SICStus Prolog User’s Manual

by the Intelligent Systems Laboratory

Swedish Institute of Computer Science
PO Box 1263
SE-164 29 Kista, Sweden

Release 3.10.0
December 2002

Swedish Institute of Computer Science
sicstus-request@sics.se http://www.sics.se/sicstus/

mailto:sicstus-request@sics.se
http://www.sics.se/sicstus/

Copyright (©) 1995-2002 SICS

Swedish Institute of Computer Science
PO Box 1263
SE-164 29 Kista, Sweden

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by SICS.

Introduction 1

Introduction

Prolog is a simple but powerful programming language developed at the University of Mar-
seille [Roussel 75], as a practical tool for programming in logic [Kowalski 74]. From a user’s
point of view the major attraction of the language is ease of programming. Clear, readable,
concise programs can be written quickly with few errors.

For an introduction to programming in Prolog, readers are recommended to consult [Sterling
& Shapiro 86]. However, for the benefit of those who do not have access to a copy of this
book, and for those who have some prior knowledge of logic programming, a summary of
the language is included. For a more general introduction to the field of Logic Programming
see [Kowalski 79]. See Chapter 4 [Prolog Intro], page 43.

This manual describes a Prolog system developed at the Swedish Institute of Computer
Science. Parts of the system were developed by the project “Industrialization of SICStus
Prolog” in collaboration with Ericsson Telecom AB, NobelTech Systems AB, Infologics AB
and Televerket. The system consists of a WAM emulator written in C, a library and runtime
system written in C and Prolog and an interpreter and a compiler written in Prolog. The
Prolog engine is a Warren Abstract Machine (WAM) emulator [Warren 83]. Two modes
of compilation are available: in-core i.e. incremental, and file-to-file. When compiled, a
predicate will run about 8 times faster and use memory more economically. Implementation
details can be found in [Carlsson 90] and in several technical reports available from SICS.

SICStus Prolog follows the mainstream Prolog tradition in terms of syntax and built-in
predicates. As of release 3.8, SICStus Prolog provides two execution modes: the iso mode,
which is fully compliant with the International Standard ISO/IEC 13211-1 (PROLOG: Part
1—General Core); and the sicstus mode, which is largely compatible with e.g. C-Prolog
and Quintus Prolog, supports code written in earlier versions of SICStus Prolog.

SICStus Prolog

Acknowledgments 3

Acknowledgments
The following people have contributed to the development of SICStus Prolog:

Jonas Almgren, Johan Andersson, Stefan Andersson, Nicolas Beldiceanu,
Tamaés Benkd, Kent Boortz, Dave Bowen, Per Brand, Goran Bage,

Mats Carlsson, Per Danielsson, Jesper Eskilson, Lena Flood, Gyorgy
Gyaraki, David Handk, Seif Haridi, Ralph Haygood, Christian

Holzbaur, Tom Howland, Key Hyckenberg, Per Mildner, Richard O’Keefe,
Greger Ottosson, Laszld Péter, Dan Sahlin, Peter Schachte, Rob

Scott, Thomas Sjoland, Péter Szeredi, Tamas Szeredi, Peter Van

Roy, Johan Widén, David Warren, and Emil Astrom.

The Industrialization of SICStus Prolog (1988-1991) was funded by

Ericsson Telecom AB, NobelTech Systems AB, Infologics AB and
Televerket under the National Swedish Information Technology
Program IT4.

The development of release 3 (1991-1995) was funded in part by
Ellemtel Utvecklings AB
This manual is based on DECsystem-10 Prolog User’s Manual by

D.L. Bowen, L. Byrd, F.C.N. Pereira,
L.M. Pereira, D.H.D. Warren

See Chapter 33 [CLPQR], page 415, for acknowledgments relevant to the clp(Q,R) constraint
solver.

See Chapter 34 [CLPFD], page 441, for acknowledgments relevant to the clp(FD) constraint
solver.

UNIX is a trademark of Bell Laboratories. MSDOS and Windows is a trademark of Mi-
crosoft Corp. OS/2 is a trademark of IBM Corp.

SICStus Prolog

Chapter 1: Notational Conventions 5

1 Notational Conventions

1.1 Keyboard Characters

When referring to keyboard characters, printing characters are written thus: a, while control
characters are written like this: ~A. Thus ~C is the character you get by holding down the
key while you type c. Finally, the special control characters carriage-return, line-feed
and space are often abbreviated to (RET), and respectively.

Throughout, we will assume that ~D is the EOF character (it’s usually ~Z under Windows)
and that ~Cis the interrupt character. In most contexts, the term end_of_file terminated
by a full stop (.) can be typed instead of the EOF character.

1.2 Mode Spec

When introducing a built-in predicate, we shall present its usage with a mode spec which
has the form name(arg, ..., arg) where each arg denotes how that argument should be
instantiated in goals, and has one of the following forms:

:ArgName This argument should be instantiated to a term denoting a goal or a clause or a
predicate name, or which otherwise needs special handling of module prefixes.
The argument is subject to module name expansion (see Section 5.5 [Meta Exp],
page 61).

+ArgName
This argument should be instantiated to a non-variable term.
-ArgName This argument should be uninstantiated.

?ArgName
This argument may or may not be instantiated.

Mode specs are not only used in the manual, but are part of the syntax of the language as
well. When used in the source code, however, the ArgName part must be omitted. That
is, arg must be either :, +, - or 7.

1.3 Development and Runtime Systems

The full Prolog system with top-level, compiler, debugger etc. is known as the development
system.

It is possible to link user-written C code with a subset of SICStus Prolog to create runtime
systems. When introducing a built-in predicate, any limitations on its use in runtime
systems will be mentioned.

6 SICStus Prolog

1.4 Function Prototypes

Whenever this manual documents a C function as part of SICStus Prolog’s foreign language
interface, the function prototype will be displayed in ANSI C syntax.

1.5 ISO Compliance

SICStus Prolog provides two execution modes: the iso mode, which is fully compliant with
the International Standard ISO/IEC 13211-1 (PROLOG: Part 1-—General Core), and the
sicstus mode, which supports code written in earlier versions of SICStus Prolog. The
execution mode can be changed using the Prolog flag 1anguage; see Section 8.6 [State Info],
page 173. Note, however, that SICStus Prolog does not offer a strictly conforming mode
which rejects uses of implementation specific features.

To aid programmers who wish to write standard compliant programs, built-in predicates
that are part of the ISO Prolog Standard are annotated with [ISO]/ in this manual. If such
a predicate behaves differently in sicstus mode, an appropriate clarification is given. For
the few predicates that have a completely different meaning in the two modes, two separate
descriptions are given. The one for the iso mode is annotated with [ISO only/, while the
sicstus mode version is annotated with [SICStus only].

Chapter 2: Glossary 7

2 Glossary

abolish To abolish a predicate is to retract all the predicate’s clauses and to remove
all information about it from the Prolog system, to make it as if that predicate
had never existed.

advice-point
A special case of breakpoint, the advice breakpoint. It is distinguished from
spypoints in that it is intended for non-interactive debugging, such as checking
of program invariants, collecting information, profiling, etc.

alphanumeric
An alphanumeric character is any of the lowercase characters from a to z, the
uppercase characters from 4 to Z, the numerals from 0 to 9, or underscore (_).

ancestors An ancestor of a goal is any goal which the system is trying to solve when it
calls that goal. The most distant ancestor is the goal which was typed at the
top-level prompt.

anonymous
An anonymous variable is one which has no unique name, and whose value is
therefore inaccessible. An anonymous variable is denoted by an underscore (_).

argument See predicate, structure, and arity.

arity The arity of a structure is its number of arguments. For example, the structure
customer (jones,85) has an arity of 2.

atom A character sequence used to uniquely denote some entity in the problem do-
main. A number is not an atom. Unless character escapes have been switched
off, examples of legal atoms are:

hello = 1= P #$%° ’New York’ ’don\’t’
See Section 4.1.1.3 [Atoms], page 44. Atoms are recognized by the built-in

predicate atom/1. Each Prolog atom is represented internally by a unique
integer, represented in C as an SP_atom.

atomic term
Synonym for constant.

backtrace A collection of information on the control flow of the program, gathered by the
debugger. Also the display of this information produced by the debugger. The
backtrace includes data on goals that were called but not exited and also on
goals that exited nondeterministically.

backtracking
The process of reviewing the goals that have been satisfied and attempting to
resatisfy these goals by finding alternative solutions.

binding The process of assigning a value to a variable; used in unification.

blocked goal
A goal which is suspended because it is not instantiated enough.

8 SICStus Prolog

body The body of a clause consists of the part of a Prolog clause following the :-’
symbol.

breakpoint

A description of certain invocations in the program where the user wants the
debugger to stop, or to perform some other actions. A breakpoint is specific
if it applies to the calls of a specific predicate, possibly under some condi-
tions; otherwise, it is generic. Depending on the intended usage, breakpoints
can be classified as debugger breakpoints, also known as spypoints, or advice
breakpoints, also called advice-points; see Section 7.6 [Advanced Debugging],
page 86.

breakpoint spec
A term describing a breakpoint. Composed of a test part, specifying the con-
ditions under which the breakpoint should be applied, and an action part,
specifying the effects of the breakpoint on the execution.

buffer A temporary workspace in Emacs that contains a file being edited.

built-in predicate
A predicate that comes with the system and which does not have to be explicitly
loaded before it is used.

callable term
A callable term is either a compound term or an atom. Callable terms are
recognized by the built-in predicate callable/1.

character code
An integer which is the numeric representation of a character. SICStus Prolog
supports character codes in the range 0..2147483647 (i.e. 2°31-1). However, to
be able to input or output character codes larger than 255, one needs to use
the appropriate wide character external encoding.

character code set
A subset of the set {0, ..., 2731-1} that can be handled by the external encoding.
SICStus Prolog assumes that the character code set is an extension of the ASCII
code set, i.e. it includes codes 0..127, and these codes are interpreted as ASCII
characters

character-conversion mapping
SICStus Prolog maintains a character-conversion mapping which is used while
reading terms and programs. Initially, the mapping prescribes no character
conversions. It can be modified by the built-in predicate char_conversion(In,
Out), following which In will be converted to Out. Character coversion can be
switched off by the char_conversion Prolog flag.

character-type mapping
A function mapping each element of the character code set to one of the char-
acter categories (layout, letter, symbol-char, etc.), required for parsing tokens.

choicepoints
A memory block representing outstanding choices for some goals or disjunctions.

Chapter 2: Glossary 9

clause A fact or a rule. A rule comprises a head and a body. A fact consists of a head
only, and is equivalent to a rule with the body true.

conjunction
A series of goals connected by the connective “and” (that is, a series of goals
whose principal operator is *,”).

compactcode
Virtual code representation of compiled code. A reasonable compromise be-
tween performance and space requirement. A valid value for the compiling
Prolog flag.

compile To load a program (or a portion thereof) into Prolog through the compiler.

Compiled code runs more quickly than interpreted code, but you cannot debug
compiled code in as much detail as interpreted code.

compound term

A compound term is a name which is an atom together with one or more
arguments. For example, in the term father(X), father is the name, and X is
the first and only argument. The argument to a compound term can be another
compound term, as in father(father(X)). Compound terms are recognized
by the built-in predicate compound/1.

console-based executable

constant

consult

creep

cursor

cut

database

An executable which inherits the standard streams from the process that in-
voked it, e.g. a UNIX shell or a DOS-prompt.

An integer (for example: 1, 20, -10), a floating-point number (for exam-
ple: 12.35), or an atom. Constants are recognized by the built-in predicate
atomic/1.

To load a program (or a portion thereof) into Prolog through the interpreter.
Interpreted code runs more slowly than compiled code, but you can debug
interpreted code in more detail than compiled code.

What the debugger does in trace mode, also known as single-stepping. It goes
to the next port of a procedure box and prints the goal, then prompts you for
input. See Section 7.2 [Basic Debug], page 77.

The point on the screen at which typed characters appear. This is usually
highlighted by a line or rectangle the size of one space, which may or may not
blink.

Written as !. A built-in predicate that succeeds when encountered; if back-
tracking should later return to the cut, the goal that matched the head of the
clause containing the cut fails immediately.

The Prolog database comprises all of the clauses which have been loaded or as-
serted into the Prolog system or which have been asserted, except those clauses
which have been retracted or abolished.

database reference

A compound term denoting a unique reference to a dynamic clause.

10 SICStus Prolog

debug A mode of program execution in which the debugger stops to print the current
goal only at procedures which have spypoints set on them (see leap).

debugcode
Interpreted representation of compiled code. A valid value for the compiling
Prolog flag.

declaration
A declaration looks like a directive, but is not executed but conveys information
about procedures about to be loaded.

deinit function
A function in a foreign resource which is called prior to unloading the resource.

determinate
A procedure is determinate if it can supply only one answer.

development system
A stand-alone executable with the full programming environment, including
top-level, compiler, debugger etc. The default sicstus executable is a develop-
ment system; new development systems containing pre-linked foreign resources
can also be created.

directive A directive is a goal preceded by the prefix operator ‘:-’, whose intuitive mean-
ing is “execute this as a query, but do not print out any variable bindings.”

disjunction
A series of goals connected by the connective “or” (that is, a series of goals
whose principal operator is *;’).

dynamic predicate
A predicate that can be modified while a program is running. A predicate must
explicitly be declared to be dynamic or it must be added to the database via
one of the assertion predicates.

encoded string
A sequence of bytes representing a sequence of possibly wide character codes,
using the UTF-8 encoding.

escape sequence
A sequence of characters beginning with \ inside certain syntactic tokens (see
Section 47.5 [Escape Sequences|, page 741).

export A module exports a procedure so that other modules can import it.

external encoding (of wide characters)
A way of encoding sequences of wide characters as sequences of (8-bit) bytes,
used in stream input and output.

fact A clause with no conditions—that is, with an empty body. A fact is a statement
that a relationship exists between its arguments. Some examples, with possible
interpretations, are:

king(louis, france). % Louis was king of France.
have_beaks (birds) . % Birds have beaks.

Chapter 2: Glossary 11

employee (nancy, data_processing, 55000).
% Nancy is an employee in the
% data processing department.

fastcode Native code representation of compiled code. The fastest, but also the most
space consuming representation. Only available for Sparc platforms. A valid
value for the compiling Prolog flag.

file specification
An atom or a compound term denoting the name of a file. The rules for mapping
such terms to absolute file names are described in Section 8.1 [Input Output],
page 130.

floundered query
A query where all unsolved goals are blocked.

foreign predicate
A predicate that is defined in a language other than Prolog, and explicitly
bound to Prolog predicates by the Foreign Language Interface.

foreign resource
A named set of foreign predicates.

functor The functor of a compound term is its name and arity. For example, the
compound term foo(a,b) is said to have “the functor foo of arity two”, which
is generally written foo/2.

The functor of a constant is the term itself paired with zero. For example, the

constant nl is said to have “the functor nl of arity zero”, which is generally
written nl/0.

garbage collection
The freeing up of space for computation by making the space occupied by terms
which are no longer available for use by the Prolog system.

generalized predicate spec
A generalized predicate spec is a term of one of the following forms. It is always
interpreted wrt. a given module context:

Name all predicates called Name no matter what arity, where Name is an
atom for a specific name or a variable for all names, or
Name/Arity
the predicate of that name and arity, or
Name/(Low-High)
Name/[Low-High]
the predicates of that name with arity in the range Low-High, or

Name/[Arity,...,Arity]
the predicates of that name with one of the given arities, or

Module:Spec
specifying a particular module Module instead of the default mod-
ule, where Module is an atom for a specific module or a variable
for all modules, or

12 SICStus Prolog

[Spec,...,Spec]
the set of all predicates covered by the Specs.

glue code Interface code between the Prolog engine and foreign predicates. Automatically
generated by the foreign language interface as part of building a linked foreign
resource.

goal A simple goal is a predicate call. When called, it will either succeed or fail.

A compound goal is a formula consisting of simple goals connected by connec-

tives such as “and” (*,’) or “or” (*;’).

A goal typed at the top-level is called a query.

ground A term is ground when it is free of (unbound) variables. Ground terms are
recognized by the built-in predicate ground/1.

head The head of a clause is the single goal which will be satisfied if the conditions
in the body (if any) are true; the part of a rule before the ‘:-" symbol. The
head of a list is the first element of the list.

hook predicate
A hook predicate is a procedure that somehow alters or customizes the behavior
of a hookable predicate.

hookable predicate
A hookable predicate is a built-in predicate whose behavior is somehow altered
or customized by a hook predicate.

import Exported procedures in a module can be imported by other modules. Once a
procedure has been imported by a module, it can be called, or exported, as if
it were defined in that module.

There are two kinds of importation: procedure-importation, in which only spec-
ified procedures are imported from a module; and module-importation, in which
all the predicates made exported by a module are imported.

indexing The process of filtering a set of potentially matching clauses of a procedure given
a goal. For interpreted and compiled code, indexing is done on the principal
functor of the first argument. Indexing is coarse w.r.t. big integers and floats.

init function

A function in a foreign resource which is called upon loading the resource.
initialization

An initialization is a goal that is executed when the file in which the initializa-

tion is declared is loaded, or upon reinitialization. A initialization is declared
as a directive :- initialization Goal.

instantiation
A variable is instantiated if it is bound to a non-variable term; that is, to an
atomic term or a compound term.

internal encoding (of wide characters)
A way of encoding wide character sequences internally within the Prolog system.
SICStus Prolog uses a technique known as the UTF-8 encoding for this purpose.

Chapter 2: Glossary 13

interpret

Load a program or set of clauses into Prolog through the interpreter (also
known as consulting). Interpreted code runs more slowly than compiled code,
but more extensive facilities are available for debugging interpreted code.

invocation box

leap

leashing

Same as procedure box.

What the debugger does in debug mode. The debugger shows only the ports
of procedures that have spypoints on them. It then normally prompts you for
input, at which time you may leap again to the next spypoint (see trace).

Determines how frequently the debugger will stop and prompt you for input
when you are tracing. A port at which the debugger stops is called a “leashed
port”.

linked foreign resource

list

load

meta-call

A foreign resource that is ready to be installed in an atomic operation, normally
represented as a shared object or DLL.

A list is written as a set of zero or more terms between square brackets. If there
are no terms in a list, it is said to be empty, and is written as []. In this first
set of examples, all members of each list are explicitly stated:

[aa, bb,cc] [X, Y] [Name]l I[[x, y], Z]
In the second set of examples, only the first several members of each list are
explicitly stated, while the rest of the list is represented by a variable on the
right-hand side of the “rest of” operator, |:

X 1Yl [a, b, ¢ | Y] [[x, y] | Rest]
| is also known as the “list constructor.” The first element of the list to the

left of | is called the head of the list. The rest of the list, including the variable
following | (which represents a list of any length), is called the tail of the list.

To load a Prolog clause or set of clauses, in source or binary form, from a file
or set of files.

The process of interpreting a callable term as a goal. This is done e.g. by the
built-in predicate call/1.

meta-predicate

mode spec

module

A meta-predicate is one which calls one or more of its arguments; more gen-
erally, any predicate which needs to assume some module in order to operate
is called a meta-predicate. Some arguments of a meta-predicate are subject to
module name expansion.

A term name(arg, ..., arg) where each arg denotes how that argument should
be instantiated in goals. See Section 1.2 [Mode Spec]|, page 5.

A module is a set of procedures in a module-file. The name of a module is an
atom. Some procedures in a module are exported. The default module is user.

module name expansion

The process by which certain arguments of meta-predicates get prefixed by the
source module. See Section 5.5 [Meta Exp], page 61.

9

14 SICStus Prolog

module-file
A module-file is a file that is headed with a module declaration of the form:

:- module (ModuleName, ExportedPredList).

which must appear as the first term in the file.

multifile predicate
A predicate whose definition is to be spread over more than one file. Such
a predicate must be preceded by an explicit multifile declaration in all files
containing clauses for it.

mutable term
A special form of compound term which is subject to destructive assignment.
See Section 8.8 [Modify Term|, page 185. Mutable terms are recognized by the
built-in predicate is_mutable/1.

name clash
A name clash occurs when a module attempts to define or import a procedure
that it has already defined or imported.

occurs-check
A test to ensure that binding a variable does not bind it to a term where that
variable occurs.

one-char atom
An atom which consists of a single character.

operator A notational convenience that allows you to express any compound term in a
different format. For example, if 1ikes in
| ?7- likes(sue, cider).
is declared an infix operator, the query above could be written:
| ?- sue likes cider.

An operator does not have to be associated with a predicate. However, certain
built-in predicates are declared as operators. For example,

| 7= =.. (X, V).
can be written as
| 7- X =.. Y.
because =. . has been declared an infix operator.

Those predicates which correspond to built-in operators are written using infix
notation in the list of built-in predicates at the beginning of the part that
contains the reference pages.

Some built-in operators do not correspond to built-in predicates; for example,
arithmetic operators. See [Standard Operators|, page 743 for a list of built-in
operators.

pair A compound term K-V. Pairs are used by the built-in predicate keysort/2 and
by many library modules.

parent The parent of the current goal is a goal which, in its attempt to obtain a
successful solution to itself, is calling the current goal.

Chapter 2: Glossary 15

port One of the five key points of interest in the execution of a Prolog procedure.
See Section 7.1 [Procedure Box], page 75 for a definition.

pre-linked foreign resource
A linked foreign resource that is linked into a stand-alone executable as part of
building the executable.

precedence
A number associated with each Prolog operator, which is used to disambiguate
the structure of the term represented by an expression containing a number
of operators. Operators of lower precedence are applied before those of higher
precedence; the operator with the highest precedence is considered the principal
functor of the expression. To disambiguate operators of the same precedence,
the associativity type is also necessary. See Section 4.6 [Operators], page 54.

predicate A functor that specifies some relationship existing in the problem domain. For
example, < /2 is a built-in predicate specifying the relationship of one number
being less than another. In contrast, the functor + /2 is not (normally used as)
a predicate.

A predicate is either built-in or is implemented by a procedure.

predicate spec
A compound term name/arity or module :name/arity denoting a predicate.

procedure A set of clauses in which the head of each clause has the same predicate. For
instance, a group of clauses of the following form:

connects(san_francisco, oakland, bart_train).
connects(san_francisco, fremont, bart_train).
connects(concord, daly_city, bart_train).

is identified as belonging to the procedure connects/3.

procedure box
A way of visualizing the execution of a Prolog procedure, A procedure box is
entered and exited via ports.

profiledcode
Virtual code representation of compiled code, instrumented for profiling. A
valid value for the compiling Prolog flag.

profiling The process of gathering execution statistics of parts of the program, essentially
counting the times selected program points have been reached.

program A set of procedures designed to perform a given task.

PO file A PO (Prolog object) file contains a binary representation of a set of mod-
ules, predicates, clauses and directives. They are portable between different
platforms, except between 32-bit and 64-bit platforms. They are created by
save_files/2, save_modules/2, and save_predicates/2.

QL file A QL (quick load) file contains an intermediate representation of a compiled
source code file. They are portable between different platforms, but less efficient
than PO files, and are therefore obsolescent. They are created by fcompile/1.

16 SICStus Prolog

query A query is a question put by the user to the Prolog system. A query is written
as a goal followed by a full-stop in response to the Prolog system prompt. For
example,

| ?- father(edward, ralph).

refers to the predicate father/2. If a query has no variables in it, the system
will respond either ‘yes’ or ‘no’. If a query contains variables, the system will
try to find values of those variables for which the query is true. For example,

| ?- father(edward, X).

X = ralph
After the system has found one answer, the user can direct the system to look
for additional answers to the query by typing ;’.

recursion The process in which a running procedure calls itself, presumably with different
arguments and for the purpose of solving some subset of the original problem.

region The text between the cursor and a previously set mark in an Emacs buffer.

rule A clause with one or more conditions. For a rule to be true, all of its conditions
must also be true. For example,

has_stiff_neck(ralph) :-
hacker (ralph) .

This rule states that if the individual ralph is a hacker, then he must also have
a stiff neck. The constant ralph is replaced in

has_stiff_neck(X) :-
hacker (X) .

by the variable X. X unifies with anything, so this rule can be used to prove
that any hacker has a stiff neck.

runtime kernel
A shared object or DLL containing the SICStus virtual machine and other
runtime support for stand-alone executables.

runtime system
A stand-alone executable with a restricted set of built-in predicates and no top-
level. Stand-alone applications containing debugged Prolog code and destined
for end-users are typically packaged as runtime systems.

extended runtime system
A stand-alone executable. In addition to the normal set of built-in runtime
system predicates, extended runtime systems include the compiler. Extended
runtime systems require the extended runtime library, available from SICS as
an add-on product.

saved-state
A snapshot of the state of Prolog saved in a file by save_program/[1,2].

semantics The relation between the set of Prolog symbols and their combinations (as
Prolog terms and clauses), and their meanings. Compare syntax.

sentence A clause or directive.

Chapter 2: Glossary 17

side-effect A predicate which produces a side-effect is one which has any effect on the
“outside world” (the user’s terminal, a file, etc.), or which changes the Prolog
database.

simple term
A simple term is a constant or a variable. Simple terms are recognized by the
built-in predicate simple/1.

small integer
An integer in the range [-2°25,2725-1] on 32-bit platforms, or [-2756,2°56-
1] on 64-bit platforms.

source code
The human-readable, as opposed to the machine-executable, representation of
a program.

source module
The module which is the context of a file being loaded. For module-files, the
source module is named in the file’s module declaration. For other files, the
source module is inherited from the context.

SP_term_ref
A “handle” object providing an interface from C to Prolog terms.

spypoint A special case of breakpoint, the debugger breakpoint, intended for interactive
debugging. Its simplest form, the plain spypoint instructs the debugger to stop
at all ports of all invocations of a specified predicate. Conditional spypoints
apply to a single predicate, but are more selective: the user can supply appli-
cability tests and prescribe the actions to be carried out by the debugger. A
generic spypoint is like a conditional spypoint, but not restricted to a single
predicate. See Section 7.6 [Advanced Debugging], page 86.

stand-alone executable
A binary program which can be invoked from the operating system, containing
the SICStus runtime kernel. A stand-alone executable is a development system
(e.g. the default sicstus executable), or a runtime system. Both kinds are
created by the application builder. A stand-alone executable does not itself
contain any Prolog code; all Prolog code must be loaded upon startup.

static predicate
A predicate that can be modified only by being reloaded or by being abolished.
See dynamic predicate.

stream An input/output channel. See Section 8.1 [Input Output|, page 130.

stream alias
A name assigned to a stream at the time of opening, which can be referred to
in I/O predicates. Must be an atom. There are also three predefined aliases for
the standard streams: user_input, user_output and user_error.

stream position
A term representing the current position of a stream. This position is deter-
mined by the current byte, character and line counts and line position. Stan-
dard term comparison on stream position terms works as expected. When SP1

18

string

SICStus Prolog

and SP2 refer to positions in the same stream, SP1@<SP2 if and only if SP1
is before SP2 in the stream. You should not otherwise rely on their internal
representation.

A special syntactic notation which is, by default, equivalent to a list of character
codes e.g.

"SICStus"
By setting the Prolog flag double_quotes, the meaning of strings can be

changed. With an appropriate setting, a string can be made equivalent to
a list of one-char atoms, or to an atom. Strings are not a separate data type.

subterm selector

syntax

A list of argument positions selecting a subterm within a term (i.e. the subterm
can be reached from the term by successively selecting the argument positions
listed in the selector). Example: within the term q, (r, s; t) the subterm s
is selected by the selector [2, 1, 2].

The part of Prolog grammar dealing with the way in which symbols are put
together to form legal Prolog terms. Compare semantics.

system encoding (of wide characters)

term

trace

A way of encoding wide character strings, used or required by the operating
system environment.

A basic data object in Prolog. A term can be a constant, a variable, or a
compound term.

A mode of program execution in which the debugger creeps to the next port
and prints the goal.

type-in module

The module which is the context of queries.

unblocked goal

unbound

unification

unit clause

A goal which is not blocked.
A variable is unbound if it has not yet been instantiated.

The process of matching a goal with the head of a clause during the evaluation
of a query, or of matching arbitrary terms with one another during program
execution.

The rules governing the unification of terms are:
e Two constants unify with one another if they are identical.

e A variable unifies with a constant or a compound term. As a result of the
unification, the variable is instantiated to the constant or compound term.

e A variable unifies with another variable. As a result of the unification, they
become the same variable.

e A compound term unifies with another compound term if they have the
same functor and if all of the arguments can be unified.

See fact.

Chapter 2: Glossary 19

UTF-8 encoding

variable

volatile

See internal encoding

A logical variable is a name that stands for objects that may or may not be
determined at a specific point in a Prolog program. When the object for which
the variable stands is determined in the Prolog program, the variable becomes
instantiated. A logical variable may be unified with a constant, a compound
term, or another variable. Variables become uninstantiated when the procedure
they occur in backtracks past the point at which they were instantiated.

Variables may be written as any sequence of alphanumeric characters starting
with either a capital letter or _; e.g.

X Y Z Name Position _c _305 One_stop
See Section 4.1.1.4 [Variables|, page 44.

Predicate property. The clauses of a volatile predicate are not saved in saved-
states.

windowed executable

ZIip

An executable which pops up its own window when run, and which directs the
standard streams to that window.

Same as leap mode, except no debugging information is collected while zipping.

20

SICStus Prolog

Chapter 3: How to Run Prolog 21

3 How to Run Prolog

SICStus Prolog offers the user an interactive programming environment with tools for incre-
mentally building programs, debugging programs by following their executions, and modi-
fying parts of programs without having to start again from scratch.

The text of a Prolog program is normally created in a file or a number of files using one of
the standard text editors. The Prolog interpreter can then be instructed to read in programs
from these files; this is called consulting the file. Alternatively, the Prolog compiler can be
used for compiling the file.

3.1 Getting Started

Under UNIX, SICStus Prolog is normally started from one of the shells. On other platforms,
it is normally started by clicking on an icon. However, it is often convenient to run SICStus
Prolog under GNU Emacs instead. A GNU Emacs interface for SICStus Prolog is described
later (see Section 3.11 [Emacs Interface|, page 32). From a shell, SICStus Prolog is started

by typing:
% sicstus [options] [-a argument...]

where flags have the following meaning;:

-f Fast start. Don’t read any initialization file (‘~/.sicstusrc’ or
‘~/.sicstus.ini’) on startup. If the flag is omitted and this file exists, SICStus
Prolog will consult it on startup after running any initializations and printing
the version banners.

-i Forced interactive. Prompt for user input, even if the standard input stream
does not appear to be a terminal.

--iso

-—-sicstus
Start up in ISO Prolog mode or SICStus Prolog mode respectively. The lan-
guage mode is set before any prolog-file or initialization file is loaded and any
saved-state is restored.

-m For compatibility with previous versions. Ignored.

-1 prolog-file
Ensure that the file prolog-file is loaded on startup. This is done before any
initialization file is loaded. Only one -1 argument is allowed.

-r saved-state
Restore the saved state saved-state on startup. This is done before any prolog-
file or initialization file is loaded. Only one -r argument is allowed.

22 SICStus Prolog

--goal Goal
Read a term from the text Goal and pass the resulting term to call/1 after all
files have been loaded. As usual Goal should be terminated by a full stop (.).
Only one --goal argument is allowed.

-a argument. ..
where the arguments can be retrieved from Prolog by prolog_flag(argv,
Args), which will unify Args with argument... represented as a list of atoms.

-Blabspath]
Creates a saved state for a development system. This option is not needed
for normal use. If abspath is given, it specifies the absolute pathname for the
saved state. NOTE: There must not be a space before the path, or it will be
interpreted as a separate option.

-R[abspath]
Equivalent to the -B option, except that it builds a saved state for a runtime
system instead.

Under UNIX, a saved state file can be executed directly by typing:
% file argument...

This is equivalent to:
% sicstus -r file [-a argument...]

NOTE: As of release 3.7, saved-states do not store the complete path of the binary sp.exe.
Instead, they call the main executable sicstus, which is assumed to be found in the shell’s
path. If there are several versions of SICStus installed, it is up to the user to make sure
that the correct start-script is found.

Notice that the flags are not available when executing saved states—all the command-line
arguments are treated as Prolog arguments.

The development system checks that a valid SICStus license exists and responds with a
message of identification and the prompt ‘| ?- ’ as soon as it is ready to accept input,
thus:

SICStus 3.9.1

Licensed to SICS
| ?-

At this point the top-level is expecting input of a query. You cannot type in clauses or
directives immediately (see Section 3.3 [Inserting Clauses|, page 25). While typing in a
query, the prompt (on following lines) becomes ¢ ’. That is, the ‘| 7- ’ appears only
for the first line of the query, and subsequent lines are indented.

Chapter 3: How to Run Prolog 23

3.1.1 Environment Variables

The following environment variables can be set before starting SICStus Prolog. Some of
these override the default sizes of certain areas. The sizes are given in bytes, but may be
followed by K or M meaning kilobytes or megabytes respectively.

SP_CSETLEN

SP_CTYPE

SP_PATH

TMPDIR

Selects the sub-code-set lengths when the EUC character set is used. For the
details, see Section 12.4 [WCX Environment Variables], page 306.

Selects the appropriate character set standard: The supported values are euc
(for EUC), ut£8 (for Unicode) and iso_8859_1 (for ISO 8859/1). The latter
is the default. For the details, see Section 12.4 [WCX Environment Variables],
page 306.

This environment variable can be used to specify the location of the Runtime
Library (corresponding to the third argument to SP_initialize()). In most
cases there is no need to use it. See section “Setting SP_PATH under UNIX”
in SICStus Prolog Release Notes, for more information.

If set, indicates the pathname where temporary files should be created. Defaults
to ‘/usr/tmp’.

GLOBALSTKSIZE

Governs the initial size of the global stack.

LOCALSTKSIZE

Governs the initial size of the local stack.

CHOICESTKSIZE

Governs the initial size of the choicepoint stack.

TRAILSTKSIZE

Governs the initial size of the trail stack.

PROLOGINITSIZE

Governs the size of Prolog’s initial memory allocation.

PROLOGMAXSIZE

Defines a limit on the amount of data space which Prolog will use.

PROLOGINCSIZE

Governs the amount of space Prolog asks the operating system for in any given
memory expansion.

PROLOGKEEPSIZE

Governs the size of space Prolog retains after performing some computation.
By default, Prolog gets memory from the operating system as the user program
executes and returns all free memory back to the operating system when the
user program does not need any more. If the programmer knows that her
program, once it has grown to a certain size, is likely to need as much memory
for future computations, then she can advise Prolog not to return all the free

24 SICStus Prolog

memory back to the operating system by setting this variable. Only memory
that is allocated above and beyond PROLOGKEEPSIZE is returned to the OS; the
rest will be kept.

In addition the following environment variables are set automatically on startup.

SP_APP_DIR
The absolute path to the directory that contains the executable. Also available
as the application file search alias.

SP_RT_DIR
The full path to the directory that contains the SICStus run-time. If the ap-
plication has linked statically to the SICStus run-time then SP_RT_DIR is the
same as SP_APP_DIR. Also available as the runtime file search alias.

SP_LIBRARY_DIR
The absolute path to the directory that contains the SICStus library files. Also
available as the initial value of the library file search alias.

Send bug reports to sicstus-support@sics.se or use
the form at http://www.sics.se/sicstus/bugreport/bugreport.html. Bugs tend ac-
tually to be fixed if they can be isolated, so it is in your interest to report them in such a
way that they can be easily reproduced.

The mailing list sicstus-users@sics.se is a mailing list for communication among users
and implementors. To subscribe, write a message to majordomo@sics.se with the following
line in the message body:

subscribe sicstus-users

3.2 Reading in Programs

A program is made up of a sequence of clauses and directives. The clauses of a predicate
do not have to be immediately consecutive, but remember that their relative order may be
important (see Section 4.3 [Procedural], page 50).

To input a program from a file file, just type the filename inside list brackets (followed by
. and RET)), thus:

| 7- [file].

This instructs the interpreter to read in (consult) the program. Note that it may be neces-
sary to enclose the filename file in single quotes to make it a legal Prolog atom; e.g.

| 7= [’myfile.pl’].

| 7= [’/usr/prolog/somefile’].

mailto:sicstus-support@sics.se
http://www.sics.se/sicstus/bugreport/bugreport.html
mailto:sicstus-users@sics.se
mailto:majordomo@sics.se

Chapter 3: How to Run Prolog 25

The specified file is then read in. Clauses in the file are stored so that they can later be
interpreted, while any directives are obeyed as they are encountered. When the end of
the file is found, the system displays on the standard error stream the time spent. This
indicates the completion of the query.

Predicates that expect the name of a Prolog source file as an argument use absolute_
file_name/3 (see Section 8.1.5 [Stream Pred], page 152) to look up the file. If no explicit
extension is given, this predicate will look for a file with the default extension ‘.pl’ added
as well as for a file without extension. There is also support for libraries.

In general, this query can be any list of filenames, such as:
| ?- [myprog,extras,tests].
In this case all three files would be consulted.

The clauses for all the predicates in the consulted files will replace any existing clauses for
those predicates, i.e. any such previously existing clauses in the database will be deleted.

Note that consult/1 in SICStus Prolog behaves like reconsult/1 in DEC-10 Prolog.

3.3 Inserting Clauses at the Terminal

Clauses may also be typed in directly at the terminal, although this is only recommended
if the clauses will not be needed permanently, and are few in number. To enter clauses at
the terminal, you must give the special query:

| ?- [user].

and the new prompt ‘| ’shows that the system is now in a state where it expects input of
clauses or directives. To return to top level, type “D. The system responds thus:

% consulted user in module user, 20 msec 200 bytes

3.4 Queries and Directives

Queries and directives are ways of directing the system to execute some goal or goals.

In the following, suppose that list membership has been defined by loading the following
clauses from a file:

member (X, [X|_1).
member (X, [_|L]) :- member(X, L).

(Notice the use of anonymous variables written ‘_’.)

26 SICStus Prolog

3.4.1 Queries

The full syntax of a query is ‘?-’ followed by a sequence of goals. The top-level expects
queries. This is signaled by the initial prompt ‘| 7- ’. Thus a query at top-level looks like:

| ?- member(b, [a,b,c]).

Remember that Prolog terms must terminate with a full stop (., possibly followed by layout
text), and that therefore Prolog will not execute anything until you have typed the full stop
(and then RET)) at the end of the query.

If the goal(s) specified in a query can be satisfied, and if there are no variables as in this
example, then the system answers

yes
and execution of the query terminates.

If variables are included in the query, then the final value of each variable is displayed
(except for variables whose names begin with _). Thus the query

| ?7- member(X, [a,b,c]).
would be answered by
X =a

At this point the system is waiting for input of either just a or else a ; followed by
RET). Simply typing terminates the query; the system responds with ‘yes’. However,
typing ; causes the system to backtrack (see Section 4.3 [Procedural], page 50) looking for
alternative solutions. If no further solutions can be found it outputs ‘no’.

While the variable bindings are displayed, all variables occurring in the values are replaced
by terms of the form ’>$VAR’ (N) to yield friendlier variable names. Such names come out
as a sequence of letters and digits preceded by _. The outcome of some queries is shown
below.

| ?7- member(X, [tom,dick,harry]).

X = tom ;

X = dick ;

X = harry ;

no

| ?- member(X, [a,b,f(Y,c)]), member (X, [f(b,Z),d]).
X = f(b,c),

Y =D,

Z =c

Chapter 3: How to Run Prolog 27

yes
| ?- member (X, [£(_),gl).

X = £(_8)

yes
| 7-

Directives are like queries except that:

1. Variable bindings are not displayed if and when the directive succeeds.

2. You are not given the chance to backtrack through other solutions.

3.4.2 Directives

Directives start with the symbol ‘:-’. Any required output must be programmed explicitly;
e.g. the directive:

:— member (3, [1,2,3]), write(ok).

asks the system to check whether 3 belongs to the list [1,2,3]. Execution of a direc-
tive terminates when all the goals in the directive have been successfully executed. Other
alternative solutions are not sought. If no solution can be found, the system prints:

* Goal - goal failed
as a warning.

The principal use for directives (as opposed to queries) is to allow files to contain directives
which call various predicates, but for which you do not want to have the answers printed
out. In such cases you only want to call the predicates for their effect, i.e. you don’t want
terminal interaction in the middle of consulting the file. A useful example would be the use
of a directive in a file which consults a whole list of other files, e.g.

:= [bits, bobs, main, tests, data, junk].

If a directive like this were contained in the file ‘myprog’ then typing the following at top-
level would be a quick way of reading in your entire program:

| 7- [myprog].

When simply interacting with the top-level, this distinction between queries and directives
is not normally very important. At top-level you should just type queries normally. In a
file, queries are in fact treated as directives, i.e. if you wish to execute some goals then the
directive in the file must be preceded by ‘:-" or ‘?-’; otherwise, it would be treated as a
clause.

28 SICStus Prolog

3.5 Syntax Errors

Syntax errors are detected during reading. Each clause, directive or in general any term
read in by the built-in predicate read/1 that fails to comply with syntax requirements is
displayed on the standard error stream as soon as it is read, along with its position in the
input stream and a mark indicating the point in the string of symbols where the parser has
failed to continue analysis, e.g.:

| member (X, X$L).

I Syntax error

I , or) expected in arguments
I in line 5

| member (X , X

I <<here>>

I

$L)
if $ has not been declared as an infix operator.

Note that any comments in the faulty line are not displayed with the error message. If you
are in doubt about which clause was wrong you can use the listing/1 predicate to list all
the clauses which were successfully read in, e.g.

| ?- listing(member/2).

NOTE: The built in predicates read/ [1,2] normaly raise an exception on syntax errors (see
Section 8.5 [Exception], page 170). The behavior is controlled by the flag syntax_errors
(see prolog_flag/3).

3.6 Undefined Predicates

There is a difference between predicates that have no definition and predicates that have
no clauses. The latter case is meaningful e.g. for dynamic predicates (see Section 6.2
[Declarations], page 68) that clauses are being added to or removed from. There are good
reasons for treating calls to undefined predicates as errors, as such calls easily arise from
typing errors.

The system can optionally catch calls to predicates that have no definition. First the
user defined predicate user:unknown_predicate_handler/3 (see Section 8.5 [Exception],
page 170) is called. If undefined or if the call fails the action is governed by the state of the
unknown/2 flag which can be:

trace which causes calls to undefined predicates to be reported and the debugger to
be entered at the earliest opportunity.

error which causes calls to such predicates to raise an exception (the default state).
See Section 8.5 [Exception], page 170.

Chapter 3: How to Run Prolog 29

warning which causes calls to such predicates to display a warning message and then
fail.

fail which causes calls to such predicates to fail.

Calls to predicates that have no clauses are not caught.

The built-in predicate unknown (?01dState, ?NewState) unifies OldState with the current
state and sets the state to NewState. The built-in predicate debugging/0 prints the value of
this state along with its other information. This state is also controlled by the flag unknown
(see prolog_flag/3).

3.7 Program Execution And Interruption

Execution of a program is started by giving the system a query which contains a call to one
of the program’s predicates.

Only when execution of one query is complete does the system become ready for another
query. However, one may interrupt the normal execution of a query by typing ~C. This
~C interruption has the effect of suspending the execution, and the following message is
displayed:

Prolog interruption (h or 7 for help) ?

At this point, the development system accepts one-letter commands corresponding to certain
actions. To execute an action simply type the corresponding character (lower or upper case)
followed by RET). The available commands in development systems are:

a aborts the current computation.

c continues the execution.

e exits from SICStus Prolog, closing all files.
h

? lists available commands.

invokes a recursive top-level.

¢ N QA T

switch on the debugger. See Chapter 7 [Debug Intro|, page 75.

If the standard input stream is not connected to the terminal, e.g. by redirecting standard
input to a file or a pipe, the above ~C interrupt options are not available. Instead, typing
~C causes SICStus Prolog to exit, and no terminal prompts are printed.

30 SICStus Prolog

3.8 Exiting From The Top-Level

To exit from the top-level and return to the shell, either type ~D at the top-level, or call the
built-in predicate halt/0, or use the e (exit) command following a ~C interruption.

3.9 Nested Executions—Break

The Prolog system provides a way to suspend the execution of your program and to enter
a new incarnation of the top-level where you can issue queries to solve goals etc. This is
achieved by issuing the query (see Section 3.7 [Execution], page 29):

| ?- break.

This invokes a recursive top-level, indicated by the message:
% Break level 1

You can now type queries just as if you were at top-level.

If another call of break/0 is encountered, it moves up to level 2, and so on. To close the
break and resume the execution which was suspended, type “D. The debugger state and
current input and output streams will be restored, and execution will be resumed at the
predicate call where it had been suspended after printing the message:

% End break

3.10 Saving and Restoring Program States

Once a program has been read, the system will have available all the information necessary
for its execution. This information is called a program state.

The state of a program may be saved on disk for future execution. The state consists
of all predicates and modules except built-in predicates and clauses of volatile predicates,
the current operator declarations, the current character-conversion mapping, the values of
all writable Prolog flags except debugging, source_info, and the user_x stream aliases
(see Section 8.6 [State Info|, page 173), any blackboard data (see Section 8.11 [Blackboard
Primitives], page 189), internal database data (see Section 8.10 [Database|, page 188), and
profiling data (see Section 8.16 [Profiling|, page 208), but no information for source-linked
debugging.

To save a program into a file File, type the following query. On UNIX platforms, the file
becomes executable:

| 7- save_program(File).

Chapter 3: How to Run Prolog 31

You can also specify a goal to be run when a saved program is restored. This is done by:
| ?- save_program(File, start).

where start/0 is the predicate to be called.

Once a program has been saved into a file File, the following query will restore the system
to the saved state:

| ?- restore(File).

If a saved state has been moved or copied to another machine, the path names of foreign
resources and other files needed upon restore are typically different at restore time from
their save time values. To solve this problem, certain atoms will be relocated during restore
as follows:

e Atoms that had ‘$SP_PATH/library’ (the name of the directory containing the Prolog
Library) as prefix at save time will have that prefix replaced by the corresponding
restore time value.

e Atoms that had the name of the directory containing File as prefix at save time will
have that prefix replaced by the corresponding restore time value.

The purpose of this procedure is to be able to build and deploy an application consisting of
a saved state and other files as a directory tree with the saved state at the root: as long as
the other files maintain their relative position in the deployed copy, they can still be found
upon restore.

NOTE: Foreign resources, see Section 9.2 [Calling C|, page 216, are unloaded by save_
program/[1,2]. The names and paths of the resources, typically ‘$SP_PATH/library’
relative, are however included in the saved state. After the save, and after restoring a
saved state, this information is used to reload the foreign resources again. The state of the
foreign resource in terms of global C variables and allocated memory is thus not preserved.
Foreign resources may define init and deinit functions to take special action upon loading
and unloading; see Section 9.2.6 [Init and Deinit Functions], page 224.

As of SICStus Prolog 3.8, partial saved states corresponding to a set of source files, modules,
and predicates can be created by the built-in predicates save_files/2, save_modules/2,
and save_predicates/2 respectively. These predicates create files in a binary format,
by default with the prefix ‘.po’ (for Prolog object file), which can be loaded by load_
files/[1,2]. For example, to compile a program split into several source files into a single
object file, type:

| ?- compile(Files), save_files(Files, Object).

For each filename given, the first goal will try to locate a source file with the default suffix
‘.pl’ and compile it into memory. The second goal will save the program just compiled

32 SICStus Prolog

into an object file whose default suffix is ‘.po’. Thus the object file will contain a partial
memory image.

NOTE: Prolog object files can be created with any suffix, but cannot be loaded unless the
suffix is ‘. po’!

3.11 Emacs Interface

This section explains how to use the GNU Emacs interface for SICStus Prolog, and how to
customize your GNU Emacs environment for it.

Emacs is a powerful programmable editor especially suitable for program development. It
is available for free for many platforms, including various UNIX dialects, Windows and
MacOS. For information on obtaining Emacs, see http://www.emacs.org. For information
specific to GNU Emacs or XEmacs, see http://www.gnu.org and http://www.xemacs.org
respectively.

The advantages of using SICStus in the Emacs environment are source-linked debugging,
auto indentation, syntax highlighting, help on predefined predicates (requires the SICStus
info files to be installed), loading code from inside Emacs, auto-fill mode, and more.

The Emacs interface is not part of SICStus Prolog proper, but is included in the distribution
for convenience. It was written by Emil Astrom and Milan Zamazal, based on an earlier
version of the mode written by Masanobu Umeda. Contributions has also been made by
Johan Andersson, Peter Olin, Mats Carlsson, Johan Bevemyr, Stefan Andersson, and Per
Danielsson, Henrik Bakman, and Tamas Rozman. Some ideas and also a few lines of code
have been borrowed (with permission) from Oz.el by Ralf Scheidhauer and Michael Mehl,
the Emacs major mode for the Oz programming language. More ideas and code have been
taken from the SICStus debugger mode by Per Mildner.

3.11.1 Installation

See section “The Emacs Interface” in SICStus Prolog Release Notes, for more information
about installing the Emacs interface.

There are some differences between GNU Emacs and XEmacs. This will be indicated with
FEmacs-Lisp comments in the examples.

3.11.1.1 Customizing Emacs

Version 20 of GNU Emacs and XEmacs introduced a new method for editing and storing
user settings. This feature is available from the menu bar as ‘Customize’ and particular
Emacs variables can be customized with M-x customize-variable. Using ‘Customize’ is
the preferred way to modify the settings for emacs and the appropriate customize commands

http://www.emacs.org
http://www.gnu.org
http://www.xemacs.org

Chapter 3: How to Run Prolog 33

will be indicated below, sometimes together with the old method of directly setting Emacs
variables.

3.11.1.2 Enabling Emacs Support for SICStus

Assuming the Emacs interface for SICStus Prolog has been installed in the default location,
inserting the following lines in your ‘~/.emacs’ will make Emacs use this mode automatically
when editing files with a ‘.pl’ extension:

(setq load-path
(cons (expand-file-name "/usr/local/lib/sicstus-3.9.1/emacs")
load-path))
(autoload ’run-prolog "prolog" "Start a Prolog sub-process." t)
(autoload ’prolog-mode "prolog" "Major mode for editing Prolog programs." t)
(setq prolog-use-sicstus-sd t)
(setq auto-mode-alist (cons ’("\\.pl$" . prolog-mode) auto-mode-alist))

where the path in the first line is the file system path to ‘prolog.el’ (the generic Prolog
mode) and ‘sicstus-support.el’ (SICStus specific code). For example, ‘~/emacs’ means
that the file is in the user’s home directory, in directory emacs. Windows paths can be
written like ‘C:/Program Files/SICStus Prolog 3.9.1/emacs’.

The last line above makes sure that files ending with ‘.pl’ are assumed to be Prolog files
and not Perl, which is the default Emacs setting. If this is undesirable, remove that line.
It is then necessary for the user to manually switch to prolog mode by typing M-x prolog-
mode after opening a prolog file, for an alternative approach, see Section 3.11.4 [Mode Line],
page 36.

If the shell command sicstus is not available in the default path, then it is necessary to
set the value of the environment variable EPROLOG to a shell command to invoke SICStus
Prolog. This is an example for C Shell:

setenv EPROLOG /usr/local/bin/sicstus

3.11.1.3 Enabling Emacs Support for SICStus Documentation

It is possible to look up the documentation for any built in or library predicate from within
Emacs (using C-c ? or the menu). For this to work Emacs must be told about the location
of the ‘info’-files that make up the documentation.

The default location for the ‘info’-files are ‘<prefix>/1ib/sicstus-3.9.1/doc/info/’ on
UNIX platforms and ‘C: /Program Files/SICStus Prolog 3.9.1/doc/info/’ on Windows.

Add the following to your ‘~/.emacs’ file, assuming INFO is the path to the info files, e.g.
‘C:/Program Files/SICStus Prolog 3.9.1/doc/info/’

34 SICStus Prolog

(setq Info-default-directory-list
(append Info-default-directory-list ’("INFO")))

for GNU Emacs, or

(setq Info-directory-list
(append Info-directory-list ’("INF0")))

for XEmacs. You can also use M-x customize-group info if your Emacs is new
enough. You may have to quit and restart Emacs for these changes to take effect.

3.11.2 Basic Configuration

If the following lines are not present in ‘7/.emacs’, we suggest they are added, so that
the font-lock mode (syntax coloring support) is enabled for all major modes in Emacs that
support it.

(global-font-lock-mode t) ; GNU Emacs
(setq font-lock-auto-fontify t) ; XEmacs
(setq font-lock-maximum-decoration t)

These settings and more are also available through M-x customize-group font-lock.

If one wants to add font-locking only to the prolog mode, the two lines above could be
replaced by:

(add-hook ’prolog-mode-hook ’turn-on-font-lock)
Similarly, to turn it off only for prolog mode use:

(add-hook ’prolog-mode-hook ’turn-off-font-lock)

3.11.3 Usage

A prolog process can be started by choosing Run Prolog from the Prolog menu, by typing
C-c (RET), or by typing M-x run-prolog. It is however not strictly necessary to start a
prolog process manually since it is automatically done when consulting or compiling, if
needed. The process can be restarted (i.e. the old one is killed and a new one is created)

by typing C-u C-c (RET).

Programs are run and debugged in the normal way, with terminal I/O via the *prologx
buffer. The most common debugging predicates are available from the menu or via key-
bindings.

A particularly useful feature under the Emacs interface is source-linked debugging. This is
enabled or disabled using the Prolog/Source level debugging menu entry. It can also be
enabled by setting the Emacs variable prolog-use-sicstus-sd to t in ‘*/.emacs’. Both

Chapter 3: How to Run Prolog 35

these methods set the Prolog flag source_info to emacs. Its value should be emacs while
loading the code to be debugged and while debugging. If so, the debugger will display
the source code location of the current goal when it prompts for a debugger command, by
overlaying the beginning of the current line of code with an arrow. If source_info was off
when the code was loaded, or if it was asserted or loaded from user, the current goal will
still be shown but out of context.

Note that if the code has been modified since it was last loaded, Prolog’s line number
information may be invalid. If this happens, just reload the relevant buffer.

Consultation and compilation is either done via the menu or with the following key-bindings:

C-c C-f Consult file.

C-c C-b Consult buffer.
C-c C-r Consult region.
C-c C-p Consult predicate.
C-c C-c £ Compile file.

C-c C-c b Compile buffer.
C-c C-c r Compile region.
C-c C-c p Compile predicate.

The boundaries used when consulting and compiling predicates are the first and last clauses
of the predicate the cursor is currently in.

Other useful key-bindings are:

M-n Go to the next clause.

M-p Go to the previous clause.

M-a Go to beginning of clause.

M-e Go to end of clause.

M-C-c Mark clause.

M-C-a Go to beginning of predicate.

M-C-e Go to end of predicate.

M-C-h Mark predicate.

M-{ Go to the previous paragraph (i.e. empty line).
M-} Go to the next paragraph (i.e. empty line).
M-h Mark paragraph.

M-C-n Go to matching right parenthesis.

36 SICStus Prolog

M-C-p Go to matching left parenthesis.

M-; Creates a comment at comment-column. This comment will always stay at this
position when the line is indented, regardless of changes in the text earlier on
the line, provided that prolog-align-comments-flag is set to t.

C-c C-t

C-u C-c C-t
Enable and disable tracing, respectively.

C-c C-d

C-u C-c C-d
Enable and disable debugging, respectively.

C-c C-z

C-u C-c C-z
Enable and disable zipping, respectively.

C-x SPC

C-u C-x SPC
Set and remove a line breakpoint. This uses the advanced debugger features
introduced in SICStus 3.8; see Section 7.6 [Advanced Debugging], page 86.

C-c C-s Insert the PredSpec of the current predicate into the code.

C-c C-n Insert the name of the current predicate into the code. This can be useful
when writing recursive predicates or predicates with several clauses. See also
the prolog-electric-dot-flag variable below.

C-c C-v a Convert all variables in a region to anonymous variables. This can also be done
using the Prolog/Transform/All variables to ’_’ menu entry. See also the
prolog-electric-underscore-flag Emacs variable.

C-c? Help on predicate. This requires the SICStus info files to be installed. If the

SICStus info files are installed in a nonstandard way, you may have to change
the Emacs variable prolog-info-predicate-index.

3.11.4 Mode Line

If working with an application split into several modules, it is often useful to let files begin
with a “mode line”:

%kl —*= Mode: Prolog; Module: ModuleName; -*-

The Emacs interface will look for the mode line and notify the SICStus Prolog module
system that code fragments being incrementally reconsulted or recompiled should be im-
ported into the module ModuleName. If the mode line is missing, the code fragment will
be imported into the type-in module. An additional benefit of the mode line is that it tells
Emacs that the file contains Prolog code, regardless of the setting of the Emacs variable
auto-mode-alist. A mode line can be inserted by choosing Insert/Module modeline in
the Prolog menu.

Chapter 3: How to Run Prolog 37

3.11.5 Configuration

The behavior of the Emacs interface can be controlled by a set of user-configurable settings.
Some of these can be changed on the fly, while some require Emacs to be restarted. To set
a variable on the fly, type M-x set-variable VariableName Value RET). Note
that variable names can be completed by typing a few characters and then pressing (TAB).

To set a variable so that the setting is used every time Emacs is started, add lines of the
following format to ‘~/.emacs’:

(setq VariableName Value)

Note that the Emacs interface is presently not using the ‘Customize’ functionality to edit
the settings.

The available settings are:

prolog-system
The Prolog system to use. Defaults to ’sicstus, which will be assumed for
the rest of this chapter. See the on-line documentation for the meaning of
other settings. For other settings of prolog-system the variables below named
sicstus-something will not be used, in some cases corresponding functionality
is available through variables named prolog-something.

sicstus-version
The version of SICStus that is used. Defaults to > (3 . 8). Note that the spaces
are significant!

prolog-use-sicstus-sd
Set to t (the default) to enable the source-linked debugging extensions by de-
fault. The debugging can be enabled via the Prolog menu even if this variable
is nil. Note that the source-linked debugging only works if sicstus-version
is set correctly.

pltrace-port-arrow-assoc [Obsolescent]
Only relevant for source-linked debugging, this controls how the various ports
of invocation boxes (see Section 7.1 [Procedure Box]|, page 75) map to arrows
that point into the current line of code in source code buffers. Initialized as:
P(("call" . ">>>") ("exit" . "+++") ("ndexit" . "7++")
("redoll . ||<<<ll) (||fai1" . ll___ll) (llexceptlon" . ll==>||))

where ndexit is the nondeterminate variant of the Exit port. Do not rely on
this variable. It will change in future releases.

prolog-indent-width
How many positions to indent the body of a clause. Defaults to tab-width,
normally 8.

38 SICStus Prolog

prolog-paren—-indent
The number of positions to indent code inside grouping parentheses. Defaults
to 4, which gives the following indentation.

p -
(a1
i 92,
q3
).

Note that the spaces between the parentheses and the code are automatically
inserted when is pressed at those positions.

prolog-align-comments-flag
Set to nil to prevent single %-comments to be automatically aligned. Defaults
to t.

Note that comments with one % are indented to comment-column, comments
with two % to the code level, and that comments with three % are never changed
when indenting.

prolog-indent-mline-comments-flag
Set to nil to prevent indentation of text inside /* ... */ comments. Defaults
t.

prolog-object-end-to-0-flag
Set to nil to indent the closing } of an object definition to prolog-indent-
width. Defaults to t.

sicstus—keywords
This is a list with keywords that are highlighted in a special color when used
as directives (i.e. as :- keyword). Defaults to

> ((sicstus
("block" "discontiguous" "dynamic" "initialization"
"meta_predicate" "mode" "module" "multifile" "public" "volatile")))

prolog-electric-newline-flag
Set to nil to prevent Emacs from automatically indenting the next line when
pressing RET). Defaults to t.

prolog-hungry-delete-key-flag
Set to t to enable deletion of all white space before the cursor when pressing
the delete key (unless inside a comment, string, or quoted atom). Defaults to
nil.

prolog-electric-dot-flag
Set to t to enable the electric dot function. If enabled, pressing . at the end of
a non-empty line inserts a dot and a newline. When pressed at the beginning of
a line, a new head of the last predicate is inserted. When pressed at the end of
a line with only whitespace, a recursive call to the current predicate is inserted.
The function respects the arity of the predicate and inserts parentheses and the
correct number of commas for separation of the arguments. Defaults to nil.

Chapter 3: How to Run Prolog 39

prolog-electric-underscore-flag
Set to t to enable the electric underscore function. When enabled, pressing
underscore (_) when the cursor is on a variable, replaces the variable with the
anynomous variable. Defaults to nil.

prolog-old-sicstus-keys—-flag
Set to t to enable the key-bindings of the old Emacs interface. These bind-
ings are not used by default since they violate GNU Emacs recommendations.
Defaults to nil.

prolog-use-prolog-tokenizer-flag
Set to nil to use built-in functions of Emacs for parsing the source code when
indenting. This is faster than the default but does not handle some of the
syntax peculiarities of Prolog. Defaults to t.

prolog-parse-mode
What position the parsing is done from when indenting code. Two possible
settings: *beg-of-line and ’beg-of-clause. The first is faster but may result
in erroneous indentation in /* ... */ comments. The default is *beg-of-1line.

prolog-imenu-flag
Set to t to enable a new Predicate menu which contains all predicates of the
current file. Choosing an entry in the menu moves the cursor to the start of
that predicate. Defaults to nil.

prolog-info-predicate-index
The info node for the SICStus predicate index. This is important if the online
help function is to be used (by pressing C-c ?, or choosing the Prolog/Help on
predicate menu entry). The default setting is " (sicstus)Predicate Index".

prolog-underscore-wordchar-flag
Set to nil to not make underscore (_) a word-constituent character. Defaults
to t.

3.11.6 Tips

Some general tips and tricks for using the SICStus mode and Emacs in general are given
here. Some of the methods may not work in all versions of Emacs.

3.11.6.1 Font-locking

When editing large files, it might happen that font-locking is not done because the file is
too large. Typing M-x lazy-lock-mode results in only the visible parts of the buffer being
highlighted, which is much faster, see its Emacs on-line documentation for details.

If the font-locking seems to be incorrect, choose Fontify Buffer from the Prolog menu.

40 SICStus Prolog

3.11.6.2 Auto-fill mode

Auto-fill mode is enabled by typing M-x auto-fill-mode. This enables automatic line
breaking with some features. For example, the following multiline comment was created
by typing M-; followed by the text. The second line was indented and a 7 was added
automatically.

dynamics ([]). % A list of pit furnace
% dynamic instances

3.11.6.3 Speed

There are several things to do if the speed of the Emacs environment is a problem:

e First of all, make sure that ‘prolog.el’ and ‘sicstus-support.el’ are compiled, i.e.
that there is a ‘prolog.elc’ and a ‘sicstus-support.elc’ file at the same location
as the original files. To do the compilation, start Emacs and type M-x byte-compile-
file path (RET), where path is the path to the ‘*.el’ file. Do not be alarmed if
there are a few warning messages as this is normal. If all went well, there should now
be a compiled file which is used the next time Emacs is started.

e The next thing to try is changing the setting of prolog-use-prolog-tokenizer-flag
to nil. This means that Emacs uses built-in functions for some of the source code
parsing, thus speeding up indentation. The problem is that it does not handle all
peculiarities of the Prolog syntax, so this is a trade-off between correctness and speed.

e The setting of the prolog-parse-mode variable also affects the speed, *beg-of-line
being faster than *beg-of-clause.

e Font locking may be slow. You can turn it off using customization, available through
M-x customize-group font-lock RET). An alternative is to enable one of the
lazy font locking modes. You can also turn it off completely; see Section 3.11.2 [Basic
Configuration|, page 34.

3.11.6.4 Changing Colors

The prolog mode uses the default Emacs colors for font-locking as far as possible. The only
custom settings are in the prolog process buffer. The default settings of the colors may not
agree with your preferences, so here is how to change them.

If your emacs support it, use ‘Customize’, M-x customize-group font-lock will
show the ‘Customize’ settings for font locking and also contains pointers to the ‘Customize’
group for the font lock (type)faces. The rest of this section outlines the more involved
methods needed in older versions of Emacs.

First of all, list all available faces (a face is a combined setting of foreground and background
colors, font, boldness, etc.) by typing M-x list-faces-display.

Chapter 3: How to Run Prolog 41

There are several functions that change the appearance of a face, the ones you will most
likely need are:

set-face-foreground
set-face-background
set-face-underline-p
make-face-bold
make-face-bold-italic
make-face-italic
make-face-unbold
make-face-unitalic

These can be tested interactively by typing M-x function-name. You will then be asked
for the name of the face to change and a value. If the buffers are not updated according
to the new settings, then refontify the buffer using the Fontify Buffer menu entry in the
Prolog menu.

Colors are specified by a name or by RGB values. Available color names can be listed with
M-x list-colors-display.

To store the settings of the faces, a few lines must be added to ‘~/.emacs’. For example:

;; Customize font-lock faces
(add-hook ’font-lock-mode-hook
’(lambda ()
(set-face-foreground font-lock-variable-name-face "#00a000")
(make-face-bold font-lock-keyword-face)
(set-face-foreground font-lock-reference-face "Blue")

)

42

SICStus Prolog

Chapter 4: The Prolog Language 43

4 The Prolog Language

This chapter provides a brief introduction to the syntax and semantics of a certain subset
of logic (definite clauses, also known as Horn clauses), and indicates how this subset forms
the basis of Prolog.

4.1 Syntax, Terminology and Informal Semantics

4.1.1 Terms

The data objects of the language are called terms. A term is either a constant, a variable
or a compound term.

4.1.1.1 Integers

The constants include integers such as
0 1 999 -512

Besides the usual decimal, or base 10, notation, integers may also be written in other base
notations. In sicstus mode, any base from 2 to 36 can be specified, while in iso mode
bases 2 (binary), 8 (octal), and 16 (hex) can be used. Letters 4 through Z (upper or lower
case) are used for bases greater than 10. E.g.

15 2’1111 8’17 16°f Y sicstus mode
15 Ob1111 0017 Oxf % iso mode

all represent the integer fifteen. Except for the first, decimal, notation, the forms in the
first line are only acceptable in sicstus mode, while those in the second line are only valid
in iso mode.

There is also a special notation for character constants. E.g.
0’A 0’\x41 0’\101

are all equivalent to 65 (the character code for 4). ‘0°’ followed by any character except \
(backslash) is thus read as an integer. Unless character escapes have been switched off, if
‘0’7 is followed by \, the \ denotes the start of an escape sequence with special meaning
(see Section 47.5 [Escape Sequences|, page 741).

4.1.1.2 Floats

Constants also include floats such as

44 SICStus Prolog

1.0 -3.141 4 .5E7 -0.12e+8 12.0e-9

Note that there must be a decimal point in floats written with an exponent, and that there
must be at least one digit before and after the decimal point.

4.1.1.3 Atoms

Constants also include atoms such as
a wvoid = := ’Algol-68’ (]

Atoms are definite elementary objects, and correspond to proper nouns in natural language.
For reference purposes, here is a list of the possible forms which an atom may take:

1. Any sequence of alphanumeric characters (including _), starting with a lower case letter.

2. Any sequence from the following set of characters:
+=x/\"<>=": . P0#3&
This set can in fact be larger; see Section 47.4 [Token String], page 736 for a precise
definition.

3. Any sequence of characters delimited by single quotes. Unless character escapes have
been switched off, backslashes in the sequence denote escape sequences (see Section 47.5
[Escape Sequences|, page 741), and if the single quote character is included in the
sequence it must be escaped, e.g. can\’t’.

4. Any of: ! ; [1{}
Note that the bracket pairs are special: [] and {} are atoms but [, J, {, and } are not.
However, when they are used as functors (see below) the form {X} is allowed as an
alternative to {}(X). The form [X] is the normal notation for lists, as an alternative

to . (X, [1).

4.1.1.4 Variables

Variables may be written as any sequence of alphanumeric characters (including _) starting
with either a capital letter or _; e.g.

X Value A A1 -3 _RESULT

If a variable is only referred to once in a clause, it does not need to be named and may be
written as an anonymous variable, indicated by the underline character _. A clause may
contain several anonymous variables; they are all read and treated as distinct variables.

A variable should be thought of as standing for some definite but unidentified object. This
is analogous to the use of a pronoun in natural language. Note that a variable is not simply
a writable storage location as in most programming languages; rather it is a local name for
some data object, cf. the variable of pure LISP and identity declarations in Algol68.

Chapter 4: The Prolog Language 45

4.1.1.5 Compound Terms

The structured data objects of the language are the compound terms. A compound term
comprises a functor (called the principal functor of the term) and a sequence of one or more
terms called arguments. A functor is characterized by its name, which is an atom, and its
arity or number of arguments. For example the compound term whose functor is named
point of arity 3, with arguments X, Y and Z, is written

point(X, Y, Z)
Note that an atom is considered to be a functor of arity 0.

Functors are generally analogous to common nouns in natural language. One may think of
a functor as a record type and the arguments of a compound term as the fields of a record.
Compound terms are usefully pictured as trees. For example, the term

s (np(john) ,vp(v(1likes) ,np(mary)))
would be pictured as the compound term

s
/N
np vp
I / 0\
john A\ np
| [

likes mary

Sometimes it is convenient to write certain functors as operators—2-ary functors may be
declared as infix operators and l-ary functors as prefix or postfix operators. Thus it is
possible to write, e.g.

X+Y (P;Q) X<Y +X P;
as optional alternatives to
+(X,Y) ;P <E,Y) +X) ;®
The use of operators is described fully below (see Section 4.6 [Operators|, page 54).

Lists form an important class of data structures in Prolog. They are essentially the same as
the lists of LISP: a list either is the atom [] representing the empty list, or is a compound
term with functor . and two arguments which are respectively the head and tail of the list.
Thus a list of the first three natural numbers is the compound term

/ \
1 .
/ \

46 SICStus Prolog

/ - \
3 1
which could be written, using the standard syntax, as
L(1,.02,.3, 1N
but which is normally written, in a special list notation, as
[1,2,3]

The special list notation in the case when the tail of a list is a variable is exemplified by

[XIL] [a,blL]
representing
/\ /\
X L a .
/ \
b L
respectively.

Note that this notation does not add any new power to the language; it simply makes it
more readable. e.g. the above examples could equally be written

.(X,L) .(a,.(,L))

For convenience, a further notational variant is allowed for lists of integers which correspond
to character codes or one-char atoms. Lists written in this notation are called strings. E.g.

"SICStus"
which, by default, represents exactly the same list as
[83,73,67,83,116,117,115]

The Prolog flag double_quotes can be used to change the way strings are interpreted. The
default value of the flag is codes, which implies the above interpretation. If the flag is set to
chars, a string is transformed to a list of one-char atoms. E.g. with this setting the above
string represents the list:

[’S’,’I’,’C’,’S’,t,u,s]

Finally if double_quotes has the value atom, then the string is made equivalent to the
atom formed from its characters: the above sample string is then the same as the atom
’SICStus’.

Chapter 4: The Prolog Language 47

Unless character escapes have been switched off, backslashes in the sequence denote escape
sequences (see Section 47.5 [Escape Sequences], page 741). As for quoted atoms, if a double
quote character is included in the sequence it must be escaped, e.g. "can\"t".

4.1.2 Programs

A fundamental unit of a logic program is the goal or procedure call. E.g.
gives(tom, apple, teacher) reverse([1,2,3], L) X<Y

A goal is merely a special kind of term, distinguished only by the context in which it appears
in the program. The (principal) functor of a goal identifies what predicate the goal is for. It
corresponds roughly to a verb in natural language, or to a procedure name in a conventional
programming language.

A logic program consists simply of a sequence of statements called sentences, which are
analogous to sentences of natural language. A sentence comprises a head and a body. The
head either consists of a single goal or is empty. The body consists of a sequence of zero
or more goals (i.e. it too may be empty). If the head is not empty, the sentence is called a
clause.

If the body of a clause is empty, the clause is called a unit clause, and is written in the form
P.

where P is the head goal. We interpret this declaratively as
Goals matching P are true.

and procedurally as
Goals matching P are satisfied.

If the body of a clause is non-empty, the clause is called a rule, and is written in the form
P :- @, R, S.

where P is the head goal and @, R and S are the goals which make up the body. We can
read such a clause either declaratively as

P is true if Q and R and S are true.
or procedurally as
To satisfy goal P, satisfy goals @, R and S.

A sentence with an empty head is called a directive (see Section 3.4.2 [Directives|, page 27),
and is written in the form

48 SICStus Prolog

- P, Q.

where P and @ are the goals of the body. Such a query is read declaratively as
Are P and Q true?

and procedurally as
Satisfy goals P and Q.

Sentences generally contain variables. Note that variables in different sentences are com-
pletely independent, even if they have the same name—i.e. the lexical scope of a variable
is limited to a single sentence. Each distinct variable in a sentence should be interpreted
as standing for an arbitrary entity, or value. To illustrate this, here are some examples of
sentences containing variables, with possible declarative and procedural readings:

1. employed(X) :- employs(Y,X).

“Any X is employed if any Y employs X.”

“To find whether a person X is employed, find whether any Y employs X.”
2. derivative(X,X,1).

“For any X, the derivative of X with respect to X is 1.”

“The goal of finding a derivative for the expression X with respect to X itself is satisfied
by the result 1.”

3. 7- ungulate(X), aquatic(X).
“Is it true, for any X, that X is an ungulate and X is aquatic?”

“Find an X which is both an ungulate and aquatic.”

In any program, the predicate for a particular (principal) functor is the sequence of clauses
in the program whose head goals have that principal functor. For example, the predicate
for a 3-ary functor concatenate/3 might well consist of the two clauses

concatenate([], L, L).
concatenate([X|L1], L2, [X|L3]) :- concatenate(L1l, L2, L3).

where concatenate(L1,L2,L3) means “the list L1 concatenated with the list L2 is the list
L3”. Note that for predicates with clauses corresponding to a base case and a recursive
case, the preferred style is to write the base case clause first.

In Prolog, several predicates may have the same name but different arities. Therefore, when
it is important to specify a predicate unambiguously, the form name/arity is used; e.g.
concatenate/3.

Certain predicates are predefined by built-in predicates supplied by the Prolog system. Such
predicates are called built-in predicates.

As we have seen, the goals in the body of a sentence are linked by the operator *,” which
can be interpreted as conjunction (“and”). It is sometimes convenient to use an additional

Chapter 4: The Prolog Language 49

operator ‘;’; standing for disjunction (“or”). (The precedence of ‘;’ is such that it dominates
‘,” but is dominated by ‘:-’.) An example is the clause

grandfather (X, Z) :-
(mother (X, Y); father(X, Y)),
father(Y, Z).

which can be read as

For any X, Y and Z, X has Z as a grandfather if either the mother of X is Y
or the father of X is Y, and the father of Y is Z.

Such uses of disjunction can always be eliminated by defining an extra predicate—for in-
stance the previous example is equivalent to

grandfather(X,Z) :- parent(X,Y), father(Y,Z).

parent(X,Y) :- mother(X,Y).
parent (X,Y) :- father(X,Y).

—and so disjunction will not be mentioned further in the following, more formal, description
of the semantics of clauses.

The token ‘|’, when used outside a list, is an alias for *

terms are read in, so that

;’. The aliasing is performed when

a:-b | c.
is read as if it were
a:-b; c.

Note the double use of the ‘.’ character. On the one hand it is used as a sentence terminator,
while on the other it may be used in a string of symbols which make up an atom (e.g. the
list functor ./2). The rule used to disambiguate terms is that a ‘.’ followed by layout-text
is regarded as a sentence terminator (see Section 47.4 [Token String], page 736).

4.2 Declarative Semantics

The semantics of definite clauses should be fairly clear from the informal interpretations
already given. However it is useful to have a precise definition. The declarative semantics
of definite clauses tells us which goals can be considered true according to a given program,
and is defined recursively as follows.

A goal is true if it is the head of some clause instance and each of the goals (if
any) in the body of that clause instance is true, where an instance of a clause
(or term) is obtained by substituting, for each of zero or more of its variables,
a new term for all occurrences of the variable.

50 SICStus Prolog

For example, if a program contains the preceding procedure for concatenate/3, then the
declarative semantics tells us that

?- concatenate([a], [b], [a,b]).

is true, because this goal is the head of a certain instance of the first clause for
concatenate/3, namely,

concatenate([a], [b], [a,b]) :- concatenate([], [b], [bl).

and we know that the only goal in the body of this clause instance is true, since it is an
instance of the unit clause which is the second clause for concatenate/3.

4.3 Procedural Semantics

Note that the declarative semantics makes no reference to the sequencing of goals within
the body of a clause, nor to the sequencing of clauses within a program. This sequencing
information is, however, very relevant for the procedural semantics which Prolog gives to
definite clauses. The procedural semantics defines exactly how the Prolog system will exe-
cute a goal, and the sequencing information is the means by which the Prolog programmer
directs the system to execute the program in a sensible way. The effect of executing a goal
is to enumerate, one by one, its true instances. Here then is an informal definition of the
procedural semantics. We first illustrate the semantics by the simple query

?7- concatenate(X, Y, [a,b]).

We find that it matches the head of the first clause for concatenate/3, with X instantiated
to [alX1]. The new variable X1 is constrained by the new query produced, which contains
a single recursive procedure call:

?- concatenate(X1, Y, [bl).

Again this goal matches the first clause, instantiating X1 to [b|X2], and yielding the new
query:

?- concatenate(X2, Y, [1)

Now the single goal will only match the second clause, instantiating both X2 and Y to [].
Since there are no further goals to be executed, we have a solution

X = [a,b]
Y =[]

i.e. a true instance of the original goal is
concatenate([a,b], [], [a,bl)

If this solution is rejected, backtracking will generate the further solutions

Chapter 4: The Prolog Language 51

X = [a]
Y = [b]
X =1
Y = [a,b]

in that order, by re-matching, against the second clause for concatenate, goals already
solved once using the first clause.

Thus, in the procedural semantics, the set of clauses

H :- B1, ..., Bm.
H’ :- B1’, ..., Bm’.

are regarded as a procedure definition for some predicate H, and in a query
?- G1, ..., Gn.

each Gi is regarded as a procedure call. To execute a query, the system selects by its
computation rule a goal, Gj say, and searches by its search rule a clause whose head matches
Gj. Matching is done by the unification algorithm (see [Robinson 65] which computes the
most general unifier, mgu, of Gj and H). The mgu is unique if it exists. If a match is found,
the current query is reduced to a new query

?- (G1, ..., Gj-1, Bi, ..., Bm, Gj+1, ..., Gn)mgu.

and a new cycle is started. The execution terminates when the empty query has been
produced.

If there is no matching head for a goal, the execution backtracks to the most recent successful
match in an attempt to find an alternative match. If such a match is found, an alternative
new query is produced, and a new cycle is started.

In SICStus Prolog, as in other Prolog systems, the search rule is simple: “search forward
from the beginning of the program”.

The computation rule in traditional Prolog systems is also simple: “pick the leftmost goal
of the current query”. However, SICStus Prolog and other modern implementations have a
somewhat more complex computation rule “pick the leftmost unblocked goal of the current
query”.

A goal can be blocked on one ore more uninstantiated variables, and a variable may block
several goals. Thus binding a variable can cause blocked goals to become unblocked, and
backtracking can cause currently unblocked goals to become blocked again. Moreover, if
the current query is

?- G1, ..., Gj-1, Gj, Gj+1, ..., Gn.

52 SICStus Prolog

where Gj is the first unblocked goal, and matching Gj against a clause head causes several
blocked goals in G1, ..., Gj-1 to become unblocked, then these goals may become reordered.
The internal order of any two goals that were blocked on the same variable is retained,
however.

Another consequence is that a query may be derived consisting entirely of blocked goals.
Such a query is said to have floundered. The top-level checks for this condition. If detected,
the outstanding blocked subgoals are printed on the standard error stream along with the
answer substitution, to notify the user that the answer (s)he has got is really a speculative
one, since it is only valid if the blocked goals can be satisfied.

A goal is blocked if certain arguments are uninstantiated and its predicate definition is an-
notated with a matching block declaration (see Section 6.2.5 [Block Declarations|, page 70).
Goals of certain built-in may also be blocked if their arguments are not sufficiently instan-
tiated.

When this mechanism is used, the control structure resembles that of coroutines, suspending
and resuming different threads of control. When a computation has left blocked goals
behind, the situation is analogous to spawning a new suspended thread. When a blocked
goal becomes unblocked, the situation is analogous to temporarily suspending the current
thread and resuming the thread to which the blocked goal belongs.

4.4 Occurs-Check

It is possible, and sometimes useful, to write programs which unify a variable to a term
in which that variable occurs, thus creating a cyclic term. The usual mathematical theory
behind Logic Programming forbids the creation of cyclic terms, dictating that an occurs-
check should be done each time a variable is unified with a term. Unfortunately, an occurs-
check would be so expensive as to render Prolog impractical as a programming language.
Thus cyclic terms may be created and may cause loops trying to print them.

SICStus Prolog mitigates the problem by its ability to unify, compare (see Section 8.3
[Term Compare|, page 166), assert, and copy cyclic terms without looping. The write_
term/ [2,3] built-in predicate can optionally handle cyclic terms; see Section 8.1.3 [Term
I/0], page 140. Unification with occurs-check is available as a built-in predicate; see Sec-
tion 8.17 [Misc Pred], page 210. Predicates testing (a)cyclicity are available in a library
package; see Chapter 21 [Term Utilities], page 367. Other predicates usually do not handle
cyclic terms well.

4.5 The Cut Symbol

Besides the sequencing of goals and clauses, Prolog provides one other very important
facility for specifying control information. This is the cut symbol, written !. It is inserted

Chapter 4: The Prolog Language 53

in the program just like a goal, but is not to be regarded as part of the logic of the program
and should be ignored as far as the declarative semantics is concerned.

The effect of the cut symbol is as follows. When first encountered as a goal, cut succeeds
immediately. If backtracking should later return to the cut, the effect is to fail the parent
goal, i.e. that goal which matched the head of the clause containing the cut, and caused the
clause to be activated. In other words, the cut operation commits the system to all choices
made since the parent goal was invoked, and causes other alternatives to be discarded. The
goals thus rendered determinate are the parent goal itself, any goals occurring before the
cut in the clause containing the cut, and any subgoals which were executed during the
execution of those preceding goals.

For example:

member (X, [XI_1).
member (X, [_|L]) :- member(X, L).

This predicate can be used to test whether a given term is in a list. E.g.
| ?- member(b, [a,b,c]).

returns the answer ‘yes’. The predicate can also be used to extract elements from a list, as
in

| ?7- member(X, [d,e,f]).

With backtracking this will successively return each element of the list. Now suppose that
the first clause had been written instead:

member (X, [X|_1) :- !.

In this case, the above call would extract only the first element of the list (d). On back-
tracking, the cut would immediately fail the whole predicate.

x :-p, !, q.
X - r.

This is equivalent to
x := if p then q else r;
in an Algol-like language.

It should be noticed that a cut discards all the alternatives since the parent goal, even when
the cut appears within a disjunction. This means that the normal method for eliminating
a disjunction by defining an extra predicate cannot be applied to a disjunction containing
a cut.

A proper use of the cut is usually a major difficulty for new Prolog programmers. The usual
mistakes are to over-use cut, and to let cuts destroy the logic. A cut that doesn’t destroy

54 SICStus Prolog

the logic is called a green cut; a cut that does is called a red cut. We would like to advise
all users to follow these general rules. Also see Chapter 13 [Writing Efficient Programs],
page 321.

e Write each clause as a self-contained logic rule which just defines the truth of goals
which match its head. Then add cuts to remove any fruitless alternative computation
paths that may tie up memory.

e Cuts are usually placed right after the head, sometimes preceded by simple tests.

e Cuts are hardly ever needed in the last clause of a predicate.

4.6 Operators

Operators in Prolog are simply a notational convenience. For example, the expression 2+1
could also be written +(2,1). This expression represents the compound term

and not the number 3. The addition would only be performed if the term were passed as an
argument to an appropriate predicate such as is/2 (see Section 8.2 [Arithmetic|, page 161).

The Prolog syntax caters for operators of three main kinds—infix, prefix and postfix. An
infix operator appears between its two arguments, while a prefix operator precedes its single
argument and a postfix operator is written after its single argument.

Each operator has a precedence, which is a number from 1 to 1200. The precedence is used
to disambiguate expressions where the structure of the term denoted is not made explicit
through the use of parentheses. The general rule is that it is the operator with the highest
precedence that is the principal functor. Thus if ‘+” has a higher precedence than ¢/’, then

a+b/c a+(b/c)

are equivalent and denote the term +(a,/(b,c)). Note that the infix form of the term
/(+(a,b),c) must be written with explicit parentheses, i.e.

(a+b)/c

If there are two operators in the subexpression having the same highest precedence, the
ambiguity must be resolved from the types of the operators. The possible types for an infix
operator are

xfx xfy yix

Operators of type xfx are not associative: it is a requirement that both of the two subex-
pressions which are the arguments of the operator must be of lower precedence than the

Chapter 4: The Prolog Language 55

operator itself, i.e. their principal functors must be of lower precedence, unless the subex-
pression is explicitly parenthesized (which gives it zero precedence).

Operators of type xfy are right-associative: only the first (left-hand) subexpression must
be of lower precedence; the right-hand subexpression can be of the same precedence as the
main operator. Left-associative operators (type yfx) are the other way around.

A functor named name is declared as an operator of type type and precedence precedence
by the directive:

:- op(precedence, type, name).
The argument name can also be a list of names of operators of the same type and precedence.

It is possible to have more than one operator of the same name, so long as they are of
different kinds, i.e. infix, prefix or postfix. Note that the ISO Prolog standard contains a
limitation that there should be no infix and postfix operators with the same name, however,
SICStus Prolog lifts this restriction.

An operator of any kind may be redefined by a new declaration of the same kind. This
applies equally to operators which are provided as standard, except for the ’,’ operator.
Declarations of all the standard operators can be found elsewhere (see [Standard Operators],
page 743).

For example, the standard operators + and - are declared by
:- op(500, yfx, [+, - 1).

so that
a-b+c

is valid syntax, and means
(a-b)+c

i.e.

The list functor ./2 is not a standard operator, but if we declare it thus:
:= op(900, xfy, .).

then a.b.c would represent the compound term

56 SICStus Prolog

/ \
a .
/ \
b C

Contrasting this with the diagram above for a-b+c shows the difference between yfx op-
erators where the tree grows to the left, and xfy operators where it grows to the right.
The tree cannot grow at all for xfx operators; it is simply illegal to combine xfx operators
having equal precedences in this way.

The possible types for a prefix operator are
fx fy

and for a postfix operator they are
xf yf

The meaning of the types should be clear by analogy with those for infix operators. As an
example, if not were declared as a prefix operator of type fy, then

not not P

would be a permissible way to write not(not(P)). If the type were fx, the preceding
expression would not be legal, although

not P
would still be a permissible form for not (P).

If these precedence and associativity rules seem rather complex, remember that you can
always use parentheses when in any doubt.

Note that the arguments of a compound term written in standard syntax must be expres-
sions of precedence below 1000. Thus it is necessary to parenthesize the expression P : - Q
in

| 7- assert((P :- Q)).
4.7 Syntax Restrictions

Note carefully the following syntax restrictions, which serve to remove potential ambiguity
associated with prefix operators.

1. In a term written in standard syntax, the principal functor and its following (must
not be separated by any intervening layout-text. Thus

point (X,Y,Z)

is invalid syntax.

Chapter 4: The Prolog Language 57

2. If the argument of a prefix operator starts with a (, this (must be separated from the
operator by at least one layout-char. Thus

:=(p;q),r.

(where ‘: =" is the prefix operator) is invalid syntax. The system would try to interpret
it as the compound term:

b

/ \
- T
|
/ \
p q
That is, it would take ‘:-’ to be a functor of arity 1. However, since the arguments

of a compound term are required to be expressions of precedence below 1000, this
interpretation would fail as soon as the ‘;’ (precedence 1100) was encountered.

In contrast, the term:
- (p;a),r.

is valid syntax and represents the following compound term:

b

/ \
; r
/ \
P q

4.8 Comments

Comments have no effect on the execution of a program, but they are very useful for making
programs more readily comprehensible. Two forms of comment are allowed in Prolog:

1. The character followed by any sequence of characters up to end of line.

2. The symbol /* followed by any sequence of characters (including new lines) up to */.

58

SICStus Prolog

Chapter 5: The Module System 59

5 The Module System

By making use of the module systems facilities, programs can be divided into different
modules. Each module has its own independent predicate name space. This is an important
feature for the development of larger programs. The module system of SICStus Prolog is
procedure based. This means that only the predicates are local to a module, whereas terms
are global. The module system is flat, not hierarchical, so all modules are visible to one
another. It is non-strict, i.e. the normal visibility rules can be overridden by special syntax.
No overhead is incurred on compiled calls to predicates in other modules. It is modeled
after and compatible with the Quintus Prolog module system. Finally, using the module
system is optional, and SICStus Prolog may be used without the user being aware of the
module system at all.

Modules in SICStus Prolog can also be used for object-oriented programming. See Chap-
ter 37 [Obj Intro], page 539, for details.

5.1 Basic Concepts

Each predicate in the Prolog system, whether built-in or user defined, belongs to a module.
A predicate is generally only visible in the module where it is defined. However a predicate
may be imported by another module. It is thereby made visible in that module too. Built-in
predicates are visible in every module. Predicates declared as public in a module declaration
(see below) are exported. Normally only public predicates may be imported by another
module.

For any given goal, the source module is the module in which the corresponding predicate
must be visible. Similarly, for any given clause, the source module of its head is the module
into which the clause is loaded.

For goals occurring in a source file with a module declaration, the source module is the
declared module. For goals occurring in a source file without a module declaration, the
source module is the module that the file is being loaded into. For goals typed at the top-
level, the source module is the type-in module. The type-in module is by default the user
module but may be changed by the built-in predicate module/1.

The other predefined module is the prolog module where all the built-in predicates reside.
The exported built-in predicates are automatically imported into each new module as it is
created.

5.2 Module Prefixing

Notwithstanding the visibility rules, any predicate can be called from any other module by
prefixing the goal with the module name and the colon operator, thus overriding the source
module of the goal:

60 SICStus Prolog

| ?- foo:bar(X).

This feature is intended mainly for debugging purposes, since it defies the purposes of the
module system. If the prefixed goal is a meta-predicate, however, the prefixed module name
may affect the module name expansion of the goal (see Section 5.5 [Meta Exp]|, page 61).
If multiple module prefixes are used, the innermost one has priority.

It is also possible to override the source module of clauses and directives by module prefixing.
For example,

:— dynamic mod:p/1.

p(X) :- mod:(q(X), r(X)).
mod: (q(X) :- r(X)).
mod:s(X) :- t(X).

declares mod:p/1 as dynamic, whatever the source module is; defines p/1 in the source
module as calling mod:q/1 and mod:r/1; defines mod:q/1 as calling mod:r/1; and defines
mod:s/1 as calling t/1 in the source module. The latter technique is particularly useful
when the prefix is user and the predicate is a hook predicate such as user:portray/1
which must be defined in the user module, but the rest of the file consists of predicates
belonging to some other module.

5.3 Defining Modules

A module is normally defined by putting a module declaration in a source file. A module
declaration has the form:

:— module (ModuleName, ExportList[, Options]).

where ModuleName is an atom, and should precede all other clauses and directives of that
file.

When the file is loaded, all predicates in the file go into ModuleName and the predicates of
the ExportList are exported. When a module declaration is processed, all existing predicates
in the module are erased before the new ones are loaded. A file which contains a module
declaration is henceforth called a module-file.

Options is an optional argument, and should be a list. The only available option is
hidden(Boolean), where Boolean is false (the default) or true. In the latter case, tracing
of the predicates of the module is disabled (although spypoints can be set), and no source
information is generated at compile time.

A module can also be defined dynamically by asserting or loading predicates to it:
| 7- assert(m:p(x)).

creates the module m, if it does not already exists, and asserts p(x) to it.

Chapter 5: The Module System 61

| ?- compile(m:f).
creates the module m and loads f into m.

Dynamically created modules have no public predicates.
5.4 Importation

When a module-file is loaded by load_files/[1,2] or one of its shorthands (see Sec-
tion 8.1.1 [Read In|, page 132), by default all the public predicates of the module-file are
imported by the receiving module. An explicit list of predicates to import may also be
specified.

Clashes with already existing predicates, local or imported from other modules, are handled
in two different ways: If the receiving module is the user module, the user is asked for redefi-
nition of the predicate. For other receiving modules, a warning is issued and the importation
is canceled. In the first case redefinition silently takes place if the flag redefine_warnings
has the value off (see prolog_flag/3). The binding of an imported predicate remains,
even if the origin is reloaded or deleted. However, abolish/[1,2] break up the importation
binding. When a module-file is reloaded, a check is made that the predicates imported by
other modules are still in the public list. If that is not the case, a warning is issued. Note
that an imported predicate may be re-exported.

5.5 Module Name Expansion

Some predicates take goals as arguments (i.e. meta-predicates). These arguments must
include a module specification stating which module the goal refers. Some other predicates
also need module information i.e. compile/1. The property of needing module information
is declared with a meta-predicate declaration (see Section 5.6 [Meta Decl], page 62). Goals
for these predicates are module name expanded to ensure the module information. Goals
appearing in queries and meta-calls are expanded prior to execution while goals in the bodies
of clauses and directives are expanded at compile time. The expansion is made by preceding
the relevant argument with ‘Module:’. If the goal is prefixed by ‘Module:’, Module is
used for the expansion; otherwise, the source/type-in module is used. An argument is not
expanded if:

e [t already has a module prefix, or
e [t is a variable which appears in an expandable position in the head of the clause.

Some examples:

| ?- [user].
| :- meta_predicate p(:), q(:).
| r(X) - p(X).

| qX) :- p(X).

62 SICStus Prolog

| °D
% consulted user in module user, 40 msec 1088 bytes

yes
| ?- listing.

r(d) :-
p(user:A).
q(a) :-
p(a).
yes

Here, p/1 and q/1 are declared as meta-predicates while r/1 is not. Thus the clause r(X)
;= p(X) will be transformed to r(X) :- p(M:X), by item 2 above, where M is the type-in
module, whereas q(X) :- p(X) will not.

| ?- m:assert(£f(1)).

Here, assert/1 is called in the module m. However, this does not ensure that f£(1) is
asserted into m. The fact that assert/1 is a meta-predicate makes the system module
name expand the goal, transforming it to m:assert(m:f (1)) before execution. This way,
assert/1 is supplied the correct module information.

5.6 Meta-Predicate Declarations

The fact that a predicate needs module name expansion is declared in a meta-predicate
declaration:

:— meta_predicate MetaPredSpec, ..., MetaPredSpec.
where each MetaPredSpec is a mode spec. E.g.
:- meta_predicate p(:, +).

which means that the first argument of p/2 shall be module name expanded. The arguments
in the mode spec are interpreted as:

An integer
This argument, in any call to the declared predicate, shall be expanded. (Inte-
gers are allowed for compatibility reasons).

Anything elsee.g. +, —or?
This argument shall not be expanded

Chapter 5: The Module System 63

A number of built-in predicates have predefined meta-predicate declarations, as indicated
by the mode specs in this manual, e.g. call(:Term).

64

SICStus Prolog

Chapter 6: Loading Programs 65

6 Loading Programs

Programs can be loaded in three different ways: consulted or compiled from source file,
or loaded from object files. The latter is the fastest way of loading programs, but of
course requires that the programs have been compiled to object files first. Object files
may be handy when developing large applications consisting of many source files, but are
not strictly necessary since it is possible to save and restore entire execution states (see
Section 8.17 [Misc Pred], page 210).

Consulted, or interpreted, predicates are equivalent to, but slower than, compiled ones.
Although they use different representations, the two types of predicates can call each other
freely.

The SICStus Prolog compiler produces compact and efficient code, running about 8 times
faster than consulted code, and requiring much less runtime storage. Compiled Prolog
programs are comparable in efficiency with LISP programs for the same task. However,
against this, compilation itself takes about twice as long as consulting, and tracing of goals
that compile in-line are not available in compiled code.

The compiler operates in four different modes, controlled by the “Compilation mode” flag
(see prolog_flag/3). The possible states of the flag are:

compactcode
Compilation produces byte-coded abstract instructions. This is the default
unless SICStus Prolog has been installed with support for fastcode compilation.

fastcode Compilation produces native machine instructions. Currently only available for
Sparc platforms. Fastcode runs about 3 times faster than compactcode. This
is the default if SICStus Prolog has been installed with support for fastcode
compilation.

profiledcode
Compilation produces byte-coded abstract instructions instrumented to pro-
duce execution profiling data. See Section 8.16 [Profiling], page 208. Profiling
is not available in runtime systems.

debugcode
Compilation produces interpreted code, i.e. compiling is replaced by consulting.

The compilation mode can be changed by issuing the query:
| ?- prolog_flag(compiling, 0ldValue, NewValue).

A Prolog program consists of a sequence of sentences (see Section 47.2 [Sentence|, page 734).
Directives encountered among the sentences are executed immediately as they are encoun-
tered, unless they can be interpreted as declarations (see Section 6.2 [Declarations|, page 68),
which affect the treatment of forthcoming clauses, or as initializations, which build up a set
of goals to be executed after the program has been loaded. Clauses are loaded as they are
encountered.

66 SICStus Prolog

A Prolog program may also contain a list of sentences (including the empty list). This is
treated as equivalent to those sentences occurring in place of the list. This feature makes
it possible to have user:term_expansion/[2,4] (see Section 8.1.2 [Definite|, page 136)
“return” a list of sentences, instead of a single sentence.

6.1 Predicates which Load Code

This section contains a summary of the relevant predicates. For a more precise description,
see Section 8.1.1 [Read In], page 132.

To consult a program, issue the query:
| ?- consult(Files).

where Files is either a filename or a list of filenames, instructs the processor to read in the
program which is in the files. For example:

| ?7- consult([dbase,’extras.pl’,user]).

When a directive is read it is immediately executed. Any predicate defined in the files erases
any clauses for that predicate already present. If the old clauses were loaded from a different
file than the present one, the user will be queried first whether (s)he really wants the new
definition. However, if a multifile declaration (see Section 6.2 [Declarations|, page 68) is
read and the corresponding predicate exists and has previously been declared as multifile,
new clauses will be added to the predicate, rather than replacing the old clauses. If clauses
for some predicate appear in more than one file, the later set will effectively overwrite the
earlier set. The division of the program into separate files does not imply any module
structure—any predicate can call any other (see Chapter 5 [Module Intro|, page 59).

consult/1, used in conjunction with save_program/[1,2] and restore/1, makes it pos-
sible to amend a program without having to restart from scratch and consult all the files
which make up the program. The consulted file is normally a temporary “patch” file con-
taining only the amended predicate(s). Note that it is possible to call consult (user) and
then enter a patch directly on the terminal (ending with ~D). This is only recommended
for small, tentative patches.

| ?- [File|Files].

This is a shorthand way of consulting a list of files. (The case where there is just one
filename in the list was described earlier (see Section 3.2 [Reading In|, page 24).

To compile a program in-core, use the built-in predicate:
| ?- compile(Files).

where Files is specified just as for consult/1.

Chapter 6: Loading Programs 67

The effect of compile/1 is very much like that of consult/1, except all new procedures will
be stored in compiled rather than consulted form. However, predicates declared as dynamic
(see below) will be stored in consulted form, even though compile/1 is used.

Programs can be compiled into an intermediate representation known as ‘.ql’ (for Quick
Load file). As of SICStus Prolog 3.8, this feature is obsolescent with the introduction of
partial saved states (‘.po’ files; see Section 3.10 [Saving], page 30), which can be handled
much more efficiently.

To compile a program into a ‘.ql’ file, use the built-in predicate:
| ?7- fcompile(Files).

where Files is specified just as for consult/1. For each filename in the list, the compiler
will append the suffix ‘.pl’ to it and try to locate a source file with that name and compile
it to a ‘.ql’ file. The filename is formed by appending the suffix ‘.q1l’ to the specified
name. The internal state of SICStus Prolog is not changed as result of the compilation. See
Section 6.4 [Considerations|, page 72.

To load a program from a set of source or object files, use the built-in predicates load_
files/[1,2] (the latter is controlled by an options list):

| ?- load_files(Files).

where Files is either a single filename or a list of filenames, optionally with ‘.pl’ or ‘.po’
or ‘.ql’ extensions. This predicate takes the following action for each File in the list of
filenames:

If the File is user, compile(user) or [user] is performed;

If File cannot be found, not even with an extension, an existence error is signaled;
If an ‘.po’ file is found, the file is loaded;

If an ‘.ql’ file is found, the file is loaded;

If a source file is found, the file is compiled or consulted.

A

If more than one file is found for File, item 3 or 4 or 5 applies depending on which file
was modified most recently.

=

If File cannot be found, not even with an extension, an existence error is signaled.

8. Source files are compiled, unless load_files/1 was called from a directive of a file
being consulted.

Finally, to ensure that some files have been loaded, use the built-in predicate:
| ?- ensure_loaded(Files).

Same as load_files(Files), except if the file to be loaded has already been loaded and has
not been modified since that time, in which case the file is not loaded again. If a source file
has been modified, ensure_loaded/1 does not cause any object file to become recompiled.

68 SICStus Prolog

6.2 Declarations

When a program is to be loaded, it is sometimes necessary to tell the system to treat some of
the predicates specially. This information is supplied by including declarations about such
predicates in the source file, preceding any clauses for the predicates which they concern.
A declaration is written just as a directive, beginning with ‘:=’. A declaration is effective
from its occurrence through the end of file.

Although declarations that affect more than one predicate may be collapsed into a single
declaration, the recommended style is to write the declarations for a predicate immediately
before its first clause.

Operator declarations are not declarations proper, but rather directives that modify the
global table of syntax operators. Operator declarations are executed as they are encountered
while loading programs.

The rest of this section details the available forms of predicate declarations.

6.2.1 Multifile Declarations

A declaration
:- multifile PredSpec, ..., PredSpec. [1s0]

where each PredSpec is a predicate spec, causes the specified predicates to become multifile.
This means that if more clauses are subsequently loaded from other files for the same
predicate, then the new clauses will not replace the old ones, but will be added at the end
instead. As of release 3, multifile declarations are required in all files from where clauses to
a multifile predicate are loaded.

An example when multifile declarations are particularly useful is in defining hook predicates.
A hook predicate is a user-defined predicate that somehow alters or customizes the behavior
of SICStus Prolog. A number of such hook predicates are described in this manual. Often,
an application needs to combine the functionality of several software modules, some of
which define clauses for such hook predicates. By simply declaring every hook predicates as
multifile, the functionality of the clauses for the hook predicates is automatically combined.
If this is not done, the last software module to define clauses for a particular hook predicate
will effectively supersede any clauses defined for the same hook predicate in a previous
module. By default, hook predicates must be defined in the user module, and only their
first solution is relevant.

If a file containing clauses for a multifile predicate is reloaded, the old clauses from the same
file are removed. The new clauses are added at the end.

If a multifile predicate is loaded from a file with no multifile declaration for it, the predicate
is redefined as if it were an ordinary predicate (i.e. the user is asked for confirmation).

Chapter 6: Loading Programs 69

Clauses of multifile predicates are (currently) always loaded in interpreted form, even if they
were processed by the compiler. If performance is an issue, define the multifile predicates as
unit clauses or as clauses with a single goal that just calls an auxiliary compiled predicate
to perform any time-critical computation.

If a multifile predicate is declared dynamic in one file, it must also be done so in the other
files from where it is loaded. Hook predicates should always be declared as multifile and
dynamic, as this is the convention followed in the library modules.

Multifile declarations must precede any other declarations for the same predicate(s)!

6.2.2 Dynamic Declarations

A declaration
:— dynamic PredSpec, ..., PredSpec. [150]

where each PredSpec is a predicate spec, causes the specified predicates to become dynamic,
which means that other predicates may inspect and modify them, adding or deleting individ-
ual clauses. Dynamic predicates are always stored in consulted form even if a compilation is
in progress. This declaration is meaningful even if the file contains no clauses for a specified
predicate—the effect is then to define a dynamic predicate with no clauses.

6.2.3 Volatile Declarations

A declaration
:— volatile PredSpec, ..., PredSpec.
where each PredSpec is a predicate spec, causes the specified predicates to become volatile.

A predicate should be declared as volatile if it refers to data that cannot or should not be
saved in a saved state. In most cases a volatile predicate will be dynamic, and it will be used
to keep facts about streams or memory references. When a program state is saved at run-
time, the clauses of all volatile predicates will be left unsaved. The predicate definitions will
be saved though, which means that the predicates will keep all properties, that is volatile
and maybe dynamic or multifile, when the saved state is restored.

6.2.4 Discontiguous Declarations

A declaration

:- discontiguous PredSpec, ..., PredSpec. [150]

70 SICStus Prolog

where each PredSpec is a predicate spec, disables warnings about clauses not being together
for the specified predicates. By default, such warnings are issued in development systems
unless disabled selectively for specific predicates, or globally by setting the discontiguous_
warnings flag to off.

6.2.5 Block Declarations

The declaration
:— block BlockSpec, ..., BlockSpec.

where each BlockSpec is a mode spec, specifies conditions for blocking goals of the predicate
referred to by the mode spec (£/3 say). When a goal for £/3 is to be executed, the mode
specs are interpreted as conditions for blocking the goal, and if at least one condition
evaluates to true, the goal is blocked.

()

A block condition evaluates to true iff all arguments specified as ‘-’ are uninstantiated,
in which case the goal is blocked until at least one of those variables is instantiated. If
several conditions evaluate to true, the implementation picks one of them and blocks the
goal accordingly.

The recommended style is to write the block declarations in front of the source code of the
predicate they refer to. Indeed, they are part of the source code of the predicate, and must
precede the first clause. For example, with the definition:

:- block merge(-,7,-), merge(?7,-,-).

merge([], Y, Y).
merge(X, [1, X).
merge ([HIX], [E|Y], [HIZ]) :- H @< E, merge(X, [EIY], Z).
merge ([HIX], [ElY], [EIZ]) :- H @= E, merge([HIX], Y, Z).

calls to merge/3 having uninstantiated arguments in the first and third position or in the
second and third position will suspend.

The behavior of blocking goals for a given predicate on uninstantiated arguments cannot
be switched off, except by abolishing or redefining the predicate.

Block declarations generalize the “wait declarations” of earlier versions of SICStus Prolog.
A declaration ‘:- wait £/3’ in the old syntax corresponds to ‘:- block £(-,?,7)’ in the
current syntax. See Section 13.9.6 [Use Of Term Exp|, page 341, for a simple way to extend
the system to accept the old syntax.

6.2.6 Meta-Predicate Declarations

A declaration

Chapter 6: Loading Programs 71

:— meta_predicate MetaPredSpec, ..., MetaPredSpec.

where each MetaPredSpec is a mode spec, informs the compiler that certain arguments of
the declared predicates are used for passing goals. To ensure the correct semantics in the
context of multiple modules, clauses or directives containing goals for the declared predicates
may need to have those arguments module name expanded. See Section 5.5 [Meta Exp],
page 61, for details.

6.2.7 Module Declarations

A declaration
:— module (ModuleName, ExportList[, Options]).

where ExportList is a list of predicate specs, declares that the forthcoming predicates should
go into the module named ModuleName and that the predicates listed should be exported.
See Section 5.3 [Def Modules], page 60, for details.

)

6.2.8 Public Declarations

The only effect of a declaration
:— public PredSpec, ..., PredSpec.

where each PredSpec is a predicate spec, is to give the SICStus cross-referencer (see Sec-
tion 13.10 [The Cross-Referencer|, page 343) a starting point for tracing reachable code. In
some Prologs, this declaration is necessary for making compiled predicates visible. In SIC-
Stus Prolog, predicate visibility is handled by the module system. See Chapter 5 [Module
Intro], page 59.

6.2.9 Mode Declarations

A declaration
:— mode ModeSpec, ..., ModeSpec.

where each ModeSpec is a mode spec, has no effect whatsoever, but is accepted for compat-
ibility reasons. In some Prologs, this declaration helps reduce the size of the compiled code
for a predicate, and may speed up its execution. Unfortunately, writing mode declarations
can be error-prone, and since errors in mode declaration do not show up while running the
predicates interpretively, new bugs may show up when predicates are compiled. However,
mode declarations may be used as a commenting device, as they express the programmer’s
intention of data flow in predicates.

72 SICStus Prolog

6.2.10 Include Declarations

A declaration
:— include(Files). [150]

where Files is a file name or a list of file names, instructs the processor to literally embed
the Prolog clauses and directives in Files into the file being loaded. This means that the
effect of the include directive is such as if the include directive itself was replaced by the
text in the Files. Including some files is thus different from loading them in several respects:

e The embedding file counts as the source file of the predicates loaded, e.g. with respect
to the built-in predicate source_file/2; see Section 8.1.1 [Read In|, page 132.

e Some clauses of a predicate can come from the embedding file, and some from included
files.

e When including a file twice, all the clauses in it will be entered twice into the program
(although this is not very meaningful).

SICStus Prolog uses the included file name (as opposed to the embedding file name) only in
source level debugging and error reporting. Note that source level debugging information
is not kept for included files which are compiled to ‘.ql’ format; in such cases the debugger
will show the include directive itself as the source information.

6.3 Initializations

A directive
:— initialization :Goal. [150]

in a file includes Goal to the set of goals which shall be executed after that file has been
loaded.

initialization/1 is actually callable at any point during loading of a file. Initializations
are saved by save_modules/2 and save_program/[1,2], and so are executed after loading
or restoring such files too.

Goal is associated with the file loaded, and with a module, if applicable. When a file, or
module, is going to be reloaded, all goals earlier installed by that file, or in that module,
are removed first.

6.4 Considerations for File-To-File Compilation

When compiling a source file to a ‘. q1’ file, remember that clauses are loaded and directives
are executed at run time, not at compile time. Only predicate declarations are processed at

Chapter 6: Loading Programs 73

compile time. For instance, it does not work to include operator declarations or clauses of
user:term_expansion/[2,4] or user:goal_expansion/3 or any auxiliary predicates that
they might need, and rely on the new transformations to be effective for subsequent clauses
of the same file or subsequent files of the same compilation.

Any directives or clauses that affect the compile-time environment must be loaded prior
to compilin