
+--- bin/
| +--- sprt.sav
+--- library/

+--- <files from $SP_PATH/library>

256 SICStus Prolog

If support for multiple SICStus instances is needed, then the run-times named e.g.
‘libsprt312_instance_01_.so’, need to be available as well, in the same place as
‘libsprt312.so’.

If SICStus Prolog is installed on the target machine, a symbolic link named ‘sp-3.12.8’
can be used, in which case it should point at the directory of the SICStus installation that
contains the ‘libsprt312.so’ (or equivalent).

‘myapp.exe’ is typically created by a call to spld:

% spld --main=user --moveable [...] -o ./myapp.exe

On most platforms, the above directory layout will enable the executable to find the SIC-
Stus run-time (e.q., ‘libsprt312.so’) as well as the boot file ‘sprt.sav’ (‘spre.sav’). In
addition, application specific files, e.g. a ‘.sav’ file, can be found using the automatically
set environment variables SP_APP_DIR or SP_RT_DIR. On some platforms a wrapper script,
generated by spld, is needed to ensure that the files are found.

On some platforms, the executable will not be able to locate ‘sprt.sav’ (‘spre.sav’) unless
the environment variable SP_PATH is set. If the example above is rooted in ‘/home/joe’,
then SP_PATH should be set to ‘/home/joe/lib/sicstus-3.12.8’. This is not needed on
platforms where SP_APP_DIR or SP_RT_DIR can be used, e.g. on Linux, Solaris or Win32
and most others.

Unless the ‘--static’ option is passed to spld, it might also be necessary to set LD_
LIBRARY_PATH (or equivalent) to ‘/home/joe/lib’ (in the example above) in order for the
dynamic linker to find ‘libsprt312.so’. If the ‘--static’ option is used, this is not nec-
essary. Setting LD_LIBRARY_PATH is not needed, nor recommended, on Linux and Solaris
(and Win32).

When a runtime system is redistributed to third parties, only the following files may be
included in the distribution. All filenames are relative to ‘<prefix>/lib/sicstus-3.12.8’:

‘../*.{a,so,sl,dylib}’
‘bin/sprt.sav’
‘bin/spre.sav’
‘bin/jasper.jar’
‘bin/prologbeans.jar’
‘library/*.{tcl,po,pl}’

Except ‘license.pl’!

‘library/*/*.{s.o,so,sl,dylib}’
‘library/*/*.{po,pl}’
‘sp_platform’

(Located with InstallSICStus)

Chapter 9: Mixing C/C++ and Prolog 257

9.8.2.2 Runtime Systems on Windows Target Machines

In order to locate all relevant files, the following directory structure should be used.

myapp.exe
sprt312.dll

sp312\
+--- bin\
| +--- sprt.sav
+--- library\

+--- <files from %SP_PATH%\library>

If support for multiple SICStus instances is needed, then the run-times named e.g.
‘sprt312_instance_01_.dll’, need to be available as well, in the same place as
‘sprt312.dll’.

‘myapp.exe’ is typically created by a call to spld:

% spld --main=user [...] -o ./myapp.exe

If the directory containing ‘sprt312.dll’ contains a directory called sp312, SICStus as-
sumes that it is part of a runtime system as described in the picture. The (extended)
runtime library, ‘sprt.sav’ (‘spre.sav’), is then looked up in the directory (‘sp312/bin’),
as in the picture. Furthermore, the initial library_directory/1 fact will be set to the
same directory with sp312/library appended.

The directory structure under library/ should look like in a regular installed SICStus,
including the platform-specific subdirectory (x86-win32-nt-4 in this case). If your appli-
cation needs to use library(system) and library(random), your directory structure may
look like:

myapp.exe
sprt312.dll

sp312\
+--- bin\
| +--- sprt.sav
+--- library\

+--- random.po
+--- system.po
+--- x86-win32-nt-4 \

+--- random.dll
+--- system.dll

The sp* files can also be put somewhere else in order to be shared by several applications
provided the ‘sprt312.dll’ can be located by the DLL search.

258 SICStus Prolog

Naming the files with version number enables applications using different SICStus versions
to install the sp* files in the same directory.

When a runtime system is redistributed to third parties, only the following files may be
included in the distribution. All filenames are relative to ‘%SP_PATH%’:

‘bin\sprt.sav’
‘bin\spre.sav’
‘bin\jasper.jar’
‘bin\prologbeans.jar’
‘bin*.dll’
‘bin*.po’
‘library*.{tcl,po,pl,bas}’

Except ‘license.pl’!

‘library**.dll’
‘library**.{po,pl}’

9.8.3 The Application Builder

The application builder, spld, is used for creating stand-alone executables. This tool re-
places the tools spmkrs and spmkds of previous versions of SICStus. It is invoked as:

% spld [Option | InputFile] ...

spld takes the files specified on the command line and combines them into an executable
file, much like the UNIX ld or the Windows link commands.

Note that no pathnames passed to spld should contain spaces. Under Windows, this can
be avoided by using the short version of pathnames as necessary.

The input to spld can be divided into Options and Files, which can be arbitrarily mixed on
the command line. Anything not interpreted as an option will be interpreted as an input
file. Do not use spaces in any file or option passed to spld. Under Windows you can use
the short file name for files with space in their name. The following options are available:

‘--help’ Prints out a summary of all options.

‘-v’
‘--verbose’

Print detailed information about each step in the compilation/linking sequence.

‘-vv’ Be very verbose. Prints everything printed by ‘--verbose’, and switches on
verbose flags (if possible) to the compiler and linker.

‘--version’
Prints out the version number of spld and exits successfully.

Chapter 9: Mixing C/C++ and Prolog 259

‘-o’
‘--output=filename’

Specify output file name. The default depends on the linker (e.g. ‘a.out’ on
UNIX systems).

‘-E’
‘--extended-rt’

Create an extended runtime system. In addition to the normal set of built-
in runtime system predicates, extended runtime systems include the compiler.
Extended runtime systems require the extended runtime library, available from
SICS as an add-on product.

‘-D’
‘--development’

Create a development system (with top-level, debugger, compiler, etc.). The
default is to create a runtime system. Implies ‘--main=prolog’.

‘--main=type’
‘runtime_entry(+Message) hook’
‘user:runtime_entry(+Message)’

Specify what the executable should do upon startup. The possible values are
prolog, user, restore and load.

prolog Implies ‘-D’. The executable will start the Prolog top-level. This
is the default if ‘-D’ is specified and no ‘.sav’, ‘.pl’, ‘.po’, or ‘.ql’
files are specified.

user The user supplies his/her own main program by including C-code
(object file or source), which defines a function user_main(). This
option is not compatible with ‘-D’. See Section 9.8.4 [User-defined
Main Programs], page 274.

restore The executable will restore a saved-state created by save_
program/[1,2]. This is the default if a ‘.sav’ file is found among
Files. It is only meaningful to specify one ‘.sav’ file. If it was
created by save_program/2, the given startup goal is run. Then
the executable will any Prolog code specified on the command line.
Finally, the goal user:runtime_entry(start) is run. The exe-
cutable exits with 0 upon normal temination and with 1 on failure
or exception. Not compatible with ‘-D’.

load The executable will load any Prolog code specified on the command
line, i.e. files with extension ‘.pl’, ‘.po’ or ‘.ql’. This is the de-
fault if there are ‘.pl’, ‘.po’ or ‘.ql’ but no ‘.sav’ files among
Files. Finally, the goal user:runtime_entry(start) is run. The
executable exits with 0 upon normal temination and with 1 on fail-
ure or exception. Not compatible with ‘-D’. Note that this is almost
like ‘--main==restore’ except that no saved-state will be restored
before loading the other files.

none No main function is generated. The main function must be supplied
in one of the user supplied files. Not compatible with ‘-D’.

260 SICStus Prolog

‘--window’
Win32 only. Create a windowed executable. A console window will be opened
and connected to the Prolog standard streams. If ‘--main=user’ is specified,
user_main() should not set the user-stream hooks. C/C++ source code files
specified on the command-line will be compiled with ‘-DSP_WIN=1’ if this option
is given.

‘--moveable’
Under UNIX, paths are normally hardcoded into executables in order for them
to find the SICStus libraries and bootfiles. Two paths are normally hardcoded;
the value of SP_PATH and, where possible, the runtime library search path using
the ‘-R’ linker option (or equivalent). If the linker does not support the ‘-R’
option (or an equivalent), a wrapper script is generated instead, which sets
LD_LIBRARY_PATH (or equivalent).
The ‘--moveable’ option turns off this behavior, so the executable is not de-
pendent on SICStus being installed in a specific place. On some platforms the
executable can figure out where it is located and so can locate any files it need,
e.g. using SP_APP_DIR and SP_RT_DIR. On some UNIX platforms, however, this
is not possible. In these cases, if this option is given, the executable will rely
on environment variables (SP_PATH (see Section 3.1.1 [Environment Variables],
page 23) and LD_LIBRARY_PATH, etc.) to find all relevant files.
Under Windows, this option is always on, since Windows applications do not
need to hardcode paths in order for them to find out where they’re installed.
See Section 9.8.2.2 [Runtime Systems on Windows Target Machines], page 257,
for more information on how SICStus locates its libraries and bootfiles.

‘-S’
‘--static’

Link statically with SICStus run-time and foreign resources. When ‘--static’
is specified, a static version of the SICStus run-time will be used and any SIC-
Stus foreign resources specified with ‘--resources’ will be statically linked
with the executable. In addition, ‘--static’ implies ‘--embed-rt-sav’,
‘--embed-sav-file’ and ‘--resources-from-sav’.
Even with ‘--static’, spld will go with the linker’s default, which is usu-
ally dynamic. If you are in a situation where you would want spld to use a
static library instead of a dynamic one, you will have to hack into spld’s con-
figuration file ‘spconfig-version’ (normally located in ‘<installdir>/bin’).
We recommend that you make a copy of the configuration file and specify the
new configuration file using ‘--config=<file>’. A typical modification of the
configuration file for this purpose may look like:

[...]
TCLLIB=-Bstatic -L/usr/local/lib -ltk8.0 -ltcl8.0 -Bdynamic
[...]

Use the new configuration file by typing
% spld [...] -S --config=/home/joe/hacked_spldconfig [...]

The SICStus run-time depends on certain OS support that is only available in
dynamically linked executables. For this reason it will probably not work to try

Chapter 9: Mixing C/C++ and Prolog 261

to tell the linker to build a completely static executable, i.e. an executable that
links statically also with the C library and that cannot load shared objects.

‘--shared’
Create a shared library runtime system instead of an ordinary executable. Not
compatible with ‘--static’. Implies ‘--main=none’.
Not supported on all platforms.

‘--resources=ResourceList’
ResourceList is a comma-separated list of resource names, describing which
resources should be pre-linked with the executable. Names can be either simple
resource names, for example tcltk, or they can be complete paths to a foreign
resource (with or without extensions). Example

% spld [...] --resources=tcltk,clpfd,/home/joe/foobar.so

This will
cause library(tcltk), library(clpfd), and ‘/home/joe/foobar.so’ to be
pre-linked with the executable. See also the option ‘--respath’ below.
It is also possible to embed a data resource, that is, the contents of an arbitrary
data file that can be accessed at run-time.
It is possible to embed any kind of data, but, currently, only restore/1 knows
about data resources. For this reason it only makes sense to embed ‘.sav’ files.
The primary reason to embed files within the executable is to create an all-in-
one executable, that is, an executable file that does not depend on any other
files and that therefore is easy to run on machines without SICStus installed.
See Section 9.8.3.2 [All-in-one Executables], page 265, for more information.

‘--resources-from-sav’
‘--no-resources-from-sav’

When embedding a saved-state as a data resource (with ‘--resources’ or
‘--embed-sav-file’), this option extracts information from the embedded
saved-state about the names of the foreign resources that were loaded when
the saved-state was created. This is the default for static executables when
no other resource is specified except the embedded saved-state. This option
is only supported when a saved-state is embedded as a data resource. See
Section 9.8.3.2 [All-in-one Executables], page 265, for more information.
Use ‘--no-resources-from-sav’ to ensure that this feature is not enabled.

‘--respath=Path’
Specify additional paths used for searching for resources. Path is a list of search-
paths, colon separated under UNIX, semicolon separated under Windows. spld
will always search the default library directory as a last resort, so if this op-
tion is not specified, only the default resources will be found. See also the
‘--resources’ option above.

‘--config=ConfigFile’
Specify another configuration file. This option is not intended for normal use.
The file name may not contain spaces.

262 SICStus Prolog

‘--cflag=CFlag’
CFlag is a comma-separated list of options to send to the C-compiler. Any
commas in the list will be replaced by spaces. This option can occur multiple
times.

‘-LD’ Do not process the rest of the command-line, but send it directly to the com-
piler/linker.

‘--sicstus=Executable’
spld relies on using SICStus during some stages of its execution. The default is
the SICStus-executable installed with the distribution. Executable can be used
to override this, in case the user wants to use another SICStus executable.

‘--interactive’
‘-i’ Only applicable with ‘--main=load’ or ‘--main=restore’. Calls SP_force_

interactive() (see Section 9.8.4.1 [Initializing the Prolog Engine], page 275)
before initializing SICStus.

‘--memhook=hook obsolescent’
For compatibility with previous versions. Ignored.

‘--more-memory’
‘--no-more-memory’

Applies platform specific tricks to ensure that the Prolog stacks can use close
to 256MB (on 32bit architectures). Currently only affects x86 Linux where
it circumvents the default 128MB limit. Ignored on other platforms. Not
compatible with ‘--shared’. Somewhat experimental since the required linker
options are not well documented. This is the default on Linux. It can be forced
on (off) by specifying ‘--more-memory’ (‘--no-more-memory’).

‘--lang=Dialect’
Corresponds to prolog_flag(language,_,Dialect). Dialect can be one
of iso or sicstus. The language mode is set before restoring or loading
any argument files. This option can only be used with ‘--main=load’ and
‘--main=restore’.

‘--userhook’
This option enables you to define your own version of the SU_initialize()
function. SU_initialize() is called by the main program before SP_
initialize(). Its purpose is to call interface functions, which must be called
before SP_initialize(), such as SP_set_memalloc_hooks(). It is not mean-
ingful to specify this option if ‘--main=user’ or ‘--main=none’ is given.
SU_initialize() should be defined as:

int SU_initialize(int argc, char *argv[])

The contents of argv should not be modified. SU_initialize() should return
0 for success and non-zero for failure. If a non-zero value is returned, the
development system exits with the return value as error code.

Chapter 9: Mixing C/C++ and Prolog 263

‘--with_jdk=DIR’
‘--with_tcltk=DIR’
‘--with_tcl=DIR’
‘--with_tk=DIR’
‘--with_bdb=DIR’

Specify the installation path for third-party software. This is mostly useful un-
der Windows. Under UNIX, the installation script manages this automatically.

‘--keep’ Keep temporary files and interface code and rename them to human-readable
names. Not intended for the casual user, but useful if you want to know exactly
what code is generated.

‘--nocompile’
Do not compile, just generate code. This may be useful in Makefiles, for example
to generate the header file in a separate step. Implies ‘--keep’.

‘--namebase=namebase’
Use namebase to construct the name of generated files. This defaults to
spldgen_ or, if ‘--static’ is specified, spldgen_s_.

‘--embed-rt-sav’
‘--no-embed-rt-sav’

‘--embed-rt-sav’ will embed the SICStus run-time ‘.sav’ file into the exe-
cutable. This is off by default unless ‘--static’ is specified. It can be forced
on (off) by specifying ‘--embed-rt-sav’ (‘--no-embed-rt-sav’).

‘--embed-sav-file’
‘--no-embed-sav-file’

‘--embed-sav-file’ will embed any ‘.sav’ file passed to spld into the ex-
ecutable. This is just a shorthand for avoiding the ugly data resource
syntax of the ‘--resources’ option. This is the default when ‘--static’
is specified. It can be forced on (off) by specifying ‘--embed-sav-file’
(‘--no-embed-sav-file’). A file ‘./foo/bar.sav’ will be added with the data
resource name ‘/bar.sav’, i.e. as if --resources=./foo/bar.sav=/bar.sav
had been specified.

‘--multi-sp-aware’
Compile the application with support for using more than one SICStus run-
time in the same process. Not compatible with ‘--static’ or pre-linked foreign
resources. See Section 11.3 [Multiple SICStus Run-Times in C], page 294, for
details.

Arguments to spld not recognized as options are assumed to be input-files and are handled
as follows:

‘*.pl’
‘*.po’
‘*.ql’ These are interpreted as names of files containing Prolog code and will be passed

to SP_load() at run-time (if ‘--main’ is load or restore. If the intention is to
make an executable that works independently of the run-time working directory,

264 SICStus Prolog

avoid relative file names. Use absolute file names instead, SP_APP_DIR, SP_
LIBRARY_DIR, or embed a ‘.sav’ file as a data resource, using ‘--resource’.

‘*.sav’ These are interpreted as names of files containing saved-states and will be passed
to SP_restore() at run-time if ‘--main=restore’ is specified, subject to the
above caveat about relative file names.
It is not meaningful to give more than one ‘.sav’ argument.

‘*.so’
‘*.sl’
‘*.s.o’
‘*.o’
‘*.obj’
‘*.dll’
‘*.lib’
‘*.dylib’ These files are assumed to be input-files to the linker and will be passed on

unmodified.

‘*.c’
‘*.cc’
‘*.C’
‘*.cpp’
‘*.c++’ These files are assumed to be C/C++ source code and will be compiled by the

C/C++-compiler before being passed to the linker.

If an argument is still not recognized, it will be passed unmodified to the linker.

9.8.3.1 Customizing spld under UNIX

The spld tool is implemented as a Perl script and can be customized in order to adapt
to local variations. Do not attempt this unless you know what you are doing. Customiza-
tion is done by editing their common configuration file spconfig-version. Follow these
instructions:

1. Locate the configuration file spconfig-version. It should be located in the same
directory as spld.

2. Make a copy for spconfig-version; let’s call it hacked_spld.config. Do not edit
the original file.

3. The configuration file contains lines on the form CFLAGS=-g -O2. Edit these according
to your needs. Do not add or remove any options.

4. You may now use the modified spconfig-version together with spld like this:
% spld [...] --config=/path/to/hacked_spld.config

Replace ‘/path/to’ with the actual path to the hacked configuration file.

Chapter 9: Mixing C/C++ and Prolog 265

9.8.3.2 All-in-one Executables

It is possible to embed saved-states into an executable. Together with static linking, this
gives an all-in-one executable, an executable that does not depend on external SICStus files.

In the simplest case, creating an all-in-one executable ‘main.exe’ from a saved state
‘main.sav’ can be done with a command like

% spld --output=main.exe --static main.sav

This will automatically embed the saved state, any foreign resources needed by the saved
state as well the SICStus run-time and its run-time saved state.

The keys to this feature are:

• Static linking. By linking an application with a static version of the SICStus run-
time, you avoid any dependency on e.g. ‘sprt312.dll’ (Windows) or ‘libsprt312.so’
(UNIX). Note that, as of SICStus 3.9, static linking is supported under Windows.
If the application needs foreign resources (predicates written in C code), as used for
example by library(system) and library(clpfd), then these foreign resources can
be linked statically with the application as well.
The remaining component is the Prolog code itself; see the next item.

• Data Resources (in-memory files). It is possible to link an application with data re-
sources that can be read directly from memory. In particular, saved-states can be
embedded in an application and used when restoring the saved-state of the applica-
tion.
An application needs two saved-states:
1. The SICStus run-time system (sprt.sav).

This is added automatically when spld is invoked with the ‘--static’ (or ‘-S’)
option unless the spld-option ‘--no-embed-rt-sav’ is specified. It can also be
added explicitly with the option ‘--embed-rt-sav’.

2. The user written code of the application as well as any SICStus libraries.
This saved-state is typically created by loading all application code using
compile/1 and then creating the saved-state with save_program/2.

Data resources are added by specifying their internal name and the path to a file as part
of the comma separated list of resources passed with the spld option ‘--resources’. Each
data resource is specified as file=name where file is the path to the file containing the data
(it must exist during the call to spld) and name is the name used to access the content
of file during run-time. A typical choice of name would be the base name, i.e. without
directories, of file, preceded by a slash (/). name should begin with a slash (/) and look
like an ordinary lowercase file path made up of ‘/’-separated, non-empty, names consisting
of ‘a’ to ‘z’, underscore (‘_’, period (‘.’), and digits.

Typically, you would use spld --main=restore, which will automatically restore the
first ‘.sav’ argument. To manually restore an embedded saved-state you should

266 SICStus Prolog

use the syntax URL:x-sicstus-resource:name, e.g. SP_restore("URL:x-sicstus-
resource:/main.sav").

An example will make this clearer. Suppose we create a run-time system that consists of a
single file ‘main.pl’ that looks like:

% main.pl

:- use_module(library(system)).
:- use_module(library(clpfd)).

% This will be called when the application starts:
user:runtime_entry(start) :-

%% You may consider putting some other code here...
write(’hello world’),nl,
write(’Getting host name:’),nl,
host_name(HostName), % from system
write(HostName),nl,
(all_different([3,9]) -> % from clpfd

write(’3 != 9’),nl
; otherwise ->

write(’3 = 9!?’),nl
).

Then create the saved-state ‘main.sav’, which will contain the compiled code of ‘main.pl’
as well as the Prolog code of library(system) and library(clpfd) and other Prolog
libraries needed by library(clpfd).

% sicstus -i -f

SICStus 3.12.8 ...
Licensed to SICS
| ?- compile(main).

% compiling .../main.pl...
% ... loading several library modules
| ?- save_program(’main.sav’).

% .../main.sav created in 201 msec

| ?- halt.

Finally, tell spld to build an executable statically linked with the SICStus run-time and
the foreign resources needed by library(system) and library(clpfd). Also, embed the
Prolog run-time saved-state and the application specific saved-state just created. Note that
the ‘random’ foreign resource is needed since it is used by library(clpfd).

As noted above, it is possible to build the all-in-one executable with the command line

% spld --output=main.exe --static main.sav

Chapter 9: Mixing C/C++ and Prolog 267

but for completeness the example below uses all options as if no options were added auto-
matically.

The example is using Cygwin bash (http://www.cygwin.com) under Windows but would
look much the same on other platforms. The command should be given on a single line; it
is broken up here for better layout.

% spld

--output=main.exe

--static

--embed-rt-sav

--main=restore

--resources=main.sav=/main.sav,clpfd,system,random

The arguments are as follows:

‘--output=main.exe’
This tells spld where to put the resulting executable.

‘--static’
Link statically with the SICStus run-time and foreign resources (system and
clpfd in this case).

‘--embed-rt-sav’
This option embeds the SICStus run-time ‘.sav’ file (‘sprt.sav’). This option
is not needed since it is added automatically by ‘--static’.

‘--main=restore’
Start the application by restoring the saved-state and calling user:runtime_
entry(start). This is not strictly needed in the above example since it is the
default if any file with extension ‘.sav’ or a data resource with a name with
extension ‘.sav’ is specified.

‘--resources=...’
This is followed by comma-separated resource specifications:

main.sav=/main.sav
This tells spld to make the content (at the time spld is invoked) of
the file ‘main.sav’ available at run-time in a data resource named
‘/main.sav’. That is, the data resource name corresponding to
"URL:x-sicstus-resource:/main.sav".
Alternatively, spld can create a default data resource spec-
ification when passed a ‘.sav’ file argument and the option
‘--embed-sav-file’ (which is the default with ‘--static’).

clpfd
system
random

These tell spld to link with the foreign resources (that is, C-
code) associated with library(system), library(clpfd) and

http://www.cygwin.com

268 SICStus Prolog

library(random). Since ‘--static’ was specified the static ver-
sions of these foreign resources will be used.
Alternatively, spld can extract the information about the required
foreign resources from the saved-state (‘main.sav’). This feature
is enabled by adding the option ‘--resources-from-sav’ (which
is the default with ‘--static’). Using ‘--resources-from-sav’
instead of an explicit list of foreign resources is preferred since it
is hard to know what foreign resources are used by the SICStus
libraries.

Since both ‘--embed-sav-file’ and ‘--resources-from-sav’ are the default
when ‘--static’ is used the example can be built simply by doing

% spld --output=main.exe --static main.sav

Finally, we may run this executable on any machine, even if SICStus is not installed:

bash-2.04$./main.exe

hello world
Getting host name:
EOWYN
3 != 9
bash-2.04$

9.8.3.3 Examples

1. The character-based SICStus development system executable (sicstus) can be created
using

% spld --main=prolog -o sicstus

This will create a development system that is dynamically linked and has no pre-linked
foreign resources.

2.
% spld --static -D --resources=random -o main -ltk8.0 -ltcl8.0

This will create a statically linked executable called main that has the resource random
pre-linked (statically). The linker will receive ‘-ltk8.0 -ltcl8.0’, which will work
under UNIX (if Tcl/Tk is installed correctly) but will probably fail under Windows.

3. The following is a little more advanced example demonstrating two things. One is
how to use the ‘--userhook’ option to perform initializations in development systems
before SP_initialize() is called. It also demonstrates how to use this mechanism to
redefine the memory manager bottom layer.

Chapter 9: Mixing C/C++ and Prolog 269

/* --
* userhook.c - an example of how to use SU_initialize() to
* define your own memory manager bottom layer.
*
* The following commands create a sicstus-executable ’msicstus’ that
* uses malloc() as its own memory manager bottom layer. In addition
* these memory hooks print out messages when they are called.
*
* --
*/

#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <sicstus/sicstus.h>

#ifdef __GLIBC__
#include <malloc.h> /* for mallopt() */
#endif

static char* memman_earliest_start;
static char* memman_latest_end;
static size_t memman_alignment;

270 SICStus Prolog

static int SPCDECL
SU_init_mem_hook(size_t alignment,

void* earliest_start,
void* latest_end,
void *cookie)

{
fprintf(stderr, "Inside SU_init_mem_hook(%ld, 0x%lx, 0x%lx, 0x%lx)\n",

(long)alignment,
(unsigned long)earliest_start, (unsigned long)latest_end,
(unsigned long)cookie);

#if __GLIBC__
/* By default glibc malloc will use mmap for large requests. mmap

returns addresses outside the constrained range so we try to
prevent malloc from using mmap. There is no guarantee that mmap
is not used anyway, especially with threads.

*/
mallopt(M_MMAP_MAX, 0);

#endif /* __GLIBC__ */

memman_earliest_start = (char*)earliest_start;
memman_latest_end = (char*)latest_end;
memman_alignment = alignment;
(void)cookie; /* ignored */
return 1; /* success */

}

static void SPCDECL
SU_deinit_mem_hook(void *cookie)
{

fprintf(stderr, "Inside SU_deinit_mem_hook(0x%lx)\n",
(unsigned long)cookie);

(void)cookie; /* ignored */
}

Chapter 9: Mixing C/C++ and Prolog 271

static void * SPCDECL
SU_alloc_mem_hook(size_t size, /* in bytes */

size_t *pactualsize,
int constrained,
void *cookie)

{
size_t actual_size;
char *p;
(void)cookie; /* ignored */
/* Ensure there is room for an aligned block regardless of alignment

from malloc(). */
actual_size = size+memman_alignment;
p = (char*)malloc(actual_size);
fprintf(stderr, "Inside SU_alloc_mem_hook(%ld,%s) "

"allocated %ldbyte block at 0x%lx\n",
(long)size,
(constrained ? "constrained" : "unconstrained"),
(long)actual_size,
(unsigned long)p);

if (p!=NULL && constrained)
{
if (! (memman_earliest_start <= p && p < memman_latest_end

&& actual_size < (size_t)(memman_latest_end-p)))
{ /* did not get a suitable block */

fprintf(stderr,
"Inside SU_alloc_mem_hook(%ld,constrained)"
"ERROR [0x%lx,0x%lx) is not within [0x%lx,0x%lx)\n",

(long)size,
(unsigned long)p,
(unsigned long)(p+actual_size),
(unsigned long)memman_earliest_start,
(unsigned long)memman_latest_end);

free(p);
p = NULL;

}
}

if (p)
{
*pactualsize = actual_size;
return p;

}
else

{
fprintf(stderr, "Inside SU_alloc_mem_hook(%ld,%s) "

"ERROR failed to allocate memory\n",
(long)size,
(constrained ? "constrained" : "unconstrained"));

return NULL;
}

}

272 SICStus Prolog

static int SPCDECL
SU_free_mem_hook(void *mem,

size_t size,
int constrained,
int force,
void *cookie)

{
fprintf(stderr, "Inside SU_free_mem_hook(0x%lx, %ld, %s, %s, 0x%lx)\n",

(unsigned long)mem,
(long)size,
(constrained ? "constrained" : "unconstrained"),
(force ? "FORCE" : "!FORCE"),
(unsigned long)cookie
);

/* We ignore all these since free() knows how to free anyway. */
(void)size;
(void)constrained;
(void)force;
(void)cookie;
free(mem);
return 1; /* could reclaim the memory */

}

/* Entry point for initializations to be done before SP_initialize() */
int SPCDECL
SU_initialize (int argc, char **argv)
{
void *cookie = NULL; /* we do not use this */
int hints = 0; /* should be zero */
(void)argc;
(void)argv;

if (!SP_set_memalloc_hooks(hints,
SU_init_mem_hook,
SU_deinit_mem_hook,
SU_alloc_mem_hook,
SU_free_mem_hook,
cookie))

{
fprintf(stderr, "Inside SU_initialize, "

"ERROR from SP_set_memalloc_hooks");
return 1;

}
return 0;

}

Compile userhook.c like this:

Chapter 9: Mixing C/C++ and Prolog 273

% spld -D --userhook userhook.c -o msicstus.exe

...
Created "msicstus.exe"
% ./msicstus.exe -i -f

Inside(SU_init_mem_hook(8, 0x8, 0x10000000, 0x0)
Inside SU_alloc_mem_hook(131088,constrained) allo-
cated 131096byte block at 0x410048
Inside SU_alloc_mem_hook(1572880,unconstrained) allo-
cated 1572888byte block at 0x510020
SICStus 3.12.8 ...
Licensed to SICS
| ?-

4. An all-in-one executable with a home-built foreign resource.
This example is similar to the example in Section 9.8.3.2 [All-in-one Executables],
page 265, with the addition of a foreign resource of our own.

% foo.pl

:- use_module(library(system)).
:- use_module(library(clpfd)).

:- load_foreign_resource(bar).

% This will be called when the application starts:
user:runtime_entry(start) :-

%% You may consider putting some other code here...
write(’hello world’),nl,
write(’Getting host name:’),nl,
host_name(HostName), % from system
write(HostName),nl,
(all_different([3,9]) -> % from clpfd

write(’3 != 9’),nl
; otherwise ->

write(’3 = 9!?’),nl
),
’$pint’(4711). % from our own foreign re-

source ’bar’
% bar.pl

foreign(print_int, ’$pint’(+integer)).
foreign_resource(bar, [print_int]).

274 SICStus Prolog

/* bar.c */

#include <sicstus/sicstus.h>
#include <stdio.h>

extern void print_int(long a);

void print_int(long a)
{
printf("a=%lu\n", a);

}

To create the saved-state foo.sav we will compile the file ‘foo.pl’ and save it with
save_program(’foo.sav’). When compiling the file the directive :- load_foreign_
resource(bar). is called so a dynamic foreign resource must be present.
Thus, first we build a dynamic foreign resource.

% splfr bar.c bar.pl

Then we create the saved-state.
% sicstus --goal "compile(foo), save_program(’foo.sav’), halt."

We also need a static foreign resource to embed in our all-in-one executable.
% splfr --static bar.c bar.pl

Lastly we build the all-in-one executable with spld. We do not need to list the foreign
resources needed. spld will extract their names from the ‘.sav’ file. Adding the
‘--verbose’ option will make spld output lots of progress information, among which
are the names of the foreign resources that are needed. Look for “Found resource
name” in the output.

% spld --verbose --static --main=restore --respath=. --
resources=foo.sav=/mystuff/foo.sav --output=foo

In this case four foreign resource names are extracted from the ‘.sav’ file: bar, clpfd,
random and system. The source file ‘foo.pl’ loads the foreign resource named bar. Is
also uses the system module, which loads the foreign resource named system, and the
clpfd module, which loads the foreign resources named clpfd and random.
By not listing foreign resources when running spld, we avoid the risk of omitting a
required resource.

9.8.4 User-defined Main Programs

Runtime systems may or may not have an automatically generated main program. This
is controlled by the ‘--main’ option to spld. If ‘--main=user’ is given, a function user_
main() must be supplied:

int user_main(int argc, char *argv[])

user_main() is responsible for initializing the Prolog engine, loading code, and issuing any
Prolog queries. An alternative is to use ‘--main=none’ and write your own main() function.

Chapter 9: Mixing C/C++ and Prolog 275

9.8.4.1 Initializing the Prolog Engine

The Prolog Engine is initialized by calling SP_initialize(). This must be done before
any interface functions are called, except SP_force_interactive(), SP_set_memalloc_
hooks(), SP_set_wcx_hooks(), SP_set_user_stream_post_hook() and SP_set_user_
stream_hook(). The function will allocate data areas used by Prolog, initialize command
line arguments so that they can be accessed by the argv Prolog flag, and load the Runtime
Library. It is called like this:

int SP_initialize(int argc, char **argv, char *boot_path)

It is recommended that NULL be passed for the boot_path argument; SP_initialize()
will then use the location of the SICStus run-time system or the executable to locate the
any supporting files.

If, for some reason, boot_path must be passed explicitly it should be the name of a di-
rectory, equivalent to ‘$SP_PATH/bin’. If the boot path can not be determined by any
other means SP_initialize() will look up the value of the environment variable SP_PATH
and look for the file ‘$SP_PATH/bin/sprt.sav’ (‘$SP_PATH/bin/spre.sav’), which contains
the (Extended) Runtime Library. See Section 12.6 [WCX Foreign Interface], page 311, for
implications of using non-ASCII characters in any of the arguments to SP_initialize().

It returns SP_SUCCESS if initialization was successful, and SP_ERROR otherwise. If initial-
ization was successful, further calls to SP_initialize() will be no-ops (and return SP_
SUCCESS).

To unload the SICStus emulator, SP_deinitalize() can be called.

void SP_deinitialize(void)

SP_deinitialize() will make a best effort to restore the system to the state it was in
at the time of calling SP_initialize(). This involves unloading foreign resources, shut-
ting down the emulator by calling halt/0, and deallocate memory used by Prolog. SP_
deinitialize() is idempotent as well, i.e. it is a no-op unless SICStus has actually been
initialized.

You may also call SP_force_interactive() before calling SP_initialize(). This will
force the I/O built-in predicates to treat the standard input stream as a terminal, even if
it does not appear to be a terminal. Same as the ‘-i’ option in development systems. (see
Section 3.1 [Start], page 21).

void SP_force_interactive(void)

You may also call SP_set_memalloc_hooks() before calling SP_initialize(). This will
define one layer of Prolog’s memory manager, in case your application has special require-
ments.

276 SICStus Prolog

The SICStus Prolog memory manager has a two-layer structure. The top layer has roughly
the same functionality as the standard UNIX functions malloc and free, whereas the
bottom layer is an interface to the operating system. It’s the bottom layer that can be
customized according to the API described below.

SICStus Prolog can generally use the whole virtual address space, but certain memory blocks
are address-constrained—they must fit within a given memory range, the size of which is
256Mb (2^28 bytes) on 32-bit platforms, and 1Eb (2^60 bytes) on 64-bit platforms. Memory
blocks are also subject to certain alignment constraints.

The API is as follows:

typedef int SP_InitAllocHook(size_t alignment,
void *earliest_start,
void *latest_end,
void *cookie);

typedef void SP_DeinitAllocHook(void *cookie);
typedef void *SP_AllocHook(size_t size,

size_t *actual_sizep,
int constrained,
void *cookie);

typedef int SP_FreeHook(void *ptr,
size_t size,
int constrained,
int force,
void *cookie);

int SP_set_memalloc_hooks(int hint,
SP_InitAllocHook *init_alloc_hook,
SP_DeinitAllocHook *deinit_alloc_hook,
SP_AllocHook *alloc_hook,
SP_FreeHook *free_hook,
void *cookie);

SP_set_memalloc_hooks()
returns non-zero on success. Zero on error, e.g. if called after SP_initialize().

hint is reserved for future extensions. It should be zero.

cookie can be used for any state needed by the memory hook functions. The value
passed to SP_set_memalloc_hooks() is passed to each hook function. One
possible use is to keep track of multiple SICStus run-times within the same
process.

init_alloc_hook
is called initially. alignment is guaranteed to be a power of 2, and is used by
alloc_hook. earliest_start (inclusive) and latest_end (exclusive) are the
bounds within which address-constrained memory blocks must fit. Both are
aligned according to alignment and non-zero. The function can do whatever
initialization that this layer of memory management wants to do. It should

Chapter 9: Mixing C/C++ and Prolog 277

return non-zero if it succeeds, zero if the memory manager bottom layer could
not be initialized, in which case initialization of the SICStus run-time will fail.

deinit_alloc_hook
is called by SP_deinitialize() when the Prolog engine shuts down. The
function can do any necessary cleaning up.

alloc_hook
must allocate and return a pointer to a piece of memory that contains at least
size bytes aligned at a multiple of alignment. The actual size of the piece of
memory should be returned in *actual_sizep. If constrained is non-zero, the
piece of memory must be address-constrained. Should return NULL if it cannot
allocate a suitable piece of memory. Note that the memory returned need not
be aligned as long as there is room for an aligned block of at least size bytes.

free_hook
is called with a pointer to a piece of memory to be freed and its size as returned
by alloc_hook. constrained is the same as when alloc_hook was called to
allocate the memory block. If force is non-zero, free_hook must accept the
piece of memory; otherwise, it only accepts it if it is able to return it to the
operating system. free_hook should return non-zero iff it accepts the piece of
memory. Otherwise, the upper layer will keep using the memory as if it were
not freed.

The default bottom layers look at the environment variables PROLOGINITSIZE,
PROLOGINCSIZE, PROLOGKEEPSIZE and PROLOGMAXSIZE. They are useful for customizing
the default memory manager. If you redefine the bottom layer, you can choose to ignore
these environment variables. See Section 3.1.1 [Environment Variables], page 23.

9.8.4.2 Loading Prolog Code

You can load your Prolog code with the call SP_load(). This is the C equivalent of the
Prolog predicate load_files/1:

int SP_load(char *filename)

Alternatively, you can restore a saved-state with the call SP_restore(), which is the C
equivalent of the Prolog predicate restore/1:

int SP_restore(char *filename)

SP_load() and SP_restore() return SP_SUCCESS for success or SP_ERROR if an error con-
dition occurred. The filename arguments in both functions are encoded strings.

Prolog error handling is mostly done by raising and catching exceptions. However, some
faults are of a nature such that when they occur, the internal program state may be cor-
rupted, and it is not safe to merely raise an exception. In runtime systems, the following C
macro provides an environment for handling faults:

278 SICStus Prolog

int SP_on_fault(Stmt, Message, Cleanup)

which should occur in the scope of a char *Message declaration. Stmt is run, and if a
fault occurs, Stmt is aborted, Message gets assigned a value explaining the fault, all queries
and SP term refs become invalid, Prolog’s internal state is cleaned up, and Cleanup run. If
Stmt terminates normally, Message is left unchanged. For example, a “fault-proof” runtime
system could have the structure:

int main(int argc, char **argv)
{
char *message;

SP_initialize(argc, argv, "/usr/local/lib/sicstus3.9.1/bin");
loop:

SP_on_fault(main_loop(), message,
{printf("ERROR: %s\n",message); goto loop;});

exit(0);
}

main_loop()
{...}

Faults that occur outside the scope of SP_on_fault() cause the runtime system to halt
with an error message.

The following function can be used to raise a fault. For example, it can be used in a
signal handler for SIGSEGV to prevent the program from dumping core in the event of a
segmentation violation (runtime systems have no predefined signal handling):

void SP_raise_fault(char *message)

As for most SICStus API functions, calling SP_raise_fault() from a thread other than
the main thread will lead to unpredictable results. For this reason, it is probably not a good
idea to use SP_raise_fault() in a signal handler unless the process is single threaded. Also
note that SP_signal() is not suitable for installing signal handlers for synchronous signals
like SIGSEGV.

9.8.5 Generic Runtime Systems under Windows

There are three
ready-made runtime systems provided with the distributions, ‘%SP_PATH%\bin\sprt.exe’,
‘%SP_PATH%\bin\sprtw.exe’, and ‘%SP_PATH%\bin\sprti.exe’. These have been created
using spld:

% spld --main=restore ’$SP_APP_DIR/main.sav’ -o sprt.exe

% spld --main=restore ’$SP_APP_DIR/main.sav’ -i -o sprti.exe

% spld --main=restore ’$SP_APP_DIR/main.sav’ --window -o sprtw.exe

Chapter 9: Mixing C/C++ and Prolog 279

These are provided for users who do not have a C-compiler available. Each program launches
a runtime system by restoring the saved-state ‘main.sav’ (located in the same folder as the
program).

The saved-state is created by save_program/[1,2]. If it was created by save_program/2,
the given startup goal is run. Then, user:runtime_entry(start) is run. The program
exits with 0 upon normal temination and with 1 on failure or exception.

The program sprti assumes that the standard streams are connected to a terminal, even if
they do not seem to be (useful under Emacs, for example). sprtw is a windowed executable,
corresponding to spwin.

9.9 Examples

9.9.1 Train Example (connections)

This is an example of how to create a runtime system. The Prolog program ‘train.pl’
will display a route from one train station to another. The C program ‘train.c’ calls the
Prolog code and writes out all the routes found between two stations:

% train.pl

connected(From, From, [From], _):- !.
connected(From, To, [From| Way], Been):-

(no_stop(From, Through)
;

no_stop(Through, From)
),
not_been_before(Been, Through),
connected(Through, To, Way, Been).

no_stop(’Stockholm’, ’Katrineholm’).
no_stop(’Stockholm’, ’Vasteras’).
no_stop(’Katrineholm’, ’Hallsberg’).
no_stop(’Katrineholm’, ’Linkoping’).
no_stop(’Hallsberg’, ’Kumla’).
no_stop(’Hallsberg’, ’Goteborg’).
no_stop(’Orebro’, ’Vasteras’).
no_stop(’Orebro’, ’Kumla’).

not_been_before(Way, _) :- var(Way),!.
not_been_before([Been| Way], Am) :-

Been \== Am,
not_been_before(Way, Am).

280 SICStus Prolog

/* train.c */

#include <stdio.h>
#include <sicstus/sicstus.h>

void write_path(SP_term_ref path)
{
char *text = NULL;
SP_term_ref
tail = SP_new_term_ref(),
via = SP_new_term_ref();

SP_put_term(tail,path);

while (SP_get_list(tail,via,tail))
{
if (text)

printf(" -> ");

SP_get_string(via, &text);
printf("%s",text);

}
printf("\n");

}

int user_main(int argc, char **argv)
{

int rval;
SP_pred_ref pred;
SP_qid goal;
SP_term_ref from, to, path;

/* Initialize Prolog engine. This call looks up SP_PATH in order to
* find the Runtime Library. */
if (SP_FAILURE == SP_initialize(argc, argv, NULL))
{

fprintf(stderr, "SP_initialize failed: %s\n",
SP_error_message(SP_errno));

exit(1);
}

rval = SP_restore("train.sav");

if (rval == SP_ERROR || rval == SP_FAILURE)
{

fprintf(stderr, "Could not restore \"train.sav\".\n");
exit(1);

}

Chapter 9: Mixing C/C++ and Prolog 281

/* train.c */

/* Look up connected/4. */
if (!(pred = SP_predicate("connected",4,"user")))
{

fprintf(stderr, "Could not find connected/4.\n");
exit(1);

}

/* Create the three arguments to connected/4. */
SP_put_string(from = SP_new_term_ref(), "Stockholm");
SP_put_string(to = SP_new_term_ref(), "Orebro");
SP_put_variable(path = SP_new_term_ref());

/* Open the query. In a development system, the query would look like:
*
* | ?- connected(’Stockholm’,’Orebro’,X).
*/
if (!(goal = SP_open_query(pred,from,to,path,path)))
{

fprintf(stderr, "Failed to open query.\n");
exit(1);

}

/*
* Loop through all the solutions.
*/
while (SP_next_solution(goal)==SP_SUCCESS)
{

printf("Path: ");
write_path(path);

}

SP_close_query(goal);

exit(0);
}

Create the saved-state containing the Prolog code:

282 SICStus Prolog

% sicstus

SICStus 3.12.8 ...
Licensed to SICS
| ?- compile(train),save_program(’train.sav’).

% compiling [...]/train.pl...
% compiled [...]/train.pl in module user, 10 msec 2848 bytes
% [...]/train.sav created in 0 msec

| ?- halt.

Create the executable using the application builder:

% spld --main=user train.c -o train.exe

And finally, run the executable:

% ./train

Path: Stockholm -> Katrineholm -> Hallsberg -> Kumla -> Orebro
Path: Stockholm -> Vasteras -> Orebro

9.9.2 I/O on Lists of Character Codes

This example is taken from the SICStus Prolog library (simplified, but operational). A
stream for writing is opened where the written characters are placed in a buffer. When the
stream is closed, a code-list is made from the contents of the buffer. The example illustrates
the use of user definable streams.

The open_buf_stream() function opens a stream where the characters are put in a buffer.
The stream is closed by stream_to_chars(), which returns the list constructed on the
heap.

Chapter 9: Mixing C/C++ and Prolog 283

% example.pl

foreign(open_buf_stream, ’$open_buf_stream’(-address(’SP_stream’))).
foreign(stream_to_chars, ’$stream_to_chars’(+address(’SP_stream’),

-term)).

foreign_resource(example, [open_buf_stream,stream_to_chars]).

:- load_foreign_resource(example).

%% with_output_to_chars(+Goal, -Chars)
%% runs Goal with current_output set to a list of characters

with_output_to_chars(Goal, Chars) :-
’$open_buf_stream’(StreamCode),
stream_code(Stream, StreamCode),
current_output(CurrOut),
set_output(Stream),
call_and_reset(Goal, Stream, CurrOut, StreamCode, Chars).

call_and_reset(Goal, Stream, CurrOut, StreamCode, Chars) :-
call(Goal), !,
put(0),
’$stream_to_chars’(StreamCode, Chars),
reset_stream(Stream, CurrOut).

call_and_reset(_, Stream, CurrOut, _, _) :-
reset_stream(Stream, CurrOut).

reset_stream(Stream, CurrOut) :-
set_output(CurrOut),
close(Stream).

284 SICStus Prolog

/* example.c */

#include <sicstus/sicstus.h>

struct open_chars {
char *chars; /* character buffer */
int index; /* current insertion point */
int size;

};

#define INIT_BUFSIZE 512

static int lputc(c, buf)
int c;
struct open_chars *buf;

{
if (buf->index == buf->size) /* grow buffer if necessary */
{

buf->size *= 2;
buf->chars = (char *)realloc(buf->chars, buf->size);

}
return (buf->chars[buf->index++] = c);

}

static int lwclose(buf)
struct open_chars *buf;

{
free(buf->chars);
free(buf);
return 0;

}

Chapter 9: Mixing C/C++ and Prolog 285

/* example.c */

void open_buf_stream(streamp)
SP_stream **streamp;

{
struct open_chars *buf;

/* Allocate buffer, create stream & return stream code */

buf = (struct open_chars *)malloc(sizeof(struct open_chars));
SP_make_stream(buf, NULL, lputc, NULL, NULL, NULL, lwclose,

streamp);

buf->chars = (char *)malloc(INIT_BUFSIZE);
buf->size = INIT_BUFSIZE;
buf->index = 0;

}

void stream_to_chars(streamp, head)
SP_stream *streamp;
SP_term_ref head;

{
SP_term_ref tail = SP_new_term_ref();
struct open_chars *buf = (struct open_chars *)streamp->user_handle;

/* Make a list of character codes out of the buffer */

SP_put_string(tail, "[]");
SP_put_list_chars(head, tail, buf->chars);

}

9.9.3 Exceptions from C

Consider, for example, a function returning the square root of its argument after checking
that the argument is valid. If the argument is invalid, the function should raise an exception
instead.

286 SICStus Prolog

/* math.c */

#include <math.h>
#include <stdio.h>
#include <sicstus/sicstus.h>

extern double sqrt_check(double d);
double sqrt_check(double d)
{
if (d < 0.0)
{ /* build a domain_error/4 exception term */

SP_term_ref culprit=SP_new_term_ref();
SP_term_ref argno=SP_new_term_ref();
SP_term_ref expdomain=SP_new_term_ref();
SP_term_ref t1=SP_new_term_ref();

SP_put_float(culprit, d);
SP_put_integer(argno, 1);
SP_put_string(expdomain, ">=0.0");
SP_cons_functor(t1, SP_atom_from_string("sqrt"), 1, culprit);
SP_cons_functor(t1, SP_atom_from_string("domain_error"), 4,

t1, argno, expdomain, culprit);
SP_raise_exception(t1); /* raise the exception */
return 0.0;

}
return sqrt(d);

}

The Prolog interface to this function is defined in a file ‘math.pl’. The function uses the
sqrt() library function, and so the math library ‘-lm’ has to be included:

% math.pl

foreign_resource(math, [sqrt_check]).

foreign(sqrt_check, c, sqrt(+float, [-float])).

:- load_foreign_resource(math).

A linked foreign resource is created:

% splfr math.pl math.c -lm

A simple session using this function could be:

Chapter 9: Mixing C/C++ and Prolog 287

% sicstus

SICStus 3.12.8 ...
Licensed to SICS
| ?- [math].

% consulting /home/san/pl/math.pl...
% /home/san/pl/math.pl consulted, 10 msec 816 bytes

| ?- sqrt(5.0,X).

X = 2.23606797749979

| ?- sqrt(a,X).

! Type error in argument 1 of user:sqrt/2
! number expected, but a found
! goal: sqrt(a,_143)

| ?- sqrt(-5,X).

! Domain error in argument 1 of user:sqrt/1
! expected ’>=0.0’, found -5.0
! goal: sqrt(-5.0)

The above example used the foreign language interface with dynamic linking. To statically
link ‘math.s.o’ with the Prolog emulator, the following steps would have been taken:

% splfr -S math.pl math.c -lm

SICStus 3.12.8 ...
Licensed to SICS
% spXxQwsr.c generated, 0 msec

% spld -D -o mathsp --resources=./math.s.o

SICStus 3.12.8 ...
Licensed to SICS
% spYdLTgi1.c generated, 0 msec

Created "mathsp"
% ./mathsp

SICStus 3.12.8 ...
Licensed to SICS
| ?- [math].

% consult-
ing /a/filur/export/labs/isl/sicstus/jojo/sicstus38p/math.pl...
% con-
sulted /a/filur/export/labs/isl/sicstus/jojo/sicstus38p/math.pl in mod-
ule user, 0 msec 960 bytes

| ?- sqrt(5.0,X).

X = 2.23606797749979

288 SICStus Prolog

9.9.4 Stream Example

This is a small example how to initialize a bidirectional socket stream (error handling
omitted):

typedef struct {
int fd; /* socket number */
FILE *r_stream; /* For reading */
FILE *w_stream; /* For writing */

} SocketData;

int socket_sgetc(SocketData *socket)
{

return fgetc(socket->r_stream);
}

int socket_sputc(char c, SocketData *socket)
{

return fputc(c, socket->w_stream);
}

int socket_sflush(SocketData *socket)
{

return fflush(socket->w_stream);
}

int socket_seof(SocketData *socket)
{

return feof(socket->r_stream);
}

void socket_sclrerr(SocketData *socket)
{

clearerr(socket->r_stream);
clearerr(socket->w_stream);

}

int socket_sclose(SocketData *socket)
{

fclose(socket->r_stream);
fclose(socket->w_stream);
close(socket->fd);
free(socket);
return 0;

}

Chapter 9: Mixing C/C++ and Prolog 289

SP_stream *new_socket_stream(int fd)
{
SP_stream *stream;
SocketData *socket;

/* Allocate and initialize data local to socket */

socket = (SocketData *)malloc(sizeof(SocketData));
socket->fd = fd;
socket->r_stream = fdopen(fd,"r");
socket->w_stream = fdopen(fd,"w");

/* Allocate and initialize Prolog stream */

SP_make_stream(
socket,
socket_sgetc,
socket_sputc,
socket_sflush,
socket_seof,
socket_sclrerr,
socket_sclose,
&stream);

/* Allocate and copy string */

stream->filename = "socket";
stream->fd = fd;

return stream;
}

290 SICStus Prolog

Chapter 10: Interfacing .NET and Java 291

10 Interfacing .NET and Java

SICStus Prolog supports two different ways of interfacing a Prolog program with a Java
client, and one for interfacing with a .NET client.

For .NET and Java there is PrologBeans and for Java there is Jasper. PrologBeans is the
recommended package unless you have special needs and are interfacing with Java in which
case you may consider using Jasper.

Jasper is “tightly coupled” with Prolog, which means that everything runs in the same
process (the necessary code is loaded at runtime via dynamic linking). PrologBeans, on
the other hand, is “loosely coupled”, which means that the client code runs in a different
process from the Prolog code. In fact, the client program and the Prolog program can run
on separate machines, since the communication is done via TCP/IP sockets.

Advantages of Jasper:

Jasper is bi-directional. Callbacks are possible (limited in levels only by memory), and
queries can backtrack.
Jasper is normally faster than PrologBeans.

Advantages of PrologBeans:

Since the client program and the Prolog program run in separate processes, there is
no competition for memory between the virtual machine of the client (.NET or JVM)
and the Prolog Abstract Machine. This means that PrologBeans works well with large
applications.
Distribution over a network is a no-brainer when using PrologBeans. The application
is distributable from the beginning.
PrologBeans has support for user session handling both at the Java level (with support
for HTTP sessions and JNDI lookup) and at the Prolog level. This makes it easy to
integrate Prolog applications into applications based on Java servers.

PrologBeans is described in Chapter 44 [PrologBeans], page 723, and Jasper is described in
Chapter 43 [Jasper], page 693.

292 SICStus Prolog

Chapter 11: Multiple SICStus Run-Times in a Process 293

11 Multiple SICStus Run-Times in a Process

It is possible to have more than one SICStus run-time in a single process. These are
completely independent (except that they dynamically load the same foreign resources; see
Section 11.4 [Foreign Resources and Multiple SICStus Run-Times], page 296).

Even though the SICStus run-time can only be run in a single thread, it is now possible to
start several SICStus run-times, optionally each in its own thread.

SICStus run-times are rather heavy weight and you should not expect to be able to run
more than a handful.

11.1 Memory Considerations

The most pressing restriction when using more than one SICStus run-time in a process is
that (on 32bit machines) all these run-times must compete for the the address-constrained
range of virtual memory, typically the lower 256MB of memory.

This is worsened by the fact that, on some platforms, each SICStus run-time will attempt
to grow its memory area as needed, leading to fragmentation. A fix that removes the
restriction on useable memory is planned for a later release.

One way to avoid the fragmentation issue to some extent is to make each SICStus run-time
preallocate a large enough memory area so it will not have to grow during run-time. This
can be effected by setting the environment variables GLOBALSTKSIZE, PROLOGINITSIZE and
PROLOGMAXSIZE.

On some platforms, currently Linux and Windows, the default bottom memory manager
layer will pre-allocate as large a chunk of address-constrained memory as possible when the
SICStus run-time is initialized. In order to use more than one run-time you therefore should
set the environment variable PROLOGMAXSIZE to limit this greedy pre-allocation.

bash> GLOBALSTKSIZE=10MB; export GLOBALSTKSIZE;

bash> PROLOGINITSIZE=20MB; export PROLOGINITSIZE;

bash> PROLOGMAXSIZE=30MB; export PROLOGMAXSIZE;

You can use statistics/2 to try to determine suitable values for thes, but it is bound to
be a trial-and-error process.

11.2 Multiple SICStus Run-Times in Java

In Java, you can now create more than one se.sics.jasper.SICStus object. Each will
correspond to a completely independent copy of the SICStus run-time. Note that a SICStus
run-time is not deallocated when the corresponding SICStus object is no longer used. Thus,

294 SICStus Prolog

the best way to use multiple SICStus objects is to create them early and then re-use them
as needed.

It is probably useful to create each in its own separate thread. One reason would be to gain
speed on a multi-processor machine.

11.3 Multiple SICStus Run-Times in C

Unless otherwise noted, this section documents the behavior when using dynamic linking
to access a SICStus run-time.

The key implementation feature that makes it possible to use multiple run-times is that all
calls from C to the SICStus API (SP_query(), etc.) go through a dispatch vector. Two
run-times can be loaded at the same time since their APIs are accessed through different
dispatch vectors.

By default, there will be a single dispatch vector, referenced from a global variable (sp_
GlobalSICStus). A SICStus API functions, such as SP_query(), is then defined as a macro
that expands to something similar to sp_GlobalSICStus->SP_query_pointer. The name
of the global dispatch vector is subject to change without notice; it should not be referenced
directly. If you need to access the dispatch vector, use the C macro SICStusDISPATCHVAR
instead; see below.

11.3.1 Using a Single SICStus Run-Time

When building an application with spld, by default only one SICStus run-time can be
loaded in the process. This is similar to the case in SICStus versions prior to 3.9. For most
applications built with spld, the changes necessary to support multiple SICStus run-times
should be invisible, and old code should only need to be rebuilt with spld.

In order to maintain backward compatibility, the global dispatch vector is automatically set
up by SP_initialize(). Other SICStus API functions will not set up the dispatch vector,
and will therefore lead to memory access errors if called before SP_initialize(). Currently,
hook functions such as SP_set_memalloc_hooks() also set up the dispatch vector to allow
them to be called before SP_initialize(). However, only SP_initialize() is guaranteed
to set up the dispatch vector. The hook installation functions may change to use a different
mechanism in the future. The SICStus API functions that perform automatic setup of the
dispatch vector are marked with SPEXPFLAG_PREINIT in ‘sicstus.h’.

11.3.2 Using More than One SICStus Run-Time

Using more than one SICStus run-time in a process is only supported when the dynamic
library version of the SICStus run-time is used (e.g, sprt312.dll, libsprt312.so).

Chapter 11: Multiple SICStus Run-Times in a Process 295

An application that wants to use more than one SICStus run-time needs to be built using
the ‘--multi-sp-aware’ option to spld. C-code compiled by spld --multi-sp-aware will
have the C preprocessor macro MULTI_SP_AWARE defined and non-zero.

Unlike the single run-time case described above, an application built with
‘--multi-sp-aware’ will not have a global variable that holds the dispatch vector. In-
stead, your code will have to take steps to ensure that the appropriate dispatch vector is
used when switching between SICStus run-times.

There are several steps needed to access a SICStus run-time from an application built with
‘--multi-sp-aware’.

1. You must obtain the dispatch vector of the initial SICStus run-time using SP_get_
dispatch(). Note that this function is special in that it is not accessed through the
dispatch vector; instead, it is exported in the ordinary manner from the SICStus run-
time dynamic library (libsprt312.so under Windows and, typically, sprt312.dll
under UNIX).

2. You must ensure that SICStusDISPATCHVAR expands to something that references the
dispatch vector obtained in step 1.
The C pre-processor macro SICStusDISPATCHVAR should expand to a SICSTUS_API_
STRUCT_TYPE *, that is, a pointer to the dispatch vector that should be used. When
‘--multi-sp-aware’ is not used SICStusDISPATCHVAR expands to sp_GlobalSICStus
as described above. When using ‘--multi-sp-aware’ it is probably best to let
SICStusDISPATCHVAR expand to a local variable.

3. Once you have access to the SICStus API of the initial SICStus run-time you can call
the SICStus API function SP_load_sicstus_run_time() to load additional run-times.

SICSTUS_API_STRUCT_TYPE *SP_get_dispatch(void *reserved);

SP_get_dispatch() returns the dispatch vector of the SICStus run-time. The argument
reserved should be NULL. This function can be called from any thread.

typedef SICSTUS_API_STRUCT_TYPE *SP_get_dispatch_type(void *);

int SP_load_sicstus_run_time(SP_get_dispatch_type **ppfunc, void **phandle);

SP_load_sicstus_run_time() loads a new SICStus run-time. SP_load_sicstus_run_
time() returns zero if a new run-time could not be loaded. If a new run-time could be
loaded a non-zero value is returned and the address of the SP_get_dispatch() function of
the newly loaded SICStus run-time is stored at the address ppfunc. The second argument,
phandle, is reserved and should be NULL.

As a special case, if SP_load_sicstus_run_time() is called from a SICStus run-time that
has not been initialized (with SP_initialize()) and that has not previously been loaded
as the result of calling SP_load_sicstus_run_time(), then no new run-time is loaded.
Instead, the SP_get_dispatch() of the run-time itself is returned. In particular, the first
time SP_load_sicstus_run_time() is called on the initial SICStus run-time, and if this
happens before the initial SICStus run-time is initialized, then no new run-time is loaded.

296 SICStus Prolog

Calling SP_load_sicstus_run_time() from a particular run-time can be done from any
thread.

An application that links statically with the SICStus run-time should not call SP_load_
sicstus_run_time().

You should not use pre-linked foreign resources when using multiple SICStus run-times in
the same process.

For an example of loading and using multiple SICStus
run-times, see ‘library/jasper/spnative.c’ that implements this functionality for the
Java interface Jasper.

11.4 Foreign Resources and Multiple SICStus Run-Times

Foreign resources access the SICStus C API in the same way as an embedding application,
that is, through a dispatch vector. As for applications, the default and backward compatible
mode is to only support a single SICStus run-time. An alternative mode makes it possible
for a foreign resource to be shared between several SICStus run-times in the same process.

Unless otherwise noted, this section documents the behavior when using dynamically linked
foreign resources. That is, shared objects (.so-files) under UNIX, dynamic libraries (DLLs)
under Windows.

11.4.1 Foreign Resources Supporting Only One SICStus Run-
Time

A process will only contain one instance of the code and data of a (dynamic) foreign resource
even if the foreign resource is loaded and used from more than one SICStus run-time.

This presents a problem in the likely event that the foreign resource maintains some state,
e.g. global variables, between invocations of functions in the foreign resource. The global
state will probably need to be separate between SICStus run-times. Requiring a foreign
resource to maintain its global state on a per SICStus run-time basis would be an incom-
patible change. Instead, by default, only the first SICStus run-time that loads a foreign
resource will be allowed to use it. If a subsequent SICStus run-time (in the same process)
tries to load the foreign resource then an error will be reported to the second SICStus
run-time.

When splfr builds a foreign resource, it will also generate glue code. When the foreign
resource is loaded, the glue code will set up a global variable pointing to the dispatch vector
used in the foreign resource to access the SICStus API. This is similar to how an embedding
application accesses the SICStus API.

The glue code will also detect if a subsequent SICStus run-time in the same process tries
to initialize the foreign resource. In this case, an error will be reported.

Chapter 11: Multiple SICStus Run-Times in a Process 297

This means that pre 3.9 foreign code should only need to be rebuilt with splfr to work with
the latest version of SICStus. However, a recommended change is that all C files of a foreign
resource include the header file generated by splfr. Inclusion of this generated header file
may become mandatory in a future release. See Section 9.2.5 [The Foreign Resource Linker],
page 224.

11.4.2 Foreign Resources Supporting Multiple SICStus Run-Times

A foreign resource that wants to be shared between several SICStus run-times must somehow
know which SICStus run-time is calling it so that it can make callbacks using the SICStus
API into the right SICStus run-time. In addition, the foreign resource may have global
variables that should have different values depending on which SICStus run-time is calling
the foreign resource.

A header file is generated by splfr when it builds a foreign resource (before any C code
is compiled). This header file provides prototypes for any foreign-declared function, but
it also provides other things needed for multiple SICStus run-time support. This header
file must be included by any C file that contains code that either calls any SICStus API
function or that contains any of the functions called by SICStus. See Section 9.2.5 [The
Foreign Resource Linker], page 224.

11.4.2.1 Simplified Support for Multiple SICStus Run-Times

To make it simpler to convert old foreign resources, there is an intermediate level of support
for multiple SICStus run-times. This level of support makes it possible for several SICStus
run-times to call the foreign resource, but a mutual exclusion lock ensures that only one
SICStus run-time at a time can execute code in the foreign resource. That is, the mutex is
locked upon entry to any function in the foreign resource and unlocked when the function
returns. This makes it possible to use a global variable to hold the SICStus dispatch vector,
in much the same way as is done when only a single SICStus run-time is supported. In
addition, a special hook function in the foreign resource will be called every time the foreign
resource is entered. This hook function can then make arrangements to ensure that any
global variables are set up as appropriate.

To build a foreign resource in this way, use splfr --exclusive-access. In addition to
including the generated header file, your code needs to define the context switch function.
If the resource is named resname then the context switch hook should look like:

void sp_context_switch_hook_resname(int entering)

The context switch hook will be called with the SICStus API dispatch vector already set up,
so calling any SICStus API function from the context switch hook will work as expected.
The argument entering will be non-zero when a SICStus run-time is about to call a function
in the foreign resource. The hook will be called with entering zero when the foreign
function is about to return to SICStus.

298 SICStus Prolog

It is possible to specify a name for the context switch hook with the splfr option
‘--context-hook=name’. If you do not require a context switch hook you can specify the
splfr option ‘--no-context-hook’.

Due to the use of mutual exclusion lock to protect the foreign resource, there is a remote
possibility of dead-lock. This would happen if the foreign resource calls back to SICStus
and then passes control to a different SICStus run-time in the same thread, which then calls
the foreign resource. For this reason it is best to avoid ‘--exclusive-access’ for foreign
resources that makes call-backs into Prolog.

The new SICStus API function SP_foreign_stash() provides access to a location where
the foreign resource can store anything that is specific to the calling SICStus run-time. The
location is specific to each foreign resource and each SICStus run-time. See Section 9.4.7
[Miscellaneous C API Functions], page 240.

C code compiled by splfr --exclusive-access will have the C pre-processor macro SP_
SINGLE_THREADED defined to a non-zero value.

Some of the foreign resources in the SICStus library use this technique; see for instance
library(system).

11.4.2.2 Full Support for Multiple SICStus Run-Times

To fully support multiple SICStus run-times, a foreign resource should be built with splfr
--multi-sp-aware.

C code compiled by splfr --multi-sp-aware will have the C pre-processor macro MULTI_
SP_AWARE defined to a non-zero value.

Full support for multiple SICStus run-times means that more than one SICStus run-time
can execute code in the foreign resource at the same time. This rules out the option to use
any global variables for information that should be specific to each SICStus run-time. In
particular, the SICStus dispatch vector cannot be stored in a global variable. Instead, the
SICStus dispatch vector is passed as an extra first argument to each foreign function.

To ensure some degree of link time type checking, the name of each foreign function will be
changed (using #define in the generated header file).

The extra argument is used in the same way as when using multiple SICStus run-times
from an embedding application. It must be passed on to any function that needs access to
the SICStus API.

To simplify the handling of this extra argument, several macros are defined so that the same
foreign resource code can be compiled both with and without support for multiple SICStus
run-times:

• SPAPI_ARG0

• SPAPI_ARG

Chapter 11: Multiple SICStus Run-Times in a Process 299

• SPAPI_ARG_PROTO_DECL0

• SPAPI_ARG_PROTO_DECL

Their use is easiest to explain with an example. Suppose the original foreign code looked
like:

static int f1(void)
{

some SICStus API calls

}

static int f2(SP_term_ref t, int x)
{

some SICStus API calls

}

/* :- foreign(foreign_fun, c, foreign_pred(+integer)). */
void foreign_fun(long x)
{
... some SICStus API calls ...

f1();
...
f2(SP_new_term_ref(), 42);
...

}

Assuming no global variables are used, the following change will ensure that the SICStus
API dispatch vector is passed around to all functions:

300 SICStus Prolog

static int f1(SPAPI_ARG_PROTO_DECL0) // _DECL<ZERO> for no-arg functions
{

some SICStus API calls

}

static int f2(SPAPI_ARG_PROTO_DECL SP_term_ref t, int x) // Note: no comma
{

some SICStus API calls

}

/* :- foreign(foreign_fun, c, foreign_pred([-integer])). */
void foreign_fun(SPAPI_ARG_PROTO_DECL long x) // Note: no comma
{
... some SICStus API calls ...

f1(SPAPI_ARG0); // ARG<ZERO> for no-arg functions
...
f2(SPAPI_ARG SP_new_term_ref(), 42); // Note: no comma
...

}

If MULTI_SP_AWARE is not defined, i.e. ‘--multi-sp-aware’ is not specified to splfr, then
all these macros expand to nothing, except SPAPI_ARG_PROTO_DECL0, which will expand to
void.

You can use SP_foreign_stash() to get access to a location, initially set to NULL, where
the foreign resource can store a void*. Typically this would be a pointer to a C struct that
holds all information that need to be stored in global variables. This struct can be allocated
and initialized by the foreign resource init function. It should be deallocated by the foreign
resource deinit function. See Section 9.4.7 [Miscellaneous C API Functions], page 240, for
details.

Most foreign resources that come with SICStus fully support multiple SICStus run-times.
For a particularly simple example, see the code for library(random). For an example
that hides the passing of the extra argument by using the C pre-processor, see the files in
‘library/clpfd/’.

11.5 Multiple Run-Times and Threads

Perhaps the primary reason to use more than one SICStus run-time in a process is to have
each run-time running in a separate thread. To this end, a few mutual exclusion primitives
are available. See Section 9.4.6 [Operating System Services], page 238, for details on mutual
exclusion locks.

Please note: the SICStus run-time is not thread safe in general. See Sec-
tion 9.5.3 [Calling Prolog Asynchronously], page 243, for ways to safely interact
with a running SICStus from arbitrary threads.

Chapter 12: Handling Wide Characters 301

12 Handling Wide Characters

The chapter describes the SICStus Prolog features for handling wide characters. We will
refer to these capabilities as Wide Character eXtensions, and will use the abbreviation
WCX.

12.1 Introduction

SICStus Prolog supports character codes up to 31 bits wide. It has a set of hooks for
specifying how the character codes should be read in and written out to streams, how they
should be classified (as letters, symbol-chars, etc.), and how strings of wide characters should
be exchanged with the operating system. There are three sets of predefined hook functions
supporting ISO 8859/1, UNICODE/UTF-8 and EUC external encodings, selectable using
an environment variable. Alternatively, users may plug in their own definition of hook
functions and implement arbitrary encodings.

Section 12.2 [WCX Concepts], page 301, introduces the basic WCX concepts and presents
their implementation in SICStus Prolog. Section 12.3 [Prolog Level WCX Features],
page 303, gives an overview of those Prolog language features that are affected by wide
character handling. Section 12.4 [WCX Environment Variables], page 304, and Section 12.5
[WCX Hooks], page 305, describe the options for customization of SICStus Prolog WCX
through environment variables and through the hook functions, respectively. Section 12.6
[WCX Foreign Interface], page 311, and Section 12.7 [WCX Features in Libraries], page 313,
summarize the WCX extensions in the foreign language interface and in the libraries. Sec-
tion 12.8 [WCX Utility Functions], page 314, describes the utility functions provided by
SICStus Prolog to help in writing the WCX hook functions, while Section 12.9 [Represen-
tation of EUC Wide Characters], page 315, presents the custom-made internal code-set for
the EUC encoding. Finally Section 12.10 [A Sample WCX Box], page 316, describes an
example implementation of the WCX hook functions, which supports a composite char-
acter code set and four external encodings. The code for this example is included in the
distribution as library(wcx_example).

12.2 Concepts

First let us introduce some notions concerning wide characters.

(Wide) character code
an integer, possibly outside the 0..255 range.
SICStus Prolog allows character codes in the range 0..2147483647 (= 2^31-
1). Consequently, the built-in predicates for building and decomposing atoms
from/into character codes (e.g. atom_codes/2) accept and produce lists of in-
tegers in the above range (excluding the 0 code).

302 SICStus Prolog

Wide characters can be used in all contexts: in atoms (single quoted, or un-
quoted, depending on the character-type mapping), strings, character code no-
tation (0’char), etc.

External (stream) encoding
a way of encoding sequences of wide characters as sequences of (8-bit) bytes,
used in stream input and output.
SICStus Prolog has three different external stream encoding schemes built-in,
selectable through an environment variable. Furthermore it provides hooks
for users to plug in their own external stream encoding functions. The built-
in predicates put_code/1, get_code/1, etc., accept and return wide character
codes, converting the bytes written or read using the external encoding in force.
Note that an encoding need not be able to handle the whole range of character
codes allowed by SICStus Prolog.

Character code set
a subset of the set {0, . . . , 2^31-1} that can be handled by an external encoding.
SICStus Prolog assumes that the character code set is an extension of the
ASCII code set, i.e. it includes codes 0..127, and these codes are interpreted
as ASCII characters. Note that ASCII characters can still have an arbitrary
external encoding, cf. the usage flag WCX_CHANGES_ASCII; see Section 12.5
[WCX Hooks], page 305.

Character type mapping
a function mapping each element of the character code set to one of the char-
acter categories (layout, small-letter, symbol-char, etc.; see Section 51.4 [Token
String], page 790). This is required for parsing tokens. The character-type
mapping for non-ASCII characters is hookable in SICStus Prolog and has three
built-in defaults, depending on the external encoding selected.

System encoding
a way of encoding wide character strings, used or required by the operating
system environment in various contexts (e.g. file names in open/3, command
line options, as returned by prolog_flag(argv, Flags), etc.). The system
encoding is hookable in SICStus Prolog and has two built-in defaults.

Internal encoding
a way of encoding wide character strings internally within the SICStus Prolog
system. This is of interest to the user only if the foreign language interface is
used in the program, or a system encoding hook function needs to be written.
SICStus Prolog has a fixed internal encoding, which is UTF-8.

As discussed above there are several points where the users can influence the behavior of
SICStus Prolog. The user can decide on

• the character code set,
• the character-type mapping,
• the external encoding, and
• the system encoding.

Chapter 12: Handling Wide Characters 303

Let us call WCX mode a particular setting of these parameters.

Note that the selection of the character code set is conceptual only and need not be com-
municated to SICStus Prolog, as the decision materializes in the functions for the mapping
and encodings.

12.3 Summary of Prolog Level WCX features

SICStus Prolog has a Prolog flag, called wcx, whose value can be an arbitrary atom, and
which is initialized to []. This flag is used at opening a stream, its value is normally passed
to a user-defined hook function. This can be used to pass some information from Prolog to
the hook function. In the example of Section 12.10 [A Sample WCX Box], page 316, which
supports the selection of external encodings on a stream-by-stream basis, the value of the
wcx flag is used to specify the encoding to be used for the newly opened stream.

The value of the wcx flag can be overridden by supplying a wcx(Value) option to open/4
and load_files/2. If such an option is present, then the Value is passed on to the hook
function.

The wcx flag has a reserved value. The value wci (wide character internal encoding) signifies
that the stream should use the SICStus Prolog internal encoding (UTF-8), bypassing the
hook functions supplied by the user. This is appropriate, e.g. if a file with wide characters
is to be produced, which has to be readable irrespective of the (possibly user supplied)
encoding scheme.

Wide characters generally require several bytes to be input or output. Therefore, for
each stream, SICStus Prolog keeps track of the number of bytes input or output, in addi-
tion to the number of (wide) characters. Accordingly there is a built-in predicate byte_
count(+Stream,?N) for accessing the number of bytes read/written on a stream.

Note that the predicate character_count/2 returns the number of characters read or writ-
ten, which may be less than the number of bytes, if some of the characters are multibyte.
(On output streams the byte_count/2 can also be less than the character_count/2, if
some codes, not belonging to the code-set handled, are not written out.)

Note that if a stream is opened as a binary stream:

open(..., ..., ..., [type(binary)])

then no wide character handling will take place; every character output will produce a single
byte on the stream, and every byte input will be considered a separate character.

304 SICStus Prolog

12.4 Selecting the WCX Mode Using Environment Variables

When the SICStus Prolog system starts up, its WCX mode is selected according to the value
of the SP_CTYPE environment variable. The supported values of the SP_CTYPE environment
variable are the following:

iso_8859_1 (default)
character code set:

0..255

character-type mapping:
according to the ISO 8859/1 standard; see Section 51.4 [Token
String], page 790.

external encoding:
each character code is mapped to a single byte on the stream with
the same value (trivial encoding).

utf8

character code set:
0..2147483647 (= 2^31-1)

character-type mapping:
according to ISO 8859/1 for codes 0..255. All codes above 255 are
considered small-letters.

external encoding:
UTF-8

This WCX mode is primarily intended to support the UNICODE character set,
but it also allows the input and output of character codes above the UNICODE
character code range.

euc

character code set:
a subset of 0..8388607 The exact character code set is described in
Section 12.9 [Representation of EUC Wide Characters], page 315,
together with its mapping to the standard external encoding.

character-type mapping:
according to ISO 8859/1 for codes 0..127. All codes above 127 are
considered small-letters.

external encoding:
EUC encoding with the lengths of the sub-code-sets dependent on
the locale.

In all three cases the system encoding is implemented as truncation to 8-bits, i.e. any code
output to the operating system is taken modulo 256, any byte coming from the operating
system is mapped to the code with the same value.

Chapter 12: Handling Wide Characters 305

The figure below shows an example interaction with SICStus Prolog in EUC mode. For
the role of the SP_CSETLEN environment variable, see Section 12.9 [Representation of EUC
Wide Characters], page 315.

SICStus Prolog in EUC mode

12.5 Selecting the WCX Mode Using Hooks

Users can have complete control over the way wide characters are handled by SICStus Prolog
if they supply their own definitions of appropriate hook functions. A set of such functions,
implementing a specific environment for handling wide characters is called a WCX box. A
sample WCX box is described below (see Section 12.10 [A Sample WCX Box], page 316).

306 SICStus Prolog

Plugging-in of the WCX hook functions can be performed by calling

void SP_set_wcx_hooks (int usage,
SP_WcxOpenHook *wcx_open,
SP_WcxCloseHook *wcx_close,
SP_WcxCharTypeHook *wcx_chartype,
SP_WcxConvHook *wcx_from_os,
SP_WcxConvHook *wcx_to_os);

The effect of SP_set_wcx_hooks() is controlled by the value of usage. The remaining
arguments are pointers to appropriate hook functions or NULL values, the latter implying
that the hook should take some default value.

There are three independent aspects to be controlled, and usage should be supplied as a
bitwise OR of chosen constant names for each aspect. The defaults have value 0, so need
not be included. The aspects are the following:

a. decide on the default code-set
This decides the default behavior of the wcx_open and wcx_chartype hook functions
(if both are supplied by the user, the choice of the default is irrelevant). The possible
values are:

WCX_USE_LATIN1 (default)
WCX_USE_UTF8
WCX_USE_EUC

Select the behavior described above under titles iso_8859_1, utf8, and
euc, respectively; see Section 12.4 [WCX Environment Variables], page 304.

b. decide on the default system encoding
The flags below determine what function to use for conversion from/to the operating
system encoding, if such functions are not supplied by the user through the wcx_from_
os and wcx_to_os arguments (if both are supplied by the user, the choice of default is
irrelevant).

WCX_OS_8BIT
(default) Select the “truncation to 8-bits” behavior.

WCX_OS_UTF8
Select the UTF-8 encoding to be used for all communication with the
operating system.

c. decide on the preservation of ASCII, i.e. the codes in 0..127
This is important if some of the conversion functions (wcx_from_os, wcx_to_os, and
wcx_getc, wcx_putc, see later) are user-defined. In such cases it may be beneficial for
the user to inform SICStus Prolog whether the supplied encoding functions preserve
ASCII characters. (The default encodings do preserve ASCII.)

WCX_PRESERVES_ASCII
(default) Declare that the encodings preserve all ASCII characters, i.e.
getting or putting an ASCII character need not go through the conversion
functions, and for strings containing ASCII characters only, the system
encoding conversions need not be invoked.

Chapter 12: Handling Wide Characters 307

WCX_CHANGES_ASCII
Force the system to use the conversion functions even for ASCII characters
and strings.

We now describe the role of the arguments following usage in the argument list of SP_set_
wcx_hooks().

SP_WcxOpenHook *wcx_open
where typedef void (SP_WcxOpenHook) (SP_stream *s, SP_atom option,
int context);

This function is called by SICStus Prolog for each s stream opened, except
when the encoding to be used for the stream is pre-specified (binary files, files
opened using the wci option, and the C streams created with contexts SP_
STREAMHOOK_WCI and SP_STREAMHOOK_BIN).
The main task of the wcx_open hook is to associate the two WCX-processing
functions with the stream, by storing them in the appropriate fields of the
SP_stream data structure:

SP_WcxGetcHook *wcx_getc;
SP_WcxPutcHook *wcx_putc;

These fields are pointers to the functions performing the external decoding and
encoding as described below. They are initialized to functions that truncate to
8 bits on output and zero-extend to 31 bits on input.

SP_WcxGetcHook *wcx_getc
where typedef int (SP_WcxGetcHook) (int first_byte,
SP_stream *s, long *pbyte_count);

This function is generally invoked whenever a character has to be
read from a stream. Before invoking this function, however, a byte
is read from the stream by SICStus Prolog itself. If the byte read is
an ASCII character (its value is < 128), and WCX_PRESERVES_ASCII
is in force, then the byte read is deemed to be the next character
code, and wcx_getc is not invoked. Otherwise, wcx_getc is invoked
with the byte and stream in question and is expected to return the
next character code.
The wcx_getc function may need to read additional bytes from the
stream, if first byte signifies the start of a multi-byte character.
A byte may be read from the stream s in the following way:

byte = s->sgetc(s->user_handle);

The wcx_getc function is expected to increment its *pbyte_count
argument by 1 for each such byte read.
The default wcx_open hook will install a wcx_getc function accord-
ing to the usage argument. The three default external decoding
functions are also available to users through the SP_wcx_getc()
function (see Section 12.8 [WCX Utility Functions], page 314).

308 SICStus Prolog

SP_WcxPutcHook *wcx_putc
where typedef int (SP_WcxPutcHook) (int char_code,
SP_stream *s, long *pbyte_count);

This function is generally invoked whenever a character has to be
written to a stream. However, if the character code to be written
is an ASCII character (its value is < 128), and WCX_PRESERVES_
ASCII is in force, then the code is written directly on the stream,
and wcx_putc is not invoked. Otherwise, wcx_putc is invoked with
the character code and stream in question and is expected to do
whatever is needed to output the character code to the stream.
This will require outputting one or more bytes to the stream. A
byte byte can be written to the stream s in the following way:

return_code = s->sputc(byte,s->user_handle);

The wcx_putc function is expected to return the return value of
the last invocation of s->sputc, or -1 as an error code, if incapable
of outputting the character code. The latter may be the case, for
example, if the code to be output does not belong to the character
code set in force. It is also expected to increment its *pbyte_count
argument by 1 for each byte written.
The default wcx_open hook function will install a wcx_putc func-
tion according to the usage argument. The three default exter-
nal encoding functions are also available to users through the SP_
wcx_putc() function (see Section 12.8 [WCX Utility Functions],
page 314).

In making a decision regarding the selection of these WCX-processing functions,
the context and option arguments of the wcx_open hook can be used. The
option argument is an atom. The context argument encodes the context of
invocation. It is one of the following values

SP_STREAMHOOK_STDIN
SP_STREAMHOOK_STDOUT
SP_STREAMHOOK_STDERR

for the three standard streams,

SP_STREAMHOOK_OPEN
for streams created by open/[3,4]

SP_STREAMHOOK_NULL
for streams created by open_null_stream/1

SP_STREAMHOOK_LIB
for streams created from the libraries

SP_STREAMHOOK_C, SP_STREAMHOOK_C+1, ...
for streams created from C code via SP_make_stream()

The option argument comes from the user and it can carry some WCX-related
information to be associated with the stream opened. For example, this can

Chapter 12: Handling Wide Characters 309

be used to implement a scheme supporting multiple encodings, supplied on a
stream-by-stream basis, as shown in the sample WCX-box (see Section 12.10
[A Sample WCX Box], page 316).
If the stream is opened from Prolog code, the option argument for this hook
function is derived from the wcx(Option) option of open/4 and load_files/2.
If this option is not present, or the stream is opened using some other built-in
predicate, then the value of the wcx Prolog flag will be passed on to the open
hook.
If the stream is opened from C, via SP_make_stream(), then the option argu-
ment will be the value of the Prolog flag wcx.
There is also a variant of SP_make_stream(), called SP_make_stream_
context(), which takes two additional arguments, the option and the con-
text, to be passed on to the wcx_open hook (see Section 12.6 [WCX Foreign
Interface], page 311).
The wcx_open hook can associate the information derived from option with
the stream in question using a new field in the SP_stream data structure: void
*wcx_info, initialized to NULL. If there is more information than can be stored
in this field, or if the encoding to be implemented requires keeping track of a
state, then the wcx_open hook should allocate sufficient amount of memory for
storing the information and/or the state, using SP_malloc(), and deposit a
pointer to that piece of memory in wcx_info.
The default wcx_open hook function sets the wcx_getc and wcx_putc stream
fields to functions performing the external decoding and encoding according
to option. Permitted values for option are the same as for the SP_CTYPE
environment variable; see Section 12.4 [WCX Environment Variables], page 304.
If the option argument is not supported then the usage argument of SP_set_
wcx_hooks() will be used instead.
Note that, if option or usage is euc then there will be no attempt to translate
between UNICODE code points and EUC code points. For this reason it is
probably not meaningful to mix EUC with any of the other supported encod-
ings. You should not rely on this behavior, future versions of SICStus may do
a proper translation of EUC to and from UNICODE.
As an example, if SP_CTYPE is utf8 you can load an ISO 8859/1 encoded prolog
file using load_files(’file.pl’, [wcx(iso_8859_1)]).

SP_WcxCloseHook *wcx_close
where typedef void (SP_WcxCloseHook) (SP_stream *s);

This hook function is called whenever a stream is closed, for which the wcx_open
hook was invoked at its creation. The argument s points to the stream being
closed. It can be used to implement the closing activities related to external
encoding, e.g. freeing any memory allocated in wcx_open hook.
The default wcx_close hook function does nothing.

SP_WcxCharTypeHook *wcx_chartype
where typedef int (SP_WcxCharTypeHook) (int char_code);

310 SICStus Prolog

This function should be prepared to take any char_code >= 128 and return
one of the following constants:

CHT_LAYOUT_CHAR
for additional characters in the syntactic category layout-char,

CHT_SMALL_LETTER
for additional characters in the syntactic category small-letter,

CHT_CAPITAL_LETTER
for additional characters in the syntactic category capital-letter,

CHT_SYMBOL_CHAR
for additional characters in the syntactic category symbol-char,

CHT_SOLO_CHAR
for additional characters in the syntactic category solo-char.

Regarding the meaning of these syntactic categories, see Section 51.4 [Token
String], page 790.
The value returned by this function is not expected to change over time, there-
fore, for efficiency reasons, its behavior is cached. The cache is cleared by
SP_set_wcx_hooks().
As a help in implementing this function, SICStus Prolog provides the func-
tion SP_latin1_chartype(), which returns the character type category for the
codes 1..255 according to the ISO 8859/1 standard.
Note that if a character code >= 512 is categorized as a layout-char, and a
character with this code occurs within an atom being written out in quoted
form (e.g. using writeq) in native sicstus mode (as opposed to iso mode),
then this code will be output as itself, rather than an octal escape sequence.
This is because in sicstus mode escape sequences consist of at most 3 octal
digits.

SP_WcxConvHook *wcx_to_os
where typedef char* (SP_WcxConvHook) (char *string, int context);

This function is normally called each time SICStus Prolog wishes to communi-
cate a string of possibly wide characters to the operating system. However, if
the string in question consists of ASCII characters only, and WCX_PRESERVES_
ASCII is in force, then wcx_to_os may not be called, and the original string
may be passed to the operating system.
The first argument of wcx_to_os is a zero terminated string, using the internal
encoding of SICStus Prolog, namely UTF-8. The function is expected to convert
the string to a form required by the operating system, in the context described
by the second, context argument, and to return the converted string. If no
conversion is needed, it should simply return its first argument. Otherwise,
the conversion should be done in a memory area controlled by this function
(preferably a static buffer, reused each time the function is called).
The second argument specifies the context of conversion. It can be one of the
following integer values:

Chapter 12: Handling Wide Characters 311

WCX_FILE the string is a file-name,

WCX_OPTION
the string is a command, a command line argument or an environ-
ment variable,

WCX_WINDOW_TITLE
the string is a window title,

WCX_C_CODE
the string is a C identifier (used, e.g. in the glue code)

SICStus Prolog provides a utility function SP_wci_code(), see below, for ob-
taining a wide character code from a UTF-8 encoded string, which can be used
to implement the wcx_to_os hook function.
The default of the wcx_to_os function depends on the usage argument of SP_
set_wcx_hooks(). If the value of usage includes WCX_OS_UTF8, then the func-
tion does no conversion, as the operating system uses the same encoding as
SICStus Prolog. If the value of usage includes WCX_OS_8BIT, then the function
decodes the UTF-8 encoded string and converts this sequence of codes into a
sequence of bytes by truncating each code to 8 bits.
Note that the default wcx_to_os functions ignore their context argument.

SP_WcxConvHook *wcx_from_os
where typedef char* (SP_WcxConvHook) (char *string, int context);

This function is called each time SICStus Prolog receives from the operating
system a zero terminated sequence of bytes possibly encoding a wide character
string. The function is expected to convert the byte sequence, if needed, to
a string in the internal encoding of SICStus Prolog (UTF-8), and return the
converted string. The conversion should be done in a memory area controlled
by this function (preferably a static buffer, reused each time the function is
called, but different from the buffer used in wcx_to_os).
The second argument specifies the context of conversion, as in the case of wcx_
to_os.
SICStus Prolog provides a utility function SP_code_wci(), see below, for con-
verting a character code (up to 31 bits) into UTF-8 encoding, which can be
used to implement the wcx_from_os hook function.
The default of the wcx_from_os function depends on the usage argument of
SP_set_wcx_hooks(). If the value of usage includes WCX_OS_UTF8, then the
function does no conversion. If the value of usage includes WCX_OS_8BIT, then
the function transforms the string of 8-bit codes into a UTF-8 encoded string.
Note that the default wcx_from_os functions ignore their context argument.

12.6 Summary of WCX Features in the Foreign Interface

All strings passed to foreign code, or expected from foreign code, which correspond to atoms
or code-lists on the Prolog side, are in the internal encoding form, UTF-8. Note that this

312 SICStus Prolog

is of concern only if the strings contain non-ASCII characters (e.g. accented letters in the
latin1 encoding).

Specifically, the C arguments corresponding to the following foreign specifications are passed
and received as strings in the internal encoding:

+chars +string +string(N)
-chars -string -string(N)
[-chars] [-string] [-string(N)]

Similarly, the following functions defined in the foreign language interface expect and deliver
internally encoded strings in their char * and char ** arguments.

int SP_put_string()
int SP_put_list_chars()
int SP_put_list_n_chars()
int SP_get_string()
int SP_get_list_chars()
int SP_get_list_n_chars()
void SP_puts()
void SP_fputs()
int SP_printf()
int SP_fprintf()
SP_atom SP_atom_from_string(SP_term_ref t, char *name)
char *SP_string_from_atom()
SP_pred_ref SP_predicate()
int SP_load()
int SP_restore()
int SP_read_from_string()

The following functions deliver or accept wide character codes (up to 31 bits), and read or
write them on the appropriate stream in the external encoding form:

int SP_getc(void)
int SP_fgetc(SP_stream *s)
void SP_putc(int c)
void SP_fputc(int c, SP_stream *s)

In the following function, strings are expected in the encoding format relevant for the
operating system:

int SP_initialize(int argc, char **argv, char *boot_path)

Here, argv is an array of strings, as received from the operating system. These strings will
be transformed to internal form using the wcx_from_os(WCX_OPTION,...) hook function.
Also boot_path is expected to be in the format file names are encoded, and wcx_from_
os(WCX_FILE,...) will be used to decode it.

Chapter 12: Handling Wide Characters 313

There are other functions in the foreign language interface that take or return strings.
For these, the encoding is not relevant, either because the strings are guaranteed to be
ASCII (SP_error_message(), SP_put_number_chars(), SP_get_number_chars()), or be-
cause the strings in question have no relation to Prolog code, as in SP_on_fault(), SP_
raise_fault().

The SP_make_stream_context() foreign language interface function is a variant of SP_
make_stream() with two additional arguments: option and context. This extended form
can be used to create streams from C with specified WCX features.

The context argument the SP_make_stream_context() function can be one of the follow-
ing values:

SP_STREAMHOOK_WCI
SP_STREAMHOOK_BIN
SP_STREAMHOOK_C, SP_STREAMHOOK_C+1, ...

SP_STREAMHOOK_WCI means that input and output on the given stream should be performed
using the SICStus internal encoding scheme, UTF-8, while SP_STREAMHOOK_BIN indicates
that no encoding should be applied (binary files).

In the last two cases the wcx_open hook will not be called. In all other cases SP_make_
stream_context() will call the wcx_open hook function, with the option and context
supplied to it. The option argument of SP_make_stream_context() can be the standard
representation of a Prolog atom, or the constant SP_WCX_FLAG, which prescribes that the
value of the Prolog flag wcx should be supplied to the open hook function.

The user may add further context constants for his own use, with values greater than
SP_STREAMHOOK_C.

12.7 Summary of Wcx-Related Features in the Libraries

Some libraries are affected by the introduction of wide characters.

When using library(jasper) SICStus Prolog properly receives non-ASCII strings from
Java, and similarly, non-ASCII strings can be correctly passed to Java. This is in contrast
with versions of SICStus Prolog earlier then 3.8 (i.e. without the WCX extensions), where,
for example, strings containing non-ASCII characters passed from Java to Prolog resulted
in a UTF-8 encoded atom or code-list on the Prolog side.

Several predicates in libraries sockets, system and tcltk create streams. These now use
the SP_make_stream_context() function, with SP_WCX_FLAG as the option and the relevant
SP_STREAMHOOK_LIB constant as the context argument. For example, if the WCX mode is
set using environment variables (see Section 12.4 [WCX Environment Variables], page 304),
then this implies that the selected encoding will be used for streams created in the libraries.
E.g. if the SP_CTYPE environment variable is set to utf8, then the output of non-ASCII
characters to a socket stream will be done using UTF-8 encoding. If a wcx_open hook is

314 SICStus Prolog

supplied, then the user is free to select a different encoding for the libraries, as he is informed
about the stream being opened by a library through the context argument of the wcx_open
function.

Some of the arguments of library predicates contain atoms that are file names, environment
variable names, commands, etc. If these contain non-ASCII characters, then they will be
passed to the appropriate operating system function following a conversion to the system
encoding in force (wcx_to_os hook), and similarly such atoms coming from the OS functions
undergo a conversion from system encoding (wcx_from_os). Note however that host names
(e.g. in system:host_name(S)) are assumed to be consisting of ASCII characters only.

12.8 WCX Related Utility Functions

The default functions for reading in and writing out character codes using one of the three
supported encodings are available through

SP_WcxGetcHook *SP_wcx_getc(int usage);
SP_WcxPutcHook *SP_wcx_putc(int usage);

These functions return the decoding/encoding functions appropriate for usage, where the
latter is one of the constants WCX_USE_LATIN1, WCX_USE_UTF8, WCX_USE_EUC.

The following utility functions may be useful when dealing with wide characters in internal
encoding (WCI). These functions are modeled after multibyte character handling functions
of Solaris.

int SP_wci_code(int *pcode, char *wci);
SP_wci_code() determines the number of bytes that comprise the internally
encoded character pointed to by wci. Also, if pcode is not a null pointer, SP_
wci_code() converts the internally encoded character to a wide character code
and places the result in the object pointed to by pcode. (The value of the wide
character corresponding to the null character is zero.) At most WCI_MAX_BYTES
bytes will be examined, starting at the byte pointed to by wci.
If wci is a null pointer, SP_wci_code() simply returns 0. If wci is not a null
pointer, then, if wci points to the null character, SP_wci_code() returns 0;
if the next bytes form a valid internally encoded character, SP_wci_code()
returns the number of bytes that comprise the internal encoding; otherwise
wci does not point to a valid internally encoded character and SP_wci_code()
returns the negated length of the invalid byte sequence. This latter case can not
happen, if wci points to the beginning of a Prolog atom string, or to a position
within such a string reached by repeated stepping over correctly encoded wide
characters.

WCI_MAX_BYTES
WCI_MAX_BYTES is a constant defined by SICStus Prolog showing
the maximal length (in bytes) of the internal encoding of a single

Chapter 12: Handling Wide Characters 315

character code. (As the internal encoding is UTF-8, this constant
has the value 6).

int SP_wci_len(char *wci);
SP_wci_len() determines the number of bytes comprising the multi-byte char-
acter pointed to by wci. It is equivalent to:

SP_wci_code((int *)0, wci);

int SP_code_wci(char *wci, int code);
SP_code_wci() determines the number of bytes needed to represent the internal
encoding of the character code, and, if wci is not a null pointer, stores the
internal encoding in the array pointed to by wci. At most WCI_MAX_BYTES
bytes are stored.
SP_code_wci() returns -1 if the value of code is outside the wide character
code range; otherwise it returns the number of bytes that comprise the internal
encoding of code.

The following functions give access to the default character type mapping and the currently
selected operating system encoding/decoding functions.

int SP_latin1_chartype(int char_code);
SP_latin1_chartype returns the character type category of the character code
char_code, according to the ISO 8859/1 code-set. The char_code value is
assumed to be in the 1..255 range.

char* SP_to_os(char *string, int context)
char* SP_from_os(char *string, int context)

These functions simply invoke the wcx_to_os() and wcx_from_os() hook func-
tions, respectively. These are useful in foreign functions that handle strings
passed to/from the operating system, such as file names, options, etc.

12.9 Representation of EUC Wide Characters

As opposed to UNICODE, the definition of EUC specifies only the external representation.
The actual wide character codes assigned to the multibyte characters are not specified.
UNIX systems supporting EUC have their own C data type, wchar_t, which stores a wide
character, but the mapping between this type and the external representation is not stan-
dardized.

We have decided to use a custom made mapping from the EUC encoding to the character
code set, as opposed to using the UNIX type wchar_t. This decision was made so that the
code set is machine independent and results in a compact representation of atoms.

EUC consists of four sub-code-sets, three of which can have multibyte external representa-
tion. Sub-code-set 0 consists of ASCII characters and is mapped one-to-one to codes 0..127.
Sub-code-set 1 has an external representation of one to three bytes in the range 128-255,

316 SICStus Prolog

the length determined by the locale. Sub-code-sets 2 and 3 are similar, but their external
representation is started by a so called single shift character code, known as SS2 and SS3,
respectively. The following table shows the mapping from the EUC external encoding to
SICStus Prolog character codes.

Sub-
code-set External encoding Character code (binary)

0 0xxxxxxx 00000000 00000000 0xxxxxxx

1 1xxxxxxx 00000000 00000000 1xxxxxxx
1xxxxxxx 1yyyyyyy 00000000 xxxxxxx0 1yyyyyyy
1xxxxxxx 1yyyyyyy 1zzzzzzzz 0xxxxxxx yyyyyyy0 1zzzzzzz

2 SS2 1xxxxxxx 00000000 00000001 0xxxxxxx
SS2 1xxxxxxx 1yyyyyyy 00000000 xxxxxxx1 0yyyyyyy
SS2 1xxxxxxx 1yyyyyyy 1zzzzzzzz 0xxxxxxx yyyyyyy1 0zzzzzzz

3 SS3 1xxxxxxx 00000000 00000001 1xxxxxxx
SS3 1xxxxxxx 1yyyyyyy 00000000 xxxxxxx1 1yyyyyyy
SS3 1xxxxxxx 1yyyyyyy 1zzzzzzzz 0xxxxxxx yyyyyyy1 1zzzzzzz

For sub-code-sets other than 0, the sub-code-set length indicated by the locale determines
which of three mappings are used (but see below the SP_CSETLEN environment variable).
When converting SICStus Prolog character codes to EUC on output, we ignore bits that
have no significance in the mapping selected by the locale.

The byte lengths associated with the EUC sub-code-sets are determined by using the
csetlen() function. If this function is not available in the system configuration used,
then Japanese Solaris lengths are assumed, namely 2, 1, 2 for sub-code-sets 1, 2, and 3,
respectively (the lengths exclude the single shift character).

To allow experimentation with sub-code-sets differing from the locale, the sub-code-set
length values can be overridden by setting the SP_CSETLEN environment variable to xyz,
where x, y, and z are digits in the range 1..3. Such a setting will cause the sub-code-sets 1,
2, 3 to have x, y, and z associated with them as their byte lengths.

12.10 A Sample Wide Character Extension (WCX) Box

This example implements a WCX box supporting the use of four external encodings within
the same SICStus Prolog invocation: ISO Latin1, ISO Latin2 (ISO 8859/2), UNICODE,
and EUC. The code is included in the distribution as library(wcx_example).

The default encoding functions supplied in SICStus Prolog deal with a single encoding only.
However, the interface does allow the implementation of WCX boxes supporting different
encodings for different streams.

Chapter 12: Handling Wide Characters 317

A basic assumption in SICStus Prolog is that there is a single character set. If we are to
support multiple encodings we have to map them into a single character set. For example,
the single-byte character sets ISO Latin1 and ISO Latin2 can be easily mapped to the
Unicode character set. On the other hand there does not seem to be a simple mapping of
the whole of EUC character set to UNICODE or the other way round.

Therefore, in this example, we use a composite character set, which covers both EUC and
Unicode, but does not deal with unifying the character codes of characters appearing in
both character sets, except for the case of ASCII characters.

The figure below depicts the structure of the composite character set of the sample WCX
box.

.------------------.
| EUC |
| |
| |
| .+++++++++++++++++++++++++++.
| + ASCII * LATIN1 | +
.--------+=========*========== +

+ LATIN2 * +
+********** +
+ +
+ +
+ UNICODE +
.+++++++++++++++++++++++++++.

This character code set uses character codes up to 24 bit wide:

0 =< code =< 2^16-1
A UNICODE character with the given code, including ASCII.

code = 2^16 + euc_code
A non-ASCII EUC character with code euc_code (as described in Section 12.9
[Representation of EUC Wide Characters], page 315).

The four external encodings supported by the sample WCX box can be specified on a
stream-by-stream basis, by supplying a wcx(ENC) option to open/4, where ENC is one of the
atoms latin1, latin2, unicode or euc.

The mapping of these external encodings to the composite character code set is done in the
following way:

latin1 is mapped one-to-one to UNICODE codes 0x0..0xff

latin2 is mapped to UNICODE codes 0x0..0x02dd, using an appropriate conversion
table for the non-ASCII part.

unicode assumes UTF-8 external encoding and maps one-to-one to the 0x0..0xffff UNI-
CODE range.

318 SICStus Prolog

euc assumes EUC external encoding and maps sub-code-set 0 to UNICODE range
0x0..0x7f, and sub-code-sets 1-3 to internal codes above 0xffff, as shown above.

Note that in order to support this composite character code set, we had to give up the
ability to read and write UTF-8-encoded files with character codes above 0xffff (which is
possible using the built-in utf8 WCX-mode of SICStus Prolog, (see Section 12.3 [Prolog
Level WCX Features], page 303)).

The example uses a primitive character-type mapping: characters in the 0x80-0xff range are
classified according to the latin1 encoding, above that range all characters are considered
small-letters. However, as an example of re-classification, code 0xa1 (inverted exclamation
mark) is categorized as solo-char.

The default system encoding is used (truncate to 8-bits).

The box has to be initialized by calling the C function wcx_setup(), which first reads the
environment variable WCX_TYPE, and uses its value as the default encoding. It then calls
SP_set_wcx_hooks(), and initializes its own conversion tables. In a runtime system wcx_
setup() should be called before SP_initialize(), so that it effects the standard streams
created there. The second phase of initialization, wcx_init_atoms(), has to be called after
SP_initialize(), to set up variables storing the atoms naming the external encodings.

In a development system the two initialization phases can be put together, this is imple-
mented as wcx_init(), and is declared to be a foreign entry point in wcx.pl.

On any subsequent creation of a stream, the hook function my_wcx_open() is called. This
sets the wide character get and put function pointers in the stream according to the atom
supplied in the wcx(...) option, or according to the value of the Prolog flag wcx.

Within the put function it may happen that a character code is to be output, which the
given encoding cannot accommodate (a non-ASCII Unicode character on an EUC stream
or vice-versa). No bytes are output in such a case and -1 is returned as an error code.

There is an additional foreign C function implemented in the sample WCX box: wcx_set_
encoding(), available from Prolog as set_encoding/2. This allows changing the encoding
of an already open stream. This is used primarily for standard input-output streams, while
experimenting with the box.

Chapter 13: Writing Efficient Programs 319

13 Writing Efficient Programs

13.1 Overview

This chapter gives a number of tips on how to organize your programs for increased efficiency.
A lot of clarity and efficiency is gained by sticking to a few basic rules. This list is necessarily
very incomplete. The reader is referred to textbooks such as [O’Keefe 90] for a thorough
exposition of the elements of Prolog programming style and techniques.

• Don’t write code in the first place if there is a library predicate that will do the job.
• Write clauses representing base case before clauses representing recursive cases.
• Input arguments before output arguments in clause heads and goals.
• Use pure data structures instead of database changes.
• Use cuts sparingly, and only at proper places (see Section 4.5 [Cut], page 52). A cut

should be placed at the exact point that it is known that the current choice is the
correct one: no sooner, no later.

• Make cuts as local in their effect as possible. If a predicate is intended to be determinate,
define it as such; do not rely on its callers to prevent unintended backtracking.

• Binding output arguments before a cut is a common source of programming errors, so
don’t do it.

• Replace cuts by if-then-else constructs if the test is simple enough (see Section 13.8
[Conditionals and Disjunction], page 336).

• Use disjunctions sparingly, always put parentheses around them, never put parentheses
around the individual disjuncts, never put the ‘;’ at the end of a line.

• Write the clauses of a predicate so that they discriminate on the principal functor of
the first argument (see below). For maximum efficiency, avoid “defaulty” programming
(“catch-all” clauses).

• Don’t use lists ([...]), “round lists” ((...)), or braces ({...}) to represent compound
terms, or “tuples”, of some fixed arity. The name of a compound term comes for free.

13.2 The Cut

13.2.1 Overview

One of the more difficult things to master when learning Prolog is the proper use of the cut.
Often, when beginners find unexpected backtracking occurring in their programs, they try
to prevent it by inserting cuts in a rather random fashion. This makes the programs harder
to understand and sometimes stops them from working.

320 SICStus Prolog

During program development, each predicate in a program should be considered indepen-
dently to determine whether or not it should be able to succeed more than once. In most
applications, many predicates should at most succeed only once; that is, they should be
determinate. Having decided that a predicate should be determinate, it should be verified
that, in fact, it is. The debugger can help in verifying that a predicate is determinate (see
Section 13.5 [The Determinacy Checker], page 325).

13.2.2 Making Predicates Determinate

Consider the following predicate, which calculates the factorial of a number:

fac(0, 1).
fac(N, X) :-

N1 is N - 1,
fac(N1, Y),
X is N * Y.

The factorial of 5 can be found by typing:

| ?- fac(5, X).

X = 120

However, backtracking into the above predicate by typing a semicolon at this point, causes
an infinite loop because the system starts attempting to satisfy the goals fac(-1, X).,
fac(-2, X)., etc. The problem is that there are two clauses that match the goal fac(0,
F)., but the effect of the second clause on backtracking has not been taken into account.
There are at least three possible ways of fixing this:

1. Efficient solution: rewrite the first clause as
fac(0,1) :- !.

Adding the cut essentially makes the first solution the only one for the factorial of 0
and hence solves the immediate problem. This solution is space-efficient because as
soon as Prolog encounters the cut, it knows that the predicate is determinate. Thus,
when it tries the second clause, it can throw away the information it would otherwise
need in order to backtrack to this point. Unfortunately, if this solution is implemented,
typing ‘fac(-1, X)’ still generates an infinite search.

2. Robust solution: rewrite the second clause as
fac(N, X) :-

N > 0,
N1 is N - 1,
fac(N1, Y),
X is N * Y.

This also solves the problem, but it is a more robust solution because this way it is
impossible to get into an infinite loop.

Chapter 13: Writing Efficient Programs 321

This solution makes the predicate logically determinate—there is only one possible
clause for any input—but the Prolog system is unable to detect this and must waste
space for backtracking information. The space-efficiency point is more important than
it may at first seem; if fac/2 is called from another determinate predicate, and if the
cut is omitted, Prolog cannot detect the fact that fac/2 is determinate. Therefore,
it will not be able to detect the fact that the calling predicate is determinate, and
space will be wasted for the calling predicate as well as for fac/2 itself. This argument
applies again if the calling predicate is itself called by a determinate predicate, and so
on, so that the cost of an omitted cut can be very high in certain circumstances.

3. Preferred solution: rewrite the entire predicate as the single clause
fac(N, X) :-

(N > 0 ->
N1 is N - 1,
fac(N1, Y),
X is N * Y

; N =:= 0 ->
X = 1

).

This solution is as robust as solution 2, and more efficient than solution 1, since it
exploits conditionals with arithmetic tests (see Section 13.8 [Conditionals and Disjunc-
tion], page 336 for more information on optimization using conditionals).

13.2.3 Placement of Cuts

Programs can often be made more readable by the placing of cuts as early as possible in
clauses. For example, consider the predicate p/0 defined by

p :- a, b, !, c, d.
p :- e, f.

Suppose that b/0 is a test that determines which clause of p/0 applies; a/0 may or may
not be a test, but c/0 and d/0 are not supposed to fail under any circumstances. A cut
is most appropriately placed after the call to b/0. If in fact a/0 is the test and b/0 is not
supposed to fail, then it would be much clearer to move the cut before the call to b/0.

A tool to aid in determinacy checking is included in the distribution. It is described in
depth in Section 13.5 [The Determinacy Checker], page 325.

13.2.4 Terminating a Backtracking Loop

Cut is also commonly used in conjunction with the generate-and-test programming
paradigm. For example, consider the predicate find_solution/1 defined by

322 SICStus Prolog

find_solution(X) :-
candidate_solution(X),
test_solution(X),
!.

where candidate_solution/1 generates possible answers on backtracking. The intent is
to stop generating candidates as soon as one is found that satisfies test_solution/1. If
the cut were omitted, a future failure could cause backtracking into this clause and restart
the generation of candidate solutions. A similar example is shown below:

process_file(F) :-
see(F),
repeat,

read(X),
process_and_fail(X),

!,
seen.

process_and_fail(end_of_file) :- !.
process_and_fail(X) :-

process(X),
fail.

The cut in process_file/1 is another example of terminating a generate-and-test loop. In
general, a cut should always be placed after a repeat/0 so that the backtracking loop is
clearly terminated. If the cut were omitted in this case, on later backtracking Prolog might
try to read another term after the end of the file had been reached.

The cut in process_and_fail/1 might be considered unnecessary because, assuming the
call shown is the only call to it, the cut in process_file/1 ensures that backtracking into
process_and_fail/1 can never happen. While this is true, it is also a good safeguard to
include a cut in process_and_fail/1 because someone may unwittingly change process_
file/1 in the future.

13.3 Indexing

13.3.1 Overview

In SICStus Prolog, predicates are indexed on their first arguments. This means that when
a predicate is called with an instantiated first argument, a hash table is used to gain fast
access to only those clauses having a first argument with the same primary functor as the
one in the predicate call. If the first argument is atomic, only clauses with a matching first
argument are accessed. Indexes are maintained automatically by the built-in predicates
manipulating the Prolog database (for example, assert/1, retract/1, and compile/1.

Chapter 13: Writing Efficient Programs 323

Keeping this feature in mind when writing programs can help speed their execution. Some
hints for program structuring that will best use the indexing facility are given below. Note
that dynamic predicates as well as static predicates are indexed. The programming hints
given in this section apply equally to static and dynamic code.

13.3.2 Data Tables

The major advantage of indexing is that it provides fast access to tables of data. For
example, a table of employee records might be represented as shown below in order to gain
fast access to the records by employee name:

% employee(LastName,FirstNames,Department,Salary,DateOfBirth)

employee(’Smith’, [’John’], sales, 20000, 1-1-59).
employee(’Jones’, [’Mary’], engineering, 30000, 5-28-56).
...

If fast access to the data via department is also desired, the data can be organized little
differently. The employee records can be indexed by some unique identifier, such as employee
number, and additional tables can be created to facilitate access to this table, as shown in
the example below. For example,

% employee(Id,LastName,FirstNames,Department,Salary,DateOfBirth)

employee(1000000, ’Smith’, [’John’], sales, 20000, 1-1-59).
employee(1000020, ’Jones’, [’Mary’], engineering, 30000, 5-28-56).
...

% employee_name(LastName,EmpId)

employee_name(’Smith’, 1000000).
employee_name(’Jones’, 1000020).
...

% department_member(Department,EmpId)

department_member(sales, 1000000).
department_member(engineering, 1000020).
...

Indexing would now allow fast access to the records of every employee named Smith, and
these could then be backtracked through looking for John Smith. For example:

| ?- employee_name(’Smith’, Id),

employee(Id, ’Smith’, [’John’], Dept, Sal, DoB).

324 SICStus Prolog

Similarly, all the members of the engineering department born since 1965 could be efficiently
found like this:

| ?- department_member(engineering, Id),

employee(Id, LN, FN, engineering, _, M-D-Y),

Y > 65.

13.3.3 Determinacy Detection

The other advantage of indexing is that it often makes possible early detection of deter-
minacy, even if cuts are not included in the program. For example, consider the following
simple predicate, which joins two lists together:

concat([], L, L).
concat([X|L1], L2, [X|L3]) :- concat(L1, L2, L3).

If this predicate is called with an instantiated first argument, the first argument indexing
of SICStus Prolog will recognize that the call is determinate—only one of the two clauses
for concat/3 can possibly apply. Thus, the Prolog system knows it does not have to store
backtracking information for the call. This significantly reduces memory use and execution
time.

Determinacy detection can also reduce the number of cuts in predicates. In the above
example, if there was no indexing, a cut would not strictly be needed in the first clause as
long as the predicate was always to be called with the first argument instantiated. If the
first clause matched, then the second clause could not possibly match; discovery of this fact,
however, would be postponed until backtracking. The programmer might thus be tempted
to use a cut in the first clause to signal determinacy and recover space for backtracking
information as early as possible.

With indexing, if the example predicate is always called with its first argument instantiated,
backtracking information is never stored. This gives substantial performance improvements
over using a cut rather than indexing to force determinacy. At the same time greater
flexibility is maintained: the predicate can now be used in a nondeterminate fashion as
well, as in

| ?- concat(L1, L2, [a,b,c,d]).

which will generate on backtracking all the possible partitions of the list [a,b,c,d] on
backtracking. If a cut had been used in the first clause, this would not work.

13.4 Last Clause Determinacy Detection

Even if the determinacy detection made possible by indexing is unavailable to a predicate
call, SICStus Prolog still can detect determinacy before determinate exit from the predicate.
Space for backtracking information can thus be recovered as early as possible, reducing

Chapter 13: Writing Efficient Programs 325

memory requirements and increasing performance. For instance, the predicate member/2
(found in the SICStus Prolog library) could be defined by:

member(Element, [Element|_]).
member(Element, [_|Rest]) :-

member(Element, Rest).

member/2 might be called with an instantiated first argument in order to check for mem-
bership of the argument in a list, which is passed as a second argument, as in

| ?- member(4, [1,2,3,4]).

The first arguments of both clauses of member/2 are variables, so first argument indexing
cannot be used. However, determinacy can still be detected before determinate exit from
the predicate. This is because on entry to the last clause of a nondeterminate predicate, a
call becomes effectively determinate; it can tell that it has no more clauses to backtrack to.
Thus, backtracking information is no longer needed, and its space can be reclaimed. In the
example, each time a call fails to match the first clause and backtracks to the second (last)
clause, backtracking information for the call is automatically deleted.

Because of last clause determinacy detection, a cut is never needed as the first subgoal in
the last clause of a predicate. Backtracking information will have been deleted before a cut
in the last clause is executed, so the cut will have no effect except to waste time.

Note that last clause determinacy detection is exploited by dynamic code as well as static
code in SICStus Prolog.

13.5 The Determinacy Checker

The determinacy checker can help you spot unwanted nondeterminacy in your programs.
This tool examines your program source code and points out places where nondeterminacy
may arise. It is not in general possible to find exactly which parts of a program will be
nondeterminate without actually running the program, but this tool can find most unwanted
nondeterminacy. Unintended nondeterminacy should be eradicated because

1. it may give you wrong answers on backtracking
2. it may cause a lot of memory to be wasted

13.5.1 Using the Determinacy Checker

There are two different ways to use the determinacy checker, either as a stand-alone tool, or
during compilation. You may use it whichever way fits best with the way you work. Either
way, it will discover the same nondeterminacy in your program.

326 SICStus Prolog

The stand-alone determinacy checker is called spdet, and is run from the shell prompt,
specifying the names of the Prolog source files you wish to check. You may omit the ‘.pl’
suffix if you like.

% spdet [-r] [-d] [-D] [-i ifile] fspec...

The spdet tool is automatically installed when you install SICStus Prolog. The tool takes
a number of options:

‘-r’ Process files recursively, fully checking the specified files and all the files they
load.

‘-d’ Print out declarations that should be added.

‘-D’ Print out all needed declarations.

‘-i ifile’ An initialization file, which is loaded before processing begins.

The determinacy checker can also be integrated into the compilation process, so that you
receive warnings about unwanted nondeterminacy along with warnings about singleton vari-
ables or discontiguous clauses. To make this happen, simply insert the line

:- load_files(library(detcheck),
[when(compile_time), if(changed)]).

Once this line is added, every time that file is loaded, it will be checked for unwanted
nondeterminacy.

13.5.2 Declaring Nondeterminacy

Some predicates are intended to be nondeterminate. By declaring intended nondeterminacy,
you avoid warnings about predicates you intend to be nondeterminate. Equally importantly,
you also inform the determinacy checker about nondeterminate predicates. It uses this
information to identify unwanted nondeterminacy.

Nondeterminacy is declared by putting a declaration of the form

:- nondet name/arity.

in your source file. This is similar to a dynamic or discontiguous declaration. You may
have multiple nondet declarations, and a single declaration may mention several predicates,
separating them by commas.

Similarly, a predicate P/N may be classified as nondeterminate by the checker, whereas in
reality it is determinate. This may happen e.g. if P/N calls a dynamic predicate that in
reality never has more than one clause. To prevent false alarms asiring from this, you can
inform the checker about determinate predicates by declarations of the form:

:- det name/arity.

Chapter 13: Writing Efficient Programs 327

If you wish to include det and nondet declarations in your file and you plan to use the
stand-alone determinacy checker, you must include the line

:- load_files(library(nondetdecl),
[when(compile_time), if(changed)]).

near the top of each file that contains such declarations. If you use the integrated determi-
nacy checker, you do not need (and should not have) this line.

13.5.3 Checker Output

The output of the determinacy checker is quite simple. For each clause containing unex-
pected nondeterminacy, a single line is printed showing the module, name, arity, and clause
number (counting from 1). The form of the information is:

* Non-determinate: module:name/arity (clause number)

A second line for each nondeterminate clause indicates the cause of the nondeterminacy.
The recognized causes are:

• The clause contains a disjunction that is not forced to be determinate with a cut or by
ending the clause with a call to fail/0 or raise_exception/1.

• The clause calls a nondeterminate predicate. In this case the predicate is named.
• There is a later clause for the same predicate whose first argument has the same prin-

cipal functor (or one of the two clauses has a variable for the first argument), and this
clause does not contain a cut or end with a call to fail/0 or raise_exception/1. In
this case, the clause number of the other clause is mentioned.

• If the predicate is multifile, clause indexing is not considered sufficient to ensure deter-
minacy. This is because other clauses may be added to the predicate in other files, so
the determinacy checker cannot be sure it has seen all the clauses for the predicate. It
is good practice to include a cut (or fail) in every clause of a multifile predicate.

The determinacy checker also occasionally prints warnings when declarations are made
too late in the file or not at all. For example, if you include a dynamic, nondet, or
discontiguous declaration for a predicate after some clauses for that predicate, or if you
put a dynamic or nondet declaration for a predicate after a clause that includes a call to
that predicate, the determinacy checker may have missed some nondeterminacy in your
program. The checker also detects undeclared discontiguous predicates, which may also
have undetected nondeterminacy. Finally, the checker looks for goals in your program that
indicate that predicates are dynamic; if no dynamic declaration for those predicates exists,
you will be warned.

These warnings take the following form:

328 SICStus Prolog

! warning: predicate module:name/arity is property.
! Some nondeterminacy may have been missed.
! Add (or move) the directive
! :- property module:name/arity.
! near the top of this file.

13.5.4 Example

Here is an example file:

:- load_files(library(detcheck),
[when(compile_time), if(changed)]).

parent(abe, rob).
parent(abe, sam).
parent(betty, rob).
parent(betty, sam).

is_parent(Parent) :- parent(Parent, _).

The determinacy checker notices that the first arguments of clauses 1 and 2 have the same
principal functor, and similarly for clauses 3 and 4. It reports:

* Non-determinate: user:parent/2 (clause 1)
* Indexing cannot distinguish this from clause 2.
* Non-determinate: user:parent/2 (clause 3)
* Indexing cannot distinguish this from clause 4.

In fact, parent/2 should be nondeterminate, so we should add the declaration

:- nondet parent/2.

before the clauses for parent/2. If run again after modifying file, the determinacy checker
prints:

* Non-determinate: user:is_parent/1 (clause 1)
* This clause calls user:parent/2, which may be nondeterminate.

It no longer complains about parent/2 being nondeterminate, since this is declared. But
now it notices that because parent/2 is nondeterminate, then so is is_parent/1.

13.5.5 Options

When run from the command line, the determinacy checker has a few options to control its
workings.

Chapter 13: Writing Efficient Programs 329

The ‘-r’ option specifies that the checker should recursively check files in such a way that
it finds nondeterminacy caused by calls to other nondeterminate predicates, whether they
are declared so or not. Also, predicates that appear to determinate will be treated as such,
whether declared nondet or not. This option is quite useful when first running the checker
on a file, as it will find all predicates that should be either made determinate or declared
nondet at once. Without this option, each time a nondet declaration is added, the checker
may find previously unnoticed nondeterminacy.

For example, if the original example above, without any nondet declarations, were checked
with the ‘-r’ option, the output would be:

* Non-determinate: user:parent/2 (clause 1)
* Indexing cannot distinguish this from clause 2.
* Non-determinate: user:parent/2 (clause 3)
* Indexing cannot distinguish this from clause 4.
* Non-determinate: user:is_parent/1 (clause 1)
* Calls nondet predicate user:parent/2.

The ‘-d’ option causes the tool to print out the needed nondet declarations. These can be
readily pasted into the source files. Note that it only prints the nondet declarations that
are not already present in the files. However, these declarations should not be pasted into
your code without each one first being checked to see if the reported nondeterminacy is
intended.

The ‘-D’ option is like ‘-d’, except that it prints out all nondet declarations that should
appear, whether they are already in the file or not. This is useful if you prefer to replace
all old nondet declarations with new ones.

Your code will probably rely on operator declarations and possibly term expansion. The
determinacy checker handles this in much the same way as fcompile/1: you must supply
an initialization file, using the ‘-i’ ifile option. Contrary to fcompile/1, spdet will execute
any operator declaration it encounters.

13.5.6 What is Detected

As mentioned earlier, it is not in general possible to find exactly which places in a pro-
gram will lead to nondeterminacy. The determinacy checker gives predicates the benefit
of the doubt: when it’s possible that a predicate will be determinate, it will not be re-
ported. The checker will only report places in your program that will be nondeterminate
regardless of which arguments are bound. Despite this, the checker catches most unwanted
nondeterminacy in practice.

The determinacy checker looks for the following sources of nondeterminacy:

• Multiple clauses that can’t be distinguished by the principal functor of the first ar-
guments, and are not made determinate with an explicit cut, fail/0, false/0, or
raise_exception/1. First argument indexing is not considered for multifile predi-

330 SICStus Prolog

cates, because another file may have a clause for this predicate with the same principal
functor of its first argument.

• A clause with a disjunction not forced to be determinate by a cut, fail/0, false/0,
or raise_exception/1 in each arm of the disjunction but the last, or where the whole
disjunction is followed by a cut, fail/0, false/0, or raise_exception/1.

• A clause that calls something known to be nondeterminate, other than when it is
followed by a cut, fail/0, false/0, or raise_exception/1, or where it appears in the
condition of an if-then-else construct. Known nondeterminate predicates include hooks
and those declared nondeterminate or dynamic (since they can be modified, dynamic
predicates are assumed to be nondeterminate), plus the following built-in predicates:
− absolute_file_name/3, when the options list contains solutions(all).
− atom_concat/3, when the first two arguments are variables not appearing earlier

in the clause (including the clause head).
− bagof/3, when the second argument contains any variables not appearing earlier

in the clause (including the clause head).
− clause/[2,3].
− current_op/3, when any argument contains any variables not appearing earlier

in the clause (including the clause head).
− current_key/2, when the second argument contains any variables not appearing

earlier in the clause (including the clause head).
− current_predicate/2, when the second argument contains any variables not ap-

pearing earlier in the clause (including the clause head).
− length/2, when both arguments are variables not appearing earlier in the clause

(including the clause head).
− predicate_property/2, when either argument contains any variables not appear-

ing earlier in the clause (including the clause head).
− recorded/3.
− repeat/0.
− retract/1.
− setof/3, when the second argument contains any variables not appearing earlier

in the clause (including the clause head).
− source_file/[1,2] when the last argument contains any variables not appearing

earlier in the clause (including the clause head).
− sub_atom/5, when at least two of the second, fourth and fifth arguments are

variables not appearing earlier in the clause (including the clause head).

13.6 Last Call Optimization

Another important efficiency feature of SICStus Prolog is last call optimization. This is a
space optimization technique, which applies when a predicate is determinate at the point
where it is about to call the last goal in the body of a clause. For example,

Chapter 13: Writing Efficient Programs 331

% for(Int, Lower, Upper)
% Lower and Upper should be integers such that Lower =< Upper.
% Int should be uninstantiated; it will be bound successively on
% backtracking to Lower, Lower+1, ... Upper.

for(Int, Int, _Upper).
for(Int, Lower, Upper) :-

Lower < Upper,
Next is Lower + 1,
for(Int, Next, Upper).

This predicate is determinate at the point where the recursive call is about to be made,
since this is the last clause and the preceding goals (<)/2 and is/2) are determinate. Thus
last call optimization can be applied; effectively, the stack space being used for the current
predicate call is reclaimed before the recursive call is made. This means that this predicate
uses only a constant amount of space, no matter how deep the recursion.

13.6.1 Accumulating Parameters

To take best advantage of this feature, make sure that goals in recursive predicates are
determinate, and whenever possible put the recursive call at the end of the predicate.

This isn’t always possible, but often can be done through the use of accumulating param-
eters. An accumulating parameter is an added argument to a predicate that builds up the
result as computation proceeds. For example, in our factorial example, the last goal in the
body of the recursive case is is/2, not the recursive call to fac/2.

fac(N, X) :-
(N > 0 ->

N1 is N - 1,
fac(N1, Y),
X is N * Y

; N =:= 0 ->
X = 1

).

This can be corrected by adding another argument to fac/2 to accumulate the factorial.

332 SICStus Prolog

fac(N, X) :- fac(N, 1, X).

% fac(+N, +M, -X)
% X is M * the factorial of N.

fac(N, M, X) :-
(N > 0 ->

N1 is N - 1,
M1 is N * M,
fac(N1, M1, X)

; N =:= 0 ->
X = M

).

Here, we do the multiplication before calling fac/3 recursively. Note that we supply the
base case, 1, at the start of the computation, and that we are multiplying by decreasing
numbers. In the earlier version, fac/2, we multiply after the recursive call, and so we
multiply by increasing numbers. Effectively, the new version builds the result backwards.
This is correct because multiplication is associative.

13.6.2 Accumulating Lists

This technique becomes much more important when extended to lists, as in this case it can
save much building of unneeded lists through unnecessary calls to append sublists together.
For example, the naive way to reverse a list is:

nreverse([], []).
nreverse([H|T], L) :-

nreverse(T, L1),
append(L1, [H], L).

This is very wasteful, since each call to append/3 copies the initial part of the list, and adds
one element to it. Fortunately, this can be very easily rewritten to use an accumulating
parameter:

reverse(L1, L2) :- reverse(L1, [], L2).

% reverse(+X, +Y, -Z)
% Z is X reversed, followed by Y
reverse([], Z, Z).
reverse([H|T], L0, L) :-

reverse(T, [H|L0], L).

This version of reverse is many times faster than the naive version, and uses much less
memory. The key to understanding the behavior of this predicate is the observation made
earlier: using an accumulating parameter, we build the result backwards.

Chapter 13: Writing Efficient Programs 333

Don’t let this confuse you. Building a list forward is easy. For example, a predicate returning
a list L of consecutive numbers from 1 to N could be written in two different ways: counting
up and collecting the resulting list forward, or counting down and accumulating the result
backward.

iota1(N, L) :- iota1(1, N, L).
iota1(N, Max, L) :-

(N > Max ->
L = []

; N1 is N+1,
L = [N|L1],
iota1(N1, Max, L1)

).

or,

iota2(N, L) :- iota2(N, [], L).
iota2(N, L0, L) :-

(N =< 0 ->
L = L0

; N1 is N-1,
iota2(N1, [N|L0], L)

).

Both versions generate the same results, and neither waste any space. The second version
is slightly faster. Choose whichever approach you prefer.

13.7 Building and Dismantling Terms

The built-in predicate (=..)/2 is a clear way of building terms and taking them apart.
However, it is almost never the most efficient way. functor/3 and arg/3 are generally
much more efficient, though less direct. The best blend of efficiency and clarity is to write a
clearly-named predicate that implements the desired operation and to use functor/3 and
arg/3 in that predicate.

Here is an actual example. The task is to reimplement the built-in predicate (==)/2. The
first variant uses (=..)/2 (this symbol is pronounced “univ” for historical reasons). Some
Prolog textbooks recommend code similar to this.

334 SICStus Prolog

ident_univ(X, Y) :-
var(X), % If X is a variable,
!,
var(Y), % so must Y be, and
samevar(X, Y). % they must be the same.

ident_univ(X, Y) :- % If X is not a variable,
nonvar(Y), % neither may Y be;
X =.. [F|L], % they must have the
Y =.. [F|M], % same function symbol F
ident_list(L, M). % and identical arguments

ident_list([], []).
ident_list([H1|T1], [H2|T2]) :-

ident_univ(H1, H2),
ident_list(T1, T2).

samevar(29, Y) :- % If binding X to 29
var(Y), % leaves Y unbound,
!, % they were not the same
fail. % variable.

samevar(_, _). % Otherwise they were.

This code performs the function intended; however, every time it touches a non-variable
term of arity N, it constructs a list with N+1 elements, and if the two terms are identical,
these lists are reclaimed only when backtracked over or garbage collected.

Better code uses functor/3 and arg/3.

ident_farg(X, Y) :-
(var(X) -> % If X is a variable,

var(Y), % so must Y be, and
samevar(X, Y) % they must be the same;

; nonvar(Y), % otherwise Y must be nonvar
functor(X, F, N), % The principal functors of X
functor(Y, F, N), % and Y must be identical,
ident_farg(N, X, Y) % including the last N args.

).

ident_farg(0, _, _) :- !.
ident_farg(N, X, Y) :- % The last N arguments are

arg(N, X, Xn), % identical
arg(N, Y, Yn), % if the Nth arguments
ident_farg(Xn, Yn), % are identical,
M is N-1, % and the last N-1 arguments
ident_farg(M, X, Y). % are also identical.

This approach to walking through terms using functor/3 and arg/3 avoids the construction
of useless lists.

Chapter 13: Writing Efficient Programs 335

The pattern shown in the example, in which a predicate of arity K calls an auxiliary predi-
cate of the same name of arity K+1 (the additional argument denoting the number of items
remaining to process), is very common. It is not necessary to use the same name for this
auxiliary predicate, but this convention is generally less prone to confusion.

In order to simply find out the principal function symbol of a term, use

| ?- the_term_is(Term),

| functor(Term, FunctionSymbol, _).

The use of (=..)/2, as in

| ?- the_term_is(Term),

| Term =.. [FunctionSymbol|_].

is wasteful, and should generally be avoided. The same remark applies if the arity of a term
is desired.

(=..)/2 should not be used to locate a particular argument of some term. For example,
instead of

Term =.. [_F,_,ArgTwo|_]

you should write

arg(2, Term, ArgTwo)

It is generally easier to get the explicit number “2” right than to write the correct number
of anonymous variables in the call to (=..)/2. Other people reading the program will find
the call to arg/3 a much clearer expression of the program’s intent. The program will also
be more efficient. Even if several arguments of a term must be located, it is clearer and
more efficient to write

arg(1, Term, First),
arg(3, Term, Third),
arg(4, Term, Fourth)

than to write

Term =.. [_,First,_,Third,Fourth|_]

Finally, (=..)/2 should not be used when the functor of the term to be operated on is
known (that is, when both the function symbol and the arity are known). For example, to
make a new term with the same function symbol and first arguments as another term, but
one additional argument, the obvious solution might seem to be to write something like the
following:

add_date(OldItem, Date, NewItem) :-
OldItem =.. [item,Type,Ship,Serial],
NewItem =.. [item,Type,Ship,Serial,Date].

336 SICStus Prolog

However, this could be expressed more clearly and more efficiently as

add_date(OldItem, Date, NewItem) :-
OldItem = item(Type,Ship,Serial),
NewItem = item(Type,Ship,Serial,Date).

or even

add_date(item(Type,Ship,Serial),
Date,
item(Type,Ship,Serial,Date)
).

13.8 Conditionals and Disjunction

There is an efficiency advantage in using conditionals whose test part consists only of arith-
metic comparisons or type tests. Consider the following alternative definitions of the predi-
cate type_of_character/2. In the first definition, four clauses are used to group characters
on the basis of arithmetic comparisons.

type_of_character(Ch, Type) :-
Ch >= "a", Ch =< "z",
!,
Type = lowercase.

type_of_character(Ch, Type) :-
Ch >= "A", Ch =< "Z",
!,
Type = uppercase.

type_of_character(Ch, Type) :-
Ch >= "0", Ch =< "9",
!,
Type = digit.

type_of_character(_Ch, Type) :-
Type = other.

In the second definition, a single clause with a conditional is used. The compiler generates
equivalent, optimized code for both versions.

Chapter 13: Writing Efficient Programs 337

type_of_character(Ch, Type) :-
(Ch >= "a", Ch =< "z" ->

Type = lowercase
; Ch >= "A", Ch =< "Z" ->

Type = uppercase
; Ch >= "0", Ch =< "9" ->

Type = digit
; otherwise ->

Type = other
).

Following is a list of built-in predicates that are compiled efficiently in conditionals:

• atom/1

• atomic/1

• callable/1

• compound/1

• float/1

• ground/1

• integer/1

• nonvar/1

• number/1

• simple/1

• var/1

• </2

• =</2

• =:=/2

• =\=/2

• >=/2

• >/2

• @</2

• @=</2

• ==/2

• \==/2

• @>=/2

• @>/2

This optimization is actually somewhat more general than what is described above. A
sequence of guarded clauses:

Head1 :- Guard1, !, Body1.
...
Headm :- Guardm, !, Bodym.
Headn :- Bodym.

338 SICStus Prolog

is eligible for the same optimization, provided that the arguments of the clause heads are
all unique variables and that the “guards” are simple tests as listed above.

13.9 Programming Examples

The rest of this chapter contains a number of simple examples of Prolog programming,
illustrating some of the techniques described above.

13.9.1 Simple List Processing

The goal concatenate(L1,L2,L3) is true if list L3 consists of the elements of list L1
concatenated with the elements of list L2. The goal member(X,L) is true if X is one of
the elements of list L. The goal reverse(L1,L2) is true if list L2 consists of the elements
of list L1 in reverse order.

concatenate([], L, L).
concatenate([X|L1], L2, [X|L3]) :- concatenate(L1, L2, L3).

member(X, [X|_]).
member(X, [_|L]) :- member(X, L).

reverse(L, L1) :- reverse_concatenate(L, [], L1).

reverse_concatenate([], L, L).
reverse_concatenate([X|L1], L2, L3) :-

reverse_concatenate(L1, [X|L2], L3).

13.9.2 Family Example (descendants)

The goal descendant(X,Y) is true if Y is a descendant of X.

descendant(X, Y) :- offspring(X, Y).
descendant(X, Z) :- offspring(X, Y), descendant(Y, Z).

offspring(abraham, ishmael).
offspring(abraham, isaac).
offspring(isaac, esau).
offspring(isaac, jacob).

If for example the query

| ?- descendant(abraham, X).

Chapter 13: Writing Efficient Programs 339

is executed, Prolog’s backtracking results in different descendants of Abraham being re-
turned as successive instances of the variable X, i.e.

X = ishmael
X = isaac
X = esau
X = jacob

13.9.3 Association List Primitives

These predicates implement “association list” primitives. They use a binary tree represen-
tation. Thus the time complexity for these predicates is O(lg N), where N is the number of
keys. These predicates also illustrate the use of compare/3 (see Section 8.3 [Term Compare],
page 168) for case analysis.

The goal get_assoc(Key, Assoc, Value) is true when Key is identical to one of the keys
in Assoc, and Value unifies with the associated value.

get_assoc(Key, t(K,V,L,R), Val) :-
compare(Rel, Key, K),
get_assoc(Rel, Key, V, L, R, Val).

get_assoc(=, _, Val, _, _, Val).
get_assoc(<, Key, _, Tree, _, Val) :-

get_assoc(Key, Tree, Val).
get_assoc(>, Key, _, _, Tree, Val) :-

get_assoc(Key, Tree, Val).

13.9.4 Differentiation

The goal d(E1, X, E2) is true if expression E2 is a possible form for the derivative of
expression E1 with respect to X.

d(X, X, D) :- atomic(X), !, D = 1.
d(C, X, D) :- atomic(C), !, D = 0.
d(U+V, X, DU+DV) :- d(U, X, DU), d(V, X, DV).
d(U-V, X, DU-DV) :- d(U, X, DU), d(V, X, DV).
d(U*V, X, DU*V+U*DV) :- d(U, X, DU), d(V, X, DV).
d(U**N, X, N*U**N1*DU) :- integer(N), N1 is N-1, d(U, X, DU).
d(-U, X, -DU) :- d(U, X, DU).

340 SICStus Prolog

13.9.5 Use of Meta-Logical Predicates

This example illustrates the use of the meta-logical predicates var/1, arg/3, and functor/3
(see Section 8.7 [Meta Logic], page 183). The goal variables(Term, L, []) instantiates
variable L to a list of all the variable occurrences in Term. E.g.:

| ?- variables(d(U*V, X, DU*V+U*DV), L, []).

L = [U,V,X,DU,V,U,DV]

variables(X, [X|L0], L) :- var(X), !, L = L0.
variables(T, L0, L) :-
% nonvar(T),

functor(T, _, A),
variables(0, A, T, L0, L).

variables(A, A, _, L0, L) :- !, L = L0.
variables(A0, A, T, L0, L) :-
% A0<A,

A1 is A0+1,
arg(A1, T, X),
variables(X, L0, L1),
variables(A1, A, T, L1, L).

13.9.6 Use of Term Expansion

This example illustrates the use of user:term_expansion/[2,4] to augment the built-in
predicate expand_term/2, which works as a filter on the input to compile and consult. The
code below will allow the declaration ‘:- wait f/3’ as an alias for ‘:- block f(-,?,?)’.
Wait declarations were used in previous versions of SICStus Prolog.

Note the multifile declaration, which prevents this user:term_expansion/[2,4] clause
from erasing any other clauses for the same predicate that might have been loaded.

Chapter 13: Writing Efficient Programs 341

:- op(1150, fx, [wait]).

:- multifile user:term_expansion/2.
user:term_expansion((:- wait F/N), (:- block Head)) :-

functor(Head, F, N),
wb_args(N, Head).

wb_args(0, _Head).
wb_args(1, Head) :- arg(1, Head, -).
wb_args(N, Head) :-

N>1,
arg(N, Head, ?),
N1 is N-1,
wb_args(N1, Head).

13.9.7 Prolog in Prolog

This example shows how simple it is to write a Prolog interpreter in Prolog, and illustrates
the use of a variable goal. In this mini-interpreter, goals and clauses are represented as
ordinary Prolog data structures (i.e. terms). Terms representing clauses are specified using
the predicate my_clause/1, e.g.:

my_clause((grandparent(X, Z) :- parent(X, Y), parent(Y, Z))).

A unit clause will be represented by a term such as

my_clause((parent(john, mary) :- true)).

The mini-interpreter consists of three clauses:

execute((P,Q)) :- !, execute(P), execute(Q).
execute(P) :- predicate_property(P, built_in), !, P.
execute(P) :- my_clause((P :- Q)), execute(Q).

The second clause enables the mini-interpreter to cope with calls to ordinary Prolog predi-
cates, e.g. built-in predicates. The mini-interpreter needs to be extended to cope with the
other control structures, i.e. !, (P;Q), (P->Q), (P->Q;R), (\+ P), and if(P,Q,R).

13.9.8 Translating English Sentences into Logic Formulae

The following example of a definite clause grammar defines in a formal way the traditional
mapping of simple English sentences into formulae of classical logic. By way of illustration,
if the sentence

Every man that lives loves a woman.

342 SICStus Prolog

is parsed as a sentence by the call

| ?- phrase(sentence(P), [every,man,that,lives,loves,a,woman]).

then P will get instantiated to

all(X):(man(X)&lives(X) => exists(Y):(woman(Y)&loves(X,Y)))

where :, & and => are infix operators defined by

:- op(900, xfx, =>).
:- op(800, xfy, &).
:- op(550, xfy, :). /* predefined */

The grammar follows:

sentence(P) --> noun_phrase(X, P1, P), verb_phrase(X, P1).

noun_phrase(X, P1, P) -->
determiner(X, P2, P1, P), noun(X, P3), rel_clause(X, P3, P2).

noun_phrase(X, P, P) --> name(X).

verb_phrase(X, P) --> trans_verb(X, Y, P1), noun_phrase(Y, P1, P).
verb_phrase(X, P) --> intrans_verb(X, P).

rel_clause(X, P1, P1&P2) --> [that], verb_phrase(X, P2).
rel_clause(_, P, P) --> [].

determiner(X, P1, P2, all(X):(P1=>P2)) --> [every].
determiner(X, P1, P2, exists(X):(P1&P2)) --> [a].

noun(X, man(X)) --> [man].
noun(X, woman(X)) --> [woman].

name(john) --> [john].

trans_verb(X, Y, loves(X,Y)) --> [loves].
intrans_verb(X, lives(X)) --> [lives].

13.10 The Cross-Referencer

13.10.1 Introduction

The main purpose of the cross-referencer, spxref, is to find undefined predicates and un-
reachable code. To this end, it begins by looking for initializations, hooks and public

Chapter 13: Writing Efficient Programs 343

directives to start tracing the reachable code from. If an entire application is being checked,
it also traces from user:runtime_entry/1. If individual module-files are being checked, it
also traces from their export lists.

A second function of spxref is to aid in the formation of module statements. spxref can
list all of the required module/2 and use_module/2 statements by file.

13.10.2 Basic Use

The cross-referencer is run from the shell prompt, specifying the names of the Prolog source
files you wish to check. You may omit the ‘.pl’ suffix if you like.

% spxref [-R] [-v] [-c] [-i ifile] [-w wfile] [-x xfile] [-u ufile
] fspec ...

spxref takes a number of options, as follows. File arguments should be given as atoms or
as ‘-’, denoting the standard output stream.

‘-R’ Check an application, i.e. follow user:runtime_entry/1, as opposed to module
declarations.

‘-c’ Generate standard compiler style error messages.

‘-v’ Verbose output. This echoes the names of the files being read.

‘-i ifile’ An initialization file, which is loaded before processing begins.

‘-w wfile’ Warning file. Warnings are written to the standard error stream by default.

‘-x xfile’ Generate a cross-reference file. This is not generated by default.

‘-m mfile’ Generate a file indicating which predicates are imported and which are exported
for each file. This is not generated by default.

‘-u ufile’ Generate a file listing all the undefined predicates. This is not generated by
default.

13.10.3 Practice and Experience

Your code will probably rely on operator declarations and possibly term expansion. The
cross-referencer handles this in much the same way as fcompile/1: you must supply an
initialization file. Contrary to fcompile/1, spxref will execute any operator declaration it
encounters.

Supply meta-predicate declarations for your meta-predicates. Otherwise, the cross-
referencer will not follow the meta-predicates’ arguments. Be sure the cross-referencer
encounters the meta-predicate declarations before it encounters calls to the declared predi-
cates.

344 SICStus Prolog

The cross-referencer traces from initializations, hooks, predicates declared public, and
optionally from user:runtime_entry/1 and module declarations. The way it handles meta-
predicates requires that your application load its module-files before its non-module-files.

This cross-referencer was written in order to tear out the copious dead code from the
application that the author became responsible for. If you are doing such a thing, the
cross-referencer is an invaluable tool. Be sure to save the output from the first run that
you get from the cross referencer: this is very useful resource to help you find things that
you’ve accidentally ripped out and that you really needed after all.

There are situations where the cross-referencer does not follow certain predicates. This
can happen if the predicate name is constructed on the fly, or if it is retrieved from the
database. In this case, add public declarations for these. Alternatively, you could create
term expansions that are peculiar to the cross-referencer.

Chapter 14: The SICStus Tools 345

14 The SICStus Tools

The SICStus tools are the tools that are automatically installed with SICStus Prolog as
shell commands. They are all described in detail elsewhere in this manual; this is just a
summary.

sicstus The stream-based development system. See Section 3.1 [Start], page 21.

spwin The windowed development system for Windows. See Section 3.1 [Start],
page 21.

splm The SICStus license manager.

splfr The foreign resource linker. See Section 9.2.5 [The Foreign Resource Linker],
page 224.

spld The application builder. See Section 9.8.3 [The Application Builder], page 258.

spdet The determinacy checker. See Section 13.5 [The Determinacy Checker],
page 325.

spxref The cross-referencer. See Section 13.10 [The Cross-Referencer], page 342.

346 SICStus Prolog

Chapter 15: The Prolog Library 347

15 The Prolog Library

% TODO: Pillow, PrologBeans, Spaceout, XML. % Manual order.

The Prolog library comprises a number of packages that are thought to be useful in a
number of applications. Note that the predicates in the Prolog library are not built-in
predicates. One has to explicitly load each package to get access to its predicates. The
following packages are provided:

arrays (see Chapter 16 [Arrays], page 351)
provides an implementation of extendible arrays with logarithmic access time.

assoc (see Chapter 17 [Assoc], page 353)
uses AVL trees to implement “association lists”, i.e. extendible finite mappings
from terms to terms.

atts (see Chapter 18 [Attributes], page 355)
provides a means of associating with variables arbitrary attributes, i.e. named
properties that can be used as storage locations as well as hooks into Prolog’s
unification.

heaps (see Chapter 19 [Heaps], page 361)
implements binary heaps, the main application of which are priority queues.

lists (see Chapter 20 [Lists], page 363)
provides basic operations on lists.

terms (see Chapter 21 [Term Utilities], page 367)
provides a number of operations on terms.

ordsets (see Chapter 22 [Ordsets], page 371)
defines operations on sets represented as lists with the elements ordered in
Prolog standard order.

queues (see Chapter 23 [Queues], page 373)
defines operations on queues (FIFO stores of information).

random (see Chapter 24 [Random], page 375)
provides a random number generator.

system (see Chapter 25 [System Utilities], page 377)
provides access to operating system services.

trees (see Chapter 26 [Trees], page 381)
uses binary trees to represent non-extendible arrays with logarithmic access
time. The functionality is very similar to that of library(arrays), but
library(trees) is slightly more efficient if the array does not need to be ex-
tendible.

ugraphs (see Chapter 27 [UGraphs], page 383)
Provides an implementation of directed and undirected graphs with unlabeled
edges.

348 SICStus Prolog

wgraphs (see Chapter 28 [WGraphs], page 387)
provides an implementation of directed and undirected graphs where each edge
has an integral weight.

sockets (see Chapter 29 [Sockets], page 391)
provides an interface to system calls for manipulating sockets.

linda/client
linda/server (see Chapter 30 [Linda Library], page 395)

provides an implementation of the Linda concept for process communication.

bdb (see Chapter 31 [BDB], page 401)
provides an interface to Berkeley DB, for storage and retrieval of terms on disk
files with user-defined multiple indexing.

clpb (see Chapter 32 [CLPB], page 411)
provides constraint solving over Booleans.

clpq
clpr (see Chapter 33 [CLPQR], page 417)

provides constraint solving over Q (Rationals) or R (Reals).

clpfd (see Chapter 34 [CLPFD], page 445)
provides constraint solving over Finite (Integer) Domains

chr (see Chapter 35 [CHR], page 495)
provides Constraint Handling Rules

fdbg (see Chapter 36 [FDBG], page 519)
provides a debugger for finite domain constraint programs

objects (see Chapter 37 [Obj Intro], page 547)
provides the combination of the logic programming and the object-oriented
programming paradigms.

pillow (see Chapter 38 [PiLLoW], page 583)
The PiLLoW Web Programming Library,

xml (see Chapter 39 [XML], page 585)
Parsing and generating XML.

tcltk (see Chapter 40 [Tcl/Tk], page 587)
An interface to the Tcl/Tk language and toolkit.

gauge (see Chapter 41 [Gauge], page 687)
is a profiling tool for Prolog programs with a graphical interface based on tcltk.

charsio (see Chapter 42 [Chars I/O], page 691)
defines I/O predicates that read from, or write to, a code-list.

jasper (see Chapter 43 [Jasper], page 693)
Access Java from Prolog.

prologbeans (see Chapter 44 [PrologBeans], page 723)
Access Prolog from Java.

Chapter 15: The Prolog Library 349

comclient (see Chapter 45 [COM Client], page 741)
An interface to Microsoft COM automaton objects.

vbsp (see Chapter 46 [Visual Basic], page 747)
Access Prolog from Visual Basic.

flinkage (see Chapter 47 [Runtime Utilities], page 763)
is a tool for generating glue code for the Foreign Language Interface when
building statically linked runtime systems or development systems. No longer
supported but provided for porting really old code.

spaceout (see Chapter 48 [Spaceout], page 765)
Meta-call with limit on memory use.

timeout (see Chapter 49 [Timeout], page 767)
Meta-call with limit on execution time.

wcx_example
provides a sample implementation of a Wide Character Extension (WCX) box.

To load a library package Package, you will normally enter a query

| ?- use_module(library(Package)).

A library package normally consists of one or more hidden modules.

An alternative way of loading from the library is using the built-in predicate require/1
(see Section 8.1.1 [Read In], page 134). The index file ‘INDEX.pl’ needed by require/1 can
be created by the make_index program. This program is loaded as:

| ?- use_module(library(mkindex)).

make_index:make_library_index(+LibraryDirectory)
Creates a file ‘INDEX.pl’ in LibraryDirectory. All ‘*.pl’ files in the directory
and all its subdirectories are scanned for module/2 declarations. From these
declarations, the exported predicates are entered into the index.

350 SICStus Prolog

Chapter 16: Array Operations 351

16 Array Operations

This package provides an implementation of extendible arrays with logarithmic access time.

Beware: the atom $ is used to indicate an unset element, and the functor $ /4 is used to
indicate a subtree. In general, array elements whose principal function symbol is $ will not
work.

To load the package, enter the query

| ?- use_module(library(arrays)).

new_array(-Array)
Binds Array to a new empty array. Example:

| ?- new_array(A).

A = array($($,$,$,$),2)

is_array(+Array)
Is true when Array actually is an array.

aref(+Index, +Array, ?Element)
Element is the element at position Index in Array. It fails if Array[Index] is
undefined.

arefa(+Index, +Array, ?Element)
Is like aref/3 except that Element is a new array if Array[Index] is undefined.
Example:

| ?- arefa(3, array($($,$,$,$),2), E).

E = array($($,$,$,$),2)

arefl(+Index, +Array, ?Element)
Is as aref/3 except that Element is [] for undefined cells. Example:

| ?- arefl(3, array($($,$,$,$),2), E).

E = []

array_to_list(+Array, -List)
List is a list with the pairs Index-Element of all the elements of Array. Example:

| ?- array_to_list(array($(a,b,c,d),2), List).

List = [0-a,1-b,2-c,3-d]

aset(+Index, +Array, +Element, -NewArray)
NewArray is the result of setting Array[Index] to Element. Example:

| ?- aset(3,array($($,$,$,$),2), a, Newarr).

Newarr = array($($,$,$,a),2)

352 SICStus Prolog

Chapter 17: Association Lists 353

17 Association Lists

In this package, finite mappings (“association lists”) are represented by AVL trees, i.e. they
are subject to the Adelson-Velskii-Landis balance criterion:

A tree is balanced iff for every node the heights of its two subtrees differ by at
most 1.

The empty tree is represented as t. A tree with key K, value V, and left and right subtrees
L and R is represented as t(K,V,|R|-|L|,L,R), where |T| denotes the height of T.

The advantage of this representation is that lookup, insertion and deletion all become—in
the worst case—O(log n) operations.

The algorithms are from [Wirth 76], section 4.4.6–4.4.8.

To load the package, enter the query

| ?- use_module(library(assoc)).

empty_assoc(?Assoc)
Assoc is an empty AVL tree.

assoc_to_list(+Assoc, ?List)
List is a list of Key-Value pairs in ascending order with no duplicate Keys
specifying the same finite function as the association tree Assoc. Use this to
convert an association tree to a list.

is_assoc(+Assoc)
Assoc is a (proper) AVL tree. It checks both that the keys are in ascending
order and that Assoc is properly balanced.

min_assoc(+Assoc, ?Key, ?Val)
Key is the smallest key in Assoc and Val is its value.

max_assoc(+Assoc, ?Key, ?Val)
Key is the greatest key in Assoc and Val is its value.

gen_assoc(?Key, +Assoc, ?Value)
Key is associated with Value in the association tree Assoc. Can be used to
enumerate all Values by ascending Keys.

get_assoc(+Key, +Assoc, ?Value)
Key is identical (==) to one of the keys in the association tree Assoc, and Value
unifies with the associated value.

get_assoc(+Key, +OldAssoc, ?OldValue, ?NewAssoc, ?NewValue)
OldAssoc and NewAssoc are association trees of the same shape having the
same elements except that the value for Key in OldAssoc is OldValue and the
value for Key in NewAssoc is NewValue.

get_next_assoc(+Key, +Assoc, ?Knext, ?Vnext)
Knext and Vnext is the next key and associated value after Key in Assoc.

354 SICStus Prolog

get_prev_assoc(+Key, +Assoc, ?Kprev, ?Vprev)
Kprev and Vprev is the previous key and associated value after Key in Assoc.

list_to_assoc(+List, ?Assoc)
List is a proper list of Key-Value pairs (in any order) and Assoc is an association
tree specifying the same finite function from Keys to Values.

ord_list_to_assoc(+List, ?Assoc)
List is a proper list of Key-Value pairs (keysorted) and Assoc is an association
tree specifying the same finite function from Keys to Values.

map_assoc(:Pred, ?Assoc)
Assoc is an association tree, and for each Key, if Key is associated with Value
in Assoc, Pred(Value) is true.

map_assoc(:Pred, ?OldAssoc, ?NewAssoc)
OldAssoc and NewAssoc are association trees of the same shape, and for each
Key, if Key is associated with Old in OldAssoc and with New in NewAssoc,
Pred(Old,New) is true.

put_assoc(+Key, +OldAssoc, +Val, ?NewAssoc)
OldAssoc and NewAssoc define the same finite function, except that NewAssoc
associates Key with Val. OldAssoc need not have associated Key with any
value.

del_assoc(+Key, +OldAssoc, ?Val, ?NewAssoc)
OldAssoc and NewAssoc define the same finite function except that OldAssoc
associates Key with Val and NewAssoc doesn’t associate Key with any value.

del_min_assoc(+OldAssoc, ?Key, ?Val, ?NewAssoc)
OldAssoc and NewAssoc define the same finite function except that OldAssoc
associates Key with Val and NewAssoc doesn’t associate Key with any value
and Key precedes all other keys in OldAssoc.

del_max_assoc(+OldAssoc, ?Key, ?Val, -NewAssoc)
OldAssoc and NewAssoc define the same finite function except that OldAssoc
associates Key with Val and NewAssoc doesn’t associate Key with any value
and Key is preceded by all other keys in OldAssoc.

Chapter 18: Attributed Variables 355

18 Attributed Variables

This package implements attributed variables. It provides a means of associating with
variables arbitrary attributes, i.e. named properties that can be used as storage locations
as well as to extend the default unification algorithm when such variables are unified with
other terms or with each other. This facility was primarily designed as a clean interface
between Prolog and constraint solvers, but has a number of other uses as well. The basic
idea is due to Christian Holzbaur and he was actively involved in the final design. For
background material, see the dissertation [Holzbaur 90].

To load the package, enter the query

| ?- use_module(library(atts)).

The package provides a means to declare and access named attributes of variables. The
attributes are compound terms whose arguments are the actual attribute values. The
attribute names are private to the module in which they are defined. They are defined with
a declaration

:- attribute AttributeSpec, ..., AttributeSpec.

where each AttributeSpec has the form (Name/Arity). There must be at most one such
declaration in a module Module.

Having declared some attribute names, these attributes can now be added, updated and
deleted from unbound variables. For each declared attribute name, any variable can have
at most one such attribute (initially it has none).

The declaration causes the following two access predicates to become defined by means of the
user:goal_expansion/3 mechanism. They take a variable and an AccessSpec as arguments
where an AccessSpec is either +(Attribute), -(Attribute), or a list of such. The ‘+’ prefix
may be dropped for convenience. The meaning of the ‘+’/‘-’ prefix is documented below:

Module:get_atts(-Var, ?AccessSpec)
Gets the attributes of Var according to AccessSpec. If AccessSpec is unbound,
it will be bound to a list of all set attributes of Var. Non-variable terms cause
a type error to be raised. The prefixes in the AccessSpec have the following
meaning:

+(Attribute)
The corresponding actual attribute must be present and is unified
with Attribute.

-(Attribute)
The corresponding actual attribute must be absent. The arguments
of Attribute are ignored, only the name and arity are relevant.

Module:put_atts(-Var, +AccessSpec)
Sets the attributes of Var according to AccessSpec. Non-variable terms cause a
type error to be raised. The effects of put_atts/2 are undone on backtracking.

356 SICStus Prolog

+(Attribute)
The corresponding actual attribute is set to Attribute. If the actual
attribute was already present, it is simply replaced.

-(Attribute)
The corresponding actual attribute is removed. If the actual at-
tribute was already absent, nothing happens.

A module that contains an attribute declaration has an opportunity to extend the default
unification algorithm by defining the following predicate:

Module:verify_attributes(-Var, +Value, -Goals) hook

This predicate is called whenever a variable Var that might have attributes in
Module is about to be bound to Value (it might have none). The unification
resumes after the call to verify_attributes/3. Value is a non-variable term,
or another attributed variable. Var might have no attributes present in Module
; the unification extension mechanism is not sophisticated enough to filter out
exactly the variables that are relevant for Module.
verify_attributes/3 is called before Var has actually been bound to Value.
If it fails, the unification is deemed to have failed. It may succeed nondetermi-
nately, in which case the unification might backtrack to give another answer.
It is expected to return, in Goals, a list of goals to be called after Var has been
bound to Value.
verify_attributes/3 may invoke arbitrary Prolog goals, but Var should not
be bound by it. Binding Var will result in undefined behavior.
If Value is a non-variable term, verify_attributes/3 will typically inspect
the attributes of Var and check that they are compatible with Value and fail
otherwise. If Value is another attributed variable, verify_attributes/3 will
typically copy the attributes of Var over to Value, or merge them with Value’s, in
preparation for Var to be bound to Value. In either case, verify_attributes/3
may determine Var’s current attributes by calling get_atts(Var,List) with
an unbound List.

An important use for attributed variables is in implementing coroutining facilities as an
alternative or complement to the built-in coroutining mechanisms. In this context it might
be useful to be able to interpret some of the attributes of a variable as a goal that is blocked
on that variable. Certain built-in predicates (frozen/2, call_residue/2) and the Prolog
top-level need to access blocked goals, and so need a means of getting the goal interpretation
of attributed variables by calling:

Module:attribute_goal(-Var, -Goal) hook

This predicate is called in each module that contains an attribute declaration,
when an interpretation of the attributes as a goal is needed, for example in
frozen/2 and call_residue/2. It should unify Goal with the interpretation,
or merely fail if no such interpretation is available.

Chapter 18: Attributed Variables 357

An important use for attributed variables is to provide an interface to constraint solvers. An
important function for a constraint solver in the constraint logic programming paradigm is
to be able to perform projection of the residual constraints onto the variables that occurred
in the top-level query. A module that contains an attribute declaration has an opportunity
to perform such projection of its residual constraints by defining the following predicate:

Module:project_attributes(+QueryVars, +AttrVars) hook

This predicate is called by the Prolog top level and by the built-in predicate
call_residue/2 in each module that contains an attribute declaration. Query-
Vars is the list of variables occurring in the query, or in terms bound to such
variables, and AttrVars is a list of possibly attributed variables created dur-
ing the execution of the query. The two lists of variables may or may not be
disjoint.
If the attributes on AttrVars can be interpreted as constraints, this predicate
will typically “project” those constraints onto the relevant QueryVars. Ideally,
the residual constraints will be expressed entirely in terms of the QueryVars,
treating all other variables as existentially quantified. Operationally, project_
attributes/2 must remove all attributes from AttrVars, and add transformed
attributes representing the projected constraints to some of the QueryVars.
Projection has the following effect on the Prolog top-level. When the top-
level query has succeeded, project_attributes/2 is called first. The top-level
then prints the answer substition and residual constraints. While doing so, it
searches for attributed variables created during the execution of the query. For
each such variable, it calls attribute_goal/2 to get a printable representation
of the constraint encoded by the attribute. Thus, project_attributes/2 is a
mechanism for controlling how the residual constraints should be displayed at
top-level.
Similarly during the execution of call_residue(Goal,Residue), when Goal
has succeeded, project_attributes/2 is called. After that, all attributed
variables created during the execution of Goal are located. For each such vari-
able, attribute_goal/2 produces a term representing the constraint encoded
by the attribute, and Residue is unified with the list of all such terms.
The exact definition of project_attributes/2 is constraint system depen-
dent, but see Section 33.5 [Projection], page 430 for details about projection in
clp(Q,R).

In the following example we sketch the implementation of a finite domain “solver”. Note
that an industrial strength solver would have to provide a wider range of functionality and
that it quite likely would utilize a more efficient representation for the domains proper. The
module exports a single predicate domain(-Var,?Domain), which associates Domain (a list
of terms) with Var. A variable can be queried for its domain by leaving Domain unbound.

We do not present here a definition for project_attributes/2. Projecting finite domain
constraints happens to be difficult.

358 SICStus Prolog

% domain.pl

:- module(domain, [domain/2]).

:- use_module(library(atts)).
:- use_module(library(ordsets), [

ord_intersection/3,
ord_intersect/2,
list_to_ord_set/2

]).

:- attribute dom/1.

verify_attributes(Var, Other, Goals) :-
get_atts(Var, dom(Da)), !, % are we involved?
(var(Other) -> % must be attributed then

(get_atts(Other, dom(Db)) -> % has a domain?
ord_intersection(Da, Db, Dc),
Dc = [El|Els], % at least one element
(Els = [] -> % exactly one element

Goals = [Other=El] % implied binding
; Goals = [],

put_atts(Other, dom(Dc))% rescue intersection
)

; Goals = [],
put_atts(Other, dom(Da)) % rescue the domain

)
; Goals = [],

ord_intersect([Other], Da) % value in domain?
).

verify_attributes(_, _, []). % unification triggered
% because of attributes
% in other modules

attribute_goal(Var, domain(Var,Dom)) :- % interpretation as goal
get_atts(Var, dom(Dom)).

domain(X, Dom) :-
var(Dom), !,
get_atts(X, dom(Dom)).

domain(X, List) :-
list_to_ord_set(List, Set),
Set = [El|Els], % at least one element
(Els = [] -> % exactly one element

X = El % implied binding
; put_atts(Fresh, dom(Set)),

X = Fresh % may call
% verify_attributes/3

).

Chapter 18: Attributed Variables 359

Note that the “implied binding” Other=El was deferred until after the completion of
verify_attribute/3. Otherwise, there might be a danger of recursively invoke verify_
attribute/3, which might bind Var, which is not allowed inside the scope of verify_
attribute/3. Deferring unifications into the third argument of verify_attribute/3 ef-
fectively serializes th calls to verify_attribute/3.

Assuming that the code resides in the file ‘domain.pl’, we can load it via:

| ?- use_module(domain).

Let’s test it:

| ?- domain(X,[5,6,7,1]), domain(Y,[3,4,5,6]), domain(Z,[1,6,7,8]).

domain(X,[1,5,6,7]),
domain(Y,[3,4,5,6]),
domain(Z,[1,6,7,8])

| ?- domain(X,[5,6,7,1]), domain(Y,[3,4,5,6]), domain(Z,[1,6,7,8]),

X=Y.

Y = X,
domain(X,[5,6]),
domain(Z,[1,6,7,8])

| ?- domain(X,[5,6,7,1]), domain(Y,[3,4,5,6]), domain(Z,[1,6,7,8]),

X=Y, Y=Z.

X = 6,
Y = 6,
Z = 6

To demonstrate the use of the Goals argument of verify_attributes/3, we give an im-
plementation of freeze/2. We have to name it myfreeze/2 in order to avoid a name clash
with the built-in predicate of the same name.

360 SICStus Prolog

% myfreeze.pl

:- module(myfreeze, [myfreeze/2]).

:- use_module(library(atts)).

:- attribute frozen/1.

verify_attributes(Var, Other, Goals) :-
get_atts(Var, frozen(Fa)), !, % are we involved?
(var(Other) -> % must be attributed then

(get_atts(Other, frozen(Fb)) % has a pending goal?
-> put_atts(Other, frozen((Fa,Fb))) % rescue conjunction
; put_atts(Other, frozen(Fa)) % rescue the pending goal
),
Goals = []

; Goals = [Fa]
).

verify_attributes(_, _, []).

attribute_goal(Var, Goal) :- % interpretation as goal
get_atts(Var, frozen(Goal)).

myfreeze(X, Goal) :-
put_atts(Fresh, frozen(Goal)),
Fresh = X.

Assuming that this code lives in file ‘myfreeze.pl’, we would use it via:

| ?- use_module(myfreeze).

| ?- myfreeze(X,print(bound(x,X))), X=2.

bound(x,2) % side-effect
X = 2 % bindings

The two solvers even work together:

| ?- myfreeze(X,print(bound(x,X))), domain(X,[1,2,3]),

domain(Y,[2,10]), X=Y.

bound(x,2) % side-effect
X = 2, % bindings
Y = 2

The two example solvers interact via bindings to shared attributed variables only. More
complicated interactions are likely to be found in more sophisticated solvers. The cor-
responding verify_attributes/3 predicates would typically refer to the attributes from
other known solvers/modules via the module prefix in Module:get_atts/2.

Chapter 19: Heap Operations 361

19 Heap Operations

A binary heap is a tree with keys and associated values that satisfies the heap condition:
the key of every node is greater than or equal to the key of its parent, if it has one. The
main application of binary heaps are priority queues. To load the package, enter the query

| ?- use_module(library(heaps)).

add_to_heap(+OldHeap, +Key, +Datum, ?NewHeap)
Inserts the new Key-Datum pair into the current heap OldHeap producing the
new heap NewHeap. The insertion is not stable, that is, if you insert several
pairs with the same Key it is not defined which of them will come out first, and
it is possible for any of them to come out first depending on the history of the
heap. Example:

| ?- add_to_heap(t(0,[],t),3,678,N).

N = t(1,[],t(3,678,t,t))

get_from_heap(+OldHeap, ?Key, ?Datum, ?NewHeap)
Returns the Key-Datum pair in OldHeap with the smallest Key, and also a
NewHeap, which is the OldHeap with that pair deleted. Example:

get_from_heap(t(1,[],t(1,543,t,t)),K,D,N).

D = 543,
K = 1,
N = t(0,[1],t)

empty_heap(?Heap)
is true when Heap is the empty heap.

heap_size(+Heap, ?Size)
Size is the number of elements in the heap Heap.

heap_to_list(+Heap, -List)
Returns the current set of Key-Datum pairs in the Heap as a keysorted List.

is_heap(+Heap)
is true when Heap is a valid heap.

list_to_heap(+List, -Heap)
Takes a list List of Key-Datum pairs and forms them into a heap Heap. Exam-
ple:

| ?- list_to_heap([1-34,2-345,5-678],H).

H = t(3,[],t(1,34,t(2,345,t,t),t(5,678,t,t)))

min_of_heap(+Heap, ?Key, ?Datum)
Returns the Key-Datum pair at the top of the heap Heap without removing it.
Fails if the heap is empty.

362 SICStus Prolog

min_of_heap(+Heap, ?Key1, ?Datum1, ?Key2, ?Datum2)
Returns the smallest (Key1-Datum1) and second smallest (Key2-Datum2) pairs
in the Heap, without deleting them. It fails if the heap does not have at least
two elements.

delete_from_heap(+OldHeap, +Key, ?Datum, ?NewHeap)
deletes a single Key-Datum pair in OldHeap producing NewHeap. This is useful
if you want to e.g. change the priority of Datum. Beware: this operation needs
to search the whole heap in the worst case.

Chapter 20: List Operations 363

20 List Operations

This package defines operations on lists. Lists are a very basic data structure, but never-
theless certain very frequent operations are provided in this package.

To load the package, enter the query

| ?- use_module(library(lists)).

append(?Prefix, ?Suffix, ?Combined)
Combined is the combined list of the elements in Prefix followed by the elements
in Suffix. It can be used to form Combined or it can be used to find Prefix
and/or Suffix from a given Combined.

delete(+List, +Element, ?Residue)
Residue is the result of removing all identical occurrences of Element in List.

is_list(+List)
List is a proper list.

last(?List, ?Last)
Last is the last element in List. Example:

| ?- last([x,y,z], Z).

Z = z

max_list(+ListOfNumbers, ?Max)
Max is the largest of the elements in ListOfNumbers.

member(?Element, ?List)
Element is a member of List. It may be used to test for membership in a list,
but it can also be used to enumerate all the elements in List. Example:

| ?- member(X, [a,b,c]).

X = a ? ;

X = b ? ;

X = c ? 〈RET〉

yes

memberchk(+Element, +List)
Element is a member of List, but memberchk/2 only succeeds once and can
therefore not be used to enumerate the elements in List. Example:

| ?- memberchk(X, [a,b,c]).

X = a ? ;

no

364 SICStus Prolog

min_list(+ListOfNumbers, ?Min)
Min is the smallest of the numbers in the list ListOfNumbers.

nextto(?X, ?Y, ?List)
X and Y appears side-by-side in List. Example:

| ?- nextto(X, Y, [1,2,3]).

X = 1,
Y = 2 ? ;

X = 2,
Y = 3 ? ;

no

no_doubles(?List)
List contains no duplicated elements. This is true when dif(X, Y) holds for all
pairs of members X and Y of the list.

non_member(?Element, ?List)
Element does not occur in List. This is true when dif(Element, Y) holds for
all members Y of the list.

nth(?N, ?List, ?Element)
Element is the Nth element of List. The first element is number 1. Example:

| ?- nth(N, [a,b,c,d,e,f,g,h,i], f).

N = 6

nth(?N, ?List, ?Element, ?Rest)
Element is in position N in the List and Rest is all elements in List except
Element.

nth0(?N, ?List, ?Element)
Element is the Nth element of List, counting the first element as 0.

nth0(?N, ?List, ?Element, ?Rest)
Element is the Nth element of List, counting the first element as 0. Rest is all
the other elements in List. Example:

| ?- nth0(N, [a,b,c,d,e,f,g,h,i,j], f, R).

N = 5,
R = [a,b,c,d,e,g,h,i,j]

permutation(?List, ?Perm)
Perm is a permutation of List.

prefix(?Prefix, ?List)
Prefix is a prefix of List. Example:

| ?- prefix([1,2,3], [1,2,3,4,5,6]).

Chapter 20: List Operations 365

remove_duplicates(+List, ?Pruned)
Pruned is the result of removing all identical duplicate elements in List. Exam-
ple:

| ?- remove_duplicates([1,2,3,2,3,1], P).

P = [1,2,3] ? ;

no

reverse(?List, ?Reversed)
Reversed has the same elements as List but in a reversed order.

same_length(?List1, ?List2)
List1 and List2 have the same number of elements.

same_length(?List1, ?List2, ?Length)
List1 and List2 have the same number of elements and that number is Length.
Example:

| ?- same_length([1,2,3], [9,8,7], N).

N = 3 ? ;

no

select(?Element, ?List, ?List2)
The result of removing an occurrence of Element in List is List2.

sublist(?Sub, ?List)
Sub contains some of the elements of List, in the same order.

substitute(+X, +Xlist, +Y, ?Ylist)
Xlist and Ylist are equal except for replacing identical occurrences of X by Y.
Example:

| ?- substitute(1, [1,2,3,4], 5, X).

X = [5,2,3,4]

sum_list(+ListOfNumbers, ?Sum)
Sum is the result of adding the ListOfNumbers together.

suffix(?Suffix, ?List)
Suffix is a suffix of List.

366 SICStus Prolog

Chapter 21: Term Utilities 367

21 Term Utilities

This package defines operations on terms for subsumption checking, “anti-unification”, test-
ing acyclicity, and getting the variables.

Please note: anti-unification is a purely syntactic operation; any attributes
attached to the variables are ignored.

To load the package, enter the query

| ?- use_module(library(terms)).

subsumes_chk(?General, ?Specific)
Provided General and Specific have no variables in common, Specific is an
instance of General, i.e. if there is a substitution that leaves Specific unchanged
and makes General identical to Specific. It doesn’t bind any variables.

| ?- subsumes_chk(f(X), f(a)).

true

| ?- subsumes_chk(f(a), f(X)).

no

| ?- subsumes_chk(A-A, B-C).

no

| ?- subsumes_chk(A-B, C-C).

true

subsumes(?General, ?Specific)
Provided General and Specific have no variables in common, Specific is an
instance of General. It will bind variables in General (but not those in Specific
) so that General becomes identical to Specific.

variant(?Term, ?Variant)
Term and Variant are identical modulo renaming of variables, provided Term
and Variant have no variables in common.

term_subsumer(?Term1, ?Term2, ?General)
General is the most specific term that generalizes Term1 and Term2. This
process is sometimes called anti-unification, as it is the dual of unification.

368 SICStus Prolog

| ?- term_subsumer(f(g(1,h(_))), f(g(_,h(1))), T).

T = f(g(_B,h(_A)))

| ?- term_subsumer(f(1+2,2+1), f(3+4,4+3), T).

T = f(_A+_B,_B+_A)

term_hash(?Term, ?Hash)
term_hash(?Term, +Depth, +Range, ?Hash)

If Term is instantiated up to the given Depth, an integer hash value in the range
[0,Range) as a function of Term is unified with Hash. Otherwise, the goal just
succeeds, leaving Hash uninstantiated.
If Term contains floats or integers outside the small integer range, the hash
value will be platform dependent. Otherwise, the hash value will be identical
across runs and platforms.
The depth of a term is defined as follows: the (principal functor of) the term
itself has depth 1, and an argument of a term with depth i has depth i+1.
Depth should be an integer >= -1. If Depth = -1 (the default), Term must be
ground, and all subterms of Term are relevant in computing Hash. Otherwise,
only the subterms up to depth Depth of Term are used in the computation.
Range should be an integer >= 1. The default will give hash values in a range
appropriate for all platforms.

| ?- term_hash([a,b,_], 3, 4, H).

H = 2

| ?- term_hash([a,b,_], 4, 4, H).

true

| ?- term_hash(f(a,f(b,f(_,[]))), 2, 4, H).

H = 2

term_hash/[2,4] is provided primarily as a tool for the construction of so-
phisticated Prolog clause access schemes. Its intended use is to generate hash
values for terms that will be used with first argument clause indexing, yielding
compact and efficient multi-argument or deep argument indexing.

term_variables(?Term, ?Variables)
Variables is the set of variables occurring in Term.

term_variables_bag(?Term, ?Variables)
Variables is the list of variables occurring in Term, in first occurrence order.
Each variable occurs once only in the list.

Chapter 21: Term Utilities 369

acyclic_term(?X)
True if X is finite (acyclic). Runs in linear time.

cyclic_term(?X)
True if X is infinite (cyclic). Runs in linear time.

370 SICStus Prolog

Chapter 22: Ordered Set Operations 371

22 Ordered Set Operations

This package defines operations on ordered sets. Ordered sets are sets represented as lists
with the elements ordered in a standard order. The ordering is defined by the @< family of
term comparison predicates and it is the ordering produced by the built-in predicate sort/2
(see Section 8.3 [Term Compare], page 168).

To load the package, enter the query

| ?- use_module(library(ordsets)).

is_ordset(+Set)
Set is an ordered set.

list_to_ord_set(+List, ?Set)
Set is the ordered representation of the set denoted by the unordered represen-
tation List. Example:

| ?- list_to_ord_set([p,r,o,l,o,g], P).

P = [g,l,o,p,r]

ord_add_element(+Set1, +Element ?Set2)
Set2 is Set1 with Element inserted in it, preserving the order. Example:

| ?- ord_add_element([a,c,d,e,f], b, N).

N = [a,b,c,d,e,f]

ord_del_element(+Set1, +Element, ?Set2)
Set2 is like Set1 but with Element removed.

ord_disjoint(+Set1, +Set2)
The two ordered sets have no elements in common.

ord_intersect(+Set1, +Set2)
The two ordered sets have at least one element in common.

ord_intersection(+Set1, +Set2, ?Intersect)
Intersect is the ordered set representation of the intersection between Set1 and
Set2.

ord_intersection(+Set1, +Set2, ?Intersect, ?Diff)
Intersect is the intersection between Set1 and Set2, and Diff is the difference
between Set2 and Set1.

ord_intersection(+Sets, ?Intersection)
Intersection is the ordered set representation of the intersection of all the sets
in Sets. Example:

| ?- ord_intersection([[1,2,3],[2,3,4],[3,4,5]], I).

I = [3]

372 SICStus Prolog

ord_member(+Elt, +Set)
is true when Elt is a member of Set.

ord_seteq(+Set1, +Set2)
Is true when the two arguments represent the same set. Since they are assumed
to be ordered representations, they must be identical.

ord_setproduct(+Set1, +Set2, ?SetProduct)
SetProduct is the Cartesian Product of the two Sets. The product is represented
as pairs: Elem1-Elem2 where Elem1 is an element from Set1 and Elem2 is an
element from Set2. Example

| ?- ord_setproduct([1,2,3], [4,5,6], P).

P = [1-4,1-5,1-6,2-4,2-5,2-6,3-4,3-5,3-6]

ord_subset(+Set1, +Set2)
Every element of the ordered set Set1 appears in the ordered set Set2.

ord_subtract(+Set1, +Set2, ?Difference)
Difference contains all and only the elements of Set1 that are not also in Set2.
Example:

| ?- ord_subtract([1,2,3,4], [3,4,5,6], S).

S = [1,2]

ord_symdiff(+Set1, +Set2, ?Difference)
Difference is the symmetric difference of Set1 and Set2. Example:

| ?- ord_symdiff([1,2,3,4], [3,4,5,6], D).

D = [1,2,5,6]

ord_union(+Set1, +Set2, ?Union)
Union is the union of Set1 and Set2.

ord_union(+Set1, +Set2, ?Union, ?New)
Union is the union of Set1 and Set2, and New is the elements of Set2 that are
not also in Set1. This is useful if you are accumulating members of a set and
you want to process new elements as they are added to the set.

ord_union(+Sets, ?Union)
Union is the union of all the sets in Sets. Example:

| ?- ord_union([[1,2,3],[2,3,4],[3,4,5]], U).

U = [1,2,3,4,5]

Chapter 23: Queue Operations 373

23 Queue Operations

A queue is a first-in, first-out store of information. This implementation of queues uses
difference-lists, the head of the difference-list represents the beginning of the queue and the
tail represents the end of the queue. The members of the difference-list are the elements in
the queue. The first argument in the queue-representation is the number of elements in the
queue in unary representation.

Thus, a queue with n elements is represented as follows:

q(s(...s(0)...), [X1,...,Xn,Y1,...,Ym], [Y1,...,Ym])

where n is the length of the queue and X1. . .Xn are the elements of the queue.

To load the package, enter the query

| ?- use_module(library(queues)).

empty_queue(?Queue)
Is true if Queue has no elements.

is_queue(+Queue)
is true when Queue is a valid queue.

queue(?X, ?Queue)
Is true if Queue has one element and that is X.

queue_head(?Head, ?Queue1, ?Queue2)
Queue1 and Queue2 are the same queues except that Queue2 has Head inserted
in the front. It can be used to enqueue the first element in Queue2. Example:

| ?- queue_head(Head, Nq,

q(s(s(s(s(0)))),[1,2,3,4|R],R)).

Head = 1,
Nq = q(s(s(s(0))),[2,3,4|_193],_193),
R = _193

queue_head_list(+HeadList, ?Queue1, ?Queue2)
Queue1 and Queue2 have the same elements except that Queue2 has HeadList
inserted in the front.

queue_last(?Last, ?Queue1, ?Queue2)
Queue2 is like Queue1 but have Last as the last element in the queue.

queue_last_list(+LastList, ?Queue1, ?Queue2)
Queue1 and Queue2 are the same queues except that Queue2 has the list of
elements LastList last in the queue. Example:

| ?- queue_last_list([5,6], q(s(s(0)))), [1,2|R], R), NQ).

NQ = q(s(s(s(s(0)))))),[1,2,5,6|_360],_360),
R = [5,6|_360]

374 SICStus Prolog

list_queue(+List, ?Queue)
Queue is the queue representation of the elements in List. Example:

| ?- list_queue([1,2,3,4], Q).

Q = q(s(s(s(s(0)))),[1,2,3,4|_138],_138)

queue_length(+Queue, ?Length)
Length is the number of elements in Queue. Example:

| ?- queue_length(q(s(s(s(s(s(0))))),[a,b,c,d,e|R],R), L).

L = 5,
R = _155

Chapter 24: Random Number Generator 375

24 Random Number Generator

This package provides a random number generator. To load the package, enter the query

| ?- use_module(library(random)).

This library fully supports multiple SICStus run-times in a process.

random(-Number)
Binds Number to a random float in the interval [0.0, 1.0). Note that 1.0 will
never be generated.

random(+Lower, +Upper, -Number)
Binds Number to a random integer in the interval [Lower,Upper) if Lower and
Upper are integers. Otherwise, Number is bound to a random float between
Lower and Upper. Upper will never be generated.

randseq(+K, +N, -RandomSeq)
Generates an unordered set of K unique integers, chosen randomly in the range
1..N. RandomSeq is not returned in any particular order.

randset(+K, +N, -RandomSet)
Generates an ordered set of K unique integers, chosen randomly in the range
1..N. The set is returned in standard order.

getrand(?State)
Tries to unify State with the term rand(X,Y,Z) where X, Y, and Z are integers
describing the state of the random generator.

setrand(rand(+X,+Y,+Z))
Sets the state of the random generator. X, Y, and Z must be integers in the
ranges [1,30269), [1,30307), and [1,30323), respectively.

376 SICStus Prolog

Chapter 25: Operating System Utilities 377

25 Operating System Utilities

This package contains utilities for invoking services from the operating system. To load the
package, enter the query

| ?- use_module(library(system)).

Certain predicates described below take names of files or directories as arguments. These
must be given as atoms, and the predicates below will not call absolute_file_name/3 on
them.

Some predicates are described as invoking the default shell. Specifically this means in-
voking ‘/bin/sh’ on UNIX platforms. Under MSDOS, Windows and OS/2, the command
interpreter given by the environment variable COMSPEC is invoked.

This library fully supports multiple SICStus run-times in a process.

now(-When)
Unifies the current date and time as a UNIX timestamp with When.

datime(-Datime)
Unifies Datime with the current date and time as a datime/6 record of the
form datime(Year,Month,Day,Hour,Min,Sec). All fields are integers.

datime(+When,-Datime)
Given a UNIX timestamp When, unifies Datime with the corresponding date
and time as a datime/6 record.

delete_file(+FileName,+Options)
FileName is the name of an existing file or directory. Options is a list of options.
Possible options are directory, recursive or ignore. If FileName is not a
directory it is deleted; otherwise, if the option directory is specified but not
recursive, the directory will be deleted if it is empty. If recursive is specified
and FileName is a directory, the directory and all its subdirectories and files
will be deleted. If the operation fails, an exception is raised unless the ignore
option is specified.

delete_file(+FileName)
Equivalent to delete_file(FileName,[recursive]).

directory_files(+Directory,-FileList)
FileList is the list of entries (files, directories, etc.) in Directory.

make_directory(+DirectoryName)
Makes a new directory.

environ(?Var, ?Value)
Var is the name of an environment variable, and Value is its value. Both are
atoms. Can be used to enumerate all current environment variables.

378 SICStus Prolog

exec(+Command, [+Stdin,+Stdout,+Stderr], -Pid)
Passes Command to a new default shell process for execution. The standard
I/O streams of the new process are connected according to what is specified by
the terms +Stdin, +Stdout, and +Stderr respectively. Possible values are:

null Connected to ‘/dev/null’ or equivalent.

std The standard stream is shared with the calling process. Note that
the standard stream may not be referring to a console if the calling
process is windowed. To portably print the output from the subpro-
cess on the Prolog console, pipe/1 must be used and the program
must explicitly read the pipe and write to the console. Similarly
for the input to the subprocess.

pipe(-Stream)
A pipe is created, which connects the Prolog stream Stream to
the standard stream of the new process. It must be closed using
close/1; it is not closed automatically when the process dies.

Pid is the process identifier of the new process.
Under UNIX, the subprocess will be detached provided none of its standard
streams is specified as std. This means it will not receive an interruption
signal as a result of ^C being typed.

file_exists(+FileName)
FileName is the name of an existing file or directory.

file_exists(+FileName, +Permissions)
FileName is the name of an existing file or directory that can be accessed
according to Permissions. Permissions is an atom, an integer (see access(2)),
or a list of atoms and/or integers. The atoms must be drawn from the list
[read,write,search,exists].

file_property(+FileName, ?Property)
FileName has the property Property. The possible properties are:

type(Type)
Type is one of regular, directory, fifo, symlink, socket or
unknown.

size(Size)
Size is the size of FileName.

mod_time(ModTime)
ModTime is the time of the last modification of FileName, as a
UNIX timestamp. library(system) (see Chapter 25 [System Util-
ities], page 377) provides operations on such timestamps.

If Property is uninstantiated, the predicate will enumerate the properties on
backtracking.

host_id(-HID)
HID is the unique identifier, represented by an atom, of the host executing the
current SICStus Prolog process.

Chapter 25: Operating System Utilities 379

host_name(-HostName)
HostName is the standard host name of the host executing the current SICStus
Prolog process.

pid(-PID)
PID is the identifier of the current SICStus Prolog process.

kill(+Pid, +Signal)
Sends the signal Signal to process Pid.

mktemp(+Template, -FileName)
Interface to the UNIX function mktemp(3). A unique file name is created and
unified with FileName. Template should contain a file name with six trailing
‘X’s. The unique file name is that template with the six ‘X’s replaced by a
character string.

popen(+Command, +Mode, ?Stream)
Interface to the UNIX function popen(3). Passes Command to a new default
shell process for execution. Mode may be either read or write. In the former
case the output from the process is piped to Stream. In the latter case the
input to the process is piped from Stream. Stream may be read/written using
the ordinary StreamIO predicates. It must be closed using close/1; it is not
closed automatically when the process dies.

rename_file(+OldName, +NewName)
OldName is the name of an existing file or directory, which will be renamed to
NewName. If the operation fails, an exception is raised.

shell

Starts a new interactive shell named by the environment variable SHELL. The
control is returned to Prolog upon termination of the shell process.

shell(+Command)
Passes Command to a new shell named by the environment variable SHELL for
execution. Succeeds if the C library function system() returns 0.
Under MSDOS, Windows or OS/2, if SHELL is defined it is expected to name a
UNIX like shell, which will be invoked with the option ‘-c Command’. If SHELL
is undefined, the shell named by COMSPEC will be invoked with the option ‘/C
Command’.

shell(+Command, -Status)
Passes Command to a new shell named by the environment variable SHELL for
execution. Status is unified with the value returned by the C library function
system(). See also shell/1 above.

sleep(+Seconds)
Puts the SICStus Prolog process asleep for Second seconds, where Seconds may
be an integer or a float. Under UNIX, the usleep function will be used if
Seconds is less than one, and sleep otherwise. Under MSDOS, Windows or
OS/2, the Sleep function will be used.

system

380 SICStus Prolog

Starts a new interactive default shell process. The control is returned to Prolog
upon termination of the shell process.

system(+Command)
Passes Command to a new default shell process for execution. Succeeds if the
C library function system() returns 0.

system(+Command, -Status)
Passes Command to a new default shell process for execution. Status is unified
with the value returned by the C library function system().

tmpnam(-FileName)
Interface to the ANSI C function tmpnam(3). A unique file name is created
and unified with FileName.

wait(+Pid, -Status)
Waits for the child process Pid to terminate. The exit status is returned in
Status. The function is similar to that of the UNIX function waitpid(3).

working_directory(?OldDirectory, ?NewDirectory)
OldDirectory is the current working directory, and the working directory is set
to NewDirectory. In particular, the goal working_directory(Dir,Dir) unifies
Dir with the current working directory without changing anything.

Chapter 26: Updatable Binary Trees 381

26 Updatable Binary Trees

This package uses binary trees to represent arrays of N elements where N is fixed, unlike
library(arrays). To load the package, enter the query

| ?- use_module(library(trees)).

Binary trees have the following representation: t denotes the empty tree, and
t(Label,Left,Right) denotes the binary tree with label Label and children Left and Right.

gen_label(?Index, +Tree, ?Label)
Label labels the Index-th element in the Tree. Can be used to enumerate all
Labels by ascending Index. Use get_label/3 instead if Index is instantiated.

get_label(+Index, +Tree, ?Label)
Label labels the Index-th element in the Tree.

list_to_tree(+List, -Tree)
Constructs a binary Tree from List where get_label(K,Tree,Lab) iff Lab is
the Kth element of List.

map_tree(:Pred, +OldTree, -NewTree)
OldTree and NewTree are binary trees of the same shape and Pred(Old,New)
is true for corresponding elements of the two trees.

put_label(+I, +OldTree, +Label, -NewTree)
Constructs NewTree, which has the same shape and elements as OldTree, except
that the I-th element is Label.

put_label(+I, +OldTree, ?OldLabel, -NewTree, ?NewLabel)
Constructs NewTree, which has the same shape and elements as OldTree, except
that the I-th element is changed from OldLabel to NewLabel.

tree_size(+Tree, ?Size)
Calculates as Size the number of elements in the Tree.

tree_to_list(+Tree, ?List)
Is the converse operation to list_to_tree/2. Any mapping or checking oper-
ation can be done by converting the tree to a list, mapping or checking the list,
and converting the result, if any, back to a tree.

382 SICStus Prolog

Chapter 27: Unweighted Graph Operations 383

27 Unweighted Graph Operations

Directed and undirected graphs are fundamental data structures representing arbitrary
relationships between data objects. This package provides a Prolog implementation of
directed graphs, undirected graphs being a special case of directed graphs.

An unweighted directed graph (ugraph) is represented as a list of (vertex-neighbors) pairs,
where the pairs are in standard order (as produced by keysort with unique keys) and the
neighbors of each vertex are also in standard order (as produced by sort), every neighbor
appears as a vertex even if it has no neighbors itself, and no vertex is a neighbor to itself.

An undirected graph is represented as a directed graph where for each edge (U,V) there is
a symmetric edge (V,U).

An edge (U,V) is represented as the term U-V. U and V must be distinct.

A vertex can be any term. Two vertices are distinct iff they are not identical (==).

A path from u to v is represented as a list of vertices, beginning with u and ending with
v. A vertex cannot appear twice in a path. A path is maximal in a graph if it cannot be
extended.

A tree is a tree-shaped directed graph (all vertices have a single predecessor, except the
root node, which has none).

A strongly connected component of a graph is a maximal set of vertices where each vertex
has a path in the graph to every other vertex.

Sets are represented as ordered lists (see Chapter 22 [Ordsets], page 371).

To load the package, enter the query

| ?- use_module(library(ugraphs)).

The following predicates are defined for directed graphs.

vertices_edges_to_ugraph(+Vertices, +Edges, -Graph)
Is true if Vertices is a list of vertices, Edges is a list of edges, and Graph is a
graph built from Vertices and Edges. Vertices and Edges may be in any order.
The vertices mentioned in Edges do not have to occur explicitly in Vertices.
Vertices may be used to specify vertices that are not connected by any edges.

vertices(+Graph, -Vertices)
Unifies Vertices with the vertices in Graph.

edges(+Graph, -Edges)
Unifies Edges with the edges in Graph.

add_vertices(+Graph1, +Vertices, -Graph2)
Graph2 is Graph1 with Vertices added to it.

384 SICStus Prolog

del_vertices(+Graph1, +Vertices, -Graph2)
Graph2 is Graph1 with Vertices and all edges to and from them removed from
it.

add_edges(+Graph1, +Edges, -Graph2)
Graph2 is Graph1 with Edges and their “to” and “from” vertices added to it.

del_edges(+Graph1, +Edges, -Graph2)
Graph2 is Graph1 with Edges removed from it.

transpose(+Graph, -Transpose)
Transpose is the graph computed by replacing each edge (u,v) in Graph by its
symmetric edge (v,u). Takes O(N^2) time.

neighbors(+Vertex, +Graph, -Neighbors)
neighbours(+Vertex, +Graph, -Neighbors)

Vertex is a vertex in Graph and Neighbors are its neighbors.

complement(+Graph, -Complement)
Complement is the complement graph of Graph, i.e. the graph that has the
same vertices as Graph but only the edges that are not in Graph.

compose(+G1, +G2, -Composition)
Computes Composition as the composition of two graphs, which need not have
the same set of vertices.

transitive_closure(+Graph, -Closure)
Computes Closure as the transitive closure of Graph in O(N^3) time.

symmetric_closure(+Graph, -Closure)
Computes Closure as the symmetric closure of Graph, i.e. for each edge (u,v)
in Graph, add its symmetric edge (v,u). Takes O(N^2) time. This is useful for
making a directed graph undirected.

top_sort(+Graph, -Sorted)
Finds a topological ordering of a Graph and returns the ordering as a list of
Sorted vertices. Fails iff no ordering exists, i.e. iff the graph contains cycles.
Takes O(N^2) time.

max_path(+V1, +V2, +Graph, -Path, -Cost)
Path is a longest path of cost Cost from V1 to V2 in Graph, there being no
cyclic paths from V1 to V2. Takes O(N^2) time.

min_path(+V1, +V2, +Graph, -Path, -Cost)
Path is a shortest path of cost Cost from V1 to V2 in Graph. Takes O(N^2)
time.

min_paths(+Vertex, +Graph, -Tree)
Tree is a tree of all the shortest paths from Vertex to every other vertex in
Graph. This is the single-source shortest paths problem.

path(+Vertex, +Graph, -Path)
Given a Graph and a Vertex of Graph, returns a maximal Path rooted at Vertex,
enumerating more paths on backtracking.

Chapter 27: Unweighted Graph Operations 385

reduce(+Graph, -Reduced)
Reduced is the reduced graph for Graph. The vertices of the reduced graph
are the strongly connected components of Graph. There is an edge in Reduced
from u to v iff there is an edge in Graph from one of the vertices in u to one of
the vertices in v.

reachable(+Vertex, +Graph, -Reachable)
Given a Graph and a Vertex of Graph, returns the set of vertices that are
reachable from that Vertex, including Vertex itself. Takes O(N^2) time.

random_ugraph(+P, +N, -Graph)
Where P is a probability, unifies Graph with a random graph of vertices 1..N
where each possible edge is included with probability P.

The following predicates are defined for undirected graphs only.

min_tree(+Graph, -Tree, -Cost)
Tree is a spanning tree of Graph with cost Cost, if it exists.

clique(+Graph, +K, -Clique)
Clique is a maximal clique (complete subgraph) of n vertices of Graph, where
n ≥ K. n is not necessarily maximal.

independent_set(+Graph, +K, -Set)
Set is a maximal independent (unconnected) set of n vertices of Graph, where
n ≥ K. n is not necessarily maximal.

coloring(+Graph, +K, -Coloring)
colouring(+Graph, +K, -Coloring)

Coloring is a mapping from vertices to colors [1, n] of Graph such that all edges
have distinct end colors, where n ≤ K. The mapping is represented as an
ordered list of Vertex-Color pairs. n is not necessarily minimal.

386 SICStus Prolog

Chapter 28: Weighted Graph Operations 387

28 Weighted Graph Operations

A weighted directed graph (wgraph) is represented as a list of (vertex-edgelist) pairs, where
the pairs are in standard order (as produced by keysort with unique keys), the edgelist is
a list of (neighbor-weight) pair also in standard order (as produced by keysort with unique
keys), every weight is a nonnegative integer, every neighbor appears as a vertex even if it
has no neighbors itself, and no vertex is a neighbor to itself.

An undirected graph is represented as a directed graph where for each edge (U,V) there is
a symmetric edge (V,U).

An edge (U,V) with weight W is represented as the term U-(V-W). U and V must be
distinct.

A vertex can be any term. Two vertices are distinct iff they are not identical (==).

A path from u to v is represented as a list of vertices, beginning with u and ending with
v. A vertex cannot appear twice in a path. A path is maximal in a graph if it cannot be
extended.

A tree is a tree-shaped directed graph (all vertices have a single predecessor, except the
root node, which has none).

A strongly connected component of a graph is a maximal set of vertices where each vertex
has a path in the graph to every other vertex.

Sets are represented as ordered lists (see Chapter 22 [Ordsets], page 371).

To load the package, enter the query

| ?- use_module(library(wgraphs)).

The following predicates are defined for directed graphs.

wgraph_to_ugraph(+WeightedGraph, -Graph)
Graph has the same vertices and edges as WeightedGraph, except the edges of
Graph are unweighted.

ugraph_to_wgraph(+Graph, -WeightedGraph)
WeightedGraph has the same vertices and edges as Graph, except the edges of
WeightedGraph all have weight 1.

vertices_edges_to_wgraph(+Vertices, +Edges, -WeightedGraph)
Vertices is a list of vertices, Edges is a list of edges, and WeightedGraph is a
graph built from Vertices and Edges. Vertices and Edges may be in any order.
The vertices mentioned in Edges do not have to occur explicitly in Vertices.
Vertices may be used to specify vertices that are not connected by any edges.

vertices(+WeightedGraph, -Vertices)
Unifies Vertices with the vertices in WeightedGraph.

388 SICStus Prolog

edges(+WeightedGraph, -Edges)
Unifies Edges with the edges in WeightedGraph.

add_vertices(+WeightedGraph1, +Vertices, -WeightedGraph2)
WeightedGraph2 is WeightedGraph1 with Vertices added to it.

del_vertices(+WeightedGraph1, +Vertices, -WeightedGraph2)
WeightedGraph2 is WeightedGraph1 with Vertices and all edges to and from
them removed from it.

add_edges(+WeightedGraph1, +Edges, -WeightedGraph2)
WeightedGraph2 is WeightedGraph1 with Edges and their “to” and “from”
vertices added to it.

del_edges(+WeightedGraph1, +Edges, -WeightedGraph2)
WeightedGraph2 is WeightedGraph1 with Edges removed from it.

transpose(+WeightedGraph, -Transpose)
Transpose is the graph computed by replacing each edge (u,v) in Weighted-
Graph by its symmetric edge (v,u). It can only be used one way around. Takes
O(N^2) time.

neighbors(+Vertex, +WeightedGraph, -Neighbors)
neighbours(+Vertex, +WeightedGraph, -Neighbors)

Vertex is a vertex in WeightedGraph and Neighbors are its weighted neighbors.

transitive_closure(+WeightedGraph, -Closure)
Computes Closure as the transitive closure of WeightedGraph in O(N^3) time.

symmetric_closure(+WeightedGraph, -Closure)
Computes Closure as the symmetric closure of WeightedGraph, i.e. for each
edge (u,v) in WeightedGraph, add its symmetric edge (v,u). Takes O(N^2)
time. This is useful for making a directed graph undirected.

top_sort(+WeightedGraph, -Sorted)
Finds a topological ordering of a WeightedGraph and returns the ordering as
a list of Sorted vertices. Fails iff no ordering exists, i.e. iff the graph contains
cycles. Takes O(N^2) time.

max_path(+V1, +V2, +WeightedGraph, -Path, -Cost)
Path is a maximum-cost path of cost Cost from V1 to V2 in WeightedGraph,
there being no cyclic paths from V1 to V2. Takes O(N^2) time.

min_path(+V1, +V2, +WeightedGraph, -Path, -Cost)
Path is a minimum-cost path of cost Cost from V1 to V2 in WeightedGraph.
Takes O(N^2) time.

min_paths(+Vertex, +WeightedGraph, -Tree)
Tree is a tree of all the minimum-cost paths from Vertex to every other vertex
in WeightedGraph. This is the single-source minimum-cost paths problem.

path(+Vertex, +WeightedGraph, -Path)
Given a WeightedGraph and a Vertex of WeightedGraph, returns a maximal
Path rooted at Vertex, enumerating more paths on backtracking.

Chapter 28: Weighted Graph Operations 389

reduce(+WeightedGraph, -Reduced)
Reduced is the reduced graph for WeightedGraph. The vertices of the reduced
graph are the strongly connected components of WeightedGraph. There is an
edge in Reduced from u to v iff there is an edge in WeightedGraph from one of
the vertices in u to one of the vertices in v.

reachable(+Vertex, +WeightedGraph, -Reachable)
Given a WeightedGraph and a Vertex of WeightedGraph, returns the set of
vertices that are reachable from that Vertex. Takes O(N^2) time.

random_wgraph(+P, +N, +W, -WeightedGraph)
Where P is a probability, unifies WeightedGraph with a random graph of ver-
tices 1..N where each possible edge is included with probability P and random
weight in 1..W.

The following predicate is defined for undirected graphs only.

min_tree(+WeightedGraph, -Tree, -Cost)
Tree is a minimum-cost spanning tree of WeightedGraph with cost Cost, if it
exists.

390 SICStus Prolog

Chapter 29: Socket I/O 391

29 Socket I/O

This library package defines a number of predicates manipulating sockets. They are all
rather straight-forward interfaces to the corresponding BSD-type socket functions with the
same name (except current_host/1). The reader should therefore study the appropriate
documents for a deeper description.

The Domain is either the atom ’AF_INET’ or ’AF_UNIX’. They correspond directly to
the same domains in BSD-type sockets. ’AF_UNIX’ may not be available on non-UNIX
platforms.

An Address is either ’AF_INET’(Host,Port) or ’AF_UNIX’(SocketName). Host is an atom
denoting a hostname (not an IP-address), Port is a portnumber and SocketName is an atom
denoting a socket. A reader familiar with BSD sockets will understand this immediately.

All streams below can be both read from and written on. All I/O predicates operating
on streams can be used, for example read/2, write/2, format/3, current_stream/3, etc.
Socket streams are block buffered both on read and write by default. This can be changed
by calling socket_buffering/4.

To load the package, enter the query

| ?- use_module(library(sockets)).

socket(+Domain, -Socket)
A socket Socket in the domain Domain is created.

socket_close(+Socket)
Socket is closed. Sockets used in socket_connect/2 should not be closed by
socket_close/1 as they will be closed when the corresponding stream is closed.

socket_bind(+Socket, ’AF_UNIX’(+SocketName))
socket_bind(+Socket, ’AF_INET’(?Host,?Port))

The socket Socket is bound to the address. If Port is uninstantiated, the oper-
ating system picks a port number to which Port is bound.

socket_connect(+Socket, ’AF_UNIX’(+SocketName), -Stream)
socket_connect(+Socket, ’AF_INET’(+Host,+Port), -Stream)

The socket Socket is connected to the address. Stream is a special stream on
which items can be both read and written.

socket_listen(+Socket, +Length)
The socket Socket is defined to have a maximum backlog queue of Length
pending connections.

socket_accept(+Socket, -Stream)
socket_accept(+Socket, -Client, -Stream)

The first connection to socket Socket is extracted. The stream Stream is opened
for read and write on this connection. For the ’AF_INET’ domain, Client will
be unified with an atom containing the Internet host address of the connect-

392 SICStus Prolog

ing entity in numbers-and-dots notation. For other domains, Client will be
unbound.
Under Windows socket_accept/[2,3] is not interruptible. This will pre-
vent the process from terminating or responding to keyboard interrupt. A
workaround is to use socket_select/5 with a timeout, something like:

%% same as socket_accept/3 but will be interruptible with CTRL-C,
%% CTRL-BREAK etc (within 2 seconds)
nonblocking_socket_accept(Socket, Client, Stream) :-

Seconds = 2, % wait this long between retries
MicroSeconds = 0,
TimeOut = Seconds:MicroSeconds,
repeat, % repeat until connection or error
socket_select([accept-Socket], Accepted, TimeOut, [], _ReadStreams),
%% Here Accepted == [] if the timeout period expired
Accepted = [accept-connection(Client1, Stream1)],
!,
Client = Client1,
Stream = Stream1.

socket_buffering(+Stream, +Direction, -OldBuf, +NewBuf)
The buffering in the Direction of the socket stream Stream is changed from
OldBuf to NewBuf. Direction should be read or write. OldBuf and NewBuf
should be unbuf for unbuffered I/O or fullbuf for block buffered I/O.

socket_select(+TermsSockets, -NewTermsStreams, +TimeOut, +Streams,
-ReadStreams)

The list of streams in Streams is checked for readable characters. The list
ReadStreams returns the streams with readable data. Under Windows, only
socket streams can be used with socket_select. Under UNIX, a stream can be
any stream associated with a file descriptor but socket_select/5 may block
for non-socket streams even though there is data available. The reason is that
non-socket streams can have buffered data available, e.g. within a C stdio
FILE*.
socket_select/5 also waits for connections to the sockets specified by
TermsSockets. This argument should be a list of Term-Socket pairs, where
Term, which can be any term, is used as an identifier. NewTermsStreams is a
list of Term-connection(Client,Stream) pairs, where Stream is a new stream
open for communicating with a process connecting to the socket identified with
Term, Client is the client host address (see socket_accept/3).
If TimeOut is instantiated to off, the predicate waits until something is avail-
able. If TimeOut is S:U the predicate waits at most S seconds and U microsec-
onds. Both S and U must be integers >=0. If there is a timeout, ReadStreams
and NewTermsStreams are [].

Chapter 29: Socket I/O 393

socket_select(+Sockets, -NewStreams, +TimeOut, +Streams, -ReadStreams)
socket_select(+Socket, -NewStream, +TimeOut, +Streams, -ReadStreams)
socket_select(+Sockets, -NewStreams, -NewClients, +TimeOut, +Streams,
-ReadStreams)
socket_select(+Socket, -NewStream, -NewClient, +TimeOut, +Streams,
-ReadStreams)

These forms, which are provided for backward compatibility only, differs in how
sockets are specified and new streams returned.
socket_select/[5,6] also wait for connections to the sockets in the list Sock-
ets. NewStreams is the list of new streams opened for communicating with
the connecting processes. NewClients is the corresponding list of client host
addresses (see socket_accept/3).
The second form requires one socket (not a list) for the first argument and
returns a stream, NewStream, if a connection is made.

current_host(?HostName)
HostName is unified with the fully qualified name of the machine the process
is executing on.

hostname_address(+HostName, -HostAddress)
hostname_address(-HostName, +HostAddress)

The Internet host is resolved given either the host name or address. HostAd-
dress should be an atom containing the Internet host address in numbers-and-
dots notation. The predicate will fail if the host name or address cannot be
resolved.

394 SICStus Prolog

Chapter 30: Linda—Process Communication 395

30 Linda—Process Communication

Linda is a concept for process communication.

For an introduction and a deeper description, see [Carreiro & Gelernter 89a] or [Carreiro &
Gelernter 89b], respectively.

One process is running as a server and one or more processes are running as clients. The
processes are communicating with sockets and supports networks.

The server is in principle a blackboard on which the clients can write (out/1), read (rd/1)
and remove (in/1) data. If the data is not present on the blackboard, the predicates suspend
the process until they are available.

There are some more predicates besides the basic out/1, rd/1 and in/1. The in_noblock/1
and rd_noblock/1 does not suspend if the data is not available—they fail instead. A
blocking fetch of a conjunction of data can be done with in/2 or rd/2.

Example: A simple producer-consumer. In client 1:

producer :-
produce(X),
out(p(X)),
producer.

produce(X) :-

In client 2:

consumer :-
in(p(A)),
consume(A),
consumer.

consume(A) :-

Example: Synchronization

...,
in(ready), %Waits here until someone does out(ready)
...,

Example: A critical region

...,
in(region_free), % wait for region to be free
critical_part,
out(region_free), % let next one in
...,

396 SICStus Prolog

Example: Reading global data

...,
rd(data(Data)),
...,

or, without blocking:
...,
rd_noblock(data(Data)) ->

do_something(Data)
; write(’Data not available!’),nl
),
...,

Example: Waiting for one of several events

...,
in([e(1),e(2),...,e(n)], E),

% Here is E instantiated to the first tuple that became available
...,

30.1 Server

The server is the process running the “blackboard process”. It is an ordinary SICStus
process, which can be run on a separate machine if necessary.

To load the package, enter the query

| ?- use_module(library(’linda/server’)).

and start the server with linda/[0,1].

linda

Starts a Linda-server in this SICStus. The network address is written to the
current output stream as Host:PortNumber.

linda(:Options)
Starts a Linda-server in this SICStus. Each option on the list Options is one of

Address-Goal
where Address must be unifiable with Host:Port and Goal must be
instantiated to a goal.
When the linda server is started, Host and Port are bound to the
server host and port respectively and the goal Goal is called. A
typical use of this would be to store the connection information in
a file so that the clients can find the server to connect to.
For backward compatibility, if Options is not a list, it is assumed
to be an option of the form Address-Goal.

Chapter 30: Linda—Process Communication 397

In SICStus before 3.9.1, Goal needed an explicit module prefix to
ensure it was called in the right module. This is no longer necessary
since linda/1 is now a meta-predicate.

accept_hook(Client,Stream,Goal)
When a client attempts to connects to the server Client and Stream
will be bound to the IP address of the client and the socket stream
connected to the client, respectively. The Goal is then called, and
if it succeeds, the client is allowed to connect. If Goal fails, the
server will close the stream and ignore the connection request. A
typical use of this feature would be to restrict the addresses of the
clients allowed to connect. If you require bullet proof security, you
would probably need something more sophisticated.

Example:
| ?- linda([(Host:Port)-mypred(Host,Port),

accept_hook(C,S,should_accept(C,S))]).

Will call mypred/2 when the server is started. mypred/2 could start the client-
processes, save the address for the clients etc. Whenever a client attempts
to connect from a host with IP address Addr, a bi-directional socket stream
Stream will be opened to the client, and should_accept(Addr,Stream) will
be called to determine if the client should be allowed to connect.

30.2 Client

The clients are one or more SICStus processes that have connection(s) to the server.

To load the package, enter the query

| ?- use_module(library(’linda/client’)).

Some of the following predicates fail if they don’t receive an answer from the Linda-server
in a reasonable amount of time. That time is set with the predicate linda_timeout/2.

linda_client(+Address)
Establishes a connection to a Linda-server specified by Address. The Address
is of the format Host:PortNumber as given by linda/[0,1].
It is not possible to be connected to two Linda-servers at the same time.
This predicate can fail due to a timeout.

close_client
Closes the connection to the server.

shutdown_server/0
Sends a Quit signal to the server, which keeps running after receiving this
signal, until such time as all the clients have closed their connections. It is
up to the clients to tell each other to quit. When all the clients are done, the

398 SICStus Prolog

server stops (i.e. linda/[0,1] succeeds). Courtesy of Malcolm Ryan. Note
that close_client/0 should be called after shutdown_server/0. shutdown_
server/0 will raise an error if there is no connection between the client and
the server.

linda_timeout(?OldTime, ?NewTime)
This predicate controls Linda’s timeout. OldTime is unified with the old time-
out and then timeout is set to NewTime. The value is either off or of the form
Seconds:Milliseconds. The former value indicates that the timeout mechanism
is disabled, that is, eternal waiting. The latter form is the timeout-time.

out(+Tuple)
Places the tuple Tuple in Linda’s tuple-space.

in(?Tuple)
Removes the tuple Tuple from Linda’s tuple-space if it is there. If not, the
predicate blocks until it is available (that is, someone performs an out/1).

in_noblock(?Tuple)
Removes the tuple Tuple from Linda’s tuple-space if it is there. If not, the
predicate fails.
This predicate can fail due to a timeout.

in(+TupleList, ?Tuple)
As in/1 but succeeds when either of the tuples in TupleList is available. Tuple
is unified with the fetched tuple. If that unification fails, the tuple is not
reinserted in the tuple-space.

rd(?Tuple)
Succeeds if Tuple is available in the tuple-space, suspends otherwise until it is
available. Compare this with in/1: the tuple is not removed.

rd_noblock(?Tuple)
Succeeds if Tuple is available in the tuple-space, fails otherwise.
This predicate can fail due to a timeout.

rd(+TupleList, ?Tuple)
As in/2 but does not remove any tuples.

bagof_rd_noblock(?Template, +Tuple, ?Bag)
Bag is the list of all instances of Template such that Tuple exists in the tuple-
space.
The behavior of variables in Tuple and Template is as in bagof/3. The variables
could be existentially quantified with ^/2 as in bagof/3.
The operation is performed as an atomic operation.
This predicate can fail due to a timeout.
Example: Assume that only one client is connected to the server and that the
tuple-space initially is empty.

Chapter 30: Linda—Process Communication 399

| ?- out(x(a,3)), out(x(a,4)), out(x(b,3)), out(x(c,3)).

| ?- bagof_rd_noblock(C-N, x(C,N), L).

C = _32,
L = [a-3,a-4,b-3,c-3],
N = _52

| ?- bagof_rd_noblock(C, N^x(C,N), L).

C = _32,
L = [a,a,b,c],
N = _48

400 SICStus Prolog

Chapter 31: External Storage of Terms (Berkeley DB) 401

31 External Storage of Terms (Berkeley DB)

This library module handles storage and retrieval of terms on files. By using indexing, the
store/retrieve operations are efficient also for large data sets. The package is an interface
to the Berkeley DB toolset.

The package is loaded by the query:

| ?- use_module(library(bdb)).

31.1 Basics

The idea is to get a behavior similar to assert/1, retract/1 and clause/2, but the terms
are stored on files instead of in primary memory.

The differences compared with the Prolog database are:

• A database must be opened before any access and closed after the last access. (There
are special predicates for this: db_open/[4,5] and db_close/1.)

• The functors and the indexing specifications of the terms to be stored have to be given
when the database is created. (see Section 31.7 [The DB-Spec], page 408).

• The indexing is specified when the database is created. It is possible to index on other
parts of the term than just the functor and first argument.

• Changes affect the database immediately.
• The database will store variables with blocked goals as ordinary variables.

Some commercial databases can’t store non-ground terms or more than one instance of a
term. This library module can however store terms of either kind.

31.2 Current Limitations

• The terms are not necessarily fetched in the same order as they were stored.
• If the process dies during an update operation (db_store/3, db_erase/[2,3]), the

database can be inconsistent.
• Databases can only be shared between processes running on the machine where the

environment is created (see Section 31.5 [Predicates], page 403). The database itself
can be on a different machine.

• The number of terms ever inserted in a database cannot exceed 2^32-1.
• Duplicate keys are not handled efficiently by Berkeley DB. This limitation is supposed

to get lifted in the future. Duplicate keys can result from indexing on non-key attribute
sets, inserting terms with variables on indexing positions, or simply from storing the
same term more than once.

402 SICStus Prolog

31.3 Berkeley DB

This library module is an interface to the Berkeley DB toolset to support persistent stor-
age of Prolog terms. Some of the notions of Berkeley DB are directly inherited, e.g. the
environment.

The interface uses the Concurrent Access Methods product of Berkeley DB. This means
that multiple processes can open the same databas, but transactions and disaster recovery
are not supported.

The environment and the database files are ordinary Berkeley DB entities but uses a custom
hash function which means that most, but not all, of the standard support utilities will work.

31.4 The DB-Spec—Informal Description

The db-spec defines which functors are allowed and which parts of a term are used for
indexing in a database. The syntax of a spec resembles to that of the mode spec. The
db-spec is a list of atoms and compound terms where the arguments are either + or -. A
term can be inserted in the database if there is a spec in the spec list with the same functor.

Multilevel indexing is not supported, terms have to be “flattened”.

Every spec with the functor of the indexed term specifies an indexing. Every argument
where there is a + in the spec is indexed on.

The idea of the db-spec is illustrated with a few examples. (A section further down explains
the db-spec in a more formal way).

Given a spec of [f(+,-), .(+,-), g, f(-,+)] the indexing works as follows. (The parts
with indexing are underlined.)

Term Store Fetch
g(x,y) domain error domain error
f(A,B) f(A,B) instantiation error

-
f(a,b) f(a,b) f(a,b) f(a,b)

- - - - - -
[a,b] .(a,.(b,[])) .(a,.(b,[]))

- - - -
g g g

- -

The specification [f(+,-), f(-,+)] is different from [f(+,+)]. The first specifies that two
indices are to be made whereas the second specifies that only one index is to be made on
both arguments of the term.

Chapter 31: External Storage of Terms (Berkeley DB) 403

31.5 Predicates

31.5.1 Conventions

The following conventions are used in the predicate descriptions below.

• Mode is either update or read or enumerate. In mode read no updates can be made.
Mode enumerate is like mode read, but indexing cannot be used, i.e. you can only
sequentially enumerate the items in the database. In mode enumerate only the file
storing the terms along with their references is used.

• EnvRef is a reference to an open database environment. The environment is returned
when it is opened. The reference becomes invalid after the environment has been closed.

• DBRef is a reference to an open database. The reference is returned when the database
is opened. The reference becomes invalid after the database has been closed.

• TermRef is a reference to a term in a given database. The reference is returned when
a term is stored. The reference stays valid even after the database has been closed
and hence can be stored permanently as part of another term. However, if such ref-
erences are stored in the database, automatic compression of the database (using db_
compress/[2,3]) is not possible, in that case the user has to write her own compressing
predicate.

• SpecList is a description of the indexing scheme; see Section 31.7 [The DB-Spec],
page 408.

• Term is any Prolog term.
• Iterator is a non-backtrackable mutable object. It can be used to iterate through a set

of terms stored in a database. The iterators are unidirectional.

31.5.2 The Environment

To enable sharing of databases between process, programs have to create environments and
the databases should be opened in these environments. A database can be shared between
processes that open it in the same environment. An environment physically consists of a
directory containing the files needed to enable sharing databases between processes. The
directory of the environment has to be located in a local file system.

Databases can be opened outside any environment (see db_open/4), but in that case a
process writing the database must ensure exclusive access or the behavior of the predicates
is undefined.

31.5.3 Memory Leaks

In order to avoid memory leaks, environments, databases and iterators should always be
closed explicitly. Consider using call_cleanup/2 to automate the closing/deallocation of

404 SICStus Prolog

these objects. You can always use db_current_env/1, db_current/5 and db_current_
iterator/3 to enumerate the currently living objects.

Please note: a database must not be closed while there are outstanding choices
for some db_fetch/3 goal that refers to that database. Outstanding choices
can be removed with a cut (!).

31.5.4 The Predicates

db_open_env(+EnvName, -EnvRef)
db_open_env(+EnvName, +CacheSize, -EnvRef)

Opens an environment with the name EnvName. A directory with this name is
created for the environment if necessary. EnvName is not subject to absolute_
file_name/3 conversion.
By using db_open_env/3 one can specify the size of the cache: CacheSize is
the (integer) size of the cache in kilobytes. The size of the cache cannot be less
than 20 kilobytes. db_open_env/2 will create a cache of the system’s default
size.
The size of the cache is determined when the environment is created and cannot
be changed by future openings.
A process cannot open the same environment more than once.

db_close_env(+EnvRef)
Closes an environment. All databases opened in the environment will be closed
as well.

db_current_env(?EnvName, ?EnvRef)
Unifies the arguments with the open environments. This predicate can be used
for enumerating all currently open environments through backtracking.

db_open(+DBName, +Mode, ?SpecList, -DBRef)
db_open(+DBName, +Mode, ?SpecList, +Options, -DBRef)

Opens a database with the name DBName. The database physically consists of
a directory with the same name, containing the files that make up the database.
If the directory does not exist, it is created. In that case Mode must be update
and the db-spec SpecList must be ground. If an existing database is opened
and Mode is read or update, SpecList is unified with the db-spec given when
the database was created. If the unification fails an error is raised. DBRef is
unified with a reference to the opened database. DBName is not subject to
absolute_file_name/3 conversion.
If Mode is enumerate then the indexing specification is not read, and SpecList
is left unbound.
Options provides a way to specify an environment in which to open the
database, or a cache size. Options should be a list of terms of the following
form:

environment(EnvRef)
The database will be opened in this environment.

Chapter 31: External Storage of Terms (Berkeley DB) 405

cache_size(CacheSize)
This is the (integer) size of the cache in kilobytes. The size of the
cache cannot be less than 20 kilobytes. If CacheSize is given as the
atom default, a default cache size will be used. If CacheSize is
given as the atom off or the atom none, all modified records will
be flushed to disk after each operation.

To avoid inconsistency, if multiple processes open the same database, then all
of them should do that with Mode set to read or enumerate. (This is not
enforced by the system.)

db_close(+DBRef)
Closes the database referenced by DBRef. Any iterators opened in the database
will be deallocated.

db_current(?DBName, ?Mode, ?SpecList, ?EnvRef, ?DBRef)
Unifies the arguments with the open databases. This predicate can be used to
enumerate all currently open databases through backtracking. If the database
was opened without an environment, then EnvRef will be unified with the atom
none.

db_store(+DBRef, +Term, -TermRef)
Stores Term in the database DBRef. TermRef is unified with a corresponding
term reference. The functor of Term must match the functor of a spec in the
db-spec associated with DBRef.

db_fetch(+DBRef, ?Term, ?TermRef)
Unifies Term with a term from the database DBRef. At the same time, TermRef
is unified with a corresponding term reference. Backtracking over the predicate
unifies with all terms matching Term.
If TermRef is not instantiated then both the functor and the instantiatedness
of Term must match a spec in the db-spec associated with DBRef.
If TermRef is instantiated, the referenced term is read and unified with Term.
If you simply want to find all matching terms, it is more efficient to use db_
findall/5 or db_enumerate/3.

db_findall(+DBRef, +Template, +Term, :Goal, ?Bag)
Unifies Bag with the list of instances of Template in all proofs of Goal found
when Term is unified with a matching term from the database DBRef. Both
the functor and the instantiatedness of Term must match a spec in the db-
spec associated with DBRef. Conceptually, this predicate is equivalent to
findall(Template, (db_fetch(DBRef, Term, _), Goal), Bag).

db_erase(+DBRef, +TermRef)
db_erase(+DBRef, +TermRef, +Term)

Deletes the term from the database DBRef that is referenced by TermRef.
In the case of db_erase/2 the term associated with TermRef has to be looked
up. db_erase/3 assumes that the term Term is identical with the term asso-
ciated with TermRef (modulo variable renaming). If this is not the case, the
behavior is undefined.

406 SICStus Prolog

db_enumerate(+DBRef, ?Term, ?TermRef)
Unifies Term with a term from the database DBRef. At the same time, TermRef
is unified with a corresponding term reference. Backtracking over the predicate
unifies with all terms matching Term.
Implemented by linear search—the db-spec associated with DBRef is ignored.
It is not useful to call this predicate with TermRef instantiated.

db_sync(+DBRef)
Flushes any cached information from the database referenced by DBRef to
stable storage.

db_compress(+DBRef, +DBName)
db_compress(+DBRef, +DBName, +SpecList)

Copies the database given by DBRef to a new database named by DBName.
The new database will be a compressed version of the first one in the sense
that it will not have “holes” resulting from deletion of terms. Deleted term
references will also be reused, which implies that references that refer to terms
in the old database will be invalid in the new one.
db_compress/2 looks for a database with the db-spec of the original one. db_
compress/3 stores the terms found in the original database with the indexing
specification SpecList. db_compress/2 cannot be used if the database DBRef
was opened in mode enumerate.
If the database DBName already exists then the terms of DBRef will be ap-
pended to it. Of course DBName must have an indexing specification, which
enables the terms in DBRef to be inserted into it.
In the case of db_compress/3 if the database DBName does not exist, then
SpecList must be a valid indexing specification.

db_make_iterator(+DBRef, -Iterator)
db_make_iterator(+DBRef, +Term, -Iterator)

Creates a new iterator and unifies it with Iterator. Iterators created with db_
make_iterator/2 iterate through the whole database. Iterators created with
db_make_iterator/3 iterate through the terms that would be found by db_
fetch(DBRef, Term, _).
Every iterator created by db_make_iterator/[2,3] must be destroyed with
db_iterator_done/1.

db_iterator_next(+Iterator, ?Term, ?TermRef)
Iterator advances to the next term, Term and TermRef is unified with the term
and its reference pointed to by Iterator. If there is no next term, the predicate
fails.

db_iterator_done(+Iterator)
Deallocates Iterator, which must not be in use anymore.

db_current_iterator(?DBRef, ?Term, ?Iterator)
Unifies the the variables with the respective properties of the living iterators.
This predicate can be used to enumerate all currently alive iterators through
backtracking. If Iterator was made with db_make_iterator/2 then Term will
be left unbound.

Chapter 31: External Storage of Terms (Berkeley DB) 407

db_export(+DBName, +ExportFile)
db_export(+DBName, +Options, +ExportFile)

Exports the database with the name DBName to the text file ExportFile. Ex-
portFile can be imported by db_import/[2,3].
Options should be an options list of the form acceptable by db_open/[4,5].
In SICStus 3.12.0 bdb:export/[2,3] is available instead of db_export/[2,3].

db_import(+DBName, +ImportFile)
db_import(+DBName, +Options, +ImportFile)

Imports the text file ImportFile into the database with the name DBName.
If ImportFile is imported into an existing database, the SpecList found in the
ImportFile will be unified with the SpecList in the database.
Options should be an options list of the form acceptable by db_open/[4,5].
In SICStus 3.12.0 bdb:import/[2,3] is available instead of db_import/[2,3].

31.6 An Example Session

408 SICStus Prolog

| ?- db_open(tempdb, update, [a(+,-)], DBRef), assert(tempdb(DBRef)).

DBRef = ’$db’(1077241400)

| ?- tempdb(DBRef), db_store(DBRef, a(b,1), _).

DBRef = ’$db’(1077241400)

| ?- tempdb(DBRef), db_store(DBRef, a(c,2), _).

DBRef = ’$db’(1077241400)

| ?- tempdb(DBRef), db_fetch(DBRef, a(b,X), _).

X = 1,
DBRef = ’$db’(1077241400) ? ;

no

| ?- tempdb(DBRef), db_enumerate(DBRef, X, _).

X = a(b,1),
DBRef = ’$db’(1077241400) ? ;

X = a(c,2),
DBRef = ’$db’(1077241400) ? ;

no

| ?- db_current(DBName, Mode, Spec, EnvRef, DBRef).

Mode = update,
Spec = [a(+,-)],
DBRef = ’$db’(1077241400),
DBName = tempdb,
EnvRef = none ? ;

no

| ?- tempdb(DBRef), db_close(DBRef).

DBRef = ’$db’(1077241400)

31.7 The DB-Spec

A db-spec has the form of a speclist:

speclist = [spec1, . . . , specM]

spec = functor(argspec1, . . . , argspecN)

argspec = + | -

where functor is a Prolog atom. The case N = 0 is allowed.

A spec F(argspec1, . . . , argspecN) is applicable to any nonvar term with principal functor
F/N.

Chapter 31: External Storage of Terms (Berkeley DB) 409

When storing a term T we generate a hash code for every applicable spec in the db-spec,
and a reference to T is stored with each of them. (More precisely with each element of the
set of generated hash codes). If T contains nonvar elements on each + position in the spec,
then the hash code depends on each of these elements. If T does contain some variables on
+ position, then the hash code depends only on the functor of T.

When fetching a term Q we look for an applicable spec for which there are no variables in
Q on positions maked +. If no applicable spec can be found a domain error is raised. If
no spec can be found where on each + position a nonvar term occurs in Q an instantiation
error is raised. Otherwise, we choose the the spec with the most + postitions in it breaking
ties by choosing the leftmost one.

The terms that contain nonvar terms on every + postition will be looked up using indexing
based on the principal functor of the term and the principal functor of terms on + postitions.
The other (more general) terms will be looked up using an indexing based on the principal
functor of the term only.

As can be seen, storing and fetching terms with variables on + positions are not vigorously
supported operations.

31.8 Exporting and importing a database

Since the database format of a Berkeley DB may change from version to version it may be-
come necessary to migrate a database when upgrading. To this purpose there are two pred-
icates available: db_export/[2,3] and db_import/[2,3] (see Section 31.5.4 [The Predi-
cates], page 404).

The export/import feature was introduced in SICStus 3.12.0, but in that version you have to
use bdb:export/[2,3] and bdb:import/[2,3]. Neither is exported from the bdb module,
but can be used with module prefixing.

Since the bdb interface uses a custom hash function (see Section 31.3 [Berkeley DB],
page 402), the standard Berkeley DB migration tools will not work.

410 SICStus Prolog

Chapter 32: Boolean Constraint Solver 411

32 Boolean Constraint Solver

The clp(B) system provided by this library module is an instance of the general Constraint
Logic Programming scheme introduced in [Jaffar & Michaylov 87]. It is a solver for con-
straints over the Boolean domain, i.e. the values 0 and 1. This domain is particularly useful
for modeling digital circuits, and the constraint solver can be used for verification, design,
optimization etc. of such circuits.

To load the solver, enter the query:

| ?- use_module(library(clpb)).

The solver contains predicates for checking the consistency and entailment of a constraint
wrt. previous constraints, and for computing particular solutions to the set of previous
constraints.

The underlying representation of Boolean functions is based on Boolean Decision Diagrams
[Bryant 86]. This representation is very efficient, and allows many combinatorial problems
to be solved with good performance.

Boolean expressions are composed from the following operands: the constants 0 and 1
(FALSE and TRUE), logical variables, and symbolic constants, and from the following con-
nectives. P and Q are Boolean expressions, X is a logical variable, Is is a list of integers or
integer ranges, and Es is a list of Boolean expressions:

~ P True if P is false.

P * Q True if P and Q are both true.

P + Q True if at least one of P and Q is true.

P # Q True if exactly one of P and Q is true.

X ^ P True if there exists an X such that P is true. Same as P[X/0] + P[X/1].

P =:= Q Same as ~P # Q.

P =\= Q Same as P # Q.

P =< Q Same as ~P + Q.

P >= Q Same as P + ~Q.

P < Q Same as ~P * Q.

P > Q Same as P * ~Q.

card(Is, Es)
True if the number of true expressions in Es is a member of the set denoted by
Is.

Symbolic constants (Prolog atoms) denote parametric values and can be viewed as all-
quantified variables whose quantifiers are placed outside the entire expression. They are
useful for forcing certain variables of an equation to be treated as input parameters.

412 SICStus Prolog

32.1 Solver Interface

The following predicates are defined:

sat(+Expression)
Expression is a Boolean expression. This checks the consistency of the ex-
pression wrt. the accumulated constraints, and, if the check succeeds, tells the
constraint that the expression be true.
If a variable X, occurring in the expression, is subsequently unified with some
term T, this is treated as a shorthand for the constraint

| ?- sat(X=:=T).

taut(+Expression, ?Truth)
Expression is a Boolean expression. This asks whether the expression is now
entailed by the accumulated constraints (Truth=1), or whether its negation is
entailed by the accumulated constraints (Truth=0). Otherwise, it fails.

labeling(+Variables)
Variables is a list of variables. The variables are instantiated to a list of 0s
and 1s, in a way that satisfies any accumulated constraints. Enumerates all
solutions by backtracking, but creates choicepoints only if necessary.

32.2 Examples

32.2.1 Example 1

| ?- sat(X + Y).

sat(X=\=_A*Y#Y)

illustrates three facts. First, any accumulated constraints affecting the top-level variables
are displayed floundered goals, since the query is not true for all X and Y. Secondly, accumu-
lated constraints are displayed as sat(V=:=Expr) or sat(V=\=Expr) where V is a variable
and Expr is a “polynomial”, i.e. an exclusive or of conjunctions of variables and constants.
Thirdly, _A had to be introduced as an artificial variable, since Y cannot be expressed as a
function of X. That is, X + Y is true iff there exists an _A such that X=\=_A*Y#Y. Let’s check
it!

| ?- taut(_A ^ (X=\=_A*Y#Y) =:= X + Y, T).

T = 1

verifies the above answer. Notice that the formula in this query is a tautology, and so it is
entailed by an empty set of constraints.

Chapter 32: Boolean Constraint Solver 413

32.2.2 Example 2

| ?- taut(A =< C, T).

no
| ?- sat(A =< B), sat(B =< C), taut(A =< C, T).

T = 1,
sat(A=:=_A*_B*C),
sat(B=:=_B*C)

| ?- taut(a, T).

T = 0

| ?- taut(~a, T).

T = 0

illustrates the entailment predicate. In the first query, the expression “A implies C” is
neither known to be true nor false, so the query fails. In the second query, the system is
told that “A implies B” and “B implies C”, so “A implies C” is entailed. The expressions
in the third and fourth queries are to be read “for each a, a is true” and “for each a, a is
false”, respectively, and so T = 0 in both cases since both are unsatisfiable. This illustrates
the fact that the implicit universal quantifiers introduced by symbolic constants are placed
in front of the entire expression.

32.2.3 Example 3

414 SICStus Prolog

| ?- [user].

| adder(X, Y, Sum, Cin, Cout) :-

sat(Sum =:= card([1,3],[X,Y,Cin])),

sat(Cout =:= card([2-3],[X,Y,Cin])).

| ^D
% consulted user in module user, 0 msec 424 bytes

| ?- adder(x, y, Sum, cin, Cout).

sat(Sum=:=cin#x#y),
sat(Cout=:=x*cin#x*y#y*cin)

| ?- adder(x, y, Sum, 0, Cout).

sat(Sum=:=x#y),
sat(Cout=:=x*y)

| ?- adder(X, Y, 0, Cin, 1), labeling([X,Y,Cin]).

Cin = 0,
X = 1,
Y = 1 ? ;

Cin = 1,
X = 0,
Y = 1 ? ;

Cin = 1,
X = 1,
Y = 0 ? ;

illustrates the use of cardinality constraints and models a one-bit adder circuit. The first
query illustrates how representing the input signals by symbolic constants forces the output
signals to be displayed as functions of the inputs and not vice versa. The second query
computes the simplified functions obtained by setting carry-in to 0. The third query asks
for particular input values satisfying sum and carry-out being 0 and 1, respectively.

32.2.4 Example 4

The predicate fault/3 below describes a 1-bit adder consisting of five gates, with at most
one faulty gate. If one of the variables Fi is equal to 1, the corresponding gate is faulty,
and its output signal is undefined (i.e. the constraint representing the gate is relaxed).

Assuming that we have found some incorrect output from a circuit, we are interesting in
finding the faulty gate. Two instances of incorrect output are listed in fault_ex/2:

Chapter 32: Boolean Constraint Solver 415

fault([F1,F2,F3,F4,F5], [X,Y,Cin], [Sum,Cout]) :-
sat(

card([0-1],[F1,F2,F3,F4,F5]) *
(F1 + (U1 =:= X * Cin)) *
(F2 + (U2 =:= Y * U3)) *
(F3 + (Cout =:= U1 + U2)) *
(F4 + (U3 =:= X # Cin)) *
(F5 + (Sum =:= Y # U3))

).

fault_ex(1, Faults) :- fault(Faults, [1,1,0], [1,0]).
fault_ex(2, Faults) :- fault(Faults, [1,0,1], [0,0]).

To find the faulty gates, we run the query

| ?- fault_ex(I,L), labeling(L).

I = 1,
L = [0,0,0,1,0] ? ;

I = 2,
L = [1,0,0,0,0] ? ;

I = 2,
L = [0,0,1,0,0] ? ;

no

Thus for input data [1,1,0], gate 4 must be faulty. For input data [1,0,1], either gate 1
or gate 3 must be faulty.

To get a symbolic representation of the outputs interms of the input, we run the query

| ?- fault([0,0,0,0,0], [x,y,cin], [Sum,Cout]).

sat(Cout=:=x*cin#x*y#y*cin),
sat(Sum=:=cin#x#y)

which shows that the sum and carry out signals indeed compute the intended functions if
no gate is faulty.

416 SICStus Prolog

Chapter 33: Constraint Logic Programming over Rationals or Reals 417

33 Constraint Logic Programming over Rationals
or Reals

33.1 Introduction

The clp(Q,R) system described in this document is an instance of the general Constraint
Logic Programming scheme introduced by [Jaffar & Michaylov 87].

The implementation is at least as complete as other existing clp(R) implementations: It
solves linear equations over rational or real valued variables, covers the lazy treatment of
nonlinear equations, features a decision algorithm for linear inequalities that detects implied
equations, removes redundancies, performs projections (quantifier elimination), allows for
linear dis-equations, and provides for linear optimization.

The full clp(Q,R) distribution, including a stand-alone manual and an examples directory
that is possibly more up to date than the version in the SICStus Prolog distribution, is
available from http://www.ai.univie.ac.at/clpqr/.

33.1.1 Referencing this Software

When referring to this implementation of clp(Q,R) in publications, you should use the
following reference:

Holzbaur C., OFAI clp(q,r) Manual, Edition 1.3.3, Austrian Research Institute
for Artificial Intelligence, Vienna, TR-95-09, 1995.

33.1.2 Acknowledgments

The development of this software was supported by the Austrian Fonds zur Foerderung der
Wissenschaftlichen Forschung under grant P9426-PHY. Financial support for the Austrian
Research Institute for Artificial Intelligence is provided by the Austrian Federal Ministry
for Science and Research.

We include a collection of examples that has been distributed with the Monash University
version of clp(R) [Heintze et al. 87], and its inclusion into this distribution was kindly
permitted by Roland Yap.

33.2 Solver Interface

Until rational numbers become first class citizens in SICStus Prolog, rational arithmetics
has to be emulated. Because of the emulation it is too expensive to support arithmetics
with automatic coercion between all sorts of numbers, like you find it in CommonLisp, for
example.

http://www.ai.univie.ac.at/clpqr/

418 SICStus Prolog

You must choose whether you want to operate in the field of Q (Rationals) or R (Reals):

| ?- use_module(library(clpq)).

or

| ?- use_module(library(clpr)).

You can also load both modules, but the exported predicates listed below will name
clash (see Section 5.4 [Importation], page 61). You can avoid the interactive resolu-
tion dialog if the importation is skipped, e.g. via: use_module(library(clpq),[]),use_
module(library(clpr),[]).

33.2.1 Notational Conventions

Throughout this chapter, the prompts clp(q) ?- and clp(r) ?- are used to differentiate
between clp(Q) and clp(R) in exemplary interactions.

In general there are many ways to express the same linear relationship. This degree of
freedom is manifest in the fact that the printed manual and an actual interaction with the
current version of clp(Q,R) may show syntactically different answer constraints, despite the
fact the same semantic relationship is being expressed. There are means to control the
presentation; see Section 33.5.1 [Variable Ordering], page 431. The approximative nature
of floating point numbers may also produce numerical differences between the text in this
manual and the actual results of clp(R), for a given edition of the software.

33.2.2 Solver Predicates

The solver interface for both Q and R consists of the following predicates, which are exported
from module(linear).

{+Constraint}
Constraint is a term accepted by the the grammar below. The corresponding
constraint is added to the current constraint store and checked for satisfiability.
Use the module prefix to distinguish the solvers if both clp(Q) and clp(R) were
loaded

| ?- clpr:{Ar+Br=10}, Ar=Br, clpq:{Aq+Bq=10}, Aq=Bq.

Aq = 5,
Ar = 5.0,
Bq = 5,
Br = 5.0

Although clp(Q) and clp(R) are independent modules, you are asking for trouble
if you (accidently) share variables between them:

Chapter 33: Constraint Logic Programming over Rationals or Reals 419

| ?- clpr:{A+B=10}, clpq:{A=B}.
! Type error in argument 2 of clpq:=/2
! a rational number expected, but 5.0 found
! goal: _118=5.0

This is because both solvers eventually compute values for the variables and
Reals are incompatible with Rationals.
Here is the constraint grammar:
Constraint ::= C

| C , C { conjunction }
C ::= Expr =:= Expr { equation }

| Expr = Expr { equation }
| Expr < Expr { strict inequation }
| Expr > Expr { strict inequation }
| Expr =< Expr { nonstrict inequation }
| Expr >= Expr { nonstrict inequation }
| Expr =\= Expr { disequation }

Expr ::= variable { Prolog variable }
| number { floating point or integer }
| + Expr { unary plus }
| - Expr { unary minus }
| Expr + Expr { addition }
| Expr - Expr { subtraction }
| Expr * Expr { multiplication }
| Expr / Expr { division }
| abs(Expr) { absolute value }
| sin(Expr) { trigonometric sine }
| cos(Expr) { trigonometric cosine }
| tan(Expr) { trigonometric tangent }
| pow(Expr,Expr) { raise to the power }
| exp(Expr,Expr) { raise to the power }
| min(Expr,Expr) { minimum of the two arguments

}
| max(Expr,Expr) { maximum of the two arguments

}
| #(Const) { symbolic numerical constants }

Conjunctive constraints {C,C} have been made part of the syntax to control the
granularity of constraint submission, which will be exploited by future versions
of this software. Symbolic numerical constants are provided for compatibility
only; see Section 33.7.1 [Monash Examples], page 439.

entailed(+Constraint)
Succeeds iff the linear Constraint is entailed by the current constraint store.
This predicate does not change the state of the constraint store.

420 SICStus Prolog

clp(q) ?- {A =< 4}, entailed(A=\=5).

{A=<4}

clp(q) ?- {A =< 4}, entailed(A=\=3).

no

inf(+Expr, -Inf)
inf(+Expr, -Inf, +Vector, -Vertex)

Computes the infimum of the linear expression Expr and unifies it with Inf. If
given, Vector should be a list of variables relevant to Expr, and Vertex will be
unified a list of the same length as Vector containing the values for Vector, such
that the infimum is produced when assigned. Failure indicates unboundedness.

sup(+Expr, -Sup)
sup(+Expr, -Sup, +Vector, -Vertex)

Computes the supremum of the linear expression Expr and unifies it with Sup.
If given, Vector should be a list of variables relevant to Expr, and Vertex will be
unified a list of the same length as Vector containing the values for Vector, such
that the supremum is produced when assigned. Failure indicates unbounded-
ness.

clp(q) ?- { 2*X+Y =< 16, X+2*Y =< 11,

X+3*Y =< 15, Z = 30*X+50*Y
}, sup(Z, Sup, [X,Y], Vertex).

Sup = 310,
Vertex = [7,2],
{Z=30*X+50*Y},
{X+1/2*Y=<8},
{X+3*Y=<15},
{X+2*Y=<11}

minimize(+Expr)
Computes the infimum of the linear expression Expr and equates it with the
expression, i.e. as if defined as:

minimize(Expr) :- inf(Expr, Expr).

maximize(+Expr)
Computes the supremum of the linear expression Expr and equates it with the
expression.

clp(q) ?- { 2*X+Y =< 16, X+2*Y =< 11,

X+3*Y =< 15, Z = 30*X+50*Y
}, maximize(Z).

X = 7,
Y = 2,
Z = 310

Chapter 33: Constraint Logic Programming over Rationals or Reals 421

bb_inf(+Ints, +Expr, -Inf)
Computes the infimum of the linear expression Expr under the additional con-
straint that all of variables in the list Ints assume integral values at the infimum.
This allows for the solution of mixed integer linear optimization problems; see
Section 33.8 [MIP], page 441.

clp(q) ?- {X >= Y+Z, Y > 1, Z > 1}, bb_inf([Y,Z],X,Inf).

Inf = 4,
{Y>1},
{Z>1},
{X-Y-Z>=0}

bb_inf(+Ints, +Expr, -Inf, -Vertex, +Eps)
Computes the infimum of the linear expression Expr under the additional con-
straint that all of variables in the list Ints assume integral values at the infimum.
Eps is a positive number between 0 and 0.5 that specifies how close a number X
must be to the next integer to be considered integral: abs(round(X)-X) < Eps.
The predicate bb_inf/3 uses Eps = 0.001. With clp(Q), Eps = 0 makes sense.
Vertex is a list of the same length as Ints and contains the (integral) values
for Ints, such that the infimum is produced when assigned. Note that this will
only generate one particular solution, which is different from the situation with
minimize/1, where the general solution is exhibited.
bb_inf/5 works properly for non-strict inequalities only! Disequations (=\=)
and higher dimensional strict inequalities (>,<) are beyond its scope. Strict
bounds on the decision variables are honored however:

clp(q) ?- {X >= Y+Z, Y > 1, Z > 1}, bb_inf([Y,Z],X,Inf,Vertex,0).

Inf = 4,
Vertex = [2,2],
{Y>1},
{Z>1},
{X-Y-Z>=0}

The limitation(s) can be addressed by:
• transforming the original problem statement so that only non-strict in-

equalities remain; for example, {X + Y > 0} becomes {X + Y >= 1} for inte-
gral X and Y;

• contemplating the use of clp(FD).

ordering(+Spec)
Provides a means to control one aspect of the presentation of the answer con-
straints; see Section 33.5.1 [Variable Ordering], page 431.

dump(+Target, -NewVars, -CodedAnswer)
Reflects the constraints on the target variables into a term, where Target and
NewVars are lists of variables of equal length and CodedAnswer is the term
representation of the projection of constraints onto the target variables where
the target variables are replaced by the corresponding variables from NewVars
(see Section 33.5.2 [Turning Answers into Terms], page 432).

422 SICStus Prolog

clp(q) ?- {A+B =< 10, A>=4},
dump([A,B],Vs,Cs),

dump([B],Bp,Cb).

Cb = [_A=<6],
Bp = [_A],
Cs = [_B>=4,_C+_B=<10],
Vs = [_C,_B],
{A>=4},
{A+B=<10}

The current version of dump/3 is incomplete with respect to nonlinear con-
straints. It only reports nonlinear constraints that are connected to the target
variables. The following example has no solution. From the top-level’s report
we have a chance to deduce this fact, but dump/3 currently has no means to
collect global constraints . . .

q(X) :-
{X>=10},
{sin(Z)>3}.

clp(r) ?- q(X), dump([X],V,C).

C = [_A>=10.0],
V = [_A],
clpr:{3.0-sin(_B)<0.0},
{X>=10.0}

projecting_assert/1(:Clause)
If you use the database, the clauses you assert might have constraints associated
with their variables. Use this predicate instead of assert/1 in order to ensure
that only the relevant and projected constraints get stored in the database. It
will transform the clause into one with plain variables and extra body goals
that set up the relevant constraint when called.

33.2.3 Unification

Equality constraints are added to the store implicitly each time variables that have been
mentioned in explicit constraints are bound—either to another such variable or to a number.

clp(r) ?- {2*A+3*B=C/2}, C=10.0, A=B.

A = 1.0,
B = 1.0,
C = 10.0

Is equivalent modulo rounding errors to

Chapter 33: Constraint Logic Programming over Rationals or Reals 423

clp(r) ?- {2*A+3*B=C/2, C=10, A=B}.

A = 1.0,
B = 0.9999999999999999,
C = 10.0

The shortcut bypassing the use of {}/1 is allowed and makes sense because the interpretation
of this equality in Prolog and clp(R) coincides. In general, equations involving interpreted
functors, +/2 in this case, must be fed to the solver explicitly:

clp(r) ?- X=3.0+1.0, X=4.0.

no

Further, variables known by clp(R) may be bound directly to floats only. Likewise, variables
known by clp(Q) may be bound directly to rational numbers only; see Section 33.9.1.1
[Rationals], page 443. Failing to do so is rewarded with an exception:

clp(q) ?- {2*A+3*B=C/2}, C=10.0, A=B.

! Type error in argument 2 of = /2
! ’a rational number’ expected, but 10.0 found
! goal: _254=10.0

This is because 10.0 is not a rational constant. To make clp(Q) happy you have to say:

clp(q) ?- {2*A+3*B=C/2}, C=rat(10,1), A=B.

A = 1,
B = 1,
C = 10

If you use {}/1, you don’t have to worry about such details. Alternatively, you may use
the automatic expansion facility, check Section 33.7 [Syntactic Sugar], page 438.

33.2.4 Feedback and Bindings

What was covered so far was how the user populates the constraint store. The other
direction of the information flow consists of the success and failure of the above predicates
and the binding of variables to numerical values. Example:

clp(r) ?- {A-B+C=10, C=5+5}.

{A = B},
C = 10.0

The linear constraints imply C=10.0 and the solver consequently exports this binding to the
Prolog world. The fact that A=B is deduced and represented by the solver but not exported
as a binding. More about answer presentation in Section 33.5 [Projection], page 430.

424 SICStus Prolog

33.3 Linearity and Nonlinear Residues

The clp(Q,R) system is restricted to deal with linear constraints because the decision algo-
rithms for general nonlinear constraints are prohibitively expensive to run. If you need this
functionality badly, you should look into symbolic algebra packages. Although the clp(Q,R)
system cannot solve nonlinear constraints, it will collect them faithfully in the hope that
through the addition of further (linear) constraints they might get simple enough to solve
eventually. If an answer contains nonlinear constraints, you have to be aware of the fact that
success is qualified modulo the existence of a solution to the system of residual (nonlinear)
constraints:

clp(r) ?- {sin(X) = cos(X)}.

clpr:{sin(X)-cos(X)=0.0}

There are indeed infinitely many solutions to this constraint (X = 0.785398 + n*Pi), but
clp(Q,R) has no direct means to find and represent them.

The systems goes through some lengths to recognize linear expressions as such. The method
is based on a normal form for multivariate polynomials. In addition, some simple isolation
axioms, that can be used in equality constraints, have been added. The current major limi-
tation of the method is that full polynomial division has not been implemented. Examples:

This is an example where the isolation axioms are sufficient to determine the value of X.

clp(r) ?- {sin(cos(X)) = 1/2}.

X = 1.0197267436954502

If we change the equation into an inequation, clp(Q,R) gives up:

clp(r) ?- {sin(cos(X)) < 1/2}.

clpr:{sin(cos(X))-0.5<0.0}

The following is easy again:

clp(r) ?- {sin(X+2+2)/sin(4+X) = Y}.

Y = 1.0

And so is this:

clp(r) ?- {(X+Y)*(Y+X)/X = Y*Y/X+99}.

{Y=49.5-0.5*X}

An ancient symbol manipulation benchmark consists in rising the expression X+Y+Z+1 to
the 15th power:

Chapter 33: Constraint Logic Programming over Rationals or Reals 425

clp(q) ?- {exp(X+Y+Z+1,15)=0}.
clpq:{Z^15+Z^14*15+Z^13*105+Z^12*455+Z^11*1365+Z^10*3003+...

. . . polynomial continues for a few pages . . .
=0}

Computing its roots is another story.

33.3.1 How Nonlinear Residues Are Made to Disappear

Binding variables that appear in nonlinear residues will reduce the complexity of the non-
linear expressions and eventually results in linear expressions:

clp(q) ?- {exp(X+Y+1,2) = 3*X*X+Y*Y}.

clpq:{Y*2-X^2*2+Y*X*2+X*2+1=0}

Equating X and Y collapses the expression completely and even determines the values of
the two variables:

clp(q) ?- {exp(X+Y+1,2) = 3*X*X+Y*Y}, X=Y.

X = -1/4,
Y = -1/4

33.3.2 Isolation Axioms

These axioms are used to rewrite equations such that the variable to be solved for is moved to
the left hand side and the result of the evaluation of the right hand side can be assigned to the
variable. This allows, for example, to use the exponentiation operator for the computation
of roots and logarithms, see below.

A = B * C Residuates unless B or C is ground or A and B or C are ground.

A = B / C Residuates unless C is ground or A and B are ground.

X = min(Y,Z)
Residuates unless Y and Z are ground.

X = max(Y,Z)
Residuates unless Y and Z are ground.

X = abs(Y)
Residuates unless Y is ground.

X = pow(Y,Z), X = exp(Y,Z)
Residuates unless any pair of two of the three variables is ground. Example:

426 SICStus Prolog

clp(r) ?- { 12=pow(2,X) }.

X = 3.5849625007211565

clp(r) ?- { 12=pow(X,3.585) }.

X = 1.9999854993443926

clp(r) ?- { X=pow(2,3.585) }.

X = 12.000311914286545

X = sin(Y)
Residuates unless X or Y is ground. Example:

clp(r) ?- { 1/2 = sin(X) }.

X = 0.5235987755982989

X = cos(Y)
Residuates unless X or Y is ground.

X = tan(Y)
Residuates unless X or Y is ground.

33.4 Numerical Precision and Rationals

The fact that you can switch between clp(R) and clp(Q) should solve most of your numer-
ical problems regarding precision. Within clp(Q), floating point constants will be coerced
into rational numbers automatically. Transcendental functions will be approximated with
rationals. The precision of the approximation is limited by the floating point precision.
These two provisions allow you to switch between clp(R) and clp(Q) without having to
change your programs.

What is to be kept in mind however is the fact that it may take quite big rationals to
accommodate the required precision. High levels of precision are for example required if
your linear program is ill-conditioned, i.e. in a full rank system the determinant of the
coefficient matrix is close to zero. Another situation that may call for elevated levels of
precision is when a linear optimization problem requires exceedingly many pivot steps before
the optimum is reached.

If your application approximates irrational numbers, you may be out of space particularly
soon. The following program implements N steps of Newton’s approximation for the square
root function at point 2.

Chapter 33: Constraint Logic Programming over Rationals or Reals 427

% library(’clpqr/examples/root’)

root(N, R) :-
root(N, 1, R).

root(0, S, R) :- !, S=R.
root(N, S, R) :-

N1 is N-1,
{ S1 = S/2 + 1/S },
root(N1, S1, R).

It is known that this approximation converges quadratically, which means that the number
of correct digits in the decimal expansion roughly doubles with each iteration. Therefore
the numerator and denominator of the rational approximation have to grow likewise:

clp(q) ?- use_module(library(’clpqr/examples/root’)).

clp(q) ?- root(3,R),print_decimal(R,70).

1.4142156862 7450980392 1568627450 9803921568 6274509803 9215686274
5098039215

R = 577/408

clp(q) ?- root(4,R),print_decimal(R,70).

1.4142135623 7468991062 6295578890 1349101165 5962211574 4044584905
0192000543

R = 665857/470832

clp(q) ?- root(5,R),print_decimal(R,70).

1.4142135623 7309504880 1689623502 5302436149 8192577619 7428498289
4986231958

R = 886731088897/627013566048

clp(q) ?- root(6,R),print_decimal(R,70).

1.4142135623 7309504880 1688724209 6980785696 7187537723 4001561013
1331132652

R = 1572584048032918633353217/1111984844349868137938112

clp(q) ?- root(7,R),print_decimal(R,70).

1.4142135623 7309504880 1688724209 6980785696 7187537694 8073176679
7379907324

R = 4946041176255201878775086487573351061418968498177 /
3497379255757941172020851852070562919437964212608

428 SICStus Prolog

Iterating for 8 steps produces no further change in the first 70 decimal digits of sqrt(2).
After 15 steps the approximating rational number has a numerator and a denominator with
12543 digits each, and the next step runs out of memory.

Another irrational number that is easily computed is e. The following program implements
an alternating series for 1/e, where the absolute value of last term is an upper bound on
the error.

% library(’clpqr/examples/root’)

e(N, E) :-
{ Err =:= exp(10,-(N+2)), Half =:= 1/2 },
inv_e_series(Half, Half, 3, Err, Inv_E),
{ E =:= 1/Inv_E }.

inv_e_series(Term, S0, _, Err, Sum) :-
{ abs(Term) =< Err }, !,
S0 = Sum.

inv_e_series(Term, S0, N, Err, Sum) :-
N1 is N+1,
{ Term1 =:= -Term/N, S1 =:= Term1+S0 },
inv_e_series(Term1, S1, N1, Err, Sum).

The computation of the rational number E that approximates e up to at least 1000 digits
in its decimal expansion requires the evaluation of 450 terms of the series, i.e. 450 calls of
inv_e_series/5.

Chapter 33: Constraint Logic Programming over Rationals or Reals 429

clp(q) ?- e(1000,E).

E = 7149056228932760213666809592072842334290744221392610955845565494
3708750229467761730471738895197792271346693089326102132000338192
0131874187833985420922688804220167840319199699494193852403223700
5853832741544191628747052136402176941963825543565900589161585723
4023097417605004829991929283045372355639145644588174733401360176
9953973706537274133283614740902771561159913069917833820285608440
3104966899999651928637634656418969027076699082888742481392304807
9484725489080844360397606199771786024695620205344042765860581379
3538290451208322129898069978107971226873160872046731879753034549
3130492167474809196348846916421782850086985668680640425192038155
4902863298351349469211627292865440876581064873866786120098602898
8799130098877372097360065934827751120659213470528793143805903554
7928682131082164366007016698761961066948371407368962539467994627
1374858249110795976398595034606994740186040425117101588480000000
00
00000000000000000000000000000000000000
/
2629990810403002651095959155503002285441272170673105334466808931
6863103901346024240326549035084528682487048064823380723787110941
6809235187356318780972302796570251102928552003708556939314795678
1978390674393498540663747334079841518303636625888963910391440709
0887345797303470959207883316838346973393937778363411195624313553
8835644822353659840936818391050630360633734935381528275392050975
7271468992840907541350345459011192466892177866882264242860412188
0652112744642450404625763019639086944558899249788084559753723892
1643188991444945360726899532023542969572584363761073528841147012
2634218045463494055807073778490814692996517359952229262198396182
1838930043528583109973872348193806830382584040536394640895148751
0766256738740729894909630785260101721285704616818889741995949666
6303289703199393801976334974240815397920213059799071915067856758
6716458821062645562512745336709063396510021681900076680696945309
3660590933279867736747926648678738515702777431353845466199680991
73361873421152165477774911660108200059

The decimal expansion itself looks like this:

430 SICStus Prolog

clp(q) ?- e(1000, E), print_decimal(E, 1000).

2.
7182818284 5904523536 0287471352 6624977572 4709369995 9574966967
6277240766 3035354759 4571382178 5251664274 2746639193 2003059921
8174135966 2904357290 0334295260 5956307381 3232862794 3490763233
8298807531 9525101901 1573834187 9307021540 8914993488 4167509244
7614606680 8226480016 8477411853 7423454424 3710753907 7744992069
5517027618 3860626133 1384583000 7520449338 2656029760 6737113200
7093287091 2744374704 7230696977 2093101416 9283681902 5515108657
4637721112 5238978442 5056953696 7707854499 6996794686 4454905987
9316368892 3009879312 7736178215 4249992295 7635148220 8269895193
6680331825 2886939849 6465105820 9392398294 8879332036 2509443117
3012381970 6841614039 7019837679 3206832823 7646480429 5311802328
7825098194 5581530175 6717361332 0698112509 9618188159 3041690351
5988885193 4580727386 6738589422 8792284998 9208680582 5749279610
4841984443 6346324496 8487560233 6248270419 7862320900 2160990235
3043699418 4914631409 3431738143 6405462531 5209618369 0888707016
7683964243 7814059271 4563549061 3031072085 1038375051 0115747704
1718986106 8739696552 1267154688 9570350354

33.5 Projection and Redundancy Elimination

Once a derivation succeeds, the Prolog system presents the bindings for the variables in
the query. In a CLP system, the set of answer constraints is presented in analogy. A
complication in the CLP context are variables and associated constraints that were not
mentioned in the query. A motivating example is the familiar mortgage relation:

% library(’clpqr/examples/mg’)

mg(P,T,I,B,MP):-
{

T = 1,
B + MP = P * (1 + I)

}.
mg(P,T,I,B,MP):-

{
T > 1,
P1 = P * (1 + I) - MP,
T1 = T - 1

},
mg(P1, T1, I, B, MP).

A sample query yields:

Chapter 33: Constraint Logic Programming over Rationals or Reals 431

clp(r) ?- use_module(library(’clpqr/examples/mg’)).

clp(r) ?- mg(P,12,0.01,B,Mp).

{B=1.1268250301319698*P-12.682503013196973*Mp}

Without projection of the answer constraints onto the query variables we would observe the
following interaction:

clp(r) ?- mg(P,12,0.01,B,Mp).

{B=12.682503013196973*_A-11.682503013196971*P},
{Mp= -(_A)+1.01*P},
{_B=2.01*_A-1.01*P},
{_C=3.0301*_A-2.0301*P},
{_D=4.060401000000001*_A-3.0604009999999997*P},
{_E=5.101005010000001*_A-4.10100501*P},
{_F=6.152015060100001*_A-5.152015060099999*P},
{_G=7.213535210701001*_A-6.213535210700999*P},
{_H=8.285670562808011*_A-7.285670562808009*P},
{_I=9.368527268436091*_A-8.36852726843609*P},
{_J=10.462212541120453*_A-9.46221254112045*P},
{_K=11.566834666531657*_A-10.566834666531655*P}

The variables A . . . K are not part of the query, they originate from the mortgage program
proper. Although the latter answer is equivalent to the former in terms of linear algebra,
most users would prefer the former.

33.5.1 Variable Ordering

In general, there are many ways to express the same linear relationship between variables.
clp(Q,R) does not care to distinguish between them, but the user might. The predicate
ordering(+Spec) gives you some control over the variable ordering. Suppose that instead
of B, you want Mp to be the defined variable:

clp(r) ?- mg(P,12,0.01,B,Mp).

{B=1.1268250301319698*P-12.682503013196973*Mp}

This is achieved with:

clp(r) ?- mg(P,12,0.01,B,Mp), ordering([Mp]).

{Mp= -0.0788487886783417*B+0.08884878867834171*P}

One could go one step further and require P to appear before (to the left of) B in an
addition:

432 SICStus Prolog

clp(r) ?- mg(P,12,0.01,B,Mp), ordering([Mp,P]).

{Mp=0.08884878867834171*P-0.0788487886783417*B}

Spec in ordering(+Spec) is either a list of variables with the intended ordering, or of the
form A<B. The latter form means that A goes to the left of B. In fact, ordering([A,B,C,D])
is shorthand for:

ordering(A < B), ordering(A < C), ordering(A < D),
ordering(B < C), ordering(B < D),
ordering(C < D)

The ordering specification only affects the final presentation of the constraints. For all
other operations of clp(Q,R), the ordering is immaterial. Note that ordering/1 acts like
a constraint: you can put it anywhere in the computation, and you can submit multiple
specifications.

clp(r) ?- ordering(B < Mp), mg(P,12,0.01,B,Mp).

{B= -12.682503013196973*Mp+1.1268250301319698*P}

clp(r) ?- ordering(B < Mp), mg(P,12,0.01,B,Mp), ordering(P < Mp).

{P=0.8874492252651537*B+11.255077473484631*Mp}

33.5.2 Turning Answers into Terms

In meta-programming applications one needs to get a grip on the results computed by
the clp(Q,R) solver. You can use the predicates dump/3 and/or call_residue/2 for that
purpose:

clp(r) ?- {2*A+B+C=10,C-
D=E,A<10}, dump([A,B,C,D,E],[a,b,c,d,e],Constraints).

Constraints = [e<10.0,a=10.0-c-d-2.0*e,b=c+d],
{C=10.0-2.0*A-B},
{E=10.0-2.0*A-B-D},
{A<10.0}

clp(r) ?- call_residue({2*A+B+C=10,C-D=E,A<10}, Constraints).

Constraints = [
[A]-{A<10.0},
[B]-{B=10.0-2.0*A-C},
[D]-{D=C-E}
]

Chapter 33: Constraint Logic Programming over Rationals or Reals 433

33.5.3 Projecting Inequalities

As soon as linear inequations are involved, projection gets more demanding complexity wise.
The current clp(Q,R) version uses a Fourier-Motzkin algorithm for the projection of linear
inequalities. The choice of a suitable algorithm is somewhat dependent on the number of
variables to be eliminated, the total number of variables, and other factors. It is quite easy
to produce problems of moderate size where the elimination step takes some time. For
example, when the dimension of the projection is 1, you might be better off computing the
supremum and the infimum of the remaining variable instead of eliminating n-1 variables
via implicit projection.

In order to make answers as concise as possible, redundant constraints are removed by the
system as well. In the following set of inequalities, half of them are redundant.

% library(’clpqr/examples/eliminat’)

example(2, [X0,X1,X2,X3,X4]) :-
{

+87*X0 +52*X1 +27*X2 -54*X3 +56*X4 =< -93,
+33*X0 -10*X1 +61*X2 -28*X3 -29*X4 =< 63,
-68*X0 +8*X1 +35*X2 +68*X3 +35*X4 =< -85,
+90*X0 +60*X1 -76*X2 -53*X3 +24*X4 =< -68,
-95*X0 -10*X1 +64*X2 +76*X3 -24*X4 =< 33,
+43*X0 -22*X1 +67*X2 -68*X3 -92*X4 =< -97,
+39*X0 +7*X1 +62*X2 +54*X3 -26*X4 =< -27,
+48*X0 -13*X1 +7*X2 -61*X3 -59*X4 =< -2,
+49*X0 -23*X1 -31*X2 -76*X3 +27*X4 =< 3,
-50*X0 +58*X1 -1*X2 +57*X3 +20*X4 =< 6,
-13*X0 -63*X1 +81*X2 -3*X3 +70*X4 =< 64,
+20*X0 +67*X1 -23*X2 -41*X3 -66*X4 =< 52,
-81*X0 -44*X1 +19*X2 -22*X3 -73*X4 =< -17,
-43*X0 -9*X1 +14*X2 +27*X3 +40*X4 =< 39,
+16*X0 +83*X1 +89*X2 +25*X3 +55*X4 =< 36,
+2*X0 +40*X1 +65*X2 +59*X3 -32*X4 =< 13,
-65*X0 -11*X1 +10*X2 -13*X3 +91*X4 =< 49,
+93*X0 -73*X1 +91*X2 -1*X3 +23*X4 =< -87

}.

Consequently, the answer consists of the system of nine non-redundant inequalities only:

434 SICStus Prolog

clp(q) ?- use_module(library(’clpqr/examples/elimination’)).

clp(q) ?- example(2, [X0,X1,X2,X3,X4]).

{X0-2/17*X1-35/68*X2-X3-35/68*X4>=5/4},
{X0-73/93*X1+91/93*X2-1/93*X3+23/93*X4=<-29/31},
{X0-29/25*X1+1/50*X2-57/50*X3-2/5*X4>=-3/25},
{X0+7/39*X1+62/39*X2+18/13*X3-2/3*X4=<-9/13},
{X0+2/19*X1-64/95*X2-4/5*X3+24/95*X4>=-33/95},
{X0+2/3*X1-38/45*X2-53/90*X3+4/15*X4=<-34/45},
{X0-23/49*X1-31/49*X2-76/49*X3+27/49*X4=<3/49},
{X0+44/81*X1-19/81*X2+22/81*X3+73/81*X4>=17/81},
{X0+9/43*X1-14/43*X2-27/43*X3-40/43*X4>=-39/43}

The projection (the shadow) of this polyhedral set into the X0,X1 space can be computed
via the implicit elimination of non-query variables:

clp(q) ?- example(2, [X0,X1|_]).

{X0+2619277/17854273*X1>=-851123/17854273},
{X0+6429953/16575801*X1=<-12749681/16575801},
{X0+19130/1213083*X1>=795400/404361},
{X0-1251619/3956679*X1>=21101146/3956679},
{X0+601502/4257189*X1>=220850/473021}

Projection is quite a powerful concept that leads to surprisingly terse executable specifica-
tions of nontrivial problems like the computation of the convex hull from a set of points in
an n-dimensional space: Given the program

Chapter 33: Constraint Logic Programming over Rationals or Reals 435

% library(’clpqr/examples/elimination’)

conv_hull(Points, Xs) :-
lin_comb(Points, Lambdas, Zero, Xs),
zero(Zero),
polytope(Lambdas).

polytope(Xs) :-
positive_sum(Xs, 1).

positive_sum([], Z) :- {Z=0}.
positive_sum([X|Xs], SumX) :-
{ X >= 0, SumX = X+Sum },
positive_sum(Xs, Sum).

zero([]).
zero([Z|Zs]) :- {Z=0}, zero(Zs).

lin_comb([], [], S1, S1).
lin_comb([Ps|Rest], [K|Ks], S1, S3) :-
lin_comb_r(Ps, K, S1, S2),
lin_comb(Rest, Ks, S2, S3).

lin_comb_r([], _, [], []).
lin_comb_r([P|Ps], K, [S|Ss], [Kps|Ss1]) :-
{ Kps = K*P+S },
lin_comb_r(Ps, K, Ss, Ss1).

we can post the following query:

clp(q) ?- conv_hull([[1,1], [2,0], [3,0], [1,2], [2,2]], [X,Y]).

{Y=<2},
{X+1/2*Y=<3},
{X>=1},
{Y>=0},
{X+Y>=2}

This answer is easily verified graphically:

|
2 - * *
|
|

1 - *
|
|

0 -----|----*----*----
1 2 3

436 SICStus Prolog

The convex hull program directly corresponds to the mathematical definition of the convex
hull. What does the trick in operational terms is the implicit elimination of the Lambdas
from the program formulation. Please note that this program does not limit the number
of points or the dimension of the space they are from. Please note further that quantifier
elimination is a computationally expensive operation and therefore this program is only
useful as a benchmark for the projector and not so for the intended purpose.

33.6 Why Disequations

A beautiful example of disequations at work is due to [Colmerauer 90]. It addresses the
task of tiling a rectangle with squares of all-different, a priori unknown sizes. Here is a
translation of the original Prolog-III program to clp(Q,R):

Chapter 33: Constraint Logic Programming over Rationals or Reals 437

% library(’clpqr/examples/squares’)

filled_rectangle(A, C) :-
{ A >= 1 },
distinct_squares(C),
filled_zone([-1,A,1], _, C, []).

distinct_squares([]).
distinct_squares([B|C]) :-

{ B > 0 },
outof(C, B),
distinct_squares(C).

outof([], _).
outof([B1|C], B) :-

{ B =\= B1 }, % *** note disequation ***
outof(C, B).

filled_zone([V|L], [W|L], C0, C0) :-
{ V=W,V >= 0 }.

filled_zone([V|L], L3, [B|C], C2) :-
{ V < 0 },
placed_square(B, L, L1),
filled_zone(L1, L2, C, C1),
{ Vb=V+B },
filled_zone([Vb,B|L2], L3, C1, C2).

placed_square(B, [H,H0,H1|L], L1) :-
{ B > H, H0=0, H2=H+H1 },
placed_square(B, [H2|L], L1).

placed_square(B, [B,V|L], [X|L]) :-
{ X=V-B }.

placed_square(B, [H|L], [X,Y|L]) :-
{ B < H, X= -B, Y=H-B }.

There are no tilings with less than nine squares except the trivial one where the rectangle
equals the only square. There are eight solutions for nine squares. Six further solutions are
rotations of the first two.

438 SICStus Prolog

clp(q) ?- use_module(library(’clpqr/examples/squares’)).

clp(q) ?- filled_rectangle(A, Squares).

A = 1,
Squares = [1] ? ;

A = 33/32,
Squares = [15/32,9/16,1/4,7/32,1/8,7/16,1/32,5/16,9/32] ? ;

A = 69/61,
Squares = [33/61,36/61,28/61,5/61,2/61,9/61,25/61,7/61,16/61] ? 〈RET〉

Depending on your hardware, the above query may take a few minutes. Supplying the
knowledge about the minimal number of squares beforehand cuts the computation time by
a factor of roughly four:

clp(q) ?- length(Squares, 9), filled_rectangle(A, Squares).

A = 33/32,
Squares = [15/32,9/16,1/4,7/32,1/8,7/16,1/32,5/16,9/32] ? ;

A = 69/61,
Squares = [33/61,36/61,28/61,5/61,2/61,9/61,25/61,7/61,16/61] ? 〈RET〉

33.7 Syntactic Sugar

There is a package that transforms programs and queries from an eval-quote variant of
clp(Q,R) into corresponding programs and queries in a quote-eval variant. Before you use
it, you need to know that in an eval-quote language, all symbols are interpreted unless
explicitly quoted. This means that interpreted terms cannot be manipulated syntactically
directly. Meta-programming in a CLP context by definition manipulates interpreted terms,
therefore you need quote/1 (just as in LISP) and some means to put syntactical terms back
to their interpreted life: {}/1.

In a quote-eval language, meta-programming is (pragmatically) simpler because everything
is implicitly quoted until explicitly evaluated. On the other hand, now object programming
suffers from the dual inconvenience.

We chose to make our version of clp(Q,R) of the quote-eval type because this matches the
intended use of the already existing boolean solver of SICStus. In order to keep the users
of the eval-quote variant happy, we provide a source transformation package. It is activated
via:

| ?- use_module(library(’clpqr/expand’)).

| ?- expand.

Chapter 33: Constraint Logic Programming over Rationals or Reals 439

expand/0 puts you in a mode where the arithmetic functors like +/2, */2 and all numbers
(functors of arity 0) are interpreted semantically. noexpand/0 gets you out of the mode.

clp(r) ?- 2+2=X.

X = 4.0

The package works by purifying programs and queries in the sense that all references to
interpreted terms are made explicit. The above query is expanded prior to evaluation into:

{2.0+2.0=X}

The same mechanism applies when interpreted terms are nested deeper:

some_predicate(10, f(A+B/2), 2*cos(A))

Expands into:

{Xc=2.0*cos(A)},
{Xb=A+B/2},
{Xa=10.0},
some_predicate(Xa, f(Xb), Xc)

This process also applies when files are consulted or compiled. In fact, this is the only
situation where expansion can be applied with relative safety. To see this, consider what
happens when the top-level evaluates the expansion, namely some calls to the clp(Q,R)
solver, followed by the call of the purified query. As we learned in Section 33.2.4 [Feedback],
page 423, the solver may bind variables, which produces a goal with interpreted terms in it
(numbers), which leads to another stage of expansion, and so on.

We recommend that you only turn on expansion temporarily while consulting or compiling
files needing expansion with expand/0 and noexpand/0.

33.7.1 Monash Examples

This collection of examples has been distributed with the Monash University Version of
clp(R) [Heintze et al. 87], and its inclusion into this distribution was kindly permitted by
Roland Yap.

In order to execute the examples, a small compatibility package has to be loaded first:

clp(r) ?- use_module(library(’clpqr/monash’)).

Then, assuming you are using clp(R):

440 SICStus Prolog

clp(r) ?- expand, [library(’clpqr/examples/monash/rkf45’)],

noexpand.

clp(r) ?- go.

Point 0.00000 : 0.75000 0.00000
Point 0.50000 : 0.61969 0.47793
Point 1.00000 : 0.29417 0.81233
Point 1.50000 : -0.10556 0.95809
Point 2.00000 : -0.49076 0.93977
Point 2.50000 : -0.81440 0.79929
Point 3.00000 : -1.05440 0.57522

Iteration finished

439 derivative evaluations

33.7.1.1 Compatibility Notes

The Monash examples have been written for clp(R). Nevertheless, all but rkf45 complete
nicely in clp(Q). With rkf45, clp(Q) runs out of memory. This is an instance of the problem
discussed in Section 33.4 [Numerical Precision], page 426.

The Monash University clp(R) interpreter features a dump/n predicate. It is used to print
the target variables according to the given ordering. Within this version of clp(Q,R), the
corresponding functionality is provided via ordering/1. The difference is that ordering/1
does only specify the ordering of the variables and no printing is performed. We think
Prolog has enough predicates to perform output already. You can still run the examples
referring to dump/n from the Prolog top-level:

Chapter 33: Constraint Logic Programming over Rationals or Reals 441

clp(r) ?- expand, [li-
brary(’clpqr/examples/monash/mortgage’)], noexpand.

% go2
%
clp(r) ?- mg(P,120,0.01,0,MP), dump([P,MP]).

{P=69.7005220313972*MP}

% go3
%
clp(r) ?- mg(P,120,0.01,B,MP), dump([P,B,MP]).

{P=0.30299477968602706*B+69.7005220313972*MP}

% go4
%
clp(r) ?- mg(999, 3, Int, 0, 400), dump.

clpr:{_B-_B*Int+_A+400.0=0.0},
clpr:{_A-_A*Int+400.0=0.0},
{_B=599.0+999.0*Int}

33.8 A Mixed Integer Linear Optimization Example

The predicates bb_inf/[3,5] implement a simple Branch and Bound search algorithm
for Mixed Integer Linear (MIP) Optimization examples. Serious MIP is not trivial. The
implementation library(’clpqr/bb.pl’) is to be understood as a starting point for more
ambitious users who need control over branching, or who want to add cutting planes, for
example.

Anyway, here is a small problem from miplib, a collection of MIP models, housed at Rice
University:

NAME: flugpl
ROWS: 18
COLUMNS: 18
INTEGER: 11
NONZERO: 46
BEST SOLN: 1201500 (opt)
LP SOLN: 1167185.73
SOURCE: Harvey M. Wagner

John W. Gregory (Cray Research)
E. Andrew Boyd (Rice University)

APPLICATION: airline model
COMMENTS: no integer variables are binary

442 SICStus Prolog

% library(’clpqr/examples/mip’)

example(flugpl, Obj, Vs, Ints, []) :-
Vs = [Anm1,Anm2,Anm3,Anm4,Anm5,Anm6,

Stm1,Stm2,Stm3,Stm4,Stm5,Stm6,
UE1,UE2,UE3,UE4,UE5,UE6],

Ints = [Stm6, Stm5, Stm4, Stm3, Stm2,
Anm6, Anm5, Anm4, Anm3, Anm2, Anm1],

Obj = 2700*Stm1 + 1500*Anm1 + 30*UE1
+ 2700*Stm2 + 1500*Anm2 + 30*UE2
+ 2700*Stm3 + 1500*Anm3 + 30*UE3
+ 2700*Stm4 + 1500*Anm4 + 30*UE4
+ 2700*Stm5 + 1500*Anm5 + 30*UE5
+ 2700*Stm6 + 1500*Anm6 + 30*UE6,

allpos(Vs),
{ Stm1 = 60, 0.9*Stm1 +1*Anm1 -1*Stm2 = 0,

0.9*Stm2 +1*Anm2 -1*Stm3 = 0, 0.9*Stm3 +1*Anm3 -1*Stm4 = 0,
0.9*Stm4 +1*Anm4 -1*Stm5 = 0, 0.9*Stm5 +1*Anm5 -1*Stm6 = 0,
150*Stm1 -100*Anm1 +1*UE1 >= 8000,
150*Stm2 -100*Anm2 +1*UE2 >= 9000,
150*Stm3 -100*Anm3 +1*UE3 >= 8000,
150*Stm4 -100*Anm4 +1*UE4 >= 10000,
150*Stm5 -100*Anm5 +1*UE5 >= 9000,
150*Stm6 -100*Anm6 +1*UE6 >= 12000,
-20*Stm1 +1*UE1 =< 0, -20*Stm2 +1*UE2 =< 0, -20*Stm3 +1*UE3 =< 0,
-20*Stm4 +1*UE4 =< 0, -20*Stm5 +1*UE5 =< 0, -20*Stm6 +1*UE6 =< 0,
Anm1 =< 18, 57 =< Stm2, Stm2 =< 75, Anm2 =< 18,
57 =< Stm3, Stm3 =< 75, Anm3 =< 18, 57 =< Stm4,
Stm4 =< 75, Anm4 =< 18, 57 =< Stm5, Stm5 =< 75,
Anm5 =< 18, 57 =< Stm6, Stm6 =< 75, Anm6 =< 18

}.

allpos([]).
allpos([X|Xs]) :- {X >= 0}, allpos(Xs).

We can first check whether the relaxed problem has indeed the quoted infimum:

clp(r) ?- example(flugpl, Obj, _, _, _), inf(Obj, Inf).

Inf = 1167185.7255923203

Computing the infimum under the additional constraints that Stm6, Stm5, Stm4, Stm3, Stm2,
Anm6, Anm5, Anm4, Anm3, Anm2, Anm1 assume integer values at the infimum is computationally
harder, but the query does not change much:

Chapter 33: Constraint Logic Programming over Rationals or Reals 443

clp(r) ?- example(flugpl, Obj, _, Ints, _),

bb_inf(Ints, Obj, Inf, Vertex, 0.001).

Inf = 1201500.0000000005,
Vertex = [75.0,70.0,70.0,60.0,60.0,0.0,12.0,7.0,16.0,6.0,6.0]

33.9 Implementation Architecture

The system consists roughly of the following components:

• A polynomial normal form expression simplification mechanism.
• A solver for linear equations [Holzbaur 92a].
• A simplex algorithm to decide linear inequalities [Holzbaur 94].

33.9.1 Fragments and Bits

33.9.1.1 Rationals

The internal data structure for rational numbers is rat(Num,Den). Den is always positive,
i.e. the sign of the rational number is the sign of Num. Further, Num and Den are relative
prime. Note that integer N looks like rat(N,1) in this representation. You can control
printing of terms with portray/1.

33.9.1.2 Partial Evaluation, Compilation

Once one has a working solver, it is obvious and attractive to run the constraints in a clause
definition at read time or compile time and proceed with the answer constraints in place
of the original constraints. This gets you constant folding and in fact the full algebraic
power of the solver applied to the avoidance of computations at runtime. The mechanism
to realize this idea is to use dump/3, call_residue/2 for the expansion of {}/1, via hook
predicate user:goal_expansion/3).

33.9.1.3 Asserting with Constraints

If you use the database, the clauses you assert might have constraints associated with their
variables. You should use projecting_assert/1 instead of assert/1 in order to ensure
that only the relevant and projected constraints get stored in the database.

444 SICStus Prolog

| ?- {A+B=<33}, projecting_assert(test(A,B)).

{A+B=<33}

| ?- listing(test).

test(A, B) :-
{A+B=<rat(33,1)}

| ?- test(A,B).

{A+B=<33}

33.9.2 Bugs

• The fuzzy comparison of floats is the source for all sorts of weirdness. If a result in R
surprises you, try to run the program in Q before you send me a bug report.

• The projector for floundered nonlinear relations keeps too many variables. Its output
is rather unreadable.

• Disequations are not projected properly.
• This list is probably incomplete.

Please send bug reports to <christian@ai.univie.ac.at>.

Chapter 34: Constraint Logic Programming over Finite Domains 445

34 Constraint Logic Programming over Finite
Domains

34.1 Introduction

The clp(FD) solver described in this chapter is an instance of the general Constraint Logic
Programming scheme introduced in [Jaffar & Michaylov 87]. This constraint domain is
particularly useful for modeling discrete optimization and verification problems such as
scheduling, planning, packing, timetabling etc. The treatise [Van Hentenryck 89] is an
excellent exposition of the theoretical and practical framework behind constraint solving in
finite domains, and summarizes the work up to 1989.

This solver has the following highlights:

• Two classes of constraints are handled internally: primitive constraints and global
constraints.

• The constraints described in this chapter are automatically translated to conjunctions
of primitive and global library constraints.

• The truth value of a primitive constraint can be reflected into a 0/1-variable (reifica-
tion).

• New primitive constraints can be added by writing so-called indexicals.
• New global constraints can be written in Prolog, by means of a programming interface.

This library fully supports multiple SICStus run-times in a process.

The rest of this chapter is organized as follows: How to load the solver and how to write
simple programs is explained in Section 34.2 [CLPFD Interface], page 446. A description of
all constraints that the solver provides is contained in Section 34.3 [Available Constraints],
page 450. The predicates for searching for solution are documented in Section 34.4 [Enumer-
ation Predicates], page 465. The predicates for getting execution statistics are documented
in Section 34.5 [Statistics Predicates], page 469. A few example programs are given in
Section 34.10 [Example Programs], page 487. Finally, Section 34.11 [Syntax Summary],
page 490 contains syntax rules for all expressions.

The following sections discuss advanced features and are probably only relevant to experi-
enced users: How to control the amount of information presented in answers to queries is
explained in Section 34.6 [Answer Constraints], page 470. The solver’s execution mechanism
and primitives are described in Section 34.7 [The Constraint System], page 470. How to add
new global constraints via a programming interface is described in Section 34.8 [Defining
Global Constraints], page 471. How to define new primitive constraints with indexicals is
described in Section 34.9 [Defining Primitive Constraints], page 479.

446 SICStus Prolog

34.1.1 Referencing this Software

When referring to this implementation of clp(FD) in publications, please use the following
reference:

Carlsson M., Ottosson G., Carlson B. An Open-Ended Finite Domain Con-
straint Solver, Proc. Programming Languages: Implementations, Logics, and
Programs, 1997.

34.1.2 Acknowledgments

The first version of this solver was written as part of Key Hyckenberg’s MSc thesis in 1995,
with contributions from Greger Ottosson at the Computing Science Department, Uppsala
University. The code was later rewritten by Mats Carlsson. Péter Szeredi contributed
material for this manual chapter.

The development of this software was supported by the Swedish National Board for Techni-
cal and Industrial Development (NUTEK) under the auspices of Advanced Software Tech-
nology (ASTEC) Center of Competence at Uppsala University.

We include a collection of examples, some of which have been distributed with the INRIA
implementation of clp(FD) [Diaz & Codognet 93].

34.2 Solver Interface

The solver is available as a library module and can be loaded with a query

:- use_module(library(clpfd)).

The solver contains predicates for checking the consistency and entailment of finite domain
constraints, as well as solving for solution values for your problem variables.

In the context of this constraint solver, a finite domain is a subset of small integers, and a
finite domain constraint denotes a relation over a tuple of small integers. Hence, only small
integers and unbound variables are allowed in finite domain constraints.

All domain variables, i.e. variables that occur as arguments to finite domain constraints
get associated with a finite domain, either explicitly declared by the program, or implicitly
imposed by the constraint solver. Temporarily, the domain of a variable may actually be
infinite, if it does not have a finite lower or upper bound. If during the computation a
variable receives a new lower or upper bound that cannot be represented as a small integer,
an overflow condition is issued. This is expressed as silent failure or as a representation
error, subject to the overflow option of fd_flag/3.

Chapter 34: Constraint Logic Programming over Finite Domains 447

The domain of all variables gets narrower and narrower as more constraints are added. If
a domain becomes empty, the accumulated constraints are unsatisfiable, and the current
computation branch fails. At the end of a successful computation, all domains have usually
become singletons, i.e. the domain variables have become assigned.

The domains do not become singletons automatically. Usually, it takes some amount of
search to find an assignment that satisfies all constraints. It is the programmer’s responsi-
bility to do so. If some domain variables are left unassigned in a computation, the garbage
collector will preserve all constraint data that is attached to them.

Please note: the behavior of the predicates assert/1, findall/3, raise_exception/1
and friends is undefined on non-ground terms containing domain variables. If you need
to apply these operations to a term containing domain variables, fd_copy_term/3 may be
used to decompose the term into a template and a symbolic representation of the relevant
constraints.

The heart of the constraint solver is a scheduler for indexicals [Van Hentenryck et al. 92]
and global constraints. Both entities act as coroutines performing incremental constraint
solving or entailment checking. They wake up by changes in the domains of its arguments.
All constraints provided by this package are implemented as indexicals or global constraints.
New constraints can be defined by the user.

Indexicals are reactive functional rules, which take part in the solver’s basic constraint
solving algorithm, whereas each global constraint is associated with its particular constraint
solving algorithm. The solver maintains two scheduling queues, giving priority to the queue
of indexicals.

The feasibility of integrating the indexical approach with a Prolog based on the WAM was
clearly demonstrated by Diaz’s clp(FD) implementation [Diaz & Codognet 93], one of the
fastest finite domains solvers around.

34.2.1 Posting Constraints

A constraint is called as any other Prolog predicate. When called, the constraint is posted
to the store. For example:

| ?- X in 1..5, Y in 2..8, X+Y #= T.

X in 1..5,
Y in 2..8,
T in 3..13

| ?- X in 1..5, T in 3..13, X+Y #= T.

X in 1..5,
T in 3..13,
Y in -2..12

448 SICStus Prolog

Note that the answer constraint shows the domains of nonground query variables, but not
any constraints that may be attached to them.

34.2.2 A Constraint Satisfaction Problem

Constraint satisfaction problems (CSPs) are a major class of problems for which this solver
is ideally suited. In a CSP, the goal is to pick values from pre-defined domains for certain
variables so that the given constraints on the variables are all satisfied.

As a simple CSP example, let us consider the Send More Money puzzle. In this problem,
the variables are the letters S, E, N, D, M, O, R, and Y. Each letter represents a digit
between 0 and 9. The problem is to assign a value to each digit, such that SEND + MORE
equals MONEY.

A program that solves the puzzle is given below. The program contains the typical three
steps of a clp(FD) program:

1. declare the domains of the variables
2. post the problem constraints
3. look for a feasible solution via backtrack search, or look for an optimal solution via

branch-and-bound search

Sometimes, an extra step precedes the search for a solution: the posting of surrogate con-
straints to break symmetries or to otherwise help prune the search space. No surrogate
constraints are used in this example.

The domains of this puzzle are stated via the domain/3 goal and by requiring that S and M
be greater than zero. The two problem constraint of this puzzle are the equation (sum/8)
and the constraint that all letters take distinct values (all_different/1). Finally, the
backtrack search is performed by labeling/2. Different search strategies can be encoded
in the Type parameter. In the example query, the default search strategy is used (select the
leftmost variable, try values in ascending order).

Chapter 34: Constraint Logic Programming over Finite Domains 449

:- use_module(library(clpfd)).

mm([S,E,N,D,M,O,R,Y], Type) :-
domain([S,E,N,D,M,O,R,Y], 0, 9), % step 1
S#>0, M#>0,
all_different([S,E,N,D,M,O,R,Y]), % step 2
sum(S,E,N,D,M,O,R,Y),
labeling(Type, [S,E,N,D,M,O,R,Y]). % step 3

sum(S, E, N, D, M, O, R, Y) :-
1000*S + 100*E + 10*N + D

+ 1000*M + 100*O + 10*R + E
#= 10000*M + 1000*O + 100*N + 10*E + Y.

| ?- mm([S,E,N,D,M,O,R,Y], []).

D = 7,
E = 5,
M = 1,
N = 6,
O = 0,
R = 8,
S = 9,
Y = 2

34.2.3 Reified Constraints

Instead of merely posting constraints it is often useful to reflect its truth value into a 0/1-
variable B, so that:

• the constraint is posted if B is set to 1
• the negation of the constraint is posted if B is set to 0
• B is set to 1 if the constraint becomes entailed
• B is set to 0 if the constraint becomes disentailed

This mechanism is known as reification. Several frequently used operations can be defined
in terms of reified constraints, such as blocking implication [Saraswat 90] and the cardinality
operator [Van Hentenryck & Deville 91], to name a few. A reified constraint is written:

| ?- Constraint #<=> B.

where Constraint is reifiable. As an example of a constraint that uses reification, consider
exactly(X,L,N), which is true if X occurs exactly N times in the list L. It can be defined
thus:

450 SICStus Prolog

exactly(_, [], 0).
exactly(X, [Y|L], N) :-

X #= Y #<=> B,
N #= M+B,
exactly(X, L, M).

34.3 Available Constraints

This section describes the classes of constraints that can be used with this solver.

34.3.1 Arithmetic Constraints

?Expr RelOp ?Expr

defines an arithmetic constraint. The syntax for Expr and RelOp is defined by
a grammar (see Section 34.11.2 [Syntax of Arithmetic Expressions], page 492).
Note that the expressions are not restricted to being linear. Constraints over
non-linear expressions, however, will usually yield less constraint propagation
than constraints over linear expressions.
Arithmetic constraints can be reified as e.g.:

| ?- X in 1..2, Y in 3..5, X#=<Y #<=> B.

B = 1,
X in 1..2,
Y in 3..5

Linear arithmetic constraints, except equalities, maintain interval-consistency and their rei-
fied versions detect interval-entailment and -disentailment; see Section 34.7 [The Constraint
System], page 470.

The following constraints are among the library constraints that general arithmetic con-
straints compile to. They express a relation between a sum or a scalar product and a
value, using a dedicated algorithm, which avoids creating any temporary variables holding
intermediate values. If you are computing a sum or a scalar product, it can be much more
efficient to compute lists of coefficients and variables and post a single sum or scalar product
constraint than to post a sequence of elementary constraints.

sum(+Xs, +RelOp, ?Value)
where Xs is a list of integers or domain variables, RelOp is a relational symbol
as above, and Value is an integer or a domain variable. True if Xs RelOp Value.
Cannot be reified.

scalar_product(+Coeffs, +Xs, +RelOp, ?Value)
where Coeffs is a list of length n of integers, Xs is a list of length n of integers or
domain variables, RelOp is a relational symbol as above, and Value is an integer
or a domain variable. True if Coeffs*Xs RelOp Value. Cannot be reified.

Chapter 34: Constraint Logic Programming over Finite Domains 451

The following constraint is a special case of scalar_product/4 where RelOp is #=, and
which is domain-consistent in the Xs:

knapsack(+Coeffs, +Xs, ?Value)
where Coeffs is a list of length n of non-negative integers, Xs is a list of length n
of non-negative integers or domain variables, and Value is an integer or a domain
variable. Any domain variables must have finite bounds. True if Coeffs*Xs =
Value. Cannot be reified.

34.3.2 Membership Constraints

domain(+Variables, +Min, +Max)
where Variables is a list of domain variables or integers, Min is an integer or
the atom inf (minus infinity), and Max is an integer or the atom sup (plus
infinity). True if the variables all are elements of the range Min..Max. Cannot
be reified.

?X in +Range
defines a membership constraint. X is an integer or a domain variable and Range
is a ConstantRange (see Section 34.11.1 [Syntax of Indexicals], page 491). True
if X is an element of the range.

?X in_set +FDSet
defines a membership constraint. X is an integer or a domain variable and
FDSet is an FD set term (see Section 34.8.3 [FD Set Operations], page 475).
True if X is an element of the FD set.

in/2 and in_set/2 constraints can be reified. They maintain domain-consistency and
their reified versions detect domain-entailment and -disentailment; see Section 34.7 [The
Constraint System], page 470.

34.3.3 Propositional Constraints

Propositional combinators can be used to combine reifiable constraints into propositional
formulae over such constraints. Such formulae are goal expanded by the system into se-
quences of reified constraints and arithmetic constraints. For example,

X #= 4 #\/ Y #= 6

expresses the disjunction of two equality constraints.

The leaves of propositional formulae can be reifiable constraints, the constants 0 and 1,
or 0/1-variables. New primitive, reifiable constraints can be defined with indexicals as
described in Section 34.9 [Defining Primitive Constraints], page 479. The following propo-
sitional combinators are available:

#\ :Q

452 SICStus Prolog

True if the constraint Q is false.

:P #/\ :Q

True if the constraints P and Q are both true.

:P #\ :Q

True if exactly one of the constraints P and Q is true.

:P #\/ :Q

True if at least one of the constraints P and Q is true.

:P #=> :Q

:Q #<= :P

True if the constraint Q is true or the constraint P is false.

:P #<=> :Q

True if the constraints P and Q are both true or both false.

Note that the reification scheme introduced in Section 34.2.3 [Reified Constraints], page 449
is a special case of a propositional constraint.

34.3.4 Combinatorial Constraints

The constraints listed here are sometimes called symbolic constraints. They are currently
not reifiable. Unless documented otherwise, they maintain (at most) interval-consistency
in their arguments; see Section 34.7 [The Constraint System], page 470.

count(+Val,+List,+RelOp,?Count)
where Val is an integer, List is a list of integers or domain variables, Count
an integer or a domain variable, and RelOp is a relational symbol as in Sec-
tion 34.3.1 [Arithmetic Constraints], page 450. True if N is the number of
elements of List that are equal to Val and N RelOp Count. Thus, count/4 is
a generalization of exactly/3 (not an exported constraint), which was used in
an example earlier.
count/4 maintains domain-consistency, but in practice, the following constraint
is a better alternative.

global_cardinality(+Xs,+Vals)
global_cardinality(+Xs,+Vals,+Options)

where Xs = [X1, . . . , Xd] is a list of integers or domain variables, and Vals =
[K1 − V1, . . . ,Kn − Vn] is a list of pairs where each key Ki is a unique integer
and Vi is a domain variable or an integer. True if every element of Xs is equal
to some key and for each pair Ki − Vi, exactly Vi elements of Xs are equal to
Ki.
If either Xs or Vals is ground, and in many other special cases, global_
cardinality/[2,3] maintains domain-consistency, but generally, interval-
consistency cannot be guaranteed. A domain-consistency algorithm [Regin 96]
is used, roughly linear in the total size of the domains.

Chapter 34: Constraint Logic Programming over Finite Domains 453

Options is a list of zero or more of the following:

cost(Cost,Matrix)
A cost is associated with the constraint and reflected into the do-
main variable Cost. Matrix should be a d×n matrix, represented as
a list of d lists, each of length n. Assume that each Xi equals Kpi

.
The cost of the constraint is then Matrix [1, p1]+ · · ·+Matrix [d, pd].
With this option, a domain-consistency algorithm [Regin 99] is
used, the complexity of which is roughly O(d(m + n log n)) where
m is the total size of the domains.

element(?X,+List,?Y)
where X and Y are integers or domain variables and List is a list of integers
or domain variables. True if the X:th element of List is Y. Operationally, the
domains of X and Y are constrained so that for every element in the domain of
X, there is a compatible element in the domain of Y, and vice versa.
This constraint uses an optimized algorithm for the special case where List is
ground.
element/3 maintains domain-consistency in X and interval-consistency in List
and Y.

relation(?X,+MapList,?Y)
where X and Y are integers or domain variables and MapList is a list of in-
teger-ConstantRange pairs, where the integer keys occur uniquely (see Sec-
tion 34.11.1 [Syntax of Indexicals], page 491). True if MapList contains a pair
X-R and Y is in the range denoted by R.
Operationally, the domains of X and Y are constrained so that for every element
in the domain of X, there is a compatible element in the domain of Y, and vice
versa.
If MapList is not ground, the constraint must be wrapped in call/1 to postpone
goal expansion until runtime.
An arbitrary binary constraint can be defined with relation/3. relation/3
is implemented in terms of the following, more general constraint, with which
arbitrary relations can be defined compactly:

case(+Template, +Tuples, +Dag)
case(+Template, +Tuples, +Dag, +Options)

Template is an arbitrary non-ground Prolog term. Its variables are merely
place-holders; they should not occur outside the constraint nor inside Tuples.
Tuples is a list of terms of the same shape as Template. They should not share
any variables with Template.
Dag is a list of nodes of the form node(ID,X,Successors), where X is a place-
holder variable. The set of all X should equal the set of variables in Template.
The first node in the list is the root node. Let rootID denote its ID.
Nodes are either internal nodes or leaf nodes. In the former case, Successors
is a list of terms (Min..Max)-ID2, where the ID2 refers to a child node. In
the latter case, Successors is a list of terms (Min..Max). In both cases, the
(Min..Max) should form disjoint intervals.

454 SICStus Prolog

ID is a unique, integer identifier of a node.
Each path from the root node to a leaf node corresponds to one set of tuples
admitted by the relation expressed by the constraint. Each variable in Template
should occur exactly once on each path, and there must not be any cycles.
Options is a list of zero or more of the following. It can be used to control the
waking and pruning conditions of the constraint, as well as to identify the leaf
nodes reached by the tuples:

leaves(TLeaf,Leaves)
TLeaf is a place-holder variable. Leaves is a list of variables of the
same length as Tuples. This option effectively extends the relation
by one argument, corresponding to the ID of the leaf node reached
by a particular tuple.

on(Spec) Specifies how eagerly the constraint should react to domain changes
of X.

prune(Spec)
Specifies the extent to which the constraint should prune the do-
main of X.

Spec is one of the following, where X is a place-holder variable occurring in
Template or equal to TLeaf:

dom(X) wake up when the domain of X has changed, resp. perform full
pruning on X. This is the default for all variables mentioned in the
constraint.

min(X) wake up when the lower bound of X has changed, resp. prune only
the lower bound of X.

max(X) wake up when the upper bound of X has changed, resp. prune only
the upper bound of X.

minmax(X)
wake up when the lower or upper bound of X has changed, resp.
prune only the bounds of X.

val(X) wake up when X has become ground, resp. only prune X when its
domain has been narrowed to a singleton.

none(X) ignore domain changes of X, resp. never prune X.

The constraint holds if path(rootID,Tuple,Leaf) holds for each Tuple in Tuples
and Leaf is the corresponding element of Leaves if given (otherwise, Leaf is a
free variable).
path(ID,Tuple,Leaf) holds if Dag contains a term node(ID,Var,Successors),
Var is the unique k:th element of Template, i is the k:th element of Tuple, and:
• The node is an internal node, and

1. Successors contains a term (Min..Max)-Child,
2. Min ≤ i ≤ Max , and
3. path(Child,Tuple,Leaf) holds; or

Chapter 34: Constraint Logic Programming over Finite Domains 455

• The node is a leaf node, and
1. Successors contains a term (Min..Max),
2. Min ≤ i ≤ Max , and Leaf = ID.

For example, recall that element(X,L,Y) wakes up when the domain of X or
the lower or upper bound of Y has changed, performs full pruning of X, but
only prunes the bounds of Y. The following two constraints:

element(X, [1,1,1,1,2,2,2,2], Y),
element(X, [10,10,20,20,10,10,30,30], Z)

can be replaced by the following single constraint, which is equivalent declara-
tively as well as wrt. pruning and waking. The fourth argument illustrates the
leaf feature:

elts(X, Y, Z, L) :-
case(f(A,B,C), [f(X,Y,Z)],

[node(0, A,[(1..2)-1,(3..4)-2,(5..6)-3,(7..8)-4]),
node(1, B,[(1..1)-5]),
node(2, B,[(1..1)-6]),
node(3, B,[(2..2)-5]),
node(4, B,[(2..2)-7]),
node(5, C,[(10..10)]),
node(6, C,[(20..20)]),
node(7, C,[(30..30)])],
[on(dom(A)),on(minmax(B)),on(minmax(C)),
prune(dom(A)),prune(minmax(B)),prune(minmax(C)),
leaves(_,[L])]).

The DAG of the previous example has the following shape:

456 SICStus Prolog

DAG corresponding to elts/4

A couple of sample queries:

Chapter 34: Constraint Logic Programming over Finite Domains 457

| ?- elts(X, Y, Z, L).

L in 5..7,
X in 1..8,
Y in 1..2,
Z in 10..30

| ?- elts(X, Y, Z, L), Z #>= 15.

L in 6..7,
X in(3..4)\/(7..8),
Y in 1..2,
Z in 20..30

| ?- elts(X, Y, Z, L), Y = 1.

Y = 1,
L in 5..6,
X in 1..4,
Z in 10..20

| ?- elts(X, Y, Z, L), L = 5.

Z = 10,
X in(1..2)\/(5..6),
Y in 1..2

all_different(+Variables)
all_different(+Variables, +Options)
all_distinct(+Variables)
all_distinct(+Variables, +Options)

where Variables is a list of domain variables with bounded domains or integers.
Each variable is constrained to take a value that is unique among the variables.
Declaratively, this is equivalent to an inequality constraint for each pair of
variables.
Options is a list of zero or more of the following:

on(On) How eagerly to wake up the constraint. One of:

dom (the default
for all_distinct/[1,2] and assignment/[2,3]), to
wake up when the domain of a variable is changed;

min to wake up when the lower bound of a domain is
changed;

max to wake up when the upper bound of a domain is
changed;

minmax to wake up when some bound of a domain is changed;

val (the default for all_different/[1,2]), to wake up
when a variable becomes ground.

458 SICStus Prolog

consistency(Cons)
Which algorithm to use, one of:

global The default for all_distinct/[1,2] and
assignment/[2,3]. A domain-consistency algorithm
[Regin 94] is used, roughly linear in the total size of
the domains.

local The default for all_different/[1,2]. An algorithm
achieving exactly the same pruning as a set of pair-
wise inequality constraints is used, roughly linear in
the number of variables.

bound An interval-consistency algorithm [Mehlhorn 00] is
used. This algorithm is nearly linear in the number
of variables and values.

The following is a constraint over two lists of length n of variables. Each variable is con-
strained to take a value in [1, n] that is unique for its list. Furthermore, the lists are dual
in a sense described below.

assignment(+Xs, +Ys)
assignment(+Xs, +Ys, +Options)

where Xs = [X1, . . . , Xn] and Ys = [Y1, . . . , Yn] are lists of domain variables or
integers. True if all Xi, Yi ∈ [1, n] and Xi = j ≡ Yj = i.
Options is a list of zero or more of the following, where Boolean must be true
or false (false is the default):

on(On) Same meaning as for all_different/2.

consistency(Cons)
Same meaning as for all_different/2.

circuit(Boolean)
If true, circuit(Xs,Ys) must hold for the constraint to be true.

cost(Cost,Matrix)
A cost is associated with the constraint and reflected into the do-
main variable Cost. Matrix should be an n×n matrix, represented
as a list of lists. The cost of the constraint is Matrix [1, X1] + · · ·+
Matrix [n, Xn].
With this option, a domain-consistency algorithm [Sellmann 02] is
used, the complexity of which is roughly O(n(m + n log n)) where
m is the total size of the domains.

The following constraint can be thought of as constraining n nodes in a graph to form a
Hamiltonian circuit. The nodes are numbered from 1 to n. The circuit starts in node 1,
visits each node, and returns to the origin.

Chapter 34: Constraint Logic Programming over Finite Domains 459

circuit(+Succ)
circuit(+Succ, +Pred)

where Succ is a list of length n of domain variables or integers. The i:th element
of Succ (Pred) is the successor (predecessor) of i in the graph. True if the values
form a Hamiltonian circuit.

The following constraint can be thought of as constraining n tasks, each with a start time
Sj and a duration Dj, so that no tasks ever overlap. The tasks can be seen as competing
for some exclusive resource.

serialized(+Starts,+Durations)
serialized(+Starts,+Durations,+Options)

where Starts = [S1, . . . , Sn] and Durations = [D1, . . . , Dn] are lists of domain
variables with finite bounds or integers. Durations must be non-negative. True
if Starts and Durations denote a set of non-overlapping tasks, i.e.:

∀i, j ∈ [1, n] ∧ i < j :
Si + Di ≤ Sj∨
Sj + Dj ≤ Si∨

Di = 0∨
Dj = 0

The
serialized/[2,3] constraint is merely a special case of cumulative/[4,5]
(see below).
Options is a list of zero or more of the following, where Boolean must be true
or false (false is the default, except for the bounds_only option):

precedences(Ps)
Ps encodes a set of precedence constraints to apply to the tasks.
Ps should be a list of terms of one of the forms:
• d(i, j, k), where i and j should be task numbers, and k should

be a positive integer or sup, denoting:

{
Si + k ≤ Sj ∨ Sj ≤ Si, if k is an integer

Sj ≤ Si, if k is sup

• i-j in r, where i and j should be task numbers, and r should
be a ConstantRange (see Section 34.11.1 [Syntax of Indexicals],
page 491), denoting:

Si − Sj = Dij ∧Dij ∈ r

resource(R)
R is unified with a term that can be passed to order_resource/2
(see Section 34.4 [Enumeration Predicates], page 465) in order to
find a consistent ordering of the tasks.

460 SICStus Prolog

path_consistency(Boolean)
if true, a redundant path-consistency algorithm will be used inside
the constraint in an attempt to improve the pruning.

static_sets(Boolean)
if true, a redundant algorithm will be used, which reasons about
the set of tasks that must precede (be preceded by) a given task,
in an attempt to tighten the lower (upper) bound of a given start
variable.

edge_finder(Boolean)
if true, a redundant algorithm will be used, which attempts to
identify tasks that necessarily precede or are preceded by some set
of tasks.

decomposition(Boolean)
if true, an attempt is made to decompose the constraint each time
it is resumed.

bounds_only(Boolean)
if true, the constraints will only prune the bounds of the Si vari-
ables, and not inside the domains.

Whether it’s worthwhile to switch on any of the latter five options is highly
problem dependent.
serialized/3 can model a set of tasks to be serialized with sequence-dependent
setup times. For example, the following constraint models three tasks, all with
duration 5, where task 1 must precede task 2 and task 3 must either complete
before task 2 or start at least 10 time units after task 2 started:

?- domain([S1,S2,S3], 0, 20),

serialized([S1,S2,S3], [5,5,5],

[precedences([d(2,1,sup),d(2,3,10)])]).

S1 in 0..15,
S2 in 5..20,
S3 in 0..20

The bounds of S1 and S2 changed because of the precedence constraint. Setting
S2 to 5 will propagate S1=0 and S3 in 15..20.

The following constraint can be thought of as constraining n tasks to be placed in time
and on m machines. Each machine has a resource limit, which is interpreted as a lower or
upper bound on the total amount of resource used on that machine at any point in time
that intersects with some task.

A task is represented by a term task(Oi, Di, Ei,Hi,Mi) where Oi is the start time, Di the
duration, Ei the end time, Hi the resource consumption, and Mi a machine identifier.

A machine is represented by a term machine(Mj, Lj) where Mj is the identifier and Lj is
the resource limit of the machine.

Chapter 34: Constraint Logic Programming over Finite Domains 461

All fields are domain variables with bounded domains, or integers. Lj must be an integer.
Di must be non-negative, but Hi may be either positive or negative. Negative resource
consumption is interpreted as resource production.

cumulatives(+Tasks,+Machines)
cumulatives(+Tasks,+Machines,+Options)

Options is a list of zero or more of the following, where Boolean must be true
or false (false is the default):

bound(B) If lower (the default), each resource limit is treated as a lower
bound. If upper, each resource limit is treated as an upper bound.

prune(P) If all (the default), the constraint will try to prune as many vari-
ables as possible. If next, only variables that occur in the first
non-ground task term (wrt. the order given when the constraint
was posted) can be pruned.

generalization(Boolean)
If true, extra reasoning based on assumptions on machine assign-
ment will be done to infer more.

task_intervals(Boolean)
If true, extra global reasoning will be performed in an attempt to
infer more.

The following constraint can be thought of as constraining n tasks, each with a start time
Sj, a duration Dj, and a resource amount Rj, so that the total resource consumption does
not exceed Limit at any time:

cumulative(+Starts,+Durations,+Resources,?Limit)
cumulative(+Starts,+Durations,+Resources,?Limit,+Options)

where Starts = [S1, . . . , Sn], Durations = [D1, . . . , Dn], and Resource =
[R1, . . . , Rn] are lists of domain variables with finite bounds or integers, and
Limit is a domain variable with finite bounds or an integer. Durations, Re-
sources and Limit must be non-negative. Let:

a = min(S1, . . . , Sn)
b = max(S1 + D1, . . . , Sn + Dn)

Rij =

{
Rj, if Sj ≤ i < Sj + Dj

0, otherwise

The constraint holds if:

∀a ≤ i < b : Ri1 + · · ·+ Rin ≤ Limit

If given, Options should be of the same form as in serialized/3, except the
resource(R) option is not useful in cumulative/5.
The cumulative/4 constraint is due to Aggoun and Beldiceanu [Aggoun &
Beldiceanu 93].

462 SICStus Prolog

The following constraint captures the relation between a list of values, a list of the values
in ascending order, and their positions in the original list:

sorting(+Xs,+Ps,+Ys)
where Xs = [X1, . . . , Xn], Ps = [P1, . . . , Pn], and Ys = [Y1, . . . , Yn] are lists of
domain variables or integers. The constraint holds if the following are true:
• Ys is in ascending order.
• Ps is a permutation of [1, n].
• ∀i ∈ [1, n] : Xi = YPi

In practice, the underlying algorithm [Mehlhorn 00] is likely to achieve interval-
consistency, and is guaranteed to do so if Ps is ground or completely free.

The following constraints model a set or lines or rectangles, respectively, so that no pair of
objects overlap:

disjoint1(+Lines)
disjoint1(+Lines,+Options)

where Lines is a list of terms F (Sj, Dj) or F (Sj, Dj, Tj), Sj and Dj are domain
variables with finite bounds or integers denoting the origin and length of line j
respectively, F is any functor, and the optional Tj is an atomic term denoting
the type of the line. Tj defaults to 0 (zero).
Options is a list of zero or more of the following, where Boolean must be true
or false (false is the default):

decomposition(Boolean)
if true, an attempt is made to decompose the constraint each time
it is resumed.

global(Boolean)
if true, a redundant algorithm using global reasoning is used to
achieve more complete pruning.

wrap(Min,Max)
If used, the space in which the lines are placed should be thought
of as a circle where positions Min and Max coincide, where Min
and Max should be integers. That is, the space wraps around.
Furthermore, this option forces the domains of the origin variables
to be inside [Min,Max-1].

margin(T1,T2,D)
This option imposes a minimal distance D between the end point of
any line of type T1 and the origin of any line of type T2. D should
be a positive integer or sup. If sup is used, all lines of type T2 must
be placed before any line of type T1.
This option interacts with the wrap/2 option in the sense that
distances are counted with possible wrap-around, and the distance
between any end point and origin is always finite.

Chapter 34: Constraint Logic Programming over Finite Domains 463

The file library(’clpfd/examples/bridge.pl’) contains an example where
disjoint1/2 is used for scheduling non-overlapping tasks.

disjoint2(+Rectangles)
disjoint2(+Rectangles,+Options)

where Rectangles is a list of terms F (Sj1 , Dj1 , Sj2 , Dj2) or
F (Sj1 , Dj1 , Sj2 , Dj2 , Tj), Sj1 and Dj1 are domain variables with finite bounds
or integers denoting the origin and size of rectangle j in the X dimension, Sj2

and Dj2 are the values for the Y dimension, F is any functor, and the optional
Tj is an atomic term denoting the type of the rectangle. Tj defaults to 0 (zero).
Options is a list of zero or more of the following, where Boolean must be true
or false (false is the default):

decomposition(Boolean)
If true, an attempt is made to decompose the constraint each time
it is resumed.

global(Boolean)
If true, a redundant algorithm using global reasoning is used to
achieve more complete pruning.

wrap(Min1,Max1,Min2,Max2)
Min1 and Max1 should be either integers or the atoms inf and sup
respectively. If they are integers, the space in which the rectangles
are placed should be thought of as a cylinder wrapping around the X
dimension where positions Min1 and Max1 coincide. Furthermore,
this option forces the domains of the Sj1 variables to be inside
[Min1,Max1-1].
Min2 and Max2 should be either integers or the atoms inf and sup
respectively. If they are integers, the space in which the rectangles
are placed should be thought of as a cylinder wrapping around the Y
dimension where positions Min2 and Max2 coincide. Furthermore,
this option forces the domains of the Sj2 variables to be inside
[Min2,Max2-1].
If all four are integers, the space is a toroid wrapping around both
dimensions.

margin(T1,T2,D1,D2)
This option imposes minimal distances D1 in the X dimension and
D2 in the Y dimension between the end point of any rectangle of
type T1 and the origin of any rectangle of type T2. D1 and D2

should be positive integers or sup. If sup is used, all rectangles
of type T2 must be placed before any rectangle of type T1 in the
relevant dimension.
This option interacts with the wrap/4 option in the sense that
distances are counted with possible wrap-around, and the distance
between any end point and origin is always finite.

The file library(’clpfd/examples/squares.pl’) contains an example where
disjoint2/2 is used for tiling squares.

464 SICStus Prolog

synchronization(Boolean)
Let the assignment dimension and the temporal dimension denote the two di-
mensions, no matter which is the X and which is the Y dimension. If Boolean
is true, a redundant algorithm is used to achieve more complete pruning for
the following case:
• All rectangles have size 1 in the assignment dimension.
• Some rectangles have the same origin and size in the temporal dimension,

and that origin is not yet fixed.

The following example shows an artificial placement problem involving 25 rect-
angles including four groups of rectangles whose left and right borders must
be aligned. If Synch is true, it can be solved with first-fail labeling in 23
backtracks. If Synch is false, 60 million backtracks do not suffice to solve it.

ex([O1,Y1a,Y1b,Y1c,
O2,Y2a,Y2b,Y2c,Y2d,
O3,Y3a,Y3b,Y3c,Y3d,
O4,Y4a,Y4b,Y4c],

Synch) :-
domain([Y1a,Y1b,Y1c,

Y2a,Y2b,Y2c,Y2d,
Y3a,Y3b,Y3c,Y3d,
Y4a,Y4b,Y4c], 1, 5),

O1 in 1..28,
O2 in 1..26,
O3 in 1..22,
O4 in 1..25,
disjoint2([t(1,1,5,1), t(20,4,5,1),

t(1,1,4,1), t(14,4,4,1),
t(1,2,3,1), t(24,2,3,1),
t(1,2,2,1), t(21,1,2,1),
t(1,3,1,1), t(14,2,1,1),
t(O1,3,Y1a,1),
t(O1,3,Y1b,1),
t(O1,3,Y1c,1),
t(O2,5,Y2a,1),
t(O2,5,Y2b,1),
t(O2,5,Y2c,1),
t(O2,5,Y2d,1),
t(O3,9,Y3a,1),
t(O3,9,Y3b,1),
t(O3,9,Y3c,1),
t(O3,9,Y3d,1),
t(O4,6,Y4a,1),
t(O4,6,Y4b,1),
t(O4,6,Y4c,1)],

[synchronization(Synch)]).

Chapter 34: Constraint Logic Programming over Finite Domains 465

The following constraints express the fact that several vectors of domain variables are in
ascending lexicographic order:

lex_chain(+Vectors)
lex_chain(+Vectors,+Options)

where Vectors is a list of vectors (lists) of domain variables with finite bounds or
integers. The constraint holds if Vectors are in ascending lexicographic order.
Options is a list of zero or more of the following:

op(Op) If Op is the atom #=< (the default), the constraints holds if Vectors
are in non-descending lexicographic order. If Op is the atom #<, the
constraints holds if Vectors are in strictly ascending lexicographic
order.

among(Least,Most,Values)
If given, Least and Most should be integers such that 0 ≤ Least ≤
Most and Values should be a list of distinct integers. This option
imposes the additional constraint on each vector in Vectors that at
least Least and at most Most elements should belong to Values.

In the absence of an among/3 option, the underlying algorithm [Carlsson &
Beldiceanu 02] guarantees domain-consistency.

34.3.5 User-Defined Constraints

New, primitive constraints can be added defined by the user on two different levels. On a
higher level, constraints can be defined using the global constraint programming interface;
see Section 34.8 [Defining Global Constraints], page 471. Such constraints can embody
specialized algorithms and use the full power of Prolog. They cannot be reified.

On a lower level, new primitive constraints can be defined with indexicals. In this case,
they take part in the basic constraint solving algorithm and express custom designed rules
for special cases of the overall local propagation scheme. Such constraints are called FD
predicates; see Section 34.9 [Defining Primitive Constraints], page 479. They can optionally
be reified.

34.4 Enumeration Predicates

As is usually the case with finite domain constraint solvers, this solver is not complete.
That is, it does not ensure that the set of posted constraints is satisfiable. One must resort
to search (enumeration) to check satisfiability and get particular solutions.

The following predicates provide several variants of search:

466 SICStus Prolog

indomain(?X)
where X is a domain variable with a bounded domain or an integer. Assigns,
in increasing order via backtracking, a feasible value to X.

labeling(:Options, +Variables)
where Variables is a list of domain variables or integers and Options is a list
of search options. The domain variables must all have bounded domains. True
if an assignment of the variables can be found, which satisfies the posted con-
straints.

first_bound(+BB0, -BB)
later_bound(+BB0, -BB)

Provides an auxiliary service for the value(Enum) option (see below).

minimize(:Goal,?X)
maximize(:Goal,?X)

Uses a branch-and-bound algorithm with restart to find an assignment that
minimizes (maximizes) the domain variable X. Goal should be a Prolog goal
that constrains X to become assigned, and could be a labeling/2 goal. The
algorithm calls Goal repeatedly with a progressively tighter upper (lower) bound
on X until a proof of optimality is obtained, at which time Goal and X are unified
with values corresponding to the optimal solution.

The Options argument of labeling/2 controls the order in which variables are selected for
assignment (variable choice heuristic), the way in which choices are made for the selected
variable (value choice heuristic), and whether all solutions or a single, optimal solution
should be found. The options are divided into four groups. One option may be selected per
group. Also, the number of assumptions (choices) made during the search can be collected.
Finally, a discrepancy limit can be imposed.

The following options control the order in which the next variable is selected
for assignment.

leftmost The leftmost variable is selected. This is the default.

min The leftmost variable with the smallest lower bound is selected.

max The leftmost variable with the greatest upper bound is selected.

ff The first-fail principle is used: the leftmost variable with the small-
est domain is selected.

ffc The most constrained heuristic is used: a variable with the small-
est domain is selected, breaking ties by (a) selecting the variable
that has the most constraints suspended on it and (b) selecting the
leftmost one.

variable(Sel)
Sel is a predicate to select the next variable. Given Vars,
the variables that remain to label, it will be called as
Sel(Vars,Selected,Rest).

Chapter 34: Constraint Logic Programming over Finite Domains 467

Sel is expected to succeed determinately, unifying Selected and Rest
with the selected variable and the remaining list, respectively.
Sel should be a callable term, optionally with a module pre-
fix, and the arguments Vars,Selected,Rest will be appended to
it. For example, if Sel is mod:sel(Param), it will be called as
mod:sel(Param,Vars,Selected,Rest).

The following options control the way in which choices are made for the selected
variable X:

step Makes a binary choice between X #= B and X #\= B, where B is the
lower or upper bound of X. This is the default.

enum Makes a multiple choice for X corresponding to the values in its
domain.

bisect Makes a binary choice between X #=< M and X #> M, where M is the
midpoint of the domain of X. This strategy is also known as domain
splitting.

value(Enum)
Enum is a predicate that should narrow the domain of X, pos-
sibly but not necessarily to a singleton. It will be called as
Enum(X,Rest,BB0,BB) where Rest is the list of variables that need
labeling except X, and BB0 and BB are parameters described be-
low.
Enum is expected to succeed nondeterminately, narrowing the do-
main of X, and to backtrack one or more times, providing alter-
native narrowings. To ensure that branch-and-bound search works
correctly, it must call the auxiliary predicate first_bound(BB0,BB
) in its first solution. Similarly, it must call the auxiliary predicate
later_bound(BB0,BB) in any alternative solution.
Enum should be a callable term, optionally with a module pre-
fix, and the arguments X,Rest,BB0,BB will be appended to it.
For example, if Enum is mod:enum(Param), it will be called as
mod:enum(Param,X,Rest,BB0,BB).

The following options control the order in which the choices are made for the
selected variable X. Not useful with the value(Enum) option:

up The domain is explored in ascending order. This is the default.

down The domain is explored in descending order.

The following options control whether all solutions should be enumerated by
backtracking or whether a single solution that minimizes (maximizes) X is re-
turned, if one exists.

all All solutions are enumerated. This is the default.

468 SICStus Prolog

minimize(X)
maximize(X)

Uses a branch-and-bound algorithm to find an assignment that min-
imizes (maximizes) the domain variable X. The labeling should con-
strain X to become assigned for all assignments of Variables. It is
useful to combine this option with the time_out/2 option (see be-
low).

The following option counts the number of assumptions (choices) made during
the search:

assumptions(K)
When a solution is found, K is unified with the number of choices
made.

A limit on the discrepancy of the search can be imposed:

discrepancy(D)
On the path leading to the solution there are at most D choicepoints
in which a non-leftmost branch was taken.

Finally, a time limit on the search can be imposed:

time_out(Time,Flag)
This is equivalent to a goal time_out(labeling(...),Time,Flag)
(see Chapter 49 [Timeout], page 767). Furthermore, if combined
with the minimize(V) or maximize(V) option, and the time limit
is reached, the values of Variables and V will be those of the best
solution found.

For example, to enumerate solutions using a static variable ordering, use:

| ?- constraints(Variables),

labeling([], Variables).

%same as [leftmost,step,up,all]

To minimize a cost function using branch-and-bound search, a dynamic variable ordering
using the first-fail principle, and domain splitting exploring the upper part of domains first,
use:

| ?- constraints(Variables, Cost),

labeling([ff,bisect,down,minimize(Cost)], Variables).

The file library(’clpfd/examples/tsp.pl’) contains an example of user-defined variable
and value choice heuristics.

As opposed to the predicates above, which search for consistent assignments to domain
variables, the following predicate searches for a consistent ordering among tasks competing
for an exclusive resource, without necessarily fixing their start times:

Chapter 34: Constraint Logic Programming over Finite Domains 469

order_resource(+Options, +Resource)
where Options is a list of search options and Resource represents a resource
as returned by serialized/3 (see Section 34.3.4 [Combinatorial Constraints],
page 452) on which tasks must be serialized. True if a total ordering can be
imposed on the tasks, enumerating all such orderings via backtracking.
The search options control the construction of the total ordering. It may contain
at most one of the following atoms, selecting a strategy:

first The ordering is built by repetitively selecting some task to be placed
before all others.

last The ordering is built by repetitively selecting some task to be placed
after all others.

and at most one of the following atoms, controlling which task to select at
each step. If first is chosen (the default), the task with the smallest value is
selected; otherwise, the task with the greatest value is selected.

est The tasks are ordered by earliest start time.

lst The tasks are ordered by latest start time.

ect The tasks are ordered by earliest completion time.

lct The tasks are ordered by latest completion time.

[first,est] (the default) and [last,lct] can be good heuristics.

34.5 Statistics Predicates

The following predicates can be used to get execution statistics.

fd_statistics(?Key, ?Value)
This allows a program to access execution statistics specific to this solver. Gen-
eral statistics about CPU time and memory consumption etc. is available from
the built-in predicate statistics/2.
For each of the possible keys Key, Value is unified with the current value of a
counter, which is simultaneously zeroed. The following counters are maintained.
See Section 34.7 [The Constraint System], page 470, for details of what they all
mean:

resumptions
The number of times a constraint was resumed.

entailments
The number of times a (dis)entailment was detected by a constraint.

prunings The number of times a domain was pruned.

backtracks
The number of times a contradiction was found by a domain being
wiped out, or by a global constraint signalling failure. Other causes

470 SICStus Prolog

of backtracking, such as failed Prolog tests, are not covered by this
counter.

constraints
The number of constraints created.

fd_statistics
Displays on the standard error stream a summary of the above statistics. All
counters are zeroed.

34.6 Answer Constraints

By default, the answer constraint only shows the projection of the store onto the variables
that occur in the query, but not any constraints that may be attached to these variables,
nor any domains or constraints attached to other variables. This is a conscious decision, as
no efficient algorithm for projecting answer constraints onto the query variables is known
for this constraint system.

It is possible, however, to get a complete answer constraint including all variables that
took part in the computation and their domains and attached constraints. This is done by
asserting a clause for the following predicate:

clpfd:full_answer hook

If false (the default), the answer constraint, as well as constraints projected by
clpfd:project_attributes/2, clpfd:attribute_goal/2 and their callers,
only contain the domains of the query variables. If true, those constraints
contain the domains and any attached constraints of all variables. Initially
defined as a dynamic predicate with no clauses.

34.7 The Constraint System

34.7.1 Definitions

The constraint system is based on domain constraints and indexicals. A domain constraint
is an expression X::I, where X is a domain variable and I is a nonempty set of integers.

A set S of domain constraints is called a store. D(X, S), the domain of X in S, is defined
as the intersection of all I such that X::I belongs to S. The store is contradictory if the
domain of some variable is empty; otherwise, it is consistent. A consistent store S′ is an
extension of a store S iff, for all variables X, D(X, S′) is contained in D(X, S).

The following definitions, adapted from [Van Hentenryck et al. 95], define important notions
of consistency and entailment of constraints wrt. stores.

A ground constraint is true if it holds and false otherwise.

Chapter 34: Constraint Logic Programming over Finite Domains 471

A constraint C is domain-consistent wrt. S iff, for each variable Xi and value Vi in D(Xi, S),
there exist values Vj in D(Xj, S), 1 ≤ j ≤ n ∧ i 6= j, such that C(V1, . . . , Vn) is true.

A constraint C is domain-entailed by S iff, for all values Vj in D(Xj, S), 1 ≤ j ≤ n,
C(V1, . . . , Vn) is true.

Let D′(X, S) denote the interval [min(D(X, S)),max(D(X, S))].

A constraint C is interval-consistent wrt. S iff, for each variable Xi, there exist values Vj

and Wj in D′(Xj, S), 1 ≤ j ≤ n, i 6= j, such that C(V1, . . . ,min(D(Xi, S)), . . . , Vn) and
C(W1, . . . ,max(D(Xi, S)), . . . ,Wn) are both true.

A constraint C is interval-entailed by S iff, for all values Vj in D′(Xj, S), 1 ≤ j ≤ n,
C(V1, . . . , Vn) is true.

Finally, a constraint is domain-disentailed (interval-disentailed) by S iff its negation is
domain-entailed (interval-entailed) by S.

34.7.2 Pitfalls of Interval Reasoning

In most circumstances, arithmetic constraints maintain interval-consistency and detect
interval-entailment and -disentailment. There are cases where an interval-consistency main-
taining constraint may detect a contradiction when the constraint is not yet interval-
disentailed, as the following example illustrates. Note that X #\= Y maintains domain-
consistency if both arguments are constants or variables:

| ?- X+Y #= Z, X=1, Z=6, Y in 1..10, Y #\= 5.

no
| ?- X+Y #= Z #<=> B, X=1, Z=6, Y in 1..10, Y #\= 5.

X = 1,
Z = 6,
Y in(1..4)\/(6..10),
B in 0..1

Since 1+5#=6 holds, X+Y #= Z is not interval-disentailed, although any attempt to make it
interval-consistent wrt. the store results in a contradictory store.

34.8 Defining Global Constraints

34.8.1 The Global Constraint Programming Interface

This section describes a programming interface by means of which new constraints can
be written. The interface consists of a set of predicates provided by this library module.
Constraints defined in this way can take arbitrary arguments and may use any constraint

472 SICStus Prolog

solving algorithm, provided it makes sense. Reification cannot be expressed in this interface;
instead, reification may be achieved by explicitly passing a 0/1-variable to the constraint in
question.

Global constraints have state, which may be updated each time the constraint is resumed.
The state information may be used e.g. in incremental constraint solving.

The following two predicates are the principal entrypoints for defining and posting new
global constraints:

clpfd:dispatch_global(+Constraint, +State0, -State, -Actions) extendible

Tells the solver how to solve constraints of the form Constraint. Defined as a
dynamic, multifile predicate.
When defining a new constraint, a clause of this predicate must be added. Its
body defines a constraint solving method and should always succeed determi-
nately. When a global constraint is called or resumed, the solver will call this
predicate to deal with the constraint.

Please note: the constraint is identified by its principal functor;
there is no provision for having two constraints with the same name
in different modules. It is good practice to include a cut in every
clause of clpfd:dispatch_global/4.

State0 and State are the old and new state respectively.
The constraint solving method must not invoke the constraint solver recursively
e.g. by binding variables or posting new constraints; instead, Actions should be
unified with a list of requests to the solver. Each request should be of the
following form:

exit The constraint has become entailed, and ceases to exist.

fail The constraint has become disentailed, causing the solver to back-
track.

X = V The solver binds X to V.

X in R The solver constrains X to be a member of the ConstantRange R
(see Section 34.11.1 [Syntax of Indexicals], page 491).

X in_set S

The solver constrains X to be a member of the FD set S (see Sec-
tion 34.8.3 [FD Set Operations], page 475).

call(Goal)
The solver calls the goal or constraint Goal, which should be module
prefixed unless it is a built-in predicate or an exported predicate of
the clpfd module.
Goal is executed as any Prolog goal, but in a context where some
constraints may already be enqueued for execution, in which case
those constraints will run after the completion of the call request.

Chapter 34: Constraint Logic Programming over Finite Domains 473

fd_global(:Constraint, +State, +Susp)
fd_global(:Constraint, +State, +Susp, +Options)

where Constraint is a constraint goal, State is its initial state, and Susp is a term
encoding how the constraint should wake up in response to domain changes.
This predicate posts the constraint.
Susp is a list of F(Var) terms where Var is a variable to suspend on and F is a
functor encoding when to wake up:

dom(X) wake up when the domain of X has changed

min(X) wake up when the lower bound of X has changed

max(X) wake up when the upper bound of X has changed

minmax(X)
wake up when the lower or upper of X has changed

val(X) wake up when X has become ground

Options is a list of zero or more of the following:

source(Term)
By default, the symbolic form computed by fd_copy_term/3, and
shown in the answer constraint if clpfd:full_answer holds, equals
Constraint, module name expanded. With this option, the symbolic
form will instead be Term. In particular, if Term equals true,
the constraint will not appear in the Body argument of fd_copy_
term/3. This can be useful if you are posting some redundant
(implied) constraint.

idempotent(Boolean)
If true (the default), the constraint solving method is assumed
to be idempotent. That is, in the scope of clpfd:dispatch_
global/4, the solver will not check for the resumption conditions
for the given constraint, while performing its Actions. If false,
an action may well cause the solver to resume the constraint that
produced the action.
If a variable occurs more than once in a global constraint that is
being posted, or due to a variable-variable unification, the solver
will no longer trust the constraint solving method to be idempotent.

For an example of usage, see Section 34.8.4 [A Global Constraint Example], page 477.

The following predicate controls operational aspects of the constraint solver:

fd_flag(+FlagName, ?OldValue, ?NewValue)
OldValue is the value of the FD flag FlagName, and the new value of FlagName
is set to NewValue. The possible FD flag names and values are:

overflow Determines the behavior on integer overflow conditions. Possible
values:

error Raises a representation error (the default).

474 SICStus Prolog

fail Silently fails.

debug Controls the visibility of constraint propagation. Possible values
are on and off (the default). For iternal use by library(fdbg).

34.8.2 Reflection Predicates

The constraint solving method needs access to information about the current domains
of variables. This is provided by the following predicates, which are all constant time
operations.

fd_var(?X)
Checks that X is currently an unbound variable that is known to the CLPFD
solver.

fd_min(?X, ?Min)
where X is a domain variable (or an integer). Min is unified with the smallest
value in the current domain of X, i.e. an integer or the atom inf denoting minus
infinity.

fd_max(?X, ?Max)
where X is a domain variable (or an integer). Max is unified with the upper
bound of the current domain of X, i.e. an integer or the atom sup denoting
infinity.

fd_size(?X, ?Size)
where X is a domain variable (or an integer). Size is unified with the size of
the current domain of X, if the domain is bounded, or the atom sup otherwise.

fd_set(?X, ?Set)
where X is a domain variable (or an integer). Set is unified with an FD set term
denoting the internal representation of the current domain of X; see below.

fd_dom(?X, ?Range)
where X is a domain variable (or an integer). Range is unified with a Con-
stantRange (see Section 34.11.1 [Syntax of Indexicals], page 491) denoting the
the current domain of X.

fd_degree(?X, ?Degree)
where X is a domain variable (or an integer). Degree is unified with the number
of constraints that are attached to X.

Please note: this number may include some constraints that have
been detected as entailed. Also, Degree is not the number of neigh-
bors of X in the constraint network.

The following predicates can be used for computing the set of variables that are (transitively)
connected via constraints to some given variable(s).

Chapter 34: Constraint Logic Programming over Finite Domains 475

fd_neighbors(+Var, -Neighbors)
Given a domain variable Var, Neighbors is the set of variables that can be
reached from Var via constraints posted so far.

fd_closure(+Vars, -Closure)
Given a list Vars of domain variables, Closure is the set of variables (including
Vars) that can be transitively reached via constraints posted so far. Thus,
fd_closure/2 is the transitive closure of fd_neighbors/2.

The following predicate can be used for computing a symbolic form of the constraints that
are transitively attached to some term. This is useful e.g. in the context of asserting or
copying terms, as these operations are not supported on terms containing domain variables:

fd_copy_term(+Term, -Template, -Body)
Given a term Term containing domain variables, Template is a copy of the same
term with all variables renamed to new variables such that executing Body will
post constraints equivalent to those that Term is attached to.
For example:

| ?- X in 0..1, Y in 10..11, X+5 #=< Y,

fd_copy_term(f(X,Y), Template, Body).

Body = _A in_set[[0|1]],_B in_set[[10|11]],clpfd:’t>=u+c’(_B,_A,5),
Template = f(_A,_B),
X in 0..1,
Y in 10..11

34.8.3 FD Set Operations

The domains of variables are internally represented compactly as FD set terms. The details
of this representation are subject to change and should not be relied on. Therefore, a
number of operations on FD sets are provided, as such terms play an important role in the
interface. The following operations are the primitive ones:

is_fdset(+Set)
Set is a valid FD set.

empty_fdset(?Set)
Set is the empty FD set.

fdset_parts(?Set, ?Min, ?Max, ?Rest)
Set is an FD set, which is a union of the non-empty interval [Min,Max] and the
FD set Rest, and all elements of Rest are greater than Max+1. Min and Max
are both integers or the atoms inf and sup, denoting minus and plus infinity,
respectively. Either Set or all the other arguments must be ground.

The following operations can all be defined in terms of the primitive ones, but in most cases,
a more efficient implementation is used:

476 SICStus Prolog

empty_interval(+Min, +Max)
[Min,Max] is an empty interval.

fdset_interval(?Set, ?Min, ?Max)
Set is an FD set, which is the non-empty interval [Min,Max].

fdset_singleton(?Set, ?Elt)
Set is an FD set containing Elt only. At least one of the arguments must be
ground.

fdset_min(+Set, -Min)
Min is the lower bound of Set.

fdset_max(+Set, -Min)
Max is the upper bound of Set. This operation is linear in the number of
intervals of Set.

fdset_size(+Set, -Size)
Size is the cardinality of Set, represented as sup if Set is infinite. This operation
is linear in the number of intervals of Set.

list_to_fdset(+List, -Set)
Set is the FD set containing the elements of List. Slightly more efficient if List
is ordered.

fdset_to_list(+Set, -List)
List is an ordered list of the elements of Set, which must be finite.

range_to_fdset(+Range, -Set)
Set is the FD set containing the elements of the ConstantRange (see Sec-
tion 34.11.1 [Syntax of Indexicals], page 491) Range.

fdset_to_range(+Set, -Range)
Range is a constant interval, a singleton constant set, or a union of such, de-
noting the same set as Set.

fdset_add_element(+Set1, +Elt -Set2)
Set2 is Set1 with Elt inserted in it.

fdset_del_element(+Set1, +Elt, -Set2)
Set2 is like Set1 but with Elt removed.

fdset_disjoint(+Set1, +Set2)
The two FD sets have no elements in common.

fdset_intersect(+Set1, +Set2)
The two FD sets have at least one element in common.

fdset_intersection(+Set1, +Set2, -Intersection)
Intersection is the intersection between Set1 and Set2.

fdset_intersection(+Sets, -Intersection)
Intersection is the intersection of all the sets in Sets.

fdset_member(?Elt, +Set)
is true when Elt is a member of Set. If Elt is unbound, Set must be finite.

Chapter 34: Constraint Logic Programming over Finite Domains 477

fdset_eq(+Set1, +Set2)
Is true when the two arguments represent the same set i.e. they are identical.

fdset_subset(+Set1, +Set2)
Every element of Set1 appears in Set2.

fdset_subtract(+Set1, +Set2, -Difference)
Difference contains all and only the elements of Set1 that are not also in Set2.

fdset_union(+Set1, +Set2, -Union)
Union is the union of Set1 and Set2.

fdset_union(+Sets, -Union)
Union is the union of all the sets in Sets.

fdset_complement(+Set, -Complement)
Complement is the complement of Set wrt. inf..sup.

34.8.4 A Global Constraint Example

The following example defines a new global constraint exactly(X,L,N), which is true if X
occurs exactly N times in the list L of integers and domain variables. N must be an integer
when the constraint is posted. A version without this restriction and defined in terms of
reified equalities was presented earlier; see Section 34.2.3 [Reified Constraints], page 449.

This example illustrates the use of state information. The state has two components: the
list of variables that could still be X, and the number of variables still required to be X.

The constraint is defined to wake up on any domain change.

478 SICStus Prolog

% exactly.pl

/*
An implementation of exactly(I, X[1]...X[m], N):

Necessary condition: 0 =< N =< m.
Rewrite rules:

[1] |= X[i]=I 7→ exactly(I, X[1]...X[i-1],X[i+1]...X[m], N-1):
[2] |= X[i]\=I 7→ exactly(I, X[1]...X[i-1],X[i+1]...X[m], N):
[3] |= N=0 7→ X[1]\=I ... X[m]\=I
[4] |= N=m 7→ X[1]=I ... X[m]=I
*/
:- use_module(library(clpfd)).

% the entrypoint
exactly(I, Xs, N) :-

dom_suspensions(Xs, Susp),
fd_global(exactly(I,Xs,N), state(Xs,N), Susp).

dom_suspensions([], []).
dom_suspensions([X|Xs], [dom(X)|Susp]) :-

dom_suspensions(Xs, Susp).

% the solver method
:- multifile clpfd:dispatch_global/4.
clpfd:dispatch_global(exactly(I,_,_), state(Xs0,N0), state(Xs,N), Actions) :-

exactly_solver(I, Xs0, Xs, N0, N, Actions).

exactly_solver(I, Xs0, Xs, N0, N, Actions) :-
ex_filter(Xs0, Xs, N0, N, I),
length(Xs, M),
(N=:=0 -> Actions = [exit|Ps], ex_neq(Xs, I, Ps)
; N=:=M -> Actions = [exit|Ps], ex_eq(Xs, I, Ps)
; N>0, N<M -> Actions = []
; Actions = [fail]
).

Chapter 34: Constraint Logic Programming over Finite Domains 479

% exactly.pl

% rules [1,2]: filter the X’s, decrementing N
ex_filter([], [], N, N, _).
ex_filter([X|Xs], Ys, L, N, I) :- X==I, !,

M is L-1,
ex_filter(Xs, Ys, M, N, I).

ex_filter([X|Xs], Ys0, L, N, I) :-
fd_set(X, Set),
fdset_member(I, Set), !,
Ys0 = [X|Ys],
ex_filter(Xs, Ys, L, N, I).

ex_filter([_|Xs], Ys, L, N, I) :-
ex_filter(Xs, Ys, L, N, I).

% rule [3]: all must be neq I
ex_neq(Xs, I, Ps) :-

fdset_singleton(Set0, I),
fdset_complement(Set0, Set),
eq_all(Xs, Set, Ps).

% rule [4]: all must be eq I
ex_eq(Xs, I, Ps) :-

fdset_singleton(Set, I),
eq_all(Xs, Set, Ps).

eq_all([], _, []).
eq_all([X|Xs], Set, [X in_set Set|Ps]) :-

eq_all(Xs, Set, Ps).

end_of_file.

% sample queries: | ?- exactly(5,[A,B,C],1), A=5. A = 5, B
in(inf..4)\/(6..sup), C in(inf..4)\/(6..sup)

| ?- exactly(5,[A,B,C],1), A in 1..2, B in 3..4.

C = 5,
A in 1..2,
B in 3..4

34.9 Defining Primitive Constraints

Indexicals are the principal means of defining constraints, but it is usually not necessary
to resort to this level of programming—most commonly used constraints are available in
a library and/or via macro-expansion. The key feature about indexicals is that they give
the programmer precise control over aspects of the operational semantics of the constraints.

480 SICStus Prolog

Trade-offs can be made between the computational cost of the constraints and their pruning
power. The indexical language provides many degrees of freedom for the user to select the
level of consistency to be maintained depending on application-specific needs.

34.9.1 Indexicals

An indexical is a reactive functional rule of the form X in R, where R is a set valued range
expression (see below). See Section 34.11.1 [Syntax of Indexicals], page 491, for a grammar
defining indexicals and range expressions.

Indexicals can play one of two roles: propagating indexicals are used for constraint solving,
and checking indexicals are used for entailment checking. When a propagating indexical
fires, R is evaluated in the current store S, which is extended by adding the new domain
constraint X::S(R) to the store, where S(R) denotes the value of R in S. When a checking
indexical fires, it checks if D(X, S) is contained in S(R), and if so, the constraint corre-
sponding to the indexical is detected as entailed.

34.9.2 Range Expressions

A range expression has one of the following forms, where Ri denote range expressions, Ti

denote integer valued term expressions, S(Ti) denotes the integer value of Ti in S, X denotes
a variable, I denotes an integer, and S denotes the current store.

dom(X) evaluates to D(X, S)

{T1, \ldots, Tn}
evaluates to {S(T1), . . . , S(Tn)}. Any Ti containing a variable that is not “quan-
tified” by unionof/3 will cause the indexical to suspend until this variable has
been assigned.

T1..T2 evaluates to the interval between S(T1) and S(T2).

R1/\R2 evaluates to the intersection of S(R1) and S(R2)

R1\/R2 evaluates to the union of S(R1) and S(R2)

\R2 evaluates to the complement of S(R2)

R1+R2

R1+T2 evaluates to S(R2) or S(T2) added pointwise to S(R1)

-R2 evaluates to S(R2) negated pointwise

R1-R2

R1-T2

T1-R2 evaluates to S(R2) or S(T2) subtracted pointwise from S(R1) or S(T1)

R1 mod R2

R1 mod T2 evaluates to S(R1) pointwise modulo S(R2) or S(T2)

Chapter 34: Constraint Logic Programming over Finite Domains 481

R1 ? R2 evaluates to S(R2) if S(R1) is a non-empty set; otherwise, evaluates to the
empty set. This expression is commonly used in the context (R1 ? (inf..sup)
\/ R3), which evaluates to S(R3) if S(R1) is an empty set; otherwise, evaluates
to inf..sup. As an optimization, R3 is not evaluated while the value of R1 is
a non-empty set.

unionof(X,R1,R2)
evaluates to the union of S(E1), . . . , S(EN), where each EI has been formed
by substituting K for X in R2, where K is the I:th element of S(R1). See
Section 34.10.2 [N Queens], page 488, for an example of usage.

Please note: if S(R1) is infinite, the evaluation of the indexical will
be abandoned, and the indexical will simply suspend.

switch(T,MapList)
evaluates to S(E) if S(T1) equals K and MapList contains a pair K-E. Other-
wise, evaluates to the empty set. If T contains a variable that is not “quantified”
by unionof/3, the indexical will suspend until this variable has been assigned.

When used in the body of an FD predicate (see Section 34.9.8 [Goal Expanded Constraints],
page 486), a relation/3 expression expands to two indexicals, each consisting of a switch/2
expression nested inside a unionof/3 expression. Thus, the following constraints are equiv-
alent:

p(X, Y) +: relation(X, [1-{1},2-{1,2},3-{1,2,3}], Y).

q(X, Y) +:
X in unionof(B,dom(Y),switch(B,[1-{1,2,3},2-{2,3},3-{3}])),
Y in unionof(B,dom(X),switch(B,[1-{1},2-{1,2},3-{1,2,3}])).

34.9.3 Term Expressions

A term expression has one of the following forms, where T1 and T2 denote term expressions,
X denotes a variable, I denotes an integer, and S denotes the current store.

min(X) evaluates to the minimum of D(X, S)

max(X) evaluates to the maximum of D(X, S)

card(X) evaluates to the size of D(X, S)

X evaluates to the integer value of X. The indexical will suspend until X is
assigned.

I an integer

inf minus infinity

sup plus infinity

-T1 evaluates to S(T1) negated

482 SICStus Prolog

T1+T2 evaluates to the sum of S(T1) and S(T2)

T1-T2 evaluates to the difference of S(T1) and S(T2)

T1*T2 evaluates to the product of S(T1) and S(T2), where S(T2) must not be negative

T1/>T2 evaluates to the quotient of S(T1) and S(T2), rounded up, where S(T2) must
be positive

T1/<T2 evaluates to the quotient of S(T1) and S(T2), rounded down, where S(T2) must
be positive

T1 mod T2 evaluates to the modulo of S(T1) and S(T2)

34.9.4 Monotonicity of Indexicals

A range R is monotone in S iff the value of R in S′ is contained in the value of R in S, for
every extension S′ of S. A range R is anti-monotone in S iff the value of R in S is contained
in the value of R in S′, for every extension S′ of S. By abuse of notation, we will say that
X in R is (anti-)monotone iff R is (anti-)monotone.

The consistency or entailment of a constraint C expressed as indexicals X in R in a store
S is checked by considering the relationship between D(X, S) and S(R), together with
the (anti-)monotonicity of R in S. The details are given in Section 34.9.6 [Execution of
Propagating Indexicals], page 485 and Section 34.9.7 [Execution of Checking Indexicals],
page 486.

The solver checks (anti-)monotonicity by requiring that certain variables occurring in the
indexical be ground. This sufficient condition can sometimes be false for an (anti-)monotone
indexical, but such situations are rare in practice.

34.9.5 FD Predicates

The following example defines the constraint X+Y = T as an FD predicate in terms of three
indexicals. Each indexical is a rule responsible for removing values detected as incompatible
from one particular constraint argument. Indexicals are not Prolog goals; thus, the example
does not express a conjunction. However, an indexical may make the store contradictory,
in which case backtracking is triggered:

plus(X,Y,T) +:
X in min(T) - max(Y) .. max(T) - min(Y),
Y in min(T) - max(X) .. max(T) - min(X),
T in min(X) + min(Y) .. max(X) + max(Y).

The above definition contains a single clause used for constraint solving. The first indexical
wakes up whenever the bounds of S(T) or S(Y) are updated, and removes from D(X, S) any
values that are not compatible with the new bounds of T and Y . Note that in the event of
“holes” in the domains of T or Y , D(X, S) may contain some values that are incompatible

Chapter 34: Constraint Logic Programming over Finite Domains 483

with X + Y = T but go undetected. Like most built-in arithmetic constraints, the above
definition maintains interval-consistency, which is significantly cheaper to maintain than
domain-consistency and suffices in most cases. The constraint could for example be used
as follows:

| ?- X in 1..5, Y in 2..8, plus(X,Y,T).

X in 1..5,
Y in 2..8,
T in 3..13

Thus, when an FD predicate is called, the ‘+:’ clause is activated.

The definition of a user constraint has to specify what domain constraints should be added
to the constraint store when the constraint is posted. Therefore the FD predicate contains a
set of indexicals, each representing a domain constraint to be added to the constraint store.
The actual domain constraint depends on the constraint store itself. For example, the third
indexical in the above FD predicate prescribes the domain constraint ‘T :: 3..13’ if the
store contains ‘X :: 1..5, Y :: 2..8’. As the domain of some variables gets narrower, the
indexical may enforce a new, stricter constraint on some other variables. Therefore such an
indexical (called a propagating indexical) can be viewed as an agent reacting to the changes
in the store by enforcing further changes in the store.

In general there are three stages in the lifetime of a propagating indexical. When it is posted
it may not be evaluated immediately (e.g. has to wait until some variables are ground before
being able to modify the store). Until the preconditions for the evaluation are satisfied, the
agent does not enforce any constraints. When the indexical becomes evaluable the resulting
domain constraint is added to the store. The agent then waits and reacts to changes in
the domains of variables occurring in the indexical by re-evaluating it and adding the new,
stricter constraint to the store. Eventually the computation reaches a phase when no further
refinement of the store can result in a more precise constraint (the indexical is entailed by
the store), and then the agent can cease to exist.

A necessary condition for the FD predicate to be correctly defined is the following: for any
store mapping each variable to a singleton domain the execution of the indexicals should
succeed without contradiction exactly when the predicate is intended to be true.

There can be several alternative definitions for the same user constraint with different
strengths in propagation. For example, the definition of plusd below encodes the same
X+Y=T constraint as the plus predicate above, but maintaining domain-consistency:

484 SICStus Prolog

plusd(X,Y,T) +:
X in dom(T) - dom(Y),
Y in dom(T) - dom(X),
T in dom(X) + dom(Y).

| ?- X in {1}\/{3}, Y in {10}\/{20}, plusd(X, Y, T).

X in{1}\/{3},
Y in{10}\/{20},
T in{11}\/{13}\/{21}\/{23}

This costs more in terms of execution time, but gives more precise results. For singleton
domains plus and plusd behave in the same way.

In our design, general indexicals can only appear in the context of FD predicate definitions.
The rationale for this restriction is the need for general indexicals to be able to suspend
and resume, and this ability is only provided by the FD predicate mechanism.

If the program merely posts a constraint, it suffices for the definition to contain a single
clause for solving the constraint. If a constraint is reified or occurs in a propositional
formula, the definition must contain four clauses for solving and checking entailment of the
constraint and its negation. The role of each clause is reflected in the “neck” operator.
The following table summarizes the different forms of indexical clauses corresponding to
a constraint C. In all cases, Head should be a compound term with all arguments being
distinct variables:

Head +: Indexicals.
The clause consists of propagating indexicals for solving C.

Head -: Indexicals.
The clause consists of propagating indexicals for solving the negation of C.

Head +? Indexical.
The clause consists of a single checking indexical for testing entailment of C.

Head -? Indexical.
The clause consists of a single checking indexical for testing entailment of the
negation of C.

When a constraint is reified, the solver spawns two reactive agents corresponding to detect-
ing entailment and disentailment. Eventually, one of them will succeed in this and conse-
quently will bind B to 0 or 1. A third agent is spawned, waiting for B to become assigned,
at which time the constraint (or its negation) is posted. In the mean time, the constraint
may have been detected as (dis)entailed, in which case the third agent is dismissed. The
waiting is implemented by means of the coroutining facilities of SICStus Prolog.

As an example of a constraint with all methods defined, consider the following library
constraint defining a disequation between two domain variables:

Chapter 34: Constraint Logic Programming over Finite Domains 485

’x\\=y’(X,Y) +:
X in \{Y},
Y in \{X}.

’x\\=y’(X,Y) -:
X in dom(Y),
Y in dom(X).

’x\\=y’(X,Y) +?
X in \dom(Y).

’x\\=y’(X,Y) -?
X in {Y}.

The following sections provide more precise coding rules and operational details for indexi-
cals. X in R denotes an indexical corresponding to a constraint C. S denotes the current
store.

34.9.6 Execution of Propagating Indexicals

Consider the definition of a constraint C containing a propagating indexical X in R. Let
TV (X, C, S) denote the set of values for X that can make C true in some ground extension
of the store S. Then the indexical should obey the following coding rules:

• all arguments of C except X should occur in R

• if R is ground in S, S(R) = TV (X, C, S)

If the coding rules are observed, S(R) can be proven to contain TV (X, C, S) for all stores
in which R is monotone. Hence it is natural for the implementation to wait until R becomes
monotone before admitting the propagating indexical for execution. The execution of X in
R thus involves the following:

• If D(X, S) is disjoint from S(R), a contradiction is detected.
• If D(X, S) is contained in S(R), D(X, S) does not contain any values known to be

incompatible with C, and the indexical suspends, unless R is ground in S, in which
case C is detected as entailed.

• Otherwise, D(X, S) contains some values that are known to be incompatible with C.
Hence, X::S(R) is added to the store (X is pruned), and the indexical suspends, unless
R is ground in S, in which case C is detected as entailed.

A propagating indexical is scheduled for execution as follows:

• it is evaluated initially as soon as it has become monotone
• it is re-evaluated when one of the following conditions occurs:

1. the domain of a variable Y that occurs as dom(Y) or card(Y) in R has been
updated

2. the lower bound of a variable Y that occurs as min(Y) in R has been updated
3. the upper bound of a variable Y that occurs as max(Y) in R has been updated

486 SICStus Prolog

34.9.7 Execution of Checking Indexicals

Consider the definition of a constraint C containing a checking indexical X in R. Let
FV (X, C, S) denote the set of values for X that can make C false in some ground extension
of the store S. Then the indexical should obey the following coding rules:

• all arguments of C except X should occur in R

• if R is ground in S, S(R) = TV (X, C, S)

If the coding rules are observed, S(R) can be proven to exclude FV (X, C, S) for all stores
in which R is anti-monotone. Hence it is natural for the implementation to wait until R be-
comes anti-monotone before admitting the checking indexical for execution. The execution
of X in R thus involves the following:

• If D(X, S) is contained in S(R), none of the possible values for X can make C false,
and so C is detected as entailed.

• Otherwise, if D(X, S) is disjoint from S(R) and R is ground in S, all possible values
for X will make C false, and so C is detected as disentailed.

• Otherwise, D(X, S) contains some values that could make C true and some that could
make C false, and the indexical suspends.

A checking indexical is scheduled for execution as follows:

• it is evaluated initially as soon as it has become anti-monotone
• it is re-evaluated when one of the following conditions occurs:

1. the domain of X has been pruned, or X has been assigned
2. the domain of a variable Y that occurs as dom(Y) or card(Y) in R has been

pruned
3. the lower bound of a variable Y that occurs as min(Y) in R has been increased
4. the upper bound of a variable Y that occurs as max(Y) in R has been decreased

34.9.8 Goal Expanded Constraints

The arithmetic, membership, and propositional constraints described earlier are trans-
formed at compile time to conjunctions of goals of library constraints.

Sometimes it is necessary to postpone the expansion of a constraint until runtime, e.g. if the
arguments are not instantiated enough. This can be achieved by wrapping call/1 around
the constraint.

Although space economic (linear in the size of the source code), the expansion of a con-
straint to library goals can have an overhead compared to expressing the constraint in terms
of indexicals. Temporary variables holding intermediate values may have to be introduced,
and the grain size of the constraint solver invocations can be rather small. The translation

Chapter 34: Constraint Logic Programming over Finite Domains 487

of constraints to library goals has been greatly improved in the current version, so these
problems have virtually disappeared. However, for backward compatibility, an implementa-
tion by compilation to indexicals of the same constraints is also provided. An FD predicate
may be defined by a single clause:

Head +: Constraint.

where Constraint is an arithmetic constraint or an element/3 or a relation/3 constraint.
This translation is only available for ‘+:’ clauses; thus, Head cannot be reified.

In the case of arithmetic constraints, the constraint must be over linear terms (see Sec-
tion 34.11.1 [Syntax of Indexicals], page 491). The memory consumption of the FD pred-
icate will be quadratic in the size of the source code. The alternative version of sum/8 in
Section 34.10.1 [Send More Money], page 487 illustrates this technique.

In the case of element(X,L,Y) or relation(X,L,Y), the memory consumption of the FD
predicate will be linear in the size of the source code. The execution time of the initial
evaluation of the FD predicate will be linear in the size of the initial domains for X and Y;
if these domains are infinite, no propagation will take place.

34.10 Example Programs

This section contains a few example programs. The first two programs are included in a
benchmark suite that comes with the distribution. The benchmark suite is run by typing:

| ?- compile(library(’clpfd/examples/bench’)).

| ?- bench.

34.10.1 Send More Money

Let us return briefly to the Send More Money problem (see Section 34.2.2 [A Constraint
Satisfaction Problem], page 448). Its sum/8 predicate will expand to a space-efficient con-
junction of library constraints. A faster but more memory consuming version is defined
simply by changing the neck symbol of sum/8 from ‘:-’ to ‘+:’, thus turning it into an FD
predicate:

sum(S, E, N, D, M, O, R, Y) +:
1000*S + 100*E + 10*N + D

+ 1000*M + 100*O + 10*R + E
#= 10000*M + 1000*O + 100*N + 10*E + Y.

488 SICStus Prolog

34.10.2 N Queens

The problem is to place N queens on an NxN chess board so that no queen is threatened
by another queen.

The variables of this problem are the N queens. Each queen has a designated row. The
problem is to select a column for it.

The main constraint of this problem is that no queen threaten another. This is encoded
by the no_threat/3 constraint and holds between all pairs (X,Y) of queens. It could be
defined as

no_threat(X, Y, I) :-
X #\= Y,
X+I #\= Y,
X-I #\= Y.

However, this formulation introduces new temporary domain variables and creates twelve
fine-grained indexicals. Worse, the disequalities only maintain interval-consistency and so
may miss some opportunities for pruning elements in the middle of domains.

A better idea is to formulate no_threat/3 as an FD predicate with two indexicals, as shown
in the program below. This constraint will not fire until one of the queens has been assigned
(the corresponding indexical does not become monotone until then). Hence, the constraint
is still not as strong as it could be.

For example, if the domain of one queen is 2..3, then it will threaten any queen placed in
column 2 or 3 on an adjacent row, no matter which of the two open positions is chosen for
the first queen. The commented out formulation of the constraint captures this reasoning,
and illustrates the use of the unionof/3 operator. This stronger version of the constraint
indeed gives less backtracking, but is computationally more expensive and does not pay off
in terms of execution time, except possibly for very large chess boards.

It is clear that no_threat/3 cannot detect any incompatible values for a queen with domain
of size greater than three. This observation is exploited in the third version of the constraint.

The first-fail principle is appropriate in the enumeration part of this problem.

Chapter 34: Constraint Logic Programming over Finite Domains 489

:- use_module(library(clpfd)).

queens(N, L, LabelingType) :-
length(L, N),
domain(L, 1, N),
constrain_all(L),
labeling(LabelingType, L).

constrain_all([]).
constrain_all([X|Xs]) :-

constrain_between(X, Xs, 1),
constrain_all(Xs).

constrain_between(_X, [], _N).
constrain_between(X, [Y|Ys], N) :-

no_threat(X, Y, N),
N1 is N+1,
constrain_between(X, Ys, N1).

% version 1: weak but efficient
no_threat(X, Y, I) +:

X in \({Y} \/ {Y+I} \/ {Y-I}),
Y in \({X} \/ {X+I} \/ {X-I}).

/*
% version 2: strong but very inefficient version
no_threat(X, Y, I) +:

X in unionof(B,dom(Y),\({B} \/ {B+I} \/ {B-I})),
Y in unionof(B,dom(X),\({B} \/ {B+I} \/ {B-I})).

% version 3: strong but somewhat inefficient version
no_threat(X, Y, I) +:

X in (4..card(Y)) ? (inf..sup) \/
unionof(B,dom(Y),\({B} \/ {B+I} \/ {B-I})),

Y in (4..card(X)) ? (inf..sup) \/
unionof(B,dom(X),\({B} \/ {B+I} \/ {B-I})).

*/

| ?- queens(8, L, [ff]).

L = [1,5,8,6,3,7,2,4]

490 SICStus Prolog

34.10.3 Cumulative Scheduling

This example is a very small scheduling problem. We consider seven tasks where each task
has a fixed duration and a fixed amount of used resource:

Task Duration Resource
t1 16 2
t2 6 9
t3 13 3
t4 7 7
t5 5 10
t6 18 1
t7 4 11

The goal is to find a schedule that minimizes the completion time for the schedule while not
exceeding the capacity 13 of the resource. The resource constraint is succinctly captured by a
cumulative/4 constraint. Branch-and-bound search is used to find the minimal completion
time.

This example was adapted from [Beldiceanu & Contejean 94].

:- use_module(library(clpfd)).
:- use_module(library(lists), [append/3]).

schedule(Ss, End) :-
length(Ss, 7),
Ds = [16, 6,13, 7, 5,18, 4],
Rs = [2, 9, 3, 7,10, 1,11],
domain(Ss, 1, 30),
domain([End], 1, 50),
after(Ss, Ds, End),
cumulative(Ss, Ds, Rs, 13),
append(Ss, [End], Vars),
labeling([minimize(End)], Vars). % label End last

after([], [], _).
after([S|Ss], [D|Ds], E) :- E #>= S+D, after(Ss, Ds, E).

%% End of file

| ?- schedule(Ss, End).

Ss = [1,17,10,10,5,5,1],
End = 23

34.11 Syntax Summary

Chapter 34: Constraint Logic Programming over Finite Domains 491

34.11.1 Syntax of Indexicals

X ::= variable { domain variable }
Constant ::= integer

| inf { minus infinity }
| sup { plus infinity }

Term ::= Constant
| X { suspend until assigned }
| min(X) { min. of domain of X }
| max(X) { max. of domain of X }
| card(X) { size of domain of X }
| - Term
| Term + Term
| Term - Term
| Term * Term
| Term /> Term { division rounded up }
| Term /< Term { division rounded down }
| Term mod Term

TermSet ::= {Term,...,Term}
Range ::= TermSet

| dom(X) { domain of X }
| Term .. Term { interval }
| Range /\ Range { intersection }
| Range \/ Range { union }
| \ Range { complement }
| - Range { pointwise negation }
| Range + Range { pointwise addition }
| Range - Range { pointwise subtraction }
| Range mod Range { pointwise modulo }
| Range + Term { pointwise addition }
| Range - Term { pointwise subtraction }
| Term - Range { pointwise subtraction }
| Range mod Term { pointwise modulo }
| Range ? Range
| unionof(X,Range,Range)
| switch(Term,MapList)

ConstantSet ::= {integer,...,integer}
ConstantRange ::= ConstantSet

| Constant .. Constant
| ConstantRange /\
ConstantRange
| ConstantRange \/
ConstantRange
| \ ConstantRange

MapList ::= []

492 SICStus Prolog

| [integer-ConstantRange
|MapList]

CList ::= []
| [integer|CList]

Indexical ::= X in Range
Indexicals ::= Indexical

| Indexical , Indexicals
ConstraintBody ::= Indexicals

| LinExpr RelOp LinExpr
| element(X,CList,X)
| relation(X,MapList,X)

Head ::= term { a compound term with unique
variable args }

TellPos ::= Head +: ConstraintBody
TellNeg ::= Head -: ConstraintBody
AskPos ::= Head +? Indexical
AskNeg ::= Head -? Indexical
ConstraintDef ::= TellPos.

?(TellNeg.)
?(AskPos.)
?(AskNeg.)

34.11.2 Syntax of Arithmetic Expressions

X ::= variable { domain variable }
N ::= integer
LinExpr ::= N { linear expression }

| X
| N * X
| N * N
| LinExpr + LinExpr
| LinExpr - LinExpr

Expr ::= LinExpr
| Expr + Expr
| Expr - Expr
| Expr * Expr
| Expr / Expr { integer division }
| Expr mod Expr
| min(Expr,Expr)
| max(Expr,Expr)
| abs(Expr)

RelOp ::= #= | #\= | #< | #=< | #> | #>=

Chapter 34: Constraint Logic Programming over Finite Domains 493

34.11.3 Operator Declarations

:- op(1200, xfx, [+:,-:,+?,-?]).
:- op(760, yfx, #<=>).
:- op(750, xfy, #=>).
:- op(750, yfx, #<=).
:- op(740, yfx, #\/).
:- op(730, yfx, #\).
:- op(720, yfx, #/\).
:- op(710, fy, #\).
:- op(700, xfx, [in,in_set]).
:- op(700, xfx, [#=,#\=,#<,#=<,#>,#>=]).
:- op(550, xfx, ..).
:- op(500, fy, \).
:- op(490, yfx, ?).
:- op(400, yfx, [/>,/<]).

494 SICStus Prolog

Chapter 35: Constraint Handling Rules 495

35 Constraint Handling Rules

35.1 Copyright

This chapter is Copyright c© 1996-98 LMU

LMU (Ludwig-Maximilians-University)
Munich, Germany

Permission is granted to make and distribute verbatim copies of this chapter provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this chapter under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this chapter into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by LMU.

35.2 Introduction

Experience from real-life applications using constraint-based programming has shown
that typically, one is confronted with a heterogeneous mix of different types of con-
straints. To be able to express constraints as they appear in the application and
to write and combine constraint systems, a special purpose language for writing con-
straint systems called constraint handling rules (CHR) was developed. CHR have
been used to encode a wide range of constraint handlers (solvers), including new do-
mains such as terminological and temporal reasoning. Several CHR libraries exist
in declarative languages such as Prolog and LISP, worldwide more than 20 projects
use CHR. You can find more information about CHR in [Fruehwirth 98] or at
http://www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/chr-intro.html

The high-level CHR are an excellent tool for rapid prototyping and implementation of
constraint handlers. The usual abstract formalism to describe a constraint system, i.e.
inference rules, rewrite rules, sequents, formulas expressing axioms and theorems, can be
written as CHR in a straightforward way. Starting from this executable specification, the
rules can be refined and adapted to the specifics of the application.

The CHR library includes a compiler, which translates CHR programs into Prolog programs
on the fly, and a runtime system, which includes a stepper for debugging. Many constraint
handlers are provided in the example directory of the library.

CHR are essentially a committed-choice language consisting of guarded rules that rewrite
constraints into simpler ones until they are solved. CHR define both simplification of and

http://www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/chr-intro.html

496 SICStus Prolog

propagation over constraints. Simplification replaces constraints by simpler constraints
while preserving logical equivalence (e.g. X>Y,Y>X <=> fail). Propagation adds new con-
straints that are logically redundant but may cause further simplification (e.g. X>Y,Y>Z ==>
X>Z). Repeatedly applying CHR incrementally simplifies and finally solves constraints (e.g.
A>B,B>C,C>A) leads to fail.

With multiple heads and propagation rules, CHR provide two features that are essential
for non-trivial constraint handling. The declarative reading of CHR as formulas of first
order logic allows one to reason about their correctness. On the other hand, regarding CHR
as a rewrite system on logical formulas allows one to reason about their termination and
confluence.

In case the implementation of CHR disagrees with your expectations based on this chapter,
drop a line to the current maintainer: christian@ai.univie.ac.at (Christian Holzbaur).

35.3 Introductory Examples

We define a CHR constraint for less-than-or-equal, leq, that can handle variable arguments.
This handler can be found in the library as the file leq.pl. (The code works regardless of
options switched on or off.)

:- use_module(library(chr)).

handler leq.
constraints leq/2.
:- op(500, xfx, leq).

reflexivity @ X leq Y <=> X=Y | true.
antisymmetry @ X leq Y , Y leq X <=> X=Y.
idempotence @ X leq Y \ X leq Y <=> true.
transitivity @ X leq Y , Y leq Z ==> X leq Z.

The CHR specify how leq simplifies and propagates as a constraint. They implement
reflexivity, idempotence, antisymmetry and transitivity in a straightforward way. CHR
reflexivity states that X leq Y simplifies to true, provided it is the case that X=Y. This
test forms the (optional) guard of a rule, a precondition on the applicability of the rule.
Hence, whenever we see a constraint of the form A leq A we can simplify it to true.

The rule antisymmetry means that if we find X leq Y as well as Y leq X in the constraint
store, we can replace it by the logically equivalent X=Y. Note the different use of X=Y in the
two rules: In the reflexivity rule the equality is a precondition (test) on the rule, while
in the antisymmetry rule it is enforced when the rule fires. (The reflexivity rule could also
have been written as reflexivity X leq X <=> true.)

The rules reflexivity and antisymmetry are simplification CHR. In such rules, the con-
straints found are removed when the rule applies and fires. The rule idempotence is a

Chapter 35: Constraint Handling Rules 497

simpagation CHR, only the constraints right of ’\’ will be removed. The rule says that if
we find X leq Y and another X leq Y in the constraint store, we can remove one.

Finally, the rule transitivity states that the conjunction X leq Y, Y leq Z implies X leq
Z. Operationally, we add X leq Z as (redundant) constraint, without removing the con-
straints X leq Y, Y leq Z. This kind of CHR is called propagation CHR.

Propagation CHR are useful, as the query A leq B,C leq A,B leq C illustrates: The first
two constraints cause CHR transitivity to fire and add C leq B to the query. This new
constraint together with B leq C matches the head of CHR antisymmetry, X leq Y, Y leq
X. So the two constraints are replaced by B=C. Since B=C makes B and C equivalent, CHR
antisymmetry applies to the constraints A leq B, C leq A, resulting in A=B. The query
contains no more CHR constraints, the simplification stops. The constraint handler we
built has solved A leq B, C leq A, B leq C and produced the answer A=B, B=C:

A leq B,C leq A,B leq C.
% C leq A, A leq B propagates C leq B by transitivity.
% C leq B, B leq C simplifies to B=C by antisymmetry.
% A leq B, C leq A simplifies to A=B by antisymmetry since B=C.
A=B,B=C.

Note that multiple heads of rules are essential in solving these constraints. Also note
that this handler implements a (partial) order constraint over any constraint domain, this
generality is only possible with CHR.

As another example, we can implement the sieve of Eratosthenes to compute primes simply
as (for variations see the handler ‘primes.pl’):

:- use_module(library(chr)).
handler eratosthenes.
constraints primes/1,prime/1.

primes(1) <=> true.
primes(N) <=> N>1 | M is N-1,prime(N),primes(M). % generate candidates

absorb(J) @ prime(I) \ prime(J) <=> J mod I =:= 0 | true.

The constraint primes(N) generates candidates for prime numbers, prime(M), where M is
between 1 and N. The candidates react with each other such that each number absorbs
multiples of itself. In the end, only prime numbers remain.

Looking at the two rules defining primes/1, note that head matching is used in CHR, so
the first rule will only apply to primes(1). The test N>1 is a guard (precondition) on the
second rule. A call with a free variable, like primes(X), will delay (suspend). The third,
multi-headed rule absorb(J) reads as follows: If there is a constraint prime(I) and some
other constraint prime(J) such that J mod I =:= 0 holds, i.e. J is a multiple of I, then keep
prime(I) but remove prime(J) and execute the body of the rule, true.

498 SICStus Prolog

35.4 CHR Library

CHR extend the Prolog syntax by a few constructs introduced in the next sections. Tech-
nically, the extension is achieved through the user:term_expansion/2 mechanism. A file
that contains a constraint handler may also contain arbitrary Prolog code. Constraint han-
dling rules can be scattered across a file. Declarations and options should precede rules.
There can only be at most one constraint handler per module.

35.4.1 Loading the Library

Before you can load or compile any file containing a constraint handler (solver) written in
CHR, the chr library module has to be imported:

| ?- use_module(library(chr)).

It is recommended to include the corresponding directive at the start of your files containing
handlers:

:- use_module(library(chr)).

35.4.2 Declarations

Declarations in files containing CHR affect the compilation and thus the behavior of the
rules at runtime.

The mandatory handler declaration precedes any other CHR specific code. Example:

handler minmax.

A handler name must be a valid Prolog atom. Per module, only one constraint handler can
be defined.

The constraints must be declared before they are used by rules. With this mandatory
declaration one lists the constraints the rules will later talk about. The declaration can be
used more than once per handler. Example:

constraints leq/2, minimum/3, maximum/3.

The following optional declaration allows for conditional rule compilation. Only the rules
mentioned get compiled. Rules are referred to by their names (see Section 35.4.3 [CHR
Syntax], page 499). The latest occurrence takes precedence if used more than once per
handler. Although it can be put anywhere in the handler file, it makes sense, as with other
declarations, to use it early. Example:

rules antisymmetry, transitivity.

Chapter 35: Constraint Handling Rules 499

To simplify the handling of operator declarations, in particular during fcompile/1,
operator/3 declarations with the same denotation as op/3, but taking effect during com-
pilation and loading, are helpful. Example:

operator(700, xfx, ::).
operator(600, xfx, :).

35.4.3 Constraint Handling Rules, Syntax

A constraint handling rule has one or more heads, an optional guard, a body and an optional
name. A Head is a Constraint. A constraint is a callable Prolog term, whose functor is
a declared constraint. The Guard is a Prolog goal. The Body of a rule is a Prolog goal
(including constraints). A rule can be named with a Name, which can be any Prolog term
(including variables from the rule).

There are three kinds of constraint handling rules:

Rule ::= ?(Name @)
(Simplification | Propagation | Simpagation)
?(pragma Pragma)

Simplification ::= Heads <=> ?(Guard |) Body
Propagation ::= Heads ==> ?(Guard |) Body
Simpagation ::= Heads \ Heads <=> ?(Guard |) Body
Heads ::= Head | Head , Heads
Head ::= Constraint | Constraint # Id
Constraint ::= {a callable term declared as constraint}
Id ::= {a unique variable}
Guard ::= Ask | Ask & Tell
Ask ::= Goal
Tell ::= Goal
Goal ::= {a callable term, including conjunction and disjunction etc.}
Body ::= Goal
Pragma ::= {a conjunction of terms usually referring to one or more heads

identified via #/2}

The symbol ‘|’ separates the guard (if present) from the body of a rule. Since ‘|’ is read
as ‘;’ (disjunction) by the reader, care has to be taken when using disjunction in the guard
or body of the rule. The top-level disjunction will always be interpreted as guard-body
separator ‘|’, so proper bracketing has to be used, e.g. a <=> (b;c) | (d;e) instead of a
<=> b;c | d;e and a <=> true | (d;e) instead of a <=> (d;e).

In simpagation rules, ‘\’ separates the heads of the rule into two parts.

Individual head constraints may be tagged with variables via ‘#’, which may be used as
identifiers in pragma declarations, for example. Constraint identifiers must be distinct
variables, not occurring elsewhere in the heads.

500 SICStus Prolog

Guards test the applicability of a rule. Guards come in two parts, tell and ask, separated
by ‘&’. If the ‘&’ operator is not present, the whole guard is assumed to be of the ask type.

Declaratively, a rule relates heads and body provided the guard is true. A simplification rule
means that the heads are true if and only if the body is true. A propagation rule means that
the body is true if the heads are true. A simpagation rule combines a simplification and
a propagation rule. The rule Heads1 \ Heads2 <=> Body is equivalent to the simplification
rule Heads1, Heads2 <=> Heads1, Body. However, the simpagation rule is more compact to
write, more efficient to execute and has better termination behavior than the corresponding
simplification rule, since the constraints comprising Heads1 will not be removed and inserted
again.

35.4.4 How CHR Work

Each CHR constraint is associated with all rules in whose heads it occurs by the CHR
compiler. Every time a CHR constraint is executed (called) or woken and reconsidered, it
checks itself the applicability of its associated CHR by trying each CHR. By default, the
rules are tried in textual order, i.e. in the order they occur in the defining file. To try a CHR,
one of its heads is matched against the constraint. Matching succeeds if the constraint is an
instance of the head. If a CHR has more than one head, the constraint store is searched for
partner constraints that match the other heads. Heads are tried from left to right, except
that in simpagation rules, the heads to be removed are tried before the head constraints to
be kept (this is done for efficiency reasons). If the matching succeeds, the guard is executed.
Otherwise the next rule is tried.

The guard either succeeds or fails. A guard succeeds if the execution of its Ask and Tell
parts succeeds and in the ask part no variable that occurs also in the heads was touched or
the cause of an instantiation error. The ask guard will fail otherwise. A variable is touched
if it is unified with a term (including other variables from other constraints) different from
itself. Tell guards, on the contrary, are trusted and not checked for that property. If the
guard succeeds, the rule applies. Otherwise the next rule is tried.

If the firing CHR is a simplification rule, the matched constraints are removed from the
store and the body of the CHR is executed. Similarly for a firing simpagation rule, except
that the constraints that matched the heads preceding ‘\’ are kept. If the firing CHR is
a propagation rule the body of the CHR is executed without removing any constraints.
It is remembered that the propagation rule fired, so it will not fire again with the same
constraints if the constraint is woken and reconsidered. If the currently active constraint
has not been removed, the next rule is tried.

If the current constraint has not been removed and all rules have been tried, it delays until
a variable occurring in the constraint is touched. Delaying means that the constraint is
inserted into the constraint store. When a constraint is woken, all its rules are tried again.
(This process can be watched and inspected with the CHR debugger, see below.)

Chapter 35: Constraint Handling Rules 501

35.4.5 Pragmas

Pragmas are annotations to rules and constraints that enable the compiler to generate more
specific, more optimized code. A pragma can be a conjunction of the following terms:

already_in_heads
The intention of simplification and simpagation rules is often to combine the
heads into a stronger version of one of them. Depending on the strength of the
guard, the new constraint may be identical to one of the heads to removed by
the rule. This removal followed by addition is inefficient and may even cause
termination problems. If the pragma is used, this situation is detected and
the corresponding problems are avoided. The pragma applies to all constraints
removed by the rule.

already_in_head(Id)
Shares the intention of the previous pragma, but affects only the constraint
indicated via Id. Note that one can use more than one pragma per rule.

passive(Id)
No code will be generated for the specified constraint in the particular head
position. This means that the constraint will not see the rule, it is passive in
that rule. This changes the behavior of the CHR system, because normally, a
rule can be entered starting from each head constraint. Usually this pragma
will improve the efficiency of the constraint handler, but care has to be taken
in order not to lose completeness.
For example, in the handler leq, any pair of constraints, say A leq B, B leq A,
that matches the head X leq Y , Y leq X of the antisymmetry rule, will also
match it when the constraints are exchanged, B leq A, A leq B. Therefore it
is enough if a currently active constraint enters this rule in the first head only,
the second head can be declared to be passive. Similarly for the idempotence
rule. For this rule, it is more efficient to declare the first head passive, so that
the currently active constraint will be removed when the rule fires (instead of
removing the older constraint and redoing all the propagation with the cur-
rently active constraint). Note that the compiler itself detects the symmetry
of the two head constraints in the simplification rule antisymmetry, thus it is
automatically declared passive and the compiler outputs CHR eliminated code
for head 2 in antisymmetry.

antisymmetry X leq Y , Y leq X # Id <=> X=Y pragma passive(Id).
idempotence X leq Y # Id \ X leq Y <=> true pragma passive(Id).
transitivity X leq Y # Id , Y leq Z ==> X leq Z pragma passive(Id).

Declaring the first head of rule transitivity passive changes the behavior
of the handler. It will propagate less depending on the order in which the
constraints arrive:

502 SICStus Prolog

| ?- X leq Y, Y leq Z.

X leq Y,
Y leq Z,
X leq Z

| ?- Y leq Z, X leq Y.

Y leq Z,
X leq Y

| ?- Y leq Z, X leq Y, Z leq X.

Y = X,
Z = X

The last query shows that the handler is still complete in the sense that all
circular chains of leq-relations are collapsed into equalities.

35.4.6 Options

Options parametrise the rule compilation process. Thus they should precede the rule defi-
nitions. Example:

option(check_guard_bindings, off).

The format below lists the names of the recognized options together with the acceptable
values. The first entry in the lists is the default value.

option(debug_compile, [off,on]).
Instruments the generated code such that the execution of the rules may be
traced (see Section 35.5 [CHR Debugging], page 507).

option(check_guard_bindings, [on,off]).
Per default, for guards of type ask the CHR runtime system makes sure that
no variables are touched or the cause of an instantiation error. These checks
may be turned off with this option, i.e. all guards are treated as if they were of
the tell variety. The option was kept for backward compatibility. Tell and ask
guards offer better granularity.

option(already_in_store, [off,on]).
If this option is on, the CHR runtime system checks for the presence of an
identical constraint upon the insertion into the store. If present, the attempted
insertion has no effect. Since checking for duplicates for all constraints costs,
duplicate removal specific to individual constraints, using a few simpagation
rules of the following form instead, may be a better solution.

Constraint \ Constraint <=> true.

option(already_in_heads, [off,on]).
The intention of simplification and simpagation rules is often to combine the
heads into a stronger version of one of them. Depending on the strength of

Chapter 35: Constraint Handling Rules 503

the guard, the new constraint may be identical to one of the heads removed by
the rule. This removal followed by addition is inefficient and may even cause
termination problems. If the option is enabled, this situation is detected and
the corresponding problems are avoided. This option applies to all constraints
and is provided mainly for backward compatibility. Better grained control can
be achieved with corresponding pragmas. (see Section 35.4.5 [CHR Pragmas],
page 501).

The remaining options are meant for CHR implementors only:

option(flatten, [on,off]).
option(rule_ordering, [canonical,heuristic]).
option(simpagation_scheme, [single,multi]).
option(revive_scheme, [new,old]).
option(dead_code_elimination, [on,off]).

35.4.7 Built-In Predicates

This table lists the predicates made available by the CHR library. They are meant for
advanced users, who want to tailor the CHR system towards their specific needs.

current_handler(?Handler, ?Module)
nondeterminately enumerates the defined handlers with the module they are
defined in.

current_constraint(?Handler, ?Constraint)
nondeterminately enumerates the defined constraints in the form Functor/Arity
and the handlers they are defined in.

insert_constraint(+Constraint, -Id)
Inserts Constraint into the constraint store without executing any rules. The
constraint will be woken and reconsidered when one of the variables in Con-
straint is touched. Id is unified with an internal object representing the con-
straint. This predicate only gets defined when a handler and constraints are
declared (see Section 35.4.2 [CHR Declarations], page 498).

insert_constraint(+Constraint, -Id, ?Term)
Inserts Constraint into the constraint store without executing any rules. The
constraint will be woken and reconsidered when one of the variables in Term is
touched. Id is unified with an internal object representing the constraint. This
predicate only gets defined when a handler and constraints are declared (see
Section 35.4.2 [CHR Declarations], page 498).

find_constraint(?Pattern, -Id)
nondeterminately enumerates constraints from the constraint store that match
Pattern, i.e., which are instances of Pattern. Id is unified with an internal
object representing the constraint.

504 SICStus Prolog

find_constraint(-Var, ?Pattern, -Id)
Nondeterminately enumerates constraints from the constraint store that delay
on Var and match Pattern, i.e., which are instances of Pattern. The identifier
Id can be used to refer to the constraint later, e.g. for removal.

findall_constraints(?Pattern, ?List)
Unifies List with a list of Constraint # Id pairs from the constraint store that
match Pattern.

findall_constraints(-Var, ?Pattern, ?List)
Unifies List with a list of Constraint # Id pairs from the constraint store that
delay on Var and match Pattern.

remove_constraint(+Id)
Removes the constraint Id, obtained with one of the previous predicates, from
the constraint store.

unconstrained(?Var)
Succeeds if no CHR constraint delays on Var. Defined as:

unconstrained(X) :-
find_constraint(X, _, _), !, fail.

unconstrained(_).

notify_constrained(?Var)
Leads to the reconsideration of the constraints associated with Var. This mech-
anism allows solvers to communicate reductions on the set of possible values of
variables prior to making bindings.

35.4.8 Consulting and Compiling Constraint Handlers

The CHR compilation process has been made as transparent as possible. The user deals
with files containing CHR just as with files containing ordinary Prolog predicates. Thus
CHR may be consulted, compiled with various compilation modes, and compiled to file (see
Chapter 6 [Load Intro], page 65).

35.4.9 Compiler-Generated Predicates

Besides predicates for the defined constraints, the CHR compiler generates some support
predicates in the module containing the handler. To avoid naming conflicts, the following
predicates must not be defined or referred to by user code in the same module:

verify_attributes/3
attribute_goal/2
attach_increment/2
’attach_F/A’/2

for every defined constraint F/A.

Chapter 35: Constraint Handling Rules 505

’F/A_N_M_...’/Arity
for every defined constraint F/A. N and M is are integers, Arity > A.

For the prime number example that is:

attach_increment/2
attach_prime/1/2
attach_primes/1/2
attribute_goal/2
goal_expansion/3
prime/1
prime/1_1/2
prime/1_1_0/3
prime/1_2/2
primes/1
primes/1_1/2
verify_attributes/3

If an author of a handler wants to avoid naming conflicts with the code that uses the handler,
it is easy to encapsulate the handler. The module declaration below puts the handler into
module primes, which exports only selected predicates—the constraints in our example.

:- module(primes, [primes/1,prime/1]).

:- use_module(library(chr)).

handler eratosthenes.
constraints primes/1,prime/1.
...

35.4.10 Operator Declarations

This table lists the operators as used by the CHR library:

:- op(1200, xfx, @).
:- op(1190, xfx, pragma).
:- op(1180, xfx, [==>,<=>]).
:- op(1180, fy, chr_spy).
:- op(1180, fy, chr_nospy).
:- op(1150, fx, handler).
:- op(1150, fx, constraints).
:- op(1150, fx, rules).
:- op(1100, xfx, ’|’).
:- op(1100, xfx, \).
:- op(1050, xfx, &).
:- op(500, yfx, #).

506 SICStus Prolog

35.4.11 Exceptions

The CHR runtime system reports instantiation and type errors for the predicates:

find_constraint/2
findall_constraints/3
insert_constraint/2
remove_constraint/1
notify_constrained/1

The only other CHR specific runtime error is:

! CHR: registering New, module Module already hosts Old

An attempt to load a second handler New into module Module already hosting
handler Old was made.

The following exceptional conditions are detected by the CHR compiler:

! CHR Compiler: syntax rule N: Term

If the N-th Term in the file being loaded violates the CHR syntax (see Sec-
tion 35.4.3 [CHR Syntax], page 499).

! CHR Compiler: too many general heads in Name

Unspecific heads in definitions like C \ C <=> true must not be combined with
other heads in rule Name.

! CHR Compiler: bad pragma Pragma in Name

The pragma Pragma used in rule Name does not qualify. Currently this only
happens if Pragma is unbound.

! CHR Compiler: found head F/A in Name, expected one of: F/A list

Rule Name has a head of given F/A, which is not among the defined constraints.

! CHR Compiler: head identifiers in Name are not unique variables

The identifiers to refer to individual constraints (heads) via ‘#’ in rule Name do
not meet the indicated requirements.

! CHR Compiler: no handler defined

CHR specific language elements, declarations or rules for example, are used
before a handler was defined. This error is usually reported a couple of times,
i.e. as often as there are CHR forms in the file expecting the missing definition.

! CHR Compiler: compilation failed

Chapter 35: Constraint Handling Rules 507

Not your fault. Send us a bug report.

35.5 Debugging CHR Programs

Use option(debug_compile,on) preceding any rules in the file containing the handler
to enable CHR debugging. The CHR debugging mechanism works by instrumenting the
code generated by the CHR compiler. Basically, the CHR debugger works like the Prolog
debugger. The main differences are: there are extra ports specific to CHR, and the CHR
debugger provides no means for the user to change the flow of control, i.e. there are currently
no retry and fail options available.

35.5.1 Control Flow Model

The entities reflected by the CHR debugger are constraints and rules. Constraints are
treated like ordinary Prolog goals with the usual ports: [call,exit,redo,fail]. In
addition, constraints may get inserted into or removed from the constraint store (ports:
insert,remove), and stored constraints containing variables will be woken and reconsid-
ered (port: wake) when variables are touched.

The execution of a constraint consists of trying to apply the rules mentioning the constraint
in their heads. Two ports for rules reflect this process: At a try port the active constraint
matches one of the heads of the rule, and matching constraints for the remaining heads of
the rule, if any, have been found as well. The transition from a try port to an apply port
takes place when the guard has been successfully evaluated, i.e. when the rule commits. At
the apply port, the body of the rule is just about to be executed. The body is a Prolog goal
transparent to the CHR debugger. If the rule body contains CHR constraints, the CHR
debugger will track them again. If the rules were consulted, the Prolog debugger can be
used to study the evaluations of the other predicates in the body.

35.5.2 CHR Debugging Predicates

The following predicates control the operation of the CHR debugger:

chr_trace
Switches the CHR debugger on and ensures that the next time control enters
a CHR port, a message will be produced and you will be asked to interact.
At this point you have a number of options. See Section 35.5.5 [CHR Debugging
Options], page 511. In particular, you can just type 〈RET〉 to creep (or single-
step) into your program. You will notice that the CHR debugger stops at many
ports. If this is not what you want, the predicate chr_leash gives full control
over the ports at which you are prompted.

508 SICStus Prolog

chr_debug
Switches the CHR debugger on and ensures that the next time control enters
a CHR port with a spypoint set, a message will be produced and you will be
asked to interact.

chr_nodebug
Switches the CHR debugger off. If there are any spypoints set then they will
be kept.

chr_notrace
Equivalent to chr_nodebug.

chr_debugging
Prints onto the standard error stream information about the current CHR de-
bugging state. This will show:
1. Whether the CHR debugger is switched on.
2. What spypoints have been set (see below).
3. What mode of leashing is in force (see below).

chr_leash(+Mode)
The leashing mode is set to Mode. It determines the CHR ports at which
you are to be prompted when you creep through your program. At unleashed
ports a tracing message is still output, but program execution does not stop
to allow user interaction. Note that the ports of spypoints are always leashed
(and cannot be unleashed). Mode is a list containing none, one or more of the
following port names:

call Prompt when a constraint is executed for the first time.

exit Prompt when the constraint is successfully processed, i.e. the ap-
plicable rules have applied.

redo Prompt at subsequent exits generated by nondeterminate rule bod-
ies.

fail Prompt when a constraint fails.

wake Prompt when a constraint from the constraint store is woken and
reconsidered because one of its variables has been touched.

try Prompt just before the guard evaluation of a rule, after constraints
matching the heads have been found.

apply Prompt upon the application of a rule, after the successful guard
evaluation, when the rule commits and fires, just before evaluating
the body.

insert Prompt when a constraint gets inserted into the constraint store,
i.e. after all rules have been tried.

remove Prompt when a constraint gets removed from the constraint store,
e.g. when a simplification rule applies.

The initial value of the CHR leashing mode is [call,exit,fail,wake,apply].
Predefined shortcuts are:

Chapter 35: Constraint Handling Rules 509

chr_leash(none), chr_leash(off)
To turn leashing off.

chr_leash(all)
To prompt at every port.

chr_leash(default)
Same as chr_leash([call,exit,fail,wake,apply]).

chr_leash(call)
No need to use a list if only a singular port is to be leashed.

35.5.3 CHR Spypoints

For CHR programs of any size, it is clearly impractical to creep through the entire program.
Spypoints make it possible to stop the program upon an event of interest. Once there, one
can set further spypoints in order to catch the control flow a bit further on, or one can start
creeping.

Setting a spypoint on a constraint or a rule indicates that you wish to see all control flow
through the various ports involved, except during skips. When control passes through any
port with a spypoint set on it, a message is output and the user is asked to interact. Note
that the current mode of leashing does not affect spypoints: user interaction is requested
on every port.

Spypoints are set and removed by the following predicates, which are declared as prefix
operators:

chr_spy Spec

Sets spypoints on constraints and rules given by Spec, which is is of the form:

(variable)
denoting all constraints and rules, or:

constraints Cs
where Cs is one of

(variable)
denoting all constraints

C,. . . ,C denoting a list of constraints C

Name denoting all constraints with this functor, regardless of
arity

Name/Arity
denoting the constraint of that name and arity

rules Rs where Rs is one of:

(variable)
denoting all rules

510 SICStus Prolog

R,. . . ,R denoting a list of rules R

Name where Name is the name of a rule in any handler.

already in store
The name of a rule implicitly defined by the system
when the option already_in_store is in effect.

already in heads
The name of a rule implicitly defined by the system
when the option already_in_heads or the correspond-
ing pragmas are in effect.

Handler:Name
where Handler is the name of a constraint handler and
Name is the name of a rule in that handler

Examples:
| ?- chr_spy rules rule(3), transitivity, already_in_store.

| ?- chr_spy constraints prime/1.

If you set spypoints, the CHR debugger will be switched on.

chr_nospy Spec

Removes spypoints on constraints and rules given by Spec, where Spec is of the
form as described for chr_spy Spec. There is no chr_nospyall/0. To remove
all CHR spypoints use chr_nospy _.

The options available when you arrive at a spypoint are described later. See Section 35.5.5
[CHR Debugging Options], page 511.

35.5.4 CHR Debugging Messages

All trace messages are output to the standard error stream. This allows you to trace
programs while they are performing file I/O. The basic format is as follows:

S
3 1 try eratosthenes:absorb(10) @ prime(9)#<c4>, prime(10)#<c2> ?

S is a spypoint indicator. It is printed as ‘ ’ if there is no spypoint, as ‘r’, indicating that
there is a spypoint on this rule, or as ‘c’ if one of the involved constraints has a spypoint.

The first number indicates the current depth of the execution; i.e. the number of direct
ancestors the currently active constraint has.

The second number indicates the head position of the currently active constraint at rule
ports.

The next item tells you which port is currently traced.

Chapter 35: Constraint Handling Rules 511

A constraint or a matching rule are printed next. Constraints print as Term#Id, where Id
is a unique identifier pointing into the constraint store. Rules are printed as Handler:Name
@, followed by the constraints matching the heads.

The final ‘?’ is the prompt indicating that you should type in one of the debug options (see
Section 35.5.5 [CHR Debugging Options], page 511).

35.5.5 CHR Debugging Options

This section describes the options available when the system prompts you after printing out
a debugging message. Most of them you know from the standard Prolog debugger. All the
options are one letter mnemonics, some of which can be optionally followed by a decimal
integer. They are read from the standard input stream up to the end of the line (Return,
〈RET〉). Blanks will be ignored.

The only option that you really have to remember is ‘h’. This provides help in the form of
the following list of available options.

CHR debugging options:
<cr> creep c creep
l leap
s skip s <i> skip (ancestor i)
g ancestors
& constraints & <i> constraints (details)
n nodebug = debugging
+ spy this
- nospy this . show rule
< reset printdepth < <n> set printdepth
a abort b break
? help h help

c

〈RET〉 creep causes the debugger to single-step to the very next port and print a mes-
sage. Then if the port is leashed, the user is prompted for further interaction.
Otherwise, it continues creeping. If leashing is off, creep is the same as leap (see
below) except that a complete trace is printed on the standard error stream.

l leap causes the debugger to resume running your program, only stopping when
a spypoint is reached (or when the program terminates). Leaping can thus be
used to follow the execution at a higher level than exhaustive tracing.

s

s i skip over the entire execution of the constraint. That is, you will not see
anything until control comes back to this constraint (at either the exit port
or the fail port). This includes ports with spypoints set; they will be masked
out during the skip. The command can be used with a numeric argument to
skip the execution up to and including the ancestor indicated by the argument.
Example:

512 SICStus Prolog

...
4 - exit prime(8)#<c6> ? g

Ancestors:
1 1 apply eratosthenes:rule(2) @ primes(10)#<c1>
2 1 apply eratosthenes:rule(2) @ primes(9)#<c3>
3 1 apply eratosthenes:rule(2) @ primes(8)#<c5>
4 - call prime(8)#<c6>

4 - exit prime(8)#<c6> ? s 2

2 - exit primes(9)#<c3> ? 〈RET〉

g print ancestors provides you with a list of ancestors to the currently active
constraint, i.e. all constraints not yet exited that led to the current constraint
in the derivation sequence. The format is the same as with trace messages.
Constraints start with call entries in the stack. The subsequent application
of a rule replaces the call entry in the stack with an apply entry. Later the
constraint shows again as redo or fail entry. Example:

0 - call primes(10)#<c1> ? 〈RET〉
1 1 try eratos-

thenes:rule(2) @ primes(10)#<c1> ? g

Ancestors:
1 - call primes(10)#<c1>

1 1 try eratos-
thenes:rule(2) @ primes(10)#<c1> ? 〈RET〉

1 1 apply eratos-
thenes:rule(2) @ primes(10)#<c1> ? 〈RET〉

1 - call prime(10)#<c2> ? 〈RET〉
2 - insert prime(10)#<c2>
2 - exit prime(10)#<c2> ? g

Ancestors:
1 1 apply eratosthenes:rule(2) @ primes(10)#<c1>
2 - call prime(10)#<c2>

& print constraints prints a list of the constraints in the constraint store. With a
numeric argument, details relevant primarily to CHR implementors are shown.

n nodebug switches the CHR debugger off.

= debugging outputs information concerning the status of the CHR debugger as
via chr_debugging/0

+ spy this sets a spypoint on the current constraint or rule.

- nospy this removes the spypoint from the current constraint or rule, if it exists.

. show rule prints the current rule instantiated by the matched constraints. Ex-
ample:

Chapter 35: Constraint Handling Rules 513

8 1 ap-
ply era:absorb(8) @ prime(4)#<c14> \ prime(8)#<c6> ? .

absorb(8) @
prime(4)#<c14> \

prime(8)#<c6> <=>

8 mod 4=:=0
|
true.

<
< n While in the debugger, a printdepth is in effect for limiting the subterm nesting

level when printing rules and constraints. The limit is initially 10. This com-
mand, without arguments, resets the limit to 10. With an argument of n, the
limit is set to n, treating 0 as infinity.

a abort calls the built-in predicate abort/0.

b break calls the built-in predicate break/0, thus putting you at a recursive top-
level. When you end the break (entering ^D) you will be re-prompted at the
port at which you broke. The CHR debugger is temporarily switched off as you
call the break and will be switched on again when you finish the break and go
back to the old execution. Any changes to the CHR leashing or to spypoints
during the break will remain in effect.

?

h help displays the table of options given above.

35.6 Programming Hints

This section gives you some programming hints for CHR. For maximum efficiency of your
constraint handler, see also the previous subsections on declarations and options.

Constraint handling rules for a given constraint system can often be derived from its def-
inition in formalisms such as inference rules, rewrite rules, sequents, formulas expressing
axioms and theorems. CHR can also be found by first considering special cases of each
constraint and then looking at interactions of pairs of constraints sharing a variable. Cases
that do not occur in the application can be ignored.

It is important to find the right granularity of the constraints. Assume one wants to express
that n variables are different from each other. It is more efficient to have a single constraint
all_different(List_of_n_Vars) than n*n inequality constraints between each pair of
different variables. However, the extreme case of having a single constraint modeling the
whole constraint store will usually be inefficient.

Starting from an executable specification, the rules can then be refined and adapted to
the specifics of the application. Efficiency can be improved by weakening the guards to
perform simplification as early as needed and by strengthening the guards to do the just

514 SICStus Prolog

right amount of propagation. Propagation rules can be expensive, because no constraints
are removed.

The more heads a rule has, the more expensive it is. Rules with several heads are more
efficient, if the heads of the rule share a variable (which is usually the case). Then the search
for a partner constraint has to consider less candidates. In the current implementation,
constraints are indexed by their functors, so that the search is only performed among the
constraints containing the shared variable. Moreover, two rules with identical (or sufficiently
similar) heads can be merged into one rule so that the search for a partner constraint is
only performed once instead of twice.

As guards are tried frequently, they should be simple tests not involving side-effects. Head
matching is more efficient than explicitly checking equalities in the ask-part of the guard.
In the tell part of a guard, it should be made sure that variables from the head are never
touched (e.g. by using nonvar or ground if necessary). For efficiency and clarity reasons,
one should also avoid using constraints in guards. Besides conjunctions, disjunctions are
allowed in the guard, but they should be used with care. The use of other control built-in
predicates in the guard is discouraged. Negation and if-then-else in the ask part of a guard
can give wrong results, since e.g. failure of the negated goal may be due to touching its
variables.

Several handlers can be used simultaneously if they do not share constraints with the same
name. The implementation will not work correctly if the same constraint is defined in rules
of different handlers that have been compiled separately. In such a case, the handlers must
be merged by hand. This means that the source code has to be edited so that the rules
for the shared constraint are together (in one module). Changes may be necessary (like
strengthening guards) to avoid divergence or loops in the computation.

35.7 Constraint Handlers

The CHR library comes with plenty of constraint handlers written in CHR. The most
recent versions of these are maintained at
http://www.pst.informatik.uni-muenchen.de/~fruehwir/chr-solver.html

‘arc.pl’ classical arc-consistency over finite domains

‘bool.pl’ simple Boolean constraints

‘cft.pl’ feature term constraints according to the CFT theory

‘domain.pl’
finite domains over arbitrary ground terms and interval domains over integers
and reals, but without arithmetic functions

‘gcd.pl’ elegant two-liner for the greatest common divisor

‘interval.pl’
straightforward interval domains over integers and reals, with arithmetic func-
tions

http://www.pst.informatik.uni-muenchen.de/~fruehwir/chr-solver.html

Chapter 35: Constraint Handling Rules 515

‘kl-one.pl’
terminological reasoning similar to KL-ONE or feature trees

‘leq.pl’ standard introductory CHR example handler for less-than-or-equal

‘list.pl’ equality constraints over concatenations of lists (or strings)

‘listdom.pl’
a straightforward finite enumeration list domains over integers, similar to
‘interval.pl’

‘math-elim.pl’
solves linear polynomial equations and inequations using variable elimination,
several variations possible

‘math-fougau.pl’
solves linear polynomial equations and inequations by combining variable elimi-
nation for equations with Fourier’s algorithm for inequations, several variations
possible

‘math-fourier.pl’
a straightforward Fouriers algorithm to solve polynomial inequations over the
real or rational numbers

‘math-gauss.pl’
a straightforward, elegant implementation of variable elimination for equations
in one rule

‘minmax.pl’
simple less-than and less-than-or-equal ordering constraints together with min-
imum and maximum constraints

‘modelgenerator.pl’
example of how to use CHR for model generation in theorem proving

‘monkey.pl’
classical monkey and banana problem, illustrates how CHR can be used as a
fairly efficient production rule system

‘osf.pl’ constraints over order sorted feature terms according to the OSF theory

‘oztype.pl’
rational trees with disequality and OZ type constraint with intersection

‘pathc.pl’
the most simple example of a handler for path consistency—two rules

‘primes.pl’
elegant implementations of the sieve of Eratosthenes reminiscent of the chem-
ical abstract machine model, also illustrates use of CHR as a general purpose
concurrent constraint language

‘scheduling.pl’
simple classical constraint logic programming scheduling example on building
a house

516 SICStus Prolog

‘tarski.pl’
most of Tarski’s axiomatization of geometry as constraint system

‘term.pl’ Prolog term manipulation built-in predicates functor/3, arg/3, =../2 as con-
straints

‘time-pc.pl’
grand generic handler for path-consistency over arbitrary constraints, load via
‘time.pl’ to get a powerful solver for temporal constraints based on Meiri’s
unifying framework. ‘time-rnd.pl’ contains a generator for random test prob-
lems.

‘time-point.pl’
quantitative temporal constraints over time points using path-consistency

‘tree.pl’ equality and disequality over finite and infinite trees (terms)

‘type.pl’ equalities and type constraints over finite and infinite trees (terms)

You can consult or compile a constraint handler from the CHR library using e.g.:

| ?- [library(’chr/examples/gcd’)].

| ?- compile(library(’chr/examples/gcd’)).

If you want to learn more about the handlers, look at their documented source code.

In addition, there are files with example queries for some handlers, their file name starts
with ‘examples-’ and the file extension indicates the handler, e.g. ‘.bool’:

examples-adder.bool
examples-benchmark.math
examples-deussen.bool
examples-diaz.bool
examples-fourier.math
examples-holzbaur.math
examples-lim1.math
examples-lim2.math
examples-lim3.math
examples-puzzle.bool
examples-queens.bool
examples-queens.domain
examples-stuckey.math
examples-thom.math

35.8 Backward Compatibility

In this section, we discuss backward compatibility with the CHR library of Eclipse Prolog.

Chapter 35: Constraint Handling Rules 517

1. The restriction on at most two heads in a rule has been abandoned. A rule can have
as many heads as you like. Note however, that searching for partner constraints can
be expensive.

2. By default, rules are compiled in textual order. This gives the programmer more control
over the constraint handling process. In the Eclipse library of CHR, the compiler was
optimizing the order of rules. Therefore, when porting a handler, rules may have to be
reordered. A good heuristic is to prefer simplification to simpagation and propagation
and to prefer rules with single heads to rules with several heads. Instead of manually
rearranging an old handler one may also use the following combination of options to
get the corresponding effect:

option(rule_ordering,heuristic).
option(revive_scheme,old).

3. For backward compatibility, the already_in_store, already_in_head and guard_
bindings options are still around, but there are CHR syntax extensions (see Sec-
tion 35.4.3 [CHR Syntax], page 499) and pragmas (see Section 35.4.5 [CHR Pragmas],
page 501) offering better grained control.

4. The Eclipse library of CHR provided automatic built-in labeling through the label_
with declaration. Since it was not widely used and can be easily simulated, built-
in labeling was dropped. The same effect can be achieved by replacing the decla-
ration label_with Constraint if Guard by the simplification rule chr_labeling,
Constraint <=> Guard | Constraint’, chr_labeling and by renaming the head
in each clause Constraint :- Body into Constraint’ :- Body where Constraint’
is a new predicate. Efficiency can be improved by declaring Constraint to be
passive: chr_labeling, Constraint#Id <=> Guard | Constraint’, chr_labeling
pragma passive(Id). This translation will not work if option(already_in_
heads,on). In that case use e.g. chr_labeling(_), Constraint <=> Guard |
Constraint’, chr_labeling(_) to make the new call to chr_labeling differ from
the head occurrence.

5. The set of built-in predicates for advanced CHR users is now larger and better designed.
Also the debugger has been improved. The Opium debugging environment is not
available in SICStus Prolog.

518 SICStus Prolog

Chapter 36: Finite Domain Constraint Debugger 519

36 Finite Domain Constraint Debugger

36.1 Introduction

FDBG is a CLP(FD) debugger for SICStus Prolog. Its main purpose is to enable the CLP
programmer to trace the changes of domains of variables.

To load the package, enter the query

| ?- use_module(library(fdbg)).

FDBG defines the following prefix operator:

:- op(400, fy, #).

The presence of FDBG affects the translation and execution, but not the semantics, of
subsequently loaded arithmetic constraints.

36.2 Concepts

In this section, several concepts and terms are defined. These terms will later be heavily
used in the documentation; therefore, it is important that you understand them well.

36.2.1 Events

An FDBG event can (currently) belong to one of the two following major classes:

constraint event
A global constraint is woken.

labeling event
Three events belong to this class, namely:
• the labeling of an FD variable is started
• an FD variable gets constrained
• the labeling of an FD variable fails, i.e. all elements of its domain have

been tried and caused failure

These events are intercepted by the FDBG core. When any of them occurs, the appropriate
visualizer (see Section 36.2.3 [FDBG Visualizers], page 520) gets called with a representation
of the event (a Prolog term) as extra arguments.

Note that it is not possible to debug indexicals with FDBG. What’s more, any domain nar-
rowings done by indexicals happen unnoticed, making FDBG output harder to follow. On

520 SICStus Prolog

the other hand, arithmetical constraints (like X #> 0) are translated to global constraints
instead of indexicals after consulting library(fdbg), and therefore don’t lead to any mis-
understandings. For this latter reason it is advisable to load library(fdbg) before any user
programs.

36.2.2 Labeling Levels

In this subsection we give three definitions regarding the labeling procedure.

labeling session
This term denotes the whole labeling procedure that starts with the call of
labeling/2 or an equivalent predicate and finishes by exiting this predicate.
Normally, there is at most one labeling session per run.

labeling attempt
One choicepoint of a labeling session. Exactly one variable is associated with a
labeling attempt, although this is not necessarily true vice versa. For example
in enum mode labeling, a single labeling attempt tries every possible value, but
in step mode labeling, several binary choicepoints are created.

labeling step
The event of somehow constraining the domain of a variable. This usually
means either setting the variable to a specific value or limiting it with a lower
or an upper bound.

As you can see there is a hierarchical relation among these definitions: a labeling session
consists of several labeling attempts, which, in turn, might consist of several labeling steps.

A labeling event, on the other hand, can either be a labeling step, or the start of a labeling
attempt, or the failure of the same. See Section 36.2.1 [FDBG Events], page 519.

36.2.3 Visualizers

A visualizer is a Prolog predicate reacting to FDBG events (see Section 36.2.1 [FDBG
Events], page 519). It is called directly by the FDBG core when any FDBG event occurs.
It is called visualizer, because usually it should present the events to the user, but in general
it can do any kind of processing, like checking invariants, etc.

For all major event classes, a different visualizer type is used. The set of visualizers you
would like to use for a session is specified in the option list of fdbg_on/1 (see Section 36.3.1
[FDBG Options], page 523), when FDBG is switched on.

A specific visualizer can have several arguments, some are supplied by the FDBG core,
the rest (if any) should be specified when FDBG is switched on. Note that the obligatory
arguments will be appended to the end of the user defined argument list.

Chapter 36: Finite Domain Constraint Debugger 521

The set of built-in visualizers installed by default (see Section 36.3.1 [FDBG Options],
page 523) is the following:

• for global constraint awakenings: fdbg_show
• for labeling events: fdbg_label_show

For details on built-in visualizers, see Section 36.3.3 [FDBG Built-In Visualizers], page 525.

36.2.4 Names of Terms

FDBG provides a service to assign names to Prolog terms for later reference. A name is an
atom and it is usually associated with a compound term containing constraint variables, or
with a single variable. In the former case, each variable appearing in the compound term
is also assigned a name automatically by FDBG. This auto-assigned name is derived from
the name of the term; see Section 36.2.6 [FDBG Name Auto-Generation], page 521.

Perhaps the most useful utilization of names is annotation, another service of FDBG. Here,
each variable appearing in a Prolog term is replaced with a compound term describing it
(i.e. containing its name, the variable itself, and some data regarding its domain). During
annotation, unnamed constraint variables are also given a unique “anonymous” name au-
tomatically, these names begin with a ‘fdvar’ prefix. See Section 36.4.2 [FDBG Writing
Visualizers], page 531.

The names will be used by the built-in visualizers when referring to constraint variables,
and they can also be used to retrieve the terms assigned to them in user defined visualizers.
See Section 36.2.3 [FDBG Visualizers], page 520.

36.2.5 Selectors

A selector is a Prolog term denoting a (path to a) subterm of a given term T. Let sub-
term(T,S) denote the subterm of T wrt. a selector S, and let N denote an integer. A
selector then takes one of the following forms:

S subterm(T,S)
[] T
[...,N] Nth argument of the compound term subterm(T,[...])
[...,#N] Nth element of the list subterm(T,[...])

36.2.6 Name Auto-Generation

There are two cases when a name is automatically generated.

1. When a name is assigned to a compound term by the user, each variable appearing in

522 SICStus Prolog

it is assigned a so called derived name, which is created by appending a variant of the
selector of the variable to the original name. For example, the call:

fdbg_assign_name(bar(A, [B, C], foobar(D, E)), foo)

will create the following name/term entries:
Name Term/Variable Selector
foo bar(A, [B, C], foobar(D, E)) []
foo_1 A [1]
foo_2_1 B [2,#1]
foo_2_2 C [2,#2]
foo_3_1 D [3,1]
foo_3_2 E [3,2]

See Section 36.3.2 [FDBG Naming Terms], page 524.
2. If, during the annotation of a term (see Section 36.3.5 [FDBG Annotation], page 527)

an unnamed constraint variable is found, it is assigned a unique “anonymous” name.
This name consists of the prefix ‘fdvar’, an underscore character, and an integer. The
integer is automatically incremented when necessary.

36.2.7 Legend

The legend is a list of variables and their domains, usually appearing after a description
of the current constraint. This is necessary because the usual visual representation of a
constraint contains only the names of the variables in it (see Section 36.3.5 [FDBG Anno-
tation], page 527), and doesn’t show anything about their domain. The legend links these
names to the corresponding domains. The legend also shows the changes of the domains
made by the constraint. Finally, the legend may contain some conclusions regarding the
behavior of the constraint, like failure or side-effects.

The format of the legend is somewhat customizable by defining a hook function; see Sec-
tion 36.4.1 [FDBG Customizing Output], page 530. The default format of the legend is the
following:

list_2 = 0..3
list_3 = 0..3
list_4 = 0..3
fdvar_2 = 0..3 -> 1..3

Here, we see four variables, with initial domains 0..3, but the domain of the (previously
unnamed) variable fdvar_2 is narrowed by the constraint (not shown here) to 1..3.

A legend is automatically printed by the built-in visualizer fdbg_show, but it can be easily
printed from user defined visualizers too.

Chapter 36: Finite Domain Constraint Debugger 523

36.2.8 The fdbg_output Stream

The fdbg_output is a stream alias created when FDBG is switched on and removed when it
is switched off. All built-in visualizers write to this stream, and the user defined visualizers
should do the same.

36.3 Basics

Here, we describe the set of FDBG services and commands necessary to do a simple debug-
ging session. No major modification of your CLP(FD) program is necessary to use FDBG
this way. Debugging more complicated programs, on the other hand, might also require user
written extensions to FDBG, since the wallpaper trace produced by the built-in visualizer
fdbg_show could be too detailed and therefore hard to analyze. See Section 36.4 [FDBG
Advanced Usage], page 530.

36.3.1 FDBG Options

FDBG is switched on and off with the predicates:

fdbg_on
fdbg_on(:Options)

Turns on FDBG by putting advice-points on several predicates of the CLP(FD)
module. Options is a single option or a list of options; see Section 36.3.1 [FDBG
Options], page 523. The empty list is the default value.
fdbg_on/[0,1] can be called safely several times consecutively; only the first
call will have an effect.

fdbg_off Turns the debugger off by removing the previously installed advice-points.

fdbg_on/1 accepts the following options:

file(Filename, Mode)
Tells FDBG to attach the stream alias fdbg_output to the file called Filename
opened in mode Mode. Mode can either be write or append. The file specified
is opened on a call to fdbg_on/1 and is closed on a call to fdbg_off/0.

socket(Host, Port)
Tells FDBG to attach the stream alias fdbg_output to the socket connected to
Host on port Port. The specified socket is created on a call to fdbg_on/1 and
is closed on a call to fdbg_off/0.

stream(Stream)
Tells FDBG to attach the stream alias fdbg_output to the stream Stream. The
specified stream remains open after calling fdbg_off/0.

524 SICStus Prolog

If none of the above three options is used, the stream alias fdbg_output is
attached to the current output stream.

constraint_hook(Goal)
Tells FDBG to extend Goal with two (further) arguments and call it on the
exit port of the global constraint dispatcher (dispatch_global_fast/4).

no_constraint_hook
Tells FDBG not to use any constraint hook.
If none of the above two options is used, the default is constraint_
hook(fdbg:fdbg_show).

labeling_hook(Goal)
Tells FDBG to extend Goal with three (further) arguments and call it on any
of the three labeling events.

no_labeling_hook
Tells FDBG not to use any labeling hook.
If none of the above two options is used, the default is labeling_
hook(fdbg:fdbg_label_show).

For both constraint_hook and labeling_hook, Goal should be a visualizer, either built-in
(see Section 36.3.3 [FDBG Built-In Visualizers], page 525) or user defined. More of these
two options may appear in the option list, in which case they will be called in their order
of occurrence.

See Section 36.4.2 [FDBG Writing Visualizers], page 531, for more details on these two
options.

36.3.2 Naming Terms

Naming is a procedure of associating names with terms and variables; see Section 36.2.4
[FDBG Names of Terms], page 521. Three predicates are provided to assign and retrieve
names, these are the following:

fdbg_assign_name(+Term, ?Name)
Assigns the atom Name to Term, and a derived name to each variable appearing
in Term. If Name is a variable, then use a default (generated) name, and return
it in Name. See Section 36.2.6 [FDBG Name Auto-Generation], page 521.

fdbg_current_name(?Term, ?Name)
Retrieves Term associated with Name, or enumerates all term-name pairs.

Chapter 36: Finite Domain Constraint Debugger 525

fdbg_get_name(+Term, -Name)
Returns the name associated to Term in Name, if it exists. Otherwise, silently
fails.

36.3.3 Built-In Visualizers

The default visualizers are generic predicates to display FDBG events (see Section 36.2.1
[FDBG Events], page 519) in a well readable form. These visualizers naturally don’t exploit
any problem specific information—to have more “fancy” output, you have to write your
own visualizers; see Section 36.4.2 [FDBG Writing Visualizers], page 531. To use these
visualizers, pass them in the appropriate argument to fdbg_on/1; see Section 36.3.1 [FDBG
Options], page 523, or call them directly from user defined visualizers.

fdbg_show(+Constraint, +Actions)
This visualizer produces a trace output of all woken global constraints, in which
a line showing the constraint is followed by a legend (see Section 36.2.7 [FDBG
Legend], page 522) of all the variables appearing in it, and finally an empty line
to separate events from each other. The usual output will look like this:

<fdvar_1>#=0
fdvar_1 = {0}
Constraint exited.

Here, we can see an arithmetical constraint being woken. It narrows ‘fdvar_1’
to a domain consisting of the singleton value 0, and since this is the narrowest
domain possible, the constraint doesn’t have anything more to do: it exits.
Note that when you pass fdbg_show/2 as an option, you should omit the two
arguments, like in

fdbg_on([..., constraint_hook(fdbg_show), ...]).

fdbg_label_show(+Event, +LabelID, +Variable)
This visualizer produces a wallpaper trace output of all labeling events. It is
best used together with fdbg_show/2. Each labeling event produces a single line
of output, some of them are followed by an empty line, some others are always
followed by another labeling action and therefore the empty line is omitted.
Here is a sample output of fdbg_label_show/3:

Labeling [9, <list_1>]: starting in range 0..3.
Labeling [9, <list_1>]: step: <list_1> = 0

What we see here is the following:
• The prefix ‘Labeling’ identifies the event.
• The number in the brackets (9) is a unique identification number belonging

to a labeling attempt. Only one labeling step with this number can be in
effect at a time. This number in fact is the invocation number of the
predicate doing the labeling for that variable.

• The name in the brackets (<list_1>) identifies the variable currently being
labeled. Note that several identification numbers might belong to the same
variable, depending on the mode of labeling.

526 SICStus Prolog

• The text after the colon specifies the actual labeling event. This string can
be:
− “starting in range Range.” meaning the starting of a labeling attempt

in range Range

− “Mode: Narrowing.” meaning a labeling step in mode Mode. Narrow-
ing is the actual narrowing done in the labeling step. Mode is one of
the following:

step meaning step mode labeling

indomain_up
meaning enum mode labeling or a direct call to indomain/1

indomain_down
meaning enum,down mode labeling

bisect meaning bisect mode labeling

dual when the domain contains exactly two values and the la-
beling attempt is nothing more than a selection between
them

− “failed.” meaning the labeling attempt failed.

Note that when you pass fdbg_label_show/3 as an option, you should omit
the three arguments, like in

fdbg_on([..., labeling_hook(fdbg_label_show), ...]).

36.3.4 New Debugger Commands

The Prolog debugger is extended by FDBG. The & debugger is modified, and two new
commands are added:

&

& N This debugger command is extended so that the annotated form of domain
variables is also printed when listing the variables with blocked goals.

A

A Selector

Annotates and prints the current goal and a legend of the variables appearing
in it. If a selector is specified, then the subterm specified by it is assumed to
be an action list, and is taken into account when displaying the legend. For
example:

23 2 Exit: clpfd:dispatch_global_fast(no_threat(2,_1001,1),0,0,
[exit,_1001 in_set[[3|3]]]) ? A [2,4]

clpfd:dispatch_global_fast(no_threat(2,<board_2>,1),0,0,
[exit,<board_2> in_set[[3|3]]])

board_2 = 1..4 -> {3}
Constraint exited.

Chapter 36: Finite Domain Constraint Debugger 527

W Name=Selector

Assigns the atom Name to the variable specified by the Selector. For example:
7 15 Call: bar(4, [_101,_102,_103]) ? W foo=[2,#2]

This would assign the name foo to _102, being the second element of the second
argument of the current goal.

36.3.5 Annotating Programs

In order to use FDBG efficiently, you have to make some changes to your CLP(FD) program.
Fortunately the calls you have to add are not numerous, and when FDBG is turned off they
don’t decrease efficiency significantly or modify the behavior of your program. On the other
hand, they are necessary to make FDBG output easier to understand.

Assign names to the more important and more frequently occurring variables by inserting
fdbg_assign_name/2 calls at the beginning of your program. It is advisable to assign names
to variables in larger batches (i.e. as lists or compound terms) with a single call.

Use pre-defined labeling predicates if possible. If you define your own labeling predicates
and you want to use them even in the debugging session, then you should follow these
guidelines:

1. Add a call to clpfd:fdbg_start_labeling(+Var) at the beginning of the predicate
doing a labeling attempt, and pass the currently labeled variable as an argument to
the call.

2. Call clpfd:fdbg_labeling_step(+Var, +Step) before each labeling step. Step should
be a compound term describing the labeling step, this will be
a. printed “as is” by the built-in visualizer as the mode of the labeling step (see

Section 36.3.3 [FDBG Built-In Visualizers], page 525)—you can use portray/1 to
determine how it should be printed;

b. passed as step(Step) to the user defined labeling visualizers in their Event argu-
ment; see Section 36.4.2 [FDBG Writing Visualizers], page 531.

This way FDBG can inform you about the labeling events created by your labeling pred-
icates exactly like it would do in the case of internal labeling. If you ignore these rules
FDBG won’t be able to distinguish labeling events from other FDBG events any more.

36.3.6 An Example Session

The problem of magic sequences is a well known constraint problem. A magic sequence is
a list, where the i-th item of the list is equal to the number of occurrences of the number i
in the list, starting from zero. For example, the following is a magic sequence:

[1,2,1,0]

528 SICStus Prolog

The CLP(FD) solution can be found in ‘library(’clpfd/examples/magicseq’)’, which
provides a couple of different solutions, one of which uses the global_cardinality/2 con-
straint. We’ll use this solution to demonstrate a simple session with FDBG.

First, the debugger is imported into the user module:

| ?- use_module(fdbg).

% loading /home/matsc/sicstus3/Utils/x86-linux-glibc2.2/lib/sicstus-
3.9.1/library/fdbg.po...
% module fdbg imported into user

[...]

% loaded /home/matsc/sicstus3/Utils/x86-linux-glibc2.2/lib/sicstus-
3.9.1/library/fdbg.po in module fdbg, 220 msec 453936 bytes

Then, the magic sequence solver is loaded:

| ?- [library(’clpfd/examples/magicseq’)].

% consulting /home/matsc/sicstus3/Utils/x86-linux-
glibc2.2/lib/sicstus-3.9.1/library/clpfd/examples/magicseq.pl...
% module magic imported into user
% module clpfd imported into magic
% consulted /home/matsc/sicstus3/Utils/x86-linux-glibc2.2/lib/sicstus-
3.9.1/library/clpfd/examples/magicseq.pl in mod-
ule magic, 30 msec 9440 bytes

Now we turn on the debugger, telling it to save the trace in ‘fdbg.log’.

| ?- fdbg_on([file(’fdbg.log’,write)]).

% The clp(fd) debugger is switched on

To produce a well readable trace output, a name has to be assigned to the list representing
the magic sequence. To avoid any modifications to the source code, the name is assigned
by a separate call before calling the magic sequence finder predicate:

| ?- length(L,4), fdbg_assign_name(L,list), magic_gcc(4,L,[enum]).

L = [1,2,1,0] ? ;

L = [2,0,2,0] ? ;

no

Please note: the call to length/2 is necessary; otherwise, L would be a single
variable instead of a list of four variables when the name is assigned.

Finally we turn the debugger off:

| ?- fdbg_off.

% The clp(fd) debugger is switched off

Chapter 36: Finite Domain Constraint Debugger 529

The output of the sample run can be found in ‘fdbg.log’. Here, we show selected parts
of the trace. In each block, the woken constraint appears on the first line, followed by the
corresponding legend.

In the first displayed block, scalar_product/4 removes infeasible domain values from list_
3 and list_4, thus adjusting their upper bounds. The legend shows the domains before
and after pruning. Note also that the constraint is rewritten to a more readable form:

<list_2>+2*<list_3>+3*<list_4>#=4
list_2 = 0..3
list_3 = 0..3 -> 0..2
list_4 = 0..3 -> 0..1

The following block shows the initial labeling events, trying the value 0 for list_1:

Labeling [22, <list_1>]: starting in range 0..3.
Labeling [22, <list_1>]: indomain_up: <list_1> = 0

This immediately leads to a dead end:

global_cardinality([0,<list_2>,<list_3>,<list_4>],
[0-0,1-<list_2>,2-<list_3>,3-<list_4>])

list_2 = 0..3
list_3 = 0..2
list_4 = 0..1
Constraint failed.

We backtrack on list_1, trying instead the value 1. This leads to the following propagation
steps:

Labeling [22, <list_1>]: indomain_up: <list_1> = 1

global_cardinality([1,<list_2>,<list_3>,<list_4>],
[0-1,1-<list_2>,2-<list_3>,3-<list_4>])

list_2 = 0..3 -> 1..3
list_3 = 0..2
list_4 = 0..1

<list_2>+2*<list_3>+3*<list_4>#=4
list_2 = 1..3
list_3 = 0..2 -> 0..1
list_4 = 0..1

However, we do not yet have a solution, so we try the first feasible value for list_2, which is
2. This is in fact enough to solve the goal. In the last two propagation steps, the constraint
exits, which means that it holds no matter what value any remaining variable takes (in this
example, there are none):

530 SICStus Prolog

Labeling [29, <list_2>]: indomain_up: <list_2> = 2

global_cardinality([1,2,<list_3>,<list_4>],[0-1,1-2,2-<list_3>,3-<list_4>])
list_3 = 0..1 -> {1}
list_4 = 0..1 -> {0}

global_cardinality([1,2,1,0],[0-1,1-2,2-1,3-0])
Constraint exited.

0#=0
Constraint exited.

36.4 Advanced Usage

Sometimes the output of the built-in visualizer is inadequate. There might be cases when
only minor changes are necessary to produce a more readable output; in other cases, the
trace output should be completely reorganized. FDBG provides two ways of changing the
appearance of the output by defining hook predicates. In this section, these predicates will
be described in detail.

36.4.1 Customizing Output

The printing of variable names is customized by defining the following hook predicate.

fdbg:fdvar_portray(Name, Var, FDSet) hook

This hook predicate is called whenever an annotated constraint variable (see
Section 36.3.5 [FDBG Annotation], page 527) is printed. Name is the assigned
name of the variable Var, whose domain will be FDSet as soon as the narrowings
of the current constraint take effect. The current domain is not stored in this
compoun, but it can be easily determined with a call to fd_set/2. (Although
these two sets may be the same if the constraint didn’t narrow it.)
If fdbg:fdvar_portray/3 is undefined or fails the default representation is
printed, which is Name between angle brackets.

The printing of legend lines is customized by defining the following hook predicate.

fdbg:legend_portray(Name, Var, FDSet) hook

This hook is called for each line of the legend by the built-in legend printer.
The arguments are the same as in the case of fdbg:fdvar_portray/3. Note
that a prefix of four spaces and a closing newline character is always printed by
FDBG.
If fdbg:fdvar_portray/3 is undefined or fails the default representation is
printed, which is

Chapter 36: Finite Domain Constraint Debugger 531

Name = RangeNow [-> RangeAfter]

The arrow and RangeAfter are only printed if the constraint narrowed the
domain of Var.

The following example will print a list of all possible values instead of the range for each
variable in the legend:

:- multifile fdbg:legend_portray/3.
fdbg:legend_portray(Name, Var, Set) :-

fd_set(Var, Set0),
fdset_to_list(Set0, L0),
fdset_to_list(Set, L),
(L0 == L
-> format(’~p = ~p’, [Name, L])
; format(’~p = ~p -> ~p’, [Name, L0, L])
).

36.4.2 Writing Visualizers

For more complicated problems you might want to change the output more drastically. In
this case you have to write and use your own visualizers, which could naturally be problem
specific, not like fdbg_show/2 and fdbg_label_show/3. As we described earlier, currently
there are two types of visualizers:

constraint visualizer
MyGlobalVisualizer([+Arg1, +Arg2, ...] +Constraint, +Actions
)

This visualizer is passed in the constraint_hook option. It must have at least
two arguments, these are the following:

Constraint
the constraint that was handled by the dispatcher

Actions the action list returned by the dispatcher

Other arguments can be used for any purpose, for example to select the ver-
bosity level of the visualizer. This way you don’t have to modify your code
if you would like to see less or more information. Note however, that the two
obligatory arguments must appear at the end of the argument list.
When passing as an option to fdbg_on/1, only the optional arguments have
to be specified; the two mandatory arguments should be omitted. See Sec-
tion 36.4.6 [FDBG Debugging Global Constraints], page 539, for an example.

labeling visualizer
MyLabelingVisualizer([+Arg1, +Arg2, ...] +Event, +ID, +Var)

This visualizer is passed in the labeling_hook option. It must have at least
three arguments, these are the following:

532 SICStus Prolog

Event a term representing the labeling event, can be one of the following:

start labeling has just started for a variable

fail labeling has just failed for a variable

step(Step) variable has been constrained in a labeling step de-
scribed by the compound term Step, which is either cre-
ated by library(clpfd)’s labeling predicates (in this
case, simply print it—FDBG will know how to handle
it) or by you; see Section 36.3.5 [FDBG Annotation],
page 527.

ID identifies the labeling session, i.e. binds step and fail events to the
corresponding start event

Var the variable being the subject of labeling

The failure of a visualizer is ignored and multiple choices are cut by FDBG. Exceptions, on
the other hand, are not caught.

FDBG provides several predicates to ease the work of the visualizer writers. These predi-
cates are the following:

fdbg_annotate(+Term0, -Term, -Variables)
fdbg_annotate(+Term0, +Actions, -Term, -Variables)

Replaces each constraint variable in Term0 by a compound term describing it
and returns the result in Term. Also, collects these compound terms into the
list Variables. These compound terms have the following form:

fdvar(Name, Var, FDSet)

Name is the name of the variable (auto-generated, if necessary; see Sec-
tion 36.2.6 [FDBG Name Auto-Generation], page 521)

Var is the variable itself

FDSet is the domain of the variable after narrowing with Actions, if spec-
ified; otherwise, it is the current domain of the variable

fdbg_legend(+Vars)
Prints a legend of Vars, which is a list of fdvar/3 compound terms returned
by fdbg_annotate/[3,4].

fdbg_legend(+Vars, +Actions)
Prints a legend of Vars followed by some conclusions regarding the constraint
(exiting, failing, etc.) based on Actions.

36.4.3 Writing Legend Printers

When you write your own visualizers, you might not be satisfied with the default format
of the legend. Therefore you might want to write your own legend printer, replacing fdbg_
legend/[1,2]. This should be quite straightforward based on the variable list returned

Chapter 36: Finite Domain Constraint Debugger 533

by fdbg_annotate/[3,4]. Processing the rest of the action list and writing conclusions
about the constraint behavior is not that easy though. To help your work, FDBG provides
a predicate to transform the raw action list to a more readable form:

fdbg_transform_actions(+Actions, +Vars, -TransformedActions)
This will do the following transformations to Actions, returning the result in
TransformedActions:
1. remove all actions concerning variables in Vars (the list returned by fdbg_

annotate/[3,4]);
2. remove multiple exit and/or fail commands;
3. remove all ground actions, translating those that will cause failure into

fail(Action);
4. substitute all other narrowings with an fdvar/3 compound term per vari-

able.

The transformed action list may contain the following terms:

exit the constraint exits

fail the constraint fails due to a fail action

fail(Action)
the constraint fails because of Action

call(Goal)
Actions originally contained this action. FDBG can’t do anything
with that but to inform the user about it.

fdvar(Name, Var, FDSet)
Actions also narrowed some variables that didn’t appear in the Vars
list, this is one of them. The meaning of the arguments is the usual,
described in Section 36.4.2 [FDBG Writing Visualizers], page 531.
This should normally not happen.

AnythingElse

Actions contained unrecognized actions too, these are copied un-
modified. This shouldn’t happen!

36.4.4 Showing Selected Constraints (simple version)

Sometimes the programmer is not interested in every global constraint, only some selected
ones. Such a filter can be easily implemented with a user-defined visualizer. Suppose that
you are interested in the constraints all_different/1 and all_distinct/1 only:

534 SICStus Prolog

%% spec_filter(+Constraint, +Actions): Call fdbg_show for all constraints
%% for which intresting_event(Constraint) succeeds.
%%
%% Use this filter by giving the constraint_hook(spec_filter) option to
%% fdbg_on.
spec_filter(Constraint, Actions) :-

interesting_event(Constraint),
fdbg_show(Constraint, Actions).

interesting_event(all_different(_)).
interesting_event(all_distinct(_)).

Here is a session using the visualizer. Note that the initialization part (domain/3 events),
are filtered out, leaving only the all_different/1 constraints:

| ?- [library(’clpfd/examples/suudoku’)].

[...]
| ?- fdbg_on(constraint_hook(spec_filter)).

% The clp(fd) debugger is switched on
% advice
| ?- suudoku([], 1, P).

all_different([1,<fdvar_1>,<fdvar_2>,8,<fdvar_3>,
4,<fdvar_4>,<fdvar_5>,<fdvar_6>])

fdvar_1 = 1..9 -> (2..3)\/(5..7)\/{9}
fdvar_2 = 1..9 -> (2..3)\/(5..7)\/{9}
fdvar_3 = 1..9 -> (2..3)\/(5..7)\/{9}
fdvar_4 = 1..9 -> (2..3)\/(5..7)\/{9}
fdvar_5 = 1..9 -> (2..3)\/(5..7)\/{9}
fdvar_6 = 1..9 -> (2..3)\/(5..7)\/{9}

[...]

all_different([7,6,2,5,8,4,1,3,9])
Constraint exited.

P = [...] ;

no
% advice
| ?- fdbg_off.

% The clp(fd) debugger is switched off

Note that the failure of spec_filter/2 doesn’t cause any unwanted output.

Chapter 36: Finite Domain Constraint Debugger 535

36.4.5 Showing Selected Constraints (advanced version)

Suppose that you want to give the constraints that you are interested in as an argument to
the visualizer, instead of defining them in a table. The following visualizer implements this.

536 SICStus Prolog

:- use_module(library(lists), [append/3]).

%% filter_events(+CtrSpecs, +Constraint, +Actions): This predicate will
%% only show constraint events if they match an element in the list CtrSpecs,
%% or if CtrSpecs is wrapped in -/1, then all the non-matching events will
%% be shown.
%% CtrSpecs can contain the following types of elements:
%% ctr_name - matches all constraints of the given name
%% ctr_name/arity - matches constraints with the given name and arity
%% ctr_name(...args...) - matches constraints unifyable with the given term
%%
%% For the selected events fdbg_show(Constraint, Actions) is called.
%% This visualizer can be specified when turning fdbg on, e.g.:
%% fdbg_on([constraint_hook(filter_events([count/4]))]), or
%% fdbg_on([constraint_hook(filter_events(-[in_set]))]).
filter_events(CtrSpecs, Constraint, Actions) :-

filter_events(CtrSpecs, fdbg_show, Constraint, Actions).

%% filter_events(+CtrSpecs, +Visualizer, +Constraint, +Actions): Same as
%% the above predicate, but the extra argument Visualizer specifies the
%% predicate to be called for the selected events (in the same form as
%% in the constraint_hook option, i.e. without the last two arguments). E.g.
%% fdbg_on([constraint_hook(filter_events([count/4],my_show))]).
filter_events(-CtrSpecs, Visualizer, Constraint, Actions) :- !,

\+ show_constraint(CtrSpecs, Constraint),
add_args(Visualizer, [Constraint, Actions], Goal),
call(Goal).

filter_events(CtrSpecs, Visualizer, Constraint, Actions) :-
show_constraint(CtrSpecs, Constraint),
add_args(Visualizer, [Constraint, Actions], Goal),
call(Goal).

show_constraint([C|_], Constraint) :-
matches(C, Constraint), !.

show_constraint([_|Cs], Constraint) :-
show_constraint(Cs, Constraint).

matches(Name/Arity, Constraint) :- !,
functor(Constraint, Name, Arity).

matches(Name, Constraint) :-
atom(Name), !,
functor(Constraint, Name, _).

matches(C, Constraint) :-
C = Constraint.

add_args(Goal0, NewArgs, Goal) :-
Goal0 =.. [F|Args0],
append(Args0, NewArgs, Args),
Goal =.. [F|Args].

Chapter 36: Finite Domain Constraint Debugger 537

Here is a session using the visualizer, filtering out everything but all_different/1 con-
straints:

| ?- [library(’clpfd/examples/suudoku’)].

[...]
| ?- fdbg_on(constraint_hook(filter_events([all_different/1]))).

% The clp(fd) debugger is switched on
% advice
| ?- suudoku([], 1, P).

all_different([1,<fdvar_1>,<fdvar_2>,8,<fdvar_3>,
4,<fdvar_4>,<fdvar_5>,<fdvar_6>])

fdvar_1 = 1..9 -> (2..3)\/(5..7)\/{9}
fdvar_2 = 1..9 -> (2..3)\/(5..7)\/{9}
fdvar_3 = 1..9 -> (2..3)\/(5..7)\/{9}
fdvar_4 = 1..9 -> (2..3)\/(5..7)\/{9}
fdvar_5 = 1..9 -> (2..3)\/(5..7)\/{9}
fdvar_6 = 1..9 -> (2..3)\/(5..7)\/{9}

[...]

all_different([7,6,2,5,8,4,1,3,9])
Constraint exited.

P = [...] ;

no
% advice
| ?- fdbg_off.

% The clp(fd) debugger is switched off

In the next session, all constraints named all_different are ignored, irrespective of arity.
Also, we explicitly specified the visualizer to be called for the events that are kept (here,
we have written the default, fdbg_show, so the actual behavior is not changed).

538 SICStus Prolog

| ?- [library(’clpfd/examples/suudoku’)].

[...]
| ?- fdbg_on(constraint_hook(filter_events(-
[all_different],fdbg_show))).
% The clp(fd) debugger is switched on
% advice
| ?- suudoku([], 1, P).

domain([1,<fdvar_1>,<fdvar_2>,8,<fdvar_3>,
4,<fdvar_4>,<fdvar_5>,<fdvar_6>],1,9)

fdvar_1 = inf..sup -> 1..9
fdvar_2 = inf..sup -> 1..9
fdvar_3 = inf..sup -> 1..9
fdvar_4 = inf..sup -> 1..9
fdvar_5 = inf..sup -> 1..9
fdvar_6 = inf..sup -> 1..9
Constraint exited.
Constraint exited.

[...]

domain([2,<fdvar_46>,5,<fdvar_47>,<fdvar_48>,
<fdvar_49>,<fdvar_50>,<fdvar_51>,9],1,9)

fdvar_46 = inf..sup -> 1..9
fdvar_47 = inf..sup -> 1..9
fdvar_48 = inf..sup -> 1..9
fdvar_49 = inf..sup -> 1..9
fdvar_50 = inf..sup -> 1..9
fdvar_51 = inf..sup -> 1..9
Constraint exited.

P = [...] ;

no
% advice
| ?- fdbg_off.

% The clp(fd) debugger is switched off

In the last session, we specify a list of constraints to ignore, using a pattern to select the
appropriate constraints. Since all constraints in the example match one of the items in the
given list, no events are printed.

Chapter 36: Finite Domain Constraint Debugger 539

| ?- [library(’clpfd/examples/suudoku’)].

[...]
| ?- fdbg_on(constraint_hook(filter_events(-
[domain(_,1,9),all_different(_)]))).
% The clp(fd) debugger is switched on
% advice
| ?- suudoku([], 1, P).

P = [...] ;

no
% advice
| ?- fdbg_off.

% The clp(fd) debugger is switched off

36.4.6 Debugging Global Constraints

Missing pruning and excessive pruning are the two major classes of bugs in the implemen-
tation of global constraints. Since CLP(FD) is an incomplete constraint solver, missing
pruning is mainly an efficiency concern (but ground instances for which the constraint does
not hold should be rejected). Excessive pruning, however, means that some valid combi-
nations of values are pruned away, leading to missing solutions. The following exported
predicate helps spotting excessive pruning in user-defined global constraints:

fdbg_guard(:Goal, +Constraint, +Actions)
A constraint visualizer that does no output, but notifies the user by calling Goal
if a solution is lost through domain narrowings. Naturally you have to inform
fdbg_guard/3 about the solution in question—stating which variables should
have which values. To use fdbg_guard/3, first:
1. Set it up as a visualizer by calling:

fdbg_on([..., constraint_hook(fdbg_guard(Goal)), ...])

As usual, the two other arguments will be supplied by the FDBG core when
calling fdbg_guard/3.

2. At the beginning of your program, form a pair of lists Xs-Vs where Xs is
the list of variables and Vs is the list of values in question. This pair should
then be assigned the name fdbg_guard using:

| ?- fdbg_assign_name(Xs-Vs, fdbg_guard).

When these steps have been taken, fdbg_guard/3 will watch the domain
changes of Xs done by each global constraint C. Whenever Vs is in the do-
mains of Xs at entry to C, but not at exit from C, Goal is called with three
more arguments:

Variable List
a list of Variable-Value terms for which Value was removed from
the domain of Variable

Constraint
the constraint that was handled by the dispatcher

540 SICStus Prolog

Actions the action list returned by the dispatcher

We will now show an example using fdbg_guard/3. First, we will need a few extra lines of
code:

%% print_and_trace(MissValues, Constraint, Actions): To be used as a Goal for
%% fdbg_guard to call when the given solution was removed from the domains
%% of the variables.
%%
%% MissValues is a list of Var-Value pairs, where Value is the value that
%% should appear in the domain of Var, but has been removed. Constraint is
%% the current constraint and Actions is the list of actions returned by it.
%%
%% This predicate prints MissValues in a textual form, then shows the current
%% (culprit) constraint (as done by fdbg_show/2), then turns on the Prolog
%% tracer.
print_and_trace(MissValues, Constraint, Actions) :-

print(fdbg_output, ’\nFDBG Guard:\n’),
display_missing_values(MissValues),
print(fdbg_output, ’\nCulprit constraint:\n\n’),
fdbg_show(Constraint, Actions),
trace.

display_missing_values([]).
display_missing_values([Var-Val|MissVals]) :-

fdbg_annotate(Var,AVar,_),
format(fdbg_output, ’ ~d was removed from ~p~n’, [Val,AVar]),
display_missing_values(MissVals).

Suppose that we have written the following N Queens program, using a global constraint
no_threat/3 with a bug in it:

Chapter 36: Finite Domain Constraint Debugger 541

:- use_module(library(clpfd)).
:- use_module(library(fdbg)).

queens(L, N) :-
length(L, N),
domain(L, 1, N),
constrain_all(L),
labeling([ff,enum], L).

constrain_all([]).
constrain_all([X|Xs]):-

constrain_between(X,Xs,1),
constrain_all(Xs).

constrain_between(_X,[],_N).
constrain_between(X,[Y|Ys],N) :-

no_threat(X,Y,N),
N1 is N+1,
constrain_between(X,Ys,N1).

no_threat(X,Y,I) :-
fd_global(no_threat(X,Y,I), 0, [val(X),val(Y)]).

:- multifile clpfd:dispatch_global/4.
clpfd:dispatch_global(no_threat(X,Y,I), S, S, Actions) :-

ground(X), !,
remove_threat(Y, X, I, NewYSet),
Actions = [exit, Y in_set NewYSet].

clpfd:dispatch_global(no_threat(X,Y,I), S, S, Actions) :-
ground(Y), !,
remove_threat(X, Y, I, NewXSet),
Actions = [exit, X in_set NewXSet].

clpfd:dispatch_global(no_threat(_,_,_), S, S, []).

remove_threat(X, V, I, Set) :-
Vp is V+I+1, % Bug introduced here

% Vp is V+I, % Good code
Vn is V-I,
fd_set(X, Set0),
list_to_fdset([Vn, V, Vp], VSet),
fdset_subtract(Set0, VSet, Set).

missing(L, Tuple) :-
length(Tuple, N),
length(L, N),
fdbg_assign_name(L-Tuple, fdbg_guard),
fdbg_assign_name(L, board),
fdbg_on(constraint_hook(fdbg_guard(print_and_trace))),
queens(L, N).

542 SICStus Prolog

We will now use print_and_trace/3 as an argument to the fdbg_guard visualizer to handle
the case when a solution has been removed by a constraint. The bug shown above causes
three invalid solutions to be found instead of the two correct solutions. FDBG is told to
watch for the disappearance of the first correct solution, [2,4,1,3]. First, we get two
incorrect solutions before FDBG wakes up, because in these cases the given good solution
was made impossible by a labeling event. The second branch of labeling does not by itself
remove the solution, but at some point on that branch the bad constraint does remove it,
so fdbg_guard/3 calls the given predicate. This prints the cause of waking (the value that
should not have been removed by the constraint), prints the constraint itself, then switches
the Prolog debugger to trace mode. At this point, we use the ‘A’ debugger command (see
Section 36.3.4 [FDBG Debugger Commands], page 526) to print the annotated form of the
goal containing the culprit constraint.

For clarity, the labeling events were not turned off in the session below.

This information can be used to track down why the buggy no_threat/3 performed the
invalid pruning.

Chapter 36: Finite Domain Constraint Debugger 543

| ?- missing(L, [2,4,1,3]).

% The clp(fd) debugger is switched on
Labeling [8, <board_1>]: starting in range 1..4.
Labeling [8, <board_1>]: indomain_up: <board_1> = 1

Labeling [13, <board_2>]: starting in range {2}\/{4}.
Labeling [13, <board_2>]: dual: <board_2> = 2

L = [1,2,3,4] ? ;

Labeling [13, <board_2>]: dual: <board_2> = 4

L = [1,4,2,3] ? ;

Labeling [13, <board_2>]: failed.

Labeling [8, <board_1>]: indomain_up: <board_1> = 2

FDBG Guard:
4 was removed from <board_2>

Culprit constraint:

no_threat(2,<board_2>,1)
board_2 = 1..4 -> {3}
Constraint exited.

% The debugger will first creep -- showing everything (trace)
23 2 Exit: clpfd:dispatch_global_fast(no_threat(2,_1001,1),0,0,

[exit,_1001 in_set[[3|3]]]) ? A

clpfd:dispatch_global_fast(no_threat(2,<board_2>,1),0,0,
[exit,<board_2> in_set[[3|3]]])

board_2 = 1..4

23 2 Exit: clpfd:dispatch_global_fast(no_threat(2,_1001,1),0,0,
[exit,_1001 in_set[[3|3]]]) ? A [2,4]

clpfd:dispatch_global_fast(no_threat(2,<board_2>,1),0,0,
[exit,<board_2> in_set[[3|3]]])

board_2 = 1..4 -> {3}
Constraint exited.

23 2 Exit: clpfd:dispatch_global_fast(no_threat(2,_1001,1),0,0,
[exit,_1001 in_set[[3|3]]]) ? a

% Execution aborted
% advice,source_info
| ?- fdbg_off.

% The clp(fd) debugger is switched off

544 SICStus Prolog

36.4.7 Code of the Built-In Visualizers

Now that you know everything about writing visualizers, it might be worth having a look
at the code of the built-in visualizers, fdbg_show/2 and fdbg_label_show/3.

Chapter 36: Finite Domain Constraint Debugger 545

fdbg_show(Constraint, Actions) :-
fdbg_annotate(Constraint, Actions, AnnotC, CVars),
print(fdbg_output, AnnotC),
nl(fdbg_output),
fdbg_legend(CVars, Actions),
nl(fdbg_output).

fdbg_label_show(start, I, Var) :-
fdbg_annotate(Var, AVar, _),
(AVar = fdvar(Name, _, Set)
-> fdset_to_range(Set, Range),

format(fdbg_output,
’Labeling [~p, <~p>]: starting in range ~p.~n’,
[I,Name,Range])

; format(fdbg_output,
’Labeling [~p, <>]: starting.~n’,
[I])

).
fdbg_label_show(fail, I, Var) :-

(var(Var)
-> lookup_or_set_name(Var, Name),

format(fdbg_output,
’Labeling [~p, <~p>]: failed.~n~n’,
[I,Name])

; format(fdbg_output,
’Labeling [~p, <>]: failed.~n~n’,
[I])

).
fdbg_label_show(step(Step), I, Var) :-

(var(Var)
-> lookup_or_set_name(Var, Name),

format(fdbg_output,
’Labeling [~p, <~p>]: ~p~n~n’,
[I,Name,Step])

; format(fdbg_output,
’Labeling [~p, <>]: ~p~n~n’,
[I,Step])

).

lookup_or_set_name(Term, Name) :-
fdbg_get_name(Term, Name), !.

lookup_or_set_name(Term, Name) :-
fdbg_assign_name(Term, Name).

As you can see, they are quite simple, thanks to the extensive set of support predicates also
available to the user.

546 SICStus Prolog

Chapter 37: SICStus Objects 547

37 SICStus Objects

SICStus Objects is an extension to SICStus Prolog for flexible structuring, sharing and
reuse of knowledge in large logic programming applications. It enhances Prolog with an
expressive and efficient object-oriented programming component.

SICStus Objects is based on the notion of prototypes. In object-oriented programming a
prototype is an object that represents a typical behavior of a certain concept. A prototype
can be used as is or as a model to construct other objects that share some of the characteris-
tics of the prototypical object. These specialized objects can themselves become prototypes
used to construct other objects and so forth. The basic mechanism for sharing is by in-
heritance and delegation. Inheritance is known for most readers. By using the delegation
mechanism an object can forward a message to another object to invoke a method defined
by the recipient but interpreted in the context of the sender.

In SICStus Objects, an object is a named collection of predicate definitions. In this sense
an object is similar to a Prolog module. The object system can be seen as an extension
of SICStus Prolog’s module system. In addition an object may have attributes that are
modifiable. Predicate definitions belonging to an object are called methods. So, an object
is conceptually a named collection of methods and attributes. Some of the methods defined
for an object need not be stored explicitly within the object, but are rather shared with
other objects by the inheritance mechanism.

The Object system allows objects to be defined in a file, or dynamically created during the
execution of a program. Objects defined in a file are integrated into SICStus Prolog in a way
similar to definite clause grammars. That is to say, objects have a specific syntax as Prolog
terms, and can be loaded and expanded into Prolog code. When an object is created, during
load-time, or run-time, it inherits the methods and attributes of its prototypical object(s).
Objects defined in a file can be either static or dynamic. Also, methods can be either
dynamic or static. these properties are inherited by sub-objects. Objects created during
execution are dynamic.

The inheritance mechanism is implemented using the importation mechanism of the module
system. The default inheritance is an inheritance by overriding mechanism, which means
that if a method is defined locally, and the same method is defined in a super-object,
then the clauses of the super-method are not part of the definition of the local one. As
usual in Prolog, methods can be nondeterminately defined, and alternative answers can
be retrieved through backtracking. Using the delegation mechanism, other methods for
knowledge sharing can be implemented by the user. In SICStus Objects, there is an initial
prototypical proto-object called object, from which other objects may be constructed,
directly or indirectly.

37.1 Getting Started

To load the SICStus Objects library, enter the query:

548 SICStus Prolog

| ?- use_module(library(objects)).

SICStus Objects defines some new infix and prefix operators, and redefines some of the
built-in ones. The following operators become installed:

:- op(1200, xfy, [&]).
:- op(1198, xfx, [:-]).
:- op(1198, fx, [:-]).
:- op(550, xfx, [::, <:]).
:- op(550, fx, [::, <:]).

37.2 Declared Objects

Declared objects are created when the files defining them are loaded into the system.

37.2.1 Object Declaration

An object object-identifier is declared by writing it in the following form:

object-identifier :: {
sentence-1 &
sentence-2 &
:
sentence-n

}.

where object-identifier is a Prolog term that is either an atom or a compound term of the
form functor(V1,. . . ,Vn), where V1,. . . ,Vn are distinct variables. The object body consists
of a number of sentences, possibly none, surrounded by braces, where each sentence is
either a method-directive, to be executed when the object is created, or a method-clause.
A method is a number of method-clauses with the same principal functor. A method-clause
has a clausal syntax similar to that of Prolog, but instead of usual predicate calls in the
body of a clause there are method-calls. Ordinary Prolog goals are also allowed in a prefixed
form, using ‘:’ as a prefix. A method-directive is a directive that contains method-calls.

All sentences are subject to term expansion (see Section 8.1.2 [Term and Goal Expansion],
page 137, built-in predicate expand_term/2) before further processing, so in particular
definite clause grammar syntax can be used in method-clauses. In addition, before expand_
term/2, sentences are expanded by the predicate user:method_expansion/3.

method_expansion(+Term1,+ObjectIdentifier,?Term2) hook

user:method_expansion(+Term1,+ObjectIdentifier,?Term2)
Defines transformations on methods similarly as user:term_expansion/[2,4].
At the end of an object definition, user:method_expansion/3 is called with
end_of_object.

Chapter 37: SICStus Objects 549

37.2.2 Method Declarations

Method-clauses are declared similarly to Prolog clauses. Thus a method-clause can be
either a unit clause or a rule. We also allow a default catch-all method-clause as the last
clause in an object body. The catch-all clause has as its head a Prolog variable, in order to
match messages that are not previously defined or inherited in the object. It can be used
to implement alternative inheritance mechanisms.

Goals in the body of a rule have the normal control structures of Prolog:

:P, :Q Conjunction

:P; :Q Disjunction

! Cut

\+ :P Negation

:P -> :Q

:P -> :Q; :R

if(:P, :Q, :R)
If-then[-else]

?A = ?B Unification

Atomic goals in the body of a method-clause may be one of the following:

:goal to call the Prolog predicate goal in the source module.

m:goal to call the Prolog predicate goal in module m.

goal to send the message goal to the object Self.

::goal to send the message goal to a method that may be defined locally or inherited
by the object.

<:goal to delegate the message goal to a method that may be defined locally or inher-
ited by the object.

object::goal
to send the message goal to object object.

object<:goal
to delegate the message goal to object object.

Message sending and delegation will be explained later (see Section 37.3 [Obj Self],
page 552).

The following is a definition for the object list_object. It is constructed from three meth-
ods: append/3, member/2, and length/2. Note that the calls to append/3 and length/2
are to the local definition, whereas the member/2 call is to the predicate imported from the
Prolog library module lists.

550 SICStus Prolog

list_object :: {
:- :use_module(library(lists), [append/3,member/2]) &

append([], L, L) &
append([X|L1], L2, [X|L3]) :-

:: append(L1, L2, L3) &

member(X, L) :-
:member(X,L) &

length([], 0) &
length([_|L], N) :-

:: length(L, N1),
:(N is N1+1)

}.

The following object apt_1 could be part of a larger database about free apartments in a
real-estate agency:

apt_1 :: {
super(apartment) &

street_name(’York’) &
street_number(100) &
wall_color(white) &
floor_surface(wood)
}.

Another way to define apt_1 is by using attributes. These can be retrieved and modified
efficiently by the methods get/1 and set/1 respectively.

apt_1 :: {
super(apartment) &

attributes([
street_name(’York’),
street_number(100),
wall_color(white),
floor_surface(wood)])

}.

37.2.3 Generic Objects for Easy Reuse

Defining objects for easy reuse is a very important property for reducing the cost of large
projects. One important technique is to define prototypes in a parameterized way, so
that various instantiations of a prototype correspond to different uses. Parameterized or

Chapter 37: SICStus Objects 551

generic objects have been used for this purpose in other object-oriented systems. An object-
identifier can be a compound term. The arguments of the term are parameters that are
visible in the object-body. Here we show one example. Other examples and techniques that
use this facility has been investigated extensively in [McCabe 92].

The following is an object sort that sorts lists of different types. sort has a parameter that
defines the type of the elements of the list. Notice that Type is visible to all methods in the
body of sort, and is used in the method partition/4. In the query, we use sort(rat) to
sort a list of terms denoting rational numbers. We must therefore define a rat object and
its < method also:

rat :: {
(P/Q < R/S) :- :(P*S < Q*R)
}.

sort(Type) :: {
:- :use_module(library(lists), [append/3]) &

qsort([], []) &
qsort([P|L], S) :-

partition(L, P, Small, Large),
qsort(Small, S0),
qsort(Large, S1),
:append(S0, [P|S1], S) &

partition([], _P, [], []) &
partition([X|L1], P, Small, Large) :-

(Type :: (X < P) ->
Small = [X|Small1], Large = Large1

; Small = Small1, Large = [X|Large1]
),
partition(L1, P, Small1, Large1)

}.

| ?- sort(rat) :: qsort([23/3, 34/11, 45/17], L).

L = [45/17,34/11,23/3]

Parameterized objects are interesting in their own right in Prolog even if one is not interested
in the object-oriented paradigm. They provide global context variables in a Prolog program
without having to add such variables as additional context arguments to each clause that
potentially uses the context.

552 SICStus Prolog

37.3 Self, Message Sending, and Message Delegation

In SICStus Objects, each method is executed in the context of an object. This object may
not be the static object where the method is declared. The current contextual object is
used to determine dynamically which attributes are accessed, and which methods are called.
This leads to a mechanism known as dynamic binding. This object can be retrieved using
the universal method self(S), where S will be bound to the current contextual object.

When a message is sent to an object, the corresponding method will be executed in the
context of the target object. A message delegated to an object will invoke a method that
is executed in the context of the message-delegation operation.

object :: message
:: message

Message sending. Sends message to object, setting Self of the recipient to the
recipient, i.e. object. If object is omitted, the recipient is the object in which
the goal textually appears.

object <: message
<: message

Message delegation. Sends message to object, setting Self of the recipient to
Self of the sender. If object is omitted, the recipient is the object in which the
goal textually appears. Delegation preserves Self.

The following objects physical_object, a, and b are written using the default notations
for sending and delegation, hiding the contextual variable Self:

Chapter 37: SICStus Objects 553

physical_object :: {
volume(50) &
density(100) &
weight(X) :-

volume(V),
density(D),
:(X is V*D)

}.

a :: {
volume(5) &
density(10) &

Method :-
physical_object <: Method

}.

b :: {
volume(5) &
density(10) &

Method :-
physical_object :: Method

}.

Notice that the difference between the objects a and b is that a delegates any message except
volume(_) and density(_) to physical_object while b sends the message to physical_
object. We may now ask

| ?- a :: weight(X), b :: weight(Y).

X = 50
Y = 5000

To get hold of the current contextual object, the universal method self(S) is provided.
Another way to send a message to Self is to use the constant self. So the following two
alternative definition of physical_object are equivalent to the previous one:

554 SICStus Prolog

physical_object :: {
volume(50) &
density(100) &
weight(X) :-

self(S),
S::volume(V),
S::density(D),
:(X is V*D)

}.

physical_object :: {
volume(50) &
density(100) &
weight(X) :-

self::volume(V),
self::density(D),
:(X is V*D)

}.

37.4 Object Hierarchies, Inheritance, and Modules

The SICStus Objects system implements a default inheritance mechanism. By declaring
within an object which objects are super-objects, the hierarchy of objects are maintained.
The system also maintains for each object its immediate sub-objects (i.e. immediate chil-
dren). Each object may also call Prolog predicates. At the top of the hierarchy, the
proto-object object provides various services for other objects. If object is not used at
the top of the hierarchy many services will not be available for other objects (check what
methods are available in object by sending the message method/1 to object).

37.4.1 Inheritance

Immediate super-objects are declared by defining the method super/2 within the object.
(Any definition super(Super) is transformed to super(Super,[])). The objects declared
by super/2 are the immediate objects from which a method is inherited if not defined
within the object. This implies that the inheritance mechanism is an overriding one. One
could possibly have a union inheritance, whereby all clauses defining a method are collected
from the super hierarchy and executed in a Prolog fashion. This can easily be programmed
in SICStus Objects, using delegation to super objects.

The following example shows some objects used for animal classification.

Chapter 37: SICStus Objects 555

animal :: {}.

bird :: {
super(animal) &
skin(feather) &
habitat(tree) &
motions(fly)
}.

penguin :: {
super(bird) &
habitat(land) &
motions(walk) &
motions(swim) &
size(medium)
}.

| ?- penguin :: motions(M).

M = walk ;

M = swim ;

no

| ?- penguin :: skin(S).

S = feather ;

no

The following is an example of multiple inheritance: an object john is both a sportsman
and a professor:

john :: {
super(sportsman) &
super(professor) &
:
}.

Inheritance will give priority to the super-objects by the order defined in the super/2
method. Therefore in the above example John’s characteristics of being a sportsman will
dominate those of being professor. Other kinds of hierarchy traversal can be programmed
explicitly using the delegation mechanism.

37.4.2 Differential Inheritance

It is possible to be selective about what is inherited by using the method super/2. Its
first argument is the super object, and its second is a list of the methods that will not be
inherited from the super object.

556 SICStus Prolog

37.4.3 Use of Modules

In SICStus Objects, the visible predicates of the source module (context) for the object
definition may be called in the body of a method. (The : prefix is used to distinguish
such calls from method calls.) Any (: prefixed) directives occurring among the method-
clauses are also executed in the same source module. For example, to import into the source
module and call the public predicates of a module, the built-in predicate use_module/2 and
its variants may be used:

some_object :: {
:- :use_module(library(lists), [append/3]) &
double_list(X, XX) :- :append(X,X,XX)
}.

37.4.4 Super and Sub

Two methods provided by the initial object object are super/1 and sub/1. (Note that
any definition of super/1, except the one in object, is transformed to super/2). super/1
if sent to an object will return the immediate parents of the object. sub/1 will return the
immediate children of the object if any. It is important to note that this service is provided
only for objects that have object as their initial ancestor.

| ?- john :: super(S), S :: sub(john).

S = sportsman ;

S = professor ;

no

The sub/1 property allows programs to traverse object hierarchies from a root object object
down to the leaves.

37.4.5 The Keyword Super

To be able to send or delegate messages to the super-objects in a convenient way while
following the inheritance protocol, the keyword super is provided. The calls:

super :: method, or
super <: method

mean: send or delegate (respectively) method to the super-objects according to the inheri-
tance protocol. A simple example illustrates this concept: assume that john in the above
example has three id-cards, one stored in his sportsman prototype identifying the club he
is member of, one stored in his professor prototype identifying the university he works in,
and finally one stored locally identifying his social-security number. Given the following
methods in the object john:

Chapter 37: SICStus Objects 557

m1(X) :-
super <: id_card(X) &

m2(X) :-
super(S), S <: id_card(X) &

one may ask the following:

| ?- john :: m1(X).

% will follow the default inheritance and returns:
X = johns_club ;

| ?- john :: m2(X).

% will backtrack through the possible supers returning:
X = johns_club ;

X = johns_university ;

37.4.6 Semantic Links to Other Objects

Some object-oriented languages have syntactic constructs for redirecting the inheritance
chain for certain methods to totally different objects that are not defined in the object’s
inheritance hierarchy. This is not needed in SICStus Objects due to delegation. Assume
that the method m/n is linked to object some_object, we just add a method for this:

m(X1, ..., Xn) :- some_object <: m(X1, ..., Xn) &

37.4.7 Dynamically Declared Objects

When an object is declared and compiled into SICStus Objects, its methods cannot be
changed during execution. Such an object is said to be static. To be able to update any
method in an object, the object has to be declared dynamic. There is one exception, the
inheritance hierarchy declared by super/[1,2] cannot be changed. By including the fact
dynamic as part of the object body, the object becomes dynamic:

dynamic_object :: {
dynamic &
:
}.

37.4.8 Dynamic Methods

To be able to change a method with functor F/N in a static object, the method has to be
declared dynamic by storing the following fact in the object:

558 SICStus Prolog

some_object :: {
dynamic F/N &
:
}.

Each book in a library can be represented as an object, in which the name of the book is
stored, the authors, and a borrowing history indicating when a book is borrowed and when
it is returned. A history item may have the form history_item(Person,Status,Date)
where Status is either borrowed or returned, and Date has the form YY-MM-DD, for YY
year, MM month, DD day.

A typical book book_12 could have the following status. Note that history_item/3 is
dynamic:

book_12 :: {
super(book) &

title(’The Art of Prolog’) &
authors([’Leon Sterling’, ’Ehud Shapiro’]) &

dynamic history_item/3 &

history_item(’Dan Sahlin’, returned, 92-01-10) &
history_item(’Dan Sahlin’, borrowed, 91-06-10) &
:
}.

Dynamic methods that are stored in an object can be updated, as in usual Prolog programs,
by sending assert and retract messages directly to the object.

For example, to borrow a book the following method could be defined in the object book.
We assume that the top most history_item fact is the latest transaction, and there is an
object date from which we can get the current date.

borrow(Person) :-
history_item(_Person0, Status, _Date0), !,
(Status = returned ->

date::current(Date),
asserta(history_item(Person, borrowed, Date))

; :display(’book not available’), :ttynl
) &

37.4.9 Inheritance of Dynamic Behavior

When an object is created, it will inherit from its parents their dynamic behavior. Methods
that are declared dynamic in a parent, will be copied into the object, and its dynamic
behavior preserved.

Chapter 37: SICStus Objects 559

a:: {
super(object) &
dynamic p/1 &
p(1) &
p(2)

}

b :: {
super(a)

}

| ?- b::p(X).

X = 1 ? ;

X = 2 ? ;

no
| ?- b::asserta(p(3)).

| ?- b::p(X).

X = 3 ? ;

X = 1 ? ;

X = 2 ? ;

no

Notice that by redeclaring a method to be dynamic in a sub-object, amounts to redefining
the method, and overriding of the parent definition will take effect.

c :: {
super(a) &
dynamic p/1

}

| ?- c::p(X).

no

37.5 Creating Objects Dynamically

As with dynamically declared objects, the full flexibility of SICStus Objects is achieved
when objects are created at runtime. Anything, except the inheritance hierarchy, can be
changed: methods can be added or deleted. The services for object creation, destruction,
and method modification are defined in the proto-object object.

560 SICStus Prolog

37.5.1 Object Creation

+SomeObject :: new(?NewObject)
NewObject is created with SomeObject as super. NewObject could be an atom,
variable, or compound term whose arguments are distinct variables.

+SomeObject :: new(?NewObject,+Supers)
NewObject is created with Supers specifying the super objects (prototypes).
Supers is a list containing super specifications. A super specification is either an
object identifier or a pair Object-NotInheritList where NotInheritList specifies
methods not to inherit from Object. NewObject could be an atom, variable, or
compound term whose arguments are distinct variables.

The object vehicle is created having the proto-object object as super, followed by creating
moving_van with vehicle as super, followed by creating truck.

| ?- object :: new(vehicle),

vehicle :: new(moving_van),

moving_van :: new(truck).

| ?- truck :: super(X), vehicle :: sub(X).

X = moving_van ;

no

37.5.2 Method Additions

+SomeObject :: asserta(+SomeMethod)
+SomeObject :: assertz(+SomeMethod)
+SomeObject :: assert(+SomeMethod)

Asserts SomeMethod in SomeObject with normal Prolog semantics.

Add some facts to vehicle and truck with initial value equal to [].

| ?- vehicle :: assert(fuel_level([])),

vehicle :: assert(oil_level([])),

vehicle :: assert(location([])),

truck :: assert(capacity([])),

truck :: assert(total_weight([])).

37.5.3 Parameter Passing to New Objects

When new objects are created, it is possible to pass parameters. The following example
shows:

• How general methods are asserted

Chapter 37: SICStus Objects 561

In the previous examples one could pass parameters to an object as follows, using the
method augment/1.

| ?- vehicle :: augment({
new_attrs(Instance, Attribute_list) :-

self :: new(Instance),

:: assign_list(Attribute_list, Instance) &

assign_list([], Instance) &

assign_list([Att|List], Instance) :-

:: assign(Att, Instance),

:: assign_list(List, Instance) &

assign(P, Instance) :-

Instance :: assert(P)

}).

% create a new ’truck’
| ?- vehicle :: new_attrs(truck, [capacity([]),total_weight([])]).

37.6 Access Driven Programming—Daemons

Access based programming is a paradigm where certain actions are performed, or some
constraints are checked, when “access operations” are invoked. Access operations for up-
dates (i.e. assert, retract) can be redefined in an object by redefining these operations and
delegating the same operation to super. Notice that without a delegation mechanism this
would not be possible, since the Self would have changed. So assume that we want to print
on the screen “p is augmented” whenever the fact p(X) is asserted in an object foo, we just
redefine assert/1:

foo :: {
super(object) &

dynamic p/1 &

p(0) &
p(1) &

assert(p(X)) :- !, /* assert/1 is redefined for p(X) */
super <: assert(p(X)),
:display(’p is augmented’), :ttynl &

assert(M) :- /* delegating assert(_) messages */
super <: assert(M) &

:
}.

562 SICStus Prolog

37.7 Instances

Objects are relatively heavy weight. To be able to create efficiently light weight objects, we
introduce the notion of instances. An instance is an object with restricted capability. It is
created from an object that is considered its class. It gets a copy of the attributes of its
class. These can be modified by get/1 and set/1. An instance cannot be a class for other
instances. Instances are in general very efficient, both in space and access/modification
time. The attribute ’$class’/1 will store the identity of the class of the instance including
parameters.

37.8 Built-In Objects and Methods

37.8.1 Universal Methods

The following methods are “universal”, i.e. they are defined locally, if appropriate, for every
object:

super(?Object,?NotInheritList)
Object is a parent (a super-object) of Self. NotInheritList specifies methods
of Object explicitly not inherited by Self. The definition super(Object) is
translated to super(Object,[]).

attributes(+Attributes)
Attributes is a list of compound terms specifying the local attributes of Self
and the initial values.

37.8.2 Inlined Methods

The following methods are compiled inline i.e. calls are replaced by definitions. This implies
(in the current implementation) that they have a fixed semantics and can not be redefined.
There are also definitions for these methods in object covering the cases of unexpanded
calls.

self(?Self)
Unifies Self with “self”.

get(+Attribute)
Gets the attribute value(s) of the attribute specified by the principal functor of
Attribute. The value(s) are unified with the argument(s) of Attribute.

set(+Attribute)
Sets the attribute value(s) of the attribute specified by the principal functor of
Attribute. The value(s) are taken from the argument(s) of Attribute.

Chapter 37: SICStus Objects 563

37.8.3 The Proto-Object "object"

The proto-object object provides basic methods that are available to all other objects by
delegation:

super(?Object)
Object is a parent (a super-object) of Self. Note that any other definition of
super(Object) are translated to the universal method super/2.

sub(?Object)
Object is a child (a sub-object) of Self.

self(?Self)
Unifies Self with “self”. Please note: this method is inlined when possible.

object(?Object)
One of the defined objects in the system is Object.

dynamic

Self is a dynamic object.

static

Self is a static object.

dynamic ?Name/?Arity

Name/Arity is a dynamic method of Self.

static ?Name/?Arity

Name/Arity is a static method of Self.

new(?Object)
Creates a new dynamic Object. Self will be the prototype of Object. Object
can be a compound term, an atom, or a variable. In the last case the method
generates a unique name for Object.

+SomeObject :: new(?NewObject,+Supers)
NewObject is created with Supers specifying the super objects (prototypes).
Supers is a list containing super specifications. A super specification is either an
object identifier or a pair Object-NotInheritList where NotInheritList specifies
methods not to inherit from Object. NewObject could be an atom, variable, or
compound term whose arguments are distinct variables.

instance(?Instance)
Creates a new instance Instance. Self will be the class of Instance. Instance
can be a compound term, an atom, or a variable. In the last case the method
generates a unique name for Instance.

has_instance(?Instance)
Self has the instance Instance.

has_attribute(?AttributeSpec)
Self has the attribute AttributeSpec, locally defined or inherited. AttributeSpec
is on the format Name/Arity.

564 SICStus Prolog

get(+Attribute)
Gets the attribute value(s) of the attribute specified by the principal functor of
Attribute. The value(s) are unified with the argument(s) of Attribute. Please
note: this method is inlined when possible.

set(+Attribute)
Sets the attribute value(s) of the attribute specified by the principal functor of
Attribute. The value(s) are taken from the argument(s) of Attribute. Please
note: this method is inlined when possible.

assert(+Fact)
assert(+Fact, -Ref)
asserta(+Fact)
asserta(+Fact, -Ref)
assertz(+Fact)
assertz(+Fact, -Ref)

Asserts a new Fact in Self. If Self is static, the name and arity of Fact must
be declared as a dynamic method. asserta places Fact before any old facts.
The other forms place it after any old facts. A pointer to the asserted fact is
returned in the optional argument Ref, and can be used by the Prolog built-in
predicates erase/1 and instance/2.

retract(+Fact)
Retracts a Fact from Self. If Self is static, the name and arity of Fact must be
declared as a dynamic method.

update(+Fact)
Replaces the first fact with the same name and arity as Fact in Self by Fact.
If Self is static, the name and arity of Fact must be declared as a dynamic
method.

retractall(?Head)
Removes facts from Self that unify with Head. If Self is static, the name and
arity of Fact must be declared as a dynamic method.

abolish

Abolishes Self if dynamic.

augment(?ObjectBody)
augmenta(?ObjectBody)
augmentz(?ObjectBody)

ObjectBody, having the form { sentence-1 & . . . & sentence-n }, is added to
Self. augmenta places the new clauses before any old clauses. The other forms
place it after any old clauses.

37.8.4 The built-in object "utility"

The base object utility provides methods that could be used in user programs. utility
has object as its super-object.

Chapter 37: SICStus Objects 565

subs(?Objects)
Gives a list of all the children of Self.

supers(?Objects)
Gives a list of all parents of Self.

objects(?Objects)
Gives a list of all objects.

dynamic_objects(?Objects)
Gives a list of all dynamic objects.

static_objects(?Objects)
Gives a list of all static objects.

methods(?Methods)
Gives a list of all the methods of Self.

dynamic_methods(?Methods)
Gives a list of all dynamic methods of Self.

static_methods(?Methods)
Gives a list of all static methods of Self.

descendant(?Object)
One of the descendants of Self is Object.

descendant(?Object, ?Level)
Object a descendant at depth Level of Self. A child of Self is at level 1.

descendants(?Objects)
The list of all descendants of Self is Objects.

descendants(?Objects, ?Level)
Objects is the list of descendants at depth Level of Self.

ancestor(?Object)
One of the ancestors of Self is Object.

ancestor(?Object, ?Level)
Object is an ancestor of Self at height Level. A super-object of Self has level 1.

ancestors(?Object)
The list of all ancestors of Self is Objects.

ancestors(?Object, ?Level)
Objects is the list of ancestors at height Level of Self.

restart

Removes all dynamic objects. Note that dynamic methods added to static
objects are not removed.

and_cast(+Objects, ?Message)
Sends the same message Message to all objects in the list Objects.

or_cast(+Objects, ?Message)
Sends the same message Message to one of the objects in the list Objects,
backtracking through the alternative objects.

566 SICStus Prolog

37.9 Expansion to Prolog Code

As already mentioned, object definitions are expanded to Prolog clauses much as definite
clause grammars. This expansion is usually transparent to the user. While debugging
a SICStus Objects program, however, the expanded representation may become exposed.
This section will explain in detail the source expansion, so as to give the user the possibility
to relate back to the source code during a debugging session. The inheritance mechanism,
based on module importation, is also described.

First of all, every statically defined object will translate to several Prolog clauses belonging
to a unique object module with the same identity as the object-identifier. Object modules
are significantly cheaper to create than ordinary modules, as they do not import built-in
predicates.

The module will contain predicates implementing an object declaration, the method code,
imported methods and parameter transfer predicates. These predicates will be described
in detail below, using the notational convention that variable names in italics are syntactic
variables that will be replaced by something else in the translation process.

37.9.1 The Inheritance Mechanism

The inheritance mechanism is based on the importation mechanism of the Prolog module
system. When an object is created, whether loaded from file or at runtime by new/[1,2],
the method predicates (i.e. predicates implementing the methods) visible in the immediate
supers are collected. After subtracting from this set the method predicates that are locally
defined, and those that are specified in the don’t-inherit-list , the resulting set is made
visible in the module of the inheriting object by means of importation. This implies that
inherited methods are shared, expect dynamic methods.

Dynamic methods are inherited in a similar way with the big difference that they are not
imported but copied. Even dynamic declarations (methods without clauses) are inherited.

Inheritance from dynamic objects differs in one aspect: Static predicates visible in a dynamic
object are not imported directly from the dynamic object but from the static object from
where it was imported to the dynamic object. This makes an inheriting object independent
of any dynamic ancestor object after its creation.

37.9.2 Object Attributes

Attributes are based on an efficient term storage associated to modules. The attributes for
an object is collected from its ancestors and itself at compile time and used for initializa-
tion at load time. The methods for accessing attributes, get/1 and set/1, are inlined to
primitive calls whenever possible. They should hence not be redefined.

Chapter 37: SICStus Objects 567

37.9.3 Object Instances

Instances are different from other objects in that they do not inherit. Instead they share
the predicate name space with its class object. They do however have their own attributes.
At creation, an instance gets a copy of its class objects attributes. The reserved attribute
’$class’/1, which is present in any object, is used for an instance to hold its class object
identifier. The purpose of this is mainly to store the parameters of the class object when
the instance is created.

37.9.4 The Object Declaration

The object declaration is only used by certain meta-programming operations. It consists of
a fact

’$so_type’(Object, Type).

where Object is the object-identifier, and Type is either static or dynamic. If the type is
static, the other generated predicates will be static; otherwise, they will be dynamic.

37.9.5 The Method Code

Each method-clause translates to a Prolog clause with two extra arguments: Self (a variable)
and Myself. The latter argument is needed to cater for passing object parameters to the
method body, which is desribed further in next section.

The method body is translated to a Prolog clause body as follows. The code is traversed, and
the goals are transformed according to the following transformation patterns and rules. In
the transformation rules, the notation Msg(X,Y) denotes the term produced by augmenting
Msg by the two arguments X and Y:

Goal where Goal is a variable, is translated to
objects:call_from_body(Goal,Self,Myself,Src) where Src is the source
module. objects:call_from_body/4 will meta-interpret Goal at runtime.

:: Msg is translated to Myself:Msg(Myself,Myself) if Msg is a non variable. Other-
wise, it is translated to objects:call_object(Myself, Msg, Myself).

<: Msg is translated to Myself:Msg(Self,Myself) if Msg is a non variable. Otherwise,
it is translated to objects:call_object(Myself, Msg, Self).

super :: Msg is translated to
objects:call_super_exp(Myself,Msg(Super,Myself),Super) if Msg is a
non variable. call_super_exp/3 searches the supers of Myself. Super is bound
to the super object where the method is found. If Msg is a variable, the goal
is translated to objects:call_super(Myself,Msg,Super,Super), which ex-
pands Msg and performs otherwise the same actions as call_super_exp/3.

568 SICStus Prolog

super <: Msg

is translated to objects:call_super_exp(Myself,Msg(Self,Myself),Super
) if Msg is a non variable. call_super_exp/3 searches the supers of Myself.
Super is bound to the super object where the method is found. If Msg is a vari-
able, the goal is translated to objects:call_super(Myself,Msg,Self,Super
), which expands Msg and performs otherwise the same actions as call_super_
exp/3.

Obj :: Msg

− If Msg is non-variable, this is translated to Obj:Msg(Obj,Obj).
− Otherwise, it is translated to objects:call_object(Obj,Msg,Obj).

Obj <: Msg

− If Msg is non-variable, this is translated to Obj:Msg(Self,Obj).
− Otherwise, if Msg is a non-variable, it is translated to functor(Obj,O,_

), O:Msg(Self,Obj).
− Otherwise, it is translated to objects:call_object(Obj,Msg,Self).

self <: Msg

self :: Msg

Msg are all translated like Self :: Msg.

Module:Goal
is translated to Module:Goal.

:Goal is translated to Src:Goal where Src is the source module.

To illustrate the expansion, consider the object history_point directives, all executed in
the history_point module:

Chapter 37: SICStus Objects 569

:-objects:create_object(history_point,
[point-[]],
[attributes/3,display/3,move/4,new/4,print_history/3,super/4],
[],
[y(0),x(0),history([])],
tree(history_point,[tree(point,[tree(object,[])])])).

history_point:super(point, [], _, history_point).

history_point:attributes([history([])], _, _).

history_point:display(A, B, _) :-
objects:call_super_exp(history_point, display(A,B,C), C),
history_point:print_history(A, B, history_point).

history_point:’$so_type’(history_point, static).

history_point:move(A, B, C, _) :-
objects:call_super_exp(history_point, move(A,B,C,E), E),
prolog:’$get_module_data’(C, history, D),
prolog:’$set_module_data’(C, history, [(A,B)|D]).

history_point:print_history(A, B, _) :-
prolog:’$get_module_data’(B, history, C),
A:format(’with location history ~w~n’, [C], A, A).

history_point:new(A, xy(D,E), B, _) :-
objects:call_super_exp(history_point, new(A,xy(D,E),B,C), C),
prolog:’$set_module_data’(A, history, [(D,E)]).

The directive create_object/6 creates the object, performs the inheritance by importation,
and initializes attributes. The last argument is a tree representing the ancestor hierarchy
during compilation. It is used to check that the load time and compile time environments
are consistent.

37.9.6 Parameter Transfer

As can be seen in the expanded methods above, the second additional argument is simply
ignored if the object has no parameter. In contrast regard the following objects:

570 SICStus Prolog

ellipse(RX,RY,Color) :: {
color(Color) &
area(A) :-

:(A is RX*RY*3.14159265)
}.

circle(R,Color) :: {
super(ellipse(R,R,Color))

}.

red_circle(R) :: {
super(circle(R,red))

}.

. . . and their expansions:

ellipse(_, _, _):’$so_type’(ellipse(_,_,_), static).

ellipse(_, _, _):area(A, _, B) :-
B:’$fix_param’(ellipse(C,D,_), B),
user:(A is C*D*3.14159265).

ellipse(_, _, _):color(A, _, B) :-
B:’$fix_param’(ellipse(_,_,A), B).

ellipse(_, _, _):’$fix_param’(ellipse(B,C,D), A) :-
objects:object_class(ellipse(B,C,D), A).

circle(_, _):’$so_type’(circle(_,_), static).

circle(_, _):super(ellipse(A,A,B), [], _, circle(A,B)).

circle(_, _):’$fix_param’(circle(B,C), A) :-
objects:object_class(circle(B,C), A).

circle(_, _):’$fix_param’(ellipse(B,B,C), A) :-
objects:object_class(circle(B,C), A).

red_circle(_):’$so_type’(red_circle(_), static).

red_circle(_):super(circle(A,red), [], _, red_circle(A)).

red_circle(_):’$fix_param’(red_circle(B), A) :-
objects:object_class(red_circle(B), A).

red_circle(_):’$fix_param’(circle(B,red), A) :-
objects:object_class(red_circle(B), A).

red_circle(_):’$fix_param’(ellipse(B,B,red), A) :-
objects:object_class(red_circle(B), A).

Chapter 37: SICStus Objects 571

The second additional argument contains the receiver of a method call. If the method
makes use of any parameter of the object where it is defined, it places a call to the reserved
predicate $fix_param/2 in the module of the receiver. The purpose of this call is to bind
the parameters used in the method to appropriate values given by the receiver. The receiver
may be the object where the method is defined or any of its subs. In order to service these
calls, a clause of $fix_param/2 is generated for each ancestor having parameters. Such a
clause may be regarded as the collapsed chain of super/[1,2] definitions leading up to the
ancestor.

The call objects:object_class(Class,Object) serves to pick up the ’$class’/1 at-
tribute if Object is an instance; otherwise, Class is unified with Object.

The following trace illustrates how parameters are transfered:

| ?- red_circle(2.5)::area(A).

1 1 Call: red_circle(2.5)::area(_A) ? 〈RET〉
2 2 Call: el-
lipse(_,_,_):area(_A,red_circle(2.5),red_circle(2.5)) ? 〈RET〉
3 3 Call: red_circle(_):$fix_param(ellipse(_B,_,_),red_circle(2.5)) ? 〈RET〉
4 4 Call: ob-
jects:object_class(red_circle(_B),red_circle(2.5)) ? 〈RET〉
4 4 Exit: ob-
jects:object_class(red_circle(2.5),red_circle(2.5)) ? 〈RET〉
3 3 Exit: red_circle(_):$fix_param(ellipse(2.5,2.5,red),red_circle(2.5)) ? 〈RET〉
5 3 Call: _A is 2.5*2.5*3.14159265 ? 〈RET〉
5 3 Exit: 19.6349540625 is 2.5*2.5*3.14159265 ? 〈RET〉
2 2 Exit: el-
lipse(_,_,_):area(19.6349540625,red_circle(2.5),red_circle(2.5)) ? 〈RET〉
1 1 Exit: red_circle(2.5)::area(19.6349540625) ? 〈RET〉

A = 19.6349540625

37.10 Examples

37.10.1 Classification of Birds

This example illustrates how Prolog object can be used in classification of certain concepts.
This style is common in expert system application for describing its domain.

572 SICStus Prolog

animal :: {
super(object) &
relative_size(S) :-

size(Obj_size),
super(Obj_prototype),
Obj_prototype :: size(Prototype_size),
:(S is Obj_size/Prototype_size * 100)
}.

bird :: {
super(animal) &
moving_method(fly) &
active_at(daylight)
}.

albatross :: {
super(bird) &
color(black_and_white) &
size(115)
}.

kiwi :: {
super(bird) &
moving_method(walk) &
active_at(night) &
size(40) &
color(brown)
}.

albert :: {
super(albatross) &
size(120)
}.

ross :: {
super(albatross) &
size(40)
}.

| ?- ross :: relative_size(R).

R = 34.78

Chapter 37: SICStus Objects 573

37.10.2 Inheritance and Delegation

The following example illustrates a number of concepts. Firstly, how to use SICStus Objects
for defining traditional classes a la Smalltalk, or other traditional object oriented languages.
Secondly, how to create instances of these classes. Finally, how to access instance variables.

The concept of instance variables is readily available as the variables belonging to the
instances created dynamically and not to the class of the instances. For example, each
instance of the class point will have two instance variables, x and y, represented by the
attributes x/1 and y/1. The traditional class variables are easily available by accessing the
same attributes in the associated class.

Another issue is the pattern used to create new instances. For example, to create an instance
of the class history_point, the following code is used:

new(Instance, xy(IX,IY)) :-
super <: new(Instance, xy(IX,IY)),
Instance :: set(history([(IX,IY)])) &

Note that the delegation of new/2 to super is necessary in order to create an object whose
super is history_point and not point.

The example shows how delegation can be effective as a tool for flexible sharing of concepts
in multiple inheritance. Four prototypes are defined: point, history_point, bounded_
point, and bh_point. The latter is a bounded history point.

An instance of the point class is a point that moves in 2-D space and that can be displayed.
An instance of the history_point class is similar to an instance of the point class but also
keeps a history of all the moves made so far. An instance of bounded_point is similar to
an instance of point but moves only in a region of the 2-D space. Finally an instance of
bh_point inherits most of the features of a bounded_point and a history_point.

The default inheritance does not work for the methods display/1 and move/2 in bh_point.
Inheritance by delegating messages to both supers of bh_point results in redundant actions,
(moving and displaying the point twice). Selective delegation solves the problem. Taken
from [Elshiewy 90].

574 SICStus Prolog

point :: {
super(object) &

attributes([x(0),y(0)]) &

xy(X, Y) :- get(x(X)), get(y(Y)) &

new(Instance, xy(IX,IY)) :-
super <: instance(Instance),
Instance :: set(x(IX)),
Instance :: set(y(IY)) &

location((X,Y)) :- <: xy(X,Y) &

move_horizontal(X) :-
set(x(X)) &

move_vertical(Y) :-
set(y(Y)) &

move(X, Y) :-
<: move_horizontal(X),
<: move_vertical(Y) &

display(Terminal) :-
<: xy(X, Y),
Terminal :: format(’point at (~d,~d)~n’,[X,Y])

}.

Chapter 37: SICStus Objects 575

history_point :: {
super(point) &

attributes([history([])]) &

new(Instance, xy(IX,IY)) :-
super <: new(Instance, xy(IX,IY)),
Instance :: set(history([(IX,IY)])) &

move(X, Y) :-
super <: move(X, Y),
get(history(History)),
set(history([(X,Y)|History])) &

display(Terminal) :-
super <: display(Terminal),
<: print_history(Terminal) &

print_history(Terminal) :-
get(history(History)),
Terminal :: format(’with location history ~w~n’,

[History])
}.

576 SICStus Prolog

bounded_point :: {
super(point) &

attributes([bounds(0,0,0,0)]) &

new(Instance, Coords, Bounds) :-
super <: new(Instance, Coords),
Instance :: set_bounds(Bounds) &

set_bounds(Bounds) :-
set(Bounds) &

move(X, Y) :-
<: bound_constraint(X, Y), !,
super <: move(X, Y) &

move(_, _) &

bound_constraint(X, Y) :-
get(bounds(X0, X1, Y0, Y1)),
:(X >= X0),
:(X =< X1),
:(Y >= Y0),
:(Y =< Y1) &

display(Terminal) :-
super <: display(Terminal),
<: print_bounds(Terminal) &

print_bounds(Terminal) :-
get(bounds(X0, X1, Y0, Y1)),
Terminal :: format(’xbounds=(~d,~d), \c

ybounds=(~d,~d)~n’,
[X0,X1,Y0,Y1])

}.

Chapter 37: SICStus Objects 577

bh_point :: {
super(history_point) &
super(bounded_point) &

new(Instance, Coords, Bounds) :-
history_point <: new(Instance, Coords),
Instance :: set_bounds(Bounds) &

move(X, Y) :-
bounded_point <: bound_constraint(X, Y), !,
history_point <: move(X, Y) &

move(_, _) &

display(Terminal) :-
bounded_point <: display(Terminal),
history_point <: print_history(Terminal)

}.

tty :: {
format(X, Y) :- :format(X, Y)
}.

point at (8,12)
xbounds=(5,15), ybounds=(5,15)
with location history [(8,12),(9,11)]

37.10.3 Prolog++ programs

Prolog++ is a product by LPA Associates for object-oriented programming extensions of LPA
Prolog. Most Prolog++ programs can be easily converted into SICStus Objects programs.
The following is a translation of a program for fault diagnosis in LPA’s Prolog++ manual,
page 83. The program illustrates a top-down diagnosis method starting from general objects
to more specific objects. The problem is fault diagnosis for car maintenance. The objects
have the following structure:

- faults
- electrical
| - lights
| - starting
| - starter_motor
| - sparking
| - plugs
| - distributer
- fuel_system
- mechanical

578 SICStus Prolog

The general diagnosis method is defined in the object faults, whereas the cause-effect
relationships are defined in the specific objects e.g. the object distributor.

This program heavily uses the sub/1 method. We have tried to be as close as possible to
the original formulation.

Chapter 37: SICStus Objects 579

faults :: {

super(utility) &
dynamic(told/2) &

/* no fault is the default */
fault(_, _) :- :fail &

findall :-
<: restart,
:: sub(Sub),
Sub :: find(Where, Fault),
<: print(Where, Fault),
:fail &

findall &

print(Where, Fault) :-
:writeseqnl(’Location : ’, [Where]),
:writeseqnl(’Possible Fault : ’, [Fault]),
:nl &

find(Where, Fault) :-
self(Where),
fault(FaultNum, Fault),
\+ (effect(FaultNum, S),

contrary(S, S1),
exhibited(S1)
),

\+ (effect(FaultNum, SymptomNum),
\+ exhibited(SymptomNum)) &

find(Where, Fault) :-
sub(Sub),
Sub :: find(Where, Fault) &

exhibited(S) :-
:: told(S, R), !,
R = yes &

exhibited(S) :-
symptom(S,Text),
(:yesno([Text]) -> R = yes
; R = no
),
:: asserta(told(S,R)),
R = yes &

restart :-
:: retractall(told(_,_))

}.

580 SICStus Prolog

electrical :: {
super(faults)
}.

fuel_system :: {
super(faults)
}.

mechanical :: {
super(faults)
}.

lights :: {
super(electrical)
}.

sparking :: {
super(electrical)
}.

starting :: {
super(electrical)
}.

starter_motor :: {
super(electrical)
}.

plugs :: {
super(sparking)
}.

engine :: {
super(mechanical)
}.

cylinders :: {
super(engine)
}.

Chapter 37: SICStus Objects 581

distributor :: {
super(sparking) &

/* faults */
fault(’F1001’, ’Condensation in distributor cap’) &
fault(’F1002’, ’Faulty distributor arm’) &
fault(’F1003’, ’Worn distributor brushes’) &

/* symptoms */
symptom(’S1001’, ’Starter turns, but engine does not fire’) &
symptom(’S1002’, ’Engine has difficulty starting’) &
symptom(’S1003’, ’Engine cuts out shortly after starting’) &
symptom(’S1004’, ’Engine cuts out at speed’) &

/* symptoms contrary to each other */
contrary(’S1002’, ’S1001’) &
contrary(’S1003’, ’S1001’) &

/* causal-effect relationship */
effect(’F1001’, ’S1001’) &
effect(’F1002’, ’S1001’) &
effect(’F1002’, ’S1004’) &
effect(’F1003’, ’S1002’) &
effect(’F1003’, ’S1003’)

}.

yesno(Value) :- write(Value), nl, read(yes).

writeseqnl(Prompt, L) :- write(Prompt), write_seq(L).

write_seq([]).
write_seq([X|L]) :- write(X), write(’ ’), write_seq(L), nl.

faults :- faults :: findall.

582 SICStus Prolog

| ?- faults.

[Starter turns, but engine does not fire]
|: yes.

Location : distributor
Possible Fault : Condensation in distributor cap

[Engine cuts out at speed]
|: yes.

Location : distributor
Possible Fault : Faulty distributor arm

| ?- faults.

[Starter turns, but engine does not fire]
|: no.

[Engine has difficulty starting]
|: yes.

[Engine cuts out shortly after starting]
|: yes.

Location : distributor
Possible Fault : Worn distributor brushes

Chapter 38: The PiLLoW Web Programming Library 583

38 The PiLLoW Web Programming Library

The PiLLoW library (“Programming in Logic Languages on the Web”) is a free Inter-
net/WWW programming library for Logic Programming Systems that simplifies the process
of writing applications for such environment. The library provides facilities for generating
HTML or XML structured documents by handling them as Prolog terms, producing HTML
forms, writing form handlers, processing HTML templates, accessing and parsing WWW
documents (either HTML or XML), accessing code posted at HTTP addresses, etc.

PiLLoW is documented in its own reference manual, located
in http://www.clip.dia.fi.upm.es/Software/pillow/pillow_doc_html/pillow_doc_
toc.html (HTML) or http://www.clip.dia.fi.upm.es/Software/pillow/pillow_
doc.ps (Postscript). The following points are worth noting wrt. the PiLLoW reference
manual:

• PiLLoW is automatically installed with the SICStus Prolog distribution. No extra
action needs to be taken.

• PilloW comes as a single library module. To load it, enter the query:
| ?- use_module(library(pillow)).

This subsumes the various load_package/1 and use_module/1 queries mentioned in
the PiLLoW reference manual.

Further information can be found at the PiLLoW home page,
http://clip.dia.fi.upm.es/Software/pillow/pillow.html.

http://www.clip.dia.fi.upm.es/Software/pillow/pillow_doc_html/pillow_doc_toc.html
http://www.clip.dia.fi.upm.es/Software/pillow/pillow_doc_html/pillow_doc_toc.html
http://www.clip.dia.fi.upm.es/Software/pillow/pillow_doc.ps
http://www.clip.dia.fi.upm.es/Software/pillow/pillow_doc.ps
http://clip.dia.fi.upm.es/Software/pillow/pillow.html

584 SICStus Prolog

Chapter 39: Parsing and Generating XML 585

39 Parsing and Generating XML

library(xml) is a package for parsing XML with Prolog, which provides Pro-
log applications with a simple “Document Value Model” interface to XML docu-
ments. A description of the subset of XML that it supports can be found at:
http://homepages.tesco.net/binding-time/xml.pl.html

The package, originally written by Binding Time Ltd., is in the public domain and unsup-
ported. To use the package, enter the query:

| ?- use_module(library(xml)).

The package represents XML documents by the abstract data type document, which is
defined by the following grammar:

document ::= xml(attributes,content) { well-formed document }
|
malformed(attributes,content
)

{ malformed document }

attributes ::= []
| [name=chardata|attributes]

content ::= []
| [cterm|content]

cterm ::= pcdata(chardata) { text }
| comment(chardata) { an XML comment }
|
namespace(URI,prefix,element
)

{ a Namespace }

| element(tag
attributes,content
)

{ <tag>..</tag> encloses content
or <tag /> if empty }

| instructions(name,chardata
)

{ A PI <? name chardata ?> }

| cdata(chardata) { <![CDATA[chardata]]> }
| doctype(tag,doctypeid) { DTD <!DOCTYPE .. > }
| unparsed(chardata) { text that hasn’t been parsed }
| out_of_context(tag) { tag is not closed }

tag ::= atom { naming an element }
name ::= atom { not naming an element }
URI ::= atom { giving the URI of a namespace

}
chardata ::= code-list
doctypeid ::= public(chardata,chardata)

| system(chardata)
| local

The following predicates are exported by the package:

http://homepages.tesco.net/binding-time/xml.pl.html

586 SICStus Prolog

xml_parse(+Chars, -Document[, +Options])
Parses Chars, a code-list, to Document, a document. Chars is not required to
represent strictly well-formed XML.
Options is a list of zero or more of the following, where Boolean must be true
or false:

format(Boolean)
Indent the element content (default true).

extended_characters(Boolean)
Use the extended character entities for XHTML (default true).

remove_attribute_prefixes(Boolean)
Remove namespace prefixes from attributes when it’s the same as
the prefix of the parent element (default false).

xml_parse(-Chars, +Document[, +Options])
Generates Chars, a code-list, from Document, a document. If Document is not
a valid document term representing well-formed XML, an exception is raised.
In this usage of the predicate, the only option available is format/1.

xml_subterm(+Term, ?Subterm)
Unifies Subterm with a sub-term of Term, a document. This can be especially
useful when trying to test or retrieve a deeply-nested subterm from a document.

xml_pp(+Document)
“Pretty prints” Document, a document, on the current output stream.

Chapter 40: Tcl/Tk Interface 587

40 Tcl/Tk Interface

40.1 Introduction

This is a basic tutorial for those SICStus Prolog users who would like to add Tcl/Tk user
interfaces to their Prolog applications. The tutorial assumes no prior knowledge of Tcl/Tk
but, of course, does assume the reader is proficient in Prolog.

Aware that the reader may not have heard of Tcl/Tk, we will start by answering three
questions: what is Tcl/Tk? what is it good for? what relationship does it have to Prolog?

40.1.1 What Is Tcl/Tk?

Tcl/Tk, as its title suggests, is actually two software packages: Tcl and Tk. Tcl, pronounced
tickle, stands for tool command language and is a scripting language that provides a pro-
gramming environment and programming facilities such as variables, loops, and procedures.
It is designed to be easily extensible.

Tk, pronounced tee-kay, is just such an extension to Tcl, which is a toolkit for windowing
systems. In other words, Tk adds facilities to Tcl for creating and manipulating user
interfaces based on windows and widgets within those windows.

40.1.2 What Is Tcl/Tk Good For?

In combination the Tcl and Tk packages (we will call the combination simply Tcl/Tk) are
useful for creating graphical user interfaces (GUIs) to applications. The GUI is described
in terms of instances of Tk widgets, created through calls in Tcl, and Tcl scripts that form
the glue that binds together the GUI and the application. (If you are a little lost at this
point, all will be clear in a moment with a simple example.)

There are lots of systems out there for adding GUIs to applications so why choose Tcl/Tk?
Tcl/Tk has several advantages that make it attractive for this kind of work. Firstly, it
is good for rapid prototyping of GUIs. Tcl is an interpreted scripting language. The
scripts can be modified and executed quickly, with no compilation phase, so speeding up
the development loop.

Secondly, it is easier to use a system based on a scripting language, such as Tcl/Tk, than
many of the conventional packages available. For example, getting to grips with the X
windows suite of C libraries is not an easy task. Tcl/Tk can produce the same thing using
simple scripting with much less to learn. The penalty for this is that programs written in an
interpreted scripting language will execute more slowly than those written using compiled
C library calls, but for many interfaces that do not need great speed Tcl/Tk is fast enough

588 SICStus Prolog

and its ease of use more than outweighs the loss of speed. In any case, Tcl/Tk can easily
handle hundreds of events per mouse movement without the user noticing.

Thirdly, Tcl/Tk is good for making cross-platform GUIs. The Tk toolkit has been ported
to native look-and-feel widgets on Mac, PC (Windows), and UNIX (X windows) platforms.
You can write your scripts once and they will execute on any of these platforms.

Lastly, the software is distributed under a free software license and so is available in both
binary and source formats free of charge.

40.1.3 What Is Tcl/Tks Relationship to SICStus Prolog?

SICStus Prolog comes with a Prolog library for interfacing to Tcl/Tk. The purpose of the
library is to enable Prolog application developers to add GUIs to their applications rapidly
and easily.

40.1.4 A Quick Example of Tcl/Tk in Action

As a taster, we will show you two simple examples programs that use SICStus Prolog with
the Tcl/Tk extensions: the ubiquitous “hello world” example; and a very simple telephone
book look up example.

You are not expected to understand how these examples work at this stage. They are
something for you to quickly type in to see how easy it is to add GUIs to Prolog programs
through Tcl/Tk. After reading through the rest of this tutorial you will fully understand
these examples and be able to write your own GUIs.

40.1.4.1 hello world

Here is the program; also in library(’tcltk/examples/ex1.pl’):

:- use_module(library(tcltk)).

go :-
tk_new([name(’Example 1’)], Interp),
tcl_eval(Interp, ’button .fred -text "hello world"

-command { puts "hello world"}’, _),
tcl_eval(Interp, ’pack .fred’, _),
tk_main_loop.

Chapter 40: Tcl/Tk Interface 589

SICStus+Tcl/Tk hello world program.

To run it just start up SICStus (under Windows use sicstus, not spwin), load the program,
and evaluate the Prolog goal go. The first line of the go clause calls tk_new/2, which creates
a Tcl/Tk interpreter and returns a handle Interp through which Prolog will interact with
the interpreter. Next a call to tcl_eval/3 is made, which creates a button displaying
the ‘hello world’ text. Next a call is made to tcl_eval/3 that causes the button to be
displayed in the main application window. Finally, a call is make to tk_main_loop/0 that
passes control to Tcl/Tk, making sure that window events are serviced.

See how simple it is with just a three line Prolog program to create an application window
and display a button in it. Click on the button and see what it does.

The reason you should use sicstus under Windows instead of spwin is that the latter does
not have the C standard streams (stdin,stdout,stderr) and the Tcl command puts will
give an error if there is no stdout.

40.1.4.2 telephone book

The previous example showed us how to create a button and display some text in it. It
was basically pure Tcl/Tk generated from within Prolog but did not have any interaction
with Prolog. The following example demonstrates a simple callback mechanism. A name
is typed into a text entry box, a button is pressed, which looks up the telephone number
corresponding to the name in a Prolog database, and the telephone number is then displayed.

Here is the code; also in library(’tcltk/examples/ex2.pl’):

:- use_module(library(tcltk)).

telephone(fred, ’123-456’).
telephone(wilbert, ’222-2222’).
telephone(taxi, ’200-0000’).
telephone(mary, ’00-36-1-666-6666’).

go :-
tk_new([name(’Example 2’)], T),
tcl_eval(T, ’entry .name -textvariable name’,_),
tcl_eval(T, ’button .search -text search -command {

prolog telephone($name,X);
set result $prolog_variables(X) }’, _),

tcl_eval(T, ’label .result -relief raised -textvariable result’, _),
tcl_eval(T, ’pack .name .search .result -side top -fill x’, _),
tk_main_loop.

590 SICStus Prolog

SICStus+Tcl/Tk telephone number lookup

Again, to run the example, start up SICStus Prolog, load the code, and run the goal go.

You will notice that three widgets will appear in a window: one is for entering the name
of the person or thing that you want to find the telephone number for, the button is for
initiating the search, and the text box at the bottom is for displaying the result.

Type fred into the entry box, hit the search button and you should see the phone number
displayed. You can then try the same thing but with wilbert, taxi or mary typed into the
text entry box.

What is happening is that when the button is pressed, the value in the entry box is re-
trieved, then the telephone/2 predicate is called in Prolog with the entry box value as first
argument, then the second argument of telephone is retrieved (by this time bound to the
number) and is displayed below the button.

This is a very crude example of what can be done with the Tcl/Tk module in Prolog.
For example, this program does not handle cases where there is no corresponding phone
number or where there is more than one corresponding phone number. The example is
just supposed to wet your appetite, but all these problems can be handled by Prolog +
Tcl/Tk, although with a more sophisticated program. You will learn how to do this in the
subsequent chapters.

40.1.5 Outline of This Tutorial

Now we have motivated using Tcl/Tk as a means of creating GUIs for Prolog programs, this
document goes into the details of using Tcl/Tk as a means of building GUIs for SICStus
Prolog applications.

Firstly, Tcl is introduced and its syntax and core commands described. Then the Tk
extensions to Tcl are introduced. We show how with Tcl and Tk together the user can
build sophisticated GUIs easily and quickly. At the end of this Tcl/Tk part of the tutorial
an example of a pure Tcl/Tk program will be presented together with some tips on how to
design and code Tcl/Tk GUIs.

The second phase of this document describes the SICStus Prolog tcltk library. It provides
extensions to Prolog that allow Prolog applications to interact with Tcl/Tk: Prolog can
make calls to Tcl/Tk code and vice versa.

Chapter 40: Tcl/Tk Interface 591

Having reached this point in the tutorial the user will know how to write a Tcl/Tk GUI
interface and how to get a Prolog program to interact with it, but arranging which process
(the Prolog process or the Tcl/Tk process) is the dominant partner is non-trivial and so
is described in a separate chapter on event handling. This will help the user choose the
most appropriate method of cooperation between Tcl/Tk and Prolog to suit their particular
application.

This section, the Tcl/Tk+Prolog section, will be rounded off with the presentation of some
example applications that make use of Tcl/Tk and Prolog.

Then there is a short discussion section on how to use other Tcl extension packages with
Tcl/Tk and Prolog. Many such extension packages have been written and when added to
Prolog enhanced with Tcl/Tk can offer further functionality to a Prolog application.

The appendices provide a full listing with description of the predicates available in the tcltk
SICStus Prolog library, and the extensions made to Tcl/Tk for interacting with Prolog.

Lastly, a section on resources gives pointers to where the reader can find more information
on Tcl/Tk.

40.2 Tcl

Tcl is an interpreted scripting language. In this chapter, first the syntax of Tcl is described
and then the core commands are described. It is not intended to give a comprehensive
description of the Tcl language here but an overview of the core commands, enough to get
the user motivated to start writing their own scripts.

For pointers to more information on Tcl; see Section 40.7 [Resources], page 685.

40.2.1 Syntax

A Tcl script consists of a series of strings separated from each other by a newline character.
Each string contains a command or series of semi-colon separated commands. A command
is a series of words separated by spaces. The first word in a command is the name of the
command and subsequent words are its arguments.

An example is:

set a 1
set b 2

which is a Tcl script of two commands: the first command sets the value of variable a to 1,
and the second command sets the value of variable b to 2.

An example of two commands on the same line separated by a semi-colon is:

592 SICStus Prolog

set a 1; set b 2

which is equivalent to the previous example but written entirely on one line.

A command is executed in two phases. In the first phase, the command is broken down
into its constituent words and various textual substitutions are performed on those words.
In the second phase, the procedure to call is identified from the first word in the command,
and the procedure is called with the remaining words as arguments.

There are special syntactic characters that control how the first phase, the substitution
phase, is carried out. The three major substitution types are variable substitution, command
substitution, and backslash substitution.

40.2.1.1 Variable Substitution

Variable substitution happens when a ‘$’ prefixed word is found in a command. There are
three types of variable substitution:

− $name

− where name is a scalar variable. name is simply substituted in the word for its
value. name can contain only letters, digits, or underscores.

− $name(index)

− where name is the name of an array variable and index is the index into it. This
is substituted by the value of the array element. name must contain only letters,
digits, or underscores. index has variable, command, and backslash substitution
performed on it too.

− ${name}

− where name can have any characters in it except closing curly bracket. This is
more or less the same as $name substitution except it is used to get around the
restrictions in the characters that can form name.

An example of variable substitution is:

set a 1
set b $a

which sets the value of variable a to 1, and then sets the value of variable b to the value of
variable a.

40.2.1.2 Command Substitution

Command substitution happens when a word contains an open square bracket, ‘[’. The
string between the open bracket and matching closing bracket are treated as a Tcl script.
The script is evaluated and its result is substituted in place of the original command sub-
stitution word.

Chapter 40: Tcl/Tk Interface 593

A simple example of command substitution is:

set a 1
set b [set a]

which does the same as the previous example but using command substitution. The result
of a set a command is to return the value of a, which is then passed as an argument to set
b and so variable b acquires the value of variable a.

40.2.1.3 Backslash Substitution

Backslash substitution is performed whenever the interpreter comes across a backslash.
The backslash is an escape character and when it is encountered is causes the interpreter
to handle the next characters specially. Commonly escaped characters are ‘\a’ for audible
bell, ‘\b’ for backspace, ‘\f’ for form feed, ‘\n’ for newline, ‘\r’ for carriage return, ‘\t’ for
horizontal tab, and ‘\v’ for vertical tab. Double-backslash, ‘\\’, is substituted with a single
backslash. Other special backslash substitutions have the following forms:

• \ooo

− the digits ooo give the octal value of the escaped character
• \xHH

− the x denotes that the following hexadecimal digits are the value of the escaped
character

Any other character that is backslash escaped is simply substituted by the character itself.
For example, \W is replaced by W.

40.2.1.4 Delaying Substitution

A further syntactic construction is used to delay substitution. When the beginning of a
word starts with a curly bracket, ‘{’, it does not do any of the above substitutions between
the opening curly bracket and its matching closing curly bracket. The word ends with the
matching closing curly bracket. This construct is used to make the bodies of procedures in
which substitutions happen when the procedure is called, not when it is constructed. Or it
is used anywhere when the programmer does not want the normal substitutions to happen.
For example:

puts {I have $20}

will print the string ‘I have $20’ and will not try variable substitution on the ‘$20’ part.

A word delineated by curly brackets is replaced with the characters within the brackets
without performing the usual substitutions.

594 SICStus Prolog

40.2.1.5 Double-Quotes

A word can begin with a double-quote and ending with the matching closing double-quote.
Substitutions as detailed above are done on the characters between the quotes, and the
result is then substituted for the original word. Typically double-quotes are used to group
sequences of characters that contain spaces into a single command word.

For example:

set name "Fred the Great"
puts "Hello my name is $name"

outputs ‘Hello my name is Fred the Great’. The first command sets the value of variable
name to the following double-quoted string "Fred the Great". The the next command
prints its argument, a single argument because it is a word delineated by double-quotes,
that has had variable substitution performed on it.

Here is the same example but using curly brackets instead of double-quotes:

set name {Fred the Great}
puts {Hello my name is $name}

gives the output ‘Hello my name is $name’ because substitutions are suppressed by the
curly bracket notation.

And again the same example but without either curly brackets or double-quotes:

set name Fred the Great
puts Hello my name is $name

simply fails because both set and puts expect a single argument but without the word
grouping effects of double-quotes or curly brackets they find that they have more than one
argument and throw an exception.

Being a simple scripting language, Tcl does not have any real idea of data types. The
interpreter simply manipulates strings. The Tcl interpreter is not concerned with whether
those strings contain representations of numbers or names or lists. It is up to the commands
themselves to interpret the strings that are passed to them as arguments in any manner
those choose.

40.2.2 Variables

This has been dealt with implicitly above. A variable has a name and a value. A name can
be any string whatsoever, as can its value.

For example,

set "Old King Cole" "merry soul"

Chapter 40: Tcl/Tk Interface 595

sets the value of the variable named Old King Cole to the value merry soul. Variable
names can also be numbers:

set 123 "one two three"

sets the variable with name 123 to the value one two three. In general, it is better to use
the usual conventions — start with a letter then follow with a combination of letters, digits,
and underscores — when giving variables names to avoid confusion.

Array variables are also available in Tcl. These are denoted by an array name followed by
an array index enclosed in round brackets. As an example:

set fred(one) 1
set fred(two) 2

will set the variable fred(one) to the value 1 and fred(two) to the value 2.

Tcl arrays are associative arrays in that both the array name and the array index can be
arbitrary strings. This also makes multidimensional arrays possible if the index contains a
comma:

set fred(one,two) 12

It is cheating in that the array is not stored as a multidimensional array with a pair of
indices, but as a linear array with a single index that happens to contain a comma.

40.2.3 Commands

Now that the Tcl syntax and variables have been been dealt with, we will now look at some
of the commands that are available.

Each command when executed returns a value. The return value will be described along
with the command.

40.2.3.1 Notation

A quick word about the notation used to describe Tcl commands. In general, a description
of a command is the name of the command followed by its arguments separated by spaces.
An example is:

set varName ?value?

which is a description of the Tcl set command, which takes a variable name varName and
an optional argument, a value.

Optional arguments are enclosed in question mark, ?, pairs, as in the example.

596 SICStus Prolog

A series of three dots . . . represents repeated arguments. An example is a description of
the unset command:

unset varName ?varName varName ...?

which shows that the unset command has at least one compulsory argument varName but
has any number of subsequent optional arguments.

40.2.3.2 Commands to Do with Variables

The most used command over variables is the set command. It has the form

set varName ?value?

The value of value is determined, the variable varName is set to it, and the value is returned.
If there is no value argument then simply the value of the variable is returned. It is thus
used to set and/or get the value of a variable.

The unset command is used to remove variables completely from the system:

unset varName ?varName varName ...?

which given a series of variable names deletes them. The empty string is always returned.

There is a special command for incrementing the value of a variable:

incr varName ?increment?

which, given the name of a variable thats value is an integer string, increments it by the
amount increment. If the increment part is left out then it defaults to 1. The return value
is the new value of the variable.

40.2.3.3 Expressions

Expressions are constructed from operands and operators and can then be evaluated. The
most general expression evaluator in Tcl is the expr command:

expr arg ?arg arg ... arg?

which evaluates its arguments as an expression and returns the value of the evaluation.

A simple example expression is

expr 2 * 2

which when executed returns the value 4.

Chapter 40: Tcl/Tk Interface 597

There are different classes of operators: arithmetic, relational, logical, bitwise, and choice.
Here are some example expressions involving various operators:

arithmetic $x * 2
relational $x > 2
logical ($x == $y) || ($x == $z)
bitwise 8 & 2
choice ($a == 1) ? $x : $y

Basically the operators follow the syntax and meaning of their ANSI C counterparts.

Expressions to the expr command can be contained in curly brackets in which case the
usual substitutions are not done before the expr command is evaluated, but the command
does its own round of substitutions. So evaluating a script such as:

set a 1
expr { ($a==1) : "yes" ? "no" }

will evaluate to yes.

Tcl also has a whole host of math functions that can be used in expressions. Their evaluation
is again the same as that for their ANSI C counterparts. For example:

expr { 2*log($x) }

will return 2 times the natural log of the value of variable x.

40.2.3.4 Lists

Tcl has a notion of lists, but as with everything it is implemented through strings. A list is
a string that contains words.

A simple list is just a space separated series of strings:

set a {one two three four five}

will set the variable a to the list containing the five strings shown. The empty list is denoted
by an open and close curly bracket pair with nothing in between: {}.

For the Prolog programmer, there is much confusion between a Prolog implementation of
lists and the Tcl implementation of lists. In Prolog we have a definite notion of the printed
representation of a list: a list is a sequence of terms enclosed in square brackets (we ignore
dot notation for now); a nested list is just another term.

In Tcl, however, a list is really just a string that conforms to a certain syntax: a string of
space separated words. But in Tcl there is more than one way of generating such a string.
For example,

set fred {a b c d}

598 SICStus Prolog

sets fred to

"a b c d"

as does

set fred "a b c d"

because {a b c d} evaluates to the string a b c d, which has the correct syntax for a list.
But what about nested lists? Those are represented in the final list-string as being contained
in curly brackets. For example:

set fred {a b c {1 2 3} e f}

results in fred having the value

"a b c {1 2 3} e f"

The outer curly brackets from the set command have disappeared, which causes confusion.
The curly brackets within a list denote a nested list, but there are no curly brackets at the
top-level of the list. (We can’t help thinking that life would have been easier if the creators
of Tcl would have chosen a consistent representation for lists, as Prolog and LISP do.)

So remember: a list is really a string with a certain syntax, space separated items or words;
a nested list is surrounded by curly brackets.

There are a dozen commands that operate on lists.

concat ?list list ...?

This makes a list out of a series of lists by concatenating its argument lists together. The
return result is the list resulting from the concatenation.

lindex list index

returns the index-th element of the list. The first element of a list has an index of 0.

linsert list index value ?value ...?

returns a new list in which the value arguments have been inserted in turn before the
index-th element of list.

list ?value value ...?

returns a list where each element is one of the value arguments.

llength list

returns the number of elements in list list.

lrange list first last

Chapter 40: Tcl/Tk Interface 599

returns a slice of a list consisting of the elements of the list list from index first until index
last.

lreplace list first last ?value ... value?

returns a copy of list list but with the elements between indices first and last replaced with
a list formed from the value arguments.

lsearch ?-exact? ?-glob? ?-regexp? list pattern

returns the index of the first element in the list that matches the given pattern. The type
of matching done depends on which of the switch is present ‘-exact’, ‘-glob’, ‘-regexp’,
is present. Default is ‘-glob’.

lsort ?-ascii? ?-integer? ?-real? ?-command command? ?-increasing?
?-decreasing{? list

returns a list, which is the original list list sorted by the chosen technique. If none of the
switches supplies the intended sorting technique then the user can provide one through the
‘-command command’ switch.

There are also two useful commands for converting between lists and strings:

join list ?joinString?

which concatenates the elements of the list together, with the separator joinString between
them, and returns the resulting string. This can be used to construct filenames; for example:

set a {{} usr local bin}
set filename [join $a /]

results in the variable filename having the value /usr/local/bin.

The reverse of the join command is the split command:

split string ?splitChars?

which takes the string string and splits it into string on splitChars boundaries and returns
a list with the strings as elements. An example is splitting a filename into its constituent
parts:

set a [split /usr/local/src /]

gives a the value {{} usr local src}, a list.

40.2.3.5 Control Flow

Tcl has the four usual classes of control flow found in most other programming languages:

if...elseif...else, while, for, foreach, switch, and eval.

600 SICStus Prolog

We go through each in turn.

The general form of an if command is the following:

if test1 body1 ?elseif test2 body2 elseif ...? ?else bodyn?

which when evaluated, evaluates expression test1, which if true causes body1 to be evalu-
ated, but if false, causes test2 to be evaluated, and so on. If there is a final else clause
then its bodyn part is evaluated if all of the preceding tests failed. The return result of an
if statement is the result of the last body command evaluated, or the empty list if none of
the bodies are evaluated.

Conditional looping is done through the while command:

while test body

which evaluates expression test, which if true then evaluates body. It continues to do that
until test evaluates to 0, and returns the empty string.

A simple example is:

set a 10
while {$a > 0} { puts $a; incr a -1 }

which initializes variable a with value ten and then loops printing out the value of a and
decrementing it until its value is 0, when the loop terminates.

The for loop has the following form:

for init test reinit body

which initializes the loop by executing init, then each time around the loop the expression
test is evaluated, which if true causes body to be executed and then executes reinit. The
loop spins around until test evaluates to 0. The return result of a for loop is the empty
string.

An example of a for loop:

for {set a 10} ($a>0) {incr a -1} {puts $a}

which initializes the variable a with value 10, then goes around the loop printing the value
of a and decrementing it as long as its value is greater than 0. Once it reaches 0 the loop
terminates.

The foreach command has the following form:

foreach varName list body

where varName is the name of a variable, list is an instance of a list, and body is a series
of commands to evaluate. A foreach then iterates over the elements of a list, setting the

Chapter 40: Tcl/Tk Interface 601

variable varName to the current element, and executes body. The result of a foreach loop
is always the empty string.

An example of a foreach loop:

foreach friend {joe mary john wilbert} {puts "I like $friend"}

will produce the output:

I like joe
I like mary
I like john
I like wilbert

There are also a couple of commands for controlling the flow of loops: continue and break.

continue stops the current evaluation of the body of a loop and goes on to the next one.

break terminates the loop altogether.

Tcl has a general switch statement, which has two forms:

switch ?options? string pattern body ?pattern body ... ?

switch ?options? string { pattern body ?pattern body ...? }

When executed, the switch command matches its string argument against each of the pat-
tern arguments, and the body of the first matching pattern is evaluated. The matching
algorithm depends on the options chosen, which can be one of

‘-exact’ use exact matching
‘-glob’ use glob-style matching
‘-regexp’ use regular expression matchinig

An example is:

set a rob
switch -glob $a {

a*z { puts "A to Z"}
r*b { puts "rob or rab"}

}

which will produce the output:

rob or rab

There are two forms of the switch command. The second form has the command arguments
surrounded in curly brackets. This is primarily so that multi-line switch commands can be
formed, but it also means that the arguments in brackets are not evaluated (curly brackets
suppress evaluation), whereas in the first type of switch statement the arguments are first
evaluated before the switch is evaluated. These effects should be borne in mind when
choosing which kind of switch statement to use.

602 SICStus Prolog

The final form of control statement is eval:

eval arg ?arg ...?

which takes one or more arguments, concatenates them into a string, and executes the string
as a command. The return result is the normal return result of the execution of the string
as a command.

An example is

set a b
set b 0
eval set $a 10

which results in the variable b being set to 10. In this case, the return result of the eval is
10, the result of executing the string "set b 10" as a command.

40.2.3.6 Commands over Strings

Tcl has several commands over strings. There are commands for searching for patterns
in strings, formatting and parsing strings (much the same as printf and scanf in the C
language), and general string manipulation commands.

Firstly we will deal with formatting and parsing of strings. The commands for this are
format and scan respectively.

format formatString ?value value ...?

which works in a similar to C’s printf; given a format string with placeholders for values
and a series of values, return the appropriate string.

Here is an example of printing out a table for base 10 logarithms for the numbers 1 to 10:

for {set n 1} {$n <= 10} {incr n} {
puts [format "log10(%d) = %.4f" $n [expr log10($n)]]

}

which produces the output

Chapter 40: Tcl/Tk Interface 603

ln(1) = 0.0000
ln(2) = 0.3010
ln(3) = 0.4771
ln(4) = 0.6021
ln(5) = 0.6990
ln(6) = 0.7782
ln(7) = 0.8451
ln(8) = 0.9031
ln(9) = 0.9542
ln(10) = 1.0000

The reverse function of format is scan:

scan string formatString varName ?varName ...?

which parses the string according to the format string and assigns the appropriate values
to the variables. it returns the number of fields successfully parsed.

An example,

scan "qty 10, unit cost 1.5, total 15.0" \
"qty %d, unit cost %f, total %f" \
quantity cost_per_unit total

would assign the value 10 to the variable quantity, 1.5 to the variable cost_per_unit and
the value 15.0 to the variable total.

There are commands for performing two kinds of pattern matching on strings: one for
matching using regular expressions, and one for matching using UNIX-style wildcard pattern
matching (globbing).

The command for regular expressions matching is as follows:

regexp ?-indices? ?-nocase? exp string ?matchVar? ?subVar subVar ...?

where exp is the regular expression and string is the string on which the matching is per-
formed. The regexp command returns 1 if the expression matches the string, 0 otherwise.
The optional ‘-nocase’ switch does matching without regard to the case of letters in the
string. The optional matchVar and subVar variables, if present, are set to the values of
string matches. In the regular expression, a match that is to be saved into a variable is
enclosed in round braces. An example is

regexp {([0-9]+)} "I have 3 oranges" a

will assign the value 3 to the variable a.

If the optional switch ‘-indices’ is present then instead of storing the matching substrings
in the variables, the indices of the substrings are stored; that is a list with a pair of numbers
denoting the start and end position of the substring in the string. Using the same example:

604 SICStus Prolog

regexp -indices {([0-9]+)} "I have 3 oranges" a

will assign the value "7 7", because the matched numeral 3 is in the eighth position in the
string, and indices count from 0.

String matching using the UNIX-style wildcard pattern matching technique is done through
the string match command:

string match pattern string

where pattern is a wildcard pattern and string is the string to match. If the match succeeds,
the command returns 1; otherwise, it returns 0. An example is

string match {[a-z]*[0-9]} {a_$%^_3}

which matches because the command says match any string that starts with a lower case
letter and ends with a number, regardless of anything in between.

There is a command for performing string substitutions using regular expressions:

regsub ?-all? ?-nocase? exp string subSpec varName

where exp is the regular expression and string is the input string on which the substitution
is made, subSpec is the string that is substituted for the part of the string matched by the
regular expression, and varName is the variable on which the resulting string is copied into.
With the ‘-nocase’ switch, then the matching is done without regard to the case of letters
in the input string. The ‘-all’ switch causes repeated matching and substitution to happen
on the input string. The result of a regsub command is the number of substitutions made.

An example of string substitution is:

regsub {#name#} {My name is #name#} Rob result

which sets the variable result to the value "My name is Rob". An example of using the
‘-all’ switch:

regsub -all {#name#} {#name#’s name is #name#} Rob result

sets the variable result to the value "Rob’s name is Rob" and it returns the value 2 because
two substitutions were made.

The are a host of other ways to manipulate strings through variants of the string command.
Here we will go through them.

To select a character from a string given the character position, use the string index
command. An example is:

string index "Hello world" 6

which returns w, the 7th character of the string. (Strings are indexed from 0).

Chapter 40: Tcl/Tk Interface 605

To select a substring of a string, given a range of indices use the string range command.
An example is:

string range "Hello world" 3 7

which returns the string "lo wo". There is a special index marker named end, which is used
to denote the the end of a string, so the code

string range "Hello world" 6 end

will return the string "world".

There are two ways to do simple search for a substring on a string, using the string first
and string last commands. An example of string first is:

string first "dog" "My dog is a big dog"

find the first position in string "My dog is a big dog" that matches "dog". It will return
the position in the string in which the substring was found, in this case 3. If the substring
cannot be found then the value -1 is returned.

Similarly,

string last "dog" "My dog is a big dog"

will return the value 16 because it returns the index of the last place in the string that the
substring matches. Again, if there is no match, -1 is returned.

To find the length of a string use string length, which given a string simply returns its
length.

string length "123456"

returns the value 6.

To convert a string completely to upper case use string toupper:

string toupper "this is in upper case"

returns the string "THIS IS IN UPPER CASE".

Similarly,

string tolower "THIS IS IN LOWER CASE"

returns the string "this is in lower case".

There are commands for removing characters from strings: string trim, string
trimright, and string trimleft.

string trim string ?chars?

606 SICStus Prolog

which removes the characters in the string chars from the string string and returns the
trimmed string. If chars is not present, then whitespace characters are removed. An example
is:

string string "The dog ate the exercise book" "doe"

which would return the string "Th g at th xrcis bk".

string trimleft is the same as string trim except only leading characters are removed.
Similarly string trimright removes only trailing characters. For example:

string trimright $my_input

would return a copy of the string contained in $my_input but with all the trailing whitespace
characters removed.

40.2.3.7 File I/O

There is a comprehensive set of commands for file manipulation. We will cover only the
some of the more important ones here.

To open a file the open command is used:

open name ?access?

where name is a string containing the filename, and the option access parameter contains
a string of access flags, in the UNIX style. The return result is a handle to the open file.

If access is not present then the access permissions default to "r", which means open for
reading only. The command returns a file handle that can be used with other commands.
An example of the use of the open command is

set fid [open "myfile" "r+"]

which means open the file myfile for both reading and writing and set the variable fid to
the file handle returned.

To close a file simply use

close fileId

For example,

close $fid

will close the file that has the file handle stored in the variable fid.

To read from a file, the read command is used:

read fileId numBytes

Chapter 40: Tcl/Tk Interface 607

which reads numBytes bytes from the file attached to file handle fileId, and returns the
bytes actually read.

To read a single line from a file use gets:

gets fileId ?varName?

which reads a line from the file attached to file handle fileId but chops off the trailing
newline. If variable varName is specified then the string read in is stored there and the
number of bytes is returned by the command. If the variable is not specified, then the
command returns the string only.

To write to a file, use puts:

puts ?-nonewline? ?fileId? string

which outputs the string string. If the file handle fileId is present then the string is output
to that file; otherwise, it is printed on stdout. If the switch ‘-nonewline’ is present then
a trailing newline is not output.

To check if the end of a file has been reached, use eof:

eof fileId

which, given a file handle fileId returns 1 if the end has been reached, and 0 otherwise.

The are a host of other commands over files and processes, which we will not go into here.

(For extra information on file I/O commands, refer to the Tcl manual pages.)

40.2.3.8 User Defined Procedures

Tcl provides a way of creating new commands, called procedures, that can be executed in
scripts. The arguments of a procedure can be call-by-value or call-by-reference, and there
is also a facility for creating new user defined control structures using procedures.

A procedure is declared using the proc command:

proc name argList body

where the name of the procedure is name, the arguments are contained in argList and the
body of the procedure is the script body. An example of a procedure is:

proc namePrint { first family } {
puts "My first name is $first"
puts "My family name is $family"

}

which can be called with

608 SICStus Prolog

namePrint Tony Blair

to produce the output:

My first name is Tony
My family name is Blair

A procedure with no arguments is specified with an empty argument list. An example is a
procedure that just prints out a string:

proc stringThing {} {
puts "I just print this string"

}

Arguments can be given defaults by pairing them with a value in a list. An example here
is a counter procedure:

proc counter { value { inc 1 } } {
eval $value + $inc

}

which can be called with two arguments like this

set v 10
set v [counter $v 5]

which will set variable v to the value 15; or it can be called with one argument:

set v 10
set v [counter $v]

in which case v will have the value 11, because the default of the argument inc inside the
procedure is the value 1.

There is a special argument for handling procedures with variable number of arguments,
the args argument. An example is a procedure that sums a list of numbers:

proc sum { args } {
set result 0;

foreach n $args {
set result [expr $result + $n]

}

return $result;
}

which can be called like this:

sum 1 2 3 4 5

Chapter 40: Tcl/Tk Interface 609

which returns the value 15.

The restriction on using defaulted arguments is that all the arguments that come after the
defaulted ones must also be defaulted. If using args then it must be the last argument in
the argument list.

A procedure can return a value through the return command:

return ?options? ?value?

which terminates the procedure returning value value, if specified, or just causes the proce-
dure to return, if no value specified. (The ?options? part has to do with raising exceptions,
which we will will not cover here.)

The return result of a user defined procedure is the return result of the last command
executed by it.

So far we have seen the arguments of a procedure are passed using the call-by-value mech-
anism. They can be passed call by reference using the upvar command:

upvar ?level? otherVar1 myVar1 ?otherVar2 myVar2 ...?

which makes accessible variables somewhere in a calling context with the current context.
The optional argument level describes how many calling levels up to look for the variable.
This is best shown with an example:

set a 10
set b 20

proc add { first second } {
upvar $first f $second s
expr $f+$s

}

which when called with

add a b

will produce the result 30. If you use call-by-value instead:

add $a $b

then the program will fail because when executing the procedure add it will take the first
argument 10 as the level argument, a bad level. (Also variable 20 doesn’t exist at any level.)

New control structures can be generated using the uplevel command:

uplevel ?level? arg ?arg arg ...?

which is like eval, but it evaluates its arguments in a context higher up the calling stack.
How far up the stack to go is given by the optional level argument.

610 SICStus Prolog

proc do { loop condition } {
set nostop 1

while { $nostop } {
uplevel $loop
if {[uplevel "expr $condition"] == 0} {

set nostop 0
}

}
}

which when called with this

set x 5
do { puts $x; incr x -1 } { $x > 0 }

will print

5
4
3
2
1

(Please note: this doesn’t quite work for all kinds of calls because of break, continue, and
return. It is possible to get around these problem, but that is outside the scope of this
tutorial.)

40.2.3.9 Global Variables

A word about the scope of variables. Variables used within procedures are normally created
only for the duration of that procedure and have local scope.

It is possible to declare a variable as having global scope, through the global command:

global name1 ? name2 ...?

where name1, name2, . . . , are the names of global variables. Any references to those names
will be taken to denote global variables for the duration of the procedure call.

Global variables are those variables declared at the topmost calling context. It is possible to
run a global command at anytime in a procedure call. After such a command, the variable
name will refer to a global variable until the procedure exits.

An example:

Chapter 40: Tcl/Tk Interface 611

set x 10

proc fred { } {
set y 20
global x
puts [expr $x + $y]

}

fred

will print the result 30 where 20 comes from the local variable y and 10 comes from the
global variable x.

Without the global x line, the call to fred will fail with an error because there is no
variable x defined locally in the procedure for the expr to evaluate over.

40.2.3.10 source

In common with other scripting languages, there is a command for evaluating the contents
of a file in the Tcl interpreter:

source fileName

where fileName is the filename of the file containing the Tcl source to be evaluated. Control
returns to the Tcl interpreter once the file has been evaluated.

40.2.4 What We Have Left Out

We have left out a number of Tcl commands as they are outside of the scope of this tutorial.
We list some of them here to show some of what Tcl can do. Please refer to the Tcl manual
for more information.

http implements the HTTP protocol for retrieving web pages

namespaces
a modules systems for Tcl

trace commands can be attached to variables that are triggered when the variable
changes value (amongst other things)

processes start, stop, and manage processes

sockets UNIX and Internet style socket management

exception handling
3rd party extension packages

load extension packages into Tcl and use their facilities as native Tcl commands

612 SICStus Prolog

40.3 Tk

Tk is an extension to Tcl. It provides Tcl with commands for easily creating and managing
graphical objects, or widgets, so providing a way to add graphical user interfaces (GUIs) to
Tcl applications.

In this section we will describe the main Tk widgets, the Tcl commands used to manipulate
them, how to give them behaviors, and generally how to arrange them into groups to create
a GUI.

40.3.1 Widgets

A widget is a “window object”. It is something that is displayed that has at least two parts:
a state and a behavior. An example of a widget is a button. Its state is things like what
color is it, what text is written it in, and how big it is. Its behavior is things like what it
does when you click on it, or what happens when the cursor is moved over or away from it.

In Tcl/Tk there are three parts to creating a useful widget. The first is creating an instance
of the widget with its initial state. The second is giving it a behavior by defining how
the widget behaves when certain events happen — event handling. The third is actually
displaying the widget possibly in a group of widgets or inside another widget — geometry
management. In fact, after creating all the widgets for a GUI, they are not displayed until
handled by a geometry manager, which has rules about how to calculate the size of the
widgets and how they will appear in relation to each other.

40.3.2 Types of Widget

In Tcl/Tk there are currently 15 types of widget. In alphabetical order they are (see also
library(’tcltk/examples/widgets.tcl’)):

button a simple press button

canvas is a container for displaying “drawn” objects such as lines, circles, and polygons.

checkbutton
a button that hold a state of either on or off

entry a text entry field

frame a widget that is a container for other widgets

label a simple label

listbox a box containing a list of options

menu a widget for creating menu bars

menubutton
a button, which when pressed offers a selection of choices

Chapter 40: Tcl/Tk Interface 613

message a multi-line text display widget

radiobutton
a button used to form groups of mutually interacting buttons (When one button
is pressed down, the others pop up.)

scale is like a slider on a music console. It consists of a trough scale and a slider.
Moving the slider to a position on the scale sets the overall value of the widget
to that value.

scollbar used to add scrollbars to windows or canvases. The scrollbar has a slider, which
when moved changes the value of the slider widget.

text a sophisticated multi-line text widget that can also display other widgets such
as buttons

toplevel for creating new standalone toplevel windows. (These windows are containers
for other widgets. They are not terminal windows.)

614 SICStus Prolog

Meet The Main Tk Widgets

Chapter 40: Tcl/Tk Interface 615

40.3.3 Widgets Hierarchies

Before going further it is necessary to understand how instances of widgets are named.
Widgets are arranged in a hierarchy. The names of widget instances are formed from dot
separated words. The root window is simply . on its own. So for, example, a button widget
that is displayed in the root window might have the name .b1. A button that is displayed
inside a frame that is displayed inside the root window may have the name .frame1.b1.
The frame would have the name .frame1.

Following this notation, it is clear that widgets are both formed in hierarchies, with the dot
notation giving the path to a widget, and in groups, all widgets with the same leading path
are notionaly in the same group.

(It is a similar to the way file systems are organized. A file has a path that shows where to
find it in the hierarchical file system. But also files with the same leading path are in the
same directory/folder and so are notionaly grouped together.)

An instance of a widget is created through the a Tcl command for that widget. The widget
command my have optional arguments set for specifying various attributes of the widget
that it will have when it is created. The result of a successful widget command is the name
of the new widget.

For example, a command to create a button widget named .mybutton that displays the
text “I am a button” would look like this:

button .mybutton -text "I am a button"

and this will return the name .mybutton.

A widget will only be created if all the windows/widgets in the leading path of the new
widget also exist, and also that the name of the new widget does not already exist.

For example, the following

button .mybutton -text "I am a button"
button .mybutton -text "and so am I"

will fail at the second command because there is also a widget named .mybutton from the
first command.

The following will also fail

button .frame.mybutton -text "I am a button"

if there is no existing widget with the name .frame to be the parent of .mybutton.

All this begs the question: why are widgets named and arranged in a hierarchy? Isn’t a
GUI just a bunch of widgets displayed in a window?

616 SICStus Prolog

This is not generally how GUIs are arranged. For example, they often have a menubar over
the top of each window. The menubar contains pulldown menus. The pulldown menus may
have cascading menu items that may cascade down several levels. Under the menu bar is
the main part of the window that may also be split into several “frames”. A left hand frame
my have a set of buttons in it, for example. And so on. From this you can see that the
widgets in GUIs are naturally arranged in a hierarchy. To achieve this in Tcl/Tk instances
of widgets are placed in a hierarchy, which is reflected in their names.

Now we will go through each of the widget commands in turn. Each widget command has
many options most of which will not be described here. Just enough will be touched on for
the reader to understand the basic operation of each widget. For a complete description of
each widget and its many options refer to the Tk manual.

40.3.4 Widget Creation

As has already been said, a widget is a window object that has state and behavior. In terms
of Tcl/Tk a widget is created by calling a widget creation command. There is a specific
widget creation for each type of widget.

The widget creation command is supplied with arguments. The first argument is always
the name you want to give to the resulting widget; the other arguments set the initial state
of the widget.

The immediate result of calling a widget creation command is that it returns the name of
the new widget. A side-effect is that the instance of the widget is created and its name
is defined as in the Tcl interpreter as a procedure through which the widget state can be
accessed and manipulated.

This needs an example. We will use the widget creator command button to make a button
widget:

button .fred -text ’Fred’ -background red

which creates an instance of a button widget named .fred that will display the text Fred
on the button and will have a red background color. Evaluating this command returns the
string .fred, the name of the newly created widget.

As a side-effect, a Tcl procedure named .fred is created. A call to a widget instance has
the following form:

widgetName method methodArgs

where widgetName is the name of the widget to be manipulated, method is the action to
be performed on the widget, and methodArgs are the arguments passed to the method that
is performed on the widget.

The two standard methods for widgets are configure and cget. configure - is used to
change the state of a widget; for example:

Chapter 40: Tcl/Tk Interface 617

.fred configure -background green -text ’Sid’

will change the background color of the widget .fred to green and the text displayed to
Sid.

cget is used to get part of the state of a widget; for example:

.fred cget -text

will return Sid if the text on the button .fred is Sid.

In addition to these general methods, there are special methods for each widget type. For
example, with button widgets you have the flash and invoke methods.

For example,

.fred invoke

can be called somewhere in the Tcl code to invoke button .fred as though it had been
clicked on.

.fred flash

can be called somewhere in the Tcl code to cause the button to flash.

We will come across some of these special method when we discuss the widgets in detail. For
a comprehensive list of widget methods, refer to entry for the appropriate widget creation
command in the Tcl/Tk manual.

We now discuss the widget creation command for each widget type.

40.3.4.1 label

A label is a simple widget for displaying a single line of text. An example of creating an
instance of a label is

label .l -text "Hello world!"

which simply creates the label named .l with the text ‘Hello world!’ displayed in it.
Most widgets that display text can have a variable associated with them through the op-
tion ‘-textvariable’. When the value of the variable is changed the text changes in the
associated label. For example,

label .l -text "Hello world!" -textvariable mytext

creates a text label called .l displaying the initial text ‘Hello world!’ and associated text
variable mytext; mytext will start with the value ‘Hello world!’. However, if the following
script is executed:

618 SICStus Prolog

set mytext "Goodbye moon!"

then magically the text in the label will change to ‘Goodbye moon!’.

40.3.4.2 message

A message widget is similar to a label widget but for multi-line text. As its name suggests
it is mostly used for creating popup message information boxes.

An example of a message widget is

message .msg -text "Your data is incorrect.\n\n \
Please correct it and try again." \

-justify center

which will create a message widget displaying the text shown, center justified. The width
of the message box can be given through the ‘-width’ switch. Any lines that exceed the
width of the box are wrapped at word boundaries.

40.3.4.3 button

Calling the button command creates an instance of a button widget. An example is:

button .mybutton -text "hello" -command {puts "howdie!"}

which creates a button with name .mybutton that will display the text "hello" and will
execute the Tcl script puts "howdie!" (that is print howdie! to the terminal) when clicked
on.

40.3.4.4 checkbutton

Checkbuttons are buttons that have a fixed state that is either on or off. Clicking on the
button toggles the state. To store the state, a checkbutton is associated with a variable.
When the state of the checkbutton changes, so does that of the variable. An example is:

checkbutton .on_or_off -text "I like ice cream" -variable ice

which will create a checkbutton with name .on_or_off displaying the text ‘I like ice
cream’ and associated with the variable ice. If the checkbutton is checked then ice will
have the value 1; if not checked then it will have the value 0. The state of the checkbutton
can also be changed by changing the state of the variable. For example, executing

set ice 0

will set the state of .on_or_off to not checked.

Chapter 40: Tcl/Tk Interface 619

40.3.4.5 radiobutton

Radiobuttons are buttons that are grouped together to select one value among many. Each
button has a value, but only one in the button group is active at any one time. In Tcl/Tk
this is achieved by creating a series of radiobutton that share an associated variable. Each
button has a value. When a radiobutton is clicked on, the variable has that value and all
the other buttons in the group are put into the off state. Similarly, setting the value of the
variable is reflected in the state of the button group. An example is:

radiobutton .first -value one -text one -variable count
radiobutton .second -value two -text two -variable count
radiobutton .third -value three -text three -variable count

which creates three radiobuttons that are linked through the variable count. If button
.second is active, for example, then the other two buttons are in the inactive state and
count has the value two. The following code sets the button group to make the button
.third active and the rest inactive regardless of the current state:

set count three

If the value of count does not match any of the values of the radiobuttons then they will
all be off. For example executing the script

set count four

will turn all the radiobuttons off.

40.3.4.6 entry

An entry widget allows input of a one line string. An example of an entry widget:

label .l -text "Enter your name"
entry .e -width 40 -textvariable your_name

would display a label widget named .l showing the string ‘Enter your name’ and an entry
widget named .e of width 40 characters. The value of variable your_name will reflect the
string in the entry widget: as the entry widget string is updated, so is the value of the
variable. Similarly, changing the value of your_name in a Tcl script will change the string
displayed in the entry field.

40.3.4.7 scale

A scale widget is for displaying an adjustable slider. As the slider is moved its value, which
is displayed next to the slider, changes. To specify a scale, it must have ‘-from’ and ‘-to’

620 SICStus Prolog

attributes, which is the range of the scale. It can have a ‘-command’ option, which is set to
a script to evaluate when the value of the slider changes.

An example of a scale widget is:

scale .s -from 0 -to 100

which creates a scale widget with name .s that will slide over a range of integers from 0 to
100.

There are several other options that scales can have. For example it is possible to display
tick marks along the length of the scale through the ‘-tickinterval’ attribute, and it is
possible to specify both vertically and horizontally displayed scales through the ‘-orient’
attribute.

40.3.4.8 listbox

A listbox is a widget that displays a list of single line strings. One or more of the strings
may be selected through using the mouse. Initializing and manipulating the contents of a
listbox is done through invoking methods on the instance of the listbox. As examples, the
insert method is used to insert a string into a listbox, delete to delete one, and get to
retrieve a particular entry. Also the currently selected list items can be retrieved through
the selection command.

Here is an example of a listbox that is filled with entries of the form entry N:

listbox .l
for { set i 0 } { $i<10 } { incr i } {

.l insert end "entry $i"
}

A listbox may be given a height and/or width attribute, in which case it is likely that not
all of the strings in the list are visible at the same time. There are a number of methods
for affecting the display of such a listbox.

The see method causes the listbox display to change so that a particular list element is in
view. For example,

.l see 5

will make sure that the sixth list item is visible. (List elements are counted from element
0.)

Chapter 40: Tcl/Tk Interface 621

40.3.4.9 scrollbar

A scrollbar widget is intended to be used with any widget that is likely to be able to display
only part of its contents at one time. Examples are listboxes, canvases, text widgets, and
frames, amongst others.

A scrollbar widget is displayed as a movable slider between two arrows. Clicking on either
arrow moves the slider in the direction of the arrow. The slider can be moved by dragging
it with the cursor.

The scollbar and the widget it scrolls are connected through Tcl script calls. A scrollable
widgets will have a scrollcommand attribute that is set to a Tcl script to call when the
widget changes its view. When the view changes the command is called, and the command
is usually set to change the state of its associated scrollbar.

Similarly, the scrollbar will have a command attribute that is another script that is called
when an action is performed on the scrollbar, like moving the slider or clicking on one of
its arrows. That action will be to update the display of the associated scrollable widget
(which redraws itself and then invokes its scrollcommand, which causes the scrollbar to be
redrawn).

How this is all done is best shown through an example:

listbox .l -yscrollcommand ".s set" -height 10
scrollbar .s -command ".l yview"
for { set i 0 } { $i < 50 } { incr i } {

.l insert end "entry $i"
}

creates a listbox named .l and a scrollbar named .s. Fifty strings of the form entry N are
inserted into the listbox. The clever part is the way the scrollbar and listbox are linked.
The listbox has its ‘-yscrollcommand’ attribute set to the script ".s set". What happens
is that if the view of .l is changed, then this script is called with 4 arguments attached: the
number of entries in the listbox, the size of the listbox window, the index of the first entry
currently visible, and the index of the last entry currently visible. This is exactly enough
information for the scrollbar to work out how to redisplay itself. For example, changing the
display of the above listbox could result in the following ‘-yscrollcommand’ script being
called:

.s set 50 10 5 15

which says that the listbox contains 50 elements, it can display 10 at one time, the first
element displayed has index 5 and the last one on display has index 15. This call invokes
the set method of the scrollbar widget .s, which causes it to redraw itself appropriately.

If, instead, the user interacts with the scrollbar, then the scrollbar will invoke its ‘-command’
script, which in this example is ".l yview". Before invoking the script, the scrollbar widget
calculates which element should the first displayed in its associated widget and appends its

622 SICStus Prolog

index to the call. For example, if element with index 20 should be the first to be displayed,
then the following call will be made:

.l yview 20

which invokes the yview method of the listbox .l. This causes .l to be updated (which
then causes its ‘-yscrollcommand’ to be called, which updates the scrollbar).

40.3.4.10 frame

A frame widget does not do anything by itself except reserve an area of the display. Although
this does not seem to have much purpose, it is a very important widget. It is a container
widget; that is, it is used to group together collections of other widgets into logical groups.
For example, a row of buttons may be grouped into a frame, then as the frame is manipulated
so will the widgets displayed inside it. A frame widget can also be used to create large areas
of color inside another container widget (such as another frame widget or a toplevel widget).

An example of the use of a frame widget as a container:

canvas .c -background red
frame .f
button .b1 -text button1
button .b2 -text button2
button .b3 -text button3
button .b4 -text button4
button .b5 -text button5
pack .b1 .b2 .b3 .b4 .b5 -in .f -side left
pack .c -side top -fill both -expand 1
pack .f -side bottom

which specifies that there are two main widgets a canvas named .c and a frame named .f.
There are also 5 buttons, .b1 through .b5. The buttons are displayed inside the frame.
Then then the canvas is displayed at the top of the main window and the frame is displayed
at the bottom. As the frame is displayed at the bottom, then so will the buttons because
they are displayed inside the frame.

(The pack command causes the widgets to be handled for display by the packer geometry
manager. The ‘-fill’ and ‘-expand 1’ options to pack for .c tell the display manager that
if the window is resized then the canvas is to expand to fill most of the window. You will
learn about geometry managers later in the Geometry Managers section.)

40.3.4.11 toplevel

A toplevel widget is a new toplevel window. It is a container widget inside which other
widgets are displayed. The root toplevel widget has path . — i.e. dot on its own. Subsequent

Chapter 40: Tcl/Tk Interface 623

toplevel widgets must have a name that is lower down the path tree just like any other
widget.

An example of creating a toplevel widget is:

toplevel .t

All the widgets displayed inside .t must also have .t as the root of their path. For example,
to create a button widget for display inside the .t toplevel the following would work:

button .t.b -text "Inside ’t’"

(Attributes, such as size and title, of toplevel widgets can be changed through the wm
command, which we will not cover in this tutorial. The reader is referred to the Tk manual.)

40.3.4.12 menu

Yet another kind of container is a menu widget. It contains a list of widgets to display
inside itself, as a pulldown menu. A simple entry in a menu widget is a command widget,
displayed as an option in the menu widget, which if chosen executes a Tcl command. Other
types of widgets allowed inside a menu widget are radiobuttons and checkboxes. A special
kind of menu item is a separator that is used to group together menu items within a menu.
(It should be noted that the widgets inside a menu widget are special to that menu widget
and do not have an independent existence, and so do not have their own Tk name.)

A menu widget is built by first creating an instance of a menu widget (the container) and
then invoking the add method to make entries into the menu. An example of a menu widget
is as follows:

menu .m
.m add command -label "Open file" -command "open_file"
.m add command -label "Open directory" -command "open_directory"
.m add command -label "Save buffer" -command "save_buffer"
.m add command -label "Save buffer as..." -command "save_buffer_as"
.m add separator
.m add command -label "Make new frame" -command "new_frame"
.m add command -label "Open new display" -command "new_display"
.m add command -label "Delete frame" -command "delete_frame"

which creates a menu widget called .m, which contains eight menu items, the first four of
which are commands, then comes a separator widget, then the final three command entries.
(Some of you will notice that this menu is a small part of the Files menu from the menubar
of the Emacs text editor.)

An example of a checkbox and some radiobutton widget entries:

624 SICStus Prolog

.m add checkbox -label "Inverse video" -variable inv_vid

.m add radiobutton -label "black" -variable color

.m add radiobutton -label "blue" -variable color

.m add radiobutton -label "red" -variable color

which gives a checkbox displaying ‘Inverse video’, keeping its state in the variable inv_
vid, and three radiobuttons linked through the variable color.

Another menu item variant is the cascade variant, which is used to make cascadable menus,
i.e. menus that have submenus. An example of a cascade entry is the following:

.m add cascade -label "I cascade" -menu .m.c

which adds a cascade entry to the menu .m that displays the text ‘I cascade’. If the ‘I
cascade’ option is chosen from the .m menu then the menu .m.c will be displayed.

The cascade option is also used to make menubars at the top of an application window. A
menu bar is simply a menu each element of which is a cascade entry, (for example). The
menubar menu is attached to the application window through a special configuration option
for toplevel widgets, the ‘-menu’ option. Then a menu is defined for each of the cascade
entry in the menubar menu.

There are a large number of other variants to menu widgets: menu items can display bitmaps
instead of text; menus can be specified as tear-off menus; accelerator keys can be defined
for menu items; and so on.

40.3.4.13 menubutton

A menubutton widget displays like a button, but when activated a menu pops up. The
menu of the menubutton is defined through the menu command and is attached to the
menubutton. An example of a menu button:

menubutton .mb -menu .mb.m -text "mymenu"
menu .mb.m
.mb.m add command -label hello
.mb.m add command -label goodbye

which crates a menubutton widget named .mb with attached menu .mb.m and displays the
text ‘mymenu’. Menu .mb.m is defined as two command options, one labelled hello and the
other labelled goodbye. When the menubutton .mb is clicked on then the menu .mb.m will
popup and its options can be chosen.

40.3.4.14 canvas

A canvas widget is a container widget that is used to manage the drawing of complex shapes;
for example, squares, circles, ovals, and polygons. (It can also handle bitmaps, text and

Chapter 40: Tcl/Tk Interface 625

most of the Tk widgets too.) The shapes may have borders, filled in, be clicked on, moved
around, and manipulated.

We will not cover the working of the canvas widget here. It is enough to know that there is
a powerful widget in the Tk toolkit that can handle all manner of graphical objects. The
interested reader is referred to the Tk manual.

40.3.4.15 text

A text widget is another powerful container widget that handles multi-line texts. The
textwidget can display texts with varying font styles, sizes, and colors in the same text, and
can also handle other Tk widgets embedded in the text.

The text widget is a rich and complicated widget and will not be covered here. The inter-
ested reader is referred to the Tk manual.

40.3.5 Geometry Managers

So far we have described each of the Tk widgets but have not mentioned how they are
arranged to be displayed. Tk separates the creating of widgets from the way they are
arranged for display. The “geometry” of the display is handled by a “geometry manager”.
A geometry manager is handed the set of widgets to display with instructions on their
layout. The layout instructions are particular to each geometry manager.

Tk comes with three distinct geometry managers: grid, place, and pack. As might be
expected the grid geometry manager is useful for creating tables of widgets, for example,
a table of buttons.

The place geometry manager simply gives each widget an X and Y coordinate and places
them at that coordinate in their particular parent window.

The pack geometry manager places widgets according to constraints, like “these three but-
ton widgets should be packed together from the left in their parent widget, and should
resize with the parent”.

(In practice the grid and pack geometry managers are the most useful because they can
easily handle events such as resizing of the toplevel window, automatically adjusting the
display in a sensible manner. place is not so useful for this.)

Each container widget (the master) has a geometry manager associated with it, which tells
the container how to display its sub-widgets (slaves) inside it. A single master has one and
only one kind of geometry manager associated with it, but each master can have a different
kind. For example, a frame widget can use the packer to pack other frames inside it. One of
the slave frames could use the grid manager to display buttons inside it itself, while another
slave frame could use the packer to pack labels inside it itself.

626 SICStus Prolog

40.3.5.1 pack

The problem is how to display widgets. For example, there is an empty frame widget inside
which a bunch of other widgets will be displayed. The pack geometry manager’s solution
to this problem is to successively pack widgets into the empty space left in the container
widget. The container widget is the master widget, and the widgets packed into it are its
slaves. The slaves are packed in a sequence: the packing order.

What the packer does is to take the next slave to be packed. It allocates an area for the
slave to be packed into from the remaining space in the master. Which part of the space
is allocated depends on instructions to the packer. When the size of the space has been
determined, this is sliced off the free space, and allocated to the widget that is displayed in
it. Then the remaining space is available to subsequent slaves.

At any one time the space left for packing is a rectangle. If the widget is too small to use up
a whole slice from the length or breadth of the free rectangle, still a whole slice is allocated
so that the free space is always rectangular.

It can be tricky to get the packing instructions right to get the desired finished effect, but
a large number of arrangements of widgets is possible using the packer.

Let us take a simple example: three buttons packed into the root window. First we create
the buttons; see also library(’tcltk/examples/ex3.tcl’):

button .b1 -text b1
button .b2 -text b2
button .b3 -text b3

then we can pack them thus:

pack .b1 .b2 .b3

which produces a display of the three buttons, one on top of the other, button .b1 on the
top, and button .b3 on the bottom.

Three Plain Buttons

If we change the size of the text in button .b2 through the command:

Chapter 40: Tcl/Tk Interface 627

.b2 config -text "hello world"

then we see that the window grows to fit the middle button, but the other two buttons stay
their original size.

Middle Button Widens

The packer defaults to packing widgets in from the top of the master. Other directions can
be specified. For example, the command:

pack .b1 .b2 .b3 -side left

will pack starting at the left hand side of the window. The result of this is that the buttons
are formed in a horizontal row with the wider button, .b2, in the middle.

Packing From The Left

pad-ding

It is possible to leave space between widgets through the padding options to the packer:
‘-padx’ and ‘-pady’. What these do is to allocate space to the slave that is padded with
the padding distances. An example would be:

pack .b1 .b2 .b3 -side left -padx 10

External Padding

628 SICStus Prolog

which adds 10 pixels of space to either side of the button widgets. This has the effect of
leaving 10 pixels at the left side of button .b1, 20 pixels between buttons .b1 and .b2, 20
pixels between buttons .b2 and .b3, and finally 10 pixels on the right side of button .b3.

That was external padding for spacing widgets. There is also internal padding for increasing
the size of widgets in the X and Y directions by a certain amount, through ‘-ipadx’ and
‘-ipady’ options; i.e. internal padding. For example:

pack .b1 .b2 .b3 -side left -ipadx 10 -ipady 10

Internal Padding

instead of spacing out the widgets, will increase their dimensions by 10 pixels in each
direction.

fill-ing

Remember that space is allocated to a widget from the currently available space left in the
master widget by cutting off a complete slice from that space. It is often the case that the
slice is bigger that the widget to be displayed in it.

There are further options for allowing a widget to fill the whole slice allocated to it. This
is done through the ‘-fill’ option, which can have one of four values: none for no filling
(default), x to fill horizontally only, y to fill vertically only, and both to fill both horizontally
and vertically at the same time.

Filling is useful, for example, for creating buttons that are the same size even though they
display texts of differing lengths. To take our button example again, the following code
produces three buttons, one on top of each other, but of the same size:

button .b1 -text b1
button .b2 -text "hello world"
button .b3 -text b3
pack .b1 .b2 .b3 -fill x

Chapter 40: Tcl/Tk Interface 629

Using fill For Evenly Sized Widgets

How does this work? The width of the toplevel windows is dictated by button .b2 because
it has the widest text. Because the three buttons are packed from top to bottom, then
the slices of space allocated to them are cut progressively straight along the top of the
remaining space. i.e. each widget gets a horizontal slice of space the same width cut from
the top-level widget. Only the wide button .b2 would normally fit the whole width of its
slice. But by allowing the other two widgets to fill horizontally, then they will also take up
the whole width of their slices. The result: 3 buttons stacked on top of each other, each
with the same width, although the texts they display are not the same length.

A further common example is adding a scrollbar to a listbox. The trick is to get the scrollbar
to size itself to the listbox; see also library(’tcltk/examples/ex9a.tcl’):

listbox .l
scrollbar .s
pack .l .s -side left

Scrollbar With Listbox, First Try

So far we have a listbox on the left and a tiny scrollbar on the right. To get the scrollbar
to fill up the vertical space around it add the following command:

pack .s -fill y

630 SICStus Prolog

Now the display looks like a normal listbox with a scrollbar.

Scrollbar With Listbox, Second Try

Why does this work? They are packed from the left, so first a large vertical slice of the
master is given to the listbox, then a thin vertical slice is given to the scrollbar. The
scrollbar has a small default width and height and so it does not fill the vertical space of its
slice. But filling in the vertical direction (through the pack .s -fill y command) allows
it to fill its space, and so it adjusts to the height of the listbox.

expand-ing

The fill packing option specifies whether the widget should fill space left over in its slice
of space. A further option to take into account is what happens when the space allocated
to the master widget is much greater than the that used by its slaves. This is not usually
a problem initially because the master container widget is sized to shrink-wrap around the
space used by its slaves. If the container is subsequently resized, however, to a much larger
size there is a question as to what should happen to the slave widgets. A common example
of resizing a container widget is the resizing of a top-level window widget.

The default behavior of the packer is not to change the size or arrangement of the slave
widgets. There is an option though through the expand option to cause the slices of space
allocated to slaves to expand to fill the newly available space in the master. expand can
have one of two values: 0 for no expansion, and 1 for expansion.

Take the listbox-scrollbar example; see also library(’tcltk/examples/ex10.tcl’):

Chapter 40: Tcl/Tk Interface 631

listbox .l
scrollbar .s
pack .l -side left
pack .s -side left -fill y

Initially this looks good, but now resize the window to a much bigger size. You will find
that the listbox stays the same size and that empty space appears at the top and bottom
of it, and that the scrollbar resizes in the vertical. It is now not so nice.

Scrollbar And Listbox, Problems With Resizing

We can fix part of the problem by having the listbox expand to fill the extra space generated
by resizing the window.

pack .l -side left -expand 1

632 SICStus Prolog

Scrollbar And Listbox, Almost There

The problem now is that expand just expands the space allocated to the listbox, it doesn’t
stretch the listbox itself. To achieve that we need to apply the fill option to the listbox
too.

pack .l -side left -expand 1 -fill both

Chapter 40: Tcl/Tk Interface 633

Scrollbar And Listbox, Problem Solved Using fill

Now whichever way the top-level window is resized, the listbox-scrollbar combination should
look good.

If more than one widget has the expansion bit set, then the space is allocated equally
to those widgets. This can be used, for example, to make a row of buttons of equal
size that resize to fill the widget of their container. Try the following code; see also
library(’tcltk/examples/ex11.tcl’):

button .b1 -text "one"
button .b2 -text "two"
button .b3 -text "three"
pack .b1 .b2 .b3 -side left -fill x -expand 1

634 SICStus Prolog

Resizing Evenly Sized Widgets

Now resize the window. You will see that the buttons resize to fill the width of the window,
each taking an equal third of the width.

Please note: the best way to get the hang of the packer is to play with it.
Often the results are not what you expect, especially when it comes to fill and
expand options. When you have created a display that looks pleasing, always
try resizing the window to see if it still looks pleasing, or whether some of your
fill and expand options need revising.

Anchors and Packing Order

There is an option to change how a slave is displayed if its allocated space is larger than
itself. Normally it will be displayed centered. That can be changed by anchoring it with
the ‘-anchor’ option. The option takes a compass direction as its argument: n, s, e, w, nw,
ne, sw, se, or c (for center).

For example, the previous example with the resizing buttons displays the buttons in
the center of the window, the default anchoring point. If we wanted the buttons to
be displayed at the top of the window then we would anchor them there thus; see also
library(’tcltk/examples/ex12.tcl’):

button .b1 -text "one"
button .b2 -text "two"
button .b3 -text "three"
pack .b1 .b2 .b3 -side left -fill x -expand 1 -anchor n

Chapter 40: Tcl/Tk Interface 635

Anchoring Widgets

Each button is anchored at the top of its slice and so in this case is displayed at the top of
the window.

The packing order of widget can also be changed. For example,

pack .b3 -before .b2

will change the positions of .b2 and .b3 in our examples.

Changing The Packing Order Of Widgets

40.3.5.2 grid

The grid geometry manager is useful for arranging widgets in grids or tables. A grid has
a number of rows and columns and a widget can occupy one of more adjacent rows and
columns.

A simple example of arranging three buttons; see also
library(’tcltk/examples/ex14.tcl’):

button .b1 -text b1
button .b2 -text b2
button .b3 -text b3
grid .b1 -row 0 -column 0
grid .b2 -row 1 -column 0
grid .b3 -row 0 -column 1 -rowspan 2

this will display button .b1 above button .b2. Button .b3 will be displayed in the next
column and it will take up two rows.

636 SICStus Prolog

Using the grid Geometry Manager

However, .b3 will be displayed in the center of the space allocated to it. It is possible to get
it to expand to fill the two rows it has using the ‘-sticky’ option. The ‘-sticky’ option
says to which edges of its cells a widget “sticks” to, i.e. expands to reach. (This is like the
fill and expand options in the pack manager.) So to get .b3 to expand to fill its space we
could use the following:

grid .b3 -sticky ns

which says stick in the north and south directions (top and bottom). This results in .b3
taking up two rows and filling them.

grid Geometry Manager, Cells With Sticky Edges

There are plenty of other options to the grid geometry manager. For example, it is possible
to give some rows/columns more “weight” than others, which gives them more space in the
master. For example, if in the above example you wanted to allocate 1/3 of the width of
the master to column 0 and 2/3 of the width to column 1, then the following commands
would achieve that:

grid columnconfigure . 0 -weight 1
grid columnconfigure . 1 -weight 2

which says that the weight of column 0 for master . (the root window) is 1 and the weight
of column 1 is 2. Since column 1 has more weight than column 0 it gets proportionately
more space in the master.

It may not be apparent that this works until you resize the window. You can see even
more easily how much space is allocated to each button by making expanding them to
fill their space through the sticky option. The whole example looks like this; see also
library(’tcltk/examples/ex16.tcl’):

Chapter 40: Tcl/Tk Interface 637

button .b1 -text b1
button .b2 -text b2
button .b3 -text b3
grid .b1 -row 0 -column 0 -sticky nsew
grid .b2 -row 1 -column 0 -sticky nsew
grid .b3 -row 0 -column 1 -rowspan 2 -sticky nsew
grid columnconfigure . 0 -weight 1
grid columnconfigure . 1 -weight 2

Now resize the window to various sizes and we will see that button .b3 has twice the width
of buttons .b1 and .b2.

Changing Row/Column Ratios

The same kind of thing can be specified for each row too via the grid rowconfigure
command.

For other options and a full explanation of the grid manager see the manual.

40.3.5.3 place

Place simply places the slave widgets in the master at the given x and y coordi-
nates. It displays the widgets with the given width and height. For example (see also
library(’tcltk/examples/ex17.tcl’)):

638 SICStus Prolog

button .b1 -text b1
button .b2 -text b2
button .b3 -text b3
place .b1 -x 0 -y 0
place .b2 -x 100 -y 100
place .b3 -x 200 -y 200

Using The place Geometry Manager

will place the buttons .b1, .b2, and .b3 along a diagonal 100 pixels apart in both the x
and y directions. Heights and widths can be given in absolute sizes, or relative to the size of
the master in which case they are specified as a floating point proportion of the master; 0.0
being no size and 1.0 being the size of the master. x and y coordinates can also be specified
in a relative way, also as a floating point number. For example, a relative y coordinate of
0.0 refers to the top edge of the master, while 1.0 refers to the bottom edge. If both relative
and absolute x and y values are specified then they are summed.

Through this system the placer allows widgets to be placed on a kind of rubber sheet. If
all the coordinates are specified in relative terms, then as the master is resized then so will
the slaves move to their new relative positions.

40.3.6 Event Handling

So far we have covered the widgets types, how instances of them are created, how their
attributes can be set and queried, and how they can be managed for display using geometry
managers. What we have not touched on is how to give each widget a behavior.

Chapter 40: Tcl/Tk Interface 639

This is done through event handlers. Each widget instance can be given a window event
handler for each kind of window event. A window event is something like the cursor moving
into or out of the widget, a key press happening while the widget is active (in focus), or the
widget being destroyed.

Event handlers are specified through the bind command:

bind widgetName eventSequence command

where widgetName is the name or class of the widget to which the event handler should be
attached, eventSqueuence is a description of the event that this event handler will handle,
and command is a script that is invoked when the event happens (i.e. it is the event handler).

Common event types are

Key
KeyPress when a key was pressed

KeyRelease
when a key was released

Button
ButtonPress

when a mouse button was pressed

ButtonRelease
when a mouse button was released

Enter when the cursor moves into a widget

Leave when the cursor moved our of a widget

Motion when the cursor moves within a widget

There are other event types. Please refer to the Tk documentation for a complete list.

The eventSequence part of a bind command is a list of one or more of these events, each
event surrounded by angled brackets. (Mostly, an event sequence consists of handling a
single event. Later we will show more complicated event sequences.)

An example is the following:

button .b -text "click me"
pack .b
bind .b <Enter> { puts "entering .b" }

makes a button .b displaying text ‘click me’ and displays it in the root window using the
packing geometry manager. The bind command specifies that when the cursor enters (i.e.
goes onto) the widget, then the text entering .b is printed at the terminal.

We can make the button change color as the cursor enters or leaves it like this:

640 SICStus Prolog

button .b -text "click me" -background red
pack .b
bind .b <Enter> { .b config -background blue }
bind .b <Leave> { .b config -background red }

which causes the background color of the button to change to blue when the cursor enters
it and to change back to red when the cursor leaves.

An action can be appended to an event handler by prefixing the action with a + sign. An
example is:

bind .b <Enter> {+puts "entering .b"}

which, when added to the example above, would not only change the color of the button to
red when the cursor enters it, but would also print entering .b to the terminal.

A binding can be revoked simply by binding the empty command to it:

bind .b <Enter> {}

A list of events that are bound can be found by querying the widget thus:

bind .b

which will return a list of bound events.

To get the current command(s) bound to an event on a widget, invoke bind with the widget
name and the event. An example is:

bind .b <Enter>

which will return a list of the commands bound to the event <Enter> on widget .b.

Binding can be generalized to sequences of events. For example, we can create an entry
widget that prints spells rob each time the key sequence ESC r o b happens:

entry .e
pack .e
bind .e <Escape>rob {puts "spells rob"}

(A letter on its own in an event sequence stands for that key being pressed when the
corresponding widget is in focus.)

Events can also be bound for entire classes of widgets. For example, if we wanted to perform
the same trick for ALL entry widgets we could use the following command:

bind entry <Escape>rob {puts "spells rob"}

In fact, we can bind events over all widgets using all as the widget class specifier.

Chapter 40: Tcl/Tk Interface 641

The event script can have substitutions specified in it. Certain textual substitutions are
then made at the time the event is processed. For example, %x in a script gets the x
coordinate of the mouse substituted for it. Similarly, %y becomes the y coordinate, %W the
dot path of the window on which the event happened, %K the keysym of the button that
was pressed, and so on. For a complete list, see the manual.

In this way it is possible to execute the event script in the context of the event.

A clever example of using the all widget specifier and text substitutions is given in John
Ousterhout’s book on Tcl/Tk (see Section 40.7 [Resources], page 685):

bind all <Enter> {puts "Entering %W at (%x, %y)"}
bind all <Leave> {puts "Leaving %W at (%x, %y)"}
bind all <Motion> {puts "Pointer at (%x, %y)"}

which implements a mouse tracker for all the widgets in a Tcl/Tk application. The widget’s
name and x and y coordinates are printed at the terminal when the mouse enters or leaves
any widget, and also the x and y coordinates are printed when the mouse moves within a
widget.

40.3.7 Miscellaneous

There are a couple of other Tk commands that we ought to mention: destroy and update.

The destroy command is used to destroy a widget, i.e. remove it from the Tk interpreter
entirely and so from the display. Any children that the widget may have are also destroy-
ed. Anything connected to the destroyed widget, such as bindings, are also cleaned up
automatically.

For example, to create a window containing a button that is destroyed when the button is
pressed:

button .b -text "Die!" -command { destroy . }
pack .b

creates a button .b displaying the text ‘Die!’, which runs the command destroy . when
it is pressed. Because the widget . is the main toplevel widget or window, running that
command will kill the entire application associated with that button.

The command update is used to process any pending Tk events. An event is not just such
things as moving the mouse but also updating the display for newly created and displayed
widgets. This may be necessary in that usually Tk draws widgets only when it is idle.
Using the update command forces Tk to stop and handle any outstanding events including
updating the display to its actually current state, i.e. flushing out the pending display of any
widgets. (This is analogous to the fflush command in C that flushes writes on a stream
to disk. In Tk displaying of widgets is “buffered”; calling the update command flushes the
buffer.)

642 SICStus Prolog

40.3.8 What We Have Left Out

There are a number of Tk features that we have not described but we list some of them
here in case the reader is interested. Refer to the Tk manual for more explanation.

photo creating full color images through the command

wm setting and getting window attributes

selection and focus commands
modal interaction

(not recommended)

send sending messages between Tk applications

40.3.9 Example pure Tcl/Tk program

To show some of what can be done with Tcl/Tk, we will show an example of part of a GUI
for an 8-queens program. Most people will be familiar with the 8-queens problem: how to
place 8 queens on a chess board such that they do not attack each other according to the
normal rules of chess.

Our example will not be a program to solve the 8-queens problem (that will come later in
the tutorial) but just the Tcl/Tk part for displaying a solution. The code can be found in
library(’tcltk/examples/ex18.tcl’).

The way an 8-queens solution is normally presented is as a list of numbers. The position
of a number in the list indicates the column the queens is placed at and the number itself
indicates the row. For example, the Prolog list [8, 7, 6, 5, 4, 3, 2, 1] would indicate 8
queens along the diagonal starting a column 1, row 8 and finishing at column 8 row 1.

The problem then becomes, given this list of numbers as a solution, how to display the
solution using Tcl/Tk. This can be divided into two parts: how to display the initial empty
chess board, and how to display a queen in one of the squares.

Here is our code for setting up the chess board:

Chapter 40: Tcl/Tk Interface 643

% ex18.pl

#! /usr/bin/wish

proc setup_board { } {
create container for the board
frame .queens

loop of rows and columns
for {set row 1} {$row <= 8} {incr row} {

for {set column 1} {$column <= 8} {incr column} {

create label with a queen displayed in it
label .queens.$column-$row -bitmap @bitmaps/q64s.bm -relief flat

choose a background color depending on the position of the
square; make the queen invisible by setting the foreground
to the same color as the background
if { [expr ($column + $row) % 2] } {

.queens.$column-$row config -background #ffff99

.queens.$column-$row config -foreground #ffff99
} else {

.queens.$column-$row config -background #66ff99

.queens.$column-$row config -foreground #66ff99
}

place the square in a chess board grid
grid .queens.$column-$row -row $row -column $column -padx 1 -pady 1

}
}
pack .queens

}

setup_board

The first thing that happens is that a frame widget is created to contain the board. Then
there are two nested loops that loop over the rows and columns of the chess board. Inside
the loop, the first thing that happens is that a label widget is created. It is named using
the row and column variables so that it can be easily referenced later. The label will not
be used to display text but to display an image, a bitmap of a queen. The label creation
command therefore has the special argument ‘-bitmap @q64s.bm’, which says that the label
will display the bitmap loaded from the file ‘q64s.bm’.

The label with the queen displayed in it has now been created. The next thing that happens
is that the background color of the label (square) is chosen. Depending on the position of the
square it becomes either a “black” or a “white” square. At the same time, the foreground
color is set to the background color. This is so that the queen (displayed in the foreground
color) will be invisible, at least when the board is first displayed.

644 SICStus Prolog

The final action in the loop is to place the label (square) in relation to all the other squares
for display. A chess board is a simple grid of squares, and so this is most easily done through
the grid geometry manager.

After the board has been set up square-by-square it still needs to be displayed, which is
done by pack-ing the outermost frame widget.

To create and display a chess board widget, all that is needed is to call the procedure

setup_board

which creates the chess board widget.

Once the chess board has been displayed, we need to be able to take a solution, a list of
rows ordered by column, and place queens in the positions indicated.

Taking a topdown approach, our procedure for taking a solution and displaying is as follows:

proc show_solution { solution } {
clear_board
set column 1
foreach row $solution {

place_queen $column $row
incr column

}
}

This takes a solution in solution, clears the board of all queens, and then places each
queen from the solution on the board.

Next we will handle clearing the board:

Chapter 40: Tcl/Tk Interface 645

proc clear_board { } {
for { set column 1 } {$column <= 8} {incr column} {

reset_column $column
}

}

proc reset_column { column } {
for {set row 1 } { $row <= 8 } {incr row} {

set_queens $column $row off
}

}

proc set_queens { column row state } {
if { $state == "on" } {

.queens.$column-$row config -foreground black
} else {

.queens.$column-$row config
-foreground [.queens.$column-$row cget -background]

}
}

The procedure clear_board clears the board of queens by calling the procedure reset_
column for each of the 8 columns on a board. reset_column goes through each square of
a column and sets the square to off through set_queens. In turn, set_queens sets the
foreground color of a square to black if the square is turned on, thus revealing the queen
bitmap, or sets the foreground color of a square to its background color, thus making the
queens invisible, if it is called with something other than on.

That handles clearing the board, clearing a column or turning a queen on or off on a
particular square.

The final part is place_queen:

proc place_queen { column row } {
reset_column $column
set_queens $column $row on

}

This resets a column so that all queens on it are invisible and then sets the square with
coordinates given in row and column to on.

A typical call would be:

show_solution "1 2 3 4 5 6 7 6 8"

646 SICStus Prolog

8-Queens Display In Tcl/Tk

which would display queens along a diagonal. (This is of course not a solution to the 8-
queens problem. This Tcl/Tk code only displays possible queens solutions; it doesn’t check
if the solution is valid. Later we will combine this Tcl/Tk display code with Prolog code
for generating solutions to the 8-queens problem.)

40.4 The Tcl/Tk Prolog Library

Now we have covered the wonders of Tcl/Tk, we come to the real meat of the tutorial: how
to couple the power of Tcl/Tk with the power of SICStus Prolog.

Tcl/Tk is included in SICStus Prolog by loading a special library. The library provides a
bidirectional interface between Tcl/Tk and Prolog.

Chapter 40: Tcl/Tk Interface 647

40.4.1 How it Works - An Overview

Before describing the details of the Tcl/Tk library we will give an overview of how it works
with the Prolog system.

The Tcl/Tk library provides a loosely coupled integration of Prolog and Tcl/Tk. By this
we mean that the two systems, Prolog and Tcl/Tk, although joined through the library,
are mostly separate; Prolog variables have nothing to do with Tcl variables, Prolog and Tcl
program states are separate, and so on.

The Tcl/Tk library extends Prolog so that Prolog can create a number of independent Tcl
interpreters with which it can interact. Basically, there is a predicate, which when executed
creates a Tcl interpreter and returns a handle with which Prolog can interact with the
interpreter.

Prolog and a Tcl interpreter interact, and so communicate and cooperate, through two
ways:

1. One system evaluates a code fragment in the other system and retrieves the result.
For example, Prolog evaluates a Tcl code fragment in an attached Tcl interpreter and
gets the result of the evaluation in a Prolog variable. Similarly, a Tcl interpreter can
evaluate a Prolog goal and get the result back through a Tcl variable.
This is synchronous communication in that the caller waits until the callee has finished
their evaluation and reads the result.

2. One system passing a “message” to the other on an “event” queue.
This is asynchronous communication in that the receiver of the message can read the
message whenever it likes, and the sender can send the message without having to wait
for a reply.

The Tk part of Tcl/Tk comes in because an attached Tcl interpreter may be extended with
the Tk widget set and so be a Tcl/Tk interpreter. This makes it possible to add GUIs
to a Prolog application: the application loads the Tcl/Tk Prolog library, creates a Tcl/Tk
interpreter, and sends commands to the interpreter to create a Tk GUI. The user interacts
with the GUI and therefore with the underlying Prolog system.

There are two main ways to partition the Tcl/Tk library functions: by function, i.e. the task
they perform; or by package, i.e. whether they are Tcl, Tk, or Prolog functions. We will
describe the library in terms of the former because it fits in with the tutorial style better,
but at the end is a summary section that summarizes the library functions both ways.

Taking the functional approach, the library can be split into six function groups:

• basic functions
− loading the library
− creating and destroying Tcl and Tcl/Tk interpreters

• evaluation functions

648 SICStus Prolog

− evaluating Tcl expressions from Prolog
− evaluating Prolog expressions from Tcl

• Prolog event functions
− handling the Prolog/Tcl event queue

• Tk event handling
• passing control to Tk
• housekeeping functions

We go through each group in turn.

40.4.2 Basic Functions

40.4.2.1 Loading the Library

First we need to know how to load the Tcl/Tk library into Prolog. This is done through
the use_module/1 predicate thus:

| ?- use_module(library(tcltk)).

40.4.2.2 Creating a Tcl Interpreter

The heart of the system is the ability to create an embedded Tcl interpreter with which
the Prolog system can interact. A Tcl interpreter is created within Prolog through a call
to tcl_new/1:

tcl_new(-TclInterpreter)

which creates a new interpreter, initializes it, and returns a reference to it in the variable
TclInterpreter. The reference can then be used in subsequent calls to manipulate the inter-
preter. More than one Tcl interpreter object can be active in the Prolog system at any one
time.

40.4.2.3 Creating a Tcl Interpreter Extended with Tk

To start a Tcl interpreter extended with Tk, the tk_new/2 predicate is called from Prolog.
It has the following form:

tk_new(+Options, -TclInterpreter)

which returns through the variable TclInterpreter a handle to the underlying Tcl interpreter.
The usual Tcl/Tk window pops up after this call is made and it is with reference to that

Chapter 40: Tcl/Tk Interface 649

window that subsequent widgets are created. As with the tcl_new/1 predicate, many
Tcl/Tk interpreters may be created from Prolog at the same time through calls to tk_
new/2.

The Options part of the call is a list of some (or none) of the following elements:

top_level_events
This allows Tk events to be handled while Prolog is waiting for terminal input;
for example, while the Prolog system is waiting for input at the Prolog prompt.
Without this option, Tk events are not serviced while the Prolog system is
waiting for terminal input. (For information on Tk events; see Section 40.3.6
[Event Handling], page 638).

Please note: This option is not currently supported under Win-
dows.

name(+ApplicationName)
This gives the main window a title ApplicationName. This name is also used for
communicating between Tcl/Tk applications via the Tcl send command. (send
is not covered in this document. Please refer to the Tcl/Tk documentation.)

display(+Display)
(This is X windows specific.) Gives the name of the screen on which to create
the main window. If this is not given, the default display is determined by the
DISPLAY environment variable.

An example of using tk_new/2:

| ?- tk_new([top_level_events, name(’My SICStus/Tk App’)], Tcl).

which creates a Tcl/Tk interpreter, returns a handle to it in the variable Tcl and Tk events
are serviced while Prolog is waiting at the Prolog prompt. The window that pops up will
have the title My SICStus/Tk App.

The reference to a Tcl interpreter returned by a call to tk_new/2 is used in the same way
and in the same places as a reference returned by a call to tcl_new/1. They are both
references to Tcl interpreters.

40.4.2.4 Removing a Tcl Interpreter

To remove a Tcl interpreter from the system, use the tcl_delete/1 predicate:

tcl_delete(+TclInterpreter)

which given a reference to a Tcl interpreter, closes down the interpreter and removes it.
The reference can be for a plain Tcl interpreter or for a Tk enhanced one; tcl_delete/1
removes both kinds.

650 SICStus Prolog

40.4.3 Evaluation Functions

There are two functions in this category: Prolog extended to be able to evaluate Tcl ex-
pressions in a Tcl interpreter; Tcl extended to be able to evaluate a Prolog expression in
the Prolog system.

40.4.3.1 Command format

There is a mechanism for describing Tcl commands in Prolog as Prolog terms. This is used
in two ways: firstly, to be able to represent Tcl commands in Prolog so that they can be
subsequently passed to Tcl for evaluation; and secondly for passing terms back from Tcl to
Prolog by doing the reverse transformation.

Why not represent a Tcl command as a simple atom or string? This can indeed be done,
but commands are often not static and each time they are called require slightly different
parameters. This means constructing different atoms or strings for each command in Prolog,
which are expensive operations. A better solution is to represent a Tcl command as a
Prolog term, something that can be quickly and efficiently constructed and stored by a
Prolog system. Variable parts to a Tcl command (for example command arguments) can
be passed in through Prolog variables.

In the special command format, a Tcl command is specified as follows.

Command ::= Name
| chars(code-list)
| write(term)
| writeq(term)
| write_canonical(term)
| format(Fmt,Args)
| dq(Command)
| br(Command)
| sqb(Command)
| min(Command)
| dot(ListOfNames)
| list(ListOfCommands)
| ListOfCommands

Fmt ::= atom
Name ::= atom { other than [] }

| number
ListOfCommands ::= []

| [Command | ListOfCommands]
ListOfNames ::= []

| [Name | ListOfNames]
Args ::= []

| [term | Args]

Chapter 40: Tcl/Tk Interface 651

where

Atom
Number denote their printed representations

chars(PrologString)
denotes the string represented by PrologString (a code-list)

write(Term)
writeq(Term)
write_canonical(Term)

denotes the string that is printed by the corresponding built-in predicate.
Please note: In general it is not possible to reconstruct Term from
the string printed by write/1. If Term will be passed back into
Prolog it therefore safest to use write_canonical(Term) (see Sec-
tion 8.1.3 [Term I/O], page 142).

format(Fmt, Args)
denotes the string that is printed by the corresponding built-in predicate

dq(Command)
denotes the string specified by Command, enclosed in double quotes

br(Command)
denotes the string specified by Command, enclosed in curly brackets

sqb(Command)
denotes the string specified by Command, enclosed in square brackets

min(Command)
denotes the string specified by Command, immediately preceded by a hyphen

dot(ListOfName)
denotes the widget path specified by ListOfName, preceded by and separated
by dots

list(ListOfCommands)
denotes the TCL list with one element for each element in ListOfCommands.
This differs from just using ListOfCommands or br(ListOfCommands) when
any of the elements contains spaces, braces or other characters treated specially
by TCL.

ListOfCommands
denotes the string denoted by each element, separated by spaces. In many cases
list(ListOfCommands) is a better choice.

Examples of command specifications and the resulting Tcl code:

[set, x, 32]
⇒ set x 32

[set, x, br([a, b, c])]
⇒ set x {a b c}

652 SICStus Prolog

[dot([panel,value_info,name]), configure, min(text), br(write(’$display’/1))]
⇒ .panel.value_info.name configure -text {$display/1

[’foo bar’,baz]
⇒foo bar baz

list([’foo bar’,bar])
⇒ {foo bar} baz

list([’foo { bar’’,bar])
⇒ foo\ \{ \bar baz

40.4.3.2 Evaluating Tcl Expressions from Prolog

Prolog calls Tcl through the predicate tcl_eval/3, which has the following form:

tcl_eval(+TclInterpreter, +Command, -Result)

which causes the interpreter TclInterpreter to evaluate the Tcl command Command and
return the result Result. The result is a string (a code-list) that is the usual return string
from evaluating a Tcl command. Command is not just a simple Tcl command string
(although that is a possibility) but a Tcl command represented as a Prolog term in the
special Command Format (see Section 40.4.3.1 [Command Format], page 650).

Through tcl_eval/3, Prolog has a method of synchronous communication with an embed-
ded Tcl interpreter and a way of manipulating the state of the interpreter.

An example:

| ?- tcl_new(Interp),

tcl_eval(Interp, ’set x 1’, _),

tcl_eval(Interp, ’incr x’, R).

which creates a Tcl interpreter the handle of which is stored in the variable Interp. Then
variable x is set to the value "1" and then variable x is incremented and the result returned
in R as a string. The result will be "2". By evaluating the Tcl commands in separate
tcl_eval/3 calls, we show that we are manipulating the state of the Tcl interpreter and
that it remembers its state between manipulations.

It is worth mentioning here also that because of the possibility of the Tcl command causing
an error to occur in the Tcl interpreter, two new exceptions are added by the tcltk library:

tcl_error(Goal, Message)
tk_error(Goal, Message)

where Message is a code-list detailing the reason for the exception. Also two new
user:portray_message/2 rules are provided so that any such uncaught exceptions are
displayed at the Prolog top-level as

Chapter 40: Tcl/Tk Interface 653

[TCL ERROR: Goal - Message]
[TK ERROR: Goal - Message]

respectively.

These exception conditions can be raised/caught/displayed in the usual way through the
built-in predicates raise_exception/3, on_exception/1, and portray_message/2.

As an example, the following Prolog code will raise such an exception:

| ?- tcl_new(X), tcl_eval(X, ’wilbert’, R).

which causes a tcl_error/2 exception and prints the following:

{TCL ERROR: tcl_eval/3 - invalid command name "wilbert"}

assuming that there is no command or procedure defined in Tcl called wilbert.

40.4.3.3 Evaluating Prolog Expressions from Tcl

The Tcl interpreters created through the SICStus Prolog Tcl/Tk library have been extended
to allow calls to the underlying Prolog system.

To evaluate a Prolog expression in the Prolog system from a Tcl interpreter, the new prolog
Tcl command is invoked. It has the following form:

prolog PrologGoal

where PrologGoal is the printed form of a Prolog goal. This causes the goal to be executed
in Prolog. It will be executed in the user module unless it is prefixed by a module name.
Execution is always determinate.

The return value of the command either of the following:

"1", if execution succeeded,

"0", if execution failed,

If succeeded (and "1" was returned) then any variable in PrologGoal that has become bound
to a Prolog term will be returned to Tcl in the Tcl array named prolog_variables with
the variable name as index. The term is converted to Tcl using the same conversion as used
for Tcl commands (see Section 40.4.3.1 [Command Format], page 650). As a special case
the values of unbound variables and variables with names starting with ‘_’, are not recorded
and need not conform to the special command format, this is similar to the threatment of
such variables by the Prolog top-level.

An example:

654 SICStus Prolog

test_callback(Result) :-
tcl_new(Interp),
tcl_eval(Interp,

’if {[prolog "foo(X,Y,Z)"] == 1} \\
{list $prolog_variables(X) \\

$prolog_variables(Y) \\
$prolog_variables(Z)}’,

Result),
tcl_delete(Interp).

foo(1, bar, [a, b, c]).

When called with the query:

| ?- test_callback(Result).

will succeed, binding the variable Result to:

"1 bar {a b c}"

This is because execution of the tcl_eval/3 predicate causes the execution of the prolog
command in Tcl, which executes foo(X, Y, Z) in Prolog making the following bindings:
X = 1, Y = bar, Z = [a, b, c]. The bindings are returned to Tcl in the associative array
prolog_variables where prolog_variables(X) is "1", prolog_variables(Y) is "bar",
and prolog_variables(Z) is "a b c". Then Tcl goes on to execute the list command as

list "1" "bar" "a b c"

which returns the result

"1 bar {a b c}"

(remember: nested lists magically get represented with curly brackets) which is the string
returned in the Result part of the Tcl call, and is ultimately returned in the Result variable
of the top-level call to test_callback(Result).

If an error occurs during execution of the prolog Tcl command, a tcl_error/2 exception
will be raised. The message part of the exception will be formed from the string ‘Exception
during Prolog execution: ’ appended to the Prolog exception message. An example is
the following:

| ?- tcl_new(T), tcl_eval(T, ’prolog wilbert’, R).

which will print

{TCL ERROR: tcl_eval/3 - Exception during Prolog execution:
wilbert existence_error(wilbert,0,procedure,user:wilbert/0,0)}

at the Prolog top-level, assuming that the predicate wilbert/0 is not defined on the Prolog
side of the system. (This is a tcl_error exception containing information about the un-

Chapter 40: Tcl/Tk Interface 655

derlying exception, an existence_error exception, which was caused by trying to execute
the non-existent predicate wilbert.)

40.4.4 Event Functions

40.4.4.1 Evaluate a Tcl Expression And Get Prolog Events

Another way for Prolog to communicate with Tcl is through the predicate tcl_event/3:

tcl_event(+TclInterpreter, +Command, -Events)

This is similar to tcl_eval/3 in that the command Command is evaluated in the Tcl
interpreter TclInterpreter, but the call returns a list of events in Events rather than the
result of the Tcl evaluation. Command is again a Tcl command represented as a Prolog
term in the special Command Format described previously (see Section 40.4.3.1 [Command
Format], page 650).

This begs the questions what are these events and where does the event list come from? The
Tcl interpreters in the SICStus Prolog Tcl/Tk library have been extended with the notion
of a Prolog event queue. (This is not available in plain standalone Tcl interpreters.) The
Tcl interpreter can put events on the event queue by executing a prolog_event command.
Each event is a Prolog term. So a Tcl interpreter has a method of putting Prolog terms
onto a queue, which can later be picked up by Prolog as a list as the result of a call to
tcl_event/3. (It may be helpful to think of this as a way of passing messages as Prolog
terms from Tcl to Prolog.)

A call to tcl_event/3 blocks until there is something on the event queue.

A second way of getting Prolog events from a Prolog event queue is through the tk_next_
event/[2,3] predicates. These have the form:

tk_next_event(+TclInterpreter, -Event)
tk_next_event(+ListOrBitMask, +TclInterpreter, -Event)

where TclInterpreter reference to a Tcl interpreter and Event is the Prolog term at the
head of the associated Prolog event queue. (The ListOrBitMask feature will be described
below in the Housekeeping section when we talk about Tcl and Tk events; see Section 40.4.7
[Housekeeping], page 660.).

(We will meet tk_next_event/[2,3] again later when we discuss how it can be used to
service Tk events; see Section 40.4.5 [Servicing Tk Events], page 658).

If the interpreter has been deleted then the empty list [] is returned.

656 SICStus Prolog

40.4.4.2 Adding events to the Prolog event queue

The Tcl interpreters under the SICStus Prolog library are extended with a command,
prolog_event, for adding events to a Prolog event queue.

The prolog_event command has the following form:

prolog_event Terms ...

where Terms are strings that contain the printed representation of Prolog terms. These are
stored in a queue and retrieved as Prolog terms by tcl_event/3 or tk_next_event/[2,3]
(described above).

An example of using the prolog_event command:

test_event(Event) :-
tcl_new(Interp),
tcl_event(Interp, [prolog_event, dq(write(zap(42)))], Event),
tcl_delete(Interp).

with the query:

| ?- test_event(Event).

will succeed, binding Event to the list [zap(42)].

This is because tcl_event converts its argument using the special Command Format con-
version (see Section 40.4.3.1 [Command Format], page 650), which yields the Tcl command
prolog_event "zap(42)". This command is evaluated in the Tcl interpreter referenced by
the variable Interp. The effect of the command is to take the string given as argument to
prolog_event (in this case "zap(42)") and to place it on the Tcl to Prolog event queue.
The final action of a tcl_event/3 call is to pick up any strings on the Prolog queue from
Tcl, add a trailing full stop and space to each string, and parse them as Prolog terms,
binding Event to the list of values, which in this case is the singleton list [zap(42)]. (The
queue is a list the elements of which are terms put there through calls to prolog_event).

If any of the Term-s in the list of arguments to prolog_event is not a valid representation
of a Prolog term, then an exception is raised in Prolog when it is converted from the Tcl
string to the Prolog term using read. To ensure that Prolog will be able to read the term
correctly it is better to always use write_canonical and to ensure that Tcl is not confused
by special characters in the printed representation of the prolog term it is best to wrap the
list with list.

A safer variant that safely passes any term from Prolog via Tcl and back to Prolog is thus:

test_event(Term, Event) :-
tcl_new(Interp),
tcl_event(Interp, list([prolog_event, write_canonical(Term)]), Event),
tcl_delete(Interp).

Chapter 40: Tcl/Tk Interface 657

40.4.4.3 An example

As an example of using the prolog event system supplied by the tcltk library, we will return
to our 8-queens example but now approaching from the Prolog side rather than the Tcl/Tk
side:

:- use_module(library(tcltk)).

setup :-
tk_new([name(’SICStus+Tcl/Tk - Queens’)], Tcl),
tcl_eval(Tcl, ’source queens.tcl’, _),
tk_next_event(Tcl, Event),
(Event = next -> go(Tcl),
; closedown(Tcl)
).

closedown(Tcl) :-
tcl_delete(Tcl).

go(Tcl) :-
tcl_eval(Tcl, ’clear_board’, _),
queens(8, Qs),
show_solution(Qs, Tcl),
tk_next_event(Tcl, Event),
(Event = next -> fail
; closedown(Tcl)
).

go(Tcl) :-
tcl_eval(Tcl, ’disable_next’, _),
tcl_eval(Tcl, ’clear_board’, _),
tk_next_event(Tcl, _Event),
closedown(Tcl).

This is the top-level fragment of the Prolog side of the 8-queens example. It has three
predicates: setup/0, closedown/1, and go/1. setup/0 simply creates the Tcl interpreter,
loads the Tcl code into the interpreter using a call to tcl_eval/3 (which also initialises the
display) but then calls tk_next_event/2 to wait for a message from the Tk side.

The Tk part that sends prolog_event-s to Prolog looks like this:

button .next -text next -command {prolog_event next}
pack .next

button .stop -text stop -command {prolog_event stop}
pack .stop

658 SICStus Prolog

that is two buttons, one that sends the atom next, the other that sends the atom stop.
They are used to get the next solution and to stop the program respectively.

So if the user presses the next button in the Tk window, then the Prolog program will receive
a next atom via a prolog_event/tk_next_event pair, and the program can proceed to
execute go/1.

go/1 is a failure driven loop that generates 8-queens solutions and displays them. First it
generates a solution in Prolog and displays it through a tcl_eval/3 call. Then it waits
again for a Prolog events via tk_next_event/2. If the term received on the Prolog event
queue is next, corresponding to the user pressing the “next solution” button, then fail is
executed and the next solution found, thus driving the loop.

If the stop button is pressed then the program does some tidying up (clearing the display
and so on) and then executes closedown/1, which deletes the Tcl interpreter and the
corresponding Tk windows altoegther, and the program terminates.

This example fragment show how it is possible for a Prolog program and a Tcl/Tk program
to communicate via the Prolog event queue.

40.4.5 Servicing Tcl and Tk events

The notion of an event in the Prolog+Tcl/Tk system is overloaded. We have already come
across the following kinds of events:

• Tk widget events captured in Tcl/Tk through the bind command
• Prolog queue events controlled through the tcl_event/3, tk_next_event(2,3), and

prolog_event functions

It is further about to be overloaded with the notion of Tcl/Tk events. It is possible to
create event handlers in Tcl/Tk for reacting to other kinds of events. We will not cover
them here but describe them so that the library functions are understandable and in case
the user needs these features in an advanced application.

There are the following kinds of Tcl/Tk events:

idle events happen when the Tcl/Tk system is idle

file events happen when input arrives on a file handle that has a file event handler attached
to it

timer events
happen when a Tcl/Tk timer times out

window events
when something happens to a Tk window, such as being resized or destroyed

The problem is that in advanced Tcl/Tk applications it is possible to create event handlers
for each of these kinds of event, but they are not normally serviced while in Prolog code.

Chapter 40: Tcl/Tk Interface 659

This can result in unresponsive behavior in the application; for example, if window events
are not serviced regularly then if the user tries to resize a Tk window, it will not resize in
a timely fashion.

The solution to this is to introduce a Prolog predicate that passes control to Tk for a while
so that it can process its events, tk_do_one_event/[0,1]. If an application is unrespon-
sive because it is spending a lot of time in Prolog and is not servicing Tk events often
enough, then critical sections of the Prolog code can be sprinkled with calls to tk_do_one_
event/[0,1] to alleviate the problem.

tk_do_one_event/[0,1] has the following forms:

tk_do_one_event
tk_do_one_event(+ListOrBitMask)

which passes control to Tk to handle a single event before passing control back to Prolog.
The type of events handled is passed through the ListOrBitMask variable. As indicated,
this is either a list of atoms that are event types, or a bit mask as specified in the Tcl/Tk
documentation. (The bit mask should be avoided for portability between Tcl/Tk versions.)

The ListOrBitMask list can contain the following atoms:

tk_dont_wait
don’t wait for new events, process only those that are ready

tk_x_events
tk_window_events

process window events

tk_file_events
process file events

tk_timer_events
process timer events

tk_idle_events
process Tk_DoWhenIdle events

tk_all_events
process any event

Calling tk_do_one_event/0 is equivalent to a call to tk_do_one_event/1 with all flags set.

A call to either of these predicates succeeds only if an event of the appropriate type happens
in the Tcl/Tk interpreter. If there are no such events, then tk_do_one_event/1 will fail if
the tk_dont_wait wait flag is present, as will tk_do_one_event/0, which has that flag set
implicitly.

If the tk_dont_wait flag is not set, then a call to tk_do_one_event/1 will block until an
appropriate Tk event happens (in which case it will succeed).

It is straight forward to define a predicate that handles all Tk events and then returns:

660 SICStus Prolog

tk_do_all_events :-
tk_do_one_event, !,
tk_do_all_events.

tk_do_all_events.

The predicate tk_next_event/[2,3] is similar to tk_do_one_event/[0,1] except that it
processes Tk events until at least one Prolog event happens. (We came across this predicate
before when discussing Prolog event queue predicates. This shows the overloading of the
notion event where we have a predicate that handles both Tcl/Tk events and Prolog queue
events.)

It has the following forms:

tk_next_event(+TclInterpreter, -Event)
tk_next_event(+ListOrBitMask, +TclInterpreter, -Event)

The Prolog event is returned in the variable Event and is the first term on the Prolog event
queue associated with the interpreter TclInterpreter. (Prolog events are initiated on the
Tcl side through the new Tcl command prolog_event, covered earlier; see Section 40.4.4.2
[prolog event], page 656).

40.4.6 Passing Control to Tk

There is a predicate for passing control completely over to Tk, the tk_main_loop/0 com-
mand. This passes control to Tk until all windows in all the Tcl/Tk interpreters in the
Prolog have have been destroyed:

tk_main_loop

40.4.7 Housekeeping functions

Here we will described the functions that do not fit into any of the above categories and are
essentially housekeeping functions.

There is a predicate that returns a reference to the main window of a Tcl/Tk interpreter:

tk_main_window(+TclInterpreter, -TkWindow)

which given a reference to a Tcl interpreter Tclnterpreter, returns a reference to its main
window in TkWindow.

The window reference can then be used in tk_destroy_window/1:

tk_destroy_window(+TkWindow)

which destroys the window or widget referenced by TkWindow and all of its sub-widgets.

Chapter 40: Tcl/Tk Interface 661

The predicate tk_make_window_exist/1 also takes a window reference:

tk_make_window_exist(+TkWindow)

which causes the window referenced by TkWindow in the Tcl interpreter TclInterpreter to
be immediately mapped to the display. This is useful because normally Tk delays displaying
new information for a long as possible (waiting until the machine is idle, for example), but
using this call causes Tk to display the window immediately.

There is a predicate for determining how many main windows, and hence Tcl/Tk inter-
preters (excluding simple Tcl interpreters), are currently in use:

tk_num_main_windows(-NumberOfWindows)

which returns an integer in the variable NumberOfWindows.

40.4.8 Summary

The functions provided by the SICStus Prolog Tcl/Tk library can be grouped in two ways:
by function, and by package.

By function, we can group them like this:

• basic functions

tcl_new/1
create a Tcl interpreter

tcl_delete/1
remove a Tcl interpreter

tk_new/2 create a Tcl interpreter with Tk extensions
• evaluation functions

tcl_eval/3
evaluate a Tcl expression from Prolog

prolog evaluate a Prolog expression from Tcl
• Prolog event queue functions

tcl_event/3
evaluate a Tcl expression and return a Prolog queue event list

tk_next_event/[2,3]
pass control to Tk until a Prolog queue event happens and return the head
of the queue

prolog_event
place a Prolog term on the Prolog event queue from Tcl

• servicing Tcl and Tk events

662 SICStus Prolog

tk_do_one_event/[0,1]
pass control to Tk until one Tk event is serviced

tk_next_event/[2,3]
also services Tk events but returns when a Prolog queue event happens
and returns the head of the queue

• passing control completely to Tk

tk_main_loop/0
control passed to Tk until all windows in all Tcl/Tk interpreters are gone

• housekeeping

tk_main_window/2
return reference to main in of a Tcl/Tk interpreter

tk_destroy_window/1
destroy a window or widget

tk_make_window_exist/1
force display of a window or widget

tk_num_main_windows/1
return a count of the total number of Tk main windows existing in the
system

By package, we can group them like this:

• predicates for Prolog to interact with Tcl interpreters

tcl_new/1
create a Tcl interpreter

tcl_delete/1
remove a Tcl interpreter

tcl_eval/3
evaluate a Tcl expression from Prolog

tcl_event/3
evaluate a Tcl expression and return a Prolog event list

• predicates for Prolog to interact with Tcl interpreters with Tk extensions

tk_new/2 create a Tcl interpreter with Tk extensions

tk_do_one_event/[0,1]
pass control to Tk until one Tk event is serviced

tk_next_event/[2,3]
also services Tk events but returns when a Prolog queue event happens
and returns the head of the queue

tk_main_loop/0
control passed to Tk until all windows in all Tcl/Tk interpreters are gone

tk_main_window/2
return reference to main in of a Tcl/Tk interpreter

Chapter 40: Tcl/Tk Interface 663

tk_destroy_window/1
destroy a window or widget

tk_make_window_exist/1
force display of a window or widget

tk_num_main_windows/1
return a count of the total number of Tk main windows existing in the
system

• commands for the Tcl interpreters to interact with the Prolog system

prolog evaluate a Prolog expression from Tcl

prolog_event
place a Prolog term on the Prolog event queue from Tcl

In the next section we will discuss how to use the tcltk library to build graphical user
interfaces to Prolog applications. More specifically we will discuss the ways in which co-
operation between Prolog and Tcl/Tk can be arranged: how to achieve them, and their
benefits.

40.5 Putting It All Together

At this point we now know Tcl, the Tk extensions, and how they can be integrated into
SICStus Prolog through the tcltk library module. The next problem is how to get all this
to work together to produce a coherent application. Because Tcl can make Prolog calls and
Prolog can make Tcl calls it is easy to create programming spaghetti. In this section we
will discuss some general principles of organizing the Prolog and Tcl code to make writing
applications easier.

The first thing to do is to review the tools that we have. We have two programming systems:
Prolog and Tcl/Tk. They can interact in the following ways:

• Prolog evaluates a Tcl expression in a Tcl interpreter, using tcl_eval

• Tcl evaluates a Prolog expression in the Prolog interpreter, using prolog

• Prolog evaluates a Tcl expression in a Tcl interpreter and waits for a Prolog event,
using tcl_event

• Prolog waits for a Prolog event from a Tcl interpreter, using tk_next_event

• Tcl sends a Prolog predicate to Prolog on a Prolog event queue using prolog_event

With these interaction primitives there are three basic ways in which Prolog and Tcl/Tk
can be organized:

1. Tcl the master, Prolog the slave: program control is with Tcl, which makes occasional
calls to Prolog, through the prolog function.

2. Prolog the master, Tcl the slave: program control is with Prolog, which makes occa-
sional call to Tcl through the tcl_eval function

664 SICStus Prolog

3. Prolog and Tcl share control: program control is shared with Tcl and Prolog interacting
via the Prolog event queue, through tcl_event, tk_next_event, and prolog_event.

These are three ways of organizing cooperation between Tcl/Tk and Prolog to produce an
application. In practice an application my use only one of these methods throughout, or
may use a combination of them where appropriate. We describe them here so that the
developer can see the different patterns of organization and can pick those relevant to their
application.

40.5.1 Tcl The Master, Prolog The Slave

This is the classical way that GUIs are bolted onto applications. The slave (in this case
Prolog) sits mostly idle while the user interacts with the GUI, for example filling in a form.
When some action happens in the GUI that requires information from the slave (a form
submit, for example), the slave is called, performs a calculation, and the GUI retrieves the
result and updates its display accordingly.

In our Prolog+Tcl/Tk setting this involves the following steps:

• start Prolog and load the Tcl/Tk library
• load Prolog application code
• start a Tcl/Tk interpreter through tk_new/2

• set up the Tk GUI through calls to tcl_eval/3

• pass control to Tcl/Tk through tk_main_loop

Some of The Tk widgets in the GUI will have “callbacks” to Prolog, i.e. they will call the
prolog Tcl command. When the Prolog call returns, the values stored in the prolog_
variables array in the Tcl interpreter can then be used by Tcl to update the display.

Here is a simple example of a callback. The Prolog part is this:

:- use_module(library(tcltk)).

hello(’world’).

go :-
tk_new([], Tcl),
tcl_eval(Tcl, ’source simple.tcl’, _),
tk_main_loop.

which just loads the library(tcltk), defines a hello/1 data clause, and go/0, which starts
a new Tcl/Tk interpreter, loads the code simple.tcl into it, and passes control to Tcl/Tk.

The Tcl part, simple.tcl, is this:

Chapter 40: Tcl/Tk Interface 665

label .l -textvariable tvar
button .b -text "push me" -command { call_and_display }
pack .l .b -side top

proc call_and_display { } {
global tvar

prolog "hello(X)"
set tvar $prolog_variables(X)

}

which creates a label, with an associated text variable, and a button, that has a call back
procedure, call_and_display, attached to it. When the button is pressed, call_and_
display is executed, which simply evaluates the goal hello(X) in Prolog and the text
variable of the label .l to whatever X becomes bound to, which happens to be ‘world’. In
short, pressing the button causes the word ‘world’ to be displayed in the label.

Having Tcl as the master and Prolog as the slave, although a simple model to understand
and implement, does have disadvantages. The Tcl command prolog is determinate, i.e.
it can return only one result with no backtracking. If more than one result is needed it
means either performing some kind of all-solutions search and returning a list of results for
Tcl to process, or asserting a clause into the Prolog clause store reflecting the state of the
computation.

Here is an example of how an all-solutions search can be done. It is a program that calculates
the outcome of certain ancestor relationships; i.e. enter the name of a person, click on a
button and it will tell you the mother, father, parents or ancestors of that person.

The Prolog portion looks like this (see also library(’tcltk/examples/ancestors.pl’)):

666 SICStus Prolog

:- use_module(library(tcltk)).

go :- tk_new([name(’ancestors’)], X),
tcl_eval(X, ’source ancestors.tcl’, _),
tk_main_loop,
tcl_delete(X).

father(ann, fred).
father(fred, jim).
mother(ann, lynn).
mother(fred, lucy).
father(jim, sam).

parent(X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y).

ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

all_ancestors(X, Z) :- findall(Y, ancestor(X, Y), Z).

all_parents(X, Z) :- findall(Y, parent(X, Y), Z).

This program consists of three parts. The first part is defined by go/0, the now familiar
way in which a Prolog program can create a Tcl/Tk interpreter, load a Tcl file into that
interpreter, and pass control over to the interpreter.

The second part is a small database of mother/father relationships between certain people
through the clauses mother/2 and father/2.

The third part is a set of “rules” for determining certain relationships between people:
parent/2, ancestor/2, all_ancestors/2 and all_parents/2.

The Tcl part looks like this (see also library(’tcltk/examples/ancestors.tcl’)):

Chapter 40: Tcl/Tk Interface 667

% ancestors.pl

#!/usr/bin/wish

set up the tk display

construct text filler labels
label .search_for -text "SEARCHING FOR THE" -anchor w
label .of -text "OF" -anchor w
label .gives -text "GIVES" -anchor w

construct frame to hold buttons
frame .button_frame

construct radio button group
radiobutton .mother -text mother -variable type -value mother
radiobutton .father -text father -variable type -value father
radiobutton .parents -text parents -variable type -value parents
radiobutton .ancestors -text ancestors -variable type -value ancestors

add behaviors to radio buttons
.mother config -command { one_solution mother $name}
.father config -command { one_solution father $name}
.parents config -command { all_solutions all_parents $name}
.ancestors config -command { all_solutions all_ancestors $name}

create entry box and result display widgets
entry .name -textvariable name
label .result -text ">>> result <<<" -relief sunken -anchor nw -justify left

pack buttons into button frame
pack .mother .father .parents .ancestors -fill x -side left -in .button_frame

pack everything together into the main window
pack .search_for .button_frame .of .name .gives .result -side top -fill x

now everything is set up

668 SICStus Prolog

% ancestors.pl

defined the callback procedures

called for one solution results
proc one_solution { type name } {

if [prolog "${type}(’$name’, R)"] {
display_result $prolog_variables(R)

} else {
display_result ""

}
}

called for all solution results
proc all_solutions { type name } {

prolog "${type}(’$name’, R)"
display_result $prolog_variables(R)

}

display the result of the search in the results box
proc display_result { result } {

if { $result != "" } {
create a multiline result

.result config -text $result
} else {

.result config -text "*** no result ***"
}

}

Ancestors Calculator

This program is in two parts. The first part sets up the Tk display, which consists of four
radiobuttons to choose the kind of relationship we want to calculate, an entry box to put
the name of the person we want to calculate the relationship over, and a label in which to
display the result.

Chapter 40: Tcl/Tk Interface 669

Each radio buttons has an associated callback. Clicking on the radio button will invoke the
appropriate callback, apply the appropriate relationship to the name entered in the text
entry box, and display the result in the results label.

The second part consists of the callback procedures themselves. There are actually just two
of them: one for a single solution calculation, and one for an all-solutions calculation. The
single solution callback is used when we want to know the mother or father as we know that
a person can have only one of each. The all-solutions callback is used when we want to know
the parents or ancestors as we know that these can return more than one results. (We could
have used the all-solutions callback for the single solutions cases too, but we would like to
illustrate the difference in the two approaches.) There is little difference between the two
approaches, except that in the single solution callback, it is possible that the call to Prolog
will fail, so we wrap it in an if . . . else construct to catch this case. An all-solutions
search, however, cannot fail, and so the if . . . else is not needed.

But there are some technical problems too with this approach. During a callback Tk events
are not serviced until the callback returns. For Prolog callbacks that take a very short time
to complete this is not a problem, but in other cases, for example during a long search call
when the callback takes a significant time to complete, this can cause problems. Imagine
that, in our example, we had a vast database describing the parent relationships of millions
of people. Performing an all-solutions ancestors search could take a long time. The classic
problem is that the GUI no longer reacts to the user until the callback completes.

The solution to this is to sprinkle tk_do_one_event/[0,1] calls throughout the critical
parts of the Prolog code, to keep various kinds of Tk events serviced.

If this method is used in its purest form, then it is recommended that after initialization
and passing of control to Tcl, Prolog do not make calls to Tcl through tcl_eval/3. This
is to avoid programming spaghetti. In the pure master/slave relationship it is a general
principle that the master only call the slave, and not the other way around.

40.5.2 Prolog The Master, Tk The Slave

The second approach is to have Prolog be the master and Tk the slave. This is suitable
when heavy processing is done in the Prolog code and Tk is used mostly to display the state
of the computation in some way rather than as a traditional GUI; i.e. during computation
Prolog often makes calls to Tk to show some state, but the user rarely interacts with the
application.

In our Prolog+Tcl/Tk setting this involves the following steps:

• start Prolog and load the Tcl/Tk library
• load Prolog application code
• start a Tcl/Tk interpreter through tk_new/2

• set up the Tk GUI through calls to tcl_eval/3

• Prolog calls tcl_eval to update the Tk display

670 SICStus Prolog

• values are passed to Prolog through the Result string of tcl_eval

Again it its purest form, Prolog makes calls to Tcl, but Tcl does not make calls to Prolog.
The result of a call to Tcl is either passed back through the Result variable of a tcl_eval/3
call.

A good example of this is the Tcl/Tk display for our 8-queens problem, that we saw earlier;
see Section 40.3.9 [Queens Display], page 642.

We will now fill out the example by presenting the Prolog master part. The Prolog program
calculates a solution to the 8-queens problem and then makes calls Tcl/Tk to display the
solution. In this way Tcl/Tk is the slave, just being used as a simple display.

We have already seen the Tcl/Tk part, but here is the Prolog part for generating a solution
and displaying it:

Chapter 40: Tcl/Tk Interface 671

:- use_module(library(tcltk)).
:- use_module(library(lists)).

go :-
tk_new([name(’SICStus+Tcl/Tk - Queens’)], Tcl),
tcl_eval(Tcl, ’source queens.tcl’, _),
tk_next_event(Tcl, Event),
queens(8, Qs),
reverse(L, LR),
tcl_eval(Tcl, [show_solution, br(LR)], _),
fail.

go.

queens(N, Qs) :-
range(1, N, Ns),
queens(Ns, [], Qs).

queens(UnplacedQs, SafeQs, Qs) :-
select(Q, UnplacedQs, UnplacedQs1),
\+ attack(Q, SafeQs),
queens(UnplacedQs1, [Q|SafeQs], Qs).
queens([], Qs, Qs).

attack(X, Xs) :- attack(X, 1, Xs).

attack(X, N, [Y|_Ys]) :- X is Y + N.
attack(X, N, [Y|_Ys]) :- X is Y - N.
attack(X, N, [_Y|Ys]) :-

N1 is N + 1,
attack(X, N1, Ys).

range(M, N, [M|Ns]) :-
M < N,
M1 is M + 1,
range(M1, N, Ns).

range(N, N, [N]).

:- go.

All this simply does it to create a Tcl/Tk interpreter, load the Tcl code for displaying
queens into it, generate a solution to the 8-queens problem as a list of integers, and then
calls show_solution/2 in the Tcl interpreter to display the solution. At the end of first
clause for go/0 is a fail clause that turns go/0 into a failure driven loop. The result of this
is that the program will calculate all the solutions to the 8-queens problem, displaying them
rapidly one after the other, until there are none left.

672 SICStus Prolog

40.5.3 Prolog And Tcl Interact through Prolog Event Queue

In the previous two methods, one of the language systems was the master and the other
slave, the master called the slave to perform some action or calculation, the slave sits waiting
until the master calls it. We have seen that this has disadvantages when Prolog is the slave
in that the state of the Prolog call is lost. Each Prolog call starts from the beginning
unless we save the state using message database manipulation through calls to assert and
retract.

Using the Prolog event queue, however, it is possible to get a more balanced model where
the two language systems cooperate without either really being the master or the slave.

One way to do this is the following:

• Prolog is started
• load Tcl/Tk library
• load and set up the Tcl side of the program
• Prolog starts a processing loop
• it periodically checks for a Prolog event and processes it
• Prolog updates the Tcl display through tcl_eval calls

What can processing a Prolog event mean? Well, for example, a button press from Tk could
tell the Prolog program to finish or to start processing something else. The Tcl program
is not making an explicit call to the Prolog system but sending a message to Prolog. The
Prolog system can pick up the message and process it when it chooses, in the meantime
keeping its run state and variables intact.

To illustrate this, we return to the 8-queens example. If Tcl/Tk is the master and Prolog
the slave, then we have shown that using a callback to Prolog, we can imagine that we hit
a button, call Prolog to get a solution and then display it. But how do we get the next
solution? We could get all the solutions, and then use Tcl/Tk code to step through them,
but that doesn’t seem satisfactory. If we use the Prolog is the master and Tcl/Tk is the
slave model then we have shown how we can use Tcl/Tk to display the solutions generate
from the Prolog side: Prolog just make a call to the Tcl side when it has a solution. But
in this model Tcl/Tk widgets do not interact with the Prolog side; Tcl/Tk is mearly an
add-on display to Prolog.

But using the Prolog event queue we can get the best of both worlds: Prolog can generate
each solution in turn as Tcl/Tk asks for it.

Here is the code on the Prolog side that does this. (We have left out parts of the code that
haven’t changed from our previous example, see Section 40.3.9 [Queens Display], page 642).

Chapter 40: Tcl/Tk Interface 673

:- use_module(library(tcltk)).
:- use_module(library(lists)).

setup :-
tk_new([name(’SICStus+Tcl/Tk - Queens’)], Tcl),
tcl_eval(Tcl, ’source queens2.tcl’, _),
tk_next_event(Tcl, Event),
(Event = next -> go(Tcl)
; closedown(Tcl)
).

closedown(Tcl) :-
tcl_delete(Tcl).

go(Tcl) :-
tcl_eval(Tcl, ’clear_board’, _),
queens(8, Qs),
show_solution(Qs),
tk_next_event(Tcl, Event),
(Event = next -> fail
; closedown(Tcl)
).

go(Tcl) :-
tcl_eval(Tcl, ’disable_next’, _),
tcl_eval(Tcl, ’clear_board’, _),
tk_next_event(Tcl, _Event),
closedown(Tcl).

show_solution(Tcl, L) :-
tcl(Tcl),
reverse(L, LR),
tcl_eval(Tcl, [show_solution, br(LR)], _),
tk_do_all_events.

Notice here that we have used tk_next_event/2 in several places. The code is executed by
calling setup/0. As usual, this loads in the Tcl part of the program, but then Prolog waits
for a message from the Tcl side. This message can either be next, indicating that we want
to show the next solution, or stop, indicating that we want to stop the program.

If next is received, then the program goes on to execute go/1. What this does it to
first calculate a solution to the 8-queens problem, displays the solution through show_
solution/2, and then waits for another message from Tcl/Tk. Again this can be either
next or stop. If next, the the program goes into the failure part of a failure driven loop
and generates and displays the next solution.

If at any time stop is received, the program terminates gracefully, cleaning up the Tcl
interpreter.

674 SICStus Prolog

On the Tcl/Tk side all we need are a couple of buttons: one for sending the next message,
and the other for sending the stop message.

button .next -text next -command {prolog_event next}
pack .next

button .stop -text stop -command {prolog_event stop}
pack .stop

(We could get more sophisticated. We might want it so that when the button it is depressed
until Prolog has finished processing the last message, when the button is allowed to pop
back up. This would avoid the problem of the user pressing the button many times while
the program is still processing the last request. We leave this as an exercise for the reader.)

40.5.4 The Whole 8-Queens Example

To finish off, we our complete 8-queens program.

Here is the Prolog part, which we have covered in previous sections. The code is in
library(’tcltk/examples/8-queens.pl’):

Chapter 40: Tcl/Tk Interface 675

% 8-queens.pl

:- use_module(library(tcltk)).
:- use_module(library(lists)).

setup :-
tk_new([name(’SICStus+Tcl/Tk - Queens’)], Tcl),
tcl_eval(Tcl, ’source 8-queens.tcl’, _),
tk_next_event(Tcl, Event),
(Event = next -> go(Tcl)
; closedown(Tcl)
).

closedown(Tcl) :-
tcl_delete(Tcl).

go(Tcl) :-
tcl_eval(Tcl, ’clear_board’, _),
queens(8, Qs),
show_solution(Tcl,Qs),
tk_next_event(Tcl, Event),
(Event = next -> fail
; closedown(Tcl)
).

go(Tcl) :-
tcl_eval(Tcl, ’disable_next’, _),
tcl_eval(Tcl, ’clear_board’, _),
tk_next_event(Tcl, _Event),
closedown(Tcl).

676 SICStus Prolog

% 8-queens.pl

queens(N, Qs) :-
range(1, N, Ns),
queens(Ns, [], Qs).

queens(UnplacedQs, SafeQs, Qs) :-
select(Q, UnplacedQs, UnplacedQs1),
\+ attack(Q, SafeQs),
queens(UnplacedQs1, [Q|SafeQs], Qs).
queens([], Qs, Qs).

attack(X, Xs) :- attack(X, 1, Xs).

attack(X, N, [Y|_Ys]) :- X is Y + N.
attack(X, N, [Y|_Ys]) :- X is Y - N.
attack(X, N, [_Y|Ys]) :-

N1 is N + 1,
attack(X, N1, Ys).

range(M, N, [M|Ns]) :-
M < N,
M1 is M + 1,
range(M1, N, Ns).

range(N, N, [N]).

show_solution(Tcl, L) :-
reverse(L, LR),
tcl_eval(Tcl, [show_solution, br(LR)], _),
tk_do_all_events.

tk_do_all_events :-
tk_do_one_event, !,
tk_do_all_events.

tk_do_all_events.

:- setup.

And here is the Tcl/Tk part, which we have covered in bits and pieces but here is the whole
thing. We have added an enhancement where when the mouse is moved over one of the
queens, the squares that the queen attacks are highlighted. Move the mouse away and the
board reverts to normal. This is an illustration of how the Tcl/Tk bind feature can be
used. The code is in library(’tcltk/examples/8-queens.tcl’):

Chapter 40: Tcl/Tk Interface 677

8-queens.tcl

#! /usr/bin/wish
create an 8x8 grid of labels
proc setup_display { } {

frame .queens -background black
pack .queens

for {set y 1} {$y <= 8} {incr y} {
for {set x 1} {$x <= 8} {incr x} {

create a label and display a queen in it
label .queens.$x-$y -bitmap @bitmaps/q64s.bm -relief flat

color alternate squares with different colors
to create the chessboard pattern
if { [expr ($x + $y) % 2] } {

.queens.$x-$y config -background #ffff99
} else {

.queens.$x-$y config -background #66ff99
}

set foreground to the background color to
make queen image invisible
.queens.$x-$y config -foreground [.queens.$x-$y cget -background]

bind the mouse to highlight the squares attacked by a
queen on this square
bind .queens.$x-$y <Enter> "highlight_attack on $x $y"
bind .queens.$x-$y <Leave> "highlight_attack off $x $y"

arrange the queens in a grid
grid .queens.$x-$y -row $y -column $x -padx 1 -pady 1

}
}

}

678 SICStus Prolog

8-queens.tcl

clear a whole column
proc reset_column { column } {

for {set y 1 } { $y <= 8 } {incr y} {
set_queens $column $y ""

}
}

place or unplace a queen
proc set_queens { x y v } {

if { $v == "Q" } {
.queens.$x-$y config -foreground black

} else {
.queens.$x-$y config -foreground [.queens.$x-$y cget -background]

}
}

place a queen on a column
proc place_queen { x y } {

reset_column $x
set_queens $x $y Q

}

clear the whole board by clearing each column in turn
proc clear_board { } {

for { set x 1 } {$x <= 8} {incr x} {
reset_column $x

}
}

given a solution as a list of queens in column positions
place each queen on the board
proc show_solution { solution } {

clear_board
set x 1
foreach y $solution {

place_queen $x $y
incr x

}
}

Chapter 40: Tcl/Tk Interface 679

8-queens.tcl

proc highlight_square { mode x y } {
check if the square we want to highlight is on the board
if { $x < 1 || $y < 1 || $x > 8 || $y > 8 } { return };

if turning the square on make it red,
otherwise determine what color it should be and set it to that
if { $mode == "on" } { set color red } else {

if { [expr ($x + $y) % 2] } { set color "#ffff99" } else {
set color "#66ff99" }

}

get the current settings
set bg [.queens.$x-$y cget -bg]
set fg [.queens.$x-$y cget -fg]

if the current foreground and background are the same
there is no queen there
if { $bg == $fg } {

no queens
.queens.$x-$y config -bg $color -fg $color

} else {
.queens.$x-$y config -bg $color

}
}

proc highlight_attack { mode x y } {
get current colors of square at x y
set bg [.queens.$x-$y cget -bg]
set fg [.queens.$x-$y cget -fg]

no queen there, give up
if { $bg == $fg } { return };

highlight the sqaure the queen is on
highlight_square $mode $x $y

highlight vertical and horizontal
for { set i 1 } {$i <= 8} {incr i} {

highlight_square $mode $x $i
highlight_square $mode $i $y

}

highlight diagonals
for { set i 1} { $i <= 8} {incr i} {

highlight_square $mode [expr $x+$i] [expr $y+$i]
highlight_square $mode [expr $x-$i] [expr $y-$i]
highlight_square $mode [expr $x+$i] [expr $y-$i]
highlight_square $mode [expr $x-$i] [expr $y+$i]

}
}

680 SICStus Prolog

8-queens.tcl

proc disable_next {} {
.next config -state disabled

}

setup_display

button for sending a ’next’ message
button .next -text next -command {prolog_event next}
pack .next

button for sending a ’stop’ message
button .stop -text stop -command {prolog_event stop}
pack .stop

Chapter 40: Tcl/Tk Interface 681

8-Queens Solution, Attacked Squares Highlighted

40.6 Quick Reference

40.6.1 Command Format Summary

Command ::= Name
| chars(code-list)
| write(term)

682 SICStus Prolog

| writeq(term)
| write_canonical(term)
| format(Fmt,Args)
| dq(Command)
| br(Command)
| sqb(Command)
| min(Command)
| dot(ListOfNames)
| list(ListOfCommands)
| ListOfCommands

Fmt ::= atom
Name ::= atom { other than [] }

| number
ListOfCommands ::= []

| [Command | ListOfCommands]
ListOfNames ::= []

| [Name | ListOfNames]
Args ::= []

| [term | Args]

where

Atom
Number denote their printed representations

chars(PrologString)
denotes the string represented by PrologString (a code-list)

write(Term)
writeq(Term)
write_canonical(Term)

denotes the string that is printed by the corresponding built-in predicate

format(Fmt, Args)
denotes the string that is printed by the corresponding built-in predicate

dq(Command)
denotes the string specified by Command, enclosed in double quotes

br(Command)
denotes the string specified by Command, enclosed in curly brackets

sqb(Command)
denotes the string specified by Command, enclosed in square brackets

min(Command)
denotes the string specified by Command, immediately preceded by a hyphen

dot(ListOfName)
denotes the widget path specified by ListOfName, preceded by and separated
by dots

Chapter 40: Tcl/Tk Interface 683

list(ListOfCommands)
denotes the TCL list with one element for each element in ListOfCommands.

ListOfCommands
denotes the string denoted by each element, separated by spaces

40.6.2 Predicates for Prolog to Interact with Tcl Interpreters

tcl_new(-TclInterpreter)
Create a Tcl interpreter and return a handle to it in the variable Interpreter.

tcl_delete(+TclInterpreter)
Given a handle to a Tcl interpreter in variable TclInterpreter, it deletes the
interpreter from the system.

tcl_eval(+TclInterp, +Command, -Result)
Evaluates the Tcl command term given in Command in the Tcl interpreter
handle provided in TclInterpreter. The result of the evaluation is returned as
a string in Result.

tcl_event(+TclInterp, +Command, -Events)
Evaluates the Tcl command term given in Command in the Tcl interpreter
handle provided in TclInterpreter. The first Prolog events arising from the
evaluation is returned as a list in Events. Blocks until there is something on
the event queue.

40.6.3 Predicates for Prolog to Interact with Tcl Interpreters with
Tk Extensions

tk_new(+Options, -Interp)
Create a Tcl interpreter with Tk extensions.
Options should be a list of options described following:

top_level_events
This allows Tk events to be handled while Prolog is waiting for
terminal input; for example, while the Prolog system is waiting for
input at the Prolog prompt. Without this option, Tk events are
not serviced while the Prolog system is waiting for terminal input.

Please note: This option is not currently supported
under Windows.

name(+ApplicationName)
This gives the main window a title ApplicationName. This name is
also used for communicating between Tcl/Tk applications via the
Tcl send command.

display(+Display)
(This is X windows specific.) Gives the name of the screen on which
to create the main window. If this is not given, the default display
is determined by the DISPLAY environment variable.

684 SICStus Prolog

tk_do_one_event
tk_do_one_event(+ListOrBitMask)

Passes control to Tk to handle a single event before passing control back to Pro-
log. The type of events handled is passed through the ListOrBitMask variable.
As indicated, this is either a list of atoms that are event types, or a bit mask as
specified in the Tcl/Tk documentation. (The bit mask should be avoided for
portability between Tcl/Tk versions.)
The ListOrBitMask list can contain the following atoms:

tk_dont_wait
don’t wait for new events, process only those that are ready

tk_x_events
tk_window_events

process window events

tk_file_events
process file events

tk_timer_events
process timer events

tk_idle_events
process Tk_DoWhenIdle events

tk_all_events
process any event

Calling tk_do_one_event/0 is equivalent to a call to tk_do_one_event/1 with
all flags set. If the tk_dont_wait flag is set and there is no event to handle,
the call will fail.

tk_next_event(+TclInterpreter, -Event)
tk_next_event(+ListOrBitMask, +TclInterpreter, -Event)

These predicates are similar to tk_do_one_event/[0,1] except that they pro-
cesses Tk events until is at least one Prolog event happens, when they succeed
binding Event to the first term on the Prolog event queue associated with the
interpreter TclInterpreter.

tk_main_loop
Pass control to Tk until all windows in all Tcl/Tk interpreters are gone.

tk_main_window(+TclInterpreter, -TkWindow)
Return in TkWindow a reference to the main window of a Tcl/Tk interpreter
with handle passed in TclInterpreter.

tk_destroy_window(+TkWindow)
Destroy a window or widget.

tk_make_window_exist(+TkWindow)
Force display of a window or widget.

tk_num_main_windows(-NumberOfWindows)
Return in NumberOfWindows the total number of Tk main windows existing
in the system.

Chapter 40: Tcl/Tk Interface 685

40.6.4 Commands for Tcl Interpreters to Interact with The
Prolog System

prolog Evaluate a Prolog expression from Tcl.

prolog_event
Place a Prolog term on the Prolog event queue from inside Tcl.

40.7 Resources

We do not know of any resources out there specifically for helping with creating Prolog
applications with Tcl/Tk interfaces. Instead we list here some resources for Tcl/Tk, which
may help readers to build the Tcl/Tk side of the application.

40.7.1 Web Sites

The home of Tcl/Tk is at:

http://tcl.sourceforge.net

The Tcl Developer Xchange site is at:

http://www.tcl.tk

40.7.2 Books

There are a surprising number of books on Tcl/Tk, extensions to Tcl/Tk, and Tk as an
extension to other languages. Here we mention just a few of the well-known books that will
get you started with building Tcl/Tk GUIs, which can then be interfaced to your Prolog
applications.

• Brent Welch, Practical Programming in Tcl and Tk. Prentice Hall, 1999. 3rd Edition
ISBN: 0-13-022028-0 http://www.beedub.com/book/

• John Ousterhout, Tcl and the Tk Toolkit. Addison-Wesley, 1994, ISBN 0-201-63337-X
• Paul Raines, Tcl/Tk Pocket Reference, 1st Ed., Oct. 1998, ISBN 1-56592-498-3
• Paul Raines & Jeff Tranter, Tcl/Tk in a Nutshell, 1st Ed., March 1999, 1-56592-433-9

Also visit the ‘books’ section of the Tcl/Tk web site:

http://resource.tcl.tk/resource/doc/books/

http://tcl.sourceforge.net
http://www.tcl.tk
http://www.beedub.com/book/
http://resource.tcl.tk/resource/doc/books/

686 SICStus Prolog

40.7.3 Manual Pages

Complete manual pages in various formats and for various versions of the Tcl/Tk library
can be found at the Tcl/Tk web site:

http://resource.tcl.tk/resource/doc/manual/

40.7.4 Usenet News Groups

The newsgroup for everything Tcl is

news:comp.lang.tcl

http://resource.tcl.tk/resource/doc/manual/
news:comp.lang.tcl

Chapter 41: The Gauge Profiling Tool 687

41 The Gauge Profiling Tool

The Gauge library package is a graphical interface to the SICStus built-in predicates
profile_data/4 and profile_reset/1. See Section 8.16 [Profiling], page 211, for more
information about execution profiling. The interface is based on Tcl/Tk (see Chapter 40
[Tcl/Tk], page 587).

To use the Gauge package, enter the query:

| ?- use_module(library(gauge)).

view(:Spec)
Creates a graphical user interface for viewing the profile data for the predi-
cates covered by the generalized predicate spec Spec. For example, the call
view([user:_,m2:_]), will bring up the graphical user interface on the predi-
cates contained in the modules user and m2. When the display first comes up
it is blank except for the control panel. A screen shot is shown below.

688 SICStus Prolog

Gauge graphical user interface

The menus and buttons on the control panel are used as follows:

Specification
Selects what statistics to display. One of:

Calls The number of times a predicate/clause was called.

Execution Time
The execution time. Beware, this is a synthetic value.

Choicepoints
Number of choicepoints created.

Shallow Failures
Number of failures in the “if” part of if-then-else statements, or in
the “guard” part of guarded clauses.

Chapter 41: The Gauge Profiling Tool 689

Deep Failures
Number of failures that don’t count as shallow.

Backtracking
Number of times a clause was backtracked into.

Calls+Backtracking
The number of times a predicate/clause was called or backtracked
into. This is particularly useful with clause level resolution.

Resolution Selects the level of resolution. One of:

Predicate Compute results on a per predicate basis.

Clause Compute results on a per clause basis, not counting disjunctions
and similar control structures as full predicates.

User+System Clauses
Compute results on a per clause basis, counting disjunctions and
similar control structures as full predicates.

Sort Order
Selects the sort order of the histogram. One of:

Alphabetic Sort the bars in alphabetic order.

Descending values
Sort the bars by descending values.

Ascending values
Sort the bars by ascending values.

Top 40 Show just the 40 highest values in descending order.

Scale Controls the scaling of the bars. One of:

Linear Display values with a linear scale.

Logarithmic
Display values with a logarithmic scale.

Show Controls whether to show bars with zero counts. One of:

All Show all values in the histogram.

No zero values
Show only non-zero values.

Font The font used in the histogram chart.

Calculate Calculates the values according to the current settings. The values are displayed
in a histogram.

Reset The execution counters of the selected predicates and clauses are reset.

Print A choice of printing the histogram on a Postscript printer, or to a file.

Help Shows a help text.

Quit Quits Gauge and closes its windows.

By clicking on the bars of the histogram, the figures are displayed in the Value Info window.

690 SICStus Prolog

Chapter 42: I/O on Lists of Character Codes 691

42 I/O on Lists of Character Codes

This package defines I/O predicates that read from, or write to, a code-list. There are also
predicates to open a stream referring to a code-list. The stream may be used with general
Stream I/O predicates.

Note that the predicates in this section properly handle wide characters, irrespectively of
the wide character encodings selected.

Please note: here, the term ‘chars’ refers to a code-list, rather than to a char-
list.

This library fully supports multiple SICStus run-times in a process.

To load the package, enter the query

| ?- use_module(library(charsio)).

format_to_chars(+Format, :Arguments, -Chars)
format_to_chars(+Format, :Arguments, ?S0, ?S)

Prints Arguments into a code-list using format/3 (see Section 8.1.3 [Term I/O],
page 142). Chars is unified with the list, alternatively S0 and S are unified with
the head and tail of the list, respectively.

write_to_chars(+Term, -Chars)
write_to_chars(+Term, ?S0, ?S)

A specialized format_to_chars/[3,4]. Writes Term into a code-list using
write/2 (see Section 8.1.3 [Term I/O], page 142). Chars is unified with the
list. Alternatively, S0 and S are unified with the head and tail of the list,
respectively.

write_term_to_chars(+Term, -Chars, +Options)
write_term_to_chars(+Term, ?S0, ?S, +Options)

A specialized format_to_chars/[3,4]. Writes Term into a code-list using
write_term/3 and Options (see Section 8.1.3 [Term I/O], page 142). Chars is
unified with the list. Alternatively, S0 and S are unified with the head and tail
of the list, respectively.

atom_to_chars(+Atom, -Chars)
atom_to_chars(+Atom, ?S0, ?S)

A specialized format_to_chars/[3,4]. Converts Atom to the list of characters
comprising its name. Chars is unified with the list, alternatively S0 and S are
unified with the head and tail of the list, respectively.

number_to_chars(+Number, -Chars)
number_to_chars(+Number, ?S0, ?S)

A specialized format_to_chars/[3,4]. Converts Number to the list of char-
acters comprising its name. Chars is unified with the list, alternatively S0 and
S are unified with the head and tail of the list, respectively.

692 SICStus Prolog

read_from_chars(+Chars, -Term)
Reads Term from Chars using read/2. The Chars must, as usual, be terminated
by a full-stop, i.e. a ‘.’, possibly followed by layout-text.

read_term_from_chars(+Chars, -Term, +Options)
Reads Term from Chars using read_from_term/3 and Options. The Chars
must, as usual, be terminated by a full-stop, i.e. a ‘.’, possibly followed by
layout-text.

open_chars_stream(+Chars, -Stream)
Stream is opened as an input stream to an existing code-list. The stream may
be read with the Stream I/O predicates and must be closed using close/1.
The list is copied to an internal buffer when the stream is opened and must
therefore be a ground code-list at that point.

with_output_to_chars(:Goal, -Chars)
with_output_to_chars(:Goal, ?S0, ?S)
with_output_to_chars(:Goal, -Stream, ?S0, ?S)

Goal is called with the current_output stream set to a new stream. This
stream writes to an internal buffer, which is, after the successful execution
of Goal, converted to a list of character codes. Chars is unified with the list,
alternatively S0 and S are unified with the head and tail of the list, respectively.
with_output_to_chars/4 also passes the stream in the Stream argument. It
can be used only by Goal for writing.

Chapter 43: Jasper Java Interface 693

43 Jasper Java Interface

43.1 Jasper Overview

Jasper is a bi-directional interface between Java and SICStus. The Java-side of the interface
consists of a Java package (se.sics.jasper) containing classes representing the SICStus
run-time system (SICStus, SPTerm, etc). The Prolog part is designed as a library module
(library(jasper)).

The library module library(jasper) (see Section 43.8 [The Jasper Library], page 708)
provides functionality for controlling the loading and unloading the JVM (Java Virtual
Machine), method call functionality (jasper_call/4), and predicates for managing object
references.

Jasper can be used in two modes, depending on which system acts as Parent Application. If
Java is the parent application, the SICStus runtime kernel will be loaded into the JVM using
the System.loadLibrary() method (this is done indirectly when instantiating a SICStus
object). In this mode, SICStus is loaded as a runtime system (see Section 9.8.1 [Runtime
Systems], page 254).

As of SICStus 3.9, it is possible to use Jasper in multi threaded mode. This means that
several Java threads can call SICStus runtime via a server thread. The communication
between the client threads and the server thread is hidden from the programmer, and the
API is based on Java Interfaces, which are implemented both by the multi thread capable
classes and the pre-3.9 classes, which are restricted to single threaded mode. The decision
whether to run in single thread mode or in multi threaded mode can thus be left until
runtime.

If SICStus is the parent application, Java will be loaded as a foreign resource using
the query use_module(library(jasper)). The Java engine is initialized using jasper_
initialize/[1,2].

• Some of the information in this chapter is a recapitulation of the information in Chap-
ter 9 [Mixing C and Prolog], page 217. The intention is that this chapter should be
possible to read fairly independently.

• Before proceeding, please read section “Jasper Notes” in SICStus Prolog Release Notes
. It contains important information about requirements, availability, installation tips,
limitations, and how to access other (online) Jasper/Java resources.

43.2 Getting Started

See section “Getting Started” in SICStus Prolog Release Notes, for a detailed description
of how to get started using the interface. It addresses issues such as finding SICStus from

694 SICStus Prolog

within Java and vice versa, setting the classpath correctly, etc. If you have trouble in getting
started with Jasper, read that chapter before contacting SICStus Support.

43.3 Calling Prolog from Java

Calling Prolog from Java is done by using the Java package se.sics.jasper. This package
contains a set of Java classes, which can be used to create and manipulate terms, ask
queries and request one or more solutions. The functionality provided by this set of classes
is basically the same as the functionality provided by the C-Prolog interface (see Chapter 9
[Mixing C and Prolog], page 217).

The usage is easiest described by some examples.

43.3.1 Single Threaded Example

The following is a Java version of the train example. See Section 9.9.1 [Train Example],
page 279, for information about how the ‘train.sav’ file is created.

This code demonstrates the use of Jasper in single threaded mode. In this mode only one
thread can access the SICStus runtime via a SICStus object.

Chapter 43: Jasper Java Interface 695

// Simple.java

import se.sics.jasper.SICStus;
import se.sics.jasper.Query;
import java.util.HashMap;

public class Simple
{

public static void main(String argv[]) {

SICStus sp;
Query query;
HashMap WayMap = new HashMap();

try {
sp = new SICStus(argv,null);

sp.restore("train.sav");

query = sp.openPrologQuery("connected(’Örebro’, ’Stockholm’,
Way, Way).",

WayMap);

try {
while (query.nextSolution()) {

System.out.println(WayMap);
}

} finally {
query.close();

}
}
catch (Exception e) {

e.printStackTrace();
}

}
}

It is assumed that the reader has read the section on Section 43.2 [Getting Started], page 693,
which describes how to get the basics up and running.

This is how the example works:

1. Before any predicates can be called, the SICStus run-time system must be initialized.
This is done by instantiating the SICStus class. Each SICStus object correspond to
one independent copy of the SICStus run-time system (a rather heavy-weight entity).
In this example, we have specified null as the second argument to SICStus. This
instructs SICStus to search for sprt.sav using its own internal methods, or using a
path specified by passing ‘-Dsicstus.path=[...]’ to the JVM.

696 SICStus Prolog

2. Queries are made through method query. The arguments to this method are a string
specifying a Prolog goal, and a Map, which will contain a mapping of variable names
to bindings. This method is for finding a single solution. Note that the string is read
by the Prolog reader, so it must conform to the syntax rules for Prolog, including the
terminating period. There are two more methods for making queries: queryCutFail,
for side-effects only, and openQuery to produce several solutions through backtracking.

3. The next step is to load the Prolog code. This is done by the method restore.
Corresponds to SP_restore() in the C-interface. See Section 9.8.4.2 [Loading Prolog
Code], page 277. Note that this method must be called before any other SICStus
method is called. See the HTML Jasper documentation for details.

4. The openQuery method returns a reference to a query, an object implementing the
Query interface. To obtain solutions, the method nextSolution is called with no
arguments. nextSolution returns true as long as there are more solutions, and the
example above will print the value of the Map WayMap until there are no more solutions.
Note that the query must be closed, even if nextSolution has indicated that there are
no more solutions.

43.3.2 Multi Threaded Example

Following is a Java version of the train example.

This is a multi threaded version of the train example. In this mode several threads can ac-
cess the SICStus runtime via a Prolog interface. The static method Jasper.newProlog()
returns an object that implements a Prolog interface. A thread can make queries by call-
ing the query-methods of the Prolog object. The calls will be sent to a separate server thread
that does the actual call to SICStus runtime.

Chapter 43: Jasper Java Interface 697

// MultiSimple.java

import se.sics.jasper.Jasper;
import se.sics.jasper.Query;
import se.sics.jasper.Prolog;
import java.util.HashMap;

public class MultiSimple
{

class Client extends Thread
{

Prolog jp;
String qs;

Client(Prolog p,String queryString)
{

jp = p;
qs = queryString;

}
public void run()
{

HashMap WayMap = new HashMap();
try {

synchronized(jp) {
Query query = jp.openPrologQuery(qs, WayMap);
try {

while (query.nextSolution()) {
System.out.println(WayMap);

}
} finally {

query.close();
}

}
} catch (Exception e) {

e.printStackTrace();
}

}
}

698 SICStus Prolog

{
try {

Prolog jp = Jasper.newProlog(argv,null,"train.sav");

Client c1 =
new Client(jp,"connected(’Örebro’, ’Hallsberg’,

Way1, Way1).");
c1.start();
// The prolog variable names are different from above
// so we can tell which query gives what solution.
Client c2 =

new Client(jp,"connected(’Stockholm’, ’Hallsberg’,
Way2, Way2).");

c2.start();
}
catch (Exception e) {

e.printStackTrace();
}

}

public static void main(String argv[])
{

new MultiSimple(argv);
}

}

1. The Prolog object jp is the interface to SICStus. It implements the methods of
interface Prolog, making it possible to write quite similar code for single threaded
and multi threaded usage of Jasper. The static method Jasper.newProlog() returns
such an object.

2. In this example, the Prolog code is loaded by the server thread just after creating the
SICStus object (which is invisible to the user). The third argument to the method
Jasper.newProlog is the .sav file to restore. Two threads are then started, which will
make different queries with the connected predicate.

3. openPrologQuery is not recommended in multi threaded mode, but if you must use it
from more than one Java thread, you should enclose the call to openPrologQuery and
the closing of the query in a single synchronized block, synchronizing on the Prolog
object. See Section 43.6 [SPTerm and Memory], page 705, for details on one of the
reasons why this is necessary.

43.3.3 Another Multi Threaded Example (Prolog Top Level)

This is another multi threaded version of the train example (see Section 9.9.1 [Train
Example], page 279).

In this example prolog is the toplevel and Java is invoked via ‘library(jasper)’.

Chapter 43: Jasper Java Interface 699

// MultiSimple2.java

import se.sics.jasper.Jasper;
import se.sics.jasper.Query;
import se.sics.jasper.Prolog;
import se.sics.jasper.SICStus;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.ListIterator;

public class MultiSimple2
{

class Client extends Thread
{

Prolog jp;
SICStus sp;
String qs;

Client(Prolog p, SICStus s, String queryString)
{

jp = p;
sp = s;
qs = queryString;

}
public void run()
{

HashMap WayMap = new HashMap();
try {

synchronized(jp) {
Query query = jp.openPrologQuery(qs, WayMap);
try {

while (query.nextSolution()) {
System.out.println(WayMap);

}
} finally {

query.close();
}

}
} catch (Exception e) {

e.printStackTrace();
}

}
}

700 SICStus Prolog

class Watcher extends Thread
{

SICStus mySp;
ArrayList threadList = new ArrayList(2);

public boolean add(Client cl)
{

return threadList.add((Object)cl);
}
boolean at_least_one_is_alive(ArrayList tl)
{

ListIterator li = tl.listIterator();
boolean f = false;
while (li.hasNext()) {

boolean alive = ((Client)(li.next())).isAlive();
f = f || alive;

}
return f;

}
public void run()
{

while (at_least_one_is_alive(threadList)) {
try {

this.sleep(1000);
} catch (InterruptedException ie) {

System.err.println("Watcher interrupted.");
}

}
mySp.stopServer();

}
Watcher(SICStus sp)
{

mySp = sp;
}

}

Chapter 43: Jasper Java Interface 701

public void CallBack()
{

try {
SICStus sp = SICStus.getCaller(); // get the SICStus object
sp.load("train.ql");
Prolog jp = sp.newProlog(); // Create a new Prolog Interface
Client c1 =

new Client(jp, sp,
"connected(’Örebro’, ’Hallsberg’, Way1, Way1).");

c1.start();
// The prolog variable names in the Map are different from above so
// we can tell which query gives what solution.
Client c2 =

new Client(jp, sp,
"connected(’Stockholm’, ’Hallsberg’, Way2, Way2).");

c2.start();
Watcher w = new Watcher(sp);
w.add(c1);
w.add(c2);
w.start();
sp.startServer(); // And finally start the server. This

// method call does not return until
// some other thread calls sp.stopServer().

}
catch (Exception e) {

e.printStackTrace();
}

}

}

% multisimple2.pl

:- use_module(library(jasper)).
main:-

jasper_initialize(JVM),
jasper_new_object(JVM,

’MultiSimple2’,
init,
init,
Obj),

jasper_call(JVM,
method(’’, ’CallBack’, [instance]),
’CallBack’(+object(’’)),
’CallBack’(Obj)).

1. This example is similar to the previous multi threaded example See Section 43.3.2

702 SICStus Prolog

[Multi Threaded Example], page 696, but in this case Prolog is the top level.
2. Since a SICStus object already exists when the java method CallBack is called, we

cannot use Jasper.newProlog to obtain a Prolog interface. Instead we can use the
SICStus method getCaller to get a handle on the SICStus object.

3. In this example we cannot use the restore method to load the prolog saved state, since
it unloads all foreign resources. This includes library(jasper) from which the call
to Java was made. Instead the method SICStus.load can be used to load a compiled
prolog file. See the HTML Jasper documentation for details on this method. See
Section 6.1 [Load Predicates], page 66, for how to create a ‘.ql’ file.

4. The rest of the example is similar to the previous multi threaded example with the
addition of a watcher class, which is used to monitor the client threads. This is necessary
if the method startServer is to return. See the HTML Jasper documentation on the
methods SICStus.startServer and SICStus.stopServer.

43.4 Jasper Package Class Reference

Detailed documentation of the classes in the jasper package can be found in the HTML
documentation installed with SICStus and also at the SICStus documentation page
(http://www.sics.se/sicstus/docs/).

Please note: None of the se.sics.jasper methods are thread safe, unless
explicitly mentioned, they can only be called from the thread that created
the SICStus object. (This is different from how se.sics.jasper worked in
SICStus 3.8)

However, Jasper in SICStus 3.9 and later supports multi threaded mode. Several Java
threads can access SICStus runtime through a server thread that does the actual calls.

The API is defined by three interfaces: Prolog, Query and Term. The methods of these
interfaces are implemented by inner classes of the Jasper server. Instances of these inner
classes are returned by methods of the class Jasper and can then be used from multiple
threads by the Java programmer.

In multi threaded mode the Java programmer obtains an object implementing the
interface Prolog. That interface has methods similar to the methods of the SICStus
class described below. Interface Query and interface Term have the same relations to
class SPQuery and class SPTerm, respectively. In addition the SICStus class, the SPQuery
class and the SPTerm class all implement the above interfaces. The methods of the interfaces
are preferred over the old methods.

See the HTML documentation for details on the methods of the interfaces.

See section “Jasper Notes” in SICStus Prolog Release Notes, for limitations in multi
threaded Jasper.

http://www.sics.se/sicstus/docs/

Chapter 43: Jasper Java Interface 703

[Method on SICStus]boolean query (String module, String name, SPTerm
args[])

Call name with args (a vector of SPTerm objects). Like
once(Module:Name(Args...)).

Returns true if the call succeeded, false if the call failed, i.e. there were no solutions.

Introduced in SICStus 3.8.5.

[Method on SICStus]boolean query (String goal, Map varMap)
Call a goal specified as a string.

goal The textual representation of the goal to execute, with terminating pe-
riod.

varMap A map from variable names to SPTerm objects. Used both for passing
variable bindings into the goal and to obtain the bindings produced by
the goal. May be null.
On success, the values of variables with names that do not start with
underscore (‘_’) will be added to the map.

Returns true if the call succeeded, false if the call failed, i.e. there were no solutions.

HashMap varMap = new HashMap();

varMap.put("File", new SPTerm(sp, "datafile.txt"));

if (sp.query("see(File),do_something(Result),seen.", varMap)) {
System.out.println("Result==" +

((SPTerm)varMap.get("Result")).toString());
} else {

System.out.println("Failed);
}

Introduced in SICStus 3.8.5.

[Method on SICStus]boolean query (SPPredicate pred, SPTerm args[])
Obsolescent version of SICStus::query() above.

[Method on SICStus]boolean queryCutFail (String module, String name,
SPTerm args[])

Call name with args for side-effect only.

As SICStus.query() it only finds the first solution, and then it cuts away all other
solutions and fails.

It corresponds roughly to the following Prolog code:

(\+ call(Module:Name(Args...)) -> fail; true)

704 SICStus Prolog

Introduced in SICStus 3.8.5.

[Method on SICStus]boolean queryCutFail (String goal, Map varMap)
Call a goal specified as a string, for side-effect only. The map is only used for passing
variable bindings into the goal. See query for details

Introduced in SICStus 3.8.5.

[Method on SICStus]boolean queryCutFail (SPPredicate pred, SPTerm
args[])

Obsolescent version of queryCutFail above.

[Method on SICStus]SPQuery openQuery (String module, String name,
SPTerm args[])

Sets up a query (an object of class SPQuery), which can later be asked to produce
solutions. You must close an opened query when no more solutions are required; see
below.

It corresponds roughly to the following Prolog code:

(true % just calling openQuery does not call the predicate

; % failing (nextSolution) will backtrack for more solutions
call(Module:Name(Args...))

)

Introduced in SICStus 3.8.5.

[Method on SICStus]boolean openQuery (String goal, Map varMap)
Sets up a query specified as a string. See openQuery and query for details.

Introduced in SICStus 3.8.5.

[Method on SICStus]SPQuery openQuery (SPPredicate pred, SPTerm args[])
Obsolescent version of openQuery above.

The following methods are used to obtain solutions from an opened query and to tell the
SICStus run-time system that no more answers are required.

[Method on SPQuery]boolean nextSolution ()
Obtain the next solution. Returns true on success and false if there were no more
solutions. When you are no longer interested in any more solutions, you should call
SPQuery.close or SPQuery.cut to close the query.

Returns true if a new solution was produced, false if there were no more solu-
tions. This corresponds roughly to fail/0. See Section 43.6 [SPTerm and Memory],
page 705, for additional details.

Chapter 43: Jasper Java Interface 705

[Method on SPQuery]close ()
Cut and fail away any previous solution to the query. After closing a query object,
you should not use it anymore. This corresponds roughly to !, fail. See Section 43.6
[SPTerm and Memory], page 705, for additional details.

[Method on SPQuery]cut ()
Cut, but do not fail away, any previous solution. After closing a query object with
cut, you should not use it anymore. This corresponds roughly to !. See Section 43.6
[SPTerm and Memory], page 705, for additional details.

43.5 Java Exception Handling

Exceptions are handled seamlessly between Java and Prolog. This means that exceptions
can be thrown in Prolog and caught in Java and the other way around. For example, if a
predicate called from Java throws an exception with throw/1 and the predicate itself does
not catch the exception, the Java-method that performed the query, queryCutFail() for
example, will throw an exception (of class SPException) containing the exception term.
Symmetrically, a Java-exception thrown (and not caught) in a method called from Prolog
will cause the corresponding predicate (simple/2 in the example above) to throw an ex-
ception consisting of the exception object (in the internal Prolog representation of a Java
object). See Section 43.8.5 [Handling Java Exceptions], page 718, for examples of catching
Java exceptions in Prolog.

43.6 SPTerm and Memory

Java and Prolog have quite different memory management policies. In Java, memory
is reclaimed when the garbage collector can determine that no code will ever use the
object occupying the memory. In Prolog, the garbage collector additionally reclaims
memory upon failure (such as the failure implied in the use of SPQuery.close() and
SPQuery::nextSolution()). This mismatch in the notion of memory lifetime can oc-
casionally cause problems.

43.6.1 Lifetime of SPTerms and Prolog Memory

There are three separate memory areas involved when manipulating Prolog terms from Java
using SPTerm objects. These areas have largely independent life times.

1. The SPTerm object itself.
2. Creating SPTerm object also tells Prolog to allocate an SP term ref. SP term refs have

a life-time that is independent of the lifetime of the corresponding SPTerm object.
3. Any Prolog terms allocated on the Prolog heap. An SPTerm refer to a Prolog term

indirectly via a SP term ref.

706 SICStus Prolog

A SP term ref ref (created as a side-effect of creating a SPTerm object) will be reclaimed if
either:

• Java returns to Prolog. This may never happen, especially if Java is the top-level
application.

• Assume there exists a still open query q that was opened before the SP term ref ref
was created. The SP term ref ref will be reclaimed if the query q is closed (using
q.close() or q.cut()) or if q.nextSolution() is called.

An SPTerm object will be invalidated (and eventually reclaimed by the garbage collector) if
the corresponding SP term ref is reclaimed as above. If passed an invalidated SP term ref,
most methods will throw an IllegalTermException exception.

A Prolog term (allocated on the Prolog heap) will be deallocated when:

• Assume there exists a still open query q that was openend before the term was created.
The memory of the term will be reclaimed if the query q is closed using q.close()
or if q.nextSolution() is called. The memory is not reclaimed if the query is closed
with q.cut().

Please note: it is possible to get a SPTerm object and its SP term ref to refer to
deallocated Prolog terms, in effect creating “dangling” pointers in cases where
the SPTerm would ordinarily still be valid. This will be detected and invalidate
the SPTerm:

{
SPTerm old = new SPTerm(sp);
SPQuery q;

q = sp.openQuery(....);
...
old.consFunctor(...); // allocate a Prolog term newer

than q
...
q.nextSolution(); // or q.close()
// error:
// The SP_term_ref in q refers to an invalid part of the Prolog heap
// the SPTerm old will be invalidated by q.nextSolution()

}

43.6.2 Preventing SPTerm Memory Leaks

Some uses of SPTerm will leak memory on the Prolog side. This happens if a new SPTerm
object is allocate, but Java neither returns to Prolog nor backtracks (using the method
close, cut or nextSolution) into a query opened before the allocation of the SPTerm
object.

Chapter 43: Jasper Java Interface 707

As of SICStus 3.8.5, it is possible to explicitly delete a SPTerm object using the
SPTerm.delete() method. The delete() method invalidates the SPTerm object and
makes the associated SP term ref available for re-use.

Another way to ensure that all SP term refs are deallocated is to open a dummy query
only for this purpose. The following code demonstrates this:

// Always synchronize over creation and closing of SPQuery objects
synchronized (sp) {

// Create a dummy query that invokes true/0
SPQuery context = sp.openQuery("user","true",new SPTerm[]{});
// All SP_term_refs created after this point will be reclaimed by
// Prolog when doing context.close() (or context.cut())

try { // ensure context is always closed
SPTerm tmp = new SPTerm(sp); // created after context
int i = 0;

while (i++ < 5) {
// re-used instead of doing tmp = new SPTerm(sp,"...");
tmp.putString("Iteration #" + i + "\n");
// e.g. user:write(’Iteration #1\n’)
sp.queryCutFail("user", "write", new SPTerm[]{tmp});

}
}
finally {

// This will invalidate tmp and make Prolog
// reclaim the corresponding SP_term_ref
context.close(); // or context.cut() to retain variable bindings.

}
}

43.7 Java Threads

None of the pre-3.9 methods in se.sics.jasper are thread safe. They can only be
called from the thread that created the SICStus object. (This is different from how
se.sics.jasper used to work in SICStus 3.8).

As of 3.9 there are two ways to set up for calls to SICStus from multiple threads.

One way is to use the static method newProlog in the class Jasper:

[Method on Jasper]Prolog newProlog (String argv[], String bootPath)
Creates a Prolog interface object. Starts a server thread, which will serve that
Prolog. The server thread takes care of all interaction with the Prolog runtime,

708 SICStus Prolog

making sure that all calls to the Prolog runtime will be done from one and the same
thread.

See the HTML documentation on the interface Prolog for details on what methods are
available for a client thread.

Another way is to create a SICStus object and use the following methods:

[Method on SICStus]Prolog newProlog ()
Returns the Prolog interface for this SICStus object. Creates a server and a client
(Prolog) interface for this SICStus object. The server may be started by calling
startServer()

[Method on SICStus]startServer ()
Start serving requests from a Prolog client. This method does not return until another
thread calls stopServer(). Before calling this method you should call newProlog()
and hand the result over to another Thread.

[Method on SICStus]stopServer ()
Stops the server. Calling this method causes the Thread running in the
startServer() method to return.

As with the first method, the interface Prolog defines the methods available for the client
threads.

43.8 The Jasper Library

The Jasper library module is the Prolog interface to the Java VM. It corresponds to the
se.sics.jasper package in Java. It is loaded by executing the query:

| ?- use_module(library(jasper)).

The Jasper library fully supports multiple SICStus run-times in a process.

Jasper cannot be used when the SICStus run-time is statically linked to the executable,
such as when using spld --static.

The following functionality is provided:

• Initializing the Java VM using the JNI Invocation API (jasper_initialize/[1,2],
jasper_deinitialize/1).

• Creating and deleting Java objects directly from Prolog (jasper_new_object/5).
• Method calls (jasper_call/4).
• Global and local (object) reference management (jasper_create_global_ref/3,

jasper_delete_global_ref/2, jasper_delete_local_ref/2). Global references are
used to prevent the JVM from garbage collecting a Java object referenced from Prolog.

Chapter 43: Jasper Java Interface 709

• There is also a sub-directory containing example programs
(library(’jasper/examples’)).

43.8.1 Jasper Method Call Example

We begin with a small example.

// Simple.java

import se.sics.jasper.*;

public class Simple {
private String instanceDatum = "this is instance data";

static int simpleMethod(int value) {
return value*42;

}

public String getInstanceData(String arg) {
return instanceDatum + arg;

}
}

Compile ‘Simple.java’ (UNIX):

% javac -deprecation \

-classpath <installdir>/lib/sicstus-
3.12.8/bin/jasper.jar Simple.java

Under Windows this may look like (the command should go on a single line):

C:\> c:\jdk1.2.2\bin\javac -deprecation

-classpath "D:\Program Files\SICStus Prolog
3.12.8\bin\jasper.jar" Simple.java

The option ‘-deprecation’ is always a good idea, it makes javac warn if your code use
deprecated methods.

710 SICStus Prolog

% simple.pl

:- use_module(library(jasper)).
main :-

%% Replace ’/my/java/dir’ below with the path containing
%% ’Simple.class’, e.g. to look in the current directory use
%% classpath([’.’]).
%% You can also use the CLASSPATH environment variable and call
%% jasper_initialize(JVM)
%% Under Windows it may look like classpath([’C:/MyTest’])
jasper_initialize([classpath([’/my/java/dir’])],JVM),

format(’Calling a static method...~n’,[]),
jasper_call(JVM,

method(’Simple’,’simpleMethod’,[static]), % Which method
simple_method(+integer,[-integer]), % Types of arguments
simple_method(42,X)), % The arguments.

format(’simpleMethod(~w) = ~w~n’,[42,X]),

format(’Creating an object...~n’,[]),
jasper_new_object(JVM, ’Simple’, init, init, Object),

format(’Calling an instance method on ~w...~n’,[Object]),
jasper_call(JVM,

method(’Simple’,’getInstanceData’,[instance]),
%% first arg is the instance to call
get_instance_data(+object(’Simple’), +string,[-string]),
get_instance_data(Object, ’foobar’, X1)),

format(’getInstanceData(~w) = ~w~n’,[’foobar’,X1]).

Then, run SICStus:

% echo "[simple],main." | sicstus

SICStus 3.12.8 ...
Licensed to SICS
% consulting /home1/jojo/simple.pl...
[...]
% consulted /home1/jojo/simple.pl in module user, 100 msec 26644 bytes
Calling a static method...
simpleMethod(42) = 1764
Creating an object...
Calling and instance method on $java_object(135057576)...
getInstanceData(foobar) = this is instance datafoobar

This example performed three things.

• The static method simpleMethod was called with argument ’42’, and returned the
square of ’42’, ’1764’.

Chapter 43: Jasper Java Interface 711

• An object of class Simple was created.
• The method getInstanceData was executed on the object just created. The method

took an atom as an argument and appended the atom to a string stored as a field in
the object, yielding "this is instance datafoobar".

43.8.2 Jasper Library Predicates

jasper_initialize(-JVM)
jasper_initialize(+Options, -JVM)

Loads and initializes the Java VM. JVM is a reference to the Java VM. Options
is a list of options. The options can be of the following types:

classpath(<classpath>)
If <classpath> is an atom it will be added (unmodified) to the
Java VM’s classpath. If <classpath> is a list, each element will
be expanded using absolute_file_name/2 and concatenated using
the Java VM’s path-separator. Example:

classpath([library(’jasper/examples’),’$HOME/joe’])

In addition to the classpaths specified here, Jasper will automati-
cally add jasper.jar to the classpath together with the contents
of the CLASSPATH environment variable.

if_exists(option)
This option determines what happens if a JVM has already been
initialized, either through a previous call to jasper_initialize
or because Prolog have been called from Java. If a JVM already
exists then the other options are ignored.

ok The default. Argument JVM is bound to the existing
JVM.

fail The call to jasper_initialize/2 fails.

error The call to jasper_initialize/2 throws an exception
(java_exception(some text)).

if_not_exists(option)
This option determines what happens if a JVM has not already
been initialized.

ok The default. The remaining options are used to initial-
ize the JVM.

fail The call to jasper_initialize/2 fails.

error The call to jasper_initialize/2 throws an exception
(java_exception(some text)).

As an example, to access the currently running JVM and to give
an error if there is no running JVM use jasper_initialize([if_
exists(ok),if_not_exists(error)], JVM).

712 SICStus Prolog

Option The option is an atom that will be passed directly to the Java VM
as an option. This enables the user to send additional options to
the Java VM. Example:

jasper_initialize([’-Dkenny.is.dead=42’],JVM),

In addition to the options specified by the user, Jasper adds a couple of options
on its own in order for Java to find the Jasper classes and the Jasper native
library.
There is currently no support for creating multiple JVMs (few JDKs, if any,
supports this).

jasper_deinitialize(+JVM)
De-initialize Java. Do not call this, current versions of the JVM does not
support deinitialization.

jasper_call(+JVM,+Method,+TypeInfo,+Args)
Calls a Java static or instance method.

JVM A reference to the Java VM, as obtained by jasper_
initialize/[1,2].

TypeInfo Information about the argument types and the argument conversion
that should be applied. See Section 43.8.3 [Conversion between
Prolog Arguments and Java Types], page 714, for more information
on specifying argument types.
Note that for an instance method the first argument must be an
object reference (specified with +object(Class)). In this case the
class is ignored but should still be an atom, e.g. ’’.

Args A term with one position for each argument to the constructor.

Method

A term of the form method(ClassName, MethodName, Flags) that
identifies the method to call.

ClassName
This is the Fully Qualified Classname of the class (for
example, java/lang/String) of the object or where
to look for the static method. Note that you need to
surround the atom with single quotes since it contains
/ characters. The class is ignored when calling instance
methods but should still be an atom, e.g. ’’.

Name This is the name of the method, as an atom.

Flags This is the singleton list [instance] for instance meth-
ods and [static] for static methods.

jasper_new_object(+JVM,+ClassName,+TypeInfo,+Args,-Object)
Creates a new Java object.
See jasper_call/4 above for an explanation of the arguments JVM, Class-
Name, TypeInfo and Args.

Chapter 43: Jasper Java Interface 713

ClassName
An an atom containing the fully qualified classname

TypeInfo TypeInfo has the same format as for a static void method.

Args A term with one position for each argument to the constructor.

Object This argument is bound to a (local) reference to the created object.
See Section 43.8.4 [Global vs. Local References], page 717.

As an example, the following code creates a java/lang/Integer object initial-
ized from a string of digits. It then calls the instance method doubleValue to
obtain the floating point representation of the Integer.

| ?- Chars = "4711",
%% get existing JVM

jasper_initialize([if_not_exists(error)], JVM),

jasper_new_object(JVM, ’java/lang/Integer’,

init(+chars), init(Chars), S),

jasper_call(JVM,

method(’java/lang/Integer’, double-
Value, [instance]),

to_double(+object(’java/lang/Integer’), [-
double]),

to_double(S,X)).

S = ’$java_object’(135875344),
X = 4711.0, % note that this is now a floating point number
JVM = ’$jvm’(1076414148),
Chars = [52,55,49,49] % a.k.a. "4711"

jasper_create_global_ref(+JVM,+Ref,-GlobalRef)
Creates a global reference (GlobalRef) for a (non-null) Java object (Ref). See
Section 43.8.4 [Global vs. Local References], page 717.

jasper_delete_global_ref(+JVM,+GlobalRef)
Destroys a global reference. See Section 43.8.4 [Global vs. Local References],
page 717.

jasper_create_local_ref(+JVM,+Ref,-LocalRef)
Creates a local reference (LocalRef) for a (non-null) Java object (Ref). See
Section 43.8.4 [Global vs. Local References], page 717. Rarely needed.

jasper_delete_local_ref(+JVM,+GlobalRef)
Destroys a local reference. See Section 43.8.4 [Global vs. Local References],
page 717.

jasper_is_jvm(+JVM)
Succeeds if JVM is a reference to a Java Virtual Machine.

jasper_is_object(+Object)
jasper_is_object(+JVM,+Object)

Succeeds if Object is a reference to a Java object. The representation of Java
object will change so use jasper_is_object/1 to recognize objects instead of

714 SICStus Prolog

relying on the internal representation. Currently the JVM argument is ignored.
If, and when, multiple JVMs becomes a possibility jasper_is_object/2 will
verify that Object is an object in a particular JVM.

jasper_is_same_object(+JVM,+Object1,+Object2)
Succeeds if Object1 and Object2 refers to the same Java object (or both are null
object references). The same object may be represented by two different terms
in prolog so ==/2 can not be used to reliably detect if two object references
refer to the same object.

jasper_is_instance_of(+JVM,+Object,+ClassName)
Succeeds if Object is an instance of class ClassName; fails otherwise. ClassName
is a fully qualified classname, see jasper_call/4.

jasper_object_class_name(+JVM,+Object,-ClassName)
Returns the fully qualified name of the class of +Object as an atom.

jasper_null(+JVM,-NullRef)
Create a null object reference.

jasper_is_null(+JVM,+Ref)
Succeeds if Ref is a null object reference, fails otherwise, e.g. if Ref is not an
object reference.

43.8.3 Conversion between Prolog Arguments and Java Types

The following table lists the possible values of arguments of the argument type specifi-
cation to jasper_call/4 and jasper_new_object/5 (see Section 43.8.2 [Jasper Library
Predicates], page 711). The value specifies which conversion between corresponding Prolog
argument and Java type will take place.

There is currently no mechanism for specifying Java arrays in this way.

In the following the package prefix (java/lang or se/sics/jasper) has been left out for
brevity.

For several of the numerical types there is the possibility that the target type cannot accu-
rately represent the source type, e.g. when converting from a Prolog integer to a Java byte.
The behavior in such cases is unspecified.

Prolog: +integer
Java: int

The argument should be a number. It is converted to a Java int, a 32 bit
signed integer.

Prolog: +byte
Java: byte

The argument should be a number. It is converted to a Java byte.

Chapter 43: Jasper Java Interface 715

Prolog: +short
Java: short

The argument should be a number. It is converted to a Java short, a 16 bit
signed integer.

Prolog: +long
Java: long

The argument should be a number. It is converted to a Java long, a 64-bit
signed integer.
In SICStus versions prior to 3.9.1, the value was truncated to 32 bits when
passed between Java and Prolog. This is no longer the case.

Prolog: +float
Java: float

The argument should be a number. It is converted to a Java float.

Prolog: +double
Java: double

The argument should be a number. It is converted to a Java double.

Prolog: +term
Java: SPTerm

The argument can be any term. It is passed to Java as an object of the class
SPTerm.

Prolog: +object(Class)
Java: Class

The argument should be the Prolog representation of a Java object of class
Class. Unless it is the first argument in a non-static method (in which case is
it treated as the object on which the method should be invoked), it is passed
to the Java method as an object of class Class.

Prolog: +atom obsolescent
Java: SPCanonicalAtom

The argument should be an atom. The Java method will be passed an object
of class SPCanonicalAtom. Often +string, see below, is more useful.

Prolog: +boolean
Java: boolean

The argument should be an atom in {true,false}. The Java method will
receive a boolean.

Prolog: +chars
Java: String

The argument should be a code-list. The Java method will receive an object of
class String.

Prolog: +string
Java: String

The argument should be an atom. The Java method will receive an object of
class String.

716 SICStus Prolog

Prolog: -atom obsolescent
Java: SPTerm

The Java method will receive an object of class SPTerm, which should be set to
an atom (e.g. using SPTerm.putString). The argument will be bound to the
value of the atom when the method returns. Often -term, see below, is more
useful.

Prolog: -chars
Java: StringBuffer

The Java method will receive an (empty) object of type StringBuffer,
which can be modified. The argument will be bound to a code-list of the
StringBuffer object.

Prolog: -string
Java: StringBuffer

The Java method will receive an object of type StringBuffer, which can
be modified. The argument will be bound to an atom converted from the
StringBuffer object.

Prolog: -term
Java: SPTerm

The Java method will receive an object of class SPTerm, which can be set to
a term (e.g. using SPTerm.consFunctor). The argument will be bound to the
term when the method returns.

Prolog: [-integer]
Java: int M()

The Java method should return an int. The value will be converted to a Prolog
integer.

Prolog: [-byte]
Java: byte M()

The Java method should return a byte. The value will be converted to a Prolog
integer.

Prolog: [-short]
Java: short M()

The Java method should return a short. The value will be converted to a
Prolog integer.

Prolog: [-long]
Java: long M()

The Java method should return a long, a 64 bit signed integer. The value will
be converted to a Prolog integer.

Prolog: [-float]
Java: float M()

The Java method should return a float. The value will be converted to a
Prolog float.

Chapter 43: Jasper Java Interface 717

Prolog: [-double]
Java: double M()

The Java method should return a double. The value will be converted to a
Prolog float.

Prolog: [-term]
Java: SPTerm M()

The Java method should return an object of class SPTerm, which will be con-
verted to a Prolog term.

Prolog: [-object(Class)]
Java: SPTerm M()

The Java method should return an object of class Class, which will be converted
to the internal Prolog representation of the Java object.

Prolog: [-atom] obsolescent
Java: SPTerm M()

The Java method should return an object of class SPCanonicalAtom, which will
be converted to a Prolog atom. Often [-term], see above, is more useful.

Prolog: [-boolean]
Java: boolean M()

The Java should return a boolean. The value will be converted to a Prolog
atom in {true,false}.

Prolog: [-chars]
Java: String M()

The Java method should return an object of class String, which will be con-
verted to a code-list.

Prolog: [-string]
Java: String M()

The Java method should return an object of class String, which will be con-
verted to an atom.

43.8.4 Global vs. Local References

It is important to understand the rules determining the life-span of Java object references.
These are similar in spirit to the SP term refs of the C-Prolog interface, but since they are
used to handle Java objects instead of Prolog terms they work a little differently.

Java object references (currently represented in Prolog as ’$java_object’/1 terms) exist
in two flavors: local and global. Their validity are governed by the following rules.

1. A local reference is valid until Prolog returns to Java or the reference is deleted with
jasper_delete_local_ref/2. It is only valid in the (native) thread in which is was
created. As a rule of thumb a local reference can be used safely as long as it is not
saved away using assert/3 or similar.

718 SICStus Prolog

Since local references are never reclaimed until Prolog returns to Java (which may
never happen) you should typically call jasper_delete_local_ref/2 when your code
is done with an object.

2. A global reference is valid until explicitly freed. It can be used from any native thread.
3. All objects returned by Java methods are converted to local references.
4. Java exceptions not caught by Java are thrown as prolog exceptions consisting of a

global reference to the exception object, see Section 43.8.5 [Handling Java Exceptions],
page 718.

Local references can be converted into global references (jasper_create_global_ref/3).
When the global reference is no longer needed, it should be delete using jasper_delete_
global_ref/2.

For a more in-depth discussion of global and local references, consult the JNI Documenta-
tion.

Using a local (or global) reference that has been deleted (either explicitly or by returning
to Java) is illegal and will generally lead to crashes. This is a limitation of the Java Native
Interface used to implement the low level interface to Java.

43.8.5 Handling Java Exceptions

If a Java method throws an exception, e.g. by using throw new Exception("...") and the
exception is not caught by Java then it is passed on as a Prolog exception. The thrown
term is a global reference to the Exception object. The following example code illustrates
how to handle Java exceptions in Prolog:

http://java.sun.com/products/jdk/1.2/docs/guide/jni/index.html
http://java.sun.com/products/jdk/1.2/docs/guide/jni/index.html

Chapter 43: Jasper Java Interface 719

exception_example(JVM, ...) :-
catch(

%% Call Java method that may raise an exception
jasper_call(JVM, ...),
Excp,
(

(is_java_exception(JVM, Excp)
-> print_exception_info(JVM, Excp)
; throw(Excp) % pass non-Java exceptions to caller
)

)
).

is_java_exception(_JVM, Thing) :- var(Thing), !, fail.
is_java_exception(_JVM, Thing) :-

Thing = java_exception(_), % misc error in Java/Prolog glue
!.

is_java_exception(JVM, Thing) :-
jasper_is_object(JVM, Thing),
jasper_is_instance_of(JVM, Thing, ’java/lang/Throwable’).

720 SICStus Prolog

print_exception_info(_JVM, java_exception(Message)) :- !,
format(user_error, ’~NJasper exception: ~w~n’, [Message]).

print_exception_info(JVM, Excp) :-
/*
// Approximate Java code
{

String messageChars = excp.getMessage();
}
*/
jasper_call(JVM,

method(’java/lang/Throwable’, ’getMessage’, [instance]),
get_message(+object(’java/lang/Throwable’), [-chars]),
get_message(Excp, MessageChars)),

/* // Approximate Java code
{

StringWriter stringWriter = new StringWriter();
PrintWriter printWriter = new PrintWriter(stringWriter);
excp.printStackTrace(printWriter);
printWriter.close();
stackTraceChars = StringWriter.toString();

}
*/
jasper_new_object(JVM, ’java/io/StringWriter’,

init, init, StringWriter),
jasper_new_object(JVM, ’java/io/PrintWriter’,

init(+object(’java/io/Writer’)),
init(StringWriter), PrintWriter),

jasper_call(JVM,
method(’java/lang/Throwable’, ’printStackTrace’, [instance]),
print_stack_trace(+object(’java/lang/Throwable’),

+object(’java/io/PrintWriter’)),
print_stack_trace(Excp, PrintWriter)),

jasper_call(JVM,
method(’java/io/PrintWriter’,’close’,[instance]),
close(+object(’java/io/PrintWriter’)),
close(PrintWriter)),

jasper_call(JVM,
method(’java/io/StringWriter’,’toString’,[instance]),
to_string(+object(’java/io/StringWriter’),[-chars]),
to_string(StringWriter, StackTraceChars)),

jasper_delete_local_ref(JVM, PrintWriter),
jasper_delete_local_ref(JVM, StringWriter),
%% ! exceptions are thrown as global references
jasper_delete_global_ref(JVM, Excp),
format(user_error, ’~NJava Exception: ~s\nStackTrace: ~s~n’,

[MessageChars, StackTraceChars]).

Chapter 43: Jasper Java Interface 721

43.8.6 Deprecated Jasper API

The information in this section is only of interest to those that need to read or modify code
that used library(jasper) before SICStus 3.8.5.

A different way of doing method call and creating objects was used in versions of
‘library(jasper)’ earlier than SICStus 3.8.5. Use of these facilities are strongly discour-
aged although they are still available in the interest of backward compatibility.

The old method call predicates are jasper_call_static/6 and jasper_call_instance/6
as well as the old way of calling jasper_new_object/5.

43.8.6.1 Deprecated Argument Conversions

The pre SICStus 3.8.5 method call predicates in this library use a specific form of argument
lists containing conversion information so the predicates know how to convert the input
arguments from Prolog datatypes to Java datatypes. This is similar to the (new) mecha-
nism described in Section 43.8.3 [Conversion between Prolog Arguments and Java Types],
page 714. The argument lists are standard Prolog lists containing terms on the following
form:

jboolean(X)
X is the atom true or false, representing a Java boolean primitive type.

jbyte(X) X is an integer, which is converted to a Java byte.

jchar(X) X is an integer, which is converted to a Java char.

jdouble(X)
X is a float, which is converted to a Java double.

jfloat(X)
X is a float, which is converted to a Java float.

jint(X) X is an integer, which is converted to a Java int.

jlong(X) X is an integer, which is converted to a Java long.

jshort(X)
X is an integer, which is converted to a Java short.

jobject(X)
X is a reference to a Java object, as returned by jasper_new_object/5 (see
Section 43.8.2 [Jasper Library Predicates], page 711).

jstring(X)
X is an atom, which is converted to a Java String.

If the Prolog term does not fit in the corresponding Java data type (jbyte(4711), for
example), the result is undefined.

722 SICStus Prolog

43.8.6.2 Deprecated Jasper Predicates

jasper_new_object(+JVM,+Class,+TypeSig,+Args,-Object) obsolescent
Creates a new Java object.

JVM A reference to the Java VM, as obtained by jasper_
initialize/[1,2].

Class An an atom containing the fully qualified classname (i.e. package
name separated with ’/’, followed by the class name), for example
java/lang/String, se/sics/jasper/SICStus.

TypeSig The type signature of the class constructor. A type signature is a
string that uniquely defines a method within a class. For a defini-
tion of type signatures, see the JNI Documentation.

Args A list of argument specifiers. See Section 43.8.6.1 [Deprecated Ar-
gument Conversions], page 721.

Object A term on the form ’$java_object’(X), where X is a Java ob-
ject reference. This is the Prolog handle to the Java object. See
Section 43.8.4 [Global vs. Local References], page 717.

jasper_call_static(+JVM,+Class,+MethodName,+TypeSig,+Args,-RetVal)
obsolescent

Calls a static Java method. For an explanation of the JVM, Class, TypeSig,
and Args, see jasper_new_object/5. MethodName is the name of the static
method. RetVal is the return value of the method.

jasper_call_instance(+JVM,+Object,+MethodName,+TypeSig,+Args,-RetVal)
obsolescent

Calls a Java method on an object. For an explanation of the JVM, Class,
TypeSig, and Args, see jasper_new_object/5. Object is an object reference
as obtained from jasper_new_object/5. RetVal is the return value of the
method.

http://java.sun.com/products/jdk/1.2/docs/guide/jni/index.html

Chapter 44: PrologBeans Interface 723

44 PrologBeans Interface

44.1 Introduction

PrologBeans is a package for integrating Prolog with applications written in other languages.
Currently Java and .NET are supported. PrologBeans is based on running Prolog as a
separate server process, and the other part of the application as a client process. (This is
in contrast to the Java-Prolog interface Jasper, in which both Prolog and Java run in the
same process). This makes PrologBeans automatically distributable since the server and
the client can run on different computers anywhere on the Internet.

PrologBeans is designed to be used when client applications need to send queries to a
Prolog server (and less intended for showing a GUI from a Prolog program). One typical
application would be to connect a Java or .NET based web application to a Prolog server
(see examples later).

724 SICStus Prolog

PrologBeans setup where the Prolog application serves several users accessing both via a web
application server and a .NET GUI.

The PrologBeans package consists of two parts. The Prolog server is a library module,
‘library(prologbeans)’. The client is a class library, ‘prologbeans.jar’ for Java and
‘prologbeans.dll’ for .NET.

44.2 Features

The current version of PrologBeans is designed to be used mainly as a connection from the
client (Java or .NET) to Prolog. Current features are:

• Socket based communication [Java and .NET]

Chapter 44: PrologBeans Interface 725

• Allows the client application and Prolog server to run on different machines [Java and
.NET]

• Multiple client applications can connect to same Prolog server [Java and .NET]
• Client applications can make use of several Prolog servers [Java and .NET]
• Allows Java Applets to access Prolog server [Java]
• Platform independent (e.g. any platform where Prolog and Java or .NET exist) [Java

and .NET]
• Simplifies the use of Prolog in Java application servers (Tomcat, etc) [Java]
• Prohibits unwanted use of Prolog server by host control (only specified hosts can access

the Prolog server) [Java and .NET]
• Supports Java servlet sessions [Java]
• Supports JNDI lookup (Java Naming and Directory Interface) [Java]
• Supports .NET server pages (ASPX). [.NET]

44.3 A First Example

This section provides an example to illustrate how PrologBeans can be used. This applica-
tion has a simple Java GUI where the user can enter expressions that will be evaluated by
an expression evaluation server.

726 SICStus Prolog

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import se.sics.prologbeans.*;

public class EvaluateGUI implements ActionListener {

private JTextArea text = new JTextArea(20, 40);
private JTextField input = new JTextField(36);
private JButton evaluate = new JButton("Evaluate");
private PrologSession session = new PrologSession();

public EvaluateGUI() {
JFrame frame = new JFrame("Prolog Evaluator");
Container panel = frame.getContentPane();
panel.add(new JScrollPane(text), BorderLayout.CENTER);
JPanel inputPanel = new JPanel(new BorderLayout());
inputPanel.add(input, BorderLayout.CENTER);
inputPanel.add(evaluate, BorderLayout.EAST);
panel.add(inputPanel, BorderLayout. SOUTH);
text.setEditable(false);
evaluate.addActionListener(this);
input.addActionListener(this);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.pack();
frame.setVisible(true);

}

public void actionPerformed(ActionEvent event) {
try {

Bindings bindings = new Bindings().bind("E",
input.getText() + ’.’);

QueryAnswer answer =
session.executeQuery("evaluate(E,R)", bindings);

Term result = answer.getValue("R");
if (result != null) {
text.append(input.getText() + " = " + result + ’\n’);
input.setText("");

} else {
text.append("Error: " + answer.getError() + "\n");

}
} catch (Exception e) {

text.append("Error when querying Prolog Server: " +
e.getMessage() + ’\n’);

}
}

public static void main(String[] args) {
new EvaluateGUI();

}
}

Chapter 44: PrologBeans Interface 727

The Java code above first sets up the GUI with a text area for showing results, a text
field for entering expressions, and a button for requesting an evaluation (the constructor
EvaluateGUI()). It will also add itself as ActionListener on both the text field and
the button. The method actionPerformed(ActionEvent event) will be called whenever
the user has pressed 〈RET〉 or clicked on the button. actionPerformed first binds the
variable E to the value of the text field, and then sends the query to the Prolog server
with session.executeQuery("evaluate(E,R)", bindings);. If everything goes well, the
Prolog server will return an answer (bound to R), which will be appended to the text area.

:- module(evaluate,[main/0,my_predicate/2]).
:- use_module(library(prologbeans)).
:- use_module(library(charsio), [read_from_chars/2]).

%% Register acceptable queries and start the server (using default port)
main:-

register_query(evaluate(C,P), my_predicate(C,P)),
start.

%% We have received a list of characters,
%% which needs to be converted into an expression
my_predicate(Chars, P) :-

read_from_chars(Chars, X),
P is X.

The Prolog code above first defines the module and imports the needed modules. Then, in
the main/0 predicate, it configures the server to answer queries on the form evaluate(C,P)
and starts the server. The last few lines defines the predicate my_predicate(Chars, P),
which is the predicate that performs the evaluation. Note that the expression to evaluate
is represented as a list of characters and must be converted into a term before evaluation.

Please note: the environment variable SP_PATH as used here is meant to be a shorthand for
the SICStus Prolog installation directory, and does not need to be set explicitly.

To start the example, first start the Prolog server by going to the ‘pbexamples(evaluate)’
directory and type:

% sicstus -l evaluate.pl --goal "main."

To start the GUI type (from the same directory as above):

> java -classpath "%SP_PATH%\bin\prologbeans.jar;." EvaluateGUI (Win-
dows), or
% java -classpath "$SP_PATH/bin/prologbeans.jar:." EvaluateGUI (UNIX)

728 SICStus Prolog

44.4 Prolog Server Interface

The Prolog interface is based on the idea of a Prolog server that provides its service by
answering queries from external applications (typically Java applications). The Prolog in-
terface in PrologBeans is defined in ‘library(prologbeans)’, which implements the Prolog
server and exports the following predicates:

start
start(+Options)

starts the Prolog server using the options specified. Please note: start/[0,1]
will not return until a server shutdown occurs. Options should be a list of zero
or more of:

port(?Val)
an integer denoting the port number of the Prolog server (default:
8066). If Val is a variable then some unused port will be selected by
the OS, the actual port number can be obtained with get_server_
property/1, typically from a server_started event listener.

accepted_hosts(+Val)
a list of atoms denoting the hosts (in form of IP-addresses) that are
accepted by the Prolog server (default: [’127.0.0.1’]).

session_timeout(+Val)
an integer denoting the duration of a session in seconds. The session
will be removed if it has been inactive more than this timeout when
the session garbage collect starts. If the session timeout is set to
zero there will be no garbage collect on sessions (default: 0).

session_gc_timeout(+Val)
an integer denoting the minimum time in seconds between two con-
secutive session garbage collections. If the timeout is set to zero
there will be no garbage collect on sessions (default: 0).

For example:
:- start([port(7500),

accepted_hosts([’127.0.0.1’,’99.8.7.6’])]).

shutdown
shutdown(+Mode)

shuts down the server and closes the sockets and the streams after processing
all available input. There are three modes:

now as soon as possible (default).

no_sessions
after all sessions have ended (all sessions have either been explicitly
removed by request of the client application, or they have been
garbage collected). Please note: there can still be connections to
the Prolog server even when all sessions have ended.

Chapter 44: PrologBeans Interface 729

no_connections
after all connections to the Prolog server are closed. Please note:
there can still be user sessions left when all connections have been
closed.

register_query(+Query, :PredicateToCall, +SessionVar)
registers a query and the corresponding predicate. Before the registration any
previously registered query matching Query will be removed (as if unregister_
query(Query) was called). The predicate, PredicateToCall will be called, as if
by once(PredicateToCall), when a query matching Query is received. Before
calling the query, the variable SessionVar, if given, is bound to the id of the
current session. Session ids are typically generated in web applications that
track users and mark all consecutive web-accesses with the same session id.

unregister_query(+Query)
unregisters all queries matching Query.

session_get(+SessionID, +ParameterName, +DefaultValue, -Value)
returns the value of a given parameter in a given session. If no value exists, it
will return the default value. Arguments:

SessionID is the id of the session for which values have been stored

ParameterName
an atom, is the name of the parameter to retrieve

DefaultValue
is the value that will be used if no value is stored

Value is the stored value or the default value if nothing was stored

session_put(+SessionID, +ParameterName, +Value)
stores the value of the given parameter. Please note: any pre-existing value
for this parameter will be overwritten. Note that session_put/3 will not be
undone when backtracking (the current implementation is based on assert).
Arguments:

SessionID is the id of the session for the values to store

ParameterName
an atom, is the name of the parameter to store

Value the value to be stored

register_event_listener(+Event, :PredicateToCall, -Id)
register_event_listener(+Event, :PredicateToCall)

Registers PredicateToCall to be called (as if by once(PredicateToCall))
when the event matching Event occurs (event matching is on principal functor
only). If the goal fails or raises an exception a warning is written to user_error
but the failure or exception is otherwise ignored. Arguments:

Event is the event template, see below.

PredicateToCall
an arbitrary goal.

730 SICStus Prolog

Id becomes bound to a (ground) term that can be used with
unregister_event_listener/1 to remove this event listener.

The predefined events are as follows:

session_started(+SessionID)
called before the first call to a query for this session

session_ended(+SessionID)
called before the session is about to be garbage collected (removed)

server_started
called when the server is about to start (enter its main loop)

server_shutdown
called when the server is about to shut down

Attempt to register an event listener for other events than the predefined events
will throw an exception.
More than one listeners can be defined for the same event. They will be called
in some unspecified order when the event occurs.

unregister_event_listener(+Id)
Unregister a previously registered event listener. The Id is the value returned
by the corresponding call to register_event_listener/3. It is an error to
attempt to unregister an event listener more than once.

44.5 Java Client Interface

The Java interface is centered around the class PrologSession, which represents a connec-
tion (or session) to a Prolog server. PrologSession contains static methods for looking
up named PrologSession instances using JNDI (Java Naming and Directory Interface) as
well as methods for querying the Prolog server. Other important classes are: QueryAnswer,
which contains the answer for a query sent to the Prolog server; Term, which represents a
Prolog term; and Bindings, which supports stuffing of variable values used in queries.

General information about Java, Servlets and JNDI is available at the Java Technology site:
http://java.sun.com/

A brief description of the methods in the provided Java classes are presented below.
More information about the Java APIs is available in the JavaDoc files in the directory
http://www.sics.se/sicstus/docs/.

The PrologSession object is the connection to the Prolog server. The constructor
PrologSession() creates a PrologSession with the default settings (host = localhost,
port = 8066.

PrologSession contains the following methods:

http://java.sun.com/
http://www.sics.se/sicstus/docs/

Chapter 44: PrologBeans Interface 731

[Method on PrologSession]static PrologSession getPrologSession (String
name)

returns the PrologSession registered in JNDI with the given name. Use this method
in application servers where services are registered using JNDI. Please note: the
application server must be configured to register the PrologSession with the given
name for this method to work. See Tomcat configuration in Section 44.6.3 [PB Ex
Tomcat], page 736.

[Method on PrologSession]static PrologSession getPrologSession (String
name, HTTPSession session)

returns the PrologSession registered in JNDI with the given name. The
PrologSession will make use of sessions and the session id will be the same as
in the HTTPSession. Use this method in web application servers with support for
servlets and HTTPSession (and when support for sessions is desired).

[Method on PrologSession]String getHost ()
returns the host of the Prolog server (exactly as registered in setHost).

[Method on PrologSession]void setHost (String prologServerHost)
sets the host of the Prolog server (default localhost). Either IP-address or host
name is allowed.

[Method on PrologSession]int getPort ()
returns the port of the Prolog server.

[Method on PrologSession]void setPort (int port)
sets the port of the Prolog server (default 8066).

[Method on PrologSession]void connect ()
connects to the Prolog server. By default the executeQuery will automatically con-
nect to the server when called.

[Method on PrologSession]void setAutoConnect (boolean autoConnect)
sets the connection mode of this PrologSession. If set to true it will ensure that it
is connected to the Prolog server as soon as a call to executeQuery or anything else
causing a need for communication happens. This is by default set to true

[Method on PrologSession]boolean isAutoConnecting ()
returns the state of the AutoConnect mode.

[Method on PrologSession]QueryAnswer executeQuery (String query)
sends a query to the Prolog server and waits for the answer before returning the
QueryAnswer. Anonymous variables (underscore, ‘_’), will be ignored, and thus not
accessible in the QueryAnswer. executeQuery throws IOException if communication
problems with the server occurs. Please note: executeQuery will only return one
answer.

732 SICStus Prolog

[Method on PrologSession]QueryAnswer executeQuery (String query,
Bindings bindings)

sends a query to the Prolog server and waits for the answer before returning the
QueryAnswer. Bindings are variable bindings for the given query and will ensure
that the values are stuffed correctly. An example:

QueryAnswer answer =
executeQuery("evaluate(In,Out)",

new Bindings().bind("In","4*9."));

The QueryAnswer contains the answer (new bindings) for a query (or the error that occurred
during the query process). QueryAnswer inherits from Bindings, and extends and modifies
it with the following methods:

[Method on QueryAnswer]Term getValue (String variableName)
returns the value of the given variable. If there is a value a Term (a parsed Prolog term)
is returned, otherwise null is returned. All bindings from the query are available in
the QueryAnswer.

[Method on QueryAnswer]boolean queryFailed ()
returns true if the query failed (e.g. the Prolog returned no). In this case, there will
be no answers (no new bindings, and isError will return false).

[Method on QueryAnswer]boolean isError ()
returns true if there was an error.

[Method on QueryAnswer]String getError ()
returns the error message (which is only set if there was an error, otherwise it will be
null).

The Term object is for representing parsed Prolog terms, and has the following methods:

[Method on Term]boolean isAtom ()
returns true if the Term is an atom.

[Method on Term]boolean isInteger ()
returns true if the Term is an integer.

[Method on Term]boolean isFloat ()
returns true if the Term is a floating-point number.

[Method on Term]boolean isCompound ()
returns true if the Term is a compound term.

[Method on Term]boolean isList ()
returns true if and only if Term is a compound term with principal functor ./2.

Chapter 44: PrologBeans Interface 733

[Method on Term]boolean isString ()
returns true if the Term is an instance of PBString (which can be used for fast string
access by a type-cast to PBString and the use of the method getString() that
returns the string).

[Method on Term]boolean isVariable ()
returns true if the Term is a variable.

[Method on Term]int intValue ()
returns the int value of the integer.

[Method on Term]long longValue ()
returns the long value of the integer.

[Method on Term]float floatValue ()
returns the float value of the floating-point number.

[Method on Term]double doubleValue ()
returns the double value of the floating-point number.

[Method on Term]String getName ()
returns the functor name of the Term (see functor/3). If the Term represents a
variable (isVariable() returns true), the variable name is returned.

[Method on Term]int getArity ()
returns the number of arguments of this term (e.g. parent(A1,A2) would return 2)
(see functor/3). If the term is not a compound term, getArity() will return 0.

[Method on Term]Term getArgument (int index)
returns the Term representing the argument at the position given by index. If
there are no arguments, or if an argument with the specified index does not ex-
ist, IndexOutOfBoundsException will be thrown. The first argument has index one
(see arg/3).

Bindings is used for binding variables to values in a query sent to the Prolog. The values
will be automatically stuffed before they are sent to the Prolog server.

[Method on Bindings]void bind (String name, int value)
binds the variable with the given name to the given value. Please note: this method
is also available for values of type long, float, double, and Term.

[Method on Bindings]void bind (String name, String value)
binds the variable with the given name to the given value. The value will be seen as
a list of UNICODE character codes in Prolog.

734 SICStus Prolog

[Method on Bindings]void bindAtom (String name, String value)
binds the variable with the given name to the given value. Please note: this method
will encode the String as an atom when querying the Prolog server.

44.6 Java Examples

The PrologBeans examples for Java can be found in the directory corresponding to the file
search path ‘pbexamples’, defined as if by a clause:

user:file_search_path(pbexamples, library(’prologbeans/examples’)).

44.6.1 Embedding Prolog in Java Applications

If you have an advanced Prolog application that needs a GUI you can write a stand-
alone Java application that handles the GUI and set up the Prolog server to call the right
predicates in the Prolog application.

An example of how to do this can be found under the ‘pbexamples(evaluate)’ directory
(see the example code in Section 44.3 [PB First Example], page 725).

Another example of this is ‘pbexamples(pbtest)’, which illustrates several advanced fea-
tures like:

• registering several queries
• listening to server events (server_started)
• shutting down the Prolog server from Java
• starting up the Prolog server from Java
• using dynamic (OS assigned) ports for the Java/Prolog communication

The example is run by executing the Java program PBTest:

> java -classpath "%SP_PATH%\bin\prologbeans.jar;." PBTest (Win-
dows), or
% java -classpath "$SP_PATH/bin/prologbeans.jar:." PBTest (UNIX)

44.6.2 Application Servers

If you want to get your Prolog application to be accessible from an intranet or the Internet
you can use this package to embed the Prolog programs into a Java application server such
as Tomcat, WebSphere, etc.

An example of how to do this is provided in ‘pbexamples(sessionsum)’. This example uses
sessions to keep track of users so that the application can hold a state for a user session (as
in the example below, remember the sum of all expressions evaluated in the session).

Chapter 44: PrologBeans Interface 735

<% page import = "se.sics.prologbeans.*" %>
<html>
<head><title>Sum Calculator</title></head>
<body bgcolor="white">
Prolog Sum Calculator, enter expression to evaluate:
<form><input type=text name=query></form>
<%

PrologSession pSession =
PrologSession.getPrologSession("prolog/PrologSession", session);

String evQuery = request.getParameter("query");
String output = "";
if (evQuery != null) {

Bindings bindings = new Bindings().bind("E",evQuery + ’.’);
QueryAnswer answer =

pSession.executeQuery("sum(E,Sum,Average,Count)", bindings);
Term average = answer.getValue("Average");
if (average != null) {

Term sum = answer.getValue("Sum");
Term count = answer.getValue("Count");

output = "<h4>Average =" + average + ", Sum = "
+ sum + " Count = " + count + "</h4>";

} else {
output = "<h4>Error: " + answer.getError() + "</h4>";

}
}

%>
<%= output %>

<p><hr>Powered by SICStus Prolog
</body></html>

The example shows the code of a JSP (Java Server Page). It makes use of the
method PrologSession.getPrologSession(String jndiName, HTTPSession session),
which uses JNDI to look up a registered PrologSession, which is connected to the Prolog
server. The variable session is in a JSP bound to the current HTTPSession, and the variable
request is bound to the current HTTPRequest. Since the HTTPSession object session is
specified all queries to the Prolog server will contain a session id. The rest of the example
shows how to send a query and output the answer.

Example usage of sessions (from the ‘sessionsum’ example) is shown below, and is from
‘pbexamples(’sessionsum/sessionsum.pl’)’:

736 SICStus Prolog

:- module(sessionsum,[main/0,sum/5]).
:- use_module(library(prologbeans)).
:- use_module(library(charsio), [read_from_chars/2]).

%% Register the acceptable queries (session based)
main:-

register_query(sum(C,Sum,Average,Count),
sum(C,Session,Sum,Average,Count),
Session),

start.

%% The sum predicate which gets the information from a session database,
%% makes some updates and then stores it back in to the session store
%% (and returns the information back to the application server)
sum(ExprChars, Session, Sum, Average, Count) :-

session_get(Session, sum, 0, OldSum),
session_get(Session, count, 0, OldCount),
read_from_chars(ExprChars, Expr),
Val is Expr,
Sum is OldSum + Val,
Count is OldCount + 1,
Average is Sum / Count,
session_put(Session, sum, Sum),
session_put(Session, count, Count).

In this example a query sum/4 is registered to use a predicate sum/5 where one of the vari-
ables, Session will be bound to the session id associated to the query. The sum/5 predicate
uses the session_get/4 predicate to access stored information about the particular session,
and then it performs the evaluation of the expression. Finally, it updates and stores the
values for this session.

44.6.3 Configuring Tomcat for PrologBeans

This section will briefly describe how to set up a Tomcat server so that is it possible to
test the example JSPs. Some knowledge about how to run Tomcat and how to set up
your own web application is required. Detailed information about Tomcat is available at
http://jakarta.apache.org/tomcat/.

The example described below has been tested with Tomcat 5.5.4.

Assuming that the environment variable CATALINA HOME is set to the installation di-
rectory of Tomcat, do the following:

1. Create the directory ‘$CATALINA_HOME/webapps/PB_example’
2. Copy the file ‘pbexamples(’sessionsum/sessionsum.jsp’)’ to

‘$CATALINA_HOME/webapps/PB_example/sessionsum.jsp’

http://jakarta.apache.org/tomcat/

Chapter 44: PrologBeans Interface 737

3. Create the directory ‘$CATALINA_HOME/webapps/PB_example/WEB-INF/lib’
4. Copy the file ‘$SP_PATH/bin/prologbeans.jar’ to

‘$CATALINA_HOME/webapps/PB_example/WEB-INF/lib/prologbeans.jar’
5. Create the directory ‘$CATALINA_HOME/webapps/PB_example/META-INF’
6. Create the file ‘$CATALINA_HOME/webapps/PB_example/META-INF/context.xml’ with

the following content:
<Context docBase="PB_example">

<Resource name="prolog/PrologSession" auth="Container"
type="se.sics.prologbeans.PrologSession"

factory="org.apache.naming.factory.BeanFactory" />

</Context>

7. Create the file ‘$CATALINA_HOME/webapps/PB_example/WEB-INF/web.xml’ with the
following content:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<resource-env-ref>
<description>
Object factory for PrologSession instances.

</description>
<resource-env-ref-name>
prolog/PrologSession

</resource-env-ref-name>
<resource-env-ref-type>
se.sics.prologbeans.PrologSession

</resource-env-ref-type>
</resource-env-ref>

</web-app>

8. Start SICStus, load ‘sessionsum.pl’ and run main.
9. Start the Tomcat server.

10. In a web browser, enter http://localhost:8080/PB_example/sessionsum.jsp

44.7 .NET Client Interface

The class PrologSession in the .NET interface represents a connection to a Prolog server.
PrologSession contains methods for establishing a connection and querying the Prolog
server. Other important classes are: QueryAnswer, which contains the answer for a query
sent to the Prolog server; Term, which represents a Prolog term; and Bindings, which
supports stuffing of variable values used in queries.

http://localhost:8080/PB_example/sessionsum.jsp

738 SICStus Prolog

The PrologSession object is the connection to the Prolog server. The constructor
PrologSession() creates a PrologSession with the default settings (host = localhost,
port = 8066.

Detailed documentation on the .NET APIs of PrologBeans is available in the Prolog-
Beans.NET documentation files in the directory http://www.sics.se/sicstus/docs/html
or locally at ‘%SP_PATH%/doc/html’ (where SP_PATH is the path to your SICStus Prolog in-
stallation directory).

44.8 .NET Examples

The PrologBeans examples for .NET can be found in the directory corresponding to the file
search path ‘pbnetexamples’, defined as if by a clause:

user:file_search_path(pbnetexamples, library(’prologbeans.NET/examples’)).

44.8.1 C# Examples

44.8.1.1 .NET Embedding

If you have an advanced Prolog application that needs a GUI you can write a stand-alone
.NET application that handles the GUI and set up the Prolog server to call the right
predicates in the Prolog application.

An example of how to do this can be found under the ‘pbnetexamples(’evaluate.NET’)’
directory. This example is the C# version of the example shown in Section 44.3 [PB First
Example], page 725).

To start the ex-
ample, first start the Prolog server by going to the ‘pbnetexamples(’evaluate.NET’)’
directory and type:

> sicstus -l evaluate.pl --goal "main."

To start the GUI type (from the same directory as above):

> run.bat

Another example of this is ‘pbnetexamples(’pbtest.NET’)’, which illustrates several ad-
vanced features like:

• registering several queries
• listening to server events (server_started)
• shutting down the Prolog server from .NET

http://www.sics.se/sicstus/docs/html

Chapter 44: PrologBeans Interface 739

• starting up the Prolog server from .NET
• using dynamic (OS assigned) ports for the .NET/Prolog communication

The example is run by executing the C# program PBTest:

> PBTest

44.8.1.2 ASPX Servers Pages

If you want to get your Prolog application to be accessible from an intranet or the Internet
you can use this package to embed the Prolog programs into a .NET ASP page which can
be served by e.g. Internet Information Services.

An example of
how to do this is provided in ‘pbnetexamples(’prologasp.NET/eval.aspx’)’. Consult
your IIS documentation for how to configure it for an ASPX page.

44.8.2 Visual Basic Example

A Visual Basic .NET example can be found in
‘pbnetexamples(’vb_examples.NET/calculator’)’. It is a simple calculator similar to
the first C# EvaluateGUI example in Section 44.8.1.1 [PB .NET Embedding], page 738.
This example is in the form of a Visual Studio project.

To run the example:

1. Open the project files in Visual Studio .NET
2. Add a reference in Visual Studio .NET to the installed ‘prologbeans.dll’
3. Start sicstus with the following command:

sicstus -l %SP_PATH%/library/prologbeans/examples/evaluate/evaluate --goal "main."

4. Build and run the example in Visual Studio .NET

740 SICStus Prolog

Chapter 45: COM Client 741

45 COM Client

This library provides rudimentary access to COM automation objects. As an example it
is possible to manipulate Microsoft Office applications and Internet Explorer. It is not
possible, at present, to build COM objects using this library.

Feedback is very welcome. Please contact SICStus support (sicstus-support@sics.se) if
you have suggestions for how this library could be improved.

45.1 Preliminaries

In most contexts both atoms and code-lists are treated as strings. With the wide character
support available in release 3.8 and later, is should now be possible to pass UNICODE
atoms and strings successfully to the COM interface.

45.2 Terminology

ProgID A human readable name for an object class, typically as an atom, e.g.
’Excel.Application’.

CLSID (Class Identifier)
A globally unique identifier of a class, typically as an atom, e.g. ’{00024500-
0000-0000-C000-000000000046}’.
Where it makes sense a ProgID can be used instead of the corresponding CLSID.

IID (Interface Identifier)
A globally unique identifier of an interface. Currently only the ’IDispatch’
interface is used so you do not have to care about this.

IName (Interface Name)
The human readable name of an interface, e.g. ’IDispatch’.
Where it makes sense an IName can be used instead of the corresponding IID.

Object A COM-object (or rather a pointer to an interface).

ComValue A value that can be passed from COM to SICStus Prolog. Currently numeric
types, booleans (treated as 1 for true, 0 for false), strings, and COM objects.

ComInArg A value that can be passed as an input argument to COM, currently one of:

atom Passed as a string (BSTR)

numeric Passed as the corresponding number

list A code-list is treated as a string.

COM object
A compound term referring to a COM object.

mailto:sicstus-support@sics.se

742 SICStus Prolog

compound Other compound terms are presently illegal but will be used to
extend the permitted types.

SimpleCallSpec
Denotes a single method and its arguments. As an example, to call the
method named foo with the arguments 42 and the string "bar" the Simple-
CallSpec would be the compound term foo(42,’bar’) or, as an alternative,
foo(42,"bar").
The arguments of the compound term are treated as follows:

ComInArg See above

variable The argument is assumed to be output. The variable is bound to
the resulting value when the method returns.

mutable The argument is assumed to be input/output. The value of the
mutable is passed to the method and when the method returns the
mutable is updated with the corresponding return value.

CallSpec Either a SimpleCallSpec or a list of CallSpecs. If it is a list then all but the last
SimpleCallSpec are assumed to denote method calls that return a COM-object.
So for instance the VB statement app.workbooks.add can be expressed either
as:

comclient_invoke_method_proc(App, [workbooks, add])

or as
comclient_invoke_method_fun(App, workbooks, WorkBooks),
comclient_invoke_method_proc(WorkBooks, add),
comclient_release(WorkBooks)

45.3 Predicate Reference

comclient_is_object(+Object)
Succeeds if Object "looks like" an object. It does not check that the object is
(still) reachable from SICStus Prolog, see comclient_valid_object/1. Cur-
rently an object looks like ’$comclient_object’(stuff) where stuff is some
prolog term. Do not rely on this representation!

comclient_valid_object(+Object)
Succeeds if Object is an object that is still available to SICStus Prolog.

comclient_create_instance(+CLSID/ProgID, -Object)
Create an instance of the Class identified by CLSID (or ProgID).

comclient_create_instance(’Excel.Application’, App)

Corresponds to CoCreateInstance.

comclient_get_active_object(+CLSID/ProgID, -Object)
Retrieves a running object of the Class identified by CLSID (or ProgID).

comclient_get_active_object(’Excel.Application’, App)

An exception is thrown if there is no suitable running object. Corresponds to
GetActiveObject.

Chapter 45: COM Client 743

comclient_invoke_put(+Object, +CallSpec, +ComInArg)
Set the property denoted by CallSpec to ComValue. Example: comclient_
invoke_put(App, visible, 1)

comclient_invoke_method_proc(+Object, +CallSpec)
Call a method that does not return a value. See the desorption of CallSpec
above for an example.

comclient_invoke_method_fun(+Object, +CallSpec, -ComValue)
Call a method that returns a value. Also use this to get the value of properties.
See the desciption of CallSpec above for an example.

comclient_release(+Object)
Release the object and free the datastructures used by SICStus Prolog to keep
track of this object. After releasing an object the term denoting the object
can no longer be used to access the object (any attempt to do so will raise an
exception).

Please note: The same COM-object can be represented by different
prolog terms. A COM object is not released from SICStus Prolog
until all such representations have been released, either explicitly by
calling comclient_release/1 or by calling comclient_garbage_
collect/0.
You cannot use Obj1 == Obj2 to determine whether two COM-
objects are identical. Instead use comclient_equal/2.

comclient_equal(+Object1, +Object2)
Succeeds if Object1 and Object2 are the same object. (It succeeds if their
’IUnknown’ interfaces are identical)

comclient_garbage_collect
Release Objects that are no longer reachable from SICStus Prolog. To achieve
this the predicate comclient_garbage_collect/0 performs an atom garbage
collection, i.e. garbage_collect_atoms/0, so it should be used sparingly.

comclient_is_exception(+ExceptionTerm)
Succeeds if ExceptionTerm is an exception raised by the comclient module.

catch(<some code>,
Exception,
(comclient_is_exception(E) ->

handle_com_related_errors(E)
; otherwise -> % Pass other exceptions upwards

throw(E)
))

comclient_exception_code(+ExceptionTerm, -ErrorCode)
comclient_exception_culprit(+ExceptionTerm, -Culprit)
comclient_exception_description(+ExceptionTerm, -Description)

Access the various parts of a comclient exception. The ErrorCode is
the HRESULT causing the exception. Culprit is a term corresponding
to the call that gave an exception. Description, if available, is either

744 SICStus Prolog

a term ’EXCEPINFO’(...) corresponding to an EXCEPINFO structure or
’ARGERR’(MethodName, ArgNumber).
The EXCEPINFO has six arguments corresponding to, and in the same order as,
the arguments of the EXCEPINFO struct.

comclient_clsid_from_progid(+ProgID, -CLSID).
Obtain the CLSID corresponding to a particular ProgID. Uses the Win32 rou-
tine CLSIDFromProgID. You rarely need this since you can use the ProgID
directly in most cases.

comclient_progid_from_clsid(+CLSID, -ProgID).
Obtain the ProgID corresponding to a particular CLSID. Uses the Win32 rou-
tine ProgIDFromCLSID. Rarely needed. The ProgID returned will typically
have the version suffix appended.
Example, to determine what version of Excel.Application is installed:

| ?- comclient_clsid_from_progid(’Excel.Application, CLSID),

comclient_progid_from_clsid(CLSID, ProgID).

CLSID = ’{00024500-0000-0000-C000-000000000046}’,
ProgID = ’Excel.Application.8’

comclient_iid_from_name(+IName, -IID)
Look in the registry for the IID corresponding to a particular Interface. Cur-
rently of little use.

| ?- comclient_iid_from_name(’IDispatch’, IID).

IID = ’{00020400-0000-0000-C000-000000000046}’

comclient_name_from_iid(+IID, -IName)
Look in the registry for the name corresponding to a particular IID. Currently
of little use.

45.4 Examples

The following example launches Microsoft Excel, adds a new worksheet, fill in some fields
and finally clears the worksheet and quits Excel

Chapter 45: COM Client 745

:- use_module(library(comclient)).
:- use_module(library(lists)).

test :-
test(’Excel.Application’).

test(ProgID) :-
comclient_create_instance(ProgID, App),
%% Visuall Basic: app.visible = 1
comclient_invoke_put(App, visible, 1),
%% VB: app.workbooks.add
comclient_invoke_method_proc(App, [workbooks, add]),
%% VB: with app.activesheet
comclient_invoke_method_fun(App, activesheet, ActiveSheet),

Rows = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15],
Cols = Rows,
%% VB: .cells i,j . value = i+j/100
(

member(I, Rows),
member(J, Cols),
ValIJ is I+J/100,

comclient_invoke_put(ActiveSheet, [cells(I,J),value], ValIJ),
fail

; true
),
(

member(I, Rows),
member(J, Cols),
%% retrieve cell values
comclient_invoke_method_fun(ActiveSheet, [cells(I,J), value],CellValue),
format(user_error, ’~nCell(~w,~w) = ~w’, [I,J,CellValue]),
fail

; true
),

Range = ’A1:O15’,
format(user_error, ’~Npress return to clear range (~w)’, [Range]),
flush_output(user_error),
get0(_),

%% VB: .range A1:O15 .Clear
comclient_invoke_method_proc(ActiveSheet, [range(Range),clear]),

%% Avoid Excel query "do you want to save..."
%% VB: app.activeworkbook.saved = 1
comclient_invoke_put(App, [activeworkbook,saved], 1),

format(user_error, ’~Npress return to quit \’~w\’’, [ProgID]),
flush_output(user_error),
get0(_),

%% VB: app.quit
comclient_invoke_method_proc(App, quit),

comclient_release(ActiveSheet),
comclient_release(App).

746 SICStus Prolog

Chapter 46: The Visual Basic Interface 747

46 The Visual Basic Interface

SICStus Prolog provides an interface that lets you load and call SICStus Prolog programs
from Visual Basic.

46.1 Overview

SICStus Prolog provides an easy-to-use one-directional Visual Basic interface that lets you
load and call SICStus Prolog programs from Visual Basic but not the other way around.
The idea is that Visual Basic is used for creating the user interface while the Prolog program
works as a knowledge server in the background.

The control structure of this interface is rather similar to that of the foreign language
interface. However, in contrary to that interface, there is currently no way of handling
pointers to Prolog terms or queries. The queries to be passed to Prolog have to be given as
strings on the Visual Basic side and the terms output by Prolog are received as strings or
integers in Visual Basic variables.

The interface provides functions for:

• passing a query to Prolog
• evaluating the Prolog query
• retrieving a value (string or integer) assigned to a variable by the Prolog query
• getting information about the exceptions that have occurred in the Prolog query

46.2 How to Call Prolog from Visual Basic

46.2.1 Opening and Closing a Query

Prolog queries are represented in Visual Basic in textual form, i.e. as a string containing
the query, but not followed by a full stop. For example, the following Visual Basic code
fragments create valid Prolog queries:

748 SICStus Prolog

’Q1 is a query finding the first "good" element of the list [1,2,3]
Q1 = "member(X,[1,2,3]), good(X)"

’create a Q2 query finding the first "good" element of the list
’[1,2,...,N]:
Q2 = "member(X,["
For i = 1 To N-1

Q2 = Q2 & i & ","
Next
Q2 = Q2 & N & "]), good(X)"

Before executing a query, it has to be explicitly opened, via the PrologOpenQuery function,
which will return a query identifier that can be used for successive retrieval of solutions.

The PrologCloseQuery procedure will close the query represented by a query identifier.
The use of an invalid query identifier will result in undefined behavior. For example:

Dim qid As Long

Q1 = "member(X,[1,2,3]), good(X)"
qid = PrologOpenQuery(Q1)

... <execution of the query> ...

PrologCloseQuery(qid)

46.2.2 Finding the Solutions of a Query

Prolog queries can be executed with the help of the PrologNextSolution function: this
retrieves a solution to the open query represented by the query identifier given as the
parameter. Returns 1 on success, 0 on failure, -1 on error.

46.2.3 Retrieving Variable Values

After the successful return of PrologNextSolution, the values assigned to the variables
of the query can be retrieved by specific functions of the interface. There are separate
functions for retrieving the variable values in string, quoted string and integer formats.

The PrologGetLong function retrieves the integer value of a given variable within a query
and assigns it to a variable. That is, the value of the given variable is converted to an
integer. Returns 1 on success.

Example: The following code fragment assigns the value 2 to the variable v:

Chapter 46: The Visual Basic Interface 749

Dim qid As Long

Q = "member(X,[1,2,3]), X > 1"

qid = PrologOpenQuery(Q)
Call PrologNextSolution(qid)
Call PrologGetLong(qid,"X",v)

The PrologGetString function retrieves the value of a given variable in a query as a string.
That is, the value of the variable is written out using the write/2 Prolog predicate, and
the resulting output is stored in a Visual Basic variable. Retuns 1 on success.

Example: suppose we have the following clause in a Prolog program:

capital_of(’Sweden’-’Stockholm’).

The code fragment below assigns the string "Sweden-Stockholm" to the variable capital:

Dim qid As Long

Q = "capital_of(Expr)"

qid = PrologOpenQuery(Q)
If PrologNextSolution(qid) = 1 Then
Call PrologGetString(qid,"Expr",capital)

End if
Call PrologCloseQuery(qid)

The PrologGetStringQuoted function is the same as PrologGetString, but the conversion
uses the writeq/2 Prolog predicate. Returns 1 on success.

Example: if the function PrologGetStringQuoted is used in the code above instead of the
PrologGetString function, then the value assigned to the variable capital is "’Sweden’-
’Stockholm’".

The only way of transferring information from Prolog to Visual Basic is by the above three
PrologGet... functions. This means that, although arbitrary terms can be passed to Visual
Basic, there is no support for the transfer of compound terms such as lists or structures. We
will show examples of how to overcome this limitation later in the manual (see Section 46.4
[Examples], page 751).

46.2.4 Evaluating a Query with Side-Effects

If you are only interested in the side-effects of a predicate you can execute it with the
PrologQueryCutFail function call, which will find the first solution of the Prolog goal
provided, cut away the rest of the solutions, and finally fail. This will reclaim the storage
used by the call.

750 SICStus Prolog

Example: this is how a Prolog file can be loaded into the Visual Basic program:

ret = PrologQueryCutFail("load_files(myfile)")

This code will return 1 if myfile was loaded successfully, and -1 otherwise (this may indicate,
for example, the existence_error exception if the file does not exist).

46.2.5 Handling Exceptions in Visual Basic

If an exception has been raised during Prolog execution, the functions PrologQueryCutFail
or PrologNextSolution return -1. To access the exception term, the procedure
PrologGetException can be used. This procedure will deposit the exception term in string
format into an output parameter, as if written via the writeq/2 predicate.

Example: when the following code fragment is executed, the message box will display the
domain_error(_1268 is 1+a,2,expression,a) error string.

Dim exc As String

qid = PrologOpenQuery("X is 1+a")
If PrologNextSolution(qid) < 0 Then

PrologGetException(exc)
Msg exc,48,"Error"

End if

46.3 How to Use the Interface

In this section we describe how to create a Visual Basic program that is to execute Prolog
queries.

46.3.1 Setting Up the Interface

See section “Visual Basic Notes” in SICStus Prolog Release Notes, for information about
installing the Visual basic interface.

46.3.2 Initializing the Prolog Engine From VB

The Visual Basic interface must be explicitly initialized: you must call PrologInit() before
calling any other interface function. The PrologInit() function loads and initializes the
interface. It returns 1 if the initialization was successful, and -1 otherwise.

Chapter 46: The Visual Basic Interface 751

46.3.3 Deinitializing the Prolog Engine From VB

The Visual Basic interface should be deinitialized: you should call PrologDeInit() before
exiting e.g. from a Form_Unload method.

This procedure was introduced in SICStus 3.10.1. Earlier versions never deinitialized the
SICStus engine. This could cause problems, e.g. by leaving memory allocated and by not
giving foreign resources a chance to clean up through their deinit functions.

46.3.4 Loading the Prolog Code

Prolog code (source or object code) can be loaded by submitting normal Prolog load pred-
icates as queries. Note that SICStus uses slashes ‘/’ in file names where Windows uses
backslash ‘\’. Example:

PrologQueryCutFail("load_files(’d:/xxx/myfile’)")

To facilitate the location of Prolog files, two file search paths are predefined:

app identifies the directory path of the Visual Basic project or the applications
executable.
That is, you can load the file myfile located in the same directory as the
project/executable, issuing the query:

PrologQueryCutFail("load_files(app(myfile))")

right in cope with initial backslash

vbsp identifies the directory path of the vbsp.dll file.
That is, you can use the following query to load the file myfile if it is located
in the same directory as vbsp.dll:

PrologQueryCutFail("load_files(vbsp
(myfile))")

Note that, as of SICStus 3.10, you can use the application and runtime file search paths
to achieve a similar effect.

46.4 Examples

The code for the following examples are available in the directory ‘library\vbsp\examples’
in the SICStus installation directory.

752 SICStus Prolog

46.4.1 Example 1 - Calculator

This example contains a simple program that allows you to enter an arithmetic expression
(conforming to Prolog syntax) as a string and displays the value of the given expression, as
shown in the following figure:

The calculation itself will be done in Prolog.

We now we will go through the steps of developing this program.

1. Start a new project called calculator.
2. Add the ‘vbsp.bas’ file to the project.
3. Create a form window called calculator. Edit it, adding two textboxes txtExpr and

txtValue, and two command buttons, cmdCalc and cmdQuit:

Save the form window to the calculator.frm file. Then the project will contain the
following two files:

Chapter 46: The Visual Basic Interface 753

4. Write the Prolog code in the file calc.pl, evaluating the given expression with the
is/2 predicate, and providing a minimal level of exception handling:

prolog_calculate(Expr, Value) :-
on_exception(Exc, Value is Expr, handler(Exc,Value)).

handler(domain_error(_,_,_,_),’Incorrect expression’).
handler(Exc,Exc).

Note that this example focuses on a minimal implementation of the problem, more
elaborate exception handling will be illustrated in the Train example (see Section 46.4.2
[Example 2 - Train], page 754).
Compile this file, and deposit the file ‘calc’ in the directory where the calculator.vbp
project is contained.

5. Now you have to write the Visual Basic code in which SICStus Prolog will be called at
two points:
• Initialize Prolog in the Form_Load procedure executed when the calc form is

loaded, calling the PrologInit() function and loading the ‘calc’ file with the
help of the PrologQueryCutFail(..)) function:

Private Sub Form_Load()
If PrologInit() <> 1 Then GoTo Err
If PrologQueryCutFail("ensure_loaded(app(calc))") <> 1 Then GoTo Err
Exit Sub

Err:
MsgBox "Prolog initialization failed", 48, "Error"
Unload Me

End Sub

• Do the expression evaluation in the calculate procedure activated by the cmdRun
command button. This procedure will execute the prolog_calculate(X,Y) pro-
cedure defined in the ‘calc.pl’ Prolog file:

754 SICStus Prolog

Public Function calculate(ByVal Expr As String) As String
Dim qid As Long
Dim result As String
Dim ret As Long
Dim Q As String

Q = "prolog_calculate(" & Expr & ",Value)"
qid = PrologOpenQuery(Q)
If qid = -1 Then GoTo Err ’ e.g. syntax error

ret = PrologNextSolution(qid)
If ret <> 1 Then GoTo Err ’ failed or error

ret = PrologGetString(qid, "Value", result)
If ret <> 1 Then GoTo Err
calculate = result
Call PrologCloseQuery(qid)

Exit Function

Err:
MsgBox "Bad expression", 48, "Error!"
calculate = ""

End Function

• Deinitialize Prolog in the Form_Unload procedure executed when the calc form is
unloaded, e.g. when the application exits.

Private Sub Form_Unload(Cancel As Integer)
PrologDeInit

End Sub

46.4.2 Example 2 - Train

This example provides a Visual Basic user interface to the Prolog program finding train
routes between two points.

The Visual Basic program train contains the following form window:

Chapter 46: The Visual Basic Interface 755

Clicking the cmdRun command button will display all the available routes between
Stockholm and Orebro. These are calculated as solutions of the Prolog query
places(’Stockholm’,’Örebro’,Way). For each solution, the value assigned to the variable
Way is retrieved into the Visual Basic variable result and is inserted as a new item into
the listConnection listbox.

The Visual Basic program consists of four parts:

• loading the Prolog code
• opening the query
• a loop generating the solutions, each cycle doing the following

− requesting the next solution
− getting the value of the solution variable
− adding the solution to the listbox

• closing the query

756 SICStus Prolog

Private Sub cmdRun_Click()
Dim qid As Long
Dim result As String
Dim s As String
Dim rc As Integer

qid = -1 ’ make it safe to PrologCloseQuery(qid) in Err:

’load the ‘train.pl’ Prolog file
rc = PrologQueryCutFail("ensure_loaded(app(train))")
If rc < 1 Then

Msg = "ensure_loaded(train)"
GoTo Err

End If
’open the query
qid = PrologOpenQuery("places(’Stockholm’,’Örebro’,Way)")
If qid = -1 Then

rc = 0
Msg = "Open places/3"
GoTo Err

End If
’generate solutions
Do

rc = PrologNextSolution(qid)
If rc = 0 Then Exit Do ’ failed
If rc < 0 Then

Msg = "places/3"
GoTo Err

End If
If PrologGetString(qid, "Way", result) < 1 Then

rc = 0
Msg = "PrologGetString Way"
GoTo Err

End If
listConnections.AddItem result

Loop While True
’after all solutions are found, the query is closed
Call PrologCloseQuery(qid)
Exit Sub

Note that each part does elaborate error checking and passes control to the error display
instructions shown below:

Chapter 46: The Visual Basic Interface 757

Err:
Call PrologCloseQuery(qid) ’ Always close opened queries

’error message is prepared, adding either the - failed - or
’the - raised exception - suffix to the Msg string specific
’to the function called
If rc = 0 Then

Msg = Msg + " failed"
Else

Call PrologGetException(s)
Msg = Msg + " raised exception: " + s

End If
MsgBox Msg, 48, "Error"

End Sub

The Prolog predicate places/3 is defined in the ‘train.pl’ file, as shown earlier (see
Section 9.9.1 [Train Example], page 279). The only difference is the use of the Swedish
characters å, ä and ö.

46.4.3 Example 3 - Queens

This example gives a Visual Basic user interface to an N-queens program. The purpose of
this example is to show how to handle Prolog lists through the Visual Basic interface. The
full source code of the example is found in the distribution.

The user interface shown in this example will allow the user to specify the number of queens,
and, with the help of the Next Solution command button all the solutions of the N-Queens
problem will be enumerated. A given solution will be represented in a simple graphical way
as a PictureBox, using the basic Circle and Line methods.

758 SICStus Prolog

The problem itself will be solved in Prolog, using a queens(+N,?PositionList) Prolog
predicate, stored in the file ‘queens’.

We now present two solutions, using different techniques for retrieving Prolog lists.

Example 3a - N-Queens, generating a variable list into the Prolog call

The first implementation of the N-Queens problem is based on the technique of generating
a given length list of Prolog variables into the Prolog query.

For example, if the N-Queens problem is to be solved for N = 4, i.e. with the query
"queens(4,L)", then the problem of retrieving a list from Visual Basic will arise. However,
if the query is presented as "queens(4,[X1,X2,X3,X4])", then instead of retrieving the
list it is enough to access the X1,X2,X3,X4 values. Since the number of queens is not fixed
in the program, this query has to be generated, and the retrieval of the Xi values must be
done in a cycle.

This approach can always be applied when the format of the solution is known at the time
of calling the query.

We now go over the complete code of the program.

Global declarations used in the program (‘General/declarations’):

Dim nQueens As Long ’number of queens
Dim nSol As Long ’index of solution
Dim nActqid As Long ’actual query identifier
Dim nQueryOpen As Boolean ’there is an open query

Chapter 46: The Visual Basic Interface 759

The initialization of the program will be done when the form window is loaded:

Private Sub Form_Load()
nQueens = 0
nSol = 1
nQueryOpen = False

’initialize Prolog
If PrologInit() <> 1 Then GoTo Err
’Load ‘queens.pl’
If PrologQueryCutFail("load_files(app(queens))") <> 1 Then GoTo Err
Exit Sub

Err:
MsgBox "Prolog initialization failed", 48, "Error"
Unload Me

End Sub

Deinitialization of the Prolog engine will be done when the form windows is closed, exactly
as for the calculator example.

When the number of queens changes (i.e. the value of the text box textSpecNo changes), a
new query has to be opened, after the previous query, if there has been any, is closed.

Private Sub textSpecNo_Change()
nQueens = Val(textSpecNo)
nSol = 1

If nQueryOpen Then PrologCloseQuery (nActqid)

’create Prolog query in form: queens(4,[X1,X2,X3,X4])

Q = "queens(" & Str(nQueens) & ", ["
For i = 1 To nQueens - 1 Step 1

Q = Q & "X" & i & ","
Next
Q = Q & "X" & nQueens & "])"

nActqid = PrologOpenQuery(Q)
nQueryOpen = True

End Sub

The Next command button executes and shows the next solution of the current query:

760 SICStus Prolog

Private Sub cmdNext_Click()
Dim nPos As Long
Dim aPos(100) As Long

If Not nQueryOpen Then
MsgBox "Specify number of queens first!", 48, ""
Exit Sub

End If
If PrologNextSolution(nActqid) < 1 Then

MsgBox "No more solutions!", 48, ""
Else

For i = 1 To nQueens Step 1
If PrologGetLong(nActqid, "X" & i, nPos) = 1 Then

aPos(i - 1) = nPos
End If

Next i

’display nth solution
txtSolNo = "Solution number: " & Str(nSol)
Call draw_grid(nQueens)

nLine = 1
For Each xElem In aPos

Call draw_circle(nLine, xElem, nQueens)
nLine = nLine + 1

Next

nSol = nSol + 1
End If

End Sub

Drawing itself is performed by the draw_grid and draw_circle procedures.

Example 3b - N-Queens, converting the resulting Prolog list to an atom

The second variant of the N-Queens program uses the technique of converting the resulting
Prolog list into a string via the PrologGetString function, and decomposing it into an
array in Visual Basic. Here we show only those parts of the program that have changed
with respect to the first version.

In the textSpecNo_Change routine the queens/2 predicate is called with a single variable
in its second argument:

Q = "queens(" & Str(nQueens) & ",Queens)"
nActqid = PrologOpenQuery(Q)

Chapter 46: The Visual Basic Interface 761

In the cmdNext_Click routine the solution list is retrieved into a single string, which is then
split up along the commas, and deposited into the aPos array by the convert_prolog_list
routine. (aPos is now an array of strings, rather than integers.)

Finally, we include the code of the routine for splitting up a Prolog list:

Private Sub convert_prolog_list(ByVal inList As String,
ByRef inArray() As String)

’drop brackets
xList = Mid(inList, 2, Len(inList) - 2)

i = 0

startPos = 1
xList = Mid(xList, startPos)

Do While xList <> ""
endPos = InStr(xList, ",")
If endPos = 0 Then

xElem = xList
inArray(i) = xElem
Exit Do

End If
xElem = Mid(xList, 1, endPos - 1)
inArray(i) = xElem
i = i + 1
xList = Mid(xList, endPos + 1)
startPos = endPos + 1

Loop
End Sub

46.5 Summary of the Interface Functions

In this section you will find a summary of the functions and procedures of the Visual Basic
interface:

Function PrologOpenQuery (ByVal Goal As String) As Long
This function will return a query identifier that can be used for successive
retrieval of solutions. Returns -1 on error, e.g. a syntax error in the query.

Sub PrologCloseQuery (ByVal qid As Long)
This procedure will close the query represented by a query identifier qid. Please
note: if qid is not the innermost query (i.e. the one opened last), then all more
recently opened queries are closed as well.

762 SICStus Prolog

Function PrologNextSolution(ByVal qid As Long) As Integer
This function retrieves a solution to the open query represented by the query
identifier qid. Returns 1 on success, 0 on failure, -1 on error. In case of
an erroneous execution, the Prolog exception raised can be retrieved with the
PrologGetException procedure. Please note: Several queries may be open
at the same time, however, if qid is not the innermost query, then all more
recently opened queries are implicitly closed.

Function PrologGetLong(ByVal qid As Long, ByVal VarName As String, Value As
Long) As Integer

Retrieves into Value the integer value bound to the variable VarName of the
query identified by qid, as an integer. That is, the value of the given variable
is converted to an integer. Returns 1 on success, i.e. if the given goal assigned
an integer value to the variable; otherwise, it returns 0. If an error occurred it
returns -1, e.g. if an invalid qid was used.

Function PrologGetString(ByVal qid As Long, Val VarName As String, Value As
String) As Integer

Retrieves into Value the string value bound to a variable VarName of the query,
as a string. That is, the value assigned to the given variable is written out
into an internal stream by the write/2 Prolog predicate, and the characters
output to this stream will be transferred to Visual Basic as a string. Retuns 1
on success, i.e. if the given goal assigned a value to the variable; otherwise, it
returns 0. If an error occurred it returns -1, e.g. if an invalid qid was used.

Function PrologGetStringQuoted(ByVal qid As Long, ByVal VarName As String,
Value As String) As Integer

Same as PrologGetString, but conversion uses Prolog writeq/2. Returns 1
on success, i.e. if the given goal assigned a value to the variable; otherwise, it
returns 0. If an error occurred it returns -1, e.g. if an invalid qid was used.

Function PrologQueryCutFail (ByVal Goal As String) As Integer
This function will try to evaluate the Prolog goal, provided in string format,
cut away the rest of the solutions, and finally fail. This will reclaim the storage
used by the call. Returns 1 on success, 0 on failure and -1 on error.

Sub PrologGetException(ByRef Exc As String)
The exception term is returned in string format into the Exc string as if written
by the writeq/2 predicate. If there is no exception available then the empty
string is returned.

Function PrologInit() As Long
The function loads and initializes the interface. It returns 1 on success, and -1
otherwise.

Function PrologDeInit() As Long
The function deinitializes and unloads the interface, and returns any memory
used by the interface to the operating system. It returns 1 on success, and -1
otherwise.

Chapter 47: Glue Code Generator 763

47 Glue Code Generator

This chapter used to describe Prolog utilities for generating glue code for the Foreign Lan-
guage Interface (see Section 9.2.4 [Interface Predicates], page 223). As of SICStus 3.9, this
is only supported using the splfr tool (see Section 9.2.5 [The Foreign Resource Linker],
page 224).

You can invoke splfr (as well as spld) with the flags ‘--verbose’ and ‘--keep’, in addition
to the ordinary arguments. This way you can see what is going on and you can also access
any generated files. The steps performed by splfr and the files generated will change
between releases so you should avoid depending on it. If, for some reason, splfr is not
suitable for your purposes you should contact SICStus Support.

764 SICStus Prolog

Chapter 48: Meta-Call with Limit on Memory Use 765

48 Meta-Call with Limit on Memory Use

The spaceout package, which may be loaded by the query

| ?- use_module(library(spaceout)).

contains the predicate:

space_out(:Goal, +Space, ?Result)
The Goal is executed as if by call/1. If computing any solution causes the
global stack usage to increase more than Space bytes, the goal will be aborted
and Result unified with the atom space_out. If the goal succeeds without
exceeding that space limit, Result is unified with the atom success. Space
must be a positive integer.
Note that only the global stack usage is considered, i.e. the value re-
ported by statistics(global_stack, [Used|_]) (see Section 8.6 [State Info],
page 175).

space_out/3 is implemented by raising and handling memory resource_error exceptions,
so any exception handler in the scope of Goal must be prepared to pass on such exceptions.
Note that the format of such exceptions varies depending on the execution mode, Section 8.5
[Error and Exception Handling], page 173.

Before deciding whether to interrupt the computation a garbage collection is performed to
try to reduce the size of the global stack enough to allow the computation to continue.
As usual, garbage collection can be prevented by setting the Prolog flag gc to off; see
Section 8.6 [State Info], page 175.

%% Call foo/0 with space_out and do not allow GC.
%% Ensure the gc flag is restored when we no longer need it
%% By wrapping the goal foo in once/1 we ensure that call_cleanup
%% will call the clean-up goal immediately when foo succeeds.
...
Size is 10*1024, % 10kB
prolog_flag(gc, OldGC),
call_cleanup((set_prolog_flag(gc,off),

space_out(once(foo), Size, Flag)),
set_prolog_flag(gc,OldGC)),

%% prolog_flag(gc, OldGC) will be true here
...

The precision of space_out can be improved by calling explicitly garbage_collect/0 before
the call to space_out/3.

766 SICStus Prolog

%% Call foo/0 with space_out
...
Size is 10*1024, % 10kB
garbage_collect, % ensure no garbage for foo/0 to use
space_out(foo, Size, Flag),
(Flag == space_out
-> write(’foo used too much space’), nl
; write(’foo used less than 10kB’), nl
),
...

A memory resource error triggered by a real out of memory condition will not be caught by
space_out/3.

The Goal will not be interrupted before the global stack has grown by Size bytes. However,
the global stack may, under unusual circumstances, grow more than Space bytes before
Goal is interrupted. Such growth is unlikely to exceed 10kB.

Chapter 49: Meta-Call with Timeout 767

49 Meta-Call with Timeout

The timeout package, which may be loaded by the query

| ?- use_module(library(timeout)).

contains the predicate:

time_out(:Goal, +Time, ?Result)
The Goal is executed as if by call/1. If computing any solution takes more
than Time milliseconds, the goal will be aborted and Result unified with the
atom time_out. If the goal succeeds within the specified time, Result is unified
with the atom success. Time must be a number between (not including) 0
and 2147483647.
The time is measured in process virtual time under UNIX. Under
Windows NT/2000/XP, as of SICStus 3.10, thread virtual time is used, which
is the same as process virtual time for single-threaded processes. Under
Windows 98/ME the time is measured in real time (wall time), due to limi-
tations in those operating systems.
The precision of the time out interval is usually not better than several tens
of milliseconds. This is due to limitations in the timing mechanisms used to
implement ‘library(timeout)’.

time_out/3 is implemented by raising and handling time_out exceptions, so any exception
handler in the scope of Goal must be prepared to pass on time_out exceptions. The
following incorrect example shows what can happen otherwise:

| ?- time_out(on_exception(Q,(repeat,false),true), 1000, Res).

Q = time_out,
Res = success

768 SICStus Prolog

Chapter 50: Summary of Built-In Predicates 769

50 Summary of Built-In Predicates

! ISO

Commits to any choices taken in the current predicate.

(+P,+Q) ISO

P and Q.

(Head --> Body) reserved

Not a built-in predicate; reserved syntax for grammar rules.

(+P -> +Q ; +R) ISO

If P then Q else R, using first solution of P only.

(+P -> +Q) ISO

If P then Q else false, using first solution of P only.

[]
[:File|+Files]

Updates the program with interpreted clauses from File and Files.

(:- Directive) reserved

Not a built-in predicate; reserved syntax for directives.

(?- Query) reserved

Not a built-in predicate; reserved syntax for queries.

(Head :- Body) reserved

Not a built-in predicate; reserved syntax for clauses.

(+P;+Q) ISO

P or Q.

?X = ?Y ISO

X and Y are unified.

+Term =.. ?List ISO

?Term =.. +List ISO

The functor and arguments of Term comprise the list List.

+X =:= +Y ISO

X is numerically equal to Y.

?Term1 == ?Term2 ISO

Term1 and Term2 are strictly identical.

+X =\= +Y ISO

X is not numerically equal to Y.

+X =< +Y ISO

X is less than or equal to Y.

+X > +Y ISO

X is greater than Y.

770 SICStus Prolog

+X >= +Y ISO

X is greater than or equal to Y.

?X \= ?Y ISO

X and Y are not unifiable.

?X ^ :P Executes the procedure call P.

\+ +P ISO Goal P is not provable.

?Term1 \== ?Term2 ISO

Term1 and Term2 are not strictly identical.

+X < +Y ISO

X is less than Y.

?Term1 @=< ?Term2 ISO

Term1 precedes or is identical to Term2 in the standard order.

?Term1 @> ?Term2 ISO

Term1 follows Term2 in the standard order.

?Term1 @>= ?Term2 ISO

Term1 follows or is identical to Term2 in the standard order.

?Term1 @< ?Term2 ISO

Term1 precedes Term2 in the standard order.

?=(?X,?Y)
X and Y are either syntactically identical or syntactically non-unifiable.

abolish(:Preds) ISO

Makes the predicate(s) specified by Preds undefined.

abolish(:Atom,+Arity)
Makes the predicate specified by Atom/Arity undefined.

abort Aborts execution of the current query (returns to C in recursive calls to Prolog
from C).

absolute_file_name(+RelativeName,?AbsoluteName)
absolute_file_name(+RelativeName,?AbsoluteName,+Options)

AbsoluteName is the absolute pathname of RelativeName.

add_breakpoint(:Conditions, ?BID) development

Creates a breakpoint with Conditions and with identifier BID.

arg(+ArgNo,+Term,?Arg) ISO,meta-logical

The argument ArgNo of Term is Arg.

ask_query(+QueryClass, +Query, +Help, -Answer) hookable

Prints the question Query, then reads and processes user input according to
QueryClass, and returns the result of the processing, the abstract answer term
Answer. The Help message is printed in case of invalid input.

assert(:Clause)
assert(:Clause,-Ref)

Asserts clause Clause with unique identifier Ref.

Chapter 50: Summary of Built-In Predicates 771

asserta(:Clause) ISO

asserta(:Clause,-Ref)
Asserts Clause as first clause with unique identifier Ref.

assertz(:Clause) ISO

assertz(:Clause,-Ref)
Asserts Clause as last clause with unique identifier Ref.

at_end_of_line
at_end_of_line(Stream)

The end of stream or end of line has been reached for Stream or from the current
input stream.

at_end_of_stream ISO

at_end_of_stream(Stream) ISO

The end of stream has been reached for Stream or from the current input
stream.

atom(?X) ISO,meta-logical

X is currently instantiated to an atom.

atom_chars(+Atom,?CharList) ISO only

atom_chars(?Atom,+CharList) ISO only

The name of the atom Atom is the char-list CharList.

atom_chars(+Atom,?CodeList) SICStus only

atom_chars(?Atom,+CodeList) SICStus only

The name of the atom Atom is the code-list CodeList.

atom_codes(+Atom,?CodeList) ISO

atom_codes(?Atom,+CodeList) ISO

The name of the atom Atom is the code-list CodeList.

atom_concat(+Atom1,+Atom2,?Atom12) ISO

atom_concat(?Atom1,?Atom2,+Atom12) ISO

Atom Atom1 concatenated with Atom2 gives Atom12.

atom_length(+Atom,?Length) ISO

Length is the number of characters of the atom Atom.

atomic(?X) ISO,meta-logical

X is currently instantiated to an atom or a number.

bagof(?Template,:Goal,?Bag) ISO

Bag is the bag of instances of Template such that Goal is satisfied (not just
provable).

block Specs declaration

Not a built-in predicate; block declaration.

bb_delete(+Key,?Term)
Delete from the blackboard Term stored under Key.

bb_get(+Key,?Term)
Get from the blackboard Term stored under Key.

772 SICStus Prolog

bb_put(+Key,+Term)
Store Term under Key on the blackboard.

bb_update(:Key, ?OldTerm, ?NewTerm)
Replace OldTerm by NewTerm under Key on the blackboard.

break development

Invokes a recursive top-level.

breakpoint_expansion(+Macro, -Body) hook,development

user:breakpoint_expansion(+Macro, -Body)
Defines debugger condition macros.

byte_count(+Stream,?N)
N is the number of bytes read/written on stream Stream.

’C’(?S1,?Terminal,?S2) obsolescent
Grammar rules. S1 is connected by the terminal Terminal to S2.

call(:Term) ISO

(Module::Term)
Executes the procedure call Term in Module.

call_cleanup(:Goal,:Cleanup)
Executes the procedure call Goal. When Goal succeeds determinately, is cut,
fails, or raises an exception, Cleanup is executed.

call_residue(:Goal,?Residue) obsolescent
Executes the procedure call Goal. Any floundered goals and the variables they
are blocked on occur as VarSet-Goal pairs in Residue.

callable(?X) meta-logical

X is currently instantiated to a compound term or an atom.

character_count(+Stream,?Count)
Count characters have been read from or written to the stream Stream.

catch(:ProtectedGoal,?Pattern,:Handler) ISO

Executes the procedure call ProtectedGoal. If during the execution
throw(Exception) or raise_exception(Exception) is called, and Exception
matches Pattern, the execution of ProtectedGoal aborts, Pattern is unified with
a copy of Exception and Handler is called.

char_code(+Char,?Code) ISO

char_code(?Char,+Code) ISO

Code is the character code of the one-char atom Char.

char_conversion(+InChar, +OutChar) ISO

The mapping of InChar to OutChar is added to the character-conversion map-
ping.

clause(:Head,?Body) ISO

clause(:Head,?Body,?Ref)
clause(?Head,?Body,+Ref)

There is an interpreted clause whose head is Head, whose body is Body, and
whose unique identifier is Ref.

Chapter 50: Summary of Built-In Predicates 773

close(+Stream) ISO

close(+Stream, +Options) ISO

Closes stream Stream, with options Options.

compare(?Op,?Term1,?Term2)
Op is the result of comparing Term1 and Term2.

compile(:Files)
Compiles in-core the clauses in text file(s) Files.

compound(?X) ISO,meta-logical

X is currently instantiated to a term of arity > 0.

consult(:Files)
Updates the program with interpreted clauses from file(s) Files.

copy_term(?Term,?CopyOfTerm) ISO,meta-logical

CopyOfTerm is an independent copy of Term.

create_mutable(+Datum,-Mutable)
Mutable is a new mutable term with current value Datum.

current_atom(?Atom) meta-logical

One of the currently defined atoms is Atom.

current_breakpoint(:Conditions, ?BID, ?Status, ?Kind, ?Type) development

There is a breakpoint with conditions Conditions, identifier BID, enabledness
Status, kind Kind, and type Type.

current_char_conversion(?InChar, ?OutChar) ISO

InChar is mapped to OutChar in the current character-conversion mapping.

current_input(?Stream) ISO

Stream is the current input stream.

current_key(?KeyName,?KeyTerm) obsolescent
There is a recorded item in the database whose key is KeyTerm, the name of
which is KeyName.

current_module(?Module)
Module is a module currently in the system.

current_module(?Module,?File)
Module is a module currently in the system, loaded from File.

current_op(?Precedence,?Type,?Op) ISO

Atom Op is an operator type Type precedence Precedence.

current_output(?Stream) ISO

Stream is the current output stream.

current_predicate(?Name/?Arity) ISO

A user defined or library predicate is named Name, arity Arity.

current_predicate(?Name,:Head)
current_predicate(?Name,-Head)

A user defined or library predicate is named Name, most general goal Head.

774 SICStus Prolog

current_prolog_flag(?FlagName,?Value) ISO

Value is the current value of the Prolog flag FlagName.

current_stream(?AbsFileName,?Mode,?Stream)
There is a stream Stream associated with the file AbsFileName and opened in
mode Mode.

debug development

Switches on debugging in debug mode.

debugger_command_hook(+DCommand,?Actions) hook,development

user:debugger_command_hook(+DCommand,?Actions)
Allows the interactive debugger to be extended with user-defined commands.

debugging development

Displays debugging status information

dif(?X,?Y)
X and Y are different.

disable_breakpoints(+BIDs) development

Disables the breakpoints specified by BIDs.

discontiguous Specs declaration,ISO

Not a built-in predicate; discontiguous declaration.

display(?Term)
Displays Term on the standard output stream.

dynamic Specs declaration,ISO

Not a built-in predicate; dynamic declaration.

enable_breakpoints(+BIDs) development

Enables the breakpoints specified by BIDs.

ensure_loaded(:Files) ISO

Compiles or loads the file(s) Files if need be.

erase(+Ref)
Erases the clause or record whose unique identifier is Ref.

error_exception(+Exception) hook

user:error_exception(+Exception)
Exception is an exception that traps to the debugger if it is switched on.

execution_state(:Tests) development

Tests are satisfied in the current state of the execution.

execution_state(+FocusConditions, :Tests) development

Tests are satisfied in the state of the execution pointed to by FocusConditions.

expand_term(+Term1,?Term2)
Term1 is a shorthand expanding to Term2.

fail ISO

false False.

Chapter 50: Summary of Built-In Predicates 775

fcompile(:Files) development,obsolescent
Compiles file-to-file the clauses in text file(s) Files.

file_search_path(Path,?Expansion) hook

user:file_search_path(Path,?Expansion)
Tells how to expand Path(File) file names.

fileerrors obsolescent
Enables reporting of file errors.

findall(?Template,:Goal,?Bag) ISO

findall(?Template,:Goal,?Bag,?Remainder)
A prefix of Bag is the list of instances of Template such that Goal is provable.
The rest of Bag is Remainder or the empty list.

float(?X) ISO,meta-logical

X is currently instantiated to a float.

flush_output ISO

flush_output(+Stream) ISO

Flushes the buffers associated with Stream.

foreign(+CFunctionName,+Predicate) hook

foreign(+CFunctionName,+Language,+Predicate) hook

Tell Prolog how to define Predicate to invoke CFunctionName.

foreign_file(+ObjectFile,+Functions) hook,obsolescent
Tells Prolog that foreign functions Functions are in file ObjectFile. Use
foreign_resource/2 instead.

foreign_resource(+ResourceName,+Functions) hook

Tells Prolog that foreign functions Functions are in foreign resource Resource-
Name.

format(+Format,:Arguments)
format(+Stream,+Format,:Arguments)

Writes Arguments according to Format on the stream Stream or on the current
output stream.

freeze(?Var,:Goal)
Blocks Goal until nonvar(Var) holds.

frozen(-Var,?Goal)
The goal Goal is blocked on the variable Var.

functor(+Term,?Name,?Arity) ISO,meta-logical

functor(?Term,+Name,+Arity) ISO,meta-logical

The principal functor of Term has name Name and arity Arity.

garbage_collect
Performs a garbage collection of the global stack.

garbage_collect_atoms
Performs a garbage collection of the atoms.

776 SICStus Prolog

gc obsolescent
Enables garbage collection of the global stack.

generate_message_hook(+Message, -L0, -L) hook

user:generate_message_hook(+Message, -L0, -L)
A way for the user to override the call to ’SU_messages’:generate_message/3
in the message generation phase in print_message/2.

get(?C) obsolescent
get(+Stream,?C) obsolescent

The next printing character from the stream Stream or from the current input
stream is C.

get0(?C) obsolescent
get0(+Stream,?C) obsolescent

The next character from the stream Stream or from the current input stream
is C.

get_byte(?Byte) ISO

get_byte(+Stream,?Byte) ISO

Byte is the next byte read from the binary stream Stream.

get_char(?Char) ISO

get_char(+Stream,?Char) ISO

Char is the one-char atom naming the next character read from text stream
Stream.

get_code(?Code) ISO

get_code(+Stream,?Code) ISO

Code is the character code of the next character read from text stream Stream.

get_mutable(?Datum,+Mutable)
The current value of the mutable term Mutable is Datum.

goal_expansion(+Goal,+Module,-NewGoal) hook

user:goal_expansion(+Goal,+Module,-NewGoal)
Defines a transformation from Goal in module Module to NewGoal.

goal_source_info(+AGoal, ?Goal, ?SourceInfo)
Decomposes the annotated goal AGoal into a Goal proper and the SourceInfo
descriptor term, indicating the source position of the goal.

ground(?X) meta-logical

X is currently free of unbound variables.

halt ISO Halts Prolog. (returns to C in recursive calls to Prolog from C).

halt(Code) ISO

Halts Prolog immediately, returning Code.

help hookable,development,obsolescent
Prints a help message.

if(+P,+Q,+R)
If P then Q else R, exploring all solutions of P.

Chapter 50: Summary of Built-In Predicates 777

include Specs declaration,ISO

Not a built-in predicate; include declaration.

incore(+Term) obsolescent
Executes the procedure call Term.

initialization :Goal ISO

Includes Goal to the set of goals that shall be executed after the file that is
being loaded has been completely loaded.

instance(+Ref,?Term)
Term is a most general instance of the record or clause uniquely identified by
Ref.

integer(?X) ISO,meta-logical

X is currently instantiated to an integer.

?Y is +X ISO

Y is the value of the arithmetic expression X.

is_mutable(?X) meta-logical

X is currently instantiated to a mutable term.

keysort(+List1,?List2)
The list List1 sorted by key yields List2.

leash(+Mode) development

Sets leashing mode to Mode.

length(?List,?Length)
The length of list List is Length.

library_directory(?Directory) hook

user:library_directory(?Directory)
Tells how to expand library(File) file names.

line_count(+Stream,?N)
N is the number of lines read/written on stream Stream.

line_position(+Stream,?N)
N is the number of characters read/written on the current line of Stream.

listing
listing(:Specs)

Lists the interpreted predicate(s) specified by Specs or all interpreted predicates
in the type-in module. Any variables in the listed clauses are internally bound
to ground terms before printing. Any attributes or blocked goals attached to
such variables will be ignored.

load(:Files) obsolescent
Loads ‘.ql’ file(s) Files.

load_files(:Files)
load_files(:Files, +Options)

Loads source, ‘.po’ or ‘.ql’ file(s) Files obeying Options.

778 SICStus Prolog

load_foreign_files(:ObjectFiles,+Libraries) development,hookable,obsolescent
Links object files ObjectFiles into Prolog. Use splfr and load_foreign_
resource/1 instead.

load_foreign_resource(:Resource)
Loads foreign resource Resource into Prolog.

message_hook(+Severity, +Message, +Lines) hook

user:message_hook(+Severity, +Message, +Lines)
Overrides the call to print_message_lines/3 in print_message/2. A way for
the user to intercept the abstract message term Message of type Severity, whose
translation is Lines, before it is actually printed.

meta_predicate Specs declaration

Not a built-in predicate; meta-predicate declaration.

mode Specs declaration

Not a built-in predicate; mode declaration.

module(+Module)
Sets the type-in module to Module.

module(+Module, +ExportList) declaration

module(+Module, +ExportList, +Options) declaration

Not a built-in predicate; module declaration.

multifile Specs declaration,ISO

Not a built-in predicate; multifile declaration.

name(+Const,?CharList) obsolescent
name(?Const,+CharList)

The name of atom or number Const is the string CharList. Subsumed by
atom_chars/2 and number_chars/2.

nl ISO

nl(+Stream) ISO

Outputs a new line on stream Stream or on the current output stream.

nodebug development

Switches off debugging.

nofileerrors obsolescent
Disables reporting of file errors.

nogc obsolescent
Disables garbage collection of the global stack.

nonvar(?X) ISO,meta-logical

X is a non-variable.

nospy :Spec development

Removes spypoints from the predicate(s) specified by Spec.

nospyall development

Removes all spypoints.

Chapter 50: Summary of Built-In Predicates 779

notrace development

nozip development

Switches off debugging.

number(?X) ISO,meta-logical

X is currently instantiated to a number.

number_chars(+Number,?CodeList) SICStus only

number_chars(?Number,+CodeList) SICStus only

The name of the number Number is the code-list CodeList.

number_chars(+Number,?CharList) ISO only

number_chars(?Number,+CharList) ISO only

The name of the number Number is the char-list CharList.

number_codes(+Number,?CodeList) ISO

number_codes(?Number,+CodeList) ISO

The name of the number Number is the code-list CodeList.

numbervars(?Term,+N,?M) meta-logical

Number the variables in Term from N to M-1.

once(+P) ISO

Finds the first solution, if any, of goal P.

on_exception(?Pattern,:ProtectedGoal,:Handler)
Executes the procedure call ProtectedGoal. If during the execution
throw(Exception) or raise_exception(Exception) is called, and Exception
matches Pattern, the execution of ProtectedGoal aborts, Pattern is unified with
a copy of Exception and Handler is called.

op(+Precedence,+Type,+Name) ISO

Makes atom(s) Name an operator of type Type precedence Precedence.

open(+FileName,+Mode,-Stream) ISO

open(+FileName,+Mode,-Stream,+Options) ISO

Opens file FileName in mode Mode with options Options as stream Stream.

open_null_stream(-Stream)
Opens an output stream to the null device.

otherwise
True.

peek_byte(?N) ISO

peek_byte(+Stream,?N) ISO

N is the next byte peeked at from the binary stream Stream or from the current
input stream.

peek_char(?N) SICStus only

peek_char(+Stream,?N) SICStus only

N is the character code of the next character peeked at from Stream or from
the current input stream.

780 SICStus Prolog

peek_char(?N) ISO only

peek_char(+Stream,?N) ISO only

N is the one-char atom of the next character peeked at from the text stream
Stream or from the current input stream.

peek_code(?N) ISO

peek_code(+Stream,?N) ISO

N is the character code of the next character peeked at from Stream or from
the current input stream.

phrase(:Phrase,?List)
phrase(:Phrase,?List,?Remainder)

Grammar rules. The list List can be parsed as a phrase of type Phrase. The
rest of the list is Remainder or empty.

portray(+Term) hook

user:portray(+Term)
Tells print/1 what to do.

portray_clause(?Clause)
portray_clause(+Stream,?Clause)

Pretty prints Clause on the stream Stream or on the current output stream.

portray_message(+Severity,+Message) hook

user:portray_message(+Severity,+Message)
Tells print_message/2 what to do.

predicate_property(:Head,?Prop)
predicate_property(-Head,?Prop)

Head is the most general goal of a currently defined predicate that has the
property Prop.

print(?Term) hookable

print(+Stream,?Term) hookable

Portrays or else writes Term on the stream Stream or on the current output
stream.

print_message(+Severity,+Message) hookable

Portrays or else writes Message of a given Severity on the standard error stream.

print_message_lines(+Stream, +Severity, +Lines)
Print the Lines to Stream, preceding each line with a prefix defined by Severity.

profile_data(:Spec,?Selection,?Resolution,-Data) development

Data is the profiling data collected from the instrumented predicates covered
by Spec with selection and resolution Selection and Resolution respectively.

profile_reset(:Spec) development

The profiling counters for the instrumented predicates covered by Spec are
zeroed.

prolog_flag(?FlagName,?Value)
Value is the current value of FlagName.

Chapter 50: Summary of Built-In Predicates 781

prolog_flag(+FlagName,?OldValue,?NewValue)
OldValue and NewValue are the old and new values of FlagName.

prolog_load_context(?Key,?Value)
Value is the value of the compilation/loading context variable identified by Key.

prompt(?Old,?New)
Changes the prompt from Old to New.

public Specs declaration,obsolescent
Not a built-in predicate; public declaration.

put(+C) obsolescent
put(+Stream,+C) obsolescent

The next character code sent to the stream Stream or to the current output
stream is C.

put_byte(+B) ISO

put(+Stream,+B) ISO

The next byte sent to the binary stream Stream or to the current output stream
is B.

put_char(+C) ISO

put_char(+Stream,+C) ISO

The next one-char atom sent to the text stream Stream or to the current output
stream is C.

put_code(+C) ISO

put_code(+Stream,+C) ISO

The next character code sent to the text stream Stream or to the current output
stream is C.

query_hook(+QueryClass, +Query, +QueryLines, +Help, +HelpLines, -Answer) hook

user:query_hook(+QueryClass, +Query, +QueryLines, +Help, +HelpLines, -Answer)
Called by ask_query/4 before processing the query. If this predicate succeeds,
it is assumed that the query has been processed and nothing further is done.

query_class_hook(+QueryClass, -Prompt, -InputMethod, -MapMethod,
-FailureMode) hook

user:query_class_hook(+QueryClass, -Prompt, -InputMethod, -MapMethod,
-FailureMode)

Provides the user with a method of overriding the call to ’SU_
messages’:query_class/5 in the preparation phase of query processing. This
way the default query class characteristics can be changed.

query_input_hook(+InputMethod, +Prompt, -RawInput) hook

user:query_input_hook(+InputMethod, +Prompt, -RawInput)
Provides the user with a method of overriding the call to ’SU_
messages’:query_input/3 in the input phase of query processing. This way
the implementation of the default input methods can be changed.

782 SICStus Prolog

query_map_hook(+MapMethod, +RawInput, -Result, -Answer) hook

user:query_map_hook(+MapMethod, +RawInput, -Result, -Answer)
Provides the user with a method of overriding the call to ’SU_
messages’:query_map/4 in the mapping phase of query processing. This way
the implementation of the default map methods can be changed.

raise_exception(+Exception)
Causes the abortion of a part of the execution tree scoped by the closest enclos-
ing catch/3 or on_exception/3 invocation with its first argument matching
Exception.

read(?Term) ISO

read(+Stream,?Term) ISO

Reads Term from the stream Stream or from the current input stream.

read_term(?Term,+Options) ISO

read_term(+Stream,?Term,+Options) ISO

Reads Term from the stream Stream or from the current input stream with
extra Options.

reconsult(:Files) obsolescent
Updates the program with interpreted clauses from file(s) Files.

recorda(+Key,?Term,-Ref) obsolescent
Makes Term the first record under key Key with unique identifier Ref.

recorded(?Key,?Term,?Ref) obsolescent
Term is currently recorded under key Key with unique identifier Ref.

recordz(+Key,?Term,-Ref) obsolescent
Makes Term the last record under key Key with unique identifier Ref.

remove_breakpoints(+BIDs) development

Removes the breakpoints specified by BIDs.

repeat ISO

Succeeds repeatedly.

require(:PredSpecs) development,obsolescent
Tries to locate and load library files that export the specified predicates. Creates
index files if necessary.

restore(+File)
Restores the state saved in file File.

retract(:Clause) ISO

Erases repeatedly the next interpreted clause of form Clause.

retractall(:Head)
Erases all clauses whose head matches Head.

runtime_entry(+Message) hook

user:runtime_entry(+Message)
The entry point of most runtime systems. Will be called with Message = start.

Chapter 50: Summary of Built-In Predicates 783

save_program(+File)
save_program(+File, :Goal)

Saves the current state of the Prolog database in file File. Upon restore, Goal
is executed.

save_modules(+Modules, +File)
Saves the current contents of the given Modules in the file File.

save_predicates(:Preds, +File)
Saves the current definitions of the given Preds in the file File.

save_files(+SourceFiles, +File)
Saves the modules, predicates and clauses and directives in the given SourceFiles
in the file File.

see(+File)
Makes file File the current input stream.

seeing(?File)
The current input stream is named File.

seek(+Stream,+Offset,+Method,-NewLocation)
Sets the stream Stream to the byte offset Offset relative to Method, and NewLo-
cation is the new byte offset from the beginning of the file after the operation.

seen Closes the current input stream.

set_input(+Stream) ISO

Sets the current input stream to Stream.

set_output(+Stream) ISO

Sets the current output stream to Stream.

set_prolog_flag(+FlagName,?NewValue) ISO

NewValue becomes the new value of FlagName.

set_stream_position(+Stream,+Position) ISO

Position is a new stream position of Stream, which is then set to the new
position.

setof(?Template,:Goal,?Set) ISO

Set is the set of instances of Template such that Goal is satisfied (not just
provable).

simple(?X) meta-logical

X is currently uninstantiated or atomic.

skip(+C) obsolescent
skip(+Stream,+C) obsolescent

Skips characters from Stream or from the current input stream until after char-
acter C.

skip_line
skip_line(+Stream)

Skips characters from Stream or from the current input stream until the next
〈LFD〉.

784 SICStus Prolog

sort(+List1,?List2)
The list List1 sorted into order yields List2.

source_file(?File)
source_file(:Pred,?File)
source_file(-Pred,?File)

The predicate Pred is defined in the file File.

spy :Spec development

Sets spypoints on the predicate(s) specified by Spec.

spy(:Spec, :Conditions) development

Sets spypoints with condition Conditions on the predicates specified by Spec.

statistics
Outputs various execution statistics.

statistics(?Key,?Value)
The execution statistics key Key has value Value.

stream_code(+Stream,?StreamCode)
stream_code(?Stream,+StreamCode)

StreamCode is an integer representing a pointer to the internal representation
of Stream.

stream_position(+Stream,?Position)
Position is the current stream position of Stream.

stream_position_data(?Field,?Position,?Data)
The Field field of the stream position term Position is Data.

stream_property(?Stream, ?Property)) ISO

Stream Stream has property Property.

sub_atom(+Atom,?Before,?Length,?After,?SubAtom) ISO

The characters of SubAtom form a sublist of the characters of Atom, such
that the number of characters preceding SubAtom is Before, the number of
characters after SubAtom is After, and the length of SubAtom is Length.

tab(+N) obsolescent
tab(+Stream,+N) obsolescent

Outputs N spaces to the stream Stream or to the current output stream.

tell(+File)
Makes file File the current output stream.

telling(?File)
The current output stream is named File.

term_expansion(+Term1,?TermOrTerms) hook

term_expansion(+Term1,+Layout1,?TermOrTerms,?Layout2) hook

user:term_expansion(+Term1,?TermOrTerms)
user:term_expansion(+Term1,+Layout1,?TermOrTerms,?Layout2)

Tell expand_term/2 what to do.

Chapter 50: Summary of Built-In Predicates 785

throw(+Exception) ISO

Causes the abortion of a part of the execution tree scoped by the closest enclos-
ing catch/3 or on_exception/3 invocation with its first argument matching
Exception.

told Closes the current output stream.

trace development

Switches on debugging in trace mode.

trimcore Reclaims and defragmentizes unused memory.

true ISO Succeeds.

ttyflush obsolescent
Flushes the standard output stream buffer.

ttyget(?C) obsolescent
The next printing character input from the standard input stream is C.

ttyget0(?C) obsolescent
The next character input from the standard input stream is C.

ttynl obsolescent
Outputs a new line on the standard output stream.

ttyput(+C) obsolescent
The next character output to the standard output stream is C.

ttyskip(+C) obsolescent
Skips characters from the standard input stream until after character C.

ttytab(+N) obsolescent
Outputs N spaces to the standard output stream.

undo(:Goal)
Goal is called on backtracking.

unify_with_occurs_check(?X, ?Y) ISO

True if X and Y unify to a finite (acyclic) term.

unknown(?OldState,?NewState) development

Changes action on undefined predicates from OldState to NewState.

unknown_predicate_handler(+Goal,+Module,-NewGoal) hook

user:unknown_predicate_handler(+Goal,+Module,-NewGoal)
Defines an alternative goal to be called in place of a call to an unknown predi-
cate.

unload_foreign_resource(:Resource)
Unloads foreign resource Resource from Prolog.

update_mutable(+Datum,+Mutable)
Updates the current value of the mutable term Mutable to become Datum.

use_module(:Files)
Loads the module-file(s) Files if necessary and imports all public predicates.

786 SICStus Prolog

use_module(:File,+Imports)
Loads the module-file File if necessary and imports the predicates in Imports.

use_module(+Module,?File,+Imports)
use_module(?Module,:File,+Imports)

Imports Imports from an existing Module, or else the same as use_module/2
unifying Module to the module defined in File.

user_help hook,obsolescent
user:user_help

Tells help/0 what to do.

var(?X) ISO,meta-logical

X is currently uninstantiated.

version development,obsolescent
Displays introductory and/or system identification messages.

version(+Message) development,obsolescent
Adds the atom Message to the list of introductory messages.

volatile Specs declaration

Not a built-in predicate; volatile declaration.

when(+Condition,:Goal)
Blocks Goal until the Condition is true.

write(+Term) ISO

write(+Stream,+Term) ISO

Writes Term on the stream Stream or on the current output stream.

write_canonical(+Term) ISO

write_canonical(+Stream,+Term) ISO

Writes Term on the stream Stream or on the current output stream so that it
may be read back.

write_term(+Term,+Options) ISO

write_term(+Stream,+Term,+Options) ISO

Writes Term on the stream Stream or on the current output stream with extra
Options.

writeq(+Term) ISO

writeq(+Stream,+Term) ISO

Writes Term on the stream Stream or on the current output stream, quoting
names where necessary.

zip development

Switches on debugging in zip mode.

Chapter 51: Full Prolog Syntax 787

51 Full Prolog Syntax

A Prolog program consists of a sequence of sentences or lists of sentences. Each sentence
is a Prolog term. How terms are interpreted as sentences is defined below (see Section 51.2
[Sentence], page 788). Note that a term representing a sentence may be written in any of
its equivalent syntactic forms. For example, the compound term Head :- Body could be
written in standard prefix notation instead of as the usual infix operator.

Terms are written as sequences of tokens. Tokens are sequences of characters, which are
treated as separate symbols. Tokens include the symbols for variables, constants and func-
tors, as well as punctuation characters such as brackets and commas.

We define below how lists of tokens are interpreted as terms (see Section 51.3 [Term Token],
page 789). Each list of tokens that is read in (for interpretation as a term or sentence) has
to be terminated by a full-stop token. Two tokens must be separated by a layout-text token
if they could otherwise be interpreted as a single token. Layout-text tokens are ignored
when interpreting the token list as a term, and may appear at any point in the token list.

We define below defines how tokens are represented as strings of characters (see Section 51.4
[Token String], page 790). But we start by describing the notation used in the formal
definition of Prolog syntax (see Section 51.1 [Syntax Notation], page 787).

51.1 Notation

1. Syntactic categories (or non-terminals) are written thus: item. Depending on the
section, a category may represent a class of either terms, token lists, or character
strings.

2. A syntactic rule takes the general form
C ::= F1 | F2 | F3 | ...

which states that an entity of category C may take any of the alternative forms F1,
F2, F3, etc.

3. Certain definitions and restrictions are given in ordinary English, enclosed in { } brack-
ets.

4. A category written as C. . . denotes a sequence of one or more Cs.
5. A category written as ?C denotes an optional C. Therefore ?C. . . denotes a sequence

of zero or more Cs.
6. A few syntactic categories have names with arguments, and rules in which they appear

may contain meta-variables looking thus: X. The meaning of such rules should be clear
from analogy with the definite clause grammars (see Section 8.1.2 [Term and Goal
Expansion], page 137).

7. In the section describing the syntax of terms and tokens (see Section 51.3 [Term Token],
page 789) particular tokens of the category name are written thus: name, while tokens
that are individual punctuation characters are written literally.

788 SICStus Prolog

51.2 Syntax of Sentences as Terms

sentence ::= module : sentence
| list { where list is a list of sentence }
| clause
| directive
| query
| grammar-rule

clause ::= rule | unit-clause
rule ::= head :- body
unit-clause ::= head { where head is not otherwise a

sentence }
directive ::= :- body
query ::= ?- body
head ::= module : head

| goal { where goal is not a variable }
body ::= module : body

| body -> body ; body
| body -> body
| \+ body
| body ; body
| body , body
| goal

goal ::= term { where term is not otherwise a
body }

grammar-rule ::= gr-head --> gr-body
gr-head ::= module : gr-head

| gr-head , terminals
| non-terminal { where non-terminal is not a vari-

able }
gr-body ::= module : gr-body

| gr-body -> gr-body ; gr-body
| gr-body -> gr-body
| \+ gr-body
| gr-body ; gr-body
| gr-body , gr-body
| non-terminal
| terminals
| gr-condition

non-terminal ::= term { where term is not otherwise a
gr-body }

terminals ::= list | string
gr-condition ::= ! | {body}
module ::= atom

Chapter 51: Full Prolog Syntax 789

51.3 Syntax of Terms as Tokens

term-read-in ::= subterm(1200) full-stop
subterm(N) ::= term(M) { where M is less than or equal to

N }
term(N) ::= op(N,fx) subterm(N-1) { except in the case of a number if

subterm starts with a ‘(’, op must
be followed by layout-text }

| op(N,fy) subterm(N) { if subterm starts with a ‘(’, op
must be followed by layout-text }

| subterm(N-1) op(N,xfx)
subterm(N-1)
| subterm(N-1) op(N,xfy) sub-
term(N)
| subterm(N) op(N,yfx)
subterm(N-1)
| subterm(N-1) op(N,xf)
| subterm(N) op(N,yf)

term(1000) ::= subterm(999) , subterm(1000)
term(0) ::= functor (arguments) { provided there is no layout-text

between the functor and the ‘(’ }
| (subterm(1200))
| { subterm(1200) }
| list
| string
| constant
| variable

op(N,T) ::= name { where name has been declared as
an operator of type T and prece-
dence N }

arguments ::= subterm(999)
| subterm(999) , arguments

list ::= []
| [listexpr]

listexpr ::= subterm(999)
| subterm(999) , listexpr
| subterm(999) | subterm(999)

constant ::= atom | number
number ::= unsigned-number

| sign unsigned-number
| sign inf
| sign nan

unsigned-number ::= natural-number | unsigned-
float

atom ::= name
functor ::= name

790 SICStus Prolog

51.4 Syntax of Tokens as Character Strings

SICStus Prolog supports wide characters (up to 31 bits wide). It is assumed that the
character code set is an extension of (7 bit) ASCII, i.e. that it includes the codes 0..127 and
these codes are interpreted as ASCII characters.

Each character in the code set has to be classified as belonging to one of the character
categories, such as small-letter, digit, etc. This classification is called the character-type
mapping, and it is used for defining the syntax of tokens.

The user can select one of the three predefined wide character modes through the environ-
ment variable SP_CTYPE. These modes are iso_8859_1, utf8, and euc. The user can also
define other wide character modes by plugging in appropriate hook functions; see Chapter 12
[Handling Wide Characters], page 301. In this case the user has to supply a character-type
mapping for the codes greater than 127.

We first describe the character-type mapping for the fixed part of the code set, the 7 bit
ASCII.

layout-char
These are character codes 0..32 and 127. This includes characters such as 〈TAB〉,
〈LFD〉, and 〈SPC〉.

small-letter
These are character codes 97..122, i.e. the letters ‘a’ through ‘z’.

capital-letter
These are character codes 65..90, i.e. the letters ‘A’ through ‘Z’.

digit These are character codes 48..57, i.e. the digits ‘0’ through ‘9’.

symbol-char
These are character codes 35, 36, 38, 42, 43, 45..47, 58, 60..64, 92, 94, and 126,
i.e. the characters:

+ - * / \ ^ < > = ~ : . ? @ # $ &

In sicstus execution mode, character code 96 (‘‘’) is also a symbol-char.

solo-char These are character codes 33 and 59 i.e. the characters ‘!’ and ‘;’.

punctuation-char
These are character codes 37, 40, 41, 44, 91, 93, and 123..125, i.e. the characters:

% () , [] { | }

quote-char These are character codes 34 and 39 i.e. the characters ‘"’ and ‘’’. In iso
execution mode character code 96 (‘‘’) is also a quote-char.

underline This is character code 95 i.e. the character ‘_’.

We now provide the character-type mapping for the characters above the 7 bit ASCII range,
for each of the built-in wide character modes.

Chapter 51: Full Prolog Syntax 791

The iso_8859_1 mode has the character set 0..255 and the following character-type map-
ping for the codes 128..255:

layout-char
the codes 128..160.

small-letter
the codes 223..246, and 248..255.

capital-letter
the codes 192..214, and 216..222.

symbol-char
the codes 161..191, 215, and 247.

The utf8 mode has the character set 0..(2^31-1). The character-type mapping for the
codes 128..255 is the same as for the iso_8859_1 mode. All character codes above 255 are
classified as small-letters.

The euc mode character set is described in Section 12.9 [Representation of EUC Wide
Characters], page 315. All character codes above 127 are classified as small-letters.

token ::= name
| natural-number
| unsigned-float
| variable
| string
| punctuation-char
| layout-text
| full-stop

name ::= quoted-name
| word
| symbol
| solo-char
| [?layout-text]
| { ?layout-text }

word ::= small-letter ?alpha. . .
symbol ::= symbol-char. . . { except in the case of a full-stop

or where the first 2 chars are ‘/*’
}

natural-number ::= digit. . .
| base-prefix alpha. . . { where each alpha must be

digits of the base indicated by
base-prefix, treating a,b,. . . and
A,B,. . . as 10,11,. . . }

| 0 ’ char-item { yielding the character code for
char }

unsigned-float ::= simple-float
| simple-float exp exponent

simple-float ::= digit. . . . digit. . .

792 SICStus Prolog

exp ::= e | E
exponent ::= digit. . . | sign digit. . .
sign ::= - | +
variable ::= underline ?alpha. . .

| capital-letter ?alpha. . .
string ::= " ?string-item. . . "
string-item ::= quoted-char { other than ‘"’ or ‘\’ }

| ""
| \ escape-sequence {unless character escapes have

been switched off }
quoted-atom ::= ’ ?quoted-item. . . ’
quoted-item ::= quoted-char { other than ‘’’ or ‘\’ }

| ’’
| \ escape-sequence {unless character escapes have

been switched off }
backquoted-atom ::= ‘ ?backquoted-item. . . ‘
backquoted-item ::= quoted-char { other than ‘‘’ or ‘\’ }

| ‘‘
| \ escape-sequence {unless character escapes have

been switched off }
layout-text ::= layout-text-item. . .
layout-text-item ::= layout-char | comment
comment ::= /* ?char. . . */ { where ?char. . . must not con-

tain ‘*/’ }
| % ?char. . . 〈LFD〉 { where ?char. . . must not con-

tain 〈LFD〉 }
full-stop ::= . { the following token, if any, must

be layout-text}
char ::= layout-char

| printing-char
printing-char ::= alpha

| symbol-char
| solo-char
| punctuation-char
| quote-char

alpha ::= capital-letter | small-letter |
digit | underline

escape-sequence ::= b { backspace, character code 8 }
| t { horizontal tab, character code 9

}
| n { newline, character code 10 }
| v { vertical tab, character code 11 }
| f { form feed, character code 12 }
| r { carriage return, character code

13 }
| e { escape, character code 27 }
| d { delete, character code 127 }
| a { alarm, character code 7 }
| other-escape-sequence

Chapter 51: Full Prolog Syntax 793

There are differences between the syntax used in iso mode and in sicstus mode. The
differences are described by providing different syntax rules for certain syntactic categories.

51.4.1 iso Execution Mode Rules

quoted-name ::= quoted-atom
| backquoted-atom

base-prefix ::= 0b { indicates base 2 }
| 0o { indicates base 8 }
| 0x { indicates base 16 }

char-item ::= quoted-item
other-escape-
sequence

::= x alpha. . . \ {treating a,b,. . . and A,B,. . . as
10,11,. . . } in the range [0..15],
hex character code }

| o digit. . . \ { in the range [0..7], octal charac-
ter code }

| 〈LFD〉 { ignored }
| \ { stands for itself }
| ’ { stands for itself }
| " { stands for itself }
| ‘ { stands for itself }

quoted-char ::= 〈SPC〉
| printing-char

51.4.2 sicstus Execution Mode Rules

quoted-name ::= quoted-atom
base-prefix ::= base ’ {indicates base base }
base ::= digit. . . { in the range [2..36] }
char-item ::= char { other than ‘\’ }

| \ escape-sequence { unless character escapes have
been switched off }

other-escape-
sequence

::= x alpha alpha {treating a,b,. . . and A,B,. . . as
10,11,. . . in the range [0..15], hex
character code }

| digit ?digit ?digit { in the range [0..7], octal charac-
ter code }

| ^ ? { delete, character code 127 }
| ^ alpha { where alpha must be a letter,

stands for the control character al-
pha mod 32 }

| c ?layout-char. . . { ignored }
| layout-char { ignored }
| char { other than the above, stands for

itself }
quoted-char ::= layout-char

794 SICStus Prolog

| printing-char

51.5 Escape Sequences

A backslash occurring inside integers in ‘0’’ notation or inside quoted atoms or strings has
special meaning, and indicates the start of an escape sequence. Character escaping can be
turned off for compatibility with old code. The following escape sequences exist:

\b backspace (character code 8)

\t horizontal tab (character code 9)

\n newline (character code 10)

\v vertical tab (character code 11)

\f form feed (character code 12)

\r carriage return (character code 13)

\e escape (character code 27)

\d
\^? SICStus only

delete (character code 127)

\a alarm (character code 7)

\xhex-digit...\ ISO only

\xhex-digithex-digit SICStus only

the character code represented by the hexadecimal digits

\octal-digit...\ ISO only

\octal-digit?octal-digit?octal-digit SICStus only

the character code represented by the octal digits.

\^char SICStus only

the character code char mod 32, where char is a letter.

\〈LFD〉 A single newline character is ignored. The purpose of this is to allow a string
or quoted-name to be spread over multiple lines.

\layout-char SICstus only

A single layout-char, for example a newline, is ignored.

\c SICStus only

All characters up to, but not including, the next non-layout character are ig-
nored.

\\, \’, \", \‘
Stand for the character following the ‘\’.

\other SICStus only

A character not mentioned in this table stands for itself.

Chapter 51: Full Prolog Syntax 795

51.6 Notes

1. The expression of precedence 1000 (i.e. belonging to syntactic category term(1000)),
which is written

X,Y

denotes the term ’,’(X,Y) in standard syntax.
2. The parenthesized expression (belonging to syntactic category term(0))

(X)

denotes simply the term X.
3. The curly-bracketed expression (belonging to syntactic category term(0))

{X}

denotes the term {}(X) in standard syntax.
4. Note that, for example, -3 denotes a number whereas -(3) denotes a compound term

that has - /1 as its principal functor.
5. The character ‘"’ within a string must be written duplicated. Similarly for the character

‘’’ within a quoted atom and for the character ‘‘’ in backquoted atom (iso execution
mode only).

6. Unless character escapes have been switched off, backslashes in strings, quoted atoms,
and integers written in ‘0’’ notation denote escape sequences.

7. A name token declared to be a prefix operator will be treated as an atom only if no
term-read-in can be read by treating it as a prefix operator.

8. A name token declared to be both an infix and a postfix operator will be treated as a
postfix operator only if no term-read-in can be read by treating it as an infix operator.

9. The layout following the full stop is considered part of it, and so it is consumed by
e.g. read/[1,2]) in sicstus execution mode, while in iso execution mode the layout
remains in the input stream.

796 SICStus Prolog

Chapter 52: Standard Operators 797

52 Standard Operators

The following are the standard operators in iso execution mode.

:- op(1200, xfx, [:-, -->]).
:- op(1200, fx, [:-, ?-]).
:- op(1150, fx, [mode, public, dynamic, volatile, discontiguous,

multifile, block, meta_predicate,
initialization]).

:- op(1100, xfy, [;]).
:- op(1050, xfy, [->]).
:- op(1000, xfy, [’,’]).
:- op(900, fy, [\+, spy, nospy]).
:- op(700, xfx, [=, \=, is, =.., ==, \==, @<, @>, @=<, @>=,

=:=, =\=, <, >, =<, >=]).
:- op(550, xfy, [:]).
:- op(500, yfx, [+, -, #, /\, \/]).
:- op(400, yfx, [*, /, //, mod, rem, <<, >>]).
:- op(200, xfx, [**]).
:- op(200, xfy, [^]).
:- op(200, fy, [+, -, \]).

The following operators differ in sicstus execution mode.

:- op(500, fx, [+, -]).
:- op(300, xfx, [mod]).

798 SICStus Prolog

References 799

References

[Aggoun & Beldiceanu 90]
A. Aggoun and N. Beldiceanu, Time Stamps Techniques for the Trailed Data
in Constraint Logic Programming Systems, Actes du sminaires Programmation
en Logique, Trgastel, France, May 1990.

[Aggoun & Beldiceanu 93]
A. Aggoun and N. Beldiceanu, Extending CHIP in order to Solve Complex
Scheduling and Placement Problems, Mathl. Comput. Modelling, vol. 17, no.
7, pp. 57–73, Pergamon Press Ltd., 1993.

[Beldiceanu & Contejean 94]
N. Beldiceanu and E. Contejean, Introducing Global Constraints in CHIP,
Mathl. Comput. Modelling, vol. 20, no. 12, pp. 97–123, Pergamon Press Ltd.,
1994.

[Bryant 86]
R.E. Bryant, Graph-Based Algorithms for Boolean Function Manipulation,
IEEE Trans. on Computers, August, 1986.

[Carlsson 90]
M. Carlsson, Design and Implementation of an OR-Parallel Prolog Engine, SICS
Dissertation Series 02, 1990.

[Carlsson & Beldiceanu 02]
M. Carlsson, N. Beldiceanu, Arc-Consistency for a Chain of Lexicographic Or-
dering Constraints, SICS Technical Report T2002-18, 2002.

[Carreiro & Gelernter 89a]
N. Carreiro and D. Gelernter, Linda in Context, Comm. of the ACM, 32(4)
1989.

[Carreiro & Gelernter 89b]
N. Carreiro and D. Gelernter, How to Write Parallel Programs: A Guide to the
Perplexed, ACM Computing Surveys, September 1989.

[Clocksin & Mellish 81]
W.F. Clocksin and C.S. Mellish, Programming in Prolog, Springer-Verlag, 1981.

[Colmerauer 75]
A. Colmerauer, Les Grammaires de Metamorphos, Technical Report, Groupe
d’Intelligence Artificielle, Marseille-Luminy, November, 1975.

[Colmerauer 90]
Colmerauer A.: An Introduction to Prolog III, Communications of the ACM,
33(7), 69-90, 1990.

[Diaz & Codognet 93]
D. Diaz and P. Codognet, A Minimal Extension of the WAM for clp(FD),
Proceedings of the International Conference on Logic Programming, MIT Press,
1993.

800 SICStus Prolog

[Elshiewy 90]
N.A. Elshiewy, Robust Coordinated Reactive Computing in Sandra, SICS Dis-
sertation Series 03, 1990.

[Fruehwirth 98]
Th. Fruehwirth, Theory and Practice of Constraint Handling Rules, Special
Issue on Constraint Logic Programming (P. Stuckey and K. Marriot, Eds.),
Journal of Logic Programming, Vol 37(1-3), pp 95-138, October 1998.

[Gorlick & Kesselman 87]
M.M. Gorlick and C.F. Kesselman, Timing Prolog Programs Without Clocks,
Proc. Symposium on Logic Programming, pp. 426–432, IEEE Computer Soci-
ety, 1987.

[Heintze et al. 87]
N. Heintze, J. Jaffar, S. Michaylov, P. Stuckey, R. Yap, The CLP(R) Program-
mers Manual, Monash University, Clayton, Victoria, Australia, Department of
Computer Science, 1987.

[Holzbaur 90]
C. Holzbaur, Specification of Constraint Based Inference Mechanism through
Extended Unification, dissertation, Dept. of Medical Cybernetics & AI, Uni-
versity of Vienna, 1990.

[Holzbaur 92a]
C. Holzbaur, A High-Level Approach to the Realization of CLP Languages,
Proceedings of the JICSLP92 Post-Conference Workshop on Constraint Logic
Programming Systems, Washington D.C., 1992.

[Holzbaur 92]
C. Holzbaur, Metastructures vs. Attributed Variables in the Context of Exten-
sible Unification, in M. Bruynooghe & M. Wirsing (eds.), Programming Lan-
guage Implementation and Logic Programming, Springer-Verlag, LNCS 631,
pp. 260-268, 1992.

[Holzbaur 94]
C. Holzbaur, A Specialized, Incremental Solved Form Algorithm for Systems
of Linear Inequalities, Austrian Research Institute for Artificial Intelligence,
Vienna, TR-94-07, 1994.

[Jaffar & Michaylov 87]
J. Jaffar, S. Michaylov, Methodology and Implementation of a CLP System,
in J.L. Lassez (ed.), Logic Programming—Proceedings of the 4th International
Conference—Volume 1, MIT Press, Cambridge, MA, 1987.

[Kowalski 74]
R.A. Kowalski, Logic for Problem Solving, DCL Memo 75, Dept of Artificial
Intelligence, University of Edinburgh, March, 1974.

[Kowalski 79]
R.A. Kowalski, Artificial Intelligence: Logic for Problem Solving. North Hol-
land, 1979.

References 801

[McCabe 92]
F. McCabe, Logic and Objects, Prentice Hall, 1992.

[Mehlhorn 00]
K. Mehlhorn and Sven Thiel, Faster algorithms for bound-consistency of the
sortedness and the alldifferent constraint, In Sixth Int. Conf. on Principles and
Practice of Constraint Programming (CP2000), LNCS 1894, Springer-Verlag,
2000.

[O’Keefe 90]
R.A. O’Keefe, The Craft of Prolog, MIT Press, 1990.

[Ousterhout 94]
John K. Ousterhout, Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[Pereira & Warren 80]
F.C.N. Pereira and D.H.D. Warren, Definite clause grammars for language
analysis—a survey of the formalism and a comparison with augmented transi-
tion networks in Artificial Intelligence 13:231-278, 1980.

[Regin 94] J.-C. Regin, A filtering algorithm for constraints of difference in CSPs, Proc.
of the Twelfth National Conference on Artificial Intelligence (AAAI-94), pp.
362–367, 1994

[Regin 96] J.-C. Regin, Generalized Arc Consistency for Global Cardinality Constraint,
Proc. of the Fourteenth National Conference on Artificial Intelligence (AAAI-
96), 1996.

[Regin 99] J.-C. Regin, Arc Consistency for Global Cardinality with Costs, Proc. Principles
and Practive of Constraint Programming (CP’99), LNCS 1713, pp. 390-404,
1999.

[Sellmann 02]
M. Sellmann, An Arc Consistency Algorithm for the Minimum Weight All Dif-
ferent Constraint, Proc. Principles and Practive of Constraint Programming
(CP’2002), 2002.

[Robinson 65]
J.A. Robinson, A Machine-Oriented Logic Based on the Resolution Principle,
Journal of the ACM 12:23-44, January 1965.

[Roussel 75]
P. Roussel, Prolog : Manuel de Reference et d’Utilisation, Groupe d’Intelligence
Artificielle, Marseille-Luminy, 1975.

[Saraswat 90]
V. Saraswat, Concurrent Constraint Programming Languages. PhD thesis,
Carnegie-Mellon University, 1990.

[Sterling & Shapiro 86]
L. Sterling and E. Shapiro, The Art of Prolog. The MIT Press, Cambridge MA,
1986.

802 SICStus Prolog

[Van Hentenryck 89]
P. Van Hentenryck, Constraint Satisfaction in Logic Programming, Logic Pro-
gramming Series, The MIT Press, 1989.

[Van Hentenryck et al. 92]
P. Van Hentenryck, V. Saraswat and Y. Deville, Constraint processing in
cc(FD), unpublished manuscript, 1992.

[Van Hentenryck & Deville 91]
P. Van Hentenryck and Y. Deville, The Cardinality Operator: a new logical
connective and its application to constraint logic programming, In: Eighth
International Conference on Logic Programming, 1991.

[Van Hentenryck et al. 95]
P. Van Hentenryck, V. Saraswat and Y. Deville, Design, implementation and
evaluation of the constraint language cc(FD). In A. Podelski, ed., Constraints:
Basics and Trends, LNCS 910. Springer-Verlag, 1995.

[Warren 77]
D.H.D. Warren, Applied Logic—Its Use and Implementation as a Programming
Tool, PhD thesis, Edinburgh University, 1977. Available as Technical Note 290,
SRI International.

[Warren 83]
D.H.D. Warren, An Abstract Prolog Instruction Set, Technical Note 309, SRI
International, 1983.

[Wirth 76] N. Wirth, Algorithms + Data Structures = Programs, Prentice-Hall, 1976.

Predicate Index 803

Predicate Index

!
!/0, cut . 52, 170

#
#/ /2 (clpfd) . 452
#< /2 (clpfd) . 450
#<= /2 (clpfd) . 452
#<=> /2 (clpfd) . 449, 452
#= /2 (clpfd) . 450
#=< /2 (clpfd) . 450
#=> /2 (clpfd) . 452
#> /2 (clpfd) . 450
#>= /2 (clpfd) . 450
/1 (clpfd). 451
/2 (clpfd). 452
/2 (clpfd) . 452
#/̄2 (clpfd) . 450

’
’SU_messages’:generate_message/3 199
’SU_messages’:query_abbreviation/3 207
’SU_messages’:query_class/5 207
’SU_messages’:query_input/3 208
’SU_messages’:query_map/4 208

,
,/2, conjunction . 170

-
--> /2, grammar rule . 137
-> /2 ;/2, if then else . 171
-> /2, if then . 171

.

. /2, consult . 136

:
:- /1, directive . 28
:- /2, clause . 47
:/2 . 172
::/1 (objects) . 552
::/2 (objects) . 552

;
;/2, disjunction . 170

<
< /2, arithmetic less than 168

<:/1 (objects) . 552

<:/2 (objects) . 552

=
= /2, unification. 213

=.. /2, univ . 185

=:= /2, arithmetic equal 168

=< /2, arithmetic less or equal. 168

== /2, equality of terms 169

=/̄2, arithmetic not equal 168

>
> /2, arithmetic greater than 168

>= /2, arithmetic greater or equal 168

?
?- /1, query . 26

?= /2, terms identical or cannot unify 169

@
@< /2, term less than . 169

@=< /2, term less or equal 169

@> /2, term greater than 169

@>= /2, term greater or equal 169

[
[]/0, consult . 136

^
^ /2, existential quantifier 194

{
{}/1 (clpqr) . 418

\
\+ /1, not provable . 170

\= /2, not unifiable . 213

\== /2, inequality of terms 169

804 SICStus Prolog

A
abolish/[1,2] . 190

abort/0 . 214

absolute_file_name/[2,3] 154

acyclic_term/1 (terms) . 369

add_breakpoint/2 . 116, 210

add_edges/3 (ugraphs) . 384

add_edges/3 (wgraphs) . 388

add_to_heap/4 (heaps) . 361

add_vertices/3 (ugraphs) 383

add_vertices/3 (wgraphs) 388

all_different/[1,2] (clpfd) 457

all_distinct/[1,2] (clpfd) 457

append/3 (lists) . 363

aref/3 (arrays) . 351

arefa/3 (arrays) . 351

arefl/3 (arrays) . 351

arg/3 . 185

array_to_list/2 (arrays) 351

aset/4 (arrays) . 351

ask_query/4 . 206

assert/[1,2] . 190

asserta/[1,2] . 190

assertz/[1,2] . 190

assignment/[2,3] (clpfd) 458

assoc_to_list/2 (assoc) 353

at_end_of_line/[0,1]. 163

at_end_of_stream/[0,1] 162

atom/1 . 184

atom_chars/2 . 186, 187

atom_codes/2 . 186

atom_concat/3 . 187

atom_length/2 . 187

atom_to_chars/[2,3] (charsio) 691

atomic/1 . 184

attribute/1 (declaration) 355

attribute_goal/2 (Module) 356

B
bagof/3 . 194

bagof_rd_noblock/3 (linda_client) 398

bb_delete/2 . 192

bb_get/2 . 192

bb_inf/[3,5] (clpqr) . 421

bb_put/2 . 192

bb_update/3 . 192

block/1 (declaration) . 70

break/0 . 31, 214

breakpoint_expansion/2 (user) 110, 126

byte_count/2 . 161

C
C/3 . 142
call/1 . 172
call_cleanup/2 . 172
call_residue/2 . 209
callable/1 . 184
case/[3,4] (clpfd) . 453
catch/3 . 173
char_code/2 . 187
char_conversion/2 . 144
character_count/2 . 161
chr_debug/0 (chr) . 508
chr_debugging/0 (chr) . 508
chr_leash/1 (chr) . 508
chr_nodebug/0 (chr) . 508
chr_nospy/1 (chr) . 510
chr_notrace/0 (chr) . 508
chr_spy/1 (chr) . 509
chr_trace/0 (chr) . 507
circuit/[1,2] (clpfd) . 459
clause/[2,3] . 190
clique/3 (ugraphs) . 385
close/[1,2] . 160
close_client/0 (linda_client) 397
clpfd:dispatch_global/4 472
clpfd:full_answer/0 . 470
coloring/3 (ugraphs) . 385
colouring/3 (ugraphs) . 385
comclient_clsid_from_progid/2 (comclient)

. 744
comclient_create_instance/2 (comclient)

. 742
comclient_equal/2 (comclient) 743
comclient_exception_code/2 (comclient) . . 743
comclient_exception_culprit/2 (comclient)

. 743
comclient_exception_description/2

(comclient) . 743
comclient_garbage_collect/0 (comclient)

. 743
comclient_get_active_object/2 (comclient)

. 742
comclient_iid_from_name/2 (comclient) 744
comclient_invoke_method_fun/3 (comclient)

. 743
comclient_invoke_method_proc/2 (comclient)

. 743
comclient_invoke_put/3 (comclient) 743
comclient_is_exception/1 (comclient) 743
comclient_is_object/1 (comclient) 742
comclient_name_from_iid/2 (comclient) 744
comclient_progid_from_clsid/2 (comclient)

. 744
comclient_release/1 (comclient) 743
comclient_valid_object/1 (comclient) 742
compare/3 . 169
compile/1 . 66
compile/1 . 136

Predicate Index 805

complement/2 (ugraphs) . 384
compose/3 (ugraphs) . 384
compound/1 . 184
consult/1 . 66
consult/1 . 136
copy_term/2 . 188
count/4 (clpfd) . 452
create_mutable/2 . 189
cumulative/[4,5] (clpfd) 461
cumulatives/[2,3] (clpfd) 461
current_atom/1 . 176
current_breakpoint/5 105, 117, 211
current_char_conversion/2 144
current_constraint/2 (chr) 503
current_handler/2 (chr) 503
current_host/1 (sockets) 393
current_input/1 . 160
current_key/2 . 191
current_module/[1,2]. 176
current_op/3 . 214
current_output/1 . 160
current_predicate/[1,2] 176
current_prolog_flag/2 . 181
current_stream/3 . 160
cyclic_term/1 (terms) . 369

D
datime/[1,2] (system) . 377
db_close/1 (bdb) . 405
db_close_env/1 (bdb) . 404
db_compress/[2,3] (bdb) 406
db_current/5 (bdb) . 405
db_current_env/2 (bdb) . 404
db_current_iterator/3 (bdb) 406
db_enumerate/3 (bdb) . 406
db_erase/[2,3] (bdb) . 405
db_export/[2,3] (bdb) . 407
db_fetch/3 (bdb) . 405
db_findall/3 (bdb) . 405
db_import/[2,3] (bdb) . 407
db_iterator_done/1 (bdb) 406
db_iterator_next/3 (bdb) 406
db_make_iterator/[2,3] (bdb) 406
db_open/[4,5] (bdb) . 404
db_open_env/[2,3] (bdb) 404
db_store/3 (bdb) . 405
db_sync/1 (bdb) . 406
debug/0 . 77, 210
debugger_command_hook/2 (user) . . 111, 118, 211
debugging/0 . 79, 210
del_assoc/4 (assoc) . 354
del_edges/3 (ugraphs) . 384
del_edges/3 (wgraphs) . 388
del_max_assoc/4 (assoc) 354
del_min_assoc/4 (assoc) 354
del_vertices/3 (ugraphs) 383
del_vertices/3 (wgraphs) 388

delete/3 (lists) . 363
delete_file/[1,2] (system) 377
delete_from_heap/4 (heaps) 362
dif/2 . 209
directory_files/2 (system) 377
disable_breakpoints/1 117, 211
discontiguous/1 (declaration) 69
disjoint1/[1,2] (clpfd) 462
disjoint2/[1,2] (clpfd) 463
dispatch_global/4 (clpfd) 472
display/1 . 145
domain/3 (clpfd) . 451
dump/3 (clpqr) . 421
dynamic/1 (declaration) . 69

E
edges/2 (ugraphs) . 383
edges/2 (wgraphs) . 387
element/3 (clpfd) . 453
empty_assoc/1 (assoc) . 353
empty_fdset/1 (clpfd) . 475
empty_heap/1 (heaps) . 361
empty_interval/2 (clpfd) 476
empty_queue/1 (queues) . 373
enable_breakpoints/1 117, 211
ensure_loaded/1. 67, 136
entailed/1 (clpqr) . 419
environ/2 (system) . 377
erase/1 . 191
error_exception/1 (user) 129, 211
exec/3 (system) . 378
execution_state/[1,2] 104, 106, 117, 211
expand/0 (clpqr) . 439
expand_term/2 . 140

F
fail/0 . 171
false/0 . 171
fcompile/1 . 67, 136
fd_closure/2 (clpfd) . 475
fd_copy_term/3 (clpfd) . 475
fd_degree/2 (clpfd) . 474
fd_dom/2 (clpfd) . 474
fd_flag/3 (clpfd) . 473
fd_global/[3,4] (clpfd) 473
fd_max/2 (clpfd) . 474
fd_min/2 (clpfd) . 474
fd_neighbors/2 (clpfd) . 475
fd_set/2 (clpfd) . 474
fd_size/2 (clpfd) . 474
fd_statistics/[0,2] (clpfd) 469, 470
fd_var/1 (clpfd) . 474
fdbg:fdvar_portray/3. 530
fdbg:legend_portray/3 (fdbg) 530
fdbg_annotate/[3,4] (fdbg) 532
fdbg_assign_name/2 (fdbg) 524

806 SICStus Prolog

fdbg_current_name/2 (fdbg) 524
fdbg_get_name/2 (fdbg) . 524
fdbg_guard/3 (fdbg) . 539
fdbg_label_show/3 (fdbg) 525
fdbg_labeling_step/2 (fdbg) 527
fdbg_legend/[1,2] (fdbg) 532
fdbg_off/0 (fdbg) . 523
fdbg_on/[0,1] (fdbg) . 523
fdbg_show/2 (fdbg) . 525
fdbg_start_labeling/1 (fdbg) 527
fdbg_transform_actions/3 (fdbg) 533
fdset_add_element/3 (clpfd) 476
fdset_complement/2 (clpfd) 477
fdset_del_element/3 (clpfd) 476
fdset_disjoint/2 (clpfd) 476
fdset_eq/2 (clpfd) . 477
fdset_intersect/2 (clpfd) 476
fdset_intersection/[2,3] (clpfd) 476
fdset_interval/3 (clpfd) 476
fdset_max/2 (clpfd) . 476
fdset_member/2 (clpfd) . 476
fdset_min/2 (clpfd) . 476
fdset_parts/4 (clpfd) . 475
fdset_singleton/2 (clpfd) 476
fdset_size/2 (clpfd) . 476
fdset_subset/2 (clpfd) . 477
fdset_subtract/3 (clpfd) 477
fdset_to_list/2 (clpfd) 476
fdset_to_range/2 (clpfd) 476
fdset_union/[2,3] (clpfd) 477
fdvar_portray/3 (fdbg) . 530
file_exists/[1,2] (system) 378
file_property/2 (system) 378
file_search_path/2 (user) 133, 159
fileerrors/0 . 163
find_constraint/2 (chr) 503
find_constraint/3 (chr) 504
findall/[3,4] . 195
findall_constraints/[2,3] (chr) 504
first_bound/2 (clpfd) 466, 467
float/1 . 184
flush_output/[0,1] . 161
foreign/[2,3] . 220
foreign_file/2 . 224
foreign_resource/2 . 220
format/[2,3] . 147
format_to_chars/[3,4] (charsio) 691
freeze/2 . 209
frozen/2 . 209
full_answer/0 (clpfd) . 470
functor/3 . 184

G
garbage_collect/0 . 215
garbage_collect_atoms/0 215
gc/0 . 215
gen_assoc/3 (assoc) . 353

gen_label/3 (trees) . 381
generate_message/3 (SU_messages) 199
generate_message_hook/3 (user) 199
get/[1,2] . 152
get_assoc/[3,5] (assoc) 353
get_atts/2 (Module) . 355
get_byte/[1,2] . 152
get_char/[1,2] . 152
get_code/[1,2] . 152
get_from_heap/4 (heaps) 361
get_label/3 (trees) . 381
get_mutable/2 . 189
get_next_assoc/4 (assoc) 353
get_prev_assoc/4 (assoc) 354
get0/[1,2] . 152
getrand/1 (random) . 375
global_cardinality/[2,3] (clpfd) 452
goal_expansion/3 (user) 141
goal_source_info/3 . 199
ground/1 . 184

H
halt/[0,1] . 214
heap_size/2 (heaps) . 361
heap_to_list/2 (heaps) . 361
help/0 . 216
host_id/1 (system) . 378
host_name/1 (system) . 379
hostname_address/2 (sockets) 393

I
if/3 . 171
in/1 (linda_client) . 398
in/2 (clpfd) . 451
in/2 (linda_client) . 398
in_noblock/1 (linda_client) 398
in_set/2 (clpfd) . 451
include/1 (declaration) . 71
incore/1 . 172
independent_set/3 (ugraphs) 385
indomain/1 (clpfd) . 466
inf/[2,4] (clpqr) . 420
initialization/1 . 72
insert_constraint/[2,3] (chr) 503
instance/2 . 191
integer/1 . 184
is/2 . 168
is_array/1 (arrays) . 351
is_assoc/1 (assoc) . 353
is_fdset/1 (clpfd) . 475
is_heap/1 (heaps) . 361
is_list/1 (lists) . 363
is_mutable/1 . 184, 189
is_ordset/1 (ordsets) . 371
is_queue/1 (queues) . 373

Predicate Index 807

J
jasper_call/4 (jasper) . 712

jasper_call_instance/6 (jasper) 722

jasper_call_static/6 (jasper) 722

jasper_create_global_ref/3 (jasper) 713

jasper_create_local_ref/3 (jasper) 713

jasper_deinitialize/1 (jasper) 712

jasper_delete_global_ref/2 (jasper) 713

jasper_delete_local_ref/2 (jasper) 713

jasper_initialize/[1,2] (jasper) 711

jasper_is_instance_of/3 (jasper) 714

jasper_is_jvm/1 (jasper) 713

jasper_is_object/[1,2] (jasper) 713

jasper_is_same_object/3 (jasper) 714

jasper_new_object/5 (jasper) 712, 722

jasper_null/2 (jasper) . 714

jasper_object_class_name/3 (jasper) 714

K
keysort/2 . 170

kill/2 (system) . 379

knapsack/3 (clpfd) . 451

L
labeling/1 (clpb) . 412

labeling/2 (clpfd) . 466

last/2 (lists) . 363

later_bound/2 (clpfd) 466, 467

leash/1 . 78, 210

legend_portray/3 (fdbg) 530

length/2 . 213

lex_chain/[1,2] (clpfd) 465

library_directory/1 (user) 159

linda/[0,1] (linda) . 396

linda_client/1 (linda_client) 397

linda_timeout/2 (linda_client) 398

line_count/2 . 161

line_position/2 . 161

list_queue/2 (queues) . 374

list_to_assoc/2 (assoc) 354

list_to_fdset/2 (clpfd) 476

list_to_heap/2 (heaps) . 361

list_to_ord_set/2 (ordsets) 371

list_to_tree/2 (trees) . 381

listing/[0,1] . 175

load/1 . 136

load_files/[1,2] . 67, 135

load_foreign_files/2. 224

load_foreign_resource/1 223

M
make_directory/1 (system) 377
make_index:make_library_index/1 349
make_library_index/1 (make_index) 349
map_assoc/[2,3] (assoc) 354
map_tree/3 (trees) . 381
max_assoc/3 (assoc) . 353
max_list/2 (lists) . 363
max_path/5 (ugraphs) . 384
max_path/5 (wgraphs) . 388
maximize/1 (clpqr) . 420
maximize/2 (clpfd) . 466
member/2 (lists) . 363
memberchk/2 (lists) . 363
message_hook/3 (user) . 199
meta_predicate/1 (declaration) 62, 70
method_expansion/3 (user) 548
min_assoc/3 (assoc) . 353
min_list/2 (lists) . 364
min_of_heap/[3,5] (heaps) 361, 362
min_path/5 (ugraphs) . 384
min_path/5 (wgraphs) . 388
min_paths/3 (ugraphs) . 384
min_paths/3 (wgraphs) . 388
min_tree/3 (ugraphs) . 385
min_tree/3 (wgraphs) . 389
minimize/1 (clpqr) . 420
minimize/2 (clpfd) . 466
mktemp/2 (system) . 379
mode/1 (declaration) . 71
module/1 . 176
module/2 (declaration) 60, 71
module/3 (declaration) 60, 71
multifile/1 (declaration) 68

N
name/2 . 185
neighbors/3 (ugraphs) . 384
neighbors/3 (wgraphs) . 388
neighbours/3 (ugraphs) . 384
neighbours/3 (wgraphs) . 388
new_array/1 (arrays) . 351
nextto/3 (lists) . 364
nl/[0,1] . 152
no_doubles/1 (lists) . 364
nodebug/0 . 79, 210
noexpand/0 (clpqr) . 439
nofileerrors/0 . 163
nogc/0 . 215
non_member/2 (lists) . 364
nonvar/1 . 184
nospy/1 . 80, 210
nospyall/0 . 80, 210
notify_constrained/1 (chr) 504
notrace/0 . 79, 210
now/1 (system) . 377
nozip/0 . 79, 210

808 SICStus Prolog

nth/[3,4] (lists) . 364
nth0/[3,4] (lists) . 364
number/1 . 184
number_chars/2 . 187
number_codes/2 . 186
number_to_chars/[2,3] (charsio) 691
numbervars/3 . 213

O
on_exception/3 . 173
once/1 . 171
op/3 . 54, 214, 797
open/[3,4] . 159
open_chars_stream/2 (charsio) 692
open_null_stream/1 . 161
ord_add_element/3 (ordsets) 371
ord_del_element/3 (ordsets) 371
ord_disjoint/2 (ordsets) 371
ord_intersect/2 (ordsets) 371
ord_intersection/[2,3,4] (ordsets) 371
ord_list_to_assoc/2 (assoc) 354
ord_member/2 (ordsets) . 372
ord_seteq/2 (ordsets) . 372
ord_setproduct/3 (ordsets) 372
ord_subset/2 (ordsets) . 372
ord_subtract/3 (ordsets) 372
ord_symdiff/3 (ordsets) 372
ord_union/[2,3,4] (ordsets) 372
order_resource/2 (clpfd) 469
ordering/1 (clpqr) . 421, 431
otherwise/0 . 171
out/1 (linda_client) . 398

P
path/3 (ugraphs) . 384
path/3 (wgraphs) . 388
peek_byte/[1,2] . 153
peek_char/[1,2] . 153
peek_code/[1,2] . 153
permutation/2 (lists) . 364
phrase/[2,3] . 142
pid/1 (system) . 379
popen/3 (system) . 379
portray/1 (clpqr) . 443
portray/1 (user) . 145
portray_clause/[1,2]. 145
portray_message/2 (user) 199
predicate_property/2. 176
prefix/2 (lists) . 364
print/[1,2] . 145
print_message/2 . 198
print_message_lines/3 . 199
profile_data/4 . 212
profile_reset/1 . 213
project_attributes/2 (Module) 357
projecting_assert/1 (clpqr) 422

prolog_flag/[2,3] . 177, 181
prolog_load_context/2 . 181
prompt/2 . 215
public/1 (declaration) . 71
put/[1,2] . 153
put_assoc/4 (assoc) . 354
put_atts/2 (Module) . 355
put_byte/[1,2] . 153
put_char/[1,2] . 153
put_code/[1,2] . 153
put_label/[4,5] (trees) 381

Q
query_abbreviation/3 (SU_messages) 207
query_class/5 (SU_messages) 207
query_class_hook/5 (user) 207
query_hook/6 (user) . 207
query_input/3 (SU_messages) 208
query_input_hook/3 (user) 208
query_map/4 (SU_messages) 208
query_map_hook/4 (user) 208
queue/2 (queues) . 373
queue_head/3 (queues) . 373
queue_head_list/3 (queues) 373
queue_last/3 (queues) . 373
queue_last_list/3 (queues) 373
queue_length/2 (queues) 374

R
raise_exception/1 . 173
random/[1,3] (random) . 375
random_ugraph/3 (ugraphs) 385
random_wgraph/4 (wgraphs) 389
randseq/3 (random) . 375
randset/3 (random) . 375
range_to_fdset/2 (clpfd) 476
rd/[1,2] (linda_client) 398
rd_noblock/1 (linda_client) 398
reachable/3 (ugraphs) . 385
reachable/3 (wgraphs) . 389
read/[1,2] . 142
read_from_chars/2 (charsio) 692
read_line/[1,2] . 153
read_term/[2,3] . 142
read_term_from_chars/3 (charsio) 692
reconsult/1 . 136
recorda/3 . 191
recorded/3 . 191
recordz/3 . 191
reduce/2 (ugraphs) . 384
reduce/2 (wgraphs) . 388
register_event_listener/[2,3] (prologbeans)

. 729
register_query/[2,3] (prologbeans) 729
register_query/1 . 729
relation/3 (clpfd) . 453

Predicate Index 809

remove_breakpoints/1 104, 117, 211
remove_constraint/1 (chr) 504
remove_duplicates/2 (lists) 365
rename_file/2 (system) . 379
repeat/0 . 172
require/1 . 137
restore/1 . 31, 215
retract/1 . 190
retractall/1 . 190
reverse/2 (lists) . 365

S
same_length/[2,3] (lists) 365
sat/1 (clpb). 412
save_files/2 . 32, 214
save_modules/2 . 32, 214
save_predicates/2 . 32, 215
save_program/[1,2] . 31, 215
scalar_product/4 (clpfd) 450
see/1 . 163
seeing/1 . 163
seek/4 . 162
seen/0 . 163
select/3 (lists) . 365
serialized/[2,3] (clpfd) 459
session_get/4 (prologbeans) 729
session_put/3 (prologbeans) 729
set_input/1 . 160
set_output/1 . 161
set_prolog_flag/2 . 177
set_stream_position/2 . 162
setof/3 . 193
setrand/1 (random) . 375
shell/[0,1,2] (system) . 379
shutdown/[0,1] (prologbeans) 728
shutdown_server/0 (linda_client) 397
simple/1 . 184
skip/[1,2] . 153
skip_line/[0,1] . 153
sleep/1 (system) . 379
socket/2 (sockets) . 391
socket_accept/[2,3] (sockets) 391
socket_bind/2 (sockets) 391
socket_buffering/4 (sockets) 392
socket_close/1 (sockets) 391
socket_connect/3 (sockets) 391
socket_listen/2 (sockets) 391
socket_select/[5,6] (sockets) 392, 393
sort/2 . 170
sorting/3 (clpfd) . 462
source_file/[1,2] . 137
space_out/3 (spaceout) . 765
spy/[1,2]. 79, 117, 210
start/[0,1] (prologbeans) 728
statistics/[0,2] . 182
stream_code/2 . 247
stream_position/2 . 161

stream_position_data/3 161
stream_property/2 . 161
sub_atom/5 . 187
sublist/2 (lists) . 365
substitute/4 (lists) . 365
subsumes/2 (terms) . 367
subsumes_chk/2 (terms) . 367
suffix/2 (lists) . 365
sum/3 (clpfd) . 450
sum_list/2 (lists) . 365
sup/[2,4] (clpqr) . 420
symmetric_closure/2 (ugraphs) 384
symmetric_closure/2 (wgraphs) 388
system/[0,1,2] (system) 379

T
tab/[1,2] . 154
taut/2 (clpb) . 412
tcl_delete/1 (tcltk) 649, 683
tcl_eval/3 (tcltk) . 652, 683
tcl_event/3 (tcltk). 655, 683
tcl_new/1 (tcltk) . 648, 683
tell/1 . 163
telling/1 . 163
term_expansion/[2,4] (user) 141
term_hash/[2,4] (terms) 368
term_subsumer/3 (terms) 367
term_variables/2 (terms) 368
term_variables_bag/2 (terms) 368
throw/1 . 173
time_out/3 (timeout) . 767
tk_destroy_window/1 (tcltk) 660
tk_destroy_window/1 (tcltk) 684
tk_do_one_event/[0,1] (tcltk) 659, 684
tk_main_loop/0 (tcltk) . 660
tk_main_loop/0 (tcltk) . 684
tk_main_window/2 (tcltk) 660
tk_main_window/2 (tcltk) 684
tk_make_window_exist/1 (tcltk) 661, 684
tk_new/2 (tcltk) . 648, 683
tk_next_event/[2,3] (tcltk) 655
tk_next_event/[2,3] (tcltk) 660
tk_next_event/[2,3] (tcltk) 684
tk_num_main_windows/1 (tcltk) 661, 684
tmpnam/1 (system) . 380
told/0 . 163
top_sort/2 (ugraphs) . 384
top_sort/2 (wgraphs) . 388
trace/0 . 78, 210
transitive_closure/2 (ugraphs) 384
transitive_closure/2 (wgraphs) 388
transpose/2 (ugraphs) . 384
transpose/2 (wgraphs) . 388
tree_size/2 (trees) . 381
tree_to_list/2 (trees) . 381
trimcore/0 . 183
true/0 . 171

810 SICStus Prolog

ttyflush/0 . 154
ttyget/1 . 154
ttyget0/1 . 154
ttynl/0 . 154
ttyput/1 . 154
ttyskip/1 . 154
ttytab/1 . 154

U
ugraph_to_wgraph/2 (wgraphs) 387
unconstrained/1 (chr) . 504
undo/1 . 213
unify_with_occurs_check/2 213
unknown/2 . 29, 209
unknown_predicate_handler/3 (user) . . . 29, 175
unload_foreign_resource/1 224
unregister_event_listener/1 (prologbeans)

. 730
update_mutable/2 . 189
use_module/[1,2,3] . 136
user:breakpoint_expansion/2 110, 126
user:debugger_command_hook/2 111, 118, 211
user:error_exception/1 129, 211
user:file_search_path/2 133, 159
user:generate_message_hook/3 199
user:goal_expansion/3 . 141
user:library_directory/1 159
user:message_hook/3 . 199
user:method_expansion/3 548
user:portray/1 . 145
user:portray_message/2 199
user:query_class_hook/5 207
user:query_hook/6 . 207
user:query_input_hook/3 208
user:query_map_hook/4 . 208
user:term_expansion/[2,4] 141
user:unknown_predicate_handler/3 29, 175
user:user_help/0 . 216

user_help/0 (user) . 216

V
var/1 . 184
variant/2 (terms) . 367
verify_attributes/3 (Module) 356
version/[0,1] . 215
vertices/2 (ugraphs) . 383
vertices/2 (wgraphs) . 387
vertices_edges_to_ugraph/3 (ugraphs) 383
vertices_edges_to_wgraph/3 (wgraphs) 387
view/1 (gauge) . 687
volatile/1 (declaration) 69

W
wait/2 (system) . 380
wgraph_to_ugraph/2 (wgraphs) 387
when/2 . 208
with_output_to_chars/[2,3,4] (charsio) . . 692
working_directory/2 (system) 380
write/[1,2] . 144
write_canonical/[1,2] . 145
write_term/[2,3] . 146
write_term_to_chars/[3,4] (charsio) 691
write_to_chars/[2,3] (charsio) 691
writeq/[1,2] . 145

X
xml_parse/[2,3] (xml) . 586
xml_pp/1 (xml) . 586
xml_subterm/2 (xml) . 586

Z
zip/0 . 78, 210

SICStus Objects Method Index 811

SICStus Objects Method Index

A
abolish/0 (object method) 564
ancestor/1 (utility method) 565
ancestor/2 (utility method) 565
ancestors/1 (utility method) 565
ancestors/2 (utility method) 565
and_cast/2 (utility method) 565
assert/1 (object method) 560, 564
assert/2 (object method) 564
asserta/1 (object method) 560, 564
asserta/2 (object method) 564
assertz/1 (object method) 560, 564
assertz/2 (object method) 564
attributes/1 (universal method) 562
augment/1 (object method) 564
augmenta/1 (object method) 564
augmentz/1 (object method) 564

D
descendant/1 (utility method) 565
descendant/2 (utility method) 565
descendants/1 (utility method) 565
descendants/2 (utility method) 565
dynamic/0 (object method) 557
dynamic/0 (object method) 563
dynamic/1 (object method) 557
dynamic/1 (object method) 563
dynamic_methods/1 (utility method) 565
dynamic_objects/1 (utility method) 565

G
get/1 (inlined method) . 562
get/1 (object method) . 563

H
has_attribute/1 (object method) 563
has_instance/1 (object method) 563

I
instance/1 (object method) 563

M
methods/1 (utility method) 565

N
new/1 (object method) . 560
new/1 (object method) . 563
new/2 (object method) . 560
new/2 (object method) . 563

O
object (built-in object) 563
object/1 (object method) 563
objects/1 (utility method) 565
or_cast/2 (utility method) 565

R
restart/0 (utility method) 565
retract/1 (object method) 564
retractall/1 (object method) 564

S
self/1 (inlined method) 562
self/1 (object method) . 563
set/1 (inlined method) . 562
set/1 (object method) . 564
static/0 (object method) 563
static/1 (object method) 563
static_methods/1 (utility method) 565
static_objects/1 (utility method) 565
sub/1 (object method) . 556
sub/1 (object method) . 563
subs/1 (utility method) 565
super (keyword) . 556
super/1 (object method) 563
super/2 (universal method) 554, 562
supers/1 (utility method) 565

U
update/1 (object method) 564
utility (built-in object) 564

812 SICStus Prolog

Keystroke Index 813

Keystroke Index

&
& (debugger command) 84, 526

*
* (debugger command) . 85

+
+ (debugger command) . 85

-
- (debugger command) . 85

.

. (debugger command) . 85

;
; (top-level command) . 26

<
< (debugger command) . 86
< (top-level command) . 26

=
= (debugger command) . 85

?
? (debugger command) . 86
? (interruption command) 30
? (top-level command) . 27

@
@ (debugger command) . 85

^
^ (debugger command) . 86
^ (top-level command) . 27

\
\ (debugger command) . 85

A
a (debugger command) . 85
A (debugger command) . 526
a (interruption command) 30

B
b (debugger command) . 85
b (interruption command) 30
b (top-level command) . 26

C
c (debugger command) . 82
c (interruption command) 30
C-c ? (emacs command) . 37
C-c C-b (emacs command) . 36
C-c C-c b (emacs command) 36
C-c C-c f (emacs command) 36
C-c C-c p (emacs command) 36
C-c C-c r (emacs command) 36
C-c C-d (emacs command) . 37
C-c C-n (emacs command) . 37
C-c C-p (emacs command) . 36
C-c C-r (emacs command) . 36
C-c C-s (emacs command) . 37
C-c C-t (emacs command) . 37
C-c C-v a (emacs command) 37
C-c C-z (emacs command) . 37
C-u C-c C-d (emacs command). 37
C-u C-c C-t (emacs command). 37
C-u C-c C-z (emacs command). 37
C-u C-x SPC (emacs command). 37
C-x SPC (emacs command) . 37

D
d (debugger command) . 84
D (debugger command) . 85
d (interruption command) 30

E
e (debugger command) . 86
E (debugger command) . 85
e (interruption command) 30

F
f (debugger command) . 83

814 SICStus Prolog

G
g (debugger command) . 84

H
h (debugger command) . 86
h (interruption command) 30
h (top-level command) . 27

J
j<p> (debugger command) . 83

L
l (debugger command) . 82

M
M-{ (emacs command) . 37
M-} (emacs command) . 37
M-a (emacs command) . 36
M-C-a (emacs command) . 37
M-C-c (emacs command) . 37
M-C-e (emacs command) . 37
M-C-h (emacs command) . 37
M-C-n (emacs command) . 37
M-C-p (emacs command) . 37
M-e (emacs command) . 37
M-h (emacs command) . 37
M-n (emacs command) . 36
M-p (emacs command) . 36

N
n (debugger command) . 84
n (top-level command) . 26

O
o (debugger command) . 83

P
p (debugger command) . 84

Q
q (debugger command) . 83

R
r (debugger command) . 83
〈RET〉 (debugger command) 82
RET (top-level command) . 26

S
s (debugger command) . 82

T
t (debugger command) . 84
t (interruption command) 30

U
u (debugger command) . 86

W
w (debugger command) . 84
W (debugger command) . 526

Y
y (top-level command) . 26

Z
z (debugger command) . 82
z (interruption command) 30

Book Index 815

Book Index

!
!/0, cut . 52, 170

#
/2, bitwise exclusive or 165

/2, boolean eor . 411

#/ /2 (clpfd) . 452

#< /2 (clpfd) . 450

#<= /2 (clpfd) . 452

#<=> /2 (clpfd) . 449, 452

#= /2 (clpfd) . 450

#=< /2 (clpfd) . 450

#=> /2 (clpfd) . 452

#> /2 (clpfd) . 450

#>= /2 (clpfd) . 450

/1 (clpfd). 451

/2 (clpfd). 452

/2 (clpfd) . 452

#/̄2 (clpfd) . 450

’
’SU_messages’:generate_message/3 199

’SU_messages’:query_abbreviation/3 207

’SU_messages’:query_class/5 207

’SU_messages’:query_input/3 208

’SU_messages’:query_map/4 208

(
(vbsp becomes \VBSP and findex cannot 751

*
* /2, boolean and . 411

* /2, multiplication . 165

** /2, exponent . 167

+
+ /1, identity . 165

+ /2, addition . 165

+ /2, boolean ior . 411

,
,/2, conjunction . 170

-
- /1, negation . 165
- /2, subtraction. 165
--> /2, grammar rule . 137
-/2 (debugger show control) 127
-> /2 ;/2, if then else . 171
-> /2, if then . 171

.

. /2, consult . 136

. /2, identity . 166

.emacs Emacs initialization file 33

/
/ /2, floating division 165
// /2, integer division 165
/\ /2, bitwise conjunction 165

:
:- /1, directive . 28
:- /2, clause . 47
:/2 . 172
::/1 (objects) . 552
::/2 (objects) . 552

;
;/2, disjunction . 170

<
< /2, arithmetic less than 168
< /2, boolean less . 411
<:/1 (objects) . 552
<:/2 (objects) . 552
<< /2, left shift . 165

=
= /2, unification. 213
=.. /2, univ . 185
=/2 (clpfd:dispatch_global/4 request) 472
=:= /2, arithmetic equal 168
=:= /2, boolean equal . 411
=< /2, arithmetic less or equal. 168
=< /2, boolean less or equal 411
== /2, equality of terms 169
=/̄2, arithmetic not equal 168
=\= /2, boolean not equal 411

816 SICStus Prolog

>

> /2, arithmetic greater than 168

> /2, boolean greater . 411

>= /2, arithmetic greater or equal 168

>= /2, boolean greater or equal. 411

>> /2, right shift . 165

?
?- /1, query . 26

?= /2, terms identical or cannot unify 169

@
@< /2, term less than . 169

@=< /2, term less or equal 169

@> /2, term greater than 169

@>= /2, term greater or equal 169

[
[]/0 (debugger condition) 125

[]/0, consult . 136

^

^ /2, boolean existential quantifier 411

^ /2, existential quantifier 194

{

{}/1 (clpqr). 418

\

\ /1, bitwise negation . 165

\/ /2, bitwise disjunction 165

\

\+ /1, not provable . 170

\= /2, not unifiable . 213

\== /2, inequality of terms 169

~

~ /1, boolean not . 411

A
abolish . 7
abolish/[1,2] . 190
abolish/0 (object method) 564
abort (debugger command) 85
abort/0 . 214
abort/0 (debugger command control). 128
abs/1, absolute value . 166
absolute_file_name/[2,3] 154
accept (top-level command) 26
accepted_hosts/1 (start/1 option) 728
access driven programming 561
access/1 (absolute_file_name/3 option) . . . 156
accumulating parameter . 331
acos/1, function . 167
acosh/1, function . 167
acot/1, function . 167
acot2/2, function . 167
acoth/1, function . 167
action condition, breakpoint 125
action execution, breakpoint 97
action variables, debugger 96, 126
action, breakpoint . 87, 96
acyclic_term/1 (terms) . 369
add_breakpoint/2 . 116, 210
add_edges/3 (ugraphs) . 384
add_edges/3 (wgraphs) . 388
add_to_heap/4 (heaps) . 361
add_vertices/3 (ugraphs) 383
add_vertices/3 (wgraphs) 388
address-constrained memory 276
advice breakpoint . 86, 101
advice-point . 7
advice/0 (debugger condition) 101, 125
agc_margin (prolog flag) 177, 232
alias, of a stream . 132
alias, stream. 18
alias/1 (open/4 option) 160
alias/1 (stream property) 162
all (labeling/2 option) 467
all (profile_data/4 resolution) 213
all solutions . 193
all_different/[1,2] (clpfd) 457
all_distinct/[1,2] (clpfd) 457
alphanumeric . 7
ancestor goal . 80
ancestor/1 (utility method) 565
ancestor/2 (debugger condition) 107, 121
ancestor/2 (utility method) 565
ancestors . 7
ancestors (debugger command) 84
ancestors/1 (utility method) 565
ancestors/2 (utility method) 565
and_cast/2 (utility method) 565
annotate goal (debugger command) 526
annotation . 521
anonymous variable . 7, 44
ANSI conformance . 6, 217

Book Index 817

anti-unifications . 367
API . 217
app, file search path . 751
append (open/[3,4] mode) 159
append, avoiding . 332
append/3 (lists) . 363
application builder . 258
aref/3 (arrays) . 351
arefa/3 (arrays) . 351
arefl/3 (arrays) . 351
arg/3 . 185
argument . 7
arguments, command-line . 21
argv (prolog flag, volatile) . . 22, 177, 275, 302
arithmetic . 164
arithmetic expression . 164
arity . 7, 45
array_to_list/2 (arrays) 351
arrays . 351
aset/4 (arrays) . 351
asin/1, function . 167
asinh/1, function . 167
ask/0 (debugger command control) 127
ask_query/4 . 206
ASPX . 725
assert/[1,2] . 190
assert/1 (object method) 560, 564
assert/2 (object method) 564
asserta/[1,2] . 190
asserta/1 (object method) 560, 564
asserta/2 (object method) 564
asserted clause . 189
assertz/[1,2] . 190
assertz/1 (object method) 560, 564
assertz/2 (object method) 564
assignment, destructive. 188
assignment/[2,3] (clpfd) 458
assoc_to_list/2 (assoc) 353
association lists . 353
assumptions/1 (labeling/2 option) 468
asynchronously, calling Prolog 243
at_end_of_line/[0,1]. 163
at_end_of_stream/[0,1] 162
atan/1, function . 167
atan2/2, function . 167
atanh/1, function . 167
atom . 7, 44
atom (double_quotes flag value) 178
atom, one-char . 14
atom/1 . 184
atom_chars/2 . 186, 187
atom_codes/2 . 186
atom_concat/3 . 187
atom_garbage_collection (statistics/2

option) . 183
atom_length/2 . 187
atom_to_chars/[2,3] (charsio) 691
atomic term . 7

atomic/1 . 184
atoms (statistics/2 option) 183
attribute declaration . 355
attribute/1 (declaration) 355
attribute_goal/2 (Module) 356
attributed variables . 355
attributes, object . 547, 566
attributes/1 (universal method) 562
augment/1 (object method) 564
augmenta/1 (object method) 564
augmentz/1 (object method) 564
auto-generation of names . 521
avoiding append . 332

B
backtrace . 7, 84, 105
backtrace (debugger command) 84
backtracking . 7, 51
backtracking, terminating a loop 322
backtracks (fd_statistics/2 option) 469
backtracks (profile_data/4 option) 212
bagof/3 . 194
bagof_rd_noblock/3 (linda_client) 398
bb_delete/2 . 192
bb_get/2 . 192
bb_inf/[3,5] (clpqr) . 421
bb_put/2 . 192
bb_update/3 . 192
bid/1 (debugger condition) 104, 123
binary stream . 132
binary trees . 381
binding . 7
bisect (labeling/2 option) 467
blackboard . 192
block declaration . 70
block/0 (debugger port value) 123
block/1 (declaration) . 70
blocked goal . 8, 81
blocked goals (debugger command) 84, 526
body . 8, 47
bof (seek/4 method) . 162
boolean on PrologSession 731
boolean on QueryAnswer . 732
boolean on Term . 732, 733
bound/1 (cumulatives/3 option) 461
bounded (prolog flag, volatile) 177
bounds_only/1 (cumulative/5 option) 460
bounds_only/1 (serialized/3 option) 460
box, invocation . 13, 77
box, procedure . 16, 75
box, WCX . 305
break . 31
break (debugger command) 85
break (top-level command) 26
break/0 . 31, 214
break_level/1 (debugger condition) . . . 124, 126
breakpoint . 8

818 SICStus Prolog

breakpoint action . 87, 96
breakpoint action condition 125
breakpoint action execution 97
breakpoint condition . 87
breakpoint conditions . 120
breakpoint handling predicates 116
breakpoint identifier . 87
breakpoint processing . 118
breakpoint spec . 8, 87
breakpoint test . 87
breakpoint test condition . 121
breakpoint, advice . 86, 101
breakpoint, debugger . 86
breakpoint, generic . 95
breakpoint, line . 37
breakpoint, setting . 37
breakpoint, specific . 95
breakpoint_expansion/2 (user) 110, 126
buffer . 8
builder, application . 258
built-in predicate . 8, 48
Button (Tk event type) . 639
button (Tk widget) . 612
ButtonPress (Tk event type) 639
ButtonRelease (Tk event type) 639
byte_count/2 . 161

C
C/3 . 142
cache_size/1 (db_open/5 option) 405
call (leashing mode) . 78
call, procedure . 51
call/0 (debugger port value) 123
call/1 . 172
call/1 (clpfd:dispatch_global/4 request)

. 472
call_cleanup/2 . 172
call_residue/2 . 209
callable term . 8
callable/1 . 184
calling Prolog asynchronously 243
calling Prolog from C . 241
calls (profile_data/4 option) 212
CallSpec . 742
canvas (Tk widget) . 612
card/2, boolean cardinality 411
case/[3,4] (clpfd) . 453
catch/3 . 173
ceiling/1, function . 166
char-list . 8
char_code/2 . 187
char_conversion (prolog flag, volatile) 8,

177
char_conversion/2 . 144
character code . 8
character code set . 8, 302
character I/O . 151

character set . 23, 790
character, EOF . 5
character, interrupt . 5
character-conversion mapping 8
character-type mapping 8, 302
character_count/2 . 161
character_escapes (prolog flag) 146, 178
character_escapes/1 (write_term/[2,3]

option) . 146
characters, wide . 132
chars (double_quotes flag value) 178
checkbutton (Tk widget) 612
checking indexicals . 480
choice (statistics/2 option) 182
choice_points (profile_data/4 option) 212
choicepoints . 9
CHOICESTKSIZE (environment) 23
CHR control flow model . 507
CHR debugging messages 510
CHR debugging options . 511
CHR debugging predicates 507
CHR spypoints . 509
CHR, propagation . 495
CHR, simpagation . 495
CHR, simplification . 495
CHR, trying a . 500
chr_debug/0 (chr) . 508
chr_debugging/0 (chr) . 508
chr_leash/1 (chr) . 508
chr_nodebug/0 (chr) . 508
chr_nospy/1 (chr) . 510
chr_notrace/0 (chr) . 508
chr_spy/1 (chr) . 509
chr_trace/0 (chr) . 507
circuit/[1,2] (clpfd) . 459
circuit/1 (assignment/3 option) 458
clash, name . 14
Classname, Fully Qualified 712
clause . 9, 47
clause (profile_data/4 resolution) 212
clause, asserted . 189
clause, definite . 43
clause, guarded . 12, 337
clause, Horn . 43
clause, retracted . 189
clause, unit . 19, 47
clause/[2,3] . 190
clauseref/5 (source information descriptor)

. 200
clique/3 (ugraphs) . 385
close (Tcl command) . 606
close on SPQuery. 705
close/[1,2] . 160
close_client/0 (linda_client) 397
clpfd:dispatch_global/4 472
clpfd:full_answer/0 . 470
CLSID . 741
code, character . 8

Book Index 819

code, glue . 12
code, source . 17
code, unreachable . 342
code, wide character . 301
code-list. 9
codes (double_quotes flag value) 178
collection, garbage . 11, 178
coloring/3 (ugraphs) . 385
colouring/3 (ugraphs) . 385
comclient_clsid_from_progid/2 (comclient)

. 744
comclient_create_instance/2 (comclient)

. 742
comclient_equal/2 (comclient) 743
comclient_exception_code/2 (comclient) . . 743
comclient_exception_culprit/2 (comclient)

. 743
comclient_exception_description/2

(comclient) . 743
comclient_garbage_collect/0 (comclient)

. 743
comclient_get_active_object/2 (comclient)

. 742
comclient_iid_from_name/2 (comclient) 744
comclient_invoke_method_fun/3 (comclient)

. 743
comclient_invoke_method_proc/2 (comclient)

. 743
comclient_invoke_put/3 (comclient) 743
comclient_is_exception/1 (comclient) 743
comclient_is_object/1 (comclient) 742
comclient_name_from_iid/2 (comclient) 744
comclient_progid_from_clsid/2 (comclient)

. 744
comclient_release/1 (comclient) 743
comclient_valid_object/1 (comclient) 742
ComInArg . 741, 742
command (debugger command) 86
command-line arguments . 21
command/1 (debugger condition) 96, 124, 125
commands, debug . 81
communication, process 391, 395
compactcode . 9
compactcode (compiling flag value) 65, 177
compare/3 . 169
comparison, term . 168
compilation . 135
compilation_mode/1 (load_files/2 option)

. 135
compile . 9
compile-buffer (emacs command). 36
compile-file (emacs command) 36
compile-predicate (emacs command) 36
compile-region (emacs command). 36
compile/1 . 66
compile/1 . 136
compiling . 21
compiling (prolog flag) 9, 65, 177, 211

complement/2 (ugraphs) . 384
compose/3 (ugraphs) . 384
compound term . 9, 43, 45
compound/1 . 184
computation rule . 51
ComValue . 741
concat (Tcl command) . 598
concepts, FDBG . 519
condition, breakpoint . 87
conditional spypoint . 87
conditionals . 336
conditions, breakpoint . 120
conformance, ANSI . 6, 217
conjunction . 9
considerations for fcompile 72
consistency/1 (all_different/2 option) . . . 458
consistency/1 (all_distinct/2 option) 458
consistency/1 (assignment/3 option) 458
consistency_error/[3,4] (error class) 175
consistent store . 470
console-based executable . 9
constant . 9, 43
constraint . 446
constraint event . 519
constraint handling rule . 495
constraint store . 470
constraint, domain . 470
constraint, global . 471
constraint, partner . 500
constraints (fd_statistics/2 option) 470
constraints, posting . 447
consult . 9
consult-buffer (emacs command). 36
consult-file (emacs command) 36
consult-predicate (emacs command) 36
consult-region (emacs command). 36
consult/1 . 66
consult/1 . 136
consulting . 21, 24, 66, 135
consume_layout/1 (read_term/[2,3] option)

. 143
context, load . 181
context_error/[2,3] (error class) 174
contradictory store . 470
conversions, term . 231
copy_term/2 . 188
core (statistics/2 option) 182
coroutining . 208
cos/1, function . 167
cosh/1, function . 167
cost/2 (assignment/3 option) 458
cost/2 (global_cardinality/3 option) 453
cot/1, function . 167
coth/1, function . 167
count/4 (clpfd) . 452
counter . 211
create_mutable/2 . 189
creep . 9

820 SICStus Prolog

creep (debugger command) 82
cross-referencer . 342
cumulative/[4,5] (clpfd) 461
cumulatives/[2,3] (clpfd) 461
current (seek/4 method) 162
current input stream . 132
current output stream . 132
current_atom/1 . 176
current_breakpoint/5 105, 117, 211
current_char_conversion/2 144
current_constraint/2 (chr) 503
current_handler/2 (chr) 503
current_host/1 (sockets) 393
current_input/1 . 160
current_key/2 . 191
current_module/[1,2]. 176
current_op/3 . 214
current_output/1 . 160
current_predicate/[1,2] 176
current_prolog_flag/2 . 181
current_stream/3 . 160
cursor . 9
customize-group (emacs command) 34
customize-variable (emacs command) 34
cut . 9, 52, 319
cut and generate-and-test 321
cut on SPQuery . 705
cut, green . 53
cut, placement of . 321
cut, red . 53
cycles/1 (read_term/[2,3] option) 143
cycles/1 (write_term/[2,3] option) 146
cyclic term . 52, 143, 146
cyclic_term/1 (terms) . 369

D
daemon . 561
data resource . 261
data tables . 323
database . 9, 191, 401
database reference . 10, 190
datime/[1,2] (system) . 377
db-spec . 402
db_close/1 (bdb) . 405
db_close_env/1 (bdb) . 404
db_compress/[2,3] (bdb) 406
db_current/5 (bdb) . 405
db_current_env/2 (bdb) . 404
db_current_iterator/3 (bdb) 406
db_enumerate/3 (bdb) . 406
db_erase/[2,3] (bdb) . 405
db_export/[2,3] (bdb) . 407
db_fetch/3 (bdb) . 405
db_findall/3 (bdb) . 405
db_import/[2,3] (bdb) . 407
db_iterator_done/1 (bdb) 406
db_iterator_next/3 (bdb) 406

db_make_iterator/[2,3] (bdb) 406
db_open/[4,5] (bdb) . 404
db_open_env/[2,3] (bdb) 404
db_store/3 (bdb) . 405
db_sync/1 (bdb) . 406
DCG . 137
debug . 10
debug (debugging flag value) 178
debug (FD flag) . 474
debug (prolog flag, volatile) 178, 254
debug commands . 81
debug/0 . 77, 210
debug/0 (debugger mode control) 128
debugcode . 10
debugcode (compiling flag value) 65, 177
debugger action variables 96, 126
debugger breakpoint . 86
debugger port . 123
debugger, port . 76
debugger-ancestor . 122
debugger-parent . 122
debugger/0 (debugger condition) 101, 125
debugger_command_hook/2 (user) . . 111, 118, 211
debugger_print_options (prolog flag) . . 75, 86,

96, 127, 178, 254
debugging . 75
debugging (debugger command) 85
debugging (prolog flag, volatile) 177
debugging messages . 80
debugging messages, CHR 510
debugging options, CHR . 511
debugging predicates . 77
debugging/0 . 79, 210
dec10 (syntax_errors flag value) 180
declaration . 10, 65, 131
declaration, attribute . 355
declaration, block . 70
declaration, discontiguous . 69
declaration, dynamic . 69
declaration, include . 71
declaration, meta-predicate. 62, 70
declaration, mode . 71
declaration, module . 71
declaration, multifile . 66, 68
declaration, operator . 68
declaration, predicate . 68
declaration, public . 71
declaration, volatile . 69
declarations . 68
declarative semantics . 49
declaring nondeterminacy 326
decomposition/1 (cumulative/5 option) 460
decomposition/1 (disjoint1/2 option) 462
decomposition/1 (disjoint2/2 option) 463
decomposition/1 (serialized/3 option) 460
deep failure . 212
deep_fails (profile_data/4 option) 212
definite clause . 43

Book Index 821

definite clause grammar . 137
definition, procedure . 51
deinit function . 10, 220
del_assoc/4 (assoc) . 354
del_edges/3 (ugraphs) . 384
del_edges/3 (wgraphs) . 388
del_max_assoc/4 (assoc) 354
del_min_assoc/4 (assoc) 354
del_vertices/3 (ugraphs) 383
del_vertices/3 (wgraphs) 388
delegation . 547
delegation, message . 552
delete/3 (lists) . 363
delete_file/[1,2] (system) 377
delete_from_heap/4 (heaps) 362
depth/1 (debugger condition) 90, 121
descendant/1 (utility method) 565
descendant/2 (utility method) 565
descendants/1 (utility method) 565
descendants/2 (utility method) 565
destructive assignment . 188
determinacy checker . 325
determinacy detection, last clause 324
determinacy detection, via indexing 324
determinate . 10
determinate goal . 53
development system . 5, 10
dif/2 . 209
differential inheritance . 555
directive . 10, 22, 25, 47
directory (load_context/2 key) 182
directory_files/2 (system) 377
disable this (debugger command) 85
disable_breakpoints/1 117, 211
discontiguous declaration . 69
discontiguous/1 (declaration) 69
discontiguous_warnings (prolog flag) 70,

135, 178, 254
discrepancy/1 (labeling/2 option) 468
disjoint1/[1,2] (clpfd) 462
disjoint2/[1,2] (clpfd) 463
disjunction . 10, 336
dispatch_global/4 (clpfd) 472
display (debugger command) 84
display/0 (debugger show control) 127
display/1 . 145
display/1 (tk_new/2 option) 649
dom/1 (case/4 spec) . 454
dom/1 (fd_global/3 spec) 473
domain constraint . 470
domain variable . 446
domain, finite . 446
domain-consistent . 470
domain-disentailed . 471
domain-entailed . 471
domain/3 (clpfd) . 451
domain_error/[2,4] (error class) 174
double on Term . 733

double_quotes (prolog flag, volatile) 18,
46, 147, 178

down (labeling/2 option) 467
dump/3 (clpqr) . 421
dynamic code, semantics of 189
dynamic declaration . 69
dynamic method . 557
dynamic object . 547, 557, 559
dynamic predicate . 10
dynamic resource . 219
dynamic/0 (object method) 557
dynamic/0 (object method) 563
dynamic/1 (declaration) . 69
dynamic/1 (object method) 557
dynamic/1 (object method) 563
dynamic_methods/1 (utility method) 565
dynamic_objects/1 (utility method) 565

E
ect (order_resource/2 option) 469
edge_finder/1 (cumulative/5 option) 460
edge_finder/1 (serialized/3 option) 460
edges/2 (ugraphs) . 383
edges/2 (wgraphs) . 387
efficiency, increasing . 319
element/3 (clpfd) . 453
Emacs initialization file .emacs 33
emacs interface . 32
empty_assoc/1 (assoc) . 353
empty_fdset/1 (clpfd) . 475
empty_heap/1 (heaps) . 361
empty_interval/2 (clpfd) 476
empty_queue/1 (queues) . 373
enable this (debugger command) 85
enable_breakpoints/1 117, 211
encoded string . 10, 218
encoding, external . 302
encoding, external (of wide characters) 11
encoding, internal . 302
encoding, internal (of wide characters) 13
encoding, system . 302
encoding, system (of wide characters) 18
encoding, UTF-8 . 19
end of line . 163
end of stream . 162
end_of_stream/1 (stream property) 162
ensure_loaded/1. 67, 136
entailed/1 (clpqr) . 419
entailments (fd_statistics/2 option) 469
Enter (Tk event type) . 639
entry (Tk widget). 612
enum (labeling/2 option) 467
environ/2 (system) . 377
environment . 403
environment/1 (db_open/5 option) 404
eof (seek/4 method) . 162
eof (Tcl command). 607

822 SICStus Prolog

EOF character . 5
eof_action/1 (open/4 option) 160
eof_action/1 (stream property) 162
eof_code (open/4 eof_action value). 160
erase/1 . 191
error (open/4 eof_action value) 160
error (overflow FD flag value) 473
error (syntax_errors flag value) 180
error (unknown flag value) 29, 181, 210
error handling . 129, 173
error, syntax . 28
error_exception/1 (user) 129, 211
escape sequence . 10, 178, 794
est (order_resource/2 option) 469
eval (Tcl command) . 602
evaluation_error/[2,4] (error class) 174
event, constraint . 519
event, FDBG . 519
event, labeling . 519
exception (leashing mode) 78
exception handling . 129, 173
exception handling in C . 246
exception term . 246
exception/1 (debugger command control) . . . 128
exception/1 (debugger port value) 123
exec/3 (system) . 378
executable, console-based . 9
executable, stand-alone 18, 254
executable, windowed . 19
execution . 30
execution profiling . 211
execution, nested . 31
execution_state/[1,2] 104, 106, 117, 211
execution_time (profile_data/4 option) . . . 212
existence_error/[2,5] (error class) 174
exit (leashing mode) . 78
exit/0 (clpfd:dispatch_global/4 request)

. 472
exit/1 (debugger port value) 123
exited/1 (debugger condition) 107, 121
exiting . 30
exp/1, exponent . 167
exp/2, exponent . 167
expand/0 (clpqr) . 439
expand_term/2 . 140
expansion, macro . 141
expansion, module name 5, 14, 61, 71
export . 10
exported predicate . 59
expr (Tcl command) . 596
expression, arithmetic . 164
extended runtime system . 10
extended_characters/1 (xml_parse/3 option)

. 586
extendible predicate . 12, 131
extensions/1 (absolute_file_name/3 option)

. 155
external encoding . 302

external encoding (of wide characters) 11

F
fact . 11
fail (debugger command) . 83
fail (leashing mode) . 78
fail (overflow FD flag value) 474
fail (syntax_errors flag value) 180
fail (unknown flag value) 29, 181, 210
fail/0 . 171
fail/0 (clpfd:dispatch_global/4 request)

. 472
fail/0 (debugger port value) 123
fail/1 (debugger command control) 128
failure, deep . 212
failure, shallow . 212
false/0 . 171
false/0 (debugger condition) 125
fastcode . 11
fastcode (compiling flag value) 65, 177
fcompile, considerations for 72
fcompile/1 . 67, 136
FD predicate . 465, 482
FD set . 475
fd_closure/2 (clpfd) . 475
fd_copy_term/3 (clpfd) . 475
fd_degree/2 (clpfd) . 474
fd_dom/2 (clpfd) . 474
fd_flag/3 (clpfd) . 473
fd_global/[3,4] (clpfd) 473
fd_max/2 (clpfd) . 474
fd_min/2 (clpfd) . 474
fd_neighbors/2 (clpfd) . 475
fd_set/2 (clpfd) . 474
fd_size/2 (clpfd) . 474
fd_statistics/[0,2] (clpfd) 469, 470
fd_var/1 (clpfd) . 474
FDBG concepts . 519
FDBG event . 519
FDBG output stream . 523
fdbg:fdvar_portray/3. 530
fdbg:legend_portray/3 (fdbg) 530
fdbg_annotate/[3,4] (fdbg) 532
fdbg_assign_name/2 (fdbg) 524
fdbg_current_name/2 (fdbg) 524
fdbg_get_name/2 (fdbg) . 524
fdbg_guard/3 (fdbg) . 539
fdbg_label_show/3 (fdbg) 525
fdbg_labeling_step/2 (fdbg) 527
fdbg_legend/[1,2] (fdbg) 532
fdbg_off/0 (fdbg) . 523
fdbg_on/[0,1] (fdbg) . 523
fdbg output . 523
fdbg_show/2 (fdbg) . 525
fdbg_start_labeling/1 (fdbg) 527
fdbg_transform_actions/3 (fdbg) 533
fdset_add_element/3 (clpfd) 476

Book Index 823

fdset_complement/2 (clpfd) 477
fdset_del_element/3 (clpfd) 476
fdset_disjoint/2 (clpfd) 476
fdset_eq/2 (clpfd) . 477
fdset_intersect/2 (clpfd) 476
fdset_intersection/[2,3] (clpfd) 476
fdset_interval/3 (clpfd) 476
fdset_max/2 (clpfd) . 476
fdset_member/2 (clpfd) . 476
fdset_min/2 (clpfd) . 476
fdset_parts/4 (clpfd) . 475
fdset_singleton/2 (clpfd) 476
fdset_size/2 (clpfd) . 476
fdset_subset/2 (clpfd) . 477
fdset_subtract/3 (clpfd) 477
fdset_to_list/2 (clpfd) 476
fdset_to_range/2 (clpfd) 476
fdset_union/[2,3] (clpfd) 477
fdvar_portray/3 (fdbg) . 530
ff (labeling/2 option) . 466
ffc (labeling/2 option) 466
file . 131
file (load_context/2 key) 182
file search path . 133, 159
file specification . 11, 133
file, PO . 16, 67
file, QL . 16, 67
file/1 (debugger condition) 92, 122
file_errors/1 (absolute_file_name/3 option)

. 156
file_exists/[1,2] (system) 378
file_name/1 (stream property) 161
file_property/2 (system) 378
file_search_path/2 (user) 133, 159
file_type/1 (absolute_file_name/3 option)

. 155
fileerrors (prolog flag) 156, 158, 178
fileerrors/0 . 163
fileerrors/1 (absolute_file_name/3 option)

. 156
fileref/2 (source information descriptor)

. 199
find this (debugger command) 85
find_constraint/2 (chr) 503
find_constraint/3 (chr) 504
findall/[3,4] . 195
findall_constraints/[2,3] (chr) 504
finding nondeterminacy . 325
finite domain . 446
first (order_resource/2 option) 469
first_bound/2 (clpfd) 466, 467
flag, Prolog . 177, 181
flit/0 (debugger command control) 127
flit/2 (debugger command control) 127
float . 43
float on Term . 733
float/1 . 184
float/1, coercion . 165

float_format/1 (write_term/[2,3] option)

. 147
float_fractional_part/1, fractional part

. 165
float_integer_part/1, coercion 165
floor/1, function . 166
floundered query . 11
floundering . 52
flow control model, CHR . 507
flush_output/[0,1] . 161
for (Tcl command). 600
force/1 (close/2 option) 160
foreach (Tcl command) . 600
foreign language interface 217, 218
foreign predicate . 11
foreign resource . 11, 219
foreign resource linker . 224
foreign resource, linked 219, 228
foreign resource, pre-linked 15
foreign/[2,3] . 220
foreign_file/2 . 224
foreign_resource/2 . 220
format (Tcl command) . 602
format-command . 196
format/[2,3] . 147
format/1 (xml_parse/3 option) 586
format_to_chars/[3,4] (charsio) 691
frame (Tk widget). 612
freeze/2 . 209
frozen/2 . 209
full_answer/0 (clpfd) . 470
Fully Qualified Classname 712
function prototype . 6
function, deinit . 10, 220
function, init . 13, 220
functor . 11, 45
functor/3 . 184

G
garbage collection . 11, 178
garbage_collect/0 . 215
garbage_collect_atoms/0 215
garbage_collection (statistics/2 option)

. 183
gauge . 687
gc (prolog flag) . 178, 765
gc/0 . 215
gc_margin (prolog flag) 179
gc_trace (prolog flag) . 179
gcd/2, greatest common divisor 166
gen_assoc/3 (assoc) . 353
gen_label/3 (trees) . 381
generalization/1 (cumulatives/3 option) . . 461
generalized predicate spec . 11
generate-and-test, use with cut 321
generate_message/3 (SU_messages) 199
generate_message_hook/3 (user) 199

824 SICStus Prolog

generic breakpoint . 95
generic object . 550, 569
get/[1,2] . 152
get/1 (debugger condition) 124
get/1 (inlined method) . 562
get/1 (object method) . 563
get_assoc/[3,5] (assoc) 353
get_atts/2 (Module) . 355
get_byte/[1,2] . 152
get_char/[1,2] . 152
get_code/[1,2] . 152
get_from_heap/4 (heaps) 361
get_label/3 (trees) . 381
get_mutable/2 . 189
get_next_assoc/4 (assoc) 353
get_prev_assoc/4 (assoc) 354
get0/[1,2] . 152
getrand/1 (random) . 375
gets (Tcl command) . 607
global (Tcl command) . 610
global constraint . 471
global/1 (disjoint1/2 option) 462
global/1 (disjoint2/2 option) 463
global_cardinality/[2,3] (clpfd) 452
global_stack (statistics/2 option) 182
GLOBALSTKSIZE (environment) 23
glue code . 12
GNU Emacs . 32
goal . 12, 47
goal, ancestor . 80
goal, blocked . 8, 81
goal, determinate . 53
goal, parent . 53
goal, unblocked . 19
goal/1 (debugger condition) 88, 121
goal_expansion/3 (user) 141
goal_private/1 (debugger condition) . . 108, 121
goal_source_info/3 . 199
grammar rule . 137
grammar, definite clause . 137
graphs, unweighted . 383
graphs, weighted . 387
green cut . 53
ground . 12
ground/1 . 184
guarded clause . 12, 337

H
halt/[0,1] . 214
handling, error . 129, 173
handling, exception . 129, 173
handling, interrupt . 243
handling, signal . 243
has_attribute/1 (object method) 563
has_instance/1 (object method) 563
head . 12, 47
heap (statistics/2 option) 183

heap_size/2 (heaps) . 361
heap_to_list/2 (heaps) . 361
heaps . 361
help (debugger command) . 86
help (top-level command) 27
help/0 . 216
hidden module . 60
hidden/1 (module/3 option) 60
hide/0 (debugger condition) 126
hierarchy, object . 554
hook functions for I/O . 253
hook predicate . 12, 68, 131
hookable predicate . 12, 131
Horn clause . 43
host_id/1 (system) . 378
host_name/1 (system) . 379
host_type (prolog flag, volatile) 159, 179
hostname_address/2 (sockets) 393

I
I/O hook functions . 253
I/O, character . 151
I/O, term . 142
idempotent/1 (fd_global/3 option) 473
identifier, breakpoint . 87
identifier, query . 748
if (Tcl command) . 600
if/1 (load_files/2 option) 135
if/3 . 171
ignore_ops/1 (write_term/[2,3] option) . . . 146
ignore_underscores/1 (absolute_file_name/3

option) . 155
IID . 741
import . 12
importation . 61
imported predicate . 59
imports/1 (load_files/2 option) 135
in/1 (linda_client) . 398
in/2 (clpfd) . 451
in/2 (clpfd:dispatch_global/4 request) . . . 472
in/2 (linda_client) . 398
in_noblock/1 (linda_client) 398
in_set/2 (clpfd) . 451
in_set/2 (clpfd:dispatch_global/4 request)

. 472
IName . 741
include declaration . 71
include/1 (declaration) . 71
incore/1 . 172
incr (Tcl command) . 596
increasing efficiency . 319
indented/1 (write_term/[2,3] option) 146
independent_set/3 (ugraphs) 385
indexed term . 402
indexical . 480
indexicals . 519
indexicals, checking . 480

Book Index 825

indexicals, propagating . 480
indexing . 12, 322
indexing, determinacy detection via 324
indomain/1 (clpfd) . 466
inf/[2,4] (clpqr) . 420
inf/0, infinity . 167
infix operator . 54
information, source . 36, 180
informational (prolog flag, volatile) 21,

179
inheritance . 547, 554
inheritance by overriding . 547
inheritance, differential . 555
inheritance, multiple . 555
init function . 13, 220
initialization . 13, 72
initialization/1 . 72
input . 131
input stream, current . 132
input/0 (stream property) 161
insert_constraint/[2,3] (chr) 503
instance variable . 573
instance/1 (object method) 563
instance/2 . 191
instances . 562
instances, object . 567
instantiation . 13
instantiation_error/[0,2] (error class) . . 174
int on PrologSession . 731
int on Term . 733
integer . 43
integer, large . 13
integer, small . 17
integer/1 . 184
integer/1, coercion . 165
integer_rounding_function (prolog flag,

volatile) . 179
interface, emacs . 32
interface, foreign language 217, 218
internal encoding . 302
internal encoding (of wide characters) 13
interoperability . 217
interpret . 13
interrupt character . 5
interrupt handling . 243
interval-consistent . 471
interval-disentailed . 471
interval-entailed . 471
introductory message . 215
inv/1 (debugger condition) 90, 121, 126
invocation box . 13, 77
is/2 . 168
is_array/1 (arrays) . 351
is_assoc/1 (assoc) . 353
is_fdset/1 (clpfd) . 475
is_heap/1 (heaps) . 361
is_list/1 (lists) . 363
is_mutable/1 . 184, 189

is_ordset/1 (ordsets) . 371
is_queue/1 (queues) . 373

J
jasper_call/4 (jasper) . 712
jasper_call_instance/6 (jasper) 722
jasper_call_static/6 (jasper) 722
jasper_create_global_ref/3 (jasper) 713
jasper_create_local_ref/3 (jasper) 713
jasper_deinitialize/1 (jasper) 712
jasper_delete_global_ref/2 (jasper) 713
jasper_delete_local_ref/2 (jasper) 713
jasper_initialize/[1,2] (jasper) 711
jasper_is_instance_of/3 (jasper) 714
jasper_is_jvm/1 (jasper) 713
jasper_is_object/[1,2] (jasper) 713
jasper_is_same_object/3 (jasper) 714
jasper_new_object/5 (jasper) 712, 722
jasper_null/2 (jasper) . 714
jasper_object_class_name/3 (jasper) 714
Java Virtual Machine . 693
JNDI . 725
join (Tcl command) . 599
jump to port (debugger command) 84
JVM. 693

K
kernel, runtime . 17
Key (Tk event type) . 639
keyboard . 5
KeyPress (Tk event type) 639
KeyRelease (Tk event type) 639
keysort/2 . 170
kill/2 (system) . 379
knapsack/3 (clpfd) . 451

L
label (Tk widget). 612
labeling . 527
labeling event . 519
labeling levels . 520
labeling/1 (clpb) . 412
labeling/2 (clpfd) . 466
language (prolog flag) 6, 21, 179, 262
large integer . 13
last (order_resource/2 option) 469
last call optimization . 330
last clause determinacy detection 324
last/2 (lists) . 363
later_bound/2 (clpfd) 466, 467
layout term . 143
layout/1 (read_term/[2,3] option) 143
lct(order_resource/2 option) 469
leap . 13
leap (debugger command) . 82

826 SICStus Prolog

leash/0 (debugger condition) 126
leash/1 . 78, 210
leashing . 13
Leave (Tk event type) . 639
leaves/2 (case/4 spec) . 454
leftmost (labeling/2 option) 466
legend . 522
legend_portray/3 (fdbg) 530
length/2 . 213
levels, labeling . 520
lex_chain/[1,2] (clpfd) 465
lexical scope . 48
library . 347
library_directory/1 (user) 159
Linda . 395
linda/[0,1] (linda) . 396
linda_client/1 (linda_client) 397
linda_timeout/2 (linda_client) 398
lindex (Tcl command) . 598
line breakpoint . 37
line, end of . 163
line/1 (debugger condition) 92, 122
line/2 (debugger condition) 92, 122
line_count/2 . 161
line_position/2 . 161
linked foreign resource 13, 219, 228
linker, foreign resource . 224
linsert (Tcl command) . 598
list . 13, 45
list (Tcl command) . 598
list of variables . 522
list_queue/2 (queues) . 374
list_to_assoc/2 (assoc) 354
list_to_fdset/2 (clpfd) 476
list_to_heap/2 (heaps) . 361
list_to_ord_set/2 (ordsets) 371
list_to_tree/2 (trees) . 381
listbox (Tk widget) . 612
listing/[0,1] . 175
lists . 363
llength (Tcl command) . 598
load . 13
load context . 181
load/1 . 136
load_files/[1,2] . 67, 135
load_foreign_files/2. 224
load_foreign_resource/1 223
load_type/1 (load_files/2 option) 135
loading . 65, 135
local_stack (statistics/2 option) 182
LOCALSTKSIZE (environment) 23
locks, mutual exclusion . 239
log/1, logarithm . 167
log/2, logarithm . 167
logic programming . 1
long on Term . 733
loop, repeat . 164
lrange (Tcl command) . 598

lreplace (Tcl command) . 599
lsearch (Tcl command) . 599
lsort (Tcl command) . 599
lst (order_resource/2 option) 469

M
macro expansion . 141
main thread . 243
make_directory/1 (system) 377
make_index:make_library_index/1 349
make_library_index/1 (make_index) 349
map_assoc/[2,3] (assoc) 354
map_tree/3 (trees) . 381
mapping, character-type . 302
margin/3 (disjoint1/2 option) 462
margin/4 (disjoint2/2 option) 463
max (labeling/2 option) 466
max/1 (case/4 spec) . 454
max/1 (fd_global/3 spec) 473
max/2, maximum value . 166
max_arity (prolog flag, volatile) 179
max_assoc/3 (assoc) . 353
max_depth/1 (write_term/[2,3] option) 146
max_integer (prolog flag, volatile) 179
max_inv/1 (debugger condition) 107, 124
max_list/2 (lists) . 363
max_path/5 (ugraphs) . 384
max_path/5 (wgraphs) . 388
maximize/1 (clpqr) . 420
maximize/1 (labeling/2 option) 468
maximize/2 (clpfd) . 466
member/2 (lists) . 363
memberchk/2 (lists) . 363
memory (statistics/2 option) 182
memory, address-constrained 276
menu (Tk widget) . 612
menubutton (Tk widget) . 612
message (Tk widget) . 613
message delegation . 552
message sending . 552
message, introductory . 215
message_hook/3 (user) . 199
messages, debugging . 80
messages, suppressing . 173
meta-call . 14
meta-logical predicate 14, 183
meta-predicate . 14
meta-predicate declaration 62, 70
meta_predicate/1 (declaration) 62, 70
method . 547
method, dynamic . 557
method/3 (Java method identifier) 712
method_expansion/3 (user) 548
methods/1 (utility method) 565
min (labeling/2 option) 466
min/1 (case/4 spec) . 454
min/1 (fd_global/3 spec) 473

Book Index 827

min/2, minimum value . 166
min_assoc/3 (assoc) . 353
min_integer (prolog flag, volatile) 179
min_list/2 (lists) . 364
min_of_heap/[3,5] (heaps) 361, 362
min_path/5 (ugraphs) . 384
min_path/5 (wgraphs) . 388
min_paths/3 (ugraphs) . 384
min_paths/3 (wgraphs) . 388
min_tree/3 (ugraphs) . 385
min_tree/3 (wgraphs) . 389
minimize/1 (clpqr) . 420
minimize/1 (labeling/2 option) 468
minimize/2 (clpfd) . 466
minmax/1 (case/4 spec) . 454
minmax/1 (fd_global/3 spec) 473
mixing C/C++ and Prolog 217
mktemp/2 (system) . 379
mod/2, integer modulus . 165
mod_time/1 (file_property/2 property) 378
mode declaration . 71
mode spec . 5, 14
mode, WCX . 303
mode/1 (debugger condition) 96, 123, 125
mode/1 (declaration) . 71
mode/1 (stream property) 161
module . 14
module (load_context/2 key) 182
module declaration . 71
module name expansion 5, 14, 61, 71
module system . 59
module, hidden . 60
module, object . 566
module, source . 17, 59
module, type-in . 19, 59, 181
module-file . 14, 60
module/1 . 176
module/1 (debugger condition) 121
module/2 (declaration) 60, 71
module/3 (declaration) 60, 71
most general unifier . 51
Motion (Tk event type) . 639
msb/1, most significant bit 166
multifile declaration . 66, 68
multifile predicate . 14
multifile/1 (declaration) 68
multiple inheritance . 555
mutable . 742
mutable term . 14, 188
mutex . 239
mutual exclusion locks . 239

N
name auto-generation . 521
name clash . 14
name variable (debugger command) 526
name/1 (tk_new/2 option) 649

name/2 . 185

names of terms . 521, 524

nan/0, not-a-number . 167

neighbors/3 (ugraphs) . 384

neighbors/3 (wgraphs) . 388

neighbours/3 (ugraphs) . 384

neighbours/3 (wgraphs) . 388

nested execution . 31

network path . 134

new/1 (object method) . 560

new/1 (object method) . 563

new/2 (object method) . 560

new/2 (object method) . 563

new_array/1 (arrays) . 351

newProlog on Jasper . 707

newProlog on SICStus . 708

nextSolution on SPQuery 704

nextto/3 (lists) . 364

nl/[0,1] . 152

no_doubles/1 (lists) . 364

nodebug (debugger command) 85

nodebug/0 . 79, 210

noexpand/0 (clpqr) . 439

nofileerrors/0 . 163

nogc/0 . 215

non-backtraced tests . 120

non-terminal . 787

non_member/2 (lists) . 364

nondeterminacy, declaring 326

nondeterminacy, finding . 325

none/1 (case/4 spec) . 454

nonvar/1 . 184

nospy this (debugger command) 85

nospy/1 . 80, 210

nospyall/0 . 80, 210

notation . 5

notify_constrained/1 (chr) 504

notrace/0 . 79, 210

now/1 (system) . 377

nozip/0 . 79, 210

nth/[3,4] (lists) . 364

nth0/[3,4] (lists) . 364

null/0 (exec/3 stream spec) 378

number/1 . 184

number_chars/2 . 187

number_codes/2 . 186

number_to_chars/[2,3] (charsio) 691

numbervars/1 (write_term/[2,3] option) . . . 146

numbervars/3 . 213

828 SICStus Prolog

O
object . 547
Object . 741
object (built-in object) 563
object attributes . 566
object hierarchy . 554
object instances . 567
object module . 566
object, dynamic 547, 557, 559
object, generic . 550, 569
object, parameterized 550, 569
object, static . 547, 557
object-oriented programming 547
object/1 (object method) 563
objects/1 (utility method) 565
occurs-check . 14, 52, 367
off (debug flag value) . 178
off (debugging flag value) 178
off (gc_trace flag value) 179
off/0 (debugger mode control) 128
on/1 (all_different/2 option) 457
on/1 (all_distinct/2 option) 457
on/1 (assignment/3 option) 458
on/1 (case/4 spec) . 454
on_exception/3 . 173
once/1 . 171
one-char atom . 14
op/3 . 54, 214, 797
open (Tcl command) . 606
open/[3,4] . 159
open_chars_stream/2 (charsio) 692
open_null_stream/1 . 161
openQuery on SICStus . 704
operating system . 377
operator . 14
operator declaration . 68
operator, infix . 54
operator, postfix . 54
operator, prefix . 54
operators . 54, 214, 797
optimization, last call . 330
or_cast/2 (utility method) 565
ord_add_element/3 (ordsets) 371
ord_del_element/3 (ordsets) 371
ord_disjoint/2 (ordsets) 371
ord_intersect/2 (ordsets) 371
ord_intersection/[2,3,4] (ordsets) 371
ord_list_to_assoc/2 (assoc) 354
ord_member/2 (ordsets) . 372
ord_seteq/2 (ordsets) . 372
ord_setproduct/3 (ordsets) 372
ord_subset/2 (ordsets) . 372
ord_subtract/3 (ordsets) 372
ord_symdiff/3 (ordsets) 372
ord_union/[2,3,4] (ordsets) 372
order, standard . 168
order_resource/2 (clpfd) 469
ordered sets . 371

ordering/1 (clpqr) . 421, 431
otherwise/0 . 171
out (debugger command) . 83
out/1 (linda_client) . 398
output . 131
output stream, current . 132
output/0 (stream property) 161
overflow (FD flag) . 473
overriding, inheritance by 547

P
pair. 15
parameter, accumulating . 331
parameterized object 550, 569
parent . 15
parent goal . 53
parent_clause/1 (debugger condition) . . 93, 122
parent_clause/2 (debugger condition) . . 93, 122
parent_clause/3 (debugger condition) . . 93, 123
parent_inv/1 (debugger condition) 107, 121
parent_pred/1 (debugger condition) 92, 123
parent_pred/2 (debugger condition) 92, 123
partner constraint . 500
path, file search . 133, 159
path, network . 134
path/3 (ugraphs) . 384
path/3 (wgraphs) . 388
path_consistency/1 (cumulative/5 option)

. 460
path_consistency/1 (serialized/3 option)

. 460
peek_byte/[1,2] . 153
peek_char/[1,2] . 153
peek_code/[1,2] . 153
permission_error/[3,5] (error class) 174
permutation/2 (lists) . 364
phrase/[2,3] . 142
pid/1 (system) . 379
pipe/1 (exec/3 stream spec) 378
placement of cut . 321
plain spypoint . 79, 87
PO file . 16
PO File . 67
popen/3 (system) . 379
port . 15
port debugger . 76
port, debugger . 123
port/1 (debugger condition) 94, 123
port/1 (start/1 option) 728
portray/1 (clpqr) . 443
portray/1 (user) . 145
portray_clause/[1,2]. 145
portray_message/2 (user) 199
portrayed/1 (write_term/[2,3] option) 146
position, stream . 18
position/1 (stream property) 162
postfix operator . 54

Book Index 829

posting constraints . 447
pre-linked foreign resource . 15
pre-linked resource . 219
precedence . 15
precedences/1 (cumulative/5 option) 459
precedences/1 (serialized/3 option) 459
pred/1 (debugger condition) 87, 121
predicate . 15, 47, 48
predicate (profile_data/4 resolution) 212
predicate declaration . 68
predicate spec . 15
predicate spec, generalized . 11
predicate, built-in . 8, 48
predicate, dynamic . 10
predicate, exported . 59
predicate, extendible. 12, 131
predicate, FD . 465, 482
predicate, foreign . 11
predicate, hook . 12, 68, 131
predicate, hookable . 12, 131
predicate, imported . 59
predicate, meta-logical 14, 183
predicate, multifile . 14
predicate, private . 59
predicate, public . 59
predicate, static . 18
predicate, undefined 29, 175, 181
predicate_property/2. 176
predicates debugging, CHR 507
predicates, breakpoint handling 116
predicates, debugging . 77
prefix operator . 54
prefix/2 (lists) . 364
print (debugger command) 84
print/[1,2] . 145
print/0 (debugger show control) 127
print_message/2 . 198
print_message_lines/3 . 199
priority queues . 361
priority/1 (write_term/[2,3] option) 147
private predicate . 59
private/1 (debugger condition) 108, 124
proc (Tcl command) . 607
procedural semantics . 50
procedure . 15
procedure box . 16, 75
procedure call . 51
procedure definition . 51
proceed/0 (debugger command control) 127
proceed/2 (debugger command control) 127
process communication 391, 395
processing, breakpoint . 118
profile_data/4 . 212
profile_reset/1 . 213
profiledcode . 16
profiledcode (compiling flag value) . . . 65, 177
profiling . 16, 687
profiling, execution . 211

ProgID . 741
program . 16, 47
program (statistics/2 option) 183
program state . 31, 175
programming in logic . 1
programming, access driven 561
programming, object-oriented 547
project_attributes/2 (Module) 357
projecting_assert/1 (clpqr) 422
Prolog flag . 177, 181
prolog_flag/[2,3] . 177, 181
prolog_load_context/2 . 181
PrologCloseQuery (VB function) 761
PrologDeInit (VB function) 762
PrologGetException (VB function) 762
PrologGetLong (VB function) 762
PrologGetString (VB function) 762
PrologGetStringQuoted (VB function) 762
PROLOGINCSIZE (environment) 23
PrologInit (VB function) 762
PROLOGINITSIZE (environment) 23
PROLOGKEEPSIZE (environment) 23
PROLOGMAXSIZE (environment) 23
PrologNextSolution (VB function) 761
PrologOpenQuery (VB function) 761
PrologQueryCutFail (VB function) 762
PrologSession on PrologSession 730, 731
prompt/2 . 215
propagating indexicals . 480
propagation CHR . 495
prototype . 547
prototype, function . 6
prune/1 (case/4 spec) . 454
prune/1 (cumulatives/3 option) 461
prunings (fd_statistics/2 option) 469
public declaration . 71
public predicate . 59
public/1 (declaration) . 71
put/[1,2] . 153
put_assoc/4 (assoc) . 354
put_atts/2 (Module) . 355
put_byte/[1,2] . 153
put_char/[1,2] . 153
put_code/[1,2] . 153
put_label/[4,5] (trees) 381
puts (Tcl command) . 607

Q
QL file . 16
QL File . 67
qskip/1 (debugger mode control) 128
quasi-skip (debugger command) 83
query . 16, 22, 25
query identifier . 748
query on SICStus . 702, 703
query, floundered . 11
query_abbreviation/3 (SU_messages) 207

830 SICStus Prolog

query_class/5 (SU_messages) 207
query_class_hook/5 (user) 207
query_hook/6 (user) . 207
query_input/3 (SU_messages) 208
query_input_hook/3 (user) 208
query_map/4 (SU_messages) 208
query_map_hook/4 (user) 208
QueryAnswer on PrologSession 731, 732
queryCutFail on SICStus 703, 704
queue/2 (queues) . 373
queue_head/3 (queues) . 373
queue_head_list/3 (queues) 373
queue_last/3 (queues) . 373
queue_last_list/3 (queues) 373
queue_length/2 (queues) 374
queues . 373
quiet (syntax_errors flag value) 180
quoted/1 (write_term/[2,3] option) 146

R
radiobutton (Tk widget) 613
raise exception (debugger command) 86
raise_exception/1 . 173
random numbers . 375
random/[1,3] (random) . 375
random_ugraph/3 (ugraphs) 385
random_wgraph/4 (wgraphs) 389
randseq/3 (random) . 375
randset/3 (random) . 375
range_to_fdset/2 (clpfd) 476
rd/[1,2] (linda_client) 398
rd_noblock/1 (linda_client) 398
reachable/3 (ugraphs) . 385
reachable/3 (wgraphs) . 389
read (open/[3,4] mode) . 159
read (Tcl command) . 606
read/[1,2] . 142
read_from_chars/2 (charsio) 692
read_line/[1,2] . 153
read_term/[2,3] . 142
read_term_from_chars/3 (charsio) 692
reading in . 24
reconsult . 129
reconsult/1 . 136
recorda/3 . 191
recorded/3 . 191
recordz/3 . 191
recursion . 16
red cut . 53
redefine_warnings (prolog flag) . . 61, 135, 180,

254
redo (leashing mode) . 78
redo/0 (debugger port value) 123
redo/1 (debugger command control) 128
reduce/2 (ugraphs) . 384
reduce/2 (wgraphs) . 388
reexit/1 (debugger command control) 128

reference, database . 10, 190
reference, term . 217
regexp (Tcl command) . 603
region. 16
register_event_listener/[2,3] (prologbeans)

. 729
register_query/[2,3] (prologbeans) 729
register_query/1 . 729
regsub (Tcl command) . 604
reification . 449
reject (top-level command) 26
relation/3 (clpfd) . 453
relative_to/1 (absolute_file_name/3 option)

. 156
rem/2, integer remainder 165
remove this (debugger command) 85
remove_attribute_prefixes/1 (xml_parse/3

option) . 586
remove_breakpoints/1 104, 117, 211
remove_constraint/1 (chr) 504
remove_duplicates/2 (lists) 365
rename_file/2 (system) . 379
repeat loop . 164
repeat/0 . 172
reposition/1 (open/4 option) 160
representation_error/[1,3] (error class)

. 175
require/1 . 137
reset (open/4 eof_action value) 160
reset printdepth (debugger command). 86
reset printdepth (top-level command) 26
reset subterm (debugger command) 86
reset subterm (top-level command) 27
resource, data . 261
resource, dynamic . 219
resource, foreign . 11, 219
resource, linked foreign . 13
resource, pre-linked . 219
resource, static . 219
resource/1 (cumulative/5 option) 459
resource/1 (serialized/3 option) 459
resource_error/[1,2] (error class) 175
restart/0 (utility method) 565
restore/1 . 31, 215
restoring . 31
resumptions (fd_statistics/2 option) 469
retract/1 . 190
retract/1 (object method) 564
retractall/1 . 190
retractall/1 (object method) 564
retracted clause. 189
retry (debugger command) 83
retry/1 (debugger command control). 128
return (Tcl command) . 609
reverse/2 (lists) . 365
rewriting, syntactic . 133
round/1, function . 166
rule . 16, 47

Book Index 831

rule, computation . 51
rule, constraint handling . 495
rule, grammar . 137
rule, search . 51
running . 21
runtime (statistics/2 option) 183
runtime kernel . 17
runtime system . 5, 17, 254
runtime system, extended . 10

S
same_length/[2,3] (lists) 365
sat/1 (clpb). 412
save_files/2 . 32, 214
save_modules/2 . 32, 214
save_predicates/2 . 32, 215
save_program/[1,2] . 31, 215
saved state . 31
saved-state . 17
saving . 31
scalar_product/4 (clpfd) 450
scale (Tk widget). 613
scan (Tcl command) . 603
scollbar (Tk widget) . 613
scope, lexical . 48
search rule . 51
see/1 . 163
seeing/1 . 163
seek/4 . 162
seen/0 . 163
select/3 (lists) . 365
selector . 521
selector, subterm . 18, 27, 93
self . 552
self/1 (inlined method) 562
self/1 (object method) . 563
semantics . 17
semantics of dynamic code 189
semantics, declarative . 49
semantics, procedural . 50
sending, message . 552
sentence . 17, 47, 65, 787
sequence, escape . 10, 178, 794
serialized/[2,3] (clpfd) 459
servlet . 725
session_gc_timeout/1 (start/1 option) 728
session_get/4 (prologbeans) 729
session_put/3 (prologbeans) 729
session_timeout/1 (start/1 option) 728
set (Tcl command). 596
set printdepth (debugger command) 86
set printdepth (top-level command) 26
set subterm (debugger command) 86
set subterm (top-level command) 27
set, character . 23, 790
set, character code . 302
set, FD . 475

set/1 (inlined method) . 562
set/1 (object method) . 564
set_input/1 . 160
set_output/1 . 161
set_prolog_flag/2 . 177
set_stream_position/2 . 162
setof/3 . 193
setrand/1 (random) . 375
sets, ordered . 371
setting a breakpoint . 37
shallow failure . 212
shallow_fails (profile_data/4 option) 212
shell/[0,1,2] (system) . 379
show/1 (debugger condition) 96, 124, 125
shutdown/[0,1] (prologbeans) 728
shutdown_server/0 (linda_client) 397
side-effect . 17
SIG DFL . 245
SIG ERR . 245
SIG IGN . 245
sigaction . 244
SIGBREAK . 244
SIGCHLD . 244
SIGCLD . 244
SIGINT . 244
sign/1 . 166
signal . 244
signal handling . 243
SIGUSR1 . 244
SIGUSR2 . 244
SIGVTALRM . 244
silent/0 (debugger show control) 127
simpagation CHR . 495
simple term . 17
simple/1 . 184
SimpleCallSpec . 742
simplification CHR . 495
sin/1, function . 167
single_var_warnings (prolog flag) . . . 135, 180,

254
singletons/1 (read_term/[2,3] option) 143
sinh/1, function . 167
size/1 (file_property/2 property) 378
skip (debugger command) . 83
skip/[1,2] . 153
skip/1 (debugger mode control) 128
skip_line/[0,1] . 153
sleep/1 (system) . 379
small integer . 17
socket/2 (sockets) . 391
socket_accept/[2,3] (sockets) 391
socket_bind/2 (sockets) 391
socket_buffering/4 (sockets) 392
socket_close/1 (sockets) 391
socket_connect/3 (sockets) 391
socket_listen/2 (sockets) 391
socket_select/[5,6] (sockets) 392, 393
sockets . 391

832 SICStus Prolog

solutions, all . 193
solutions/1 (absolute_file_name/3 option)

. 156
sort/2 . 170
sorting/3 (clpfd) . 462
source (load_context/2 key) 182
source (Tcl command) . 611
source code. 17
source information . 36, 180
source module . 17, 59
source/1 (fd_global/3 option) 473
source/sink . 131
source_file/[1,2] . 137
source_info (prolog flag, volatile). . . . 36, 92,

180
SP_AllocHook() (C function) 276
SP_APP_DIR (environment) 24
SP_atom (C type) . 7, 239
SP_atom_from_string() (C function) 232
SP_atom_length() (C function) 232
SP_calloc() (C function) 238
SP_chdir() (C function) 239
SP_close_query() (C function) 243
SP_code_wci() (C function) 315
SP_compare() (C function) 238
SP_cons_functor() (C function) 233
SP_cons_list() (C function) 233
SP_continue() (C function) 245
SP_CSETLEN (environment) 23
SP_CTYPE (environment) . 23
SP_cut_query() (C function) 243
SP_define_c_predicate() (C function) 229
SP_DeinitAllocHook() (C function) 276
SP_deinitialize() (C function) 275
SP_errno (C macro) . 218
SP_ERROR (C macro) . 218
SP_error_message() (C function) 218
SP_event() (C function) 244
SP_exception_term() (C function) 246
SP_FAILURE (C macro) . 218
SP_fclose() (C function) 247
SP_fflush() (C function) 247
SP_fgetc() (C function) 247
SP_force_interactive() (C function) 275
SP_foreign_stash() (C function) 240
SP_fprintf() (C function) 247
SP_fputc() (C function) 247
SP_fputs() (C function) 247
SP_free() (C function) . 239
SP_FreeHook() (C function) 276
SP_from_os() (C function) 315
SP_get_address() (C function) 235
SP_get_arg() (C function) 235
SP_get_atom() (C function) 235
SP_get_float() (C function) 235
SP_get_functor() (C function) 235
SP_get_integer() (C function) 235
SP_get_integer_bytes() (C function) 235

SP_get_list() (C function) 235
SP_get_list_chars() (C function) 235
SP_get_list_n_bytes() (C function) 235
SP_get_list_n_chars() (C function) 235
SP_get_number_chars() (C function) 235
SP_get_string() (C function) 235
SP_getc() (C function) . 247
SP_getcwd() (C function) 239
SP_InitAllocHook() (C function) 276
SP_initialize() (C function) 275
SP_is_atom() (C function) 237
SP_is_atomic() (C function) 237
SP_is_compound() (C function) 237
SP_is_float() (C function) 237
SP_is_integer() (C function) 237
SP_is_list() (C function) 237
SP_is_number() (C function) 237
SP_is_variable() (C function) 237
SP_latin1_chartype() (C function) 315
SP_LIBRARY_DIR (environment) 24
SP_load() (C function) . 277
SP_make_stream() (C function) 249
SP_make_stream_context() (C function) 249
SP_malloc() (C function) 238
SP_MUTEX_INITIALIZER (C macro) 239
SP_mutex_lock() (C function) 239
SP_mutex_unlock() (C function) 239
SP_new_term_ref() (C function) 232
SP_next_solution() (C function) 242
SP_on_fault() (C macro) 277
SP_open_query() (C function) 242
SP_PATH (environment) 23, 217
SP_pred() (C function) . 241
SP_predicate() (C function) 241
SP_printf() (C function) 247
SP_put_address() (C function) 233
SP_put_atom() (C function) 233
SP_put_float() (C function) 233
SP_put_functor() (C function) 233
SP_put_integer() (C function) 233
SP_put_integer_bytes() (C function) 233
SP_put_list() (C function) 233
SP_put_list_chars() (C function) 233
SP_put_list_n_bytes() (C function) 233
SP_put_list_n_chars() (C function) 233
SP_put_number_chars() (C function) 233
SP_put_string() (C function) 233
SP_put_term() (C function) 232
SP_put_variable() (C function) 233
SP_putc() (C function) . 247
SP_puts() (C function) . 247
SP_qid (C type) . 242
SP_query() (C function) 242
SP_query_cut_fail() (C function) 242
SP_raise_exception() (C function) 247
SP_raise_fault() (C function) 278
SP_read_from_string() (C function) 233
SP_realloc() (C function) 238

Book Index 833

SP_register_atom() (C function) 232
SP_reinstall_signal() (C function) 245
SP_restore() (C function) 277
SP_RT_DIR (environment) . 24
SP_set_interrupt_hook() (C function) 253
SP_set_memalloc_hooks() (C function) 276
SP_set_read_hook() (C function) 253
SP_set_reinit_hook() (C function) 253
SP_set_tty() (C function) 251
SP_set_user_stream_hook() (C function) . . . 251
SP_set_user_stream_post_hook() (C function)

. 251
SP SIG DFL . 245
SP SIG ERR. 245
SP SIG IGN . 245
SP_signal() (C function) 245
SP_strdup() (C function) 239
SP_stream (C type) . 247
SP_string_from_atom() (C function) 232
SP_SUCCESS (C macro) . 218
SP term ref . 17, 217
SP_term_ref (C type) . 217
SP term ref (C type) . 231
SP_term_type() (C function) 237
SP_to_os() (C function) 315
SP_TYPE_ATOM (C macro) . 237
SP_TYPE_COMPOUND (C macro) 237
SP_TYPE_FLOAT (C macro) 237
SP_TYPE_INTEGER (C macro) 237
SP_TYPE_VARIABLE (C macro) 237
SP_ULIMIT_DATA_SEGMENT_SIZE 24
SP_unify() (C function) 238
SP_unregister_atom() (C function) 233
SP_wci_code() (C function) 314
SP_wci_len() (C function) 315
space_out/3 (spaceout) . 765
spdet, the determinacy checker 325
spec, breakpoint . 87
spec, mode . 5, 14
spec, predicate . 15
specific breakpoint . 95
specification, file . 11, 133
spld . 258
splfr . 224
split (Tcl command) . 599
spxref . 342
spy this (debugger command) 85
spy this conditionally (debugger command)

. 85
spy/[1,2]. 79, 117, 210
spypoint . 18, 75
spypoint, conditional . 87
spypoint, plain . 79, 87
spypoints, CHR . 509
sqrt/1, square root . 167
stack_shifts (statistics/2 option) 183
stand-alone executable 18, 254
standard order . 168

start/[0,1] (prologbeans) 728
startServer on SICStus . 708
state, program . 31, 175
state, saved . 31
static object . 547, 557
static predicate . 18
static resource . 219
static/0 (object method) 563
static/1 (object method) 563
static_methods/1 (utility method) 565
static_objects/1 (utility method) 565
static_sets/1 (cumulative/5 option) 460
static_sets/1 (serialized/3 option) 460
statistics/[0,2] . 182
std/0 (exec/3 stream spec) 378
step (labeling/2 option) 467
stopServer on SICStus . 708
store, consistent . 470
store, constraint . 470
store, contradictory . 470
stream . 18, 131
stream (load_context/2 key) 182
stream alias . 18, 132
stream position . 18
stream, binary . 132
stream, end of . 162
stream, text . 132
stream_code/2 . 247
stream_position/2 . 161
stream_position_data/3 161
stream_property/2 . 161
string . 18, 46
string first (Tcl command) 605
string index (Tcl command) 604
string last (Tcl command) 605
string length (Tcl command) 605
string match (Tcl command) 604
String on PrologSession 731
String on QueryAnswer . 732
String on Term . 733
string range (Tcl command) 605
string string (Tcl command) 606
string tolower (Tcl command) 605
string toupper (Tcl command) 605
string trim (Tcl command) 605
string trimright (Tcl command) 606
string, encoded . 10, 218
SU_initialize() (C function) 262
sub/1 (object method) . 556
sub/1 (object method) . 563
sub_atom/5 . 187
sublist/2 (lists) . 365
subs/1 (utility method) 565
substitute/4 (lists) . 365
subsumes/2 (terms) . 367
subsumes_chk/2 (terms) . 367
subsumption . 367
subterm selector . 18, 27, 93

834 SICStus Prolog

suffix/2 (lists) . 365
sum/3 (clpfd) . 450
sum_list/2 (lists) . 365
sup/[2,4] (clpqr) . 420
super (keyword) . 556
super/1 (object method) 563
super/2 (universal method) 554, 562
supers/1 (utility method) 565
suppressing messages . 173
switch (Tcl command) . 601
symmetric_closure/2 (ugraphs) 384
symmetric_closure/2 (wgraphs) 388
synchronization . 395
synchronization/1 (disjoint2/2 option) . . . 464
syntactic rewriting . 133
syntax . 18
syntax error . 28
syntax_error/[1,5] (error class) 174
syntax_errors (prolog flag) . . 29, 143, 174, 180
syntax_errors/1 (read_term/[2,3] option)

. 143
system encoding . 302
system encoding (of wide characters) 18
system, development . 5, 10
system, extended runtime . 10
system, module . 59
system, operating . 377
system, runtime . 5, 17, 254
system/[0,1,2] (system) 379
system_error/[0,1] (error class) 175
system_type (prolog flag, volatile) 180

T
tab/[1,2] . 154
tables, data . 323
tan/1, function . 167
tanh/1, function . 167
task_intervals/1 (cumulatives/3 option) . . 461
taut/2 (clpb) . 412
tcl_delete/1 (tcltk) 649, 683
tcl_eval/3 (tcltk) . 652, 683
tcl_event/3 (tcltk). 655, 683
tcl_new/1 (tcltk) . 648, 683
tell/1 . 163
telling/1 . 163
term . 19, 43
term comparison . 168
term conversions . 231
term I/O . 142
term names . 521, 524
Term on QueryAnswer . 732
Term on Term . 733
term reference . 217
term, atomic . 7
term, callable . 8
term, compound . 9, 43, 45
term, cyclic . 52, 143, 146

term, exception . 246
term, indexed . 402
term, layout . 143
term, mutable . 14, 188
term, simple . 17
term_expansion/[2,4] (user) 141
term_hash/[2,4] (terms) 368
term_position (load_context/2 key) 182
term_subsumer/3 (terms) 367
term_variables/2 (terms) 368
term_variables_bag/2 (terms) 368
terminating a backtracking loop 322
terms . 367
terse (gc_trace flag value) 179
test condition, breakpoint 121
test, breakpoint . 87
text (Tk widget) . 613
text stream . 132
thread, main . 243
threads . 239
threads, calling Prolog from 243
throw/1 . 173
time_out/2 (labeling/2 option) 468
time_out/3 (timeout) . 767
tk_all_events (tk_do_one_event/1 option)

. 659
tk_destroy_window/1 (tcltk) 660
tk_destroy_window/1 (tcltk) 684
tk_do_one_event/[0,1] (tcltk) 659, 684
tk_dont_wait (tk_do_one_event/1 option) . . 659
tk_file_events (tk_do_one_event/1 option)

. 659
tk_idle_events (tk_do_one_event/1 option)

. 659
tk_main_loop/0 (tcltk) . 660
tk_main_loop/0 (tcltk) . 684
tk_main_window/2 (tcltk) 660
tk_main_window/2 (tcltk) 684
tk_make_window_exist/1 (tcltk) 661, 684
tk_new/2 (tcltk) . 648, 683
tk_next_event/[2,3] (tcltk) 655
tk_next_event/[2,3] (tcltk) 660
tk_next_event/[2,3] (tcltk) 684
tk_num_main_windows/1 (tcltk) 661, 684
tk_timer_events (tk_do_one_event/1 option)

. 659
tk_window_events (tk_do_one_event/1 option)

. 659
tk_x_events (tk_do_one_event/1 option) . . . 659
TMPDIR (environment) . 23
tmpnam/1 (system) . 380
token . 787
told/0 . 163
top-level . 22
top_level_events/0 (tk_new/2 option) 649
top_sort/2 (ugraphs) . 384
top_sort/2 (wgraphs) . 388
toplevel (Tk widget) . 613

Book Index 835

toplevel_print_options (prolog flag) 27,
180, 196

touching a variable . 500
trace . 19
trace (debugging flag value) 177
trace (unknown flag value) 29, 181, 210
trace/0 . 78, 210
trace/0 (debugger mode control) 128
trail (statistics/2 option) 182
TRAILSTKSIZE (environment) 23
transitive_closure/2 (ugraphs) 384
transitive_closure/2 (wgraphs) 388
transpose/2 (ugraphs) . 384
transpose/2 (wgraphs) . 388
tree_size/2 (trees) . 381
tree_to_list/2 (trees) . 381
trees, binary. 381
trimcore/0 . 183
true/0 . 171
true/0 (debugger condition) 125
true/1 (debugger condition) 89, 125
truncate/1, function . 166
trying a CHR . 500
ttyflush/0 . 154
ttyget/1 . 154
ttyget0/1 . 154
ttynl/0 . 154
ttyput/1 . 154
ttyskip/1 . 154
ttytab/1 . 154
type-in module . 19, 59, 181
type/1 (file_property/2 property) 378
type/1 (open/4 option) . 160
type/1 (stream property) 162
type_error/[2,4] (error class) 174
typein_module (prolog flag) 181

U
ugraph . 383
ugraph_to_wgraph/2 (wgraphs) 387
unblock/0 (debugger port value) 123
unblocked goal . 19
unbound . 19
unconstrained/1 (chr) . 504
undefined predicate 29, 175, 181
undo/1 . 213
unification . 19, 51
unifier, most general . 51
unify (debugger command) 86
unify_with_occurs_check/2 213
unit clause . 19, 47
unknown (prolog flag) 29, 174, 175, 181, 209
unknown/2 . 29, 209
unknown_predicate_handler/3 (user) . . . 29, 175
unleash/0 (debugger condition) 126
unload_foreign_resource/1 224
unreachable code . 342

unregister_event_listener/1 (prologbeans)

. 730
unset (Tcl command) . 596
unweighted graphs . 383
up (labeling/2 option) . 467
update/1 (object method) 564
update_mutable/2 . 189
uplevel (Tcl command) . 609
upvar (Tcl command) . 609
use_module/[1,2,3] . 136
user . 25
user:breakpoint_expansion/2 110, 126
user:debugger_command_hook/2 111, 118, 211
user:error_exception/1 129, 211
user:file_search_path/2 133, 159
user:generate_message_hook/3 199
user:goal_expansion/3 . 141
user:library_directory/1 159
user:message_hook/3 . 199
user:method_expansion/3 548
user:portray/1 . 145
user:portray_message/2 199
user:query_class_hook/5 207
user:query_hook/6 . 207
user:query_input_hook/3 208
user:query_map_hook/4 . 208
user:term_expansion/[2,4] 141
user:unknown_predicate_handler/3 29, 175
user:user_help/0 . 216
user_error (prolog flag, volatile) . . 132, 181,

248
user_error (stream alias) 132
user_help/0 (user) . 216
user_input (prolog flag, volatile) . . 132, 181,

248
user_input (stream alias) 132
user_main() (C function) 274
user_output (prolog flag, volatile) 132,

181, 248
user_output (stream alias) 132
UTF-8 encoding . 19
utility (built-in object) 564

V
val/1 (case/4 spec) . 454
val/1 (fd_global/3 spec) 473
value/1 (labeling/2 option) 467
var/1 . 184
variable . 19, 43, 44, 742
variable, anonymous . 7, 44
variable, domain . 446
variable, instance . 573
variable, touching a . 500
variable/1 (labeling/2 option) 466
variable_names/1 (read_term/[2,3] option)

. 143
variables, attributed . 355

836 SICStus Prolog

variables, list of. 522
variables/1 (read_term/[2,3] option) 143
variant/2 (terms) . 367
vbsp, file search path . 751
verbose (gc_trace flag value) 179
verify_attributes/3 (Module) 356
version (prolog flag, volatile) 181
version/[0,1] . 215
vertices/2 (ugraphs) . 383
vertices/2 (wgraphs) . 387
vertices_edges_to_ugraph/3 (ugraphs) 383
vertices_edges_to_wgraph/3 (wgraphs) 387
view/1 (gauge) . 687
visualizer . 520
void on Bindings . 733, 734
void on PrologSession . 731
volatile . 19
volatile declaration . 69
volatile/1 (declaration) 69

W
wait/2 (system) . 380
walltime (statistics/2 option) 183
WAM . 1
warning (unknown flag value) 29, 181, 210
wcx (prolog flag, volatile) 181
WCX (Wide Character eXtension) component

. 132
WCX box . 305
WCX mode . 303
wcx/1 (load_files/2 option) 136
wcx/1 (open/4 option) . 160
wcx/1 (stream property) 162
weighted graphs . 387
wgraph . 387

wgraph_to_ugraph/2 (wgraphs) 387
when/1 (load_files/2 option) 135
when/2 . 208
while (Tcl command) . 600
wide character code . 301
wide characters . 132
windowed executable . 19
with_output_to_chars/[2,3,4] (charsio) . . 692
working_directory/2 (system) 380
wrap/2 (disjoint1/2 option) 462
wrap/4 (disjoint2/2 option) 463
write (debugger command) 84
write (open/[3,4] mode) 159
write/[1,2] . 144
write/0 (debugger show control) 127
write_canonical/[1,2] . 145
write_term/[2,3] . 146
write_term/1 (debugger show control) 127
write_term_to_chars/[3,4] (charsio) 691
write_to_chars/[2,3] (charsio) 691
writeq/[1,2] . 145

X
XEmacs . 32
xml_parse/[2,3] (xml) . 586
xml_pp/1 (xml) . 586
xml_subterm/2 (xml) . 586

Z
zip . 19
zip (debugger command) . 82
zip (debugging flag value) 178
zip/0 . 78, 210
zip/0 (debugger mode control) 128

	Introduction
	Acknowledgments
	Notational Conventions
	Keyboard Characters
	Mode Spec
	Development and Runtime Systems
	Function Prototypes
	ISO Compliance

	Glossary
	How to Run Prolog
	Getting Started
	Environment Variables

	Reading in Programs
	Inserting Clauses at the Terminal
	Queries and Directives
	Queries
	Directives

	Syntax Errors
	Undefined Predicates
	Program Execution And Interruption
	Exiting From The Top-Level
	Nested Executions---Break
	Saving and Restoring Program States
	Emacs Interface
	Installation
	Quick-Start
	Customizing Emacs
	Enabling Emacs Support for SICStus
	Enabling Emacs Support for SICStus Documentation

	Basic Configuration
	Usage
	Mode Line
	Configuration
	Tips
	Font-locking
	Auto-fill Mode
	Speed
	Changing Colors

	The Prolog Language
	Syntax, Terminology and Informal Semantics
	Terms
	Integers
	Floats
	Atoms
	Variables
	Compound Terms

	Programs

	Declarative Semantics
	Procedural Semantics
	Occurs-Check
	The Cut Symbol
	Operators
	Syntax Restrictions
	Comments

	The Module System
	Basic Concepts
	Module Prefixing
	Defining Modules
	Importation
	Module Name Expansion
	Meta-Predicate Declarations

	Loading Programs
	Predicates that Load Code
	Declarations
	Multifile Declarations
	Dynamic Declarations
	Volatile Declarations
	Discontiguous Declarations
	Block Declarations
	Meta-Predicate Declarations
	Module Declarations
	Public Declarations
	Mode Declarations
	Include Declarations

	Initializations
	Considerations for File-To-File Compilation

	Debugging
	The Procedure Box Control Flow Model
	Basic Debugging Predicates
	Plain Spypoints
	Format of Debugging Messages
	Commands Available during Debugging
	Advanced Debugging --- an Introduction
	Creating Breakpoints
	Processing Breakpoints
	Breakpoint Tests
	Specific and Generic Breakpoints
	Breakpoint Actions
	Advice-points
	Built-in Predicates for Breakpoint Handling
	Accessing Past Debugger States
	Storing User Information in the Backtrace
	Hooks Related to Breakpoints
	Programming Breakpoints

	Breakpoint Handling Predicates
	The Processing of Breakpoints
	Breakpoint Conditions
	Tests Related to the Current Goal
	Tests Related to Source Information
	Tests Related to the Current Port
	Tests Related to the Break Level
	Other Conditions
	Conditions Usable in the Action Part
	Options for Focusing on a Past State
	Condition Macros
	The Action Variables

	Consulting during Debugging
	Catching Exceptions

	Built-In Predicates
	Input / Output
	Reading-in Programs
	Term and Goal Expansion
	Input and Output of Terms
	Character Input/Output
	Stream I/O
	DEC-10 Prolog File I/O
	An Example

	Arithmetic
	Comparison of Terms
	Control
	Error and Exception Handling
	Information about the State of the Program
	Meta-Logic
	Modification of Terms
	Modification of the Program
	Internal Database
	Blackboard Primitives
	All Solutions
	Messages and Queries
	Message Processing
	Phases of Message Processing
	Message Generation Phase
	Message Printing Phase

	Message Handling Predicates
	Query Processing
	Query Classes
	Phases of Query Processing
	Hooks in Query Processing
	Default Input Methods
	Default Map Methods
	Default Query Classes

	Query Handling Predicates

	Coroutining
	Debugging
	Execution Profiling
	Miscellaneous

	Mixing C/C++ and Prolog
	Notes
	Calling C from Prolog
	Foreign Resources
	Conversion Declarations
	Conversions between Prolog Arguments and C Types
	Interface Predicates
	The Foreign Resource Linker
	Customizing splfr under UNIX

	Creating Dynamic Linked Foreign Resources Manually under UNIX
	Init and Deinit Functions
	Creating the Linked Foreign Resource
	An Alternative Way to Define C Predicates

	Calling C++ from Prolog
	Support Functions
	Creating and Manipulating SP_term_refs
	Creating Prolog Terms
	Accessing Prolog Terms
	Testing Prolog Terms
	Unifying and Comparing Terms
	Operating System Services
	Memory Allocation
	File System
	Threads

	Miscellaneous

	Calling Prolog from C
	Finding One Solution of a Call
	Finding Multiple Solutions of a Call
	Calling Prolog Asynchronously
	Signal Handling

	Exception Handling in C

	SICStus Streams
	Prolog Streams
	Defining a New Stream
	Low Level I/O Functions
	Installing a New Stream
	Internal Representation

	Hookable Standard Streams
	Writing User-stream Hooks
	Writing User-stream Post-hooks
	User-stream Hook Example

	Hooks
	Stand-alone Executables
	Runtime Systems
	Runtime Systems on Target Machines
	Runtime Systems on UNIX Target Machines
	Runtime Systems on Windows Target Machines

	The Application Builder
	Customizing spld under UNIX
	All-in-one Executables
	Examples

	User-defined Main Programs
	Initializing the Prolog Engine
	Loading Prolog Code

	Generic Runtime Systems under Windows

	Examples
	Train Example (connections)
	I/O on Lists of Character Codes
	Exceptions from C
	Stream Example

	Interfacing .NET and Java
	Multiple SICStus Run-Times in a Process
	Memory Considerations
	Multiple SICStus Run-Times in Java
	Multiple SICStus Run-Times in C
	Using a Single SICStus Run-Time
	Using More than One SICStus Run-Time

	Foreign Resources and Multiple SICStus Run-Times
	Foreign Resources Supporting Only One SICStus Run-Time
	Foreign Resources Supporting Multiple SICStus Run-Times
	Simplified Support for Multiple SICStus Run-Times
	Full Support for Multiple SICStus Run-Times

	Multiple Run-Times and Threads

	Handling Wide Characters
	Introduction
	Concepts
	Summary of Prolog Level WCX features
	Selecting the WCX Mode Using Environment Variables
	Selecting the WCX Mode Using Hooks
	Summary of WCX Features in the Foreign Interface
	Summary of Wcx-Related Features in the Libraries
	WCX Related Utility Functions
	Representation of EUC Wide Characters
	A Sample Wide Character Extension (WCX) Box

	Writing Efficient Programs
	Overview
	The Cut
	Overview
	Making Predicates Determinate
	Placement of Cuts
	Terminating a Backtracking Loop

	Indexing
	Overview
	Data Tables
	Determinacy Detection

	Last Clause Determinacy Detection
	The Determinacy Checker
	Using the Determinacy Checker
	Declaring Nondeterminacy
	Checker Output
	Example
	Options
	What is Detected

	Last Call Optimization
	Accumulating Parameters
	Accumulating Lists

	Building and Dismantling Terms
	Conditionals and Disjunction
	Programming Examples
	Simple List Processing
	Family Example (descendants)
	Association List Primitives
	Differentiation
	Use of Meta-Logical Predicates
	Use of Term Expansion
	Prolog in Prolog
	Translating English Sentences into Logic Formulae

	The Cross-Referencer
	Introduction
	Basic Use
	Practice and Experience

	The SICStus Tools
	The Prolog Library
	Array Operations
	Association Lists
	Attributed Variables
	Heap Operations
	List Operations
	Term Utilities
	Ordered Set Operations
	Queue Operations
	Random Number Generator
	Operating System Utilities
	Updatable Binary Trees
	Unweighted Graph Operations
	Weighted Graph Operations
	Socket I/O
	Linda---Process Communication
	Server
	Client

	External Storage of Terms (Berkeley DB)
	Basics
	Current Limitations
	Berkeley DB
	The DB-Spec---Informal Description
	Predicates
	Conventions
	The Environment
	Memory Leaks
	The Predicates

	An Example Session
	The DB-Spec
	Exporting and importing a database

	Boolean Constraint Solver
	Solver Interface
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Constraint Logic Programming over Rationals or Reals
	Introduction
	Referencing this Software
	Acknowledgments

	Solver Interface
	Notational Conventions
	Solver Predicates
	Unification
	Feedback and Bindings

	Linearity and Nonlinear Residues
	How Nonlinear Residues Are Made to Disappear
	Isolation Axioms

	Numerical Precision and Rationals
	Projection and Redundancy Elimination
	Variable Ordering
	Turning Answers into Terms
	Projecting Inequalities

	Why Disequations
	Syntactic Sugar
	Monash Examples
	Compatibility Notes

	A Mixed Integer Linear Optimization Example
	Implementation Architecture
	Fragments and Bits
	Rationals
	Partial Evaluation, Compilation
	Asserting with Constraints

	Bugs

	Constraint Logic Programming over Finite Domains
	Introduction
	Referencing this Software
	Acknowledgments

	Solver Interface
	Posting Constraints
	A Constraint Satisfaction Problem
	Reified Constraints

	Available Constraints
	Arithmetic Constraints
	Membership Constraints
	Propositional Constraints
	Combinatorial Constraints
	User-Defined Constraints

	Enumeration Predicates
	Statistics Predicates
	Answer Constraints
	The Constraint System
	Definitions
	Pitfalls of Interval Reasoning

	Defining Global Constraints
	The Global Constraint Programming Interface
	Reflection Predicates
	FD Set Operations
	A Global Constraint Example

	Defining Primitive Constraints
	Indexicals
	Range Expressions
	Term Expressions
	Monotonicity of Indexicals
	FD Predicates
	Execution of Propagating Indexicals
	Execution of Checking Indexicals
	Goal Expanded Constraints

	Example Programs
	Send More Money
	N Queens
	Cumulative Scheduling

	Syntax Summary
	Syntax of Indexicals
	Syntax of Arithmetic Expressions
	Operator Declarations

	Constraint Handling Rules
	Copyright
	Introduction
	Introductory Examples
	CHR Library
	Loading the Library
	Declarations
	Constraint Handling Rules, Syntax
	How CHR Work
	Pragmas
	Options
	Built-In Predicates
	Consulting and Compiling Constraint Handlers
	Compiler-Generated Predicates
	Operator Declarations
	Exceptions

	Debugging CHR Programs
	Control Flow Model
	CHR Debugging Predicates
	CHR Spypoints
	CHR Debugging Messages
	CHR Debugging Options

	Programming Hints
	Constraint Handlers
	Backward Compatibility

	Finite Domain Constraint Debugger
	Introduction
	Concepts
	Events
	Labeling Levels
	Visualizers
	Names of Terms
	Selectors
	Name Auto-Generation
	Legend
	The fdbg_output Stream

	Basics
	FDBG Options
	Naming Terms
	Built-In Visualizers
	New Debugger Commands
	Annotating Programs
	An Example Session

	Advanced Usage
	Customizing Output
	Writing Visualizers
	Writing Legend Printers
	Showing Selected Constraints (simple version)
	Showing Selected Constraints (advanced version)
	Debugging Global Constraints
	Code of the Built-In Visualizers

	SICStus Objects
	Getting Started
	Declared Objects
	Object Declaration
	Method Declarations
	Generic Objects for Easy Reuse

	Self, Message Sending, and Message Delegation
	Object Hierarchies, Inheritance, and Modules
	Inheritance
	Differential Inheritance
	Use of Modules
	Super and Sub
	The Keyword Super
	Semantic Links to Other Objects
	Dynamically Declared Objects
	Dynamic Methods
	Inheritance of Dynamic Behavior

	Creating Objects Dynamically
	Object Creation
	Method Additions
	Parameter Passing to New Objects

	Access Driven Programming---Daemons
	Instances
	Built-In Objects and Methods
	Universal Methods
	Inlined Methods
	The Proto-Object "object"
	The built-in object "utility"

	Expansion to Prolog Code
	The Inheritance Mechanism
	Object Attributes
	Object Instances
	The Object Declaration
	The Method Code
	Parameter Transfer

	Examples
	Classification of Birds
	Inheritance and Delegation
	Prolog++ programs

	The PiLLoW Web Programming Library
	Parsing and Generating XML
	Tcl/Tk Interface
	Introduction
	What Is Tcl/Tk?
	What Is Tcl/Tk Good For?
	What Is Tcl/Tks Relationship to SICStus Prolog?
	A Quick Example of Tcl/Tk in Action
	hello world
	telephone book

	Outline of This Tutorial

	Tcl
	Syntax
	Variable Substitution
	Command Substitution
	Backslash Substitution
	Delaying Substitution
	Double-Quotes

	Variables
	Commands
	Notation
	Commands to Do with Variables
	Expressions
	Lists
	Control Flow
	Commands over Strings
	File I/O
	User Defined Procedures
	Global Variables
	source

	What We Have Left Out

	Tk
	Widgets
	Types of Widget
	Widgets Hierarchies
	Widget Creation
	label
	message
	button
	checkbutton
	radiobutton
	entry
	scale
	listbox
	scrollbar
	frame
	toplevel
	menu
	menubutton
	canvas
	text

	Geometry Managers
	pack
	grid
	place

	Event Handling
	Miscellaneous
	What We Have Left Out
	Example pure Tcl/Tk program

	The Tcl/Tk Prolog Library
	How it Works - An Overview
	Basic Functions
	Loading the Library
	Creating a Tcl Interpreter
	Creating a Tcl Interpreter Extended with Tk
	Removing a Tcl Interpreter

	Evaluation Functions
	Command format
	Evaluating Tcl Expressions from Prolog
	Evaluating Prolog Expressions from Tcl

	Event Functions
	Evaluate a Tcl Expression And Get Prolog Events
	Adding events to the Prolog event queue
	An example

	Servicing Tcl and Tk events
	Passing Control to Tk
	Housekeeping functions
	Summary

	Putting It All Together
	Tcl The Master, Prolog The Slave
	Prolog The Master, Tk The Slave
	Prolog And Tcl Interact through Prolog Event Queue
	The Whole 8-Queens Example

	Quick Reference
	Command Format Summary
	Predicates for Prolog to Interact with Tcl Interpreters
	Predicates for Prolog to Interact with Tcl Interpreters with Tk Extensions
	Commands for Tcl Interpreters to Interact with The Prolog System

	Resources
	Web Sites
	Books
	Manual Pages
	Usenet News Groups

	The Gauge Profiling Tool
	I/O on Lists of Character Codes
	Jasper Java Interface
	Jasper Overview
	Getting Started
	Calling Prolog from Java
	Single Threaded Example
	Multi Threaded Example
	Another Multi Threaded Example (Prolog Top Level)

	Jasper Package Class Reference
	Java Exception Handling
	SPTerm and Memory
	Lifetime of SPTerms and Prolog Memory
	Preventing SPTerm Memory Leaks

	Java Threads
	The Jasper Library
	Jasper Method Call Example
	Jasper Library Predicates
	Conversion between Prolog Arguments and Java Types
	Global vs. Local References
	Handling Java Exceptions
	Deprecated Jasper API
	Deprecated Argument Conversions
	Deprecated Jasper Predicates

	PrologBeans Interface
	Introduction
	Features
	A First Example
	Prolog Server Interface
	Java Client Interface
	Java Examples
	Embedding Prolog in Java Applications
	Application Servers
	Configuring Tomcat for PrologBeans

	.NET Client Interface
	.NET Examples
	C# Examples
	.NET Embedding
	ASPX Servers Pages

	Visual Basic Example

	COM Client
	Preliminaries
	Terminology
	Predicate Reference
	Examples

	The Visual Basic Interface
	Overview
	How to Call Prolog from Visual Basic
	Opening and Closing a Query
	Finding the Solutions of a Query
	Retrieving Variable Values
	Evaluating a Query with Side-Effects
	Handling Exceptions in Visual Basic

	How to Use the Interface
	Setting Up the Interface
	Initializing the Prolog Engine From VB
	Deinitializing the Prolog Engine From VB
	Loading the Prolog Code

	Examples
	Example 1 - Calculator
	Example 2 - Train
	Example 3 - Queens

	Summary of the Interface Functions

	Glue Code Generator
	Meta-Call with Limit on Memory Use
	Meta-Call with Timeout
	Summary of Built-In Predicates
	Full Prolog Syntax
	Notation
	Syntax of Sentences as Terms
	Syntax of Terms as Tokens
	Syntax of Tokens as Character Strings
	iso Execution Mode Rules
	sicstus Execution Mode Rules

	Escape Sequences
	Notes

	Standard Operators
	References
	Predicate Index
	SICStus Objects Method Index
	Keystroke Index
	Book Index

